
A Novel Automatic Technique Based on MILP
to Search for Impossible Differentials

Yong Liu1, Zejun Xiang2(B), Siwei Chen2, Shasha Zhang2, and Xiangyong
Zeng1

1 Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied
Mathematics, Hubei University, Wuhan, China
liuyong_crypto@163.com, xzeng@hubu.edu.cn

2 School of Cyber Science and Technology, Hubei University, Wuhan, China
xiangzejun@hubu.edu.cn, {chensiwei_hubu,amushasha}@163.com

Abstract. The Mixed Integer Linear Programming (MILP) is a com-
mon method of searching for impossible differentials (IDs). However, the
optimality of the distinguisher should be confirmed by an exhaustive
search of all input and output differences, which is clearly computation-
ally infeasible due to the huge search space.
In this paper, we propose a new technique that uses two-dimensional
binary variables to model the input and output differences and charac-
terize contradictions with constraints. In our model, the existence of IDs
can be directly obtained by checking whether the model has a solution.
In addition, our tool can also detect any contradictions between input
and output differences by changing the position of the contradictions.
Our method is confirmed by applying it to several block ciphers, and
our results show that we can find 6-, 13-, and 12-round IDs for Midori-
64, CRAFT, and SKINNY-64 within a few seconds, respectively. More-
over, by carefully analyzing the key schedule of Midori-64, we propose
an equivalent key transform technique and construct a complete MILP
model for an 11-round impossible differential attack (IDA) on Midori-
64 to search for the minimum number of keys to be guessed. Based on
our automatic technique, we present a new 11-round IDA on Midori-
64, where 23 nibbles of keys need to be guessed, which reduces the time
complexity compared to previous work. The time and data complexity of
our attack are 2116.59 and 260, respectively. To the best of our knowledge,
this is the best IDA on Midori-64 at present.

Keywords: IDA · Midori-64 · CRAFT · SKINNY-64 · MILP

1 Introduction

Impossible differential cryptanalysis, independently proposed by Knudsen [11]
and Biham et al. [4], is one of the most well-known cryptanalysis methods.
Unlike differential cryptanalysis [5], which exploits differential characteristics
with a high probability, the goal of impossible differential cryptanalysis is to use
differentials with a probability of zero to eliminate the key candidates that lead

2 F. Author et al.

to such IDs. Finding an ID (∆in,∆out) that covers as many rounds as possible
is the key step in an IDA. Up to now, several approaches to finding IDs have
been proposed.

Initially, the miss-in-the-middle technique was the commonly used method
for detecting IDs [6]. Then, the U -method [10] was proposed by Kim et al. To
find an (r1 + r2)-round ID, the attacker simultaneously propagates ∆X and
∆Y forward r1 rounds and backward r2 rounds, respectively, and checks the
difference of each output word separately. If any contradiction occurs, (∆X ,∆Y)
is a valid (r1 + r2)-round ID. Finally, this method was further extended, such as
the UID-method [13] and the extended tool by Wu and Wang [17].

In addition, there are some automatic techniques to find IDs. In 2016, Cui
et al. took the differential and linear properties of non-linear components such
as S-boxes into consideration and proposed a new automatic technique that
can be generalized to modular additions [8]. In 2017, Sasaki et al. proposed a
new technique that can detect any contradictions between input and output
differences to search for IDs [14]. However, if one wants to ensure that the cipher
does not exist valid IDs, all these methods need to traverse the input and output
differences, which is computationally infeasible. In 2020, Sun et al. developed a
Constraint Programming (CP)-aided version of the U -method called U∗-method,
which employs the miss-in-the-middle technique to search for (related-key) IDs
and zero-correlation linear approximations of several SPN ciphers [16]. To utilize
the information of nonzero fixed differences, they imported an integer variable
ζXi

for each Xi to represent the actual difference ∆Xi. In addition, the method
proposed in [16] only focuses on finding the longest distinguishers and does not
consider key recovery. Recently, Hu et al. proposed a new method to detect
all IDs based on MILP models with the Difference Distribution Table (DDT)
considered [9]. This new method partitions the whole search space into smaller
ones and some of them can be quickly determined to contain no IDs. Thus, the
search space is significantly reduced, sometimes to a practical size. Then the
attackers could handle the remaining candidates to check if there are any IDs.

Our Contribution. In this paper, we propose a new MILP-based technique
to search for IDs. Specifically, we introduce two different types of variables to
describe the state differences. A Type-1 variable is used to describe a fixed
difference pattern (can be either zero difference or nonzero difference), and a
Type-2 variable is used to describe a varied difference pattern (such as a state
difference pattern after one nonlinear layer). The simplified characterization of
state differences allows us to directly model both linear and nonlinear layers, in-
stead of characterizing the propagation of difference patterns through three basic
operations (branch, XOR, and S-box). Moreover, instead of traversing the input
and output differences and checking if the corresponding model is infeasible,
our technique characterizes the contradictions with several constraints and de-
rives an ID from the solution of the corresponding model. For a fixed position
of contradiction, the number of feasible solutions of the MILP model reveals the
number of IDs. So, we can obtain all valid IDs by traversing all possible positions
of the contradictions. To test the effectiveness of our tool, we apply it to sev-

Title Suppressed Due to Excessive Length 3

eral block ciphers, such as Midori-64 [1], CRAFT [3], and SKINNY-64 [2]. Our
results show that we can find 6-, 13-, and 12-round IDs for Midori-64, CRAFT,
and SKINNY-64 within a few seconds, respectively.

Based on the fact that there will be no nonzero fixed differences of an SPN
cipher after passing through a nonlinear layer under the single-key attack sce-
nario, our method simplifies the characterization of state differences compared
with the method of Sun et al. [16]. In addition, our simplified model makes it
possible to combine both the ID-search and the key-recovery, aiming to directly
search for an IDA with the minimum number of keys to be guessed. Specifically,
to construct an 11-round IDA on Midori-64 with the minimum number of keys to
be guessed, we propose an equivalent key transform technique that can convert
the guessed equivalent key nibbles of an IDA into seed key nibbles by analyz-
ing the properties of difference propagations and studying the key schedule of
Midori-64. Based on such a technique, we add additional extended rounds to the
MILP model to search for an 11-round IDA on Midori-64, while the objective
function is to minimize the number of guessed keys. As a result, the minimum
number of keys that need to be guessed in our 11-round IDA is 23 nibbles, and
the time and data complexity of our attack are 2116.59 and 260, respectively. Our
results are listed in Table 1.

Organization of the paper. The rest of this paper is organized as follows.
Section 2 introduces some preliminaries. Section 3 studies how to model the
difference propagation of some basic operations with linear inequalities. Section 4
shows some applications of our new technique. Section 5 introduces our IDA of
11-round Midori-64. Finally, Section 6 concludes the paper.

Table 1. Results of this paper

Cipher Distinguisher/ #Round #ID The time needed to Ref.
Key recovery attack search for (all) IDs

SKINNY-64 Distinguisher 12 12 1.5h [9]
SKINNY-64 Distinguisher 12 12 1s This Paper

CRAFT Distinguisher 13 12 7d [9]
CRAFT Distinguisher 13 12 1s This Paper

Midori-64 Distinguisher 6 21248 † 90s This Paper

#Key bit The attack complexity
Time Data Memory

Midori-64 Key recovery attack 10 72/128 280.81 262.4 265.13 [7]
Midori-64 Key recovery attack 11 128/128 2121.4 260.8 296.5 [12]
Midori-64 Key recovery attack 12 ‡ 128/128 290.51 261.87 241 [15]
Midori-64 Key recovery attack 11 128/128 2116.59 260 292.76 This Paper
† When searching for the number of IDs of 6-round Midori-64, we only consider the
case where all active input differences are equal and all active output differences
are equal.
‡ This attack excludes the pre- and post-whitening keys.

4 F. Author et al.

2 Preliminaries

2.1 Notations

The notations used in this paper are as follows:
• ×: multiplication of the integer ring Z.
• +: addition of the integer ring Z.
• F2: finite field with two elements 0 and 1.
• Fk

2 : k-dimensional vector space over F2, also denoted as {0, 1}k.
• ⊕: bitwise XOR.
• A∥B: concatenation of A and B.
• |A|: the size of set A.

2.2 Impossible Differential Cryptanalysis

Impossible differential cryptanalysis was independently proposed by Knudsen [11]
and Biham et al. [4]. As shown in Figure 1, the procedure of impossible differ-
ential cryptanalysis can be generally divided into three phases. The first phase
is to find an ID (E2) that covers as many rounds as possible. Once such an ID
has been found, one can extend this ID in both directions and guess the keys
involved in these additional rounds (E1 and E3). We denote by kin and kout
the key materials involved in the transitions ∆in → ∆X and ∆out → ∆Y , re-
spectively, and further denote by cin and cout the minus binary logarithm of the
probability of those transitions. If the intermediate state difference matches the
ID for some key guesses, those key candidates should be removed (this phase
is generally called the key-sieving procedure). The last phase of impossible dif-
ferential cryptanalysis is to check all the remaining keys from the key-sieving
procedure by one encryption.

rin

rout

rΔ

Δin

Δout

ΔX

ΔY

E1

E2

E3

(cin,kin)

(cout,kout)

rin routrΔ

Δin ΔoutΔX ΔY

E1 E2 E3

(cin,kin) (cout,kout)

rin routrΔ
Δin ΔoutΔX ΔY

E1 E2 E3

(cin,kin) (cout,kout)

Fig. 1. Overview of impossible differential cryptanalysis

3 Modeling Difference Propagation of Basic Operations
with Linear Inequalities

The new automatic technique we proposed can be used to search for IDs of SP-
network block ciphers with a 4 × 4 binary MixColumn matrix. In this paper,

Title Suppressed Due to Excessive Length 5

our MILP models are constructed in a nibble-level, and we represent a state
difference pattern with two-dimensional binary variables. When characterizing
a state difference pattern, there are two different types:

- Type-1. Fixed difference patterns:
In this paper, we use two-dimensional binary variables (x, y)1 to represent
fixed difference patterns, where (0, 0)1, (0, 1)1, (1, 0)1, and (1, 1)1 indicate
that the corresponding nibbles have a difference ∆0, ∆1, ∆2, and ∆3 (∆0 =
0,∆1 ̸= ∆2 ̸= ∆3 ̸= 0), respectively. Note that ∆1,∆2, and ∆3 are any fixed
nonzero and unequal differences.

- Type-2. Varied difference patterns:
The second type corresponds to the case that we only care whether the
nibble difference is inactive, active, or unknown (can be either active or
inactive). In this case, we use two-dimensional binary variables (x, y)2 to
represent such difference patterns, where (0, 0)2, (0, 1)2, and (1, 0)2 indicate
that the corresponding nibble difference is inactive, active, and unknown,
respectively.

In the following, we will introduce difference propagation rules and show
how to model SubCell (SB), ShuffleCell (SC), and MixColumn (MC) by linear
inequalities (The linear inequalities in this paper are obtained by SageMath 3).

Modeling SB (SB−1) Since SB is a permutation, which means an (in)active
input difference will always result in an (in)active output difference. Let (x0, x1)i
and (y0, y1)j (i, j ∈ {1, 2}) be the input and output differences of SB respectively.
There are two cases for the difference propagation of SB that appeared in our
MILP model:

- Case 1: (x0, x1)1
SB−→ (y0, y1)2, where the input and output differences of

SB belong to Type-1 and Type-2 difference patterns respectively, then there
are 4 possible difference transitions for SB shown in Table 2. The following
linear inequalities are sufficient to describe these transitions:

− x0 + y1 ≥ 0,

− x1 + y1 ≥ 0,

x0 + x1 − y1 ≥ 0,

y0 = 0.

- Case 2: (x0, x1)2
SB−→ (y0, y1)2, where both the input and output differences

of SB belong to Type-2 difference patterns, then there are 3 possible differ-
ence transitions for SB shown in Table 2. The following linear inequalities
are sufficient to describe these transitions:

x0 − y0 = 0,

x1 − y1 = 0,

− x0 − x1 + 1 ≥ 0.

3 http://www.sagemath.org/

6 F. Author et al.

Table 2. Possible difference transitions for SB (SB−1)

Case Input (x0, x1)1 Output (y0, y1)2 Case Input (x0, x1)2 Output (y0, y1)2

Case 1
(0, 0)1 (0, 0)2

Case 2
(0, 0)2 (0, 0)2

the others (0, 1)2 (0, 1)2 (0, 1)2
(1, 0)2 (1, 0)2

Modeling SC (SC−1) Since SC is a nibble-wise permutation, we only need
to permute the state difference patterns accordingly. Note that the input and
output difference patterns are of the same type.

Modeling MC (MC−1) Denote (m0,m1,m2,m3) and (n0, n1, n2, n3) as the
input and output of MC, respectively, then

ni =
⊕

0≤j≤3

(tji ×mj),

where tji ∈ {0, 1} and 0 ≤ i ≤ 3.
When the output nibble ni is equal to one input nibble (i.e.,

∑
0≤j≤3 t

j
i = 1),

there are three cases for the difference transitions of ni (one output nibble of
MC) that appeared in our MILP model:

- Case 1: (x0, x1)1
MC−→ (y0, y1)1, where both the input and output differences

of MC belong to Type-1 difference patterns, then there are 4 possible differ-
ence transitions for MC shown in Table 3. The following linear inequalities
are sufficient to describe these transitions:{

x0 − y0 = 0,

x1 − y1 = 0.

- Case 2: (x0, x1)1
MC−→ (y0, y1)2, where the input and output differences of

MC belong to Type-1 and Type-2 difference patterns respectively, then there
are 4 possible difference transitions for MC shown in Table 3. The following
linear inequalities are sufficient to describe these transitions:

− x0 + y1 ≥ 0,

− x1 + y1 ≥ 0,

x0 + x1 − y1 ≥ 0,

y0 = 0.

- Case 3: (x0, x1)2
MC−→ (y0, y1)2, where both the input and output differences

of MC belong to Type-2 difference patterns, then there are 3 possible differ-
ence transitions for MC shown in Table 3. The following linear inequalities

Title Suppressed Due to Excessive Length 7

are sufficient to describe these transitions:
x0 − y0 = 0,

x1 − y1 = 0,

− x0 − x1 + 1 ≥ 0.

When the output nibble ni is the sum of two input nibbles (i.e.,
∑

0≤j≤3 t
j
i =

2), there are two cases for the difference transitions of ni (one output nibble of
MC) that appeared in our MILP model:

- Case 4: [(x0, x1)1, (x2, x3)1]
MC−→ (y0, y1)2, where the input and output dif-

ferences of MC belong to Type-1 and Type-2 difference patterns respectively,
then there are 16 possible difference transitions for MC shown in Table 3.
The following linear inequalities are sufficient to describe these transitions:

− x1 + x3 + y1 ≥ 0,

x1 − x3 + y1 ≥ 0,

− x0 + x2 + y1 ≥ 0,

x0 − x2 + y1 ≥ 0,

x0 + x1 + x2 + x3 − y1 ≥ 0,

− x0 + x1 − x2 + x3 − y1 + 2 ≥ 0,

x0 − x1 + x2 − x3 − y1 + 2 ≥ 0,

− x0 − x1 − x2 − x3 − y1 + 4 ≥ 0,

y0 = 0.

- Case 5: [(x0, x1)2, (x2, x3)2]
MC−→ (y0, y1)2, where both the input and output

differences of MC belong to Type-2 difference patterns, then there are 9
possible difference transitions for MC shown in Table 3. The following linear
inequalities are sufficient to describe these transitions:

− x0 − x1 − x2 − x3 + 2y0 + y1 ≥ 0,

− y0 − y1 + 1 ≥ 0,

2x0 + x1 + 2x2 + x3 − 2y0 − y1 ≥ 0,

x1 + x3 − y1 ≥ 0,

− x0 − x1 + y0 + y1 ≥ 0,

− x2 − x3 + y0 + y1 ≥ 0.

When the output nibble ni is the sum of three input nibbles (i.e.,
∑

0≤j≤3 t
j
i =

3), there are two cases for the difference transitions of ni (one output nibble of
MC) that appeared in our MILP model:

- Case 6: [(x0, x1)1, (x2, x3)1, (x4, x5)1]
MC−→ (y0, y1)2, where the input and

output differences of MC belong to Type-1 and Type-2 difference patterns

8 F. Author et al.

respectively, then there are 64 possible difference transitions for MC shown
in Table 3. The following linear inequalities are sufficient to describe these
transitions:

x0 + x1 + x2 + x3 + x4 + x5 − 4y0 − y1 ≥ 0,

− x0 − x1 + x2 − 3x3 − 3x4 + x5 + 4y0 + 3y1 + 4 ≥ 0,

− x0 − x1 − 3x2 + x3 + x4 − 3x5 + 4y0 + 3y1 + 4 ≥ 0,

− x0 − x2 − x4 + y1 + 2 ≥ 0,

− x1 − x3 − x5 + y1 + 2 ≥ 0,

− y0 − y1 + 1 ≥ 0,

− x0 + x2 + x4 + y1 ≥ 0,

x0 − 3x1 − x2 − x3 − 3x4 + x5 + 4y0 + 3y1 + 4 ≥ 0,

x0 − x2 + x4 + y1 ≥ 0,

x1 + x3 − x5 + y1 ≥ 0,

− x0 − x1 − x2 − x3 + x4 + x5 − 2y0 − y1 + 4 ≥ 0,

− x0 − x1 + x2 + x3 − x4 − x5 − 2y0 − y1 + 4 ≥ 0,

x0 + x1 − x2 − x3 − x4 − x5 − 2y0 − y1 + 4 ≥ 0,

x1 − x3 + x5 + y1 ≥ 0,

x0 + x2 − x4 + y1 ≥ 0,

− x1 + x3 + x5 + y1 ≥ 0,

x0 + x1 − x2 + x3 − x4 + x5 − 2y0 − y1 + 2 ≥ 0,

− x0 + x1 + x2 + 3x3 − x4 + x5 − 4y0 − y1 + 2 ≥ 0,

x0 − x1 − x2 + x3 − x4 − x5 + 2y0 + y1 + 2 ≥ 0,

x0 − x1 + x2 + x3 + x4 − x5 − 2y0 − y1 + 2 ≥ 0,

x0 − x1 + x2 − x3 + 3x4 + x5 − 4y0 − y1 + 2 ≥ 0,

− x0 + x1 − x2 + x3 + x4 + x5 − 2y0 − y1 + 2 ≥ 0,

x0 + x1 + x2 − x3 + x4 − x5 − 2y0 − y1 + 2 ≥ 0,

− x0 + x1 + x2 − x3 − x4 − x5 + 2y0 + y1 + 2 ≥ 0,

− x0 + x1 − x2 − x3 + x4 − x5 + 2y0 + y1 + 2 ≥ 0.

- Case 7: [(x0, x1)2, (x2, x3)2, (x4, x5)2]
MC−→ (y0, y1)2, where both the input

and output differences of MC belong to Type-2 difference patterns, then
there are 27 possible difference transitions for MC shown in Table 3. The

Title Suppressed Due to Excessive Length 9

following linear inequalities are sufficient to describe these transitions:

− x0 − x1 − x2 − x3 − x4 − x5 + 3y0 + y1 ≥ 0,

− y0 − y1 + 1 ≥ 0,

− x0 − x1 + y0 + y1 ≥ 0,

− x2 − x3 + y0 + y1 ≥ 0,

− x4 − x5 + y0 + y1 ≥ 0,

2x0 + x1 + 2x2 + x3 + 2x4 + x5 − 2y0 − y1 ≥ 0,

x1 + x3 + x5 − y1 ≥ 0.

Table 3. Possible difference transitions for MC (MC−1)

Case Input Output Case Input Output

Case 1

(x0, x1)1 (y0, y1)1

Case 2

(x0, x1)1 (y0, y1)2
(0, 0)1 (0, 0)1 (0, 0)1 (0, 0)2
(0, 1)1 (0, 1)1 the others (0, 1)2
(1, 0)1 (1, 0)1
(1, 1)1 (1, 1)1

Case 3

(x0, x1)2 (y0, y1)2
(0, 0)2 (0, 0)2
(0, 1)2 (0, 1)2
(1, 0)2 (1, 0)2

Case 4

[(x0, x1)1, (x2, x3)1] (y0, y1)2

Case 5

[(x0, x1)2, (x2, x3)2] (y0, y1)2
[(0, 0)1, (0, 0)1] (0, 0)2 [(0, 0)2, (0, 0)2] (0, 0)2
[(0, 1)1, (0, 1)1] (0, 0)2 [(0, 0)2, (0, 1)2] (0, 1)2
[(1, 0)1, (1, 0)1] (0, 0)2 [(0, 1)2, (0, 0)2] (0, 1)2
[(1, 1)1, (1, 1)1] (0, 0)2 the others (1, 0)2

the others (0, 1)2

Case 6

[(x0, x1)1, (x2, x3)1, (x4, x5)1] (y0, y1)2

Case 7

[(x0, x1)2, (x2, x3)2, (x4, x5)2] (y0, y1)2
[(0, 0)1, (0, 0)1, (0, 0)1]

(0, 0)2 [(0, 0)2, (0, 0)2, (0, 0)2] (0, 0)2

[(0, 0)1, (0, 1)1, (0, 1)1]
[(0, 1)1, (0, 0)1, (0, 1)1]
[(0, 1)1, (0, 1)1, (0, 0)1]
[(0, 0)1, (1, 0)1, (1, 0)1]
[(1, 0)1, (0, 0)1, (1, 0)1]
[(1, 0)1, (1, 0)1, (0, 0)1]
[(0, 0)1, (1, 1)1, (1, 1)1]
[(1, 1)1, (0, 0)1, (1, 1)1]
[(1, 1)1, (1, 1)1, (0, 0)1]
[(0, 1)1, (1, 0)1, (1, 1)1]

(1, 0)2

[(0, 0)2, (0, 0)2, (0, 1)2]

(0, 1)2

[(0, 1)1, (1, 1)1, (1, 0)1]
[(1, 0)1, (0, 1)1, (1, 1)1]

[(0, 0)2, (0, 1)2, (0, 0)2][(1, 0)1, (1, 1)1, (0, 1)1]
[(1, 1)1, (0, 1)1, (1, 0)1] [(0, 1)2, (0, 0)2, (0, 0)2][(1, 1)1, (1, 0)1, (0, 1)1]

the others (0, 1)2 the others (1, 0)2

10 F. Author et al.

When the output nibble ni is the sum of four input nibbles (i.e.,
∑

0≤j≤3 t
j
i =

4), there are also several cases for the difference transitions of ni. However, since
this does not occur in our applications, we omit the details when the number of
input nibbles is greater than three.

So far, we have studied difference propagation rules of SB, SC, and MC.
Based on the above difference propagation rules, we can construct MILP models
to search for IDs of specific block ciphers.

4 Applications to Midori-64, CRAFT, and SKINNY-64
4.1 Midori-64
Midori is a family of SP-network block ciphers [1]. There are two versions of
Midori: Midori-64 and Midori-128. In this paper, we only introduce Midori-64
since we are only concerned about its security. The block size of Midori-64 is 64
bits. The internal state of Midori-64 is represented as a 4× 4 array and consists
of 16 cells S0, S1, . . . , S15 which has the following data structure:

S =

S0 S4 S8 S12

S1 S5 S9 S13

S2 S6 S10 S14

S3 S7 S11 S15

 ,

where the size of each cell is 4 bits.
The round function of Midori-64 consists of four steps: SubCell (SB), Shuffle-

Cell (SC), MixColumn (MC), and KeyAdd (KA). The round number of Midori-64
is 16, and SC and MC are omitted in the last round. The overview of Midori-64
is shown in Figure 2.

– SB: A non-linear substitution step, where each cell is replaced with another
cell by a bijective 4-bit S-box.

– SC: Each cell of the state is permuted as follows:

[S0, S1, . . . , S15]←− [S0, S10, S5, S15, S14, S4, S11, S1, S9, S3, S12, S6, S7, S13, S2, S8].

– MC: Left multiply each column of the state S by a 4×4 matrix M over F4
2:

M = M−1 =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .

– KA: The round key RKi is XORed with the state S.
– Key schedule: The key size of Midori-64 is 128 bits, and the master-key

is denoted as K = K0∥K1, where K0 and K1 are two 64-bit seed keys. For
i = 0, 1, . . . , 14, the round keys are RKi = K(i+1) mod 2 ⊕ αi, where αi is a
constant (Since αi is known, it does not affect the guessing of round keys, we
treat Ki mod 2 ⊕ αi and Ki mod 2 as the same, 0 ≤ i ≤ 14). The whitening key
WK = K0 ⊕ K1 is used as the sub-key in the last KA operations and XORed
with the plaintext P before the first round of encryption. Similarly, the round
keys do not affect the difference propagation.

Title Suppressed Due to Excessive Length 11

WK

P

S
u

b
C

el
l

S
h

u
ffl

eC
el

l

M
ix

C
ol

u
m

n

RK0

α0

K0K0 ⊕K1

S
u

b
C

el
l

S
h

u
ffl

eC
el

l

M
ix

C
ol

u
m

n

RK1

α1

K1

S
u

b
C

el
l

S
h

u
ffl

eC
el

l

M
ix

C
ol

u
m

n

RK2

α2

K0

· · ·

RK13

α13

K1

S
u

b
C

el
l

S
h

u
ffl

eC
el

l

M
ix

C
ol

u
m

n

RK14

α14

K0

S
u

b
C

el
l

WK

K0 ⊕K1

C

Figure 1: Midori64 encryption algorithm.

2.2 The Invariant Subspace Attack

As a method of cryptanalysis, the invariant subspace attack has been introduced
by Leander et al. at CRYPTO 2011 [5]. In this method, the adversary aims to
find so-called invariant subspaces, i.e. subsets of the set of all possible state and
key values, invariant of the round transformations used in the analyzed cipher.
When such a subset exists, then the adversary encrypts plaintexts that belong
to the subset, assumes the master key belongs as well to the subset (thus it is
a weak-key attack) and expects to obtain corresponding ciphertexts that also
belong to the subset. This immediately yields a distinguisher for the cipher, while
more advanced approaches can be used for a key recovery.

Non-trivial invariant subspaces not necessarily exist for a given cipher. When
they do exist, they are found either by a careful analysis (as it is the case of
the analysis of PRINTCipher [5]) or with the use of a specialized tool [6]. To
deduce the invariant subspace, the former method requires examination of all the
transformations used in the cipher, which usually provide a hint of the possible
subspace. On the other hand, the latter method is generic and is achieved by a
computer search. Its success depends on the proportion of the sizes of weak to
all key class.

3 Subspace Attack on Midori64

This section explains our subspace attack on Midori64. Our attack is a weak-key
attack, in which the size of the weak-key class is 232. With such a weak key,
Midori64 can be distinguished from a random permutation only with one chosen
plaintext query, negligible computational cost, and negligible memory amount.
Moreover, the key can be recovered from the 232 choices with approximately 216

operations.

3.1 Distinguisher with Subspace Attack

We first introduce several notations used in this attack.

K: a subspace of nibble values consisting of two elements 0 and 1, i.e., K , {0, 1}

Fig. 2. Midori-64 encryption algorithm

4.2 6-round Impossible Differential of Midori-64

In this subsection, we show how to model the nibble-wise operations of Midori-64
and present our search strategy for new IDs of Midori-64.

AK

AK

AK

AK

AK

AK

AK

AKMCSC

MC

MC

MC

MCSC

SC

SB

SB

SB

MC

SB

SB SC

SC

SC

SB

RK0a0 b0 c0 d0

P WK

RK1a1 b1 c1 d1

RK2a2 b2 c2 d2

RK3a3 b3 c3 d3

RK4a4 b4 c4 d4

RK5a5 b5 c5 d5

AK

AK

AK

AKMC

MC

MC

SC

SB

SB

SB

MC

SB

SB SC

SC

SC

RK6a6 b6 c6 d6

RK7a7 b7 c7 d7

RK8a8 b8 c8 d8

RK9a9 b9 c9 d9

WKa10 b10

C

Active Inactive

Unknown

2022.5.22后代码的

Key nibbles that

 need to be guessed

Fig. 3. Impossible differential cryptanalysis of 11-round Midori-64

Based on the difference propagation rules introduced in Section 3, we can
construct an MILP model to characterize the difference propagation of Midori-
64. We use the miss-in-the-middle [6] technique to search for a 6-round ID of
Midori-64 with the model M1. More specifically, we take ∆X and ∆Y as the
input and output differences of the ID and propagate their differences forward
and backward as much as possible respectively, while ensuring that there are
some contradictions. In our MILP model, the input and output differences of

12 F. Author et al.

the ID are ∆c1 and ∆c7 respectively (as shown in Figure 3). If there are some
contradictions between ∆di and ∆ai+1 (1 ≤ i ≤ 6), then the MILP model can
return all state difference patterns which constitute an ID. Otherwise, return
infeasible which means we fail to find a contradiction. We use two-dimension
binary variables (a0i [u], a

1
i [u]), (b0i [u], b

1
i [u]), (c0j [u], c

1
j [u]), and (d0j [u], d

1
j [u]) to

represent the state difference patterns after AK, SB, SC, and MC in the MILP
model, respectively, where i and j (0 ≤ i ≤ 10, 0 ≤ j ≤ 9) represent the number
of rounds and the arrangement of u (0 ≤ u ≤ 15) is the same as the state (Since
AK does not affect the difference propagation, we have ∆di = ∆ai+1, 0 ≤ i ≤ 9).

As shown in Figure 3, we take the contradiction between ∆d4 and ∆a5 as an
example to illustrate the construction of M1. However, we need to determine
the difference pattern types first. In our impossible differential cryptanalysis, we
consider the cases where the input and output differences of an ID are fixed
values. In order to avoid too many computations, the active nibbles of the input
and output differences are restricted to at most three distinct values. Thus, the
input difference (c01[u], c

1
1[u]) and output difference (c07[u], c

1
7[u]) of the ID belong

to Type-1 difference patterns (0 ≤ u ≤ 15). In the following, we analyze the
types of intermediate difference patterns.

Forward difference propagation. Since one nibble of the output difference
of MC is unknown (either zero or nonzero) when the corresponding three input
nibbles have nonzero and unequal differences, we need to use a Type-2 dif-
ference pattern to characterize (d01[u], d

1
1[u]). Thus, (a0i [u], a

1
i [u]), (b0i [u], b

1
i [u]),

(c0i [u], c
1
i [u]), (d0i [u], d1i [u]) belong to Type-2, where 2 ≤ i ≤ 4 and 0 ≤ u ≤ 15.

Backward difference propagation. Since (c07[u], c
1
7[u]) is a Type-1 difference

pattern and SC−1 is a nibble-wise permutation, we only need to permute the state
difference patterns accordingly. Thus, (b07[u], b17[u]) belongs to Type-1 difference
patterns. Since the output difference of SB−1 can take more than three nonzero
values when the input difference of SB−1 is nonzero, we need to use a Type-2
difference pattern to characterize (a07[u], a

1
7[u]) (a Type-1 difference pattern can

only characterize three nonzero differences). Thus, (a0i [u], a
1
i [u]), (b0i [u], b

1
i [u]),

(c0i [u], c
1
i [u]), (d0i [u], d1i [u]) also belong to Type-2, where 5 ≤ i ≤ 6 and 0 ≤ u ≤

15.
Once we have determined the types of difference patterns that appeared in

the ID, we can choose appropriate transition rules to describe SB, SC, and MC
for each round, as shown in Table 4.

After the model characterizing the difference propagation of 6-round Midori-
64 is constructed, we need to make sure that there is a contradiction. In other
words, there exists an u such that ∆d4[u] = 0 and ∆a5[u] ̸= 0, or ∆d4[u] ̸= 0
and ∆a5[u] = 0, for 0 ≤ u ≤ 15. In either case, we have successfully detected a
contradiction. All cases of ((d04[u], d14[u])2, (a05[u], a15[u])2) are shown in Table 5,
where the dummy variable t[u] is an indicator of contradictions (0 ≤ u ≤ 15).
When t[u] = 1, (d04[u], d14[u])2 and (a05[u], a

1
5[u])2 constitute a valid contradiction.

When t[u] = 0, (d04[u], d14[u])2 and (a05[u], a
1
5[u])2 do not contradict each other.

Title Suppressed Due to Excessive Length 13

Table 4. The difference propagation rules for IDs of 6-round Midori-64, 13-round
CRAFT, and 12-round SKINNY-64

Cipher Direction Input → Output Input → Output Propagation rule

Midori-64

Forward

∆c1
MC−→ ∆d1 Type-1 MC−→ Type-2 Case 6 of MC

∆ai
SB−→ ∆bi, 2 ≤ i ≤ 4 Type-2 SB−→ Type-2 Case 2 of SB

∆bi
SC−→ ∆ci, 2 ≤ i ≤ 4 Type-2 SC−→ Type-2 Case 2 of SC

∆ci
MC−→ ∆di, 2 ≤ i ≤ 4 Type-2 MC−→ Type-2 Case 7 of MC

Backward

∆c7
SC−1

−→ ∆b7 Type-1 SC−1

−→ Type-1 Case 1 of SC−1

∆b7
SB−1

−→ ∆a7 Type-1 SB−1

−→ Type-2 Case 1 of SB−1

∆di
MC−1

−→ ∆ci, 5 ≤ i ≤ 6 Type-2 MC−1

−→ Type-2 Case 7 of MC−1

∆ci
SC−1

−→ ∆bi, 5 ≤ i ≤ 6 Type-2 SC−1

−→ Type-2 Case 2 of SC−1

∆bi
SB−1

−→ ∆ai, 5 ≤ i ≤ 6 Type-2 SB−1

−→ Type-2 Case 2 of SB−1

CRAFT

Forward

∆b0
SC−→ ∆c0 Type-1 SC−→ Type-1 Case 1 of SC

∆c0
SB−→ ∆a1 Type-1 SB−→ Type-2 Case 1 of SB

∆ai
MC−→ ∆bi, 1 ≤ i ≤ 6 Type-2 MC−→ Type-2 Case 7, 5, 3, 3 of MC †

∆bi
SC−→ ∆ci, 1 ≤ i ≤ 6 Type-2 SC−→ Type-2 Case 2 of SC

∆ci
SB−→ ∆ai+1, 1 ≤ i ≤ 5 Type-2 SB−→ Type-2 Case 2 of SB

Backward

∆b13
MC−1

−→ ∆a13 Type-1 MC−1

−→ Type-2 Case 6, 4, 2, 2 of MC−1

∆ci
SC−1

−→ ∆bi, 7 ≤ i ≤ 12 Type-2 SC−1

−→ Type-2 Case 2 of SC−1

∆bi
MC−1

−→ ∆ai, 7 ≤ i ≤ 12 Type-2 MC−1

−→ Type-2 Case 7, 5, 3, 3 of MC−1

∆ai
SB−1

−→ ∆ci−1, 8 ≤ i ≤ 13 Type-2 SB−1

−→ Type-2 Case 2 of SB−1

SKINNY-64

Forward

∆a0
SB−→ ∆b0 Type-1 SB−→ Type-2 Case 1 of SB

∆bi
SC−→ ∆ci, 0 ≤ i ≤ 5 Type-2 SC−→ Type-2 Case 2 of SC

∆ci
MC−→ ∆ai+1, 0 ≤ i ≤ 5 Type-2 MC−→ Type-2 Case 7, 3, 5, 5 of MC

∆ai
SB−→ ∆bi, 1 ≤ i ≤ 5 Type-2 SB−→ Type-2 Case 2 of SB

Backward

∆a12
MC−1

−→ ∆c11 Type-1 MC−1

−→ Type-2 Case 2, 6, 4, 4 of MC−1

∆ci
SC−1

−→ ∆bi, 6 ≤ i ≤ 11 Type-2 SC−1

−→ Type-2 Case 2 of SC−1

∆ai
MC−1

−→ ∆ci−1, 7 ≤ i ≤ 11 Type-2 MC−1

−→ Type-2 Case 3, 7, 5, 5 of MC−1

∆bi
SB−1

−→ ∆ai, 7 ≤ i ≤ 11 Type-2 SB−1

−→ Type-2 Case 2 of SB−1

† When the state performs the MC operation, the propagation rules for the output
nibbles of the first, second, third, and fourth rows are Case 7, Case 5, Case 3, and
Case 3 of MC, respectively.

14 F. Author et al.

Table 5. Characterize contradictions

Input (d04[u], d
1
4[u])2 Output (a0

5[u], a
1
5[u])2 Indicator t[u]

(0, 0)2 (0, 1)2 1
(0, 1)2 (0, 0)2 1

the others 0

The following linear inequalities are sufficient to describe these contradictions:
− d04[u]− d14[u]− a05[u]− a15[u]− t[u] + 2 ≥ 0,

d14[u] + a15[u]− t[u] ≥ 0,

d04[u] + d14[u]− a15[u] + t[u] ≥ 0,

− d14[u] + a05[u] + a15[u] + t[u] ≥ 0.

(1)

Put all the constraints together, the complete modelM1 can be constructed,
which is composed of the following inequalities.

Constraints of M1:

1. The constraints on the input and output differences ∆c1 and ∆c7. Note that
at least one nibble of both the input and output differences should be active:∑

0≤u≤15

(c01[u] + c11[u]) ≥ 1,

∑
0≤u≤15

(c07[u] + c17[u]) ≥ 1.

2. Construct the constraints of the difference propagation (∆c1 → ∆d4, ∆c7 →
∆a5) according to Table 4.

3. The constraints to ensure a contradiction, i.e., there is at least one u (0 ≤
u ≤ 15) such that a contradiction exists between ∆d4[u] and ∆a5[u].∑

0≤u≤15

t[u] ≥ 1,

where t[u] is an indicator as shown in Inequality 1.

Note that we do not set any objective function for M1, and the automatic
tool Gurobi 4 is utilized to check if M1 is feasible. If M1 is feasible, it
indicates that there are valid 6-round IDs, and any valid solution constitutes
the full state difference patterns. However, if M1 is infeasible, there are no
valid 6-round IDs under such constraints. In this case, we can also check whether
there is a valid ID by changing the position of the contradictions and updating
M1. As presented in Table 6, the experimental results show that 6-round IDs
4 http://www.gurobi.com/

Title Suppressed Due to Excessive Length 15

Table 6. The number of IDs and the status of M1 for different positions of contradic-
tions

Cipher The position of the contradiction Status #ID

Midori-64 di ↮ ai+1, i ∈ {1, 2, 5, 6} infeasible 0
dj ↮ aj+1, j ∈ {3, 4} feasible 10752

CRAFT ci ↮ ai+1, i ∈ {0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 13} infeasible 0
cj ↮ aj+1, j ∈ {5, 6, 7} feasible 12

SKINNY-64 ai ↮ bi, i ∈ {0, 1, 2, 3, 4, 7, 8, 9, 10, 11} infeasible 0
aj ↮ bj , j ∈ {5, 6} feasible 8

exist when the contradiction position is located between d4 and a5 or between
d3 and a4.

The modelM1 can also be used to search for the number of IDs. The general
procedure can be divided into the following steps:

- Step 1. For a fixed position of contradiction i, build an MILP model M1.
- Step 2. Optimize the model M1 and obtain the number of IDs Ni.
- Step 3. Obtain the values of the variables representing the input and output

difference patterns and store them in S.
- Step 4. Replace the position of contradiction by i+1, update the modelM1,

and repeat Step 1− 3 until the position of contradiction has been traversed.
- Step 5. Evaluate the number of duplicated elements in S, denoted as Nr,

then the number of IDs is
∑

i Ni −Nr.

For 6-round Midori-64, we only consider the case where the active input dif-
ferences are equal and the active output differences are equal, when the contra-
diction position is located between d4 and a5 or between d3 and a4, the number
of corresponding IDs is 10752 and 10752, respectively. Furthermore, we found
that 256 IDs are the same by comparing the specific input and output difference
patterns of these IDs, so the total number of IDs for 6-round Midori-64 is 21248.
An example of 6-round IDs of Midori-64 is shown in Figure 3.

4.3 CRAFT and SKINNY-64

CRAFT is a 32-round iterative tweakable block cipher proposed at FSE 2019 [3],
and it consists of a 64-bit block, a 128-bit key, and a 64-bit tweak. The data struc-
ture of CRAFT’s internal state is the same as Midori-64. The round function of
CRAFT consists of five steps: MixColumn (MC), AddConstants (AC), AddTweakey
(ATK), PermuteNibbles (SC), and SubBox (SB).

– MC: Left multiply each column of the state S by a 4×4 matrix M over F4
2:

M = M−1 =

1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1

 .

16 F. Author et al.

– SC: Each cell of the state is permuted as follows:

[S0, S1, . . . , S15]←− [S15, S10, S9, S4, S3, S6, S5, S8, S7, S2, S1, S12, S11, S14, S13, S0].

Since the AddConstants and AddTweakey do not affect the difference propa-
gation, we omit the details of these operations. Moreover, as the only condition
we used to model the PermuteNibbles is that it is a permutation, we do not list
the truth table of the S-box for the sake of brevity.

The block cipher family SKINNY was presented at CRYPTO 2016 [2], and
the SKINNY family consists of 6 different members represented as SKINNY-n-t,
where n = 64, 128 and t = n, 2n, 3n, which respectively represent the sizes of the
block and tweakey. In this paper, we only introduce SKINNY-64 since we are only
concerned about its security. The data structure of SKINNY-64’s internal state
is the same as Midori-64. The round function of SKINNY-64 consists of five
steps: SubCells (SB), AddConstants (AC), AddRoundTweakey (ART), ShiftRows
(SC), and MixColumns (MC).

– SC: The second, third, and fourth rows are rotated by 1, 2 and 3 cell
positions to the right, respectively.

– MC: Left multiply each column of the state S by a 4×4 matrix M over F4
2:

M =

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 , M−1 =

0 1 0 0
0 1 1 1
0 1 0 1
1 0 0 1

 .

We also omit the details of AC, ART, and SB operations.
The modeling procedure of CRAFT and SKINNY-64 is very similar to the

one for Midori-64. The transition rules of each model to describe SB, SC, and MC
for each round are shown in Table 4. Moreover, as presented in Table 6, when
the contradiction position is located between ci and ai+1 (5 ≤ i ≤ 7), there are
13-round IDs of CRAFT. When the contradiction position is located between ai
and bi (5 ≤ i ≤ 6), there are 12-round IDs of SKINNY-64. For 13-round CRAFT
and 12-round SKINNY-64, we consider all possible input differences and output
differences. Excluding the same IDs, the total number of IDs is 12 and 12 for
the 13-round CRAFT and the 12-round SKINNY-64, respectively. The example
IDs of 13-round CRAFT and 12-round SKINNY-64 are shown in Appendix A.

5 Impossible Differential Cryptanalysis of 11-round
Midori-64

After a valid ID has been found, we can extend this ID in both directions to
obtain an IDA. Note that the time complexity of an IDA is closely related to
the number of keys that need to be guessed. However, the number of keys that
need to be guessed is different when using different IDs to mount an IDA. Thus,
in order to decrease the complexity, we need to minimize the number of guessed

Title Suppressed Due to Excessive Length 17

keys. Manually deriving the optimal IDA is currently a common strategy, but
this method is limited by the number of IDs.

According to our results in Section 4, we found 6-round, 13-round, and 12-
round IDs for Midori-64, CRAFT, and SKINNY-64, respectively. Thus, it is more
feasible to construct the MILP model to search for the IDA with the minimum
number of guessed keys, especially for Midori-64 as we have a large number of
IDs. On the other hand, we found 13-round IDs for CRAFT and 12-round IDs
for SKINNY-64. The round number of both two ciphers is 32. It seems that IDA
is far from threatening their security. However, the round number of Midori-64
is 16, and the IDs can reach 6 rounds. This small gap makes it a more serious
threat to the security of Midori-64. Thus, in the following subsection, we model
extended rounds of Midori-64 to achieve the best IDA with the minimum number
of guessed keys.

5.1 Modeling the Extended Rounds for Midori-64

We first analyze the types of state difference patterns in those additional rounds
and choose the appropriate difference propagation rules of SB, SC, and MC
accordingly.

Backward difference propagation. Since (c01[u], c
1
1[u]) is a Type-1 difference

pattern and SC−1 is a nibble-wise permutation, we only need to permute the state
difference patterns accordingly. Thus, (b01[u], b11[u]) belongs to Type-1 difference
patterns. Since the output difference of SB−1 can take more than three nonzero
values when the input difference of SB−1 is nonzero, we need to use a Type-2
difference pattern to characterize (a01[u], a

1
1[u]) (a Type-1 difference pattern can

only characterize three nonzero differences). Thus, (a0i [u], a
1
i [u]), (b0i [u], b

1
i [u]),

(c0i [u], c
1
i [u]), (d0i [u], d1i [u]) also belong to Type-2, where i = 0 and 0 ≤ u ≤ 15.

Forward difference propagation. Since one nibble of the output difference
of MC is unknown (either zero or nonzero) when the corresponding three input
nibbles have nonzero and unequal differences, we need to use a Type-2 dif-
ference pattern to characterize (d07[u], d

1
7[u]). Thus, (a0i [u], a

1
i [u]), (b0i [u], b

1
i [u]),

(c0j [u], c
1
j [u]), (d0j [u], d1j [u]) belong to Type-2, where 8 ≤ i ≤ 10, 8 ≤ j ≤ 9 and

0 ≤ u ≤ 15.
Once we have determined the types of the state difference patterns in the

extended rounds, we can choose appropriate difference propagation rules to char-
acterize SB, SC, and MC as shown in Table 7.

The second step for an IDA is to guess the keys kin and kout involved in those
additional rounds. Since the time complexity TN will increase with the increase
of |kin ∪ kout|, in order to decrease the complexity TN , we need to minimize
|kin ∪ kout|. Guessing the equivalent key is a common way to reduce the number
of guessed keys. In this paper, we swap KA with MC. Then, the equivalent key
K ′ after the swap operation and original key K have the following relations:

K = M ·K ′,

18 F. Author et al.

Table 7. The difference propagation rules for the extended rounds

Direction Input → Output Input → Output Propagation rule

Backward

∆c1
SC−1

−→ ∆b1 Type-1 SC−1

−→ Type-1 Case 1 of SC−1

∆b1
SB−1

−→ ∆a1 Type-1 SB−1

−→ Type-2 Case 1 of SB−1

∆di
MC−1

−→ ∆ci, i = 0 Type-2 MC−1

−→ Type-2 Case 7 of MC−1

∆ci
SC−1

−→ ∆bi, i = 0 Type-2 SC−1

−→ Type-2 Case 2 of SC−1

∆bi
SB−1

−→ ∆ai, i = 0 Type-2 SB−1

−→ Type-2 Case 2 of SB−1

Forward

∆c7
MC−→ ∆d7 Type-1 MC−→ Type-2 Case 6 of MC

∆ai
SB−→ ∆bi, 8 ≤ i ≤ 10 Type-2 SB−→ Type-2 Case 2 of SB

∆bi
SC−→ ∆ci, 8 ≤ i ≤ 9 Type-2 SC−→ Type-2 Case 2 of SC

∆ci
MC−→ ∆di, 8 ≤ i ≤ 9 Type-2 MC−→ Type-2 Case 7 of MC

K ′ = M−1 ·K.

Correspondingly, the equivalent round key RK ′
i and the original round key

RKi (we denote the equivalent seed keys of original seed keys K0 and K1 by K ′
0

and K ′
1, respectively) have the following relations:

(RKi[4j], . . . , RKi[4j + 3])T = M · (RK ′
i[4j], . . . , RK ′

i[4j + 3])T ,

(RK ′
i[4j], . . . , RK ′

i[4j + 3])T = M−1 · (RKi[4j], . . . , RKi[4j + 3])T ,

where i (0 ≤ i ≤ 14) is the round number, and j (0 ≤ j ≤ 3) is the column index
of RKi and RK ′

i. Moreover, we have:

RKi[4j + t] =
⊕

1≤s≤3

RK ′
i[4j + (t+ s) mod 4],

RK ′
i[4j + t] =

⊕
1≤s≤3

RKi[4j + (t+ s) mod 4],

where 0 ≤ i ≤ 14, 0 ≤ j ≤ 3, 0 ≤ t ≤ 3.

Equivalent key transform technique. Denote the multiset of all key nibbles
that need to be guessed in the IDA as Guessed Key Multiset (GKM). Since
the key schedule of Midori-64 is linear, the key nibbles in the GKM K can be
expressed as linear combinations of nibbles in K0 and K1. Furthermore, we can
find a corresponding coefficient matrix T , such that all guessed nibbles can be
expressed as a matrix-vector multiplication.

Note that, in an IDA, an attacker always extends the distinguisher forward
and backward for several rounds. As shown in Figure 3, the distinguisher is
extended 1.5 rounds forward and 3.5 rounds backward, and an attacker has to
guess the keys involved in these rounds to check the input and output differences
of the distinguisher, which usually has few active nibbles. Intuitively, the number
of key nibbles involved in an inner round is less than those involved in an outer

Title Suppressed Due to Excessive Length 19

round. For example, the key nibbles involved in the 9-th round are less than the
key nibbles involved in the 10-th round as shown in Figure 3. Since we can swap
AK and MC and the MC operation has a strong diffusion effect, guessing the
equivalent keys of the 9-th and 10-th rounds is more advantageous for attackers,
as the nibbles that need to be computed before the MC operation are less than
those after the MC operation. Thus, we have the following theorem (The proof
of Theorem 1 is shown in Appendix B).

Theorem 1. Only swapping KA with MC for the 9-th and 10-th rounds, that
is, guessing equivalent key nibbles of RK ′

8 and RK ′
9, and guessing original key

nibbles of WK and RK0, the corresponding coefficient matrix T can take the
minimum rank.

Based on Theorem 1, we set the objective function of the model M2 as the
minimum number of key nibbles to be guessed, that is,

obj(M2) = min

 ∑
0≤u≤15

(GK0[u] +GK1[u] +GK2[u] +GK3[u])

 ,

where GK0[u], GK1[u], GK2[u], and GK3[u] indicate whether the key nibbles
WK[u], K ′

1[u] (i.e., RK ′
9), K0[u] (i.e., RK0), and K ′

0[u] (i.e., RK ′
8) (0 ≤ u ≤ 15)

need to be guessed, respectively.
Since WK and K ′

1 are linearly independent, we can first guess the key nibbles
in WK and K ′

1 and do not care about the linear relations between them. As
WK is used as the whitening key and the last round key, for any position u
(0 ≤ u ≤ 15), if either ∆P [u] or ∆b10[u] is active or unknown, then GK0[u] = 1,
else GK0[u] = 0. Similarly, K ′

1 is used as the equivalent key of the 9-th round,
thus GK1[u] = 1 if ∆c9[u] is active or unknown. However, when guessing K0

and K ′
0, we should be careful since we may be able to calculate several nibbles

of K0 and K ′
0 according to the linear relations between WK, K ′

1, K0, and K ′
0.

Thus, the linear relations between WK, K ′
1, K0, and K ′

0 should be considered
to minimize the number of guessed key nibbles. In the following, we denote

Cu = {(1 + u1) mod 4 + u2, (2 + u1) mod 4 + u2, (3 + u1) mod 4 + u2},

where 0 ≤ u ≤ 15, u1 = u mod 4, u2 = u− u1.

Relations between K ′
0 and WK, K ′

1 (R1): If GK1[u] = 1, we can deduce
that ∆d9[u] and ∆a10[i] (i ∈ Cu) are all active or unknown, i.e., GK0[i] = 1 for
i ∈ Cu. Then we can calculate K ′

0[u] by K ′
0[u] =

⊕
i∈Cu WK[i] ⊕ K ′

1[u], i.e.,
K ′

0[u] does not need to be guessed. Then, a new array of binary variables vs[i]
(0 ≤ i ≤ 15) is introduced to temporarily indicate whether the corresponding
nibbles of K ′

0 need to be guessed, and the reason will be explained later. So,
for any position u (0 ≤ u ≤ 15), vs[u] = 1 if ∆c8[u] is active or unknown and
GK1[u] = 0, else vs[u] = 0. The following linear inequalities are sufficient to

20 F. Author et al.

describe this rule:
GK1[u]− c08[u]− c18[u] + vs[u] ≥ 0,

−GK1[u]− vs[u] + 1 ≥ 0,

c08[u] + c18[u]− vs[u] ≥ 0.

Relations between K0 and WK, K ′
1 (R2): If GK1[i] = 1 for all i ∈ Cu,

we can deduce that ∆a10[u] and ∆d9[i] (i ∈ Cu) are all active or unknown, i.e.,
GK0[u] = 1. Thus we can calculate K0[u] by K0[u] =

⊕
i∈Cu K ′

1[i]⊕WK[u], i.e.,
K0[u] does not need to be guessed. Similarly, a new array of binary variables vt[i]
(0 ≤ i ≤ 15) is introduced to temporarily indicate whether the corresponding
nibbles of K0 need to be guessed. So, for any position u (0 ≤ u ≤ 15), vt[u] = 1
if there exist at least one i ∈ Cu such that GK1[i] = 0 and ∆d0[u] is active
or unknown, else vt[u] = 0. The following linear inequalities are sufficient to
describe this rule:

d00[u] + d10[u]− vt[u] ≥ 0,

GK1[i2]− d00[u]− d10[u] + vt[u] ≥ 0,

GK1[i1]− d00[u]− d10[u] + vt[u] ≥ 0,

−GK1[i0]−GK1[i1]−GK1[i2]− vt[u] + 3 ≥ 0,

GK1[i0]− d00[u]− d10[u] + vt[u] ≥ 0.

Relations between K0 and K ′
0 (R3): If vs[i] = 1 for all i ∈ Cu, we can

calculate K0[u] by K0[u] =
⊕

i∈Cu K ′
0[i], i.e., K0[u] does not need to be guessed.

Thus, for any position u (0 ≤ u ≤ 15), GK2[u] = 1 if vt[u] = 1 and there exist
at least one i ∈ Cu such that vs[i] = 0, else GK2[u] = 0. The following linear
inequalities are sufficient to describe this rule:

vt[u]−GK2[u] ≥ 0,

vs[i0]− vt[u] +GK2[u] ≥ 0,

vs[i1]− vt[u] +GK2[u] ≥ 0,

− vs[i0]− vs[i1]− vs[i2]−GK2[u] + 3 ≥ 0,

vs[i2]− vt[u] +GK2[u] ≥ 0.

Relations between K ′
0 and K0 (R4): If GK2[i] = 1 for all i ∈ Cu, we can

calculate K ′
0[u] by K ′

0[u] =
⊕

i∈Cu K0[i], i.e., K ′
0[u] does not need to be guessed.

Thus, for any position u (0 ≤ u ≤ 15), GK3[u] = 1 if vs[u] = 1 and there exist
at least one i ∈ Cu such that GK2[i] = 0, else GK3[u] = 0. The following linear
inequalities are sufficient to describe this rule:

vs[u]−GK3[u] ≥ 0,

GK2[i0]− vs[u] +GK3[u] ≥ 0,

GK2[i1]− vs[u] +GK3[u] ≥ 0,

−GK2[i0]−GK2[i1]−GK2[i2]−GK3[u] + 3 ≥ 0,

GK2[i2]− vs[u] +GK3[u] ≥ 0.

Title Suppressed Due to Excessive Length 21

Put the above constraints together, M2 can be constructed, which is com-
posed of the following inequalities.

Constraints of M2:

1. Construct the constraints of the difference propagation (∆c1 → ∆a0, ∆c7 →
∆b10) according to Table 7.

2. Construct the constraints of the objective function according to R1 - R4.

When the contradiction position is located between d3 and a4, the objective
value of M2 is 26. However, when the contradiction position is located between
d4 and a5, the objective value ofM2 is 23. That is, the minimum number of key
nibbles to be guessed in the 11-round IDA of Midori-64 is 23.

Discussion. When modeling extended rounds of Midori-64, we need to charac-
terize the number of guessed keys. So, we have to discuss the connection between
the equivalent key and the original key to avoid repeated keys. Compared with
Midori-64, SKINNY-64’s key schedule involves a nibble permutation, and the
MixColumn matrix is not a circulant matrix. This makes it difficult to describe
the relations between the equivalent key and the original key. In addition, the
key schedule of CRAFT involves a 64-bit tweak, and the influence of both the
128-bit key and the 64-bit tweak needs to be considered when constructing the
model. In other words, IDA is related to the structural properties of both the ci-
pher itself and the key schedule, and the simple key schedule of Midori-64 makes
it possible to describe the number of guessed keys with linear inequalities.

5.2 Impossible Differential Cryptanalysis of 11-round Midori-64

In this subsection, we present a new IDA on 11-round Midori-64. The overview
of our attack is illustrated in Figure 4, which consists of the following steps:

1. Take a group of 236 plaintexts as a structure that traverses all possible values
at the nibble positions of (0, 1, 4, 5, 6, 9, 10, 12, 14), and fixes the remaining
nibbles as any constant. A structure consists of approximately 236×235 = 271

plaintext pairs. We prepare 2n structures that differ in the constant values,
thus there are 2n+36 plaintexts and 2n+71 plaintext pairs. Encrypt these
2n+36 plaintexts for 11 rounds to obtain the corresponding ciphertexts. For
each pair of ciphertexts within the same structure, we reserve the pair that
has a zero difference at positions (3, 11) and a nonzero difference at positions
(0, 1, 2, 4, 5, 8, 9, 10, 12, 13). Thus, there remain approximately 2n+71−2×4 =
2n+63 pairs and we store them in table Ω0.

2. Guess ∆d9[3], since there are 24 possible values for ∆d9[3], we can compute
the corresponding 24 values for ∆a10[0, 1, 2]. Given two nonzero differences
∆in and ∆out in F4

2, the equation SB(x)⊕SB(x⊕∆in) = ∆out has one solution
on average (This property also holds for the inverse of SB, i.e., SB−1). So, we
can get 1 solution, on average, for a10[0, 1, 2], b10[0, 1, 2] and d9[3]. Then, we
can calculate WK[0, 1, 2] by WK[0, 1, 2] = b10[0, 1, 2] ⊕ C[0, 1, 2]. Create a

22 F. Author et al.

2022.5.22后代码的

AK

AK

AK

6-round ID

RK7a1 b1

SB

d7

RK8a8 b8

SB

c8 d8

RK9a9 b9

SB

c9 d9

MC

a10 b10

SB SC

C

SB

MC

WK

RK0

Active Inactive

Key nibbles that

 need to be guessed

P WK

MCSC

a0 b0 c0 d0

SC

ID

ID

AK

AK

AK

Unknown

Fig. 4. Impossible differential cryptanalysis of 11-round Midori-64

table Ω1 with 212 key values of WK[0, 1, 2] as indexes, and each item stores
2n+63 × 24/212 = 2n+55, on average, plaintext-ciphertext pairs associated
with its corresponding values of (d9[3], d′9[3]).

3. For each item in Ω1, guess ∆d9[4, 5]. For each of the 28 possible values for
∆d9[4, 5], compute the corresponding 28 values for ∆a10[4, 5, 6, 7]. We can
get 1 solution, on average, for a10[4, 5, 6, 7], b10[4, 5, 6, 7], and d9[4, 5]. Then,
we can calculate WK[4, 5, 6, 7] by WK[4, 5, 6, 7] = b10[4, 5, 6, 7]⊕C[4, 5, 6, 7].
Create a table Ω2 with 216 key values of WK[4, 5, 6, 7] as indexes, and each
item stores 2n+55 × 28/216 = 2n+47, on average, plaintext-ciphertext pairs
associated with its corresponding values of (d9[3, 4, 5], d′9[3, 4, 5]).

4. For each item in Ω2, guess ∆d9[11]. For each of the 24 possible values for
∆d9[11], compute the corresponding 24 values for ∆a10[8, 9, 10]. We can get
1 solution, on average, for a10[8, 9, 10], b10[8, 9, 10], and d9[11]. Then, we
calculate WK[8, 9, 10] by WK[8, 9, 10] = b10[8, 9, 10] ⊕ C[8, 9, 10]. Create a
table Ω3 with 212 key values of WK[8, 9, 10] as indexes, and each item stores

Title Suppressed Due to Excessive Length 23

2n+47 × 24/212 = 2n+39, on average, plaintext-ciphertext pairs associated
with its corresponding values of (d9[3, 4, 5, 11], d′9[3, 4, 5, 11]).

5. For each item in Ω3, guess ∆d9[12, 13]. For each of the 28 possible values for
∆d9[12, 13], compute the corresponding 28 values of ∆a10[12, 13, 14, 15]. We
can get 1 solution, on average, for a10[12, 13, 14, 15], b10[12, 13, 14, 15], and
d9[12, 13]. Then, we can calculate WK[12, 13, 14, 15] by WK[12, 13, 14, 15] =
b10[12, 13, 14, 15]⊕C[12, 13, 14, 15]. Create a table Ω4 with 216 key values of
WK[12, 13, 14, 15] as indexes, and each item stores 2n+39 × 28/216 = 2n+31,
on average, plaintext-ciphertext pairs associated with its corresponding val-
ues of (d9[3, 4, 5, 11, 12, 13], d′9[3, 4, 5, 11, 12, 13]).

6. For each item in Ω4, guess ∆d8[5, 12]. For each of the 28 possible values for
∆d8[5, 12], compute the corresponding 28 values for ∆a9[4, 6, 7, 13, 14, 15].
Since ∆b9 can be calculated from ∆d9, we can calculate ∆b9[4, 6, 7, 13, 14, 15]
from ∆d9[3, 4, 5, 11, 12, 13]. We can get 1 solution, on average, for d8[5, 12],
a9[4, 6, 7, 13, 14, 15], b9[4, 6, 7, 13, 14, 15], and c9[3, 4, 5, 11, 12, 13]. Then, we
can calculate the equivalent round keys RK ′

9[3, 4, 5, 11, 12, 13] by RK ′
9[3, 4, 5,

11, 12, 13] = c9[3, 4, 5, 11, 12, 13] ⊕ d9[3, 4, 5, 11, 12, 13]. Create a table Ω5

with 224 key values of RK ′
9[3, 4, 5, 11, 12, 13] as indexes, and each item stores

2n+31 × 28/224 = 2n+15, on average, plaintext-ciphertext pairs associated
with its corresponding values of (d8[5, 12], d′8[5, 12]).

7. Since RK ′
9[5, 12], WK[4, 6, 7], and WK[13, 14, 15] are known, we can calcu-

late the equivalent round key nibbles RK ′
8[5] = (

⊕
i∈{4,6,7} WK[i])

⊕
RK ′

9[5]

and RK ′
8[12] = (

⊕
i∈{13,14,15} WK[i])

⊕
RK ′

9[12]. Moreover, ∆d7[4, 7] can
also be calculated. Then, we can filter the plaintext-ciphertext pairs by
the condition ∆d7[4] = ∆d7[7]. In this case, each entry of Ω5 remains
2n+15/24 = 2n+11, on average, plaintext-ciphertext pairs.

8. Since WK[0, 1, 4, 5, 6, 9, 10, 12, 14] has been guessed, we use the above key to
encrypt the plaintext pairs in Table Ω5 for 1 round and reserve the plaintext
pairs that are only active at d0[3, 6, 9] after 1 round encryption. After this
step, each entry of Ω5 remains 2n+11/224 = 2n−13, on average, plaintext-
ciphertext pairs.

9. Exhaustively enumerate 212 possibles values of RK0[3, 6, 9] and encrypt the
remaining plaintext pairs in Ω5 to obtain ∆b1[3, 6, 9]. The probability of
∆b1[3] = ∆b1[6] = ∆b1[9] is 2−8. Since each entry of Ω5 contains 2n−13

plaintext-ciphertext pairs, the probability that the entry in Ω5 being empty
is (1 − 2−8)2

n−13 . For each empty entry in Ω5, iteratively retrieve its index
from Ω5 to Ω1. These indexes (K0⊕K1[0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15],
K0[3, 6, 9], K ′

1[3, 4, 5, 11, 12, 13]) constitute a valid key candidate of the key
nibbles, since all plaintext-ciphertext pairs cannot be encrypted (decrypted)
by these keys to obtain the intermediate state difference that matches the
ID. After this sieving process, the expected number of candidate keys is
NK = 292 × (1− 2−8)2

n−13 .
10. Exhaustively enumerate the candidate keys returned by the above steps and

guess the remaining 9 key nibbles WK[3, 11] and K ′
1[0, 1, 6, 8, 9, 14, 15], check

if the keys are correct by one encryption.

24 F. Author et al.

Complexity: From Step 2 - 9, we have guessed 4 × 23 = 92 key bits. Hence,
the expected number of candidate keys is NK = 292 × (1 − 2−8)2

n−13 . Table 8
summarizes the time and data complexity of each step. The total time complexity
is:

2n+36 + (24 × 2n+63 × 3

16
)/11 + 212(2n+63 × 3

16
+ 216(2n+51 × 3

16
+ 212(2n+47×

3

16
+ 216(2n+39 × 1 + 224(2n+15 + 2n+11 + 2n−1 × 2

4
)))))/11 + 2128(1− 2−8)2

n−13

= 2n+36 + 20(2n+67 × 3

16
+ 212(2n+63 × 3

16
+ 216(2n+51 × 3

16
+ 212(2n+47 × 3

16

+ 216(2n+39 × 1 + 224(2n+15 + 2n+11 + 2n−1 × 2

4
))))))/11 + 2128(1− 2−8)2

n−13

≈ 2n+92.59 + 2128(1− 2−8)2
n−13

.

The time complexity depends on the choice of n. We set n = 24.0, the data
complexity is 260 chosen plaintexts. The total time complexity is about 2116.59 11-
round encryptions and the total memory complexity is about 296.76/16 = 292.76

64-bit blocks.

Table 8. Time and data complexity of 11-round attack on Midori-64

Step Time Complexity Memory Complexity
1 2n+36 × 11 2n+63 × (9 + 14)× 2
2 2n+63 × 24 × 1

4
× 3

4
212 × 2n+55(2 + (9 + 14)× 2)

3 212 × 2n+55 × 28 × 1
4
× 3

4
216 × 2n+47(6 + (9 + 14)× 2)

4 212 × 216 × 2n+47 × 24 × 1
4
× 3

4
212 × 2n+39(8 + (9 + 14)× 2)

5 212 × 216 × 212 × 2n+39 × 28 × 1
4
× 3

4
216 × 2n+31(12 + (9 + 14)× 2)

6 212 × 216 × 212 × 216 × 2n+31 × 28 × 1 224 × 2n+15(4 + (9 + 14)× 2)
7 212 × 216 × 212 × 216 × 224 × 2n+15 × 1 −
8 212 × 216 × 212 × 216 × 224 × 2n+11 × 1 −
9 212 × 216 × 212 × 216 × 224 × 2n−13 × 212 × 2

4
−

10 292 × (1− 2−8)2
n−13

× 236 × 11 −

6 Conclusion

Previous techniques for searching IDs can generally be divided into two classes.
The first one characterizes the propagation of difference patterns, while the sec-
ond one characterizes the propagation of differential characteristics which may
make the model too large to be solved. Besides, due to the huge search space,
both techniques cannot traverse the input and output differences.

In this paper, we proposed a new modeling technique with two-dimensional
binary variables to search for IDs, which can be seen as a trade-off between two
previous techniques. The advantages of our new technique are:

Title Suppressed Due to Excessive Length 25

1. Other than only considering unknown and inactive difference patterns, we
can distinguish between active, inactive, and unknown using two-dimensional
binary variables. Moreover, we can consider three distinct nonzero differences
at the input and output of the ID.

2. Benefiting from the feature of using 2-bit variables, the contradictions can be
characterized by constraints. Thus, we can detect any contradictions between
the input and output differences by changing the position of contradictions,
which releases us from the exhaustive search for input and output differences.

3. Since the contradictions can be captured by constraints, this enables us to
model the extended rounds within the same MILP model, which makes it
possible to search for the best ID with respect to the number of key nibbles
to be guessed.

4. Our method can quickly obtain the number of IDs. For a fixed position
of contradiction, we can derive an ID from each feasible solution of the
MILP model. So, we can obtain all IDs by traversing all possible positions
of contradiction.

The number of rounds and the complexity are two important factors for
an ID. The ID with the longest round can be obtained by searching all valid
IDs, but this method is limited by the huge search space. Sun et al. solved this
problem by transforming the exhaustive search into an inherent feature of the
searching model [16]. However, our model (i.e., two different types of variables
to describe the state differences in the single-key scenario) made it easier to
deal with this problem as we could directly model both linear and nonlinear
layers rather than characterize the propagation of difference patterns through
three basic operations (branch, XOR, and S-box). With our new technique, we
successfully obtained 6-, 13-, and 12-round IDs for Midori-64, CRAFT, and
SKINNY-64 within a few seconds, respectively, which is faster than Hu et al.’s
method [9].

Searching for an ID with the best time complexity is a long-term problem.
Compared with the method of Sun et al. [16], our technique could search for IDs
with optimal time complexity for a particular cipher. Specifically, we combined
both the ID-search and the key-recovery by modeling extended rounds into the
same MILP model and setting the objective function as the minimum number
of keys that need to be guessed. Using the new ID of 6-round Midori-64 we
obtained, we presented the current best IDA on 11-round Midori-64 in terms of
time complexity.

Acknowledgements. We would like to thank the anonymous reviewers for their
helpful comments. This work was supported by Wuhan Science and Technology
Bureau (NO. 2022010801020328), and the National Natural Science Foundation
of China (NO. 61802119).

26 F. Author et al.

A The Example IDs of 13-round CRAFT and 12-round
SKINNY-64

MCSC

MC

MCSC

SB

a0 b0 c0 a1

a2 b2 c2 a3

a4 b4 c4 a5

a6 b6 c6 a7

a8 b8 c8 a9

a10 b10 c10 a11

SC MC SC

b1 c1

b3 c3

b5 c5

b7 c7

b9 c9

b11 c11

MCSB

SB SC MCSB SC

SBSB MCSC

MC

MC

MC

SCSBSB

SCSBMCSCSB

SCSBMCSC

a12

Active Inactive Unknown

SBSC

SB

SBSC

b0 c0 a1

a2 b2 c2 a3

a4 b4 c4 a5

a6 b6 c6 a7

a8 b8 c8 a9

a10 b10 c10 a11

SC SB SC

b1 c1

b3 c3

b5 c5

b7 c7

b9 c9

b11 c11

SBMC

MC SC SBMC SC

MCMC SBSC

SB

SB

SB

SCMCMC

SCMCSBSCMC

SCMC

Active

Inactive

Unknown

MC SC

SBSC

a12 b12 c12 a13 b13

MCMC

Fig. 5. Impossible differential of 13-round CRAFT

Title Suppressed Due to Excessive Length 27

MCSC

MC

MCSC

SB

a0 b0 c0 a1

a2 b2 c2 a3

a4 b4 c4 a5

a6 b6 c6 a7

a8 b8 c8 a9

a10 b10 c10 a11

SC MC SC

b1 c1

b3 c3

b5 c5

b7 c7

b9 c9

b11 c11

MCSB

SB SC MCSB SC

SBSB MCSC

MC

MC

MC

SCSBSB

SCSBMCSCSB

SCSBMCSC

a12

Active Inactive Unknown

SBSC

SB

SBSC

b0 c0 a1

a2 b2 c2 a3

a4 b4 c4 a5

a6 b6 c6 a7

a8 b8 c8 a9

a10 b10 c10 a11

SC SB SC

b1 c1

b3 c3

b5 c5

b7 c7

b9 c9

b11 c11

SBMC

MC SC SBMC SC

MCMC SBSC

SB

SB

SB

SCMCMC

SCMCSBSCMC

SCMC

Active

Inactive

Unknown

MC SC

SBSC

a12 b12 c12 a13 b13

MCMC

Fig. 6. Impossible differential of 12-round SKINNY-64

B The proof of Theorem 1

Proof. We denote the key nibbles guessing way of Theorem 1 as Strategy-1
(S1) and assume that the number of keys to be guessed is r1. Without loss of
generality, we assume that there is a different key nibbles guessing way (denoted
as Strategy-2 (S2)) that only converts the equivalent key nibbles RK ′

8 in the S1
into original key nibbles RK8, i.e., the equivalent key nibbles RK ′

9, original key
nibbles WK, RK0, and RK8 need to be guessed in the S2. Let the GKM of S2
be K′, the number of keys to be guessed is r2. In the following, we prove that

r1 ≤ r2.

Since some key nibbles of RK ′
8 and RK8 can be calculated according to the

linear relations between WK, K ′
1, K0, and K ′

0, thus they do not need to be
guessed. We denote the key nibbles of RK ′

8 in K and RK8 in K′ that can be
calculated as Calculable Key Nibbles (CKN), and we denote the number of

28 F. Author et al.

CKNs in S1 and S2 as |CKN1| and |CKN2|, respectively. Thus, the linear relations
between WK, K ′

1, K0, and K ′
0 should be considered to calculate r1 and r2. In

the following, we denote

Ci = {(i+ 1) mod 4, (i+ 2) mod 4, (i+ 3) mod 4},

where 0 ≤ i ≤ 3. Then
K ′

0[i] =
⊕
j∈Ci

K0[j]. (2)

K0[i] =
⊕
j∈Ci

K ′
0[j]. (3)

We take the key nibbles in the first column of RK ′
8 (K ′

0[0], . . . ,K
′
0[3]) and

RK8 (K0[0], . . . ,K0[3]) as an example to discuss the calculation process of r1
and r2.

Before considering the CKN of RK ′
8 and RK8:

1. If there are 0 nibbles of the first column of RK ′
8 need to be guessed in S1,

there are 0 nibbles in the first column of RK8 need to be guessed in S2.
2. If there is 1 nibble of the first column of RK ′

8 that needs to be guessed in S1,
without loss of generality, we assume that K ′

0[0], which satisfies Equation 2,
needs to be guessed in S1. Then there are 3 nibbles in the first column of
RK8 that need to be guessed in S2.

3. If there are at least 2 nibbles of the first column of RK ′
8 that need to be

guessed in S1, without loss of generality, we assume that K ′
0[0], . . . ,K

′
0[n−1]

(2 ≤ n ≤ 4), which satisfy Equation 2, need to be guessed in S1. Then there
are 4 nibbles in the first column of RK8 need to be guessed in S2.

After considering the CKN of RK ′
8 and RK8:

1. If there are 4 nibbles in the first column of RK8 that need to be guessed
in S2, and |CKN2| = m (m ≤ 4), without loss of generality, we assume that
K0[0], . . . ,K0[m−1], which satisfy Equation 3, are CKNs, and after consider-
ing the linear relations between WK, K ′

1, K0, and K ′
0, K0[m], . . . ,K0[3] are

keys that still need to be guessed in S2. Then, we need to guess at most 4−m
nibbles in the first column of RK ′

8 in S1, since if K0[i] (0 ≤ i ≤ 3) is CKN, we
only need to guess at most any 2 nibbles in {K ′

0[j] | j ∈ Ci}. For example,
when m = 3, without loss of generality, we assume that K0[0],K0[1],K0[2],
which satisfy Equation 3, are CKNs, that is,

⊕
j∈C0 K ′

0[j],
⊕

j∈C1 K ′
0[j], and⊕

j∈C2 K ′
0[j] are known, so we only need to guess at most 4−m = 1 nibble

in {K ′
0[j] | j = 0, 1, 2, 3} in S1.

2. If there are n (1 ≤ n ≤ 3) nibbles in the first column of RK8 need to
be guessed in S2, and |CKN2| = m (m ≤ n), without loss of generality,
we assume that K0[0], . . . ,K0[m − 1], which satisfy Equation 3, are CKNs,
and after considering the linear relations between WK, K ′

1, K0, and K ′
0,

K0[m], . . . ,K0[n − 1] are keys that still need to be guessed in S2. Then,

Title Suppressed Due to Excessive Length 29

we need to guess at most 1 nibble in the first column of RK ′
8 in S1. In

particular, when n = m = 3, without loss of generality, we assume that
K0[0],K0[1],K0[2], which satisfy Equation 3, are CKNs. Then, we need to
guess 0 nibbles in the first column of RK ′

8 in S1, since we can calculate
K ′

0[3] by K ′
0[3] =

⊕
j∈C3 K0[j].

3. If there are 0 nibbles in the first column of RK8 need to be guessed in S2,
and |CKN2| = 0. Then, we need to guess 0 nibbles in the first column of RK ′

8

in S1.

Therefore, after considering the CKN of RK ′
8 and RK8, the number of key

nibbles that need to be guessed in the first column of RK ′
8 in S1 must be less

than or equal to the number of key nibbles that need to be guessed in the first
column of RK8 in S2. Similarly, we can get the same conclusion when considering
other columns of RK8 and RK ′

8. Thus,

r1 ≤ r2.

References

1. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T.,
Regazzoni, F.: Midori: A block cipher for low energy. In: Iwata, T., Cheon, J.H.
(eds.) Advances in Cryptology - ASIACRYPT 2015 - 21st International Confer-
ence on the Theory and Application of Cryptology and Information Security,
Auckland, New Zealand, November 29 - December 3, 2015, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 9453, pp. 411–436. Springer (2015),
https://doi.org/10.1007/978-3-662-48800-3_17

2. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology -
CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 14-18, 2016, Proceedings, Part II. Lecture Notes in Com-
puter Science, vol. 9815, pp. 123–153. Springer (2016), https://doi.org/10.1007/
978-3-662-53008-5_5

3. Beierle, C., Leander, G., Moradi, A., Rasoolzadeh, S.: CRAFT: lightweight tweak-
able block cipher with efficient protection against DFA attacks. IACR Trans. Sym-
metric Cryptol. 2019(1), 5–45 (2019), https://doi.org/10.13154/tosc.v2019.
i1.5-45

4. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) Advances in Cryptology
- EUROCRYPT ’99, International Conference on the Theory and Application of
Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding.
Lecture Notes in Computer Science, vol. 1592, pp. 12–23. Springer (1999), https:
//doi.org/10.1007/3-540-48910-X_2

5. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) Advances in Cryptology - CRYPTO ’90, 10th
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 11-15, 1990, Proceedings. Lecture Notes in Computer Science, vol. 537, pp.
2–21. Springer (1990), https://doi.org/10.1007/3-540-38424-3_1

https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.13154/tosc.v2019.i1.5-45
https://doi.org/10.13154/tosc.v2019.i1.5-45
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-38424-3_1

30 F. Author et al.

6. Biryukov, A.: Miss-in-the-middle attack. In: van Tilborg, H.C.A. (ed.) Encyclo-
pedia of Cryptography and Security. Springer (2005), https://doi.org/10.1007/
0-387-23483-7_256

7. Chen, Z., Wang, X.Y.: Impossible differential cryptanalysis of Midori. IACR Cryp-
tol. ePrint Arch. p. 535 (2016), http://eprint.iacr.org/2016/535, withdrawn.

8. Cui, T., Jia, K., Fu, K., Chen, S., Wang, M.: New automatic search tool for im-
possible differentials and zero-correlation linear approximations. IACR Cryptol.
ePrint Arch. p. 689 (2016), http://eprint.iacr.org/2016/689

9. Hu, K., Peyrin, T., Wang, M.: Finding all impossible differentials when considering
the DDT. Cryptology ePrint Archive, Paper 2022/1034 (2022), https://eprint.
iacr.org/2022/1034

10. Kim, J., Hong, S., Sung, J., Lee, C., Lee, S.: Impossible differential cryptanal-
ysis for block cipher structures. In: Johansson, T., Maitra, S. (eds.) Progress in
Cryptology - INDOCRYPT 2003, 4th International Conference on Cryptology in
India, New Delhi, India, December 8-10, 2003, Proceedings. Lecture Notes in Com-
puter Science, vol. 2904, pp. 82–96. Springer (2003), https://doi.org/10.1007/
978-3-540-24582-7_6

11. Knudsen, L.: DEAL-a 128-bit block cipher. complexity 258(2), 216 (1998)
12. Li, M., Guo, J., Cui, J., et al.: Truncated impossible differential cryptanalysis of

Midori-64. (in Chinese). Journal of Software 30(8), 2337–2348 (2019)
13. Luo, Y., Lai, X., Wu, Z., Gong, G.: A unified method for finding impossible

differentials of block cipher structures. Inf. Sci. 263, 211–220 (2014), https:
//doi.org/10.1016/j.ins.2013.08.051

14. Sasaki, Y., Todo, Y.: New impossible differential search tool from design and crypt-
analysis aspects - revealing structural properties of several ciphers. In: Coron,
J., Nielsen, J.B. (eds.) Advances in Cryptology - EUROCRYPT 2017 - 36th
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part
III. Lecture Notes in Computer Science, vol. 10212, pp. 185–215 (2017), https:
//doi.org/10.1007/978-3-319-56617-7_7

15. Shahmirzadi, A.R., Azimi, S.A., Salmasizadeh, M., Mohajeri, J., Aref, M.R.: Im-
possible differential cryptanalysis of reduced-round Midori64 block cipher. In: 14th
International ISC (Iranian Society of Cryptology) Conference on Information Secu-
rity and Cryptology, ISCISC 2017, Shiraz, Iran, September 6-7, 2017. pp. 99–104.
IEEE (2017), https://doi.org/10.1109/ISCISC.2017.8488362

16. Sun, L., Gérault, D., Wang, W., Wang, M.: On the usage of deterministic (related-
key) truncated differentials and multidimensional linear approximations for SPN
ciphers. IACR Trans. Symmetric Cryptol. 2020(3), 262–287 (2020), https://doi.
org/10.13154/tosc.v2020.i3.262-287

17. Wu, S., Wang, M.: Automatic search of truncated impossible differentials for word-
oriented block ciphers. In: Galbraith, S.D., Nandi, M. (eds.) Progress in Cryptol-
ogy - INDOCRYPT 2012, 13th International Conference on Cryptology in In-
dia, Kolkata, India, December 9-12, 2012. Proceedings. Lecture Notes in Com-
puter Science, vol. 7668, pp. 283–302. Springer (2012), https://doi.org/10.1007/
978-3-642-34931-7_17

https://doi.org/10.1007/0-387-23483-7_256
https://doi.org/10.1007/0-387-23483-7_256
http://eprint.iacr.org/2016/535
http://eprint.iacr.org/2016/689
https://eprint.iacr.org/2022/1034
https://eprint.iacr.org/2022/1034
https://doi.org/10.1007/978-3-540-24582-7_6
https://doi.org/10.1007/978-3-540-24582-7_6
https://doi.org/10.1016/j.ins.2013.08.051
https://doi.org/10.1016/j.ins.2013.08.051
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1109/ISCISC.2017.8488362
https://doi.org/10.13154/tosc.v2020.i3.262-287
https://doi.org/10.13154/tosc.v2020.i3.262-287
https://doi.org/10.1007/978-3-642-34931-7_17
https://doi.org/10.1007/978-3-642-34931-7_17

	A Novel Automatic Technique Based on MILP to Search for Impossible Differentials

