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Abstract. Virtually all modern blockciphers are iterated. In this paper,
we ask: to construct a secure iterated blockcipher “non-trivially”, how
many calls to random functions and permutations are necessary?
When security means indistinguishability from a random permutation,
optimality is achieved by the Even-Mansour scheme using 1 call to a
public permutation. We seek for the arguably strongest security indif-
ferentiability from an ideal cipher, a notion introduced by Maurer et al.
(TCC 2004) and popularized by Coron et al. (JoC, 2014).
We provide the first generic negative result/lower bounds: when the key
is not too short, no iterated blockcipher making 3 calls is (statistically)
indifferentiable. This proves optimality for a 4-call positive result of Guo
et al. (Eprint 2016). Furthermore, using 1 or 2 calls, even indifferentiable
iterated blockciphers with polynomial keyspace are impossible.
To prove this, we develop an abstraction of idealized iterated blockci-
phers and establish various basic properties, and apply Extremal Graph
Theory results to prove the existence of certain (generalized) non-random
properties such as the boomerang and yoyo.
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1 Introduction
Iterated blockciphers. Virtually all modern blockciphers, e.g., DES, AES,
PRESENT, Skinny, are designed via iteration [2]. These even include theoreti-
cal constructions such as the Luby-Rackoff [40], Iterated Even-Mansour (IEM)



ciphers [23,11,1,30] and others [21,29]. In fact, the initialization algorithms of
some stream ciphers [51] also follow the iteration paradigm.

The idea of iteration dates back to Shannon [48] or even earlier practice of
product ciphers. In general, an iterated structure creates a (usually weak) keyed
permutation, typically called its round, in a “non-trivial” manner, and then com-
poses such rounds till gaining enough security. By “non-trivial”, the round has
to employ smart ideas to resolve non-invertibility of functions [40] or combine
keys with keyless permutations [23,11,1]. Such constructs also constitute nat-
ural transformations between (pseudo)random functions and (pseudo)random
permutations [40,23,1,16,21], which are fundamental in modern cryptography.

While provably secure blockciphers remain out of reach, there is a definite
belief that with sufficient iterations, the iterated paradigm does yield enough
security. The primary security notion for a blockcipher is indistinguishability
from a random permutation, i.e., no adversary with bounded oracle queries and
black-box access to a permutation can distinguish whether it is interacting with
the blockcipher under a random key or a perfectly random permutation. This
has probably been the most widely used security assumption for blockciphers.
In fact, with certain idealized assumptions and sufficient iterations, the afore-
mentioned Luby-Rackoff [40], IEM [23,11,30] and Swap-Or-Not [29] have been
proven indistinguishable (and bounds usually increase with rounds).

The ideal cipher model. Albeit the de-facto standard, indistinguishability
is insufficient for a number of important blockcipher-based cryptosystems. For
example, some real-world protocols such as f8 and f9 [33] crucially rely on the
stronger related-key security of blockciphers [6]. Even worse, in blockcipher-based
hash functions [10,9], the adversary can control both the message and the key of
the blockcipher and exploit “known-key” or “chosen-key” attacks [37,8] to break
collision- or preimage-resistance of the hash. In fact, a mere PRP cannot yield
black-box construction of collision resistant hash [49].

Hence, cryptographers have modeled a reliable (κ, n)-blockcipher (i.e., a
blockcipher with κ-bit keys and n-bit blocks) as an ideal cipher (IC), i.e., a
family of 2κ independent n-bit random permutations that is public to all enti-
ties. This is known as the ideal cipher model (ICM), and it turned out crucial for
proving security for blockcipher-based schemes when the PRP assumption is not
enough [9,10,35]. While remaining a heuristic approach [12,41], a proof in the
ideal cipher model is typically considered a good indication of security from the
point of view of practice. Meanwhile, “being close to ideal” becomes a new stan-
dard for blockcipher design and evaluations—much like “being close to a random
oracle” for hash functions [15,7]. In fact, distinguishing blockcipher algorithms
from “ideal” has been recognized as an important attack vector [37,8].

Indifferentiability. While ICs are unachievable in the standard model [12,41],
it remains an interesting problem to build ICs from other public ideal functions.
This class of problem shall be addressed with indifferentiability introduced by
Maurer et al. [41] and popularized by Coron et al. [15]. Indifferentiability is a
simulation-based framework that helps assess whether a construction of a target
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primitive AB from a lower-level ideal primitive B is “structurally close” toC, the
ideal version of AB (e.g., the case where A is the IEM cipher, B is the random
permutation P and C is an IC was considered in [1]). AB is indifferentiable from
C, if for any differentiator D there exists an efficient simulator SC querying B
such that the two systems (AB,B) and (C, SC) are indistinguishable in the view
of D. Indifferentiability comes equipped with a composition theorem [41] which
implies that a large class of protocols (see [44,20] for restrictions) are provably
secure in the ideal-B model if and only if they are provably secure in the ideal-C
model. Since stronger notions are unachievable in general [44,20], indifferentia-
bility is arguably the strongest security notion for cryptosystems. Due to this
and due to the importance of composition, indifferentiability has been applied
to various cryptosystems, including iterated hash [15,7], blockciphers [16,1,21],
authenticated encryption [5] and public-key schemes [52].

Therefore, it has been an important direction to evaluate indifferentiability
of popular blockcipher constructions [16,1]. The first feasibility was the key-
prepended Feistel cipher of Coron et al. [16], which iterates ΨF(K,xL∥xR) :=
xR ⊕ F(K∥xL)∥xL with xL, xR ∈ {0, 1}n/2 and F a public random function.
Coron et al. proved indifferentiability with 14 rounds [16] and established equiv-
alence of ideal models. This was later improved to 10 [17] and 8 rounds [19].

Another line of work established indifferentiability for the mentioned IEM
ciphers. Concretely, a t-round IEM cipher employs t n-bit random permutations
P1, . . . ,Pt and t + 1 key derivation functions kd0, ..., kdt : {0, 1}κ → {0, 1}n,
and is defined by iterating EMP

ℓ (K,x) := kdℓ(K) ⊕ Pℓ(kdℓ−1(K) ⊕ x). When
kd0 = ... = kdt = F for a random function F : {0, 1}κ → {0, 1}n, positive results
were first proven at 5 rounds [1] and later tightened to 3 rounds [28]. When
kd0, ..., kdt are the identity function id, positive results were first proven at 12
rounds [39] and later tightened to 5 rounds [18].

Lower bounds? We seek for understanding the complexity and ask: to have a
“non-trivial”, provably secure iterated (κ, n)-blockcipher, how many calls to the
primitives are necessary? Such results may shed lights on limits on efficiency of
widely used paradigms as well as boundary of blockcipher designs.

By “non-trivial”, we mean the construction must use some ideas. E.g., if an
oracle O already contains an exponential number of independent n-bit random
permutations, then EO can trivially instantiate an indifferentiable blockcipher.
With this in mind, we introduce an oracle P that “provides all but the goal”.

In detail, P = (P1,P2, ...,P|I|) is a family of independent random permuta-

tions indexed by i ∈ I, where Pi : {0, 1}m(i) → {0, 1}m(i) for an integer function
m : I → poly(n). The set I is partitioned into I≤n and I>n, such that i ∈ I≤n if
and only if m(i) ≤ n. To avoid trivial results, we require |I≤n| = O(poly(n)), so
that P cannot offer exponentially many n-bit permutations. For i ∈ I>n, it can
be m(i)≫ n, and an indifferentiable random function/injection can be built by
calling such a wide permutation once [14,5]. Thus, such an oracle P essentially
offers the “maximal” power to the constructions. As will be detailed in Sect. 5.1,
existing constructions [16,1,39] can be seen as defined upon P.
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The status, of course, depends on the security notion. W.r.t. indistinguisha-
bility, a single permutation-call is already sufficient using the Even-Mansour
scheme [23]. We seek for bounds w.r.t. indifferentiability. Specific lower bounds
have been shown: Feistel ciphers [16,19] consume at least 6 random function
calls, while IEM ciphers need 4 random function/permutation calls [1,18,28].
Despite this and the fruitful positive results mentioned before, no general lower
bounds are publicly known (except that a polynomial-length random string is
insufficient [41]) due to its challenging nature: the adversarial goal is not as clear
as [9,45,3] (which simply finds collisions or pre-images), and one has to pin-
point “non-random” properties that are exploitable within polynomial-queries
(unlike [45,3]) in various cases, and further prove that interactions with ideal
ciphers and all possible simulators are unlikely to admit such properties.

Our results. We prove the first general lower bound: no iterated blockcipher
making 3 or less calls to the oracle P is statistically indifferentiable from ideal
ciphers. This proves optimality for the mentioned 4-call positive result [28].

Model and settings. We consider iterated blockciphers that can be written as the
composition of rounds using keys or derived subkeys. Every round is essentially
a simpler “1-call” blockcipher making exactly 1 call to P, and the total number
of P-calls made by the rounds and the key derivation function is a constant.

More concretely, to model rounds/1-call ciphers, we define E1P(K,x) :=
φout

(
K,P(φin(K,x)), x

)
with keyspace K and domain {0, 1}n. The input func-

tion φin maps (K,x) ∈ K × {0, 1}n into a query (i, δ, z) to P, where δ ∈ {+,−}
indicates the direction, i ∈ I indexes the queried permutation and z ∈ {0, 1}m(i)

is the concrete query. The output function φout maps the key K, the P response
z′ = P(φin(K,x)) and the plaintext x to the ciphertext y.

E1P must admit efficient inversion within 1 P-call as well. Thus, it is defined
(E1−1)P(K, y) := γout

(
K,P(γin(K, y)), y

)
for two other input and output func-

tions γin and γout. Arguably, this covers all blockciphers using a single oracle
call (which resembles [9]). See Fig. 1 for illustration.

Then, for our model of a t-call iterated blockcipher EtP : K × {0, 1}n →
{0, 1}n, the keyspace K is partitioned into disjoint sets K(0),K(1), ...K(t−1), such
that for all K ∈ K(ℓ), it has

EtP(K,x) = ΠPjℓ,t−ℓ

(
K∥s, ...ΠPjℓ,2

(
K∥s,ΠPjℓ,1(K∥s, x)

)
...
)
, (1)

where:

(i) s = kdP(K) is a subkey and kdP makes ℓ calls to P, and
(ii) For each ℓ ∈ {0, ..., t−1} and each α ∈ {1, ..., t− ℓ}, jℓ,α = ℓ(ℓ−1)/2+α (so

that EtP is defined upon ℓ(ℓ + 1)/2 distinct rounds Π1, ...,Πℓ(ℓ+1)/2), and
the round ΠPjℓ,α is a 1-call cipher.

See Fig. 2 for illustration of E2P and Figs. 12 and 15 for pseudocode of E2P

and E3P . This unifies virtually all existing blockcipher constructions. While the
same oracle P is used everywhere in EtP , our subsequent attacks never utilize
this oracle reusing, and are applicable even if multiple P1,P2, ... are used.
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Fig. 1. The general blockcipher E1P making a single call to its oracle P for enciphering
(up) and deciphering (bottom). φin, φout, γin and γout are arbitrary (e.g., can be highly
non-linear) deterministic and oracle-independent functions, and are computable by
the differentiator (as indicated). P = (P1,P2, ...) is the mentioned family of random
permutations, and it only offers oracle access to the differentiator.
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Fig. 2. Encipherment of 2-call iterated blockciphers. (Top) Using one P-call for a key
derivation kdP(K) = P(f(K)). The function f is deterministic and oracle-independent;
(Bottom) Using two P-calls for two rounds, without idealized key derivations.
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Our reasoning relies on four Fundamental Properties that stem from the no-
tions of blockciphers and of t-call oracle procedures. Namely, a blockcipher oracle
procedure EP should be efficiently invertible, deterministic, and enjoy an
oracle-independent description. Moreover, it should be non-degenerate (i.e.,
EP cannot be “simplified” in terms of P calls). We refer to Sect. 3.1 or 4 for
details. Our setting may find broader applications in symmetric cryptography.
As a side remark, our crucial use of invertibility solves an open problem of [5].

Differentiability of E1, E2 and E3. With the above models, we prove our main

result by characterizing E1P and extending to E2P and E3P .

In detail, for 1-call ciphers E1P , we fully characterize its properties, solely
based on the Fundamental Properties. In summary, as long as the keyspace
has |K| ≥ 2|I≤n| + 1 = O(poly(n)) (thus, even polynomial keyspace is un-
achievable!),6 we can find either Ω(poly(n)) “inverse-free” encipherments that
collide on the P-call and use an entropy-based differentiating approach [41],
or find two “non-inverse-free” encipherments E1P(K,x) and E1P(K ′, x′) with
φin(K,x) = φin(K ′, x′) and use a special regularity property of φin and γin to
distinguish. We refer to Sect. 3.2 or Theorem 1 for details.

For 2-call iterated cipher E2P , if K(1) is large enough, i.e., E2P invokes key
derivation for sufficiently many keys, then our differentiators derives O(poly(n))
keys to “collapse” the cipher to a 1-call instance, which has been attacked. On the
other hand, if K(0) dominates, i.e., E2P is a general 2-round blockcipher for most

keys, then as long as K(0) is large enough |K(0)| ≥
(
6
(
3|I≤n|

) 1
n + 5

)
|I≤n|+ 1 =

O(poly(n)), we can exhibit a general yoyo distinguisher and breaks its correlation
intractability (a weaker security notion than indifferentiability). We refer to Sect.
3.3 or Theorem 2 for details.

For 3-call iterated ciphers E3P , if K(2) or K(1) is large enough then we again
“collapse” it to 1- or 2-call ciphers by deriving poly(n) keys. If E3P is a general 3-
round cipher for most keys K(0) ⊆ {0, 1}κ with κ ≥ 2mmax log2 |I≤n|+2mmaxn+
6mmax+4 = Θ(poly(n)), mmax := maxi∈Im(i), we exhibit a universal differen-
tiator that (interestingly) has attack advantage either at least 1/poly(n)−negl(n)
or at least 1 − negl(n), where the concrete polynomial and negligible functions
depend on the input functions in the three rounds. We refer to Sect. 3.4 or
Theorem 3 for details.

A crucial step is to show the existence of certain non-random properties,
which is non-obvious in the general 2- and 3-call ciphers. To this end, we apply
Extremal Graph Theory [32,38,24], which bound the maximal number of edges
in (bipartite) graphs that do not contain certain structures (a.k.a. Zarankiewicz
numbers [24]). We refer to Sect. 3 for more detailed overview.

Discussion: blockcipher designs. A recent trend is to revisit blockcipher
structures and squeeze efficiency for MPC and ZKP settings: see [26] and the
references therein. We hope that our work could be a step towards unifying

6 Though, trivial constructions with |K| ≤ |I≤n| exist since P may offer |I≤n| inde-
pendent n-bit RPs.

7



relevant theoretical discussions and shed lights on the “boundary” of designs.
We summarize some of our conclusions as follows.

(i) Expense of overcoming non-invertibility: if a round/1-call cipher E1P(K,x)
want to be inverse-free for some (K,x) (e.g., when using non-invertible prim-
itives), then E1P(K, ·) must admit severe weakness, regardless of its design.

(ii) Unhelpfulness of wide permutations: wide permutations with width> n are
not “more helpful” in constructing n-bit blockciphers, even if exponentially
many are available. This might be another explanation on the difficulty in
designing format-preserving encryption schemes (see e.g., [22]).

(iii) Optimality of popular structures (e.g., the IEM ciphers [18,28]), in the sense
that no other choice can be better. This provides the first “excluding-type”
theoretical support for practical paradigms.

Besides, since an indifferentiable iterated cipher needs at least 4 calls, our re-
sult may be viewed as a theoretical evidence of the advantage (in terms of effi-
ciency) of permutation-based cryptography. Though, we remark that the usual
caveats regarding the ideal model apply to this paper: as we consider information-
theoretic adversaries, our results do not imply security upper bounds on real-
world, computationally bounded adversaries.

Lower bounds: functionality transformations vs. small-to-big. Crypto-
graphic constructs consist of two categories: functionality transformations and
small-to-big transformations. The former achieves “non-trivial” new function-
ality (e.g., our case), while the latter achieve domain or range extension (e.g.,
PRGs extend range, while hashes extend domain).

A number of existing efficiency lower bounds concerned with small-to-big
transformations, including hash functions [36,25,9,45,5], PRGs [25,31], signa-
tures [25,3], encryption [25] and injections [5]. A core idea typically employed by
these proofs is to apply the pigeonhole principle to force the scheme making the
same sequence of primitive calls for exponentially many inputs. This results in
either attacks [9,45,5] or unconditional cryptography [36,25,3].

Despite exciting black-box separations [47,34,4], efficiency lower bounds on
functionality transformations are relatively rare. Our problem is functionality
transforming: we allow to use wide permutations on ≥ κ+ n≫ n bits, and the
domain of our target E : {0, 1}κ × {0, 1}n → {0, 1}n is thus not larger. This
difference is crucial, as pigeonhole principle cannot ensure collisions and we have
to rely on other properties such as non-degeneracy (see Lemma 3).

Notably, with our oracle P, relevant impossibility results become possible:

(i) A compression function with enough collision or even indifferentiability se-
curity can be built using just 1 call to P via truncation [14];

(ii) An indifferentiable injection (or authenticated encryption) can be built using
just 1 call to P via Encode-then-Encipher [5].

Still, indifferentiable iterated blockciphers cannot be built within 3 calls. These
sharp contrasts emphasize the differences between our setting and [9,5].
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In a more restricted setting termed Linicrypt [13], i.e., cryptosystems are
built from random block functions and linear diffusion functions, impossibility
results regarding encryption [42,13] and circuit garbling [13] exist.

Future directions. Indeed, blockciphers are not necessarily iterated: we serve
examples in Appendix A. Intuitively, such designs are weaker than iterated ones
with the same number of calls. Though, it is difficult to have a rigorous and
clean argument, especially for ciphers with 3 calls. The most intriguing direction
is thus to address fully general 2- and 3-call blockciphers, which may shed more
lights on iterations. Another intriguing question is whether there are smart ideas
to unify the complicated cases in E3 analysis. Influences of other aspects such
as memory restrictions on adversaries and simulators are also of interest.

On the constructive side, it is intriguing to study the achievability of compu-
tational indifferentiability with 3 calls: hardness assumptions on graph problems
or key derivation functions might be helpful.

Unlike most practice in symmetric cryptography, our Theorem 3 is asymp-
totic. The key issue is that our differentiator has to “know” the simulator lim-
itations for its case decision. Classically, simulator (query) complexity is only
polynomially bounded and seems incompatible with concrete treatments. Fully
concrete characterizations may need a new paradigm and are left for future work.

Roadmap. We serve notations and definitions in Sect. 2. Then, as mentioned,
we provide a technical overview in Sect. 3.

For the main elaborations, we first formalize the Fundamental Properties in
Sect. 4. We then give detailed elaborations and characterizations for our 1-call
cipher in Sect. 5. With the help of these characterizations, we present differen-
tiators against E1, E2 and E3 in Sect. 6, 7 and 8 respectively. Case-study for
general 3-iteration is lengthy and takes a separate section Sect. 9. Some detailed
proofs are available in the full version.

2 Preliminaries

Fix n as the security parameter, and write poly(n) and negl(n) for arbitrary
polynomial and negligible functions respectively. Denote by ⊥ the empty string.
Given x ∈ {0, 1}n and a ≤ n, denote by lefta(x) (resp., righta(x)) the a leftmost
(resp., rightmost) bits of x. When two sets A and B are disjoint, we denote A⊔B
their (disjoint) union. For any domain, denote by id the identity function.

An m-bit random permutation is a permutation that is uniformly selected
from Perm(m), the set of all (2m)! possible m-bit permutations. Throughout the
remaining, we denote by IC : {0, 1}κ × {0, 1}n → {0, 1}n an ideal cipher (which
is randomly picked from all (κ, n)-blockciphers) with κ = poly(n).

We stress that, the phrases “such as” and “if and only if” will be abbreviated
as s.t. and iff. in our pseudocode respectively.

Permutation family P. As briefed in the Introduction, we consider construct-
ing an n-bit blockcipher from a permutation family oracle P that “provides

9



all but the goal”. In detail, P = (P1,P2, ...,P|I|) provides independent ran-
dom permutations indexed by i ∈ I, where Pi ∈ Perm(m(i)) for a fixed function
m : I → poly(n) (viewed as parameters of P). It can bem(i)≫ n for some i ∈ I.
The index set is thus partitioned as I = I≤n ⊔I>n, where i ∈ I≤n if and only if
m(i) ≤ n. We require |I≤n| = O(poly(n)), while I>n can be exponentially large.
We call permutations with width> n wide. Denote by mmax := maxi∈Im(i) and
mmin := mini∈Im(i) the size of largest, resp. smallest permutation in P.

Oracle P accepts queries of the form (i, δ, z), where i ∈ I is the index,
δ ∈ {+,−} indicates if forward Pi or backward P−1i is queried, and z ∈ {0, 1}m(i)

is the actual m(i)-bit input. For δ ∈ {+,−}, we denote δ the opposite of δ.

Indifferentiability. Let EP be a cryptographic construction that internally
queries P, IC be the ideal crypto object of EP , and SIC be a simulator that
queries IC and provides the same interfaces as P. Then, for any distinguisher
D, the indifferentiability advantage of D against EP is

Advindif
EP ,IC,S

(D) =
∣∣Pr[DEP ,P = 1

]
− Pr

[
DIC,SIC

= 1
]∣∣.

EP is indifferentiable (in the asymptotic sense), as long as for any polynomial-

query D: (a) the advantage Advindif
EP ,IC,S

(D) is negl(n) w.r.t. the security param-

eter n for any D, and (b) the number of queries made by S to IC is poly(n).

Notations for differentiators. Consider blockciphers E1P , E2P and E3P

built upon the oracle P. By the above, to break indifferentiability, we shall
exhibit a differentiator D that “fools” any query-efficient simulator SIC with
non-negligible probability. Notice, D has access to two oracles (E,P) where
E ∈ {E1P , E2P , E3P , IC} and P ∈ {P, SIC}. To describe the interaction be-
tween DE,P and its oracles E,P, we use the expressions P(i, δ, z)→ z′ to mean
that D queries P on (i, δ, z) and P answers with z′, and E(K,x) → y to mean
that E is queried on (K,x) and returns y. Note that in the latter case, the query
may be made by S. The notation E−1(K, y)→ x is similar.

As convention, our differentiators always output 1 when it guesses the “real
world”, and output 0 when it guesses the “ideal” or “simulated world”.

Tools from Extremal Graph Theory. Consider a bipartite graph G = (VL,VR, E).
Intuitively, if |E| is sufficiently large, then G must have short cycles (since long
cycles will be truncated). This was proven by Hoory [32], and will help estab-
lishing the existence of certain structures. To ease applying, we restate Hoory’s
result [32, Eqs. (1) and (2)] as follows.

Proposition 1. Let G = (VL,VR, E) be a bipartite graph such that:

(i) |VL| and |VR| have a common upper bound, i.e., there exists an integer M > 0
such that |VL| ≤M , |VR| ≤M ; and

(ii) |E| ≥
(
(M)

1
t−1 + 1

)
×M for some positive integer t.

Then, G contains a cycle C2ℓ with ℓ ≤ t.

10



Proof. By Hoory [32, Eqs. (1) and (2)], if the shortest cycle in G has length 2t,
then VL and VR have to fulfill∑t−1

i=0

( |E|
|VL|

− 1
)⌈i/2⌉( |E|

|VR|
− 1

)⌊i/2⌋
≤ max

{
|VL|, |VR|

}
≤M. (2)

The left hand side of Eq. (2) is lower bounded by

≥
∑t−1

i=0

( |E|
max

{
|VL|, |VR|

} − 1
)i

≥
( |E|
max

{
|VL|, |VR|

} − 1
)t−1

. (3)

By this, as long as
( |E|
max{|VL|,|VR|}−1

)t−1 ≥M , a cycle of length 2t is guaranteed

to exist. This condition further translates into

|E| ≥
(
(M)

1
t−1 + 1

)
×M (4)

and yields the claim. ⊓⊔

If |E| is large, then G contains a small complete bipartite graph (a.k.a. bi-
clique). This was proven by Kővári, Sós and Turán [38], and is restated as follows.

Proposition 2. Let G = (VL,VR, E) be a bipartite graph such that:

(i) There exist two integers M,N > 0 such that |VL| ≤M and |VR| ≤ N ; and

(ii) |E| ≥ (b− 1)
1
a ·MN1− 1

a + (a− 1)N .

Then, G contains the complete bipartite graph Ka,b as a sub-graph.

Proof. The maximum number of edges in an M ×N bipartite Ka,b-free graph is
known as the Zarankiewicz number Z(M,N, a, b). By [24, Eq. (3.1)] (proven by

Kővári, Sós and Turán [38]), it holds Z(M,N, a, b) ≤ (b−1) 1
a ·MN1− 1

a +(a−1)N .
Ka,b thus exists when |VL| ≤M , |VR| ≤ N while |E| ≥ Z(M,N, a, b).7 ⊓⊔

3 Technical Overview

As mentioned, we characterize the 1-call model E1P and then extend the dis-
cussion to 2- and 3-call iterated models E2P and E3P . Below in Sect. 3.1, we
first elaborate more on Fundamental Properties underlying our reasoning. We
then provide intuitions for E1P , E2P and E3P in Sect. 3.2, 3.3 and 3.4 in turn.

3.1 Fundamental Properties

As mentioned, our analyses rely on four properties that we believe fundamental
to blockcipher oracle procedures. First, the definition of the notion of blockci-
phers yield two properties for a blockcipher oracle procedure EP :

7 Nikiforov [43] proved a tradeoff, but does not improve in our applications.
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(i) Efficient invertibility: blockciphers should be efficiently invertible. Namely,
there is a corresponding oracle procedure (E−1)P computing its inverse;

(ii) Deterministic: blockciphers should be deterministic. For EP , it means for a
fixed oracle P, evaluating EP(K,x)→ y and the corresponding decipherment
(E−1)P(K, y) always yield the same transcript of P-queries and responses.

Besides, since an oracle procedure EP shall have a fixed description that
is independent from P, sub-procedures in EP are oracle-independent. We
further assume that EP is non-degenerate and cannot be “simplified” in terms
of P calls, i.e., no encipherment EP(K,x) can be approximately computed using
less P calls than EP . Formal definitions will be given in Sect. 4.

3.2 Full characterization of 1-call cipher E1

As per mentioned, E1P(K,x) := φout
(
K,P(φin(K,x))

)
and (E1−1)P(K, y) :=

γout
(
K,P(γin(K, y))

)
, where φin, φout, γin and γout can be arbitrary oracle-

independent functions. The Fundamental Properties already ensure a number of
non-trivial properties (on oracle procedures of blockciphers).

Inv-freeness and its oracle-independence. Our first observation is about
inverse-freeness of E1P . An encipherment E1P(K,x) is inverse-free (inv-free for
short), if E1P(K,x)→ y and its corresponding decipherment (E1−1)P(K, y)→
x call P(i, δ, ⋆) on the same direction δ; otherwise, E1P(K,x) is non-inverse-
free (non-inv-free). In common designs (Feistel, Misty, IEM, etc.), encipherments
under a fixed key are either all inv-free or non-inv-free for all plaintext. However,
in general, the inv-freeness of E1P(K,x) may depend on x, admitting data-
dependent inv-freeness. We serve an example in Fig. 3.

Our observation is that in E1P , inv-freeness cannot depend on the oracle P,
i.e., one can decide if an encipherment E1P(K,x) is inv-free without querying P.
Intuitively, it is because the query directions of encipherment and decipherment
are determined by the input functions φin and γin, which are oracle-independent.
The formal presentation will be given in Lemma 1. As will be seen, exploitable
weakness in an encipherment E1P(K,x) depends on its inv-freeness, the oracle-
independence of which turns out crucial in our attacks.

y[2]y[1]

K

1

x[1] x[2]1

P2

y[2]y[1]

K

0

x[1] x[2]0

P1

Fig. 3. A 1-call cipher/round that has data-dependent inverse-freeness. (Left) when
the leftmost bit of x = 0∥x[1]∥x[2] is 0 (a permutation-based Feistel round); (Right)
when the leftmost bit of x = 1∥x[1]∥x[2] is 1 (a Misty-like round).
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Properties of inv-free E1P(K,x). For intuitions, consider the key-prepended
Feistel round y = ΨF(K,x) :=

(
rightn/2(x) ⊕ F(K∥leftn/2(x))

)
∥leftn/2(x). This

round is inv-free: an encipherment ΨF(K,x) and its corresponding decipher-
ment (Ψ−1)F(K, y) make the same “forward” call to F(z), z = K∥leftn/2(x) =
K∥rightn/2(y). This means some information of x is kept in the ciphertext y with-
out “protection”. The same property is shared by various Feistel variants [2,
Chapter 1.3.1] (including the Lai-Massey scheme [2, Chapter 1.5]). Casting
it into our general model E1P , it means inv-free E1P(K,x) → y must have
φin(K,x) = γin(K, y).

As a less obvious fact in ΨF, there necessarily exist many distinct enci-
pherments that make the same F-call. I.e., ΨF(K,x) calls F(z) as long as
rightn/2(x) = rightn/2(z), and there are 2n/2 possible x for every z. Similarly
for other inv-free designs. It turns out that: with the non-degeneracy assump-
tion on E1, if there is one inv-free E1P(K,x) then there are Ω(poly(n)) distinct
inv-free E1P(K,x1), E1P(K,x2), ... that collide on the P-call, i.e., φin(K,x1) =
φin(K,x2) = ... = φin(K,x). This further implies that under each key K, all
inv-free E1P(K,x) give rise to o

(
2n

poly(n)

)
distinct P-calls (even if they can query

exponentially many permutations with width> n).

We refer to Lemmas 2–4 in Sect. 5.2 for formal elaborations.

Properties of non-inv-free E1P(K,x). For intuitions, consider the IEM
round y = EMP(K,x) := K ⊕ P(K ⊕ x), which is non-inv-free since (EM−1)P

always calls P−1. EMP is more secure than ΨF. In fact, attacks against EMP

have to exploit at least 2 keys K,K ′ [1, Sect. 3.1, full version] and seek for
encipherments EMP(K,x) and EMP(K ′, x′) that collide on the P-call, i.e., with
K⊕x = K ′⊕x′. Such collided encipherments do exist, because EMP cannot use
wide P. Concretely, to invoke a wide P, EMP must pad x ∈ {0, 1}n with some
“non-trivial” information (e.g., P(x∥0), or P(x∥K)); but then, by invoking P−1,
decipherments are unlikely to “recover” correctly padded P-inputs. In fact, this
irrecoverability is the core idea of Encode-then-Encipher [5].

It turns out that this irrecoverability stems from oracle-independence. In
detail, assuming oracle-independence of φin and γin, non-inv-free encipherments
E1P(K,x) can only query permutations with width≤ n. Thus, non-inv-free give
rise to at most |I≤n|2n+1 distinct P-calls. We refer to Lemma 5 in Sect. 5.2 for
formal elaborations.

Attack E1P . With the above properties, we are able to bump into our differ-
entiator D1 on E1P . In detail, the cipher E1P : K × {0, 1}n → {0, 1}n may fall
into two cases.

Case 1: there exists at least 1 inv-free encipherment E1P(K,x). As discussed,

this means we can find t = Ω(poly(n)) distinct inv-free E1P(K,x1), ..., E1P(K,xt)
that make the same P-call P(i, δ, z), (i, δ, z) = φin(K,x1) = ... = φin(K,xt).
Thus, the restriction of E1P(K, ·) to {x1, ..., xt} is a bijection defined upon a
polynomial-length random string z′ = P(i, δ, z), and we can apply an entropy-
based differentiating approach [41].
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Case 2: E1P(K,x) is non-inv-free for all (K,x) ∈ K × {0, 1}n. Then, E1P(K,x)
can only invoke the permutations in P with width≤ n (as discussed). Therefore,
the number of possible images of φin is at most |I≤n|2n+1. As long as |K|2n ≥
|I≤n|2n+1, i.e., the keyspace has |K| ≥ 2|I≤n|+1 (which is O(poly(n)), though),
the pigeonhole principle guarantees the existence of (K,x), (K ′, x′) ∈ K×{0, 1}n
with collision φin(K,x) = φin(K ′, x′). D1 thus finds such a pair of collided
(K,x), (K ′, x′) and attacks by checking if γin

(
K,E(K,x)

)
= γin

(
K ′,E(K ′, x′)

)
.

The formal proof is more technical and relies on a sort of “regularity” of the
input functions φin and γin (Lemma 6). Please see Sect. 6 for details.

3.3 Attack 2-call iterated cipher E2

Built upon our above results on E1P , we further consider our 2-call model E2P .
Recall that the keyspace K of E2P can be partitioned K = K(0) ⊔ K(1), such
that E2P(K,x) = ΠP3 (K∥kdP(K), x) for all K ∈ K(1), whereas E2P(K,x) =
ΠP2

(
K,ΠP1 (K,x)

)
for all K ∈ K(0). The sub-procedures kdP has kdP(K) =

P(f(K)) for another oracle-independent function f . In addition, for j = 1, 2, 3,
ΠPj is a 1-call cipher with input and output functions φin

j , φout
j , γin

j and γout
j .

We refer to Fig. 2 for illustration and Fig. 12 for a pseudocode description.
This model E2P may fall into two cases.

Case 1: E2P invokes kd for sufficiently many keys. Formally, if the key sets
have |K(1)| ≥ 2|I≤n| + 1, we simply pick λ = 2|I≤n| + 1 keys K1, ...,Kλ ∈ K(1)

and derive subkeys s1 = kdP(K1), ..., sλ = kdP(Kλ). This consumes at most
λ = O(poly(n)) P-queries. We then view the round ΠP3 as a 1-call cipher with
keyspace {K1∥s1, ...,Kλ∥sλ} and apply our differentiator D1. (It is thus crucial
that D1 can break E1 with polynomial-keyspace.)

Case 2: E2P is 2-iteration for sufficiently many keys. The concrete con-

dition is |K(0)| ≥
(
6
(
3|I≤n|

) 1
n + 3

)
|I≤n| = O(poly(n)). Our idea (non-trivially)

generalizes existing specific attacks, which is elaborated as follows.

Outset: boomerang property. Our initial intuition lies in a chosen-key boomerang
differentiator against the 2-round IEM cipher y = K ⊕ P2(K ⊕ P1(K ⊕ x)),
K ∈ {0, 1}n (which is motivated by Andreeva et al.’s [1, Sect. 3.2, full version]).
Briefly, for any x, let u = P1(K ⊕ x). The attack begins by computing four
distinct pairs (K1, u1), (K2, u2), (K3, u3), (K4, u4) with u1 = u2, u3 = u4; K1 ⊕
u1 = K3⊕u3 and K2⊕u2 = K4⊕u4. I.e., they induce two collided inputs to P−11

and two collide inputs to P2. Once such four pairs are derived, the differentiator
can computes a 4-tuple of cipher inputs/outputs

(
(K1, x1, y1), ..., (K4, x4, y4)

)
that has K1⊕ x1 = K2⊕ x2, K3⊕ x3 = K4⊕ x4; K1⊕ y1 = K3⊕ y3, K2⊕ y2 =
K4⊕y4; as shown in Fig. 4 (left). Such a 4-tuple satisfies an evasive relation [39]
and is hard to found in the ideal world. Actually the involved structure is the
basis of the boomerang attack developed in [50].

A similar boomerang can be exhibited in the 2-round Feistel. Motivated
by these, our differentiator against the general 2-iteration cipher tries to find
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P1

(K1, x1)

(K2, x2)

(K4, x4)

(K3, x3)

u1

u2
4

P2

1
2
3

(K1, y1)

(K3, y3)

(K4, y4)

(K2, y2)

(K1, x1)

(K2, x2)

(K4, x4)

(K3, x3)

4

1
2
3

(K1, y1)

(K3, y3)

(K4, y4)

(K2, y2)

Fig. 4. (Top) Boomerang distinguisher in 2-round IEM. Circles indicate values in do-
main and range of P1 and P2 (in particular, u1 and u2 are marked), and lines indicate
encipherment flows. To simplify, for lines between P1 and P2 the pair (Kj , uj) is sim-
plified as j. (Bottom) An example of boomerang distinguisher in 2-round general E2.
Circles indicate values in domain and range of P, and lines indicate encipherment flows.
When a line “crosses” a pair of circles, it means the encipherment is non-inv-free in
that round, and the two circles (naturally) indicate the P inputs and outputs; when a
line “crosses” a single circle, it means the encipherment is non-inv-free in that round
(so that rightward and leftward evaluations reach the same P input). Thus, the four
encipherments are all non-inv-free in the 2nd round; in the 1st round, E2P(K1, x1) and
E2P(K2, x2) are non-inv-free, while E2P(K3, x3) and E2P(K4, x4) are inv-free.

pairs (K1, u1), (K2, u2), (K3, u3), (K4, u4) ∈ K(0) × {0, 1}n that induce simi-
lar collided P-calls, i.e., γin

1 (K1, u1) = γin
1 (K2, u2), γ

in
1 (K3, u3) = γin

1 (K4, u4);
φin
2 (K1, u1) = φin

2 (K3, u3) and φin
2 (K2, u2) = φin

2 (K4, u4), as shown in Fig. 4
(right). This is a general boomerang property. Unlike Fig. 4 (left), the four enci-
pherments may not be non-inv-free in two rounds: actually, Fig. 4 (right) serves
an example where the 1st round of E2P(K3, x3) and E2P(K4, x4) are inv-free.

From boomerang to yoyo. But does such a 4-tuple ever exist? Unlike “concrete”
ciphers such as IEM and Feistel, this is unclear in E2. To solve this, we apply
Hoory’s [32] result on girth (i.e., maximal length of cycles in a graph). Briefly, if
we view the possible inputs to P as shores and the pairs (K,u) ∈ K(0) ×{0, 1}n
as edges, then we can build a bipartite graph G, and the above 4-tuple becomes
a 4-cycle C4 (i.e., cycle of length 4) in G. By Hoory [32] (which is restated in
Sect. 2, Proposition 1), as long as the number of edges is large enough, such a
4-cycle or 4-tuple is guaranteed to exist.

However, as will be clear in the analysis (see Remark at page 34), the above
requires K(0) to be of exponential size, which would prohibit its application in
our later attack against E3. To remedy, we consider longer cycles C2λ, λ ≤ n+1.
I.e., our differentiator seeks for a 2λ-tuple

(
(K1, u1), ..., (K2λ, u2λ)

)
that has

φin
2 (K1, u1) = φin

2 (K2, u2), γin
1 (K2, u2) = γin

1 (K3, u3),

φin
2 (K3, u3) = φin

2 (K4, u4), γin
1 (K4, u4) = γin

1 (K5, u5), ...

φin
2 (K2λ−1, u2λ−1) = φin

2 (K2λ, u2λ), γin
1 (K2λ, u2λ) = γin

1 (K1, u1). (5)

Once such a 2λ-tuple is found, our differentiator can computes a 2λ-tuple of E2
inputs/outputs

(
(K1, x1, y1), ..., (K2λ, x2λ, y2λ)

)
that has a “cycle of collisions”.

I.e., γin
2 (K1, y1) = γin

2 (K2, y2), φ
in
1 (K2, x2) = φin

1 (K3, x3), ..., γ
in
2 (K2λ−1, y2λ−1) =

γin
2 (K2λ, y2λ), φ

in
1 (K2λ, x2λ) = φin

1 (K1, x1). An example with λ = 4 is shown
in Fig. 5. This is actually a general version of the yoyo distinguisher [46]. By
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Hoory [32], |K(0)| ≥
(
6
(
3|I≤n|

) 1
n +3

)
|I≤n| = O(poly(n)) already suffices for the

existence of
(
(K1, u1), ..., (K2λ, u2λ)

)
. Note that Hoory does not apply when G

is a multigraph, but this implies existence of C2. These solve our first problem.

(K1, x1)

(K8, x8)

(K3, x3)

(K2, x2)

(K1, y1)

(K2, y2)

(K3, y3)

(K5, x5)

(K4, x4)

(K4, y4)

(K5, y5)

(K7, x7)

(K6, x6)

(K6, y6)

(K7, y7)

(K2, u2)

(K1, u1)

(K4, u4)
(K3, u3)

(K6, u6)

(K5, u5)

(K7, u7)

(K8, u8)

(K8, y8)

Fig. 5. An example of general yoyo distinguisher with λ = 4 in E2. Meanings of the
objects follow Fig. 4.

Non-degenerate input functions. Subtleties remain. To argue that no polynomial-
query simulator can work out a similar 2λ-tuple of ideal cipher inputs/outputs(
IC(K1, x1) = y1, ..., IC(K2λ, x2λ) = y2λ

)
, the input functions φin

1 and γin
2

must be somewhat “non-degenerate”. Roughly, Pr[x
$←− {0, 1}n : φin

1 (K,x) =

(i, δ, z)] = negl(n) and Pr[y
$←− {0, 1}n : γin

2 (K, y) = (i, δ, z)] = negl(n) for any
K and any (i, δ, z).

Wlog consider φ1. Indeed, due to the aforementioned “regularity” (Lemma
6), it can be proven Prx[φ

in
1 (K,x) = (i, δ, z) | ΠP1 (K,x) non-inv-free] = negl(n).

But φin
1 (K, ·) may lead Ω(2n/poly(n)) distinct inv-free ΠP1 (K,x) to the same

call P(i, δ, z) (i.e., being highly biased), which enables the simulator to cheat.
A complete case-study thus has to consider whether φin

1 and γin
2 are “non-

degenerate”. However, input functions in virtually all blockciphers are indeed
“non-degenerate” (please see Sect. 7): otherwise, the round is ridiculously weak.
Meanwhile, complete case-study would take us quite far afield. We thereby decide
to simplify and introduce non-degenerate input functions as an additional as-
sumption for E2P and E3P , i.e., Prx[φ

in
1 (K,x) = (i, δ, z) | ΠP1 (K,x) inv-free] =

negl(n) and Pry[γ
in
2 (K, y) = (i, δ, z) | (Π−12 )P(K, y) inv-free] = negl(n). We re-

fer to Sect. 7 for more details. With this additional restriction, we prove that
no polynomial-query simulator can work out the aforementioned 2λ-tuple. In
fact, Eq. (5) defines a novel evasive relation in 2-round general ciphers, which is
stronger than differentiability. We refer to Sect. 7 for details.

It is crucial to restrict our discussion to iterated blockciphers: since the set of
valid intermediate values u between the rounds is simply {0, 1}n, an attacker can
pick such a u and compute forward or backward. Indeed, this middle-to-sides
approach is common in known- and chosen-key attacks [37].

3.4 Attack 3-call iterated cipher E3

We further consider our 3-call model E3P . Recall that E3P : {0, 1}κ×{0, 1}n →
{0, 1}n has κ = Θ(poly(n)), and its keyspace can be partitioned {0, 1}κ = K(0)⊔
K(1) ⊔ K(2), such that:
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(i) E3P(K,x) = ΠP6 (K∥kdP1 (K), x) for all K ∈ K(2);
(ii) E3P(K,x) = ΠP5

(
K∥kdP2 (K), ΠP4 (K∥kdP2 (K), x)

)
for all K ∈ K(1);

(iii) E3P(K,x) = ΠP3
(
K,ΠP2

(
K,ΠP1 (K,x)

))
for all K ∈ K(0).

The sub-procedures kdP1 (K) and kdP2 (K) derive corresponding subkeys via two
and one calls to P respectively. In addition, for j = 1, 2, ..., 6, ΠPj is a 1-call

cipher with input and output functions φin
j , φout

j , γin
j and γout

j . We refer to Fig.

15 for pseudocode of E3P .
When E3P invokes kd1 or kd2 for sufficiently many keysK ∈ {0, 1}κ, we again

derive poly(n) subkeys to reduce E3P to E1 or E2 instances with polynomial
keyspace, and apply our previous differentiators (thanks to that our differentia-
tors break E1 and E2 with polynomial keyspace).

The crux is the case where E3P(K,x) = ΠP3
(
K,ΠP2

(
K,ΠP1 (K,x)

))
for vir-

tually all 2κ keys K. Depending on whether the Θ(2κ+n) encipherments are
“mostly” inv-free or not in the 3 rounds, exploitable non-random properties sig-
nificantly vary in the 23 = 8 cases and cannot be unified. We thereby have to
appeal for a (lengthy) case-study.

Furthermore, note that inv-freeness can be data-dependent, which causes a
subtle technical challenge. Namely, without querying P, one cannot fully decide
if a certain encipherment is inv-free in the 3 rounds.8 But querying P would
trigger simulator actions in the ideal world, and the simulated P may be defined
to change the inv-freeness of the encipherments in question. This turns out a
technical challenge, and we call it decisional inv-free problem. Our solution is two-
fold. First, we identified relevant conditions that are decidable without querying
P, so that our differentiator could invoke the right subroutine for case-study
without attracting simulator’s attention. Meanwhile, to compute (intermediate)
values of the encipherments in question, our differentiator (tries the best to)
query the enciphering oracle E instead of P to avoid “waking” the simulator.
Our case conditions ensure that the ideal cipher responses (in the ideal world)
will satisfy our expectations on inv-freeness. We will elaborate more later.

Below we denote by x ∈ {0, 1}n the plaintext, u = ΠP1 (K,x) the 1st round
output, w = ΠP2 (K,u) the 2nd round output and y = ΠP3 (K,w) the ciphertext.

Case 1: there are Θ(2κ) keys K s.t. only o(2n/poly(n)) ΠP
1 (K,x) are

non-inv-free, and only o(2n/poly(n)) (Π−1
3 )P(K, y) are non-inv-free.

Roughly, this means most of the Θ(2κ+n) encipherments E3P(K,x) are inv-free
in 1st and 3rd rounds. A famous example is the 3-round Feistel Feistel3(K,x) :=
ΨF3

(
K,ΨF2

(
K,ΨF1(K,x)

))
. Since the 2nd round could be arbitrary, the “hy-

brid” cipher Hyb(K,x) := ΨF3
(
K,K ⊕P

(
K ⊕ ΨF1(K,x)

))
is another example.

A fact shared by the two examples is that there are many encipherments that
collide on F- or P-calls in the 2nd round. Concretely,

8 E.g., given K and a 1st round output u ∈ {0, 1}n, one can decide the inv-freeness
of the corresponding encipherment in the 1st and 2nd rounds, since ΠP

1 (K,u) and
(Π−1

2 )P(K,u) can be decided. But without querying P, one cannot derive w =
ΠP

2 (K,u), and thus cannot decide if the process is inv-free in the 3rd round.
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– In Feistel3, let u = ΨF1(K,x). Then, for any z ∈ {0, 1}n/2, all the 2n/2

encipherments with key K and 1st round output u = ⋆∥z call F2(K∥z);
– In Hyb1, let u = ΨF1(K,x). Then, for any z ∈ {0, 1}n, all the 2n encipher-
ments with (K,u), K ⊕ u = z, call P(z).

It turns out that this can be proven in the general 3-round cipher (in this
case): there exist t = Ω(poly(n)) distinct intermediate values (K1, u1), ..., (Kt, ut)
that collide on 2nd round P-call, i.e., φin

2 (K1, u1) = ... = φin
2 (Kt, ut) = (i2, δ2, z2),

as shown in Fig. 6 (left).
With such a “star” structure, we issue the “central” query P(i2, δ2, z2) →

z′2. In the real world, the response z′2 is consistent with Ω(poly(n)) encipher-
ments. Namely, for all j ∈ {1, ..., t}, suppose we evaluate wj ← φout

2 (Kj , z
′
2, uj),

xj ← (Π−11 )P(Kj , uj) and E(Kj , xj) → yj . In the real world, if ΠP
3 (Kj , wj) is

inv-free then it holds φin
3 (Kj , wj) = γin

3 (Kj , yj). In the ideal world, S (roughly)
has to find ideal cipher inputs/outputs IC(Kj , xj) = yj that have both inputs
and outputs involved in certain collisions, i.e., φin

1 (Kj , xj) = γin
1 (Kj , uj) and

φin
3 (Kj , wj) = γin

3 (Kj , yj), the probability of which can be proven negligible.
This slightly oversimplifies, and we refer to Sect. 9.1 for details.

The question is: how the decisional inv-free problem affects in this case? The
point is that: the above strategy only works for encipherments that are inv-free
in both 1st and 3rd rounds. When we query P(i2, δ2, z2) → z′2, S may define
z′2 such that many of the involved ΠP

3 (Kj , wj) become non-inv-free. It seems
cumbersome to argue that there remain many (useful) inv-free ΠP

3 (Kj , wj).
Such simulator strategies are prohibited by our case condition. In detail, if

S want to define z′2 such that ΠP
3 (Kj , wj) is non-inv-free for some j, S must

find an ideal cipher input/output IC(Kj , xj) = yj such that (Π−13 )P(Kj , yj) is
non-inv-free (otherwise, there appears inconsistency). Though,

– Since it must satisfy φin
1 (Kj , xj) = γin

1 (Kj , uj) (Π1(Kj , xj) is also inv-free),
it cannot be due to a backward query IC−1(Kj , yj)→ xj ;

– Since only o(2n/poly(n)) (Π−13 )P(Kj , y) are non-inv-free for the involved
key Kj , it cannot be due to a forward query IC(Kj , xj)→ yj either.

Thus, our attack strategy will reach (Π−13 )P(Kj , yj) non-inv-free and succeed.

In our formal elaborations, this case is actually Subcase 3.1. We refer to Sect.
9.1 for details.

For the remaining, we first focus on the case that there are Θ(2κ) keys K s.t.
Ω(2n/poly(n))ΠP1 (K,x) are non-inv-free, and thatΩ(2n/poly(n)) (Π−13 )P(K, y)
are non-inv-free. Depending on whether the Ω(2n/poly(n)) 1st round outputs u
have ΠP2 (K,u) non-inv-free or not, we further distinguish Case 2 and 3.

Case 2: there are Θ(2κ) keys K s.t. Ω
(

2n

poly(n)

)
u have (Π−1

1 )P(K,u)

non-inv-free and ΠP
2 (K,u) non-inv-free, and Ω

(
2n

poly(n)

)
(Π−1

3 )P(K, y)

are non-inv-free. A crucial example is the 3-round IEM cipher IEM3(K,x) :=
K⊕P3

(
K⊕P2

(
K⊕P1(K⊕x)

))
. Let u = P1(K⊕x) in IEM3. Let’s see an attack
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(K1, x1)

(K2, x2)

(K3, x3)

(K1, y1)

(K2, y2)

(K3, y3)

?

?

Fig. 6. Query structures used in attacking 3-round general ciphers. (Left) Structures
for Case 1. The dashed lines show two examples of “stars”: the top “star” centers
around an inv-free 2nd round encipherment, while the bottom “star” centers around a
non-inv-free 2nd round. (Right) Structures for Case 2. The dashes lines show a simple
example of biclique K3,5 (we certainly cannot draw “exponential-size”). The bold lines
indicate the encipherments sampled by our attack, the arrows indicate the direction of
our attack’s evaluations, and the ? indicates where our attack checks equalities.

for intuition. We begin with three intermediate values (K1, u1), (K2, u2), (K3, u3)
that have K1 ⊕ u1 = K2 ⊕ u2 ̸= K3 ⊕ u3, and then query P−11 , compute the
plaintexts x1 ← K1⊕P−11 (u1), x2 ← K2⊕P−11 (u2) and x3 ← K3⊕P−11 (u3), and
acquire the ciphertexts E(K1, x1) → y1, E(K2, x2) → y2 and E(K3, x3) → y3.
With these, if we query P−13 (K1 ⊕ y1) → w and P−13 (K2 ⊕ y2) → w′, then
the simulator S shall define them such that w ⊕ K1 = w′ ⊕ K2; if we query
P−13 (K1⊕y1)→ w and P−13 (K3⊕y3)→ w′, then S shall define w⊕K1 ̸= w′⊕K3.
S cannot know our choice and thus won’t be prepared correctly.

To translate this attack to the general 3-round model, we need to grasp its
core idea. It turns out to be a structure of exponential size: if we view the range of
P1 and the domain of P2 as two shores and the pairs (K,u) as edges, then we can
build a biclique K3,2n . Due to this, given the P−11 and P−13 queries, there remain
exponential possibilities for the three relevant encipherments (K1, x1), (K2, x2)
and (K3, x3), and S cannot pinpoint them. Furthermore, S does not know our
choice of P−13 -queries either. These ideas were also used by Andreeva et al.’s
attack on IEM3 [1, Sect. 3.3, full version] (though details slightly deviate).

In the general 3-round cipher, we should view possible inputs to P as shores
and intermediate pairs (K,u) as edges to build a bipartite graph G (which resem-
bles our previous treatments of 2-iteration), as shown in Fig. 6 (right). Again
we need to prove that there indeed exists a biclique K3,2n as a sub-graph in
G, and we resort to Zarankiewicz numbers [24]. Concretely, by Kővári, Sós and
Turán (KST) [38] (restated in Sect. 2, Proposition 2), as long as κ is large enough
(though still Θ(n)), the number of edges is large enough and K3,2n is guaranteed
to exist. This enables finding and exploiting the three encipherments.

Regarding the decisional inv-free problem, the setting is simpler than Case 1.
In detail, it can be proven that we can sample encipherments (K1, x1), (K2, x2)
and (K3, x3) that were unlikely queried by the simulator S. By this and by the
case condition, we reach (Π−13 )P(K1, y1), (Π

−1
3 )P(K2, y2) and (Π−13 )P(K3, y3)

with non-negligible probability Ω(1/poly(n)) after querying E(K1, x1) → y1,
E(K2, x2)→ y2 and E(K3, x3)→ y3. This fits into our expectations.
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There remain subtleties: similarly to the 2-round case (Sect. 3.3), KST’s
result [38] only applies to simple graphs. When G is a multigraph with high
multiplicity, we have to resort to a dedicated treatment. Interestingly, using the
fact that there can be many edges between a single pair of vertexes, we are able
to find three encipherments (K1, u1), (K2, u2) and (K3, u3) that are similar to
the above “simple” case. The involved structure is given in Fig. 7 (left).

We refer to Sect. 9.2 and 9.3 (Subcase 3.2) for details.

(K1, x1)

(K2, x2)

(K3, x3)

(K1, y1)

(K2, y2)

(K3, y3)
? ?

Fig. 7. Query structures used in attacking 3-round general ciphers, when the involved
graphs contain heavy multi-edges. (Left) Structures for Case 2. The idea is adapted
from Fig. 6 (right). The dashed arcs indicate that there are many (superpolynomial)
distinct encipherments “crossing” the same pair of inputs in 1st and 2nd rounds. The
dashed lines show that the number of possible encipherments “crossing” the two rele-
vant P-inputs are exponential. (Right) Structures for Case 4. The idea is adapted from
Fig. 8 (right): we can find λ useful encipherments within a single pair of P-inputs (in
the 1st and 2nd rounds). The use of bold lines, arrows and ? follows Fig. 6.

Case 3: there are Θ(2κ) keys K s.t. Ω
(

2n

poly(n)

)
u have (Π−1

1 )P(K,u)

non-inv-free and ΠP
2 (K,u) inv-free, and Ω

(
2n

poly(n)

)
(Π−1

3 )P(K, y) are

non-inv-free. Our attack in this case reuses already discussed ideas. In detail,
(roughly) we sample a pair (K,u) from the Ω(2κ+n/poly(n)) pairs that have
1st round non-inv-free while 2nd round inv-free. We then evaluate backward
to x ← (Π−11 )P(K,u), “wrap” by querying E(K,x) → y and further w ←
(Π−13 )P(K, y). Since Ω(2n/poly(n)) (Π−13 )P(K, y) are non-inv-free, we reach
(Π−13 )P(K, y) non-inv-free with a non-negligible probability and overcome the
decisional inv-free problem, as shown in Fig. 8 (left). Since Π2(K,u) is inv-free,
if we are interacting with the general 3-round cipher then it holds φin

2 (K,u) =
γin
2 (K,w) (as discussed in Sect. 3.2). On the other hand, if we are interacting with

the ideal world (IC, SIC), the simulator S only gains two P-calls P(γin
1 (K,u))

and P(γin
3 (K, y)). As discussed in Case 2, they won’t enable S to pinpoint the

encipherment (K,x). Consequently, S is unable to define simulated P and enforce
the equality φin

2 (K,u) = γin
2 (K,w).

In our attack (Sect. 9), this corresponds to Subcase 3.3, and we refer to
Sect. 9.4 for the formal elaboration (which uses pigeonhole principle and non-
degeneracy of φin

2 ).
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?
?

Fig. 8.Query structures used in attacking 3-round general ciphers. (Left) Structures for
Case 3. The dashed lines show that the number of possible encipherments “crossing”
the two relevant P-inputs are exponential (though, they may not overlap). (Right)
Structures for Case 4. The figure shows a simple example with λ = 4. The use of bold
lines, arrows and ? follows Fig. 6.

We then focus on the case that there are Θ(2κ) keys K s.t. Ω(2n/poly(n))
ΠP1 (K,x) are non-inv-free, and that o(2n/poly(n)) (Π−13 )P(K, y) are non-inv-free.
Similarly to Case 2 and 3, we further distinguish Case 4 and 5.

Case 4: there are Θ(2κ) keys K s.t. Ω
(

2n

poly(n)

)
u have (Π−1

1 )P(K,u)

non-inv-free and ΠP
2 (K,u) non-inv-free, and o

(
2n

poly(n)

)
(Π−1

3 )P(K, y)

are non-inv-free. In this case, we reuse the query structures found in Case 2.
We also reuse the idea that the inv-free 3rd round allows checking consistency.

In detail, consider the bipartite graph G built between the 1st and 2nd
round (which resembles Case 2). When G is (roughly) simple, we can find a
biclique Kλ,2n with λ = mmax, which resembles Case 2. We then sample one
vertex (i2, δ2, z2) from the right shore of Kλ,2n , pinpointing λ encipherments
(K1, u1), ..., (Kλ, uλ) that invoke P(i2, δ2, z2) in the 2nd round. See Fig. 8 (left).
We then evaluate backward x1 ← (Π−11 )P(K1, u1), ..., xλ ← (Π−11 )P(Kλ, uλ),
“wrap” E(K1, x1) → y1, ...,E(Kλ, xλ) → yλ. As only o

(
2n

poly(n)

)
(Π−13 )P(K, y)

are non-inv-free, we likely reach (Π−13 )P(K1, y1), ..., (Π
−1
3 )P(Kλ, yλ) inv-free and

overcome the decisional inv-free problem, as shown in Fig. 8 (right).
In the real world, the 2nd round outputs (K1, w1), ..., (Kλ, wλ) of these enci-

pherments are derivable from (K1, w1), ..., (Kλ, wλ) using a fixed z′2 ∈ {0, 1}m(i2).
Meanwhile, they have φin

3 (K1, w1) = γin
3 (K1, y1), ..., φ

in
3 (Kλ, wλ) = γin

3 (Kλ, yλ).
To simulate consistently, the simulator S in the ideal world has to find a corre-
sponding z′2 ∈ {0, 1}m(i2) satisfying the λ equalities for the ideal cipher responses
y1, ..., yλ. Since λ = mmax, this can be proven infeasible.

When G is a multigraph with high multiplicity, a single pair of vertexes
already suffices to pinpoint λ encipherments (K1, u1), ..., (Kλ, uλ) that invoke
the same P(i2, δ2, z2) in the 2nd round, as shown in Fig. 7 (right). Our above
idea thus remains applicable.

In our attack (Sect. 9), this corresponds to Subcase 3.4, and we refer to Sect.
9.5 for the formal elaboration.

Case 5: there are Θ(2κ) keys K s.t. Ω
(

2n

poly(n)

)
u have (Π−1

1 )P(K,u)

non-inv-free and ΠP
2 (K,u) inv-free, and o

(
2n

poly(n)

)
(Π−1

3 )P(K, y) are
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?

?

?

Fig. 9. Query structures used in attacking 3-round general ciphers, Case 5. (Left) When
the graph contains heavy multi-edges, we can find λ useful encipherments within a
single pair of P-inputs (in the 1st and 2nd rounds). The figure shows a simple example
with λ = 4. (Right) When the graph does not contain too many multi-edges (and the
biclique Kλ,2 exists).

non-inv-free. Again, consider the bipartite graph G built between the 1st and
2nd round (which resembles Cases 2 and 4). When G is a multigraph with high
multiplicity, we reuse the idea of Case 4 and exploit the structure shown in
Fig. 9 (left). The case that G is (roughly) simple turns out to be the most
complicated, and many of our earlier attempts failed. Our eventual idea is built
upon a polynomial-size boomerang structure in the 1st and 2nd rounds, which
is depicted in Fig. 9 (right).

In detail, we seek for a biclique Kλ,2, λ = O(mmax), in G, as shown in Fig.
9 (right). Again by KST [38], such bicliques exist as long as κ is large enough
(though still Θ(mmaxn) = Θ(poly(n))).

The biclique Kλ,2 pinpoints two groups of encipherments, with each group
colliding on a 2nd round P-call, as shown in Fig. 9. Therefore, in the real world,
there are two P-outputs that are consistent with all the 2λ encipherments. Mean-
while, every encipherment in one group is paired with an encipherment in the
other group, such that the two encipherments collide on the 1st round P-call. By
these, in the ideal world, the simulator S has to seek for 2λ ideal cipher queries
that have both inputs and outputs involved in certain collisions. Namely, the 2λ
ideal cipher queries can be arranged in a 2× λ matrix, such that:

– For every pair of ideal cipher queries in every column, the corresponding
simulated encipherments collide on the 1st round P-call; and

– For each group of λ ideal cipher queries in each row, there exists a response
z′2 that satisfy certain relation with their λ ciphertexts.

When λ = O(mmax), this can be proven infeasible.
In our attack (Sect. 9), this corresponds to Subcase 3.5, and we refer to Sect.

9.6 for the formal presentations. Some of our earlier failed attempts are also
available there.

Other cases: there are Θ(2κ) keys K s.t. o
(

2n

poly(n)

)
ΠP

1 (K,x) are

non-inv-free and Ω
(

2n

poly(n)

)
(Π−1

3 )P(K, y) are non-inv-free. Then, if

most w = (Π−13 )P(K, y) are inv-free w.r.t. Π2, it follows the above Case 4 by
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symmetry; if most w = (Π−13 )P(K, y) are non-inv-free w.r.t. Π2, it follows the
above Case 5 by symmetry. We thereby complete the case-study.

Again, we refer to Sect. 8 for the complicated details.

4 Fundamental Properties

By the notion of blockciphers, a blockcipher shall be deterministic and efficiently
invertible. The latter has been reflected in Fig. 10 (and Figs. 12 and 15 as well).
Below we formalize the former for blockcipher oracle procedures.

Definition 1 (Deterministicness). An oracle procedure EP : K × {0, 1}n →
{0, 1}n instantiating a blockcipher must be deterministic, meaning that for any
(K,x) ∈ K×{0, 1}n, let y = EP(K,x). Then, the transcripts of P-queries and re-
sponses obtained during encipherment EP(K,x) and decipherment (E−1)P(K, y)
are always identical. (E.g., if EP(K,x) queries P(i, δ, z)→ z′ at some stage, then
(E−1)P(K, y) queries either P(i, δ, z)→ z′ or P(i, δ, z′)→ z at some stage.)

Two more properties/assumptions that we rely on are oracle-independence
of sub-procedures and non-degeneracy of EP .

Oracle-independence means sub-procedures in EP must be oracle-independent.
Since the oracle procedure EP (or black-box cryptographic construction) has a
fixed description, this seems obvious (and indeed common in black-box construc-
tions [25] and impossibility proofs [9,45]). Though, we highlight it for clarity.
Interestingly, ad hoc blockciphers also strive for such independence (probably
to avoid unexpected internal dependency). For example, in AES, the ShiftRows
and MixColumns steps are rather independent from SubBytes.

Non-degeneracy means no encipherment EP(K,x) can be approximately
computed using less P calls than EP , i.e., EP cannot be “simplified”. Formally,

Definition 2 ((Everywhere) Non-degenerate Oracle Procedure). An or-
acle procedure EP is (everywhere) εde(E)-non-degenerate, if

maxE′,K,x

{
PrP

[
(E′)P(K,x) = EP(K,x)

]}
≤ εde(E) = negl(n). (6)

where the maximum is taken over all (K,x) ∈ {0, 1}κ × {0, 1}n and all ora-
cle procedures (E′)P such that the number of P-calls made during computing
(E′)P(K,x) is less than EP(K,x).

Why non-degenerate? If E1P is 1/poly(n)-non-degenerate, then there is an
obvious differentiator with advantage 1/poly(n)−2−n. More importantly, a t-call
blockcipher “uses” all of its t P-calls “effectively” only if it is non-degenerate.

5 General 1-Call Blockciphers

We first elaborate on our 1-call cipher model E1P in Sect. 5.1. Then, we char-
acterize the properties of E1P in Sect. 5.2.
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Algorithm E1P(K, x) // (K, x) ∈ K × {0, 1}n

(i, δ, z)← φin(K, x)
z′ ← P(i, δ, z)
y ← φout(K, z′, x)
return y

Algorithm (E1−1)P(K, x)

(i, δ, z)← γin(K, y)
z′ ← P(i, δ, z)
x← γout(K, z′, y)
return x

Fig. 10. Definition of the 1-call blockcipher E1P . φin, φout, γin, and γout are all deter-
ministic and oracle-independent.

5.1 General Model of 1-call Blockciphers/Rounds

We consider any blockcipher oracle procedure E1P : K× {0, 1}n → {0, 1}n that
is built from the permutation family P in the following way. Let φin and φout be
two arbitrary deterministic functions that are computable by the computational
class of the differentiator(s). Then, E1P(K,x) := φout

(
K,P

(
φin(K,x)

)
, x

)
.

Since blockciphers are efficiently invertible by definitions, E1P is accom-
plished by (E1−1)P(K, y) := γout

(
K,P

(
γin(K, y)

)
, y
)
using two other determin-

istic functions γin and γout. We stress that to ensure (E1−1)P
(
K,E1P(K,x)

)
≡

x, γin and γout are strongly correlated with φin and φout, and this will be crucial
for our attack. A formal description using pseudocode is given in Fig. 10.

Examples to facilitate understanding. First, the key-prepended Feistel
round [16] uses F : {0, 1}κ+n/2 → {0, 1}n/2 and defines ΨF(K,x) := rightn/2(x)⊕
F(K∥leftn/2(x))∥leftn/2(x). It is an E1 instance with

φin(K,x) :=
(
i,+,K∥rightn/2(x)∥[0]n/2

)
,

φout(K, z′, x) := rightn/2(x)⊕ rightn/2(z
′)∥leftn/2(x) (7)

using an index i with m(i) = κ+ n (and truncated permutation [14]).
Second, the “key-alternating Feistel” round [27] uses F : {0, 1}n/2 → {0, 1}n/2

and defines KAFF(K,x) := rightn/2(x) ⊕ F(K ⊕ leftn/2(x))∥leftn/2(x). It is an
E1 instance with

φin(K,x) :=
(
i,+,K ⊕ rightn/2(x)∥[0]n/2

)
,

φout(K, z′, x) := rightn/2(x)⊕ rightn/2(z
′)∥leftn/2(x) (8)

using an index i with m(i) = n (and truncated permutation).
Third, the IEM round [23] defines EMP(K,x) := K ⊕ P(K ⊕ x) for P ∈

Perm(n). It is an E1 instance with

φin(K,x) := (i,+,K ⊕ x), φout(K, z′, x) := K ⊕ z′ (9)

using an index i with m(i) = n.
Finally, a “key-alternating” Misty-R cipher round [2, Chapter 3.18.8] defines

Misty-RP(K,x) := P
(
K ⊕ rightn/2(x)

)∥∥(leftn/2(x) ⊕ P
(
K ⊕ rightn/2(x)

))
for

P ∈ Perm(n/2). It is an E1 instance with

φin(K,x) :=
(
i,+,K ⊕ rightn/2(x)

)
, φout(K, z′, x) := z′

∥∥(leftn/2(x)⊕ z′
)

(10)
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using an index i with m(i) = n/2.

It is easy to see unbalanced Feistel [2, Chapter 1.3.1], Lai-Massey [2, Chapter
1.5] and keyed Feistel rounds are instances of E1 as well. Though, E1 does not
cover multi-line generalized Feistel [2, Chapter 1.3.1] (which makes multiple P
calls per round) and Swap-Or-Not [29] (which uses small-range functions).

5.2 Properties of 1-call Blockciphers/Rounds

We first introduce several helper sets. We then discuss properties of data-dependent
encipherments, inverse-free and non-inverse-free encipherments in turn.

Notations. For any 1-call cipher E1P : K×{0, 1}n → {0, 1}n and any K in its
keyspace K, define

Domif(E1,K) :=
{
x ∈ {0, 1}n : δ = δ′, where (i, δ, z) = φin(K,x),

(i, δ′, z′) = γin(K, y), y = E1P(K,x)
}
,

Rngif(E1,K) :=
{
y ∈ {0, 1}n : δ = δ′, where (i, δ, z) = γin(K, y),

(i, δ′, z′) = φin(K,x), x = (E1−1)P(K, y)
}
,

Domni(E1,K) := {0, 1}n\Domif(E1,K), Rngni(E1,K) := {0, 1}n\Rngif(E1,K).
(11)

For x ∈ Domif(E1,K), the encipherment E1P(K,x) and the corresponding
decipherment (E1−1)P(K, y) call P on the same direction. Therefore, E1P(K,x)
is inverse-free (inv-free for short), as reflected by the subscript if. Otherwise,
E1P(K,x) is non-inverse-free (non-inv-free), as reflected by ni. We remark that
E1P(K,x) = E′(P(f(K)), x) is also inv-free, although it may not match classical
understandings.

For tag ∈ {ni, if}, define sets for plaintexts/ciphertexts in Domtag/Rngtag that
are mapped to a certain P input (i, δ, z):

Domtag(E1,K, i, δ, z) :=
{
x ∈ Domtag(E1,K) : φin(K,x) = (i, δ, z)

}
,

Rngtag(E1,K, i, δ, z) :=
{
y ∈ Rngtag(E1,K) : γin(K, y) = (i, δ, z)

}
. (12)

Domtag(E1,K, i, δ) := ∪z∈{0,1}m(i)Domtag(E1,K, i, δ, z),

Rngtag(E1,K, i, δ) := ∪z∈{0,1}m(i)Rngtag(E1,K, i, δ, z). (13)

We slightly abuse the notation Rng⋆ to denote the actual ranges of the input
functions φin and γin. In detail, for tag ∈ {ni, if}, define

Rngtag(φ
in,K) :=

{
(i, δ, z) : (i, δ, z) = φin(K,x) for some x ∈ Domtag(E1,K)

}
,

Rngtag(γ
in,K) :=

{
(i, δ, z) : (i, δ, z) = γin(K, y) for some y ∈ Rngtag(E1,K)

}
.

Rngtag(φ
in) := ∪K∈KRngtag(φ

in,K), Rngtag(γ
in) := ∪K∈KRngtag(γ

in,K). (14)
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On data-dependence. As indicated by the partition {0, 1}n = Domif(E1,K)⊔
Domni(E1,K), the inv-freeness of E1P(K,x) can be data-dependent. Though, as
mentioned in Sect. 3.1, (surprisingly) one can decide whether an encipherment
E1P(K,x) is inv-free without querying P. This turns out crucial in our attacks.

Lemma 1 (Inv-freeness is oracle-independent). Consider the blockcipher
E1P : K×{0, 1}n → {0, 1}n in Fig. 10. Then, for any pair (K,x) ∈ K×{0, 1}n,
resp. (K, y) ∈ K × {0, 1}n, whether x ∈ Domif(E1,K), resp. y ∈ Rngif(E1,K),
can be determined without querying P.

Proof. Assume otherwise, and let (K,x) be the input such that whether x ∈
Domif(E1,K) depends on P. Let (i, δ, z) = φin(K,x) and y = E1P(K,x). Since
E1P(K,x) only makes one query P(i, δ, z) to P, E1P(K,x) is inv-free if and only
if P(i, δ, z) is in a certain subset of {0, 1}m(i). Namely, there exists a partition
{0, 1}m(i) = Zδ ∪ Zδ such that x ∈ Domif(E1,K) if and only if P(i, δ, z) ∈ Zδ.

However, let (i, δ′, z′) = γin(K, y), then y ∈ Rngif(E1,K) if and only if δ′ = δ.
This means it always holds P(i, δ, z) ∈ Zδ′ , where δ′ is fixed by the definition of
the function γin. This violates our assumption that γin is oracle-independent.

Therefore, one can decide if x ∈ Domif(E1,K) solely by computations. The
argument for y ∈ Rngif(E1,K) is similar by symmetry. ⊓⊔

Properties of inv-free encipherments. We now formalize the intuitive weak-
nesses of inv-free encipherments discussed in Sect. 3.1.

Lemma 2 (Inv-freeness preserves partial inputs). Consider the 1-call block-
cipher E1P in Fig. 10. Then, for any pair (K,x), x ∈ Domif(E1,K), it holds
γin(K, y) = φin(K,x) for y = E1P(K,x). It further implies |Domif(E1, i, δ, z)| =
|Rngif(E1, i, δ, z)| for any i ∈ I, δ ∈ {+,−} and z ∈ {0, 1}m(i). Proof: this is
a straightforward implication of Fig. 10 and Definition 1.

The second observation follows by non-degeneracy: if there exists one inv-free
encipherment E1P(K,x), then there must exist superpolynomially many.

Lemma 3 (Inv-freeness can’t be unique). Consider the 1-call blockcipher
E1P in Fig. 10. If E1P is εde(E1)-non-degenerate in the sense of Definition 2,
then for any (K, i, δ, z) such that Domif(E1,K, i, δ, z) ̸= ∅, it holds∣∣Domif(E1,K, i, δ, z)

∣∣ > 1/εde(E1) = Ω(poly(n)). (15)

Proof. Assume otherwise, i.e., |Domif(E1,K, i, δ, z)| ≤ ε−1de(E1) for some (K, i, δ, z).

By Lemma 2, for any x ∈ Domif(E1,K, i, δ, z), the corresponding ciphertext y =
E1P(K,x) must have y ∈ Rngif(E1,K, i, δ, z). By Lemma 2, |Rngif(E1,K, i, δ, z)| =
|Domif(E1,K, i, δ, z)| ≤ 1/εde(E1). By these, for any x ∈ Domif(E1,K, i, δ, z), one

can uniformly pick y
$←− Rngif(E1,K, i, δ, z) to encipher (K,x) without querying

P at all, and the success probability is at least εde(E1). This contradicts the
assumption that E1P is εde(E1)-non-degenerate as Eq. (6). ⊓⊔
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An implication of Lemma 3 is that the ranges of φin and γin cannot be too
large.

Lemma 4 (Functions in inv-free encipherments). Consider the 1-call block-
cipher E1P in Fig. 10. If E1P is εde(E1)-non-degenerate (see Definition 2), then

it holds
∣∣Rngif(φin,K)

∣∣ = ∣∣Rngif(γin,K)
∣∣ ≤ |Domif(E1,K)|·εde(E1) ≤ 2n·εde(E1).

Proof. The claim
∣∣Rngif(φin,K)

∣∣ = ∣∣Rngif(γin,K)
∣∣ clearly holds by Lemma 2. To

show
∣∣Rngif(φin,K)

∣∣ ≤ |Domif(E1,K)|εde(E1) = 2n·εde(E1) (since |Domif(E1,K)| =
2n), assume otherwise, i.e., φin(K, ·) maps the values in Domif(E1,K) to >
|Domif(E1,K)|εde(E1) images. But by Lemma 3, it holds |Domif(E1,K, i, δ, z)| >

1
εde(E1)

for every (i, δ, z) ∈ Rngif(φ
in,K). By this,

∑
(i,δ,z)∈Rngif(φin,K)

|Domif(E1,K, i, δ, z)| > |Domif(E1,K)|εde(E1) ×
1

εde(E1)

> |Domif(E1,K)|,

a contradiction. ⊓⊔

Properties of non-inv-free encipherment. For E1P(x), x ∈ Domni(E1,K),
our first observation is that E1P(x) cannot query wide random permutations
(as discussed in Sect. 3.2). We now elaborate on the “regularity” of φin and
γin. For example, in the IEM round (see Eq. (9)), for every K ∈ {0, 1}n we
have |Domni(E1,K, i,+)| = 2n = 2m(i), and for every z ∈ {0, 1}n we have
|Domni(E1,K, i,+, z)| = 1 = |Domni(E1,K, i,+)|/2m(i). In the “key-alternating”
Misty-R round (see Eq. (9)), we have |Domni(E1,K, i,+)| = 2n for K ∈ {0, 1}n/2
and |Domni(E1,K, i,+, z)| = 2n = |Domni(E1,K, i,+)|/2m(i) with m(i) = n/2
for every z ∈ {0, 1}n/2.

Below we formalize the above first idea and show that the actual ranges of
the functions φin and γin must be somewhat limited.

Lemma 5 (Non-inv-free encipherments cannot query wide P). Consider
the 1-call blockcipher E1P in Fig. 10. Then:

– For any key K ∈ K and any x ∈ Domni(E1,K), let (i, δ, z) = φin(K,x),
then it holds i ∈ I≤n;

– Similarly, for any key K ∈ K and any y ∈ Rngni(E1,K), let (i, δ, z) =
γin(K, y), then it holds i ∈ I≤n.

Consequently,
∣∣Rngni(φin)

∣∣ ≤ |I≤n|2n+1,
∣∣Rngni(γin)

∣∣ ≤ |I≤n|2n+1.

Proof. Assume otherwise, then there exists (K,x) such that x ∈ Domni(E1,K),
and (i, δ, z) = φin(K,x) has i ∈ I>n. This means |z| = m(i) > n.

Furthermore, the oracle response P(φin(K,x)) = z′ must be that there exists
y ∈ Rngni(E1,K) such that γin(K, y) = (i, δ, z′). Since x ∈ Domni(E1,K) ⊆
{0, 1}n and y ∈ Rngni(E1,K) ⊆ {0, 1}n, the number t of z and z′ related by such
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relation is at most 2n, meaning that P(i, ·, ·) must map a set of t ≤ 2n possible
z values (that are determined by φin) to a set of t ≤ 2n possible z′ values (that
are determined by γin). This violates the oracle-independence assumption on φin

and γin. Therefore, for any (K,x), x ∈ Domni(E1,K), let (i, δ, z) = φin(K,x),
then it holds i ∈ I≤n, i.e., m(i) ≤ n. It thus follows

∣∣Rngni(φin)
∣∣ ≤ ∣∣{+,−}

∣∣ ×
|I≤n| × 2n ≤ |I≤n|2n+1 and

∣∣Rngni(γin)
∣∣ ≤ |I≤n|2n+1. ⊓⊔

We then formalize the above (somewhat surprising) “regularity” idea.

Lemma 6 (Regularity in non-inv-free encipherments). Consider the 1-
call blockcipher E1P in Fig. 10. Then, for any K ∈ K and any (i, δ) ∈ I≤n ×
{+,−}, the restriction of φin to Domni(E1,K, i, δ) (resp., the restriction of γin

to Rngni(E1,K, i, δ)) is regular. I.e., the following holds for any z, z′ ∈ {0, 1}m(i)

∣∣Domni(E1,K, i, δ, z)
∣∣ = ∣∣Rngni(E1,K, i, δ, z′)

∣∣ = ∣∣Domni(E1,K, i, δ)
∣∣

2m(i)
.

This also means
∣∣Domni(E1,K, i, δ)

∣∣ must be divisible by 2m(i).

Proof. First, by the deterministicness property (Definition 1), it can be seen that∣∣Domni(E1,K, i, δ, z)
∣∣ = ∣∣Rngni(E1,K, i, δ, z′)

∣∣ holds for any z′ = P(i, δ, z).
Then, to prove

∣∣Domni(E1,K, i, δ, z)
∣∣ =

∣∣Domni(E1,K, i, δ)
∣∣/2m(i), assume

that
∣∣Domni(E1,K, i, δ, z)

∣∣ = C(i,δ,z) for any (i, δ) ∈ I≤n × {+,−} and z ∈
{0, 1}m(i). We show that C(i,δ,z) is a constant for all z ∈ {0, 1}m(i), which im-

mediately implies
∣∣Domni(E1,K, i, δ, z)

∣∣ = |Domni(E1,K,i,δ)|
2m(i) .

Towards a contradiction, assume that there exists z◦ ∈ {0, 1}m(i) such that
C(i,δ,z◦) ̸= C(i,δ,z) for all z ̸= z◦. Then, as we have shown, there necessarily exists

z
′◦ ∈ {0, 1}m(i) such that

∣∣Rngni(E1,K, i, δ, z
′◦)

∣∣ =
∣∣Domni(E1,K, i, δ, z◦)

∣∣ =

C(i,δ,z◦) ̸= C(i,δ,z) for all z ̸= z◦. But this means P(i, ·, ·) must map z◦ to z
′◦,

both of which are fixed by φin and γin. This violates our assumption that φin

and γin are oracle-independent. ⊓⊔

By Lemma 5, we can derive the collision probability among images of φin

and γin as follows.

Corollary 1 (Probability of collisions). For any (i, δ, z) and any set S ⊆
{0, 1}n with |S| = poly(n), when n is sufficiently large it holds

Pr
[
y

$←− {0, 1}n\S : γin(K, y) = (i, δ, z)
∣∣ y ∈ Rngni(E1,K)

]
≤ 2

2mmin
, (16)

Pr
[
x

$←− {0, 1}n\S : φin(K,x) = (i, δ, z)
∣∣ x ∈ Domni(E1,K)

]
≤ 2

2mmin
. (17)

Proof. To have Eq. (16):

Pr
[
y

$←− {0, 1}n\S : γin(K, y) = (i, δ, z)
∣∣ y ∈ Rngni(E1,K)

]
=
|Rngni(E1,K, i, δ, z)\S|
|Rngni(E1,K)\S|

≤ |Rngni(E1,K, i, δ)|
2m(i) ×

(
|Rngni(E1,K)| − |S|

) (Lemma 6).
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1: Algorithm D1E,P(K)
2: Determines the sets Domif(E1, K) and Domni(E1, K) for all K ∈ K
3: if ∃K ∈ K s.t. Domif(E1, K) ̸= ∅ then // Case 1
4: Picks Domif(E1, K, i, δ, z) s.t. Domif(E1, K, i, δ, z) ̸= ∅
5: λ← ⌈m(i)

n ⌉+ 1, P
(
i, δ, z

)
→ z′

6: Picks distinct x1, ..., xλ ∈ Domif(E1, K, i, δ, z)
7: Outputs 1 iff. φout(K, z′, xj) = E(K, xj) for all j ∈ {1, ..., λ}
8: else // Case 2: Domni(E1, K) = {0, 1}n for all K ∈ K
9: Picks (K, x) and (K′, x′) with φin(K, x) = φin(K′, x′)
10: E(K, x)→ y, E(K′, x′)→ y′

11: Outputs 1 iff. γin(K, y) = γin(K′, y′)
12: end if

Fig. 11. Differentiator D1E,P used in Theorem 1.

Since |S| = poly(n), we have |Rngni(E1,K)| − |S| ≥ |Rngni(E1,K)|/2 for large
enough n, so that

Pr
[
y

$←− {0, 1}n\S : γin(K, y) = (i, δ, z)
∣∣ y ∈ Rngni(E1,K)

]
≤ 2|Rngni(E1,K, i, δ)|

2m(i) × |Rngni(E1,K)|
≤ 2

2m(i)
≤ 2

2mmin
.

Eq. (17) follows similarly. These complete the proof. ⊓⊔

6 Attack 1-Call Blockciphers

After the preparations in Sect. 5.2, we are able to establish insecurity of 1-call
ciphers E1P : K × {0, 1}n → {0, 1}n of Fig. 10.

Theorem 1 (Differentiability of E1P). Let E1P : K × {0, 1}n → {0, 1}n be
a blockcipher defined by Fig. 10. Assume that E1P is deterministic and εde(E1)-
non-degenerate in the sense of Definition 2, and its keyspace has |K| ≥ 2|I≤n|+
1 = O(poly(n)). Then, when n is sufficiently large, there exists a differentiator
D1E,P making at most ⌈mmax/n⌉ + 2 queries and has an advantage at least

1− mmax
2

2n − 2
2mmin

= 1− negl(n).

It is crucial to restrict |K| > |I≤n|: otherwise, P may already offer |K| inde-
pendent n-bit random permutations. There are two purposes to consider |K| =
poly(n). First, it strengthens the negative result (i.e., even indifferentiable ci-
pher of logarithmic key length is impossible). Second, such D1 can function as
subroutines of D2 and D3 in Sect. 7 and 8.

The differentiator D1E,P is formally described in Fig. 11. Below we pro-
vide intuitions and analyses. First, by Lemma 1, line 2 is well-defined: the sets
Domif(E1,K) and Domni(E1,K) can be computed without querying P. The
actions of D1 then depends on these sets, and consist of two cases.

Case 1: ∃K ∈ {0, 1}κ such that Domif(E1,K) ̸= ∅. There certainly exists
(i, δ, z) such that Domni(E1,K, i, δ, z) ̸= ∅ (so that D1 succeeds at line 4). By
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Lemma 3, it holds
∣∣Domif(E1,K, i, δ, z)

∣∣ > 1/εde(E1) = Ω(poly(n)) for any such
(i, δ, z).

Then, φout(K, z′, ·) : Domif(E1,K, i, δ, z) → Rngif(E1,K, i, δ, z) is a bijec-
tion defined using a random string z′ = P(i, δ, z) of polynomial size m(i) =
poly(n). The problem now reduces to differentiating φout

(
K, v, ·

)
from a ran-

dom bijection, and our approach in Fig. 11 follows [41, Sect. 6]. Since φout

is deterministic, y =
(
E1P(K,x1), ..., E1P(K,xλ)

)
is fully specified by the

string z′, and there are at most 2m(i) possible values for y. Let Y(z′) be the
set of these 2m(i) values. Clearly, D1 always outputs 1 when interacting with
(E1P ,P). In contrast, when D1 is interacting with the ideal world, it outputs
1 only if

(
IC(K,x1), ..., IC(K,xλ)

)
∈ Y(z′), the probability of which is at most

2m(i)/2λn + λ2/2n ≤ 1/2λn−m(i) + λ2/2n+1 (plus λ2/2n+1 the distance between(
IC(K,x1), ..., IC(K,xλ)

)
and a λn-bit uniform string). Since λ = ⌈m(i)

n ⌉+1 ≤
mmax (as long as n ≥ 2 and mmax ≥ 2), we have 1/2λn−m(i) ≤ 1/2n and
advantage at least 1− 1/2n −mmax

2/2n+1 ≥ 1−mmax
2/2n.

Case 2: Domni(E1,K) = {0, 1}n for all K ∈ K, i.e., all E1P(K,x) are
non-inverse-free. Since

∣∣Rngni(φin)
∣∣ ≤ |I≤n|2n+1 by Lemma 5, there exist

(|K| − 2|I≤n|)2n ≥ 2n pairs
(
(K,x), (K ′, x′)

)
with φin(K,x) = φin(K ′, x′).

Hence, D1E,P can find (K,x) and (K ′, x′) that have φin(K,x) = φin(K ′, x′) at
line 9 and then queries E(K,x)→ y and E(K ′, x′)→ y′.

When D1E,P is interacting with the real world (E1P ,P), it necessarily holds
γin(K, y) = γin(K ′, y′). WhenD1E,P is interacting with the ideal world (IC, SIC),
the response y′ is uniformly distributed in either {0, 1}n or {0, 1}n\{y}. By
Corollary 1 Eq. (16), the probability to have γin(K, y) = γin(K ′, y′) is at most
2/2mmin in the ideal world, and the advantage in this case is 1− 2/2mmin .

Summary. By the above, when n is sufficiently large, it holds

Advindif
E1P ,IC,S

(D1) ≥ min
{
1− mmax

2

2n
, 1− 2

2mmin

}
≥ 1− mmax

2

2n
− 2

2mmin
.

Discussion. For clearness, we summarize the uses of Fundamental Properties:

(i) Case 1 relies on Lemma 3 due to non-degeneracy of E1;
(ii) Case 2 relies on Corollary 1 due to invertibility and oracle-independence.

Case 1 relies on non-degeneracy of E1. In Appendix B we present another
attack without non-degeneracy, which may serve additional insights.

7 Attack 2-Call Iterated Blockciphers

For 2- and 3-call ciphers, we restrict to iterated blockciphers that are built from
key derivation functions and rounds. For a 2-call cipher E2P , this means enci-
pherment E2P(K,x) must proceed with either of the following flows:

– Type-I: E2P(K,x) = ΠP3
(
K∥kdP(K), x

)
for a 1-call function kdP : {0, 1}κ →

{0, 1}mmax and a 1-call cipher ΠP3 : {0, 1}κ+mmax × {0, 1}n → {0, 1}n, or
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– Type-II: E2P(K,x) = ΠP2
(
K,ΠP1 (K,x)

)
for two 1-call ciphers/rounds

ΠP1 , ΠP2 : {0, 1}κ × {0, 1}n → {0, 1}n.

The keyspace is partitioned K = K(0)⊔K(1), such that E2P(K, ·) follows Type-I
encipherment if and only if K ∈ K(1). Formally, we consider the cipher E2P

defined in Fig. 12. As mentioned in the Introduction, there is no need to use
multiple P1,P2, ..., since P already provides multiple independent permutations.

Below, before describing our attack and analysis in Sect. 7.2, we first intro-
duce our non-degenerate assumption on φin.

7.1 Non-degenerate input functions

As discussed the overview (Sect. 3.3), we make an additional non-degenerate
assumption on the input functions φin. Formally,

Definition 3 (Non-degenerate Keyed Function). A keyed function φin(·, ·)
is εde(φin)-non-degenerate, if the following two upper bounds hold (recall from
Lemma 1 that the set Domif(E1,K) is fully determined by φin):

max
K,(i,δ,z)

{
Pr

[
x

$←− {0, 1}n : φin(K,x) = (i, δ, z)
∣∣ x ∈ Domif(E1,K)

]}
≤ εde(φin).

max
x,(i,δ,z)

{
Pr

[
K

$←− {0, 1}κ : φin(K,x) = (i, δ, z)
∣∣ x ∈ Domif(E1,K)

]}
≤ εde(φin).

By default, we assume εde(φin) = negl(n) is negligible.

Input functions in common inv-free blockciphers are indeed non-degenerate:
e.g., key-prepended Feistel round has φin(K,x) =

(
i,+,K∥rightn/2(x)∥[0]n/2

)
(see Eq. (7)) and εde(φin) = max{1/2n, 1/2κ}; key-alternating Feistel round has

φin(K,x) =
(
i,+,K ⊕ rightn/2(x)∥[0]n/2

)
(see Eq. (8)) and εde(φin) = 1/2n.

As shown in Corollary 1 and as interesting insights, the analogue of Defini-
tion 3 for non-inverse-free enciphering can be proven. However, for inverse-free
enciphering we have to make this assumption to simplify. A round using degen-
erate input functions is ridiculously weak, and one can figure out trivial attacks.
However, extending such “trivial attacks” to 2- and 3-call ciphers turns out to
be rather cumbersome, and this would take us quite far afield. We hope that
future works could develop new analytic approaches to overcome this difficulty.

If x or K is sampled from {0, 1}n\S or {0, 1}κ\S for |S| = poly(n), then for
sufficiently large n, it can proven

max
K,(i,δ,z)

{
Pr

x
$←−{0,1}n\S

[
φin(K,x) = (i, δ, z)

∣∣ x ∈ Domif(E1,K)
]}
≤ 2εde(φin).

max
K,(i,δ,z)

{
Pr

y
$←−{0,1}n\S

[
γin(K, y) = (i, δ, z)

∣∣ y ∈ Rngif(E1,K)
]}
≤ 2εde(φin). (18)

max
x,(i,δ,z)

{
Pr

K
$←−{0,1}κ\S

[
φin(K,x) = (i, δ, z)

∣∣ x ∈ Domif(E1,K)
]}
≤ 2εde(φin).

max
y,(i,δ,z)

{
Pr

K
$←−{0,1}κ\S

[
γin(K, y) = (i, δ, z)

∣∣ y ∈ Rngif(E1,K)
]}
≤ 2εde(φin). (19)
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Algorithm E2P(K, x)

if K ∈ K(1) then
return ΠP

3

(
K∥kdP(K), x

)
else // K ∈ K(0)

u← ΠP
1 (K, x)

return ΠP
2

(
K,u

)
end if

Algorithm ΠP
j (K, x) // j ∈ {0, 1, ..., 5}

(ij , δj , zj)← φin
j (K, x)

z′
j ← P(ij , δj , zj)

y ← φout
j (K, z′

j , x)
return y

Algorithm kdP(K)
(i, δ, z)← f(K)
z′ ← P(i, δ, z)
return z′

Algorithm (E2−1)P(K, y)

if K ∈ K(1) then
return (Π−1

3 )P
(
K∥kdP(K), y

)
else // K ∈ K(0)

u← (Π−1
2 )P(K, y)

return (Π−1
1 )P

(
K,u

)
end if

Algorithm (Π−1
j )

P
(K, y) //

j ∈ {0, 1, ..., 5}
(ij , δj , zj)← γin

j (K, y)

z′
j ← P(ij , δj , zj)

x← φout
j (K, z′

j , y)
return x

Fig. 12. Definition of the 2-call iterated blockcipher E2P .

To see these, note that by Definition 3, for any K ∈ K and (i, δ, z), we have

Pr
[
x

$←− {0, 1}n : φin(K,x) = (i, δ, z)
∣∣ x ∈ Domif(E1,K)

]
(20)

=
|Domif(E1,K, i, δ, z)|
|Domif(E1,K)|

≤ εde(φin).

This means

Pr
[
x

$←− {0, 1}n\S : φin(K,x) = (i, δ, z)
∣∣ x ∈ Domif(E1,K)

]
=
|Domif(E1,K, i, δ, z)\S|
|Domif(E1,K)\S|

≤ |Domif(E1,K, i, δ, z)|
|Domif(E1,K)| − |S|

.

By Lemma 3, it holds |Domif(E1,K, i, δ, z)| = Ω(poly(n)). By Lemma 3, it holds
|Domif(E1,K)| = Ω(poly(n)). On the other hand, |S| = poly(n). Therefore,
when n is sufficiently large, it holds |S| ≤ |Domif(E1,K)|/2, and thus

Pr
[
x

$←− {0, 1}n\S : φin(K,x) = (i, δ, z)
∣∣ x ∈ Domif(E1,K)

]
≤ |Domif(E1,K, i, δ, z)|
|Domif(E1,K)| − |S|

≤ |Domif(E1,K, i, δ, z)|
|Domif(E1,K)|/2

≤ 2εde(φin)

holds for any K ∈ K and (i, δ, z). By this,

max
K,(i,δ,z)

{
Pr

y
$←−{0,1}n\S

[
γin(K, y) = (i, δ, z)

∣∣ y ∈ Rngif(E1,K)
]}
≤ 2εde(φin)

follows from Lemma 2. For the two probabilities regarding K
$←− {0, 1}κ\S, since

we only apply them for Theorem 3 which has κ = poly(n), the proofs are similar.
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Algorithm D2E,P(K(0),K(1))

if |K(1)| ≥ 2|I≤n|+ 1 then // Case 1: key derivation plus idealized round

Let K1 ⊆ K(1) be such that |K1| ≥ 2|I≤n|+ 1, Kex
1 ← ∅

for K ∈ K1 do // Derives subkeys for keys in K1

z′ ← P
(
f(K)

)
, Kex

1 ← K
ex
1 ∪

{
K∥z′}

end for
Invokes D1E,P(Kex

1 ) (see Fig. 11) on ΠP
3 : K1 × {0, 1}n → {0, 1}n

else // The other case: |K(0)| ≥
(
6
(
3|I≤n|

) 1
n + 3

)
|I≤n|

Invokes Subroutine Yoyo(Π1, Π2,K(0)) // See Fig. 14
end if

Fig. 13. Differentiator D2E,P used in Theorem 2.

1: Subroutine Yoyo(Π1, Π2,K(0))

2: // Recall that E2P(K, x) = ΠP
2

(
K,ΠP

1 (K, x)
)
for all K ∈ K(0)

3: Picks 2λ distinct pairs
(
(Kj , uj)

)
j=1,...,2λ

∈
(
K(0) × {0, 1}n

)2λ, that satisfy λ ≤ n + 1,

and

φ
in
2 (K1, u1) = φ

in
2 (K2, u2), γ

in
1 (K2, u2) = γ

in
1 (K3, u3),

φ
in
2 (K3, u3) = φ

in
2 (K4, u4), γ

in
1 (K4, u4) = γ

in
1 (K5, u5), ...

φ
in
2 (K2λ−1, u2λ−1) = φ

in
2 (K2λ, u2λ), γ

in
1 (K2λ, u2λ) = γ

in
1 (K1, u1). (21)

4: P
(
γin
1 (K2, u2)

)
→ z

′(1)
1 , P

(
γin
1 (K4, u4)

)
→ z

′(2)
1 , ..., P

(
γin
1 (K2λ, u2λ)

)
→ z

′(λ)
1

5: P
(
φin

2 (K1, u1)
)
→ z

′(1)
2 , P

(
φin

2 (K3, u3)
)
→ z

′(2)
2 , ..., P

(
φin

2 (K2λ−1, u2λ−1)
)
→ z

′(λ)
2

6: Derives the 2λ corresponding plaintexts and ciphertexts via querying E:

x1 ← γ
out
1 (K1, z

′(λ)
1 , u1), E(K1, x1)→ y1,

x2 ← γ
out
1 (K2, z

′(1)
1 , u2), E(K2, x2)→ y2, ...,

x2λ ← γ
out
1 (K2λ, z

′(λ)
1 , u2λ), E(K2λ, x2λ)→ y2λ.

7: Outputs 1 iff. the following 4λ equations hold:

γ
in
2 (K1, y1) = γ

in
2 (K2, y2), φ

in
1 (K2, x2) = φ

in
1 (K3, x3),

γ
in
2 (K3, y3) = γ

in
2 (K4, y4), φ

in
1 (K4, x4) = φ

in
1 (K5, x5), ...

γ
in
2 (K2λ−1, y2λ−1) = γ

in
2 (K2λ, y2λ), φ

in
1 (K2λ, x2λ) = φ

in
1 (K1, x1). (22)

Fig. 14. Subroutine Yoyo used by the differentiator D2E,P.

7.2 Attack and advantage

We are now able to establish insecurity of 2-call iterated ciphers E2P of Fig. 12.

Theorem 2 (Differentiability of E2P). Let E2P be a blockcipher defined

by Fig. 10 with keyspace |K| ≥
(
6
(
3|I≤n|

) 1
n + 5

)
|I≤n| + 1 = O(poly(n)). As-

sume that: (i) for all j ∈ {0, 1, 2}, the round ΠPj is deterministic and εde(Πj)-

non-degenerate, and (ii) φin
1 and φin

2 are εde(φin
1 )- and εde(φin

2 )-non-degenerate
respectively (see Definition 3). Then, when n is sufficiently large, there ex-
ists a differentiator D2E,P making poly(n) queries and has advantage at least

33



1−mmax
2/2n − 2q2εde(φin

1 ) − 2q2εde(φin
2 ) − 6q2/2mmin = 1− negl(n), where q is

the number of IC-queries made by D2 and S in total.

The differentiator D2E,P is formally described in Fig. 13. Below we provide
intuitions and analyses. E2P may consist of two cases.

Case 1: |K(1)| ≥ 2|I≤n| + 1. Recall that E2P(K,x) = ΠP3
(
K∥kdP(K), x

)
for all (K,x) ∈ K1 × {0, 1}n. Recall from Fig. 13 that D2 simply applies the
differentiator D1 (Fig. 11) to the 1-call cipher ΠP3 : Kex

1 × {0, 1}n → {0, 1}n—
since |K1| = 2|I≤n|+ 1 = poly(n), it is feasible to build Kex

1 and start D1. The
advantage in this case is thus at least 1−mmax

2/2n − 2/2mmin by Theorem 1.

Case 2: the other case. By our assumption |K| ≥
(
6
(
3|I≤n|

) 1
n +5

)
|I≤n|+1, in

this case we have |K(0)| ≥
(
6
(
3|I≤n|

) 1
n + 3

)
|I≤n|. Below in the first paragraph,

we prove that the subroutine Yoyo always finds the 2λ pairs at line 3. As a
result, D2 always outputs 1 when interacting with (E2P ,P). Then, in the second
paragraph we prove D2 outputs 1 with a negligible probability when interacting
with (IC, SIC) to complete the analysis.

Existence of the 2λ pairs. Consider the set of intermediate values K(0)×{0, 1}n.
We construct a bipartite graph G = (VL,VR, E) with left shore VL =

(
∪K∈K(0)

Rngif(γ
in
1 ,K)

)
∪Rngni(γin

1 ), right shore VR =
(
∪K∈K(0)Rngif(φ

in
2 ,K)

)
∪Rngni(φin

2 )

(see Definition 4) and |E| = |K(0)|2n. It then holds
∑

K∈K(0) |Rngif(γin
1 ,K)| ≤∑

K∈K(0) |Domif(Π1,K)|×εde(Π1) ≤ 2n|K(0)|εde(Π1) and |Rngni(γin
1 )| ≤ |I≤n|2n+1

by Lemmas 4 and 5. Since |K(0)| = poly(n) and εde(Π1) = negl(n), it holds
|VL| ≤ 2n + |I≤n|2n+1 ≤ 3|I≤n|2n. Similarly, |VR| ≤ 3|I≤n|2n. G contains an
edge

(
(i1, δ1, z1), (i2, δ2, z2)

)
∈ E if and only if there exists (K,u) ∈ K(0)×{0, 1}n

such that γin
1 (K,u) = (i1, δ1, z1) and φin

2 (K,u) = (i2, δ2, z2). Then, 2λ pairs(
(K1, u1), (K2, u2), ..., (K2λ, u2λ)

)
satisfying Eq. (21) indicates a cycle C2λ of

length 2λ in the graph G.
Now, if G is a multigraph, then it already contains C2. Otherwise, we can

apply Proposition 1: let M = 3|I≤n|2n, then G satisfies the two conditions of
Proposition 1. Therefore, for any t, G contains C2λ, λ ≤ t as long as

|E| ≥
((

M
) 1

t−1 + 1
)
×M =

((
3|I≤n|2n

) 1
t−1 + 1

)
× 3|I≤n|2n. (23)

Setting t = n+1, we conclude that the cycle C2λ can be found (with the unlimited

computations) as long as |E| = |K(0)|2n ≥
((
3|I≤n|2n

) 1
n + 1

)
× 3|I≤n|2n (or:

|K(0)| ≥
(
6
(
3|I≤n|

) 1
n + 3

)
|I≤n|). As discussed, this condition is fulfilled, and

there thus always exists C2λ with λ ≤ n+ 1.

Remark. If |K(0)| is exponential, then 4-cycles exist (this can be seen by injecting
t = 2 into Eq. (23)), enabling a more classical boomerang distinguisher.

Attack advantage. Define a 2λ-ary relationRyoyo:
(
(Kj , xj , yj)

)
j=1,...,2λ

∈ Ryoyo

if and only if the 2λ triples satisfy Eq. (22).
Then, D2 outputs 1 if and only if it reaches

(
(Kj , xj , yj)

)
j=1,...,2λ

∈ Ryoyo

at line 7 (see Fig. 14). When D2 is interacting with (E2P ,P), this always
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holds due to Eq. (21). When D2 is interacting with (IC, SIC), the probabil-
ity that D2 outputs 1 equals the probability that SIC finds such a 2λ-tuple(
(Kj , xj , yj)

)
j=1,...,2λ

∈ Ryoyo with IC(Kj , xj) = yj , j = 1, ..., 2λ. Below we

prove that Ryoyo is actually an evasive relation [12], which implies our goal.
To this end, consider the interaction between (D2, S) and IC. We define

two bad event Bad+ and Bad−. Bad+ happens, if right after D2 or S issuing a
new forward query IC(K,x) → y, there exists an earlier adversarial IC-query
record (K ′, x′, y′) such that γin

2 (K, y) = γin
2 (K ′, y′). Similarly by symmetry,

Bad− happens, if right after a new backward IC-query IC−1(K, y) → x, there
exists an earlier IC-query record (K ′, x′, y′) such that φin

1 (K,x) = φin
1 (K ′, x′).

To bound Pr[Bad+], consider a new forward query IC(K,x) → y. For each
earlier IC-query record (K ′, x′, y′), let (i′, δ′, z′) = γin

2 (K ′, y′), then we have:

Pr
[
γin
2 (K, y) = (i′, δ′, z′)

]
≤ Pr

[
γin
2 (K, y) = (i′, δ′, z′)

∣∣ y ∈ Rngif(Π2,K)
]︸ ︷︷ ︸

≤2ε
de(φin

2 )
(Eq. (18))

+ Pr
[
γin
2 (K, y) = (i′, δ′, z′)

∣∣ y ∈ Rngni(Π2,K)
]︸ ︷︷ ︸

≤2/2mmin (Corollary 1)

.

The number of possible combinations of forward query E(K,x)→ y and earlier
query (K ′, x′, y′) is at most q2. Therefore, Pr[Bad+] ≤ q2(2εde(φin

2 ) + 2/2mmin).

Similarly by symmetry, Pr[Bad−] ≤ q2(2εde(φin
1 ) + 2/2mmin).

Finally, it can be seen as long as neither Bad+ nor Bad− occurs, S cannot
obtain

(
(Kj , xj , yj)

)
j=1,...,2λ

∈ Ryoyo. This establishes the evasiveness of Ryoyo,

and attack advantage is at least 1− q2(2εde(φin
1 ) + 2εde(φin

2 ) + 4/2mmin).

Discussion. For the attack in this case (and in subsequent Sect. 8), it is crucial
to restrict discussion to iterated blockciphers: since the set of valid intermediate
values u between the rounds is simply {0, 1}n, an attacker can pick such a u and
compute forward or backward. Indeed, this middle-to-sides approach is common
in known- and chosen-key attacks [37].

Lampe and Seurin [39] considered a similar evasive relation, i.e., the boomerang
relation in 3-round IEM, which resembles Fig. 4 (left). Their bound is inferior
in some sense, because they simplified the description of the relation.

Summary. When n is sufficiently large, Advindif
E2P ,IC,S

(D2) is lower bounded by

min
{
1− mmax

2

2n
− 2

2mmin
, 1− q2(2εde(φin

1 ) + 2εde(φin
2 ) + 4/2mmin)

}
≥ 1−mmax

2/2n − 2q2εde(φin
1 ) − 2q2εde(φin

2 ) − 6q2/2mmin .

8 Attack 3-Call Iterated Blockciphers

For 3-call iterated ciphers, E3P(K,x) can take one of the following three flows:

– Type-I: E3P(K,x) = ΠP6
(
K∥kdP1 (K), x

)
for a 2-call KDF kdP1 : {0, 1}κ →

{0, 1}2mmax and a 1-call cipher ΠP6 : {0, 1}κ+2mmax × {0, 1}n → {0, 1}n, or
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Algorithm E3P(K, x)

if K ∈ K(2) then
return ΠP

6

(
K∥kdP1 (K), x

)
else if K ∈ K(1) then

s← kdP2 (K)

return ΠP
5

(
K∥s,ΠP

4 (K∥s, x)
)

else // K ∈ K(0)

u← ΠP
1 (K, x)

return ΠP
3

(
K,ΠP

2

(
K,u

))
end if

Algorithm kdP1 (K)
(i1, δ1, z1)← f1,1(K)
z′
1 ← P(i1, δ1, z1)

(i2, δ2, z2)← f1,2(K, z′
1)

z′
2 ← P(i2, δ2, z2)

return z′
1∥z

′
2

Algorithm (E3−1)P(K, y)

if K ∈ K(2) then
return (Π−1

6 )P
(
K∥kdP1 (K), y

)
else if K ∈ K(1) then

s← kdP2 (K)

return (Π−1
4 )P

(
K∥s, (Π−1

5 )P(K∥s, y)
)

else // K ∈ K(0)

w ← (Π−1
3 )P(K, y)

return (Π−1
1 )P

(
K, (Π−1

2 )P
(
K,w

))
end if

Algorithm kdP2 (K)
(i, δ, z)← f2,1(K)
z′ ← P(i, δ, z)
return z′

// Definitions of ΠP
j (K, x) and

(Π−1
j )P(K, y) are the same as Fig. 12

Fig. 15. Definition of the 3-call iterated blockcipher E3P .

– Type-II: E3P(K,x) = ΠP5
(
K∥kdP2 (K), ΠP4 (K∥kdP2 (K), x)

)
for a 1-call KDF

kdP2 : {0, 1}κ → {0, 1}mmax and two 1-call ciphers ΠP4 , ΠP5 : {0, 1}κ+mmax ×
{0, 1}n → {0, 1}n, or

– Type-III: E3P(K,x) = ΠP3
(
K,ΠP2

(
K,ΠP1 (K,x)

))
for three 1-call ciphers

ΠP1 , ΠP2 , ΠP3 : {0, 1}κ × {0, 1}n → {0, 1}n.

The keyspace is partitioned K = K(0) ⊔K(1) ⊔K(2), such that E3P(K, ·) follows
Type-I, resp. Type-II encipherment if and only if K ∈ K(2), resp. K ∈ K(1).
Formally, E3P is defined in Fig. 15.

Theorem 3 (Differentiability of E3P). Let E3P be a blockcipher defined
by Fig. 15 with keyspace {0, 1}κ, κ ≥ 2mmax log2 |I≤n| + 2mmaxn + 6mmax +
4 = Θ(poly(n)). Assume that for j = 1, 2, 3, 4, 5, 6, (i) the round ΠPj is de-

terministic and εde(Πj)-non-degenerate, and (ii) φin
j is εde(φin

j )-non-degenerate

(see Definition 3). Then, when n is sufficiently large, there exists a differen-
tiator D3E,P making poly(n) queries to E and P and having advantage either
1/poly(n) − negl(n) or 1 − negl(n) for some poly(n) and negl(n) determined by
φin
j , j = 1, 2, 3, 4, 5, 6.

The differentiator D3E,P is formally described in Fig. 16. Due to the complicated
form, the advantage is only given in asymptotic form. We refer to Sect. 3.4 for
the overview.

Below we analyze the attack advantage. Let q be the number of IC-queries
made by D3 and S in total. We also distinguish three cases.

Case 1: |K(2)| ≥ 2|I≤n| + 1. Recall that E3P(K,x) = ΠP6
(
K∥kdP1 (K), x

)
for all (K,x) ∈ K(2) × {0, 1}n. Similarly to Case 1 in Appendix ??, D3 derives
2|I≤n| + 1 subkeys and invokes D1 to attack ΠP6 . The advantage is thus 1 −
mmax

2/2n − 2/2mmin by Theorem 1.
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Algorithm D3E,P(κ,K(1),K(2))

if |K(2)| ≥ 2|I≤n|+ 1 then // Case 1: 2-call key derivation plus 1-call round

Let K2 ⊆ K(2) be such that |K2| ≥ 2|I≤n|+ 1, Kex
2 ← ∅

for K ∈ K2 do // Derives subkeys for keys in K2

z′
1 ← P

(
f1,1(K)

)
, z′

2 ← P
(
f1,2(K, z′

1)
)
, Kex

2 ← K
ex
2 ∪

{
K∥z′

1∥z
′
2

}
end for
Invokes D1E,P(Kex

2 ) (see Fig. 11) on ΠP
6 : Kex

2 × {0, 1}
n → {0, 1}n

else if |K(1)| ≥
(
6
(
3|I≤n|

) 1
n + 3

)
|I≤n| then

// Case 2: 1-call key derivation plus two 1-call rounds

Let K1 ⊆ K(1) be such that |K1| =
(
6
(
3|I≤n|

) 1
n + 3

)
|I≤n|, Kex

1 ← ∅
for K ∈ K1 do // Derives subkeys for keys in K1

z′ ← P
(
f2,1(K)

)
, Kex

1 ← K
ex
1 ∪

{
K∥z′}

end for
Invokes Subroutine Yoyo(Π4, Π5,Kex

1 ) (see Fig. 13)

else // Case 3: it necessarily holds |K(0)| ≥ 2κ/2

Picks K0 ⊆ {0, 1}κ\(K(1) ∪ K(2)) be such that |K0| = 2κ/2
Invokes Subroutine Handle3Iter(K0) // See Fig. 17

end if

Fig. 16. Differentiator D3E,P used in Theorem 3.

Case 2: |K(1)| ≥
(
6
(
3|I≤n|

) 1
n + 3

)
|I≤n|. Recall from Figs. 15 and 16 that

E3P(K,x) = ΠP5
(
K∥kdP2 (K), ΠP4 (K∥kdP2 (K), x)

)
for all (K,x) ∈ K(1)×{0, 1}n,

and D3 derives
(
6
(
3|I≤n|

) 1
n + 3

)
|I≤n| subkeys and calls

(
6
(
3|I≤n|

) 1
n + 3

)
|I≤n|

to attack the 2-iteration ΠP5 ◦ΠP4 . The advantage is thus at least 1−mmax
2/2n−

2q2εde(φin
1 ) − 2q2εde(φin

2 ) − 6q2/2mmin = 1− negl(n) by Theorem 2.

Case 3: the others. In the remaining cases, since both |K(1)| and |K(2)| are
O(poly(n)), it necessarily holds |K(0)| ≥ 2κ/2 for large enough n. Recall from
Figs. 15 that E3P(K,x) = ΠP3

(
K,ΠP2

(
K,ΠP1 (K,x)

))
for all K ∈ K(0).

For any K ∈ K and tag1, tag2 ∈ {if, ni}, define

Xtag1(K) := Domtag1(Π1,K), Ytag1(K) := Rngtag1(Π3,K),

Utag1,tag2(K) := Rngtag1(Π1,K)
⋂

Domtag2(Π2,K),

Wtag1,tag2(K) := Rngtag1(Π2,K)
⋂

Domtag2(Π3,K). (24)

E.g., Uif,if(K) contains all the intermediate values u that has both 1st round
(Π−11 )P(K,u) and 2nd round ΠP2 (K,u) inv-free under the key K. Furthermore,
for any K ∈ K, any tag1, tag2 ∈ {if, ni}, any (i, δ) ∈ I × {+,−} and any z ∈
{0, 1}m(i), define

Ytag1(K, i, δ) := Rngtag1(Π3,K, i, δ),

Utag1,tag2(K, i, δ) := Rngtag1(Π1,K, i, δ)
⋂

Domtag2(Π2,K, i, δ),

Utag1,tag2(K, i, δ, z) := Rngtag1(Π1,K, i, δ, z)
⋂

Domtag2(Π2,K, i, δ, z). (25)

for the sets of values giving rise to queries P(i, δ, ⋆) or P(i, δ, z).
As shown in Fig. 16, we use a subroutine Handle3Iter to handle the case of

3-iterations. We refer to Sect. 3.4 for its ideas. The detailed case-study is lengthy
and deferred to Sect. 9. In all, the case-study yields the claim in Theorem 3.
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1: Subroutine Handle3Iter(K0)
2: Picks a set K1 ⊆ K0 s.t. |K1| ≥ |K0|/4, and categoryXY(K) is a constant for all K ∈ K1

3: if categoryXY(K) = 0 for all K ∈ K1 then
4: Invokes Subroutine Subcase31(K1)
5: else if categoryXY(K) = 1 for all K ∈ K1 then

6: R← minK∈K1

{
|Xni(K)|

2n ,
|Yni(K)|

2n

}
7: Picks K2 ⊆ K1 s.t. |K2| ≥ |K1|/2, and categoryU(K,R) is a constant for all K ∈ K2

8: if categoryU(K,R) = 0 for all K ∈ K2 then
9: Invokes Subroutine Subcase32(K2, R)
10: else // categoryU(K,R) = 1 and categoryXY(K) = 1 for all K ∈ K2

11: Invokes Subroutine Subcase33(K2, R)
12: end if
13: else if categoryXY(K) = 2 for all K ∈ K1 then

14: R← minK∈K1

{
|Xni(K)|

2n

}
15: Picks K2 ⊆ K1 s.t. |K2| ≥ |K1|/2, and categoryU(K,R) is a constant for all K ∈ K2

16: if categoryU(K,R) = 0 for all K ∈ K2 then
17: Invokes Subroutine Subcase34(K2, R)
18: else // categoryU(K,R) = 1 and categoryXY(K) = 2 for all K ∈ K2

19: Invokes Subroutine Subcase35(K2)
20: end if
21: else // categoryXY(K) = 3 for all K ∈ K1

22: R← minK∈K1

{
|Yni(K)|

2n

}
23: Picks K2 ⊆ K1 s.t. |K2| ≥ |K1|/2, and categoryW(K,R) is a constant for all K ∈ K2

24: if categoryW(K,R) = 0 for all K ∈ K2 then
25: // This case is similar to Subcase34 by symmetry
26: else // categoryW(K,R) = 1 and categoryXY(K) = 3 for all K ∈ K2

27: // This case is similar to Subcase35 by symmetry
28: end if
29: end if

Function categoryXY(K)
if |Xni(K)| = o(2n/poly(n)) and |Yni(K)| = o(2n/poly(n)) then return 0
else if |Xni(K)| = Ω(2n/poly(n)) and |Yni(K)| = Ω(2n/poly(n)) then return 1
else if |Xni(K)| = Ω(2n/poly(n)) and |Yni(K)| = o(2n/poly(n)) then return 2
else // |Xni(K)| = o(2n/poly(n)) and |Yni(K)| = Ω(2n/poly(n)) return 3
end if

Function categoryU(K,R)
if |Uni,ni(K)| ≥ 2nR/2 then return 0
else if |Uni,if(K)| ≥ 2nR/2 then return 1
end if

Function categoryW(K,R)
if |Wni,ni(K)| ≥ 2nR/2 then return 0
else if |Wif,ni(K)| ≥ 2nR/2 then return 1
end if

Fig. 17. Subroutine Handle3Iter used by the differentiator D3E,P.

9 Case-Study of Case 3 of Sect. 8

As sketched in Sect. 3, the (sub)cases are all non-trivial. We thereby adopt an-
other style of presentation. In detail, instead of first describing the differentiator
and then analyzing advantage (as we did in Sect. 6 and 7), we address the
(sub)cases in turn in Sect. 9.1–9.7. For each (sub)case, the pseudocode of the
corresponding differentiator subroutine is immediately followed by the advan-
tage analysis. We remark that our differentiator D3 remains universal, i.e., it is
effective regardless of the (sub)case the E3 instance falls in.
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9.1 Subcase 3.1: |Xni(K)| = o(2n/poly(n)) and
|Yni(K)| = o(2n/poly(n)) for all K ∈ K1

As mentioned, this corresponds to Case 1 in Sect. 3.4.

1: Subroutine Subcase31(K1)
2: Picks (i2, δ2, z2) such that |KU| ≥ 1

4εde(Π2)
, where

KU :=
{
(K,u) : u ∈ (Uif,if(K) ∪ Uif,ni(K)) and φin

2 (K,u) = (i2, δ2, z2)
}

3: Samples λ = mmax distinct (K1, u1), ..., (Kλ, uλ)
$←− KU

4: P(i2, δ2, z2)→ z′2
5: for j ∈ {1, ..., λ} do
6: (i

(j)
1 , δ

(j)
1 , z

(j)
1 )← γin

1 (Kj , uj), P(i
(j)
1 , δ

(j)
1 , z

(j)
1 )→ z

′(j)
1

7: xj ← γout
1 (Kj , z

′(j)
1 , uj), E(Kj , xj)→ yj , wj ← φout

2 (Kj , z
′(j)
2 , uj)

8: end for
9: if ∃j : yj ∈ Yni(Kj) then
10: Outputs 1
11: else
12: Outputs 1 iff. φin

3 (Kj , wj) = γin
3 (Kj , yj) for all j ∈ {1, ..., λ}

13: end if

Analysis of Subcase 3.1. Let εni := maxK∈K1

{
|Xni(K)|/2n, |Yni(K)|/2n

}
. By

the condition, it holds εni = negl(n). We refer to Fig. 6 (left) for the involved
query structure. With this, below we first establish the existence of the set KU .
Then, we lower bound advantage.

Existence of KU . By Lemma 4, for any K ∈ K1 it holds |Rngif(φin
2 ,K)| ≤ 2n ·

εde(Π2); by Lemma 5, it holds |Rngni(φin
2 )| ≤ |I≤n|2n+1. Therefore, for large

enough n it holds |Rngni(φin
2 )| +

∑
K∈K1

|Rngif(φin
2 ,K)| ≤ |I≤n|2n+1 + |K1| ·

2n · εde(Π2) ≤ |K1| · 2n+1 · εde(Π2). On the other hand, |Xni(K)| < 2nδ implies

|Xif(K)| = |Uif,if(K)| + |Uif,ni(K)| ≥ 2n/2, meaning that
∑

K∈K1

(
|Uif,if(K)| +

|Uif,ni(K)|
)
≥ |K1| · 2n−1. By these and by the pigeonhole principle, there exists

an input (i2, δ2, z2) ∈ Rngni(φ
in
2 ) and a corresponding set KU such that:

– φin
2 (K,w) = (i2, δ2, z2) for all (K,u) ∈ KU , and

– |KU| ≥ |K1|·2n−1

|K1|·2n+1·εde(Π2)
= 1

4εde(Π2)
= Ω(poly(n)).

Hence, subroutine Subcase31(K1) will succeed in finding the set at line 2.

Attack advantage. In the real world, Subcase31(K1) either outputs 1 due to

line 9, or outputs 1 at line 12 when φin
3 (Kj , wj) = γin

3 (Kj , yj) for all j. Since the
equalities always hold in the real world, we have Pr[Subcase33(K2) = 1] = 1.

In the ideal world, assume that S knows the λ pairs (K1, u1), ..., (Kλ, uλ)
sampled by Subcase33(K2) at line 3, and define three bad events during the
ideal world execution:

– Badni occurs, if there appears a forward IC-query IC(K,x) → y such that
y ∈ Yni(K), or a backward IC-query IC−1(K, y)→ x such that x ∈ Xni(K);

– Bad− occurs, if there appears a backward IC-query IC−1(K, y) → x and
j ∈ {1, ..., λ} such that x ∈ Yif(K) and φin

1 (K,x) = γin
1 (Kj , uj);
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– BadGroup occurs, if S succeeds in finding a tuple of λ IC inputs/outputs
IC(K1, x

∗
1) = y∗1 , ..., IC(Kλ, x

∗
λ) = y∗λ such that:

(i) x∗j ∈ Xif(Kj) and y∗j ∈ Yif(Kj) for all j ∈ {1, ..., λ}; and
(ii) There exists z′2 ∈ {0, 1}m(i2) such that φin

1 (Kj , x
∗
j ) = γin

1

(
Kj , uj

)
and

φin
3

(
Kj , wj

)
= γin

3 (Kj , y
∗
j ) for all j ∈ {1, ..., λ}, where wj = φout

2 (Kj , z
′
2, uj).

Consider Badni first. For every forward IC-query IC(K,x)→ y, the response
y is uniform in at least 2n− q possibility. Since |Yni(K)| < 2nεni, the probability
to have y ∈ Yni(K) is at most 2nεni/(2

n− q) ≤ 2εni. Similarly, the probability to
have x ∈ Xni(K) for every backward IC-query IC−1(K, y) → x is at most 2εni.
Summing over the at most q IC-queries yield Pr[Badni] ≤ 2qεni = negl(n).

Then, consider Bad−. For every j ∈ {1, ..., λ} and every backward IC-
query IC−1(K, y∗) → x∗, it holds Pr

[
φin
1 (K,x∗) = γin

1 (Kj , uj) | ¬Badni
]
=

Pr
[
φin
1 (K,x∗) = γin

1 (Kj , uj) | x ∈ Yif(K)
]
, which is at most 2εde(φin

1 ) by

Eq. (18) and by the assumption that φin
1 is εde(φin

1 )-non-degenerate. Therefore,

Pr
[
Bad− | ¬Badni

]
≤ 2λqεde(φin

1 ).
Finally, for BadGroup, consider any λ-tuple of IC inputs/outputs IC(K1, x

∗
1) =

y∗1 , ..., IC(Kλ, x
∗
λ) = y∗λ obtained by S. Conditioned on ¬Bad−, they must be due

to λ forward IC-queries: otherwise, they cannot have φin
1 (Kj , x

∗
j ) = γin

1

(
Kj , uj

)
for any j ∈ {1, ..., λ}.

Then, for every fixed z′2 ∈ {0, 1}m(i2), the probability to have φin
3 (Kj , wj) =

γin
3 (Kj , y

∗
j ) for all j ∈ {1, ..., λ} and wj = φout

2 (Kj , z
′
2, uj) is at most (2εde(φin

3 ))
λ

by Eq. (18). Since |z′2| = m(i2) ≤ mmax, the probability that BadGroup occurs
w.r.t. IC(K1, x

∗
1) = y∗1 , ..., IC(Kλ, x

∗
λ) = y∗λ is at most 2mmax × (2εde(φin

3 ))
λ.

Finally, since S makes at most q queries, the number of choices for such
λ-tuples

(
IC(K1, x

∗
1) = y∗1 , ..., IC(Kλ, x

∗
λ) = y∗λ

)
is at most qλ. Thus,

Pr
[
BadGroup

]
≤ qλ × 2mmax × (2εde(φin

3 ))
λ ≤ 2mmax × (2qεde(φin

3 ))
λ. (26)

If BadGroup does not occur then there is no z′2 ∈ {0, 1}m(i2) for S to answer line
4, and thus subsequently at line 12 Subcase31(K1) will not output 1. Therefore,
in the ideal world we have (noting λ = mmax)

Pr
[
Subcase31(K1) = 1

]
≤ Pr

[
Bad+

]
+ Pr

[
Bad− | ¬Badni

]
+ Pr

[
BadGroup

]
≤ 2qεni + 2λqεde(φin

1 ) + 2mmax × (2qεde(φin
3 ))

λ

≤ 2qεni + 2mmaxqεde(φin
1 ) + (4qεde(φin

3 ))
mmax = negl(n),

and the advantage is at least 1− (2qεni + 2mmaxqεde(φin
1 ) + (4qεde(φin

3 ))
mmax) =

1− negl(n) in Subcase 3.1.

9.2 Subcase 3.2: |Uni,ni(K)| = Ω(2n/poly(n)) and
|Yni(K)| = Ω(2n/poly(n)) for all K ∈ K2

As mentioned, this corresponds to Case 2 in Sect. 3.4.

1: Subroutine Subcase32(K2, R)
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2: Picks (i∗1, δ
∗
1), (i

∗
3, δ

∗
3) ∈ I≤n × {+,−} and K3 ⊆ K2 such that:

– |K3| ≥ |K2|
4|I≤n|2 , and

– |Uni,ni(K, i∗1, δ
∗
1)| ≥ 2nR

4|I≤n| and |Yni(K, i∗3, δ
∗
3)| ≥ 2nR

2|I≤n| for all K ∈ K3.

3: Determines the set KUni,ni :=
{
(K,u) : K ∈ K3 ∧ u ∈ Uni,ni(K, i∗1, δ

∗
1)
}

4: Determines the sets KUni,ni

(
(i1, δ1, z1), (i2, δ2, z2)

)
:=

{
(K,u) : (K,u) ∈ KUni,ni ∧

γin
1 (K,u) = (i1, δ1, z1) ∧ φin

2 (K,u) = (i2, δ2, z2)
}
for all (i1, δ1, z1) and (i2, δ2, z2)

5: if ∃z1, (i2, δ2, z2) s.t. |KUni,ni

(
(i∗1, δ

∗
1 , z1), (i2, δ2, z2)

)
| = Ω(poly(n)) then

6: Picks z∗1 ∈ {0, 1}m(i∗1) and (i◦2, δ
◦
2 , z

◦
2) s.t.

|KUni,ni

(
(i∗1, δ

∗
1 , z

∗
1), (i

◦
2, δ

◦
2 , z

◦
2)
)
| = Ω(poly(n))

7: Picks z∗∗1 ∈ {0, 1}m(i∗1) s.t.∑
(i◦◦2 ,δ◦◦2 ,z◦◦2 )̸=(i◦2 ,δ

◦
2 ,z◦2 ) |KUni,ni

(
(i∗1, δ

∗
1 , z

∗∗
1 ), (i◦◦2 , δ◦◦2 , z◦◦2 )

)
| = Ω(poly(n))

8: P(i∗1, δ
∗
1 , z

∗
1)→ z

′∗
1 , P(i∗1, δ

∗
1 , z

∗∗
1 )→ z

′∗∗
1

9: Samples distinct pairs (K1, u1), (K2, u2)
$←− KUni,ni

(
(i∗1, δ

∗
1 , z

∗
1), (i

◦
2, δ

◦
2 , z

◦
2)
)

10: Samples (K3, u3)
$←− ∪(i◦◦2 ,δ◦◦2 ,z◦◦2 )̸=(i◦2 ,δ

◦
2 ,z◦2 )KUni,ni

(
(i∗1, δ

∗
1 , z

∗∗
1 ), (i◦◦2 , δ◦◦2 , z◦◦2 )

)
11: y1 ← γout

1 (K1, z
′∗
1 , u1), y2 ← γout

1 (K2, z
′∗
1 , u2), y3 ← γout

1 (K3, z
′∗∗
1 , u3)

12: Invokes Subroutine Scase32Check(K1, x1,K2, x2,K3, x3, i
∗
3, δ

∗
3)

13: else // Multiplicity = O(poly(n))
14: t← 2n

15: Picks 3+t inputs/outputs
(
(i∗1, δ

∗
1 , z

(j)
1 )

)
j=1,2,3

,
(
(i

(j)
2 , δ

(j)
2 , z

(j)
2 )

)
j=1,2,...,t

and 3t

pairs
(
(K1,j , u1,j), (K2,j , u2,j), (K3,j , u3,j)

)
j=1,2,...,t

from KUni,ni that satisfy

γin
1

(
Kj,1, uj,1

)
= ... = γin

1

(
Kj,t, uj,t

)
= (i∗1, δ

∗
1 , z

(j)
1 ) for all j ∈ {1, 2, 3};

φin
2

(
K1,j , u1,j

)
= φin

2

(
K2,j , u2,j

)
= φin

2

(
K3,j , u3,j

)
= (i

(j)
2 , δ

(j)
2 , z

(j)
2 ) for j ∈ {1, ..., t}. (27)

16: P(i∗1, δ
∗
1 , z

(1)
1 )→ z

′(1)
1 , P(i∗1, δ

∗
1 , z

(2)
1 )→ z

′(2)
1 , P(i∗1, δ

∗
1 , z

(3)
1 )→ z

′(3)
1

17: Samples distinct indices ℓ1, ℓ2
$←− {1, 2, ..., t}

18: x1,ℓ1 ← γout
1 (K1,ℓ1 , z

′(1)
1 , u1,ℓ1), x2,ℓ1 ← γout

1 (K2,ℓ1 , z
′(2)
1 , u2,ℓ1),

x3,ℓ2 ← γout
1 (K3,ℓ2 , z

′(3)
1 , u3,ℓ2)

19: Invokes Subroutine
Scase32Check(K1,ℓ1 , x1,ℓ1 ,K2,ℓ1 , x2,ℓ1 ,K3,ℓ2 , x3,ℓ2 , i

∗
3, δ

∗
3)

20: end if

21: Subroutine Scase32Check(K1, x1,K2, x2,K3, x3, i
∗
3, δ

∗
3)

22: E(K1, x1)→ y1, E(K2, x2)→ y2, E(K3, x3)→ y3

23: (i
(1)
3 , δ

(1)
3 , z

(1)
3 ) ← γin

3 (K1, y1), (i
(2)
3 , δ

(2)
3 , z

(2)
3 ) ← γin

3 (K2, y2), (i
(3)
3 , δ

(3)
3 , z

(3)
3 ) ←

γin
3 (K3, y3)

24: if y1 /∈ Yni(K1, i
∗
3, δ

∗
3) or y2 /∈ Yni(K2, i

∗
3, δ

∗
3) or y3 /∈ Yni(K3, i

∗
3, δ

∗
3) then

25: Outputs 1
26: else
27: b

$←− {0, 1}
28: if b = 0 then
29: (K◦

1 , y
◦
1)← (K1, y1), (K

◦
2 , y

◦
2)← (K2, y2)

30: else // b = 1
31: (K◦

1 , y
◦
1)← (K1, y1), (K

◦
2 , y

◦
2)← (K3, y3)

32: end if
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33: (i∗3, δ
∗
3 , z

(1)
3 )← γin

3 (K◦
1 , y

◦
1), (i

∗
3, δ

∗
3 , z

(2)
3 )← γin

3 (K◦
2 , y

◦
2)

34: if z
(1)
3 = z

(2)
3 then

35: Outputs 1
36: else // z

(1)
3 ̸= z

(2)
3

37: P(i∗3, δ
∗
3 , z

(1)
3 )→ z

′(1)
3 , w◦

1 ← γout
3 (K◦

1 , z
′(1)
3 , y◦

1), (i
(1)
2 , δ

(1)
2 , z

(1)
2 )← γin

2 (K◦
1 , w

◦
1)

38: P(i∗3, δ
∗
3 , z

(2)
3 )→ z

′(2)
3 , w◦

2 ← γout
3 (K◦

2 , z
′(2)
3 , y◦

2), (i
(2)
2 , δ

(2)
2 , z

(2)
2 )← γin

2 (K◦
2 , w

◦
2)

39: if b = 0 then
40: Outputs 1 iff. (i

(2)
2 , δ

(2)
2 , z

(2)
2 ) = (i

(1)
2 , δ

(1)
2 , z

(1)
2 )

41: else // b = 1

42: Outputs 1 iff. (i
(2)
2 , δ

(2)
2 , z

(2)
2 ) ̸= (i

(1)
2 , δ

(1)
2 , z

(1)
2 )

43: end if
44: end if
45: end if

9.3 Analysis of Subcase 3.2

Recall from Fig. 17 that the concrete condition is |Uni,ni(K)| ≥ 2nR/2 and

|Yni(K)| ≥ 2nR, where R = minK∈K1

{ |Xni(K)|
2n , |Yni(K)|

2n

}
. We first show that

Subcase32(K2, R) can find the values at lines 2 and 15.

Existence of (i∗1, δ
∗
1), (i

∗
3, δ

∗
3) and K3. For every K ∈ K2, consider the sets

BI1 :=
{
(i1, δ1) : Uni,ni(K, i1, δ1) ̸= ∅

}
and BI3 :=

{
(i3, δ3) : Yni(K, i3, δ3) ̸= ∅

}
.

Then, it holds i1, i3 ∈ I≤n by Lemma 5, and thus |BI1 × BI3| ≤ 4|I≤n|2. With
these, we present a helper lemma as follows.

Lemma 7. Fix K ∈ {0, 1}κ such that E3P(K,x) = ΠP3
(
K,ΠP2

(
K,ΠP1 (K,x)

))
for all x ∈ {0, 1}n. Then, for any tag ∈ {if, ni}, there exists

(
(i1, δ1), (i3, δ3)

)
∈

BI1×BI3 such that |Uni,tag(K, i1, δ1)| ≥ |Uni,tag(K)|
2|I≤n| and |Yni(K, i3, δ3)| ≥ |Yni(K)|

2|I≤n| .

Proof. We first establish the existence of (i1, δ1) ∈ BI1 with |Uni,tag(K, i1, δ1)| ≥
|Uni,tag(K)|
2|I≤n| . Assume otherwise, i.e., |Uni,tag(K, i1, δ1)| < |Uni,tag(K)|

2|I≤n| for all possible

(i1, δ1). Then, it holds i1 ∈ I≤n by Lemma 5, and the total number of choices of
(i1, δ1) is thus at most 2|I≤n|. This means

∑
(i1,δ1)∈I≤n×{+,−} |Uni,tag(K, i1, δ1)| <

|Uni,tag(K)|, an obvious contradiction. Similarly, there exists (i3, δ3) ∈ BI3 with

|Yni(K, i3, δ3)| ≥ |Yni(K)|
2|I≤n| . Thus, the pair

(
(i1, δ1), (i3, δ3)

)
exists as claimed. ⊓⊔

By Lemma 7, every K ∈ K2 has a corresponding
(
(i

(K)
1 , δ

(K)
1 ), (i

(K)
3 , δ

(K)
3 )

)
∈

BI1×BI3 with |Uni,ni(K, i
(K)
1 , δ

(K)
1 )| ≥ |Uni,ni(K)|

2|I≤n| ≥
2nR

4|I≤n| and |Yni(K, i
(K)
3 , δ

(K)
3 )| ≥

|Yni(K)|
2|I≤n| ≥

2nR
2|I≤n| . Since the number of pairs

(
(i1, δ1), (i3, δ3)

)
∈ BI1 × BI3 is at

most 4|I≤n|2, the pigeonhole principle yields that there exists
(
(i∗1, δ

∗
1), (i

∗
3, δ
∗
3)
)
∈

BI1 × BI3 and K3 ⊆ K2 such that:

– |K3| ≥ |K2|
4|I≤n|2 , and

– (i
(K)
1 , δ

(K)
1 ) = (i∗1, δ

∗
1) and (i

(K)
3 , δ

(K)
3 ) = (i∗3, δ

∗
3) for all K ∈ K3.

I.e., Subcase32(K2, R) can find the values at line 2.
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Subcase 3.2.1: Subcase32 enters the branch at line 6. We refer to
Fig. 7 for the involved query structures in this subcase. For the analysis, let
KUni,ni

(
⋆, (i2, δ2, z2)

)
:= ∪

z1∈{0,1}m(i∗1)KUni,ni

(
(i∗1, δ

∗
1 , z1), (i2, δ2, z2)

)
. We first show

the existence of z∗∗1 ∈ {0, 1}m(i∗1) satisfying conditions of line 7. Assume other-
wise, i.e.,

∑
(i◦◦2 ,δ◦◦2 ,z◦◦

2 )̸=(i◦2 ,δ
◦
2 ,z

◦
2 )
|KUni,ni

(
(i∗1, δ

∗
1 , z1), (i

◦◦
2 , δ◦◦2 , z◦◦2 )

)
| = O(poly(n))

for all z1 ∈ {0, 1}m(i∗1). This means∑
(i◦◦2 ,δ◦◦2 ,z◦◦

2 ) ̸=(i◦2 ,δ
◦
2 ,z

◦
2 )

∣∣KUni,ni

(
⋆, (i◦◦2 , δ◦◦2 , z◦◦2 )

)∣∣
=

∑
z1∈{0,1}m(i∗1)

∑
(i◦◦2 ,δ◦◦2 ,z◦◦

2 ) ̸=(i◦2 ,δ
◦
2 ,z

◦
2 )

∣∣KUni,ni

(
(i∗1, δ

∗
1 , z1), (i

◦◦
2 , δ◦◦2 , z◦◦2 )

)∣∣
≤ 2m(i∗1) ×O(poly(n)) = O(poly(n)2n).

Further,

|KUni,ni

(
⋆, (i◦2, δ

◦
2 , z
◦
2)
)
| = |KUni,ni| −

∑
(i◦◦2 ,δ◦◦2 ,z◦◦

2 )̸=(i◦2 ,δ
◦
2 ,z

◦
2 )

|KUni,ni

(
⋆, (i◦◦2 , δ◦◦2 , z◦◦2 )

)
|

≥ 2κ+n−8R

|I≤n|3
−O(poly(n)2n) = Θ(2κ+n/poly(n)).

Therefore,
∣∣KUni,ni

(
⋆, (i◦2, δ

◦
2 , z
◦
2)
)∣∣ ≫ ∣∣KUni,ni

(
⋆, (i◦2, δ

◦
2 , z
◦◦
2 )

)∣∣ for z◦◦2 ̸= z◦2 . This
contradicts Lemma 6. Therefore, Subcase32 can pick the desired triple (i∗1, δ

∗
1 , z
∗∗
1 )

at line 6.
By design, Subcase32 then invokes Scase32Check. There are three chances

for Scase32Check to output 1:

(i) At line 25 (when y1 /∈ Yni(K1, i
∗
3, δ
∗
3) or y2 /∈ Yni(K2, i

∗
3, δ
∗
3) or y3 /∈ Yni(K3, i

∗
3, δ
∗
3)).

For simplicity, denote this event by Badni.

(ii) At line 35 (when z
(1)
3 = z

(2)
3 ). For simplicity, denote this event by Coll.

(iii) At line 40 (when b = 0 and (i
(2)
2 , δ

(2)
2 , z

(2)
2 ) = (i

(1)
2 , δ

(1)
2 , z

(1)
2 )) or line 42 (when

b = 1 and (i
(2)
2 , δ

(2)
2 , z

(2)
2 ) ̸= (i

(1)
2 , δ

(1)
2 , z

(1)
2 )).

In the real world, it always holds (i
(2)
2 , δ

(2)
2 , z

(2)
2 ) = (i

(1)
2 , δ

(1)
2 , z

(1)
2 ) when b = 0

and (i
(2)
2 , δ

(2)
2 , z

(2)
2 ) ̸= (i

(1)
2 , δ

(1)
2 , z

(1)
2 ) when b = 1: see Fig. 6 (right) for illustra-

tion. Therefore, Pr
[
Scase32Check = 1 in real world

]
= 1.

Now, consider the ideal world interaction. For this, let

M1 :=
∣∣KUni,ni

(
(i∗1, δ

∗
1 , z
∗
1), (i

◦
2, δ
◦
2 , z
◦
2)
)∣∣,

M2 :=
∑

(i◦◦2 ,δ◦◦2 ,z◦◦
2 ) ̸=(i◦2 ,δ

◦
2 ,z

◦
2 )

∣∣KUni,ni

(
(i∗1, δ

∗
1 , z
∗∗
1 ), (i◦◦2 , δ◦◦2 , z◦◦2 )

)∣∣
for the sets picked at lines 6 and 7. By the conditions, it holds M1,M2 =
Ω(poly(n)).

Since (i∗1, δ
∗
1 , z
∗
1) and (i∗1, δ

∗
1 , z
∗∗
1 ) are queried at line 8, S knows these two

sets since then. Let Queried be the event that at least one of the IC-queries
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IC(K1, x1) → y1, IC(K2, x2) → y2 and IC(K3, x3) → y3 has been made by S
before Scase32Check is invoked.

Since: (i) (K1, u1), (K2, u2)
$←− KUni,ni

(
(i∗1, δ

∗
1 , z
∗
1), (i

◦
2, δ
◦
2 , z
◦
2)
)
and (K3, u3)

$←−
∪(i◦◦2 ,δ◦◦2 ,z◦◦

2 )̸=(i◦2 ,δ
◦
2 ,z

◦
2 )
KUni,ni

(
(i∗1, δ

∗
1 , z
∗∗
1 ), (i◦◦2 , δ◦◦2 , z◦◦2 )

)
are uniformly sampled,

and (ii) S makes at most q IC-queries, meaning that the number of “good”
choices for (K1, u1), (K2, u2) that do not lead to Queried (i.e., do not contain
simulator-queried inputs) is at least

(
M1−q

2

)
and the number of “good” choices

for (K3, u3) that do not lead to Queried is at least M2 − q, and (iii) subsequent
line 11 only has “simulator-unaware” computations and does not provide any
information about the three sampled pairs, it holds

Pr
[
Queried

]
= 1− Pr

[
¬Queried

]
≤ 1−

(
M1−q

2

)(
M1

2

) × M2 − q

M2
≤ 2q

M1 − 1
+

q

M2
.

Conditioned on that Queried didn’t occur, we analyze the 3 chances in turn.

Line 25. With the conditions of this lemma, the three IC-queries E(K1, x1)→
y1, E(K2, x2) → y2, E(K3, x3) → y3 at line 22 are all new and fresh. By this
and by |Yni(K, i∗3, δ

∗
3)| ≥ 2nR

2|I≤n| for all K ∈ K3, we have

Pr
[
Badni

]
= 1− Pr

[
y1 ∈ Yni(K1, i

∗
3, δ
∗
3) ∧ y2 ∈ Yni(K2, i

∗
3, δ
∗
3)

∧ y3 ∈ Yni(K3, i
∗
3, δ
∗
3)
]

≤ 1−
( 2nR

2|I≤n| − q

2n

)3

≤ 1−
(

R

2|I≤n|
− q

2n

)3

. (28)

Line 35. As argued, regardless of the value of b, both y◦1 and y◦2 are fresh and
uniform. Thus, by Corollary 1 we have

Pr
[
Coll | ¬Badni

]
= Pr

[
z
(1)
3 = z

(2)
3

]
≤ 2

2mmin
.

Lines 40 and 42. In the ideal world, S always receives twoP-queriesP(i∗3, δ
∗
3 , z

(1)
3 )

and P(i∗3, δ
∗
3 , z

(2)
3 ). Subsequently derived (i

(1)
2 , δ

(1)
2 , z

(1)
2 ) and (i

(2)
2 , δ

(2)
2 , z

(2)
2 ) de-

pend on the responses z
′(1)
3 and z

′(2)
3 chosen by S. To let Scase32Check output

1 at lines 40 or 42, S should choose z
′(1)
3 and z

′(2)
3 such that:

– (i
(2)
2 , δ

(2)
2 , z

(2)
2 ) = (i

(1)
2 , δ

(1)
2 , z

(1)
2 ) when b = 0, and

– (i
(2)
2 , δ

(2)
2 , z

(2)
2 ) ̸= (i

(1)
2 , δ

(1)
2 , z

(1)
2 ) when b = 1.

(Let’s be generous to S and assume that such z
′(1)
3 and z

′(2)
3 do exist.)

Throughout the execution, S gains four P-queries from Subcase32, i.e.,

P(i∗1, δ
∗
1 , z
∗
1) and P(i∗1, δ

∗
1 , z
∗∗
1 ) at line 8 and P(i∗3, δ

∗
3 , z

(1)
3 ) and P(i∗3, δ

∗
3 , z

(2)
3 ) at

lines 37 and 38. It might hold z∗1 = z∗∗1 , but this has no influence. Conditioned
on these, S cannot determine the crucial pairs (K1, u1), (K2, u2), (K3, u3) and
b: every combination

(
(K ′1, u

′
1), (K

′
2, u
′
2), (K

′
3, u
′
3), b

′) has the same probability
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of occurring. This can be seen from the fact that our arguments above can be
carried for all such triples.9

Therefore, S’s best strategy to choose z
′(1)
3 and z

′(2)
3 is to guess the challenge

bit b, and the success probability is 1/2. By these, we have

Pr
[
Scase32Check outputs 1 at line 40 or 42 | ¬Queried ∧ ¬Badni ∧ ¬Coll

]
≤ 1

2
.

Summary. Summing over the above probabilities, we reach

Pr
[
Scase32Check = 1 in ideal world

]
≤ Pr

[
Queried

]
+ Pr

[
Badni ∧ ¬Queried

]
+ Pr

[
Coll ∧ ¬Badni ∧ ¬Queried

]
+ Pr

[
Scase32Check outputs 1 at line 40 or 42 ∧ ¬Queried ∧ ¬Badni ∧ ¬Coll

]
≤ Pr

[
Queried

]
+ Pr

[
Badni | ¬Queried

]
+ Pr

[
Coll | ¬Badni ∧ ¬Queried

]
+

1

2
× Pr

[
¬Badni | ¬Queried

]
= Pr

[
Queried

]
+ Pr

[
Coll | ¬Badni ∧ ¬Queried

]
+

1

2
+

1

2
× Pr

[
Badni | ¬Queried

]
≤ 2q

M1 − 1
+

q

M2
+

2

2mmin
+ 1− 1

2
×

(
R

2|I≤n|
− q

2n

)3

. (29)

These indicate the advantage lower bound 1
2×

(
R

2|I≤n|−
q
2n

)3− 2q
M1−1−

q
M2
− 2

2mmin
.

SinceM1,M2 = Ω(poly(n)) by the conditions, we have R, R
2|I≤n| = Ω(1/poly(n))

and q
2n ,

2q
M1−1 ,

q
M2

= negl(n), and the lower bound is 1/poly(n) − negl(n) in
Subcase 3.2.1.

Subcase 3.2.2: Subcase32 enters the branch at line 13. I.e., there exists
λ = O(poly(n)) such that |KUni,ni

(
(i∗1, δ

∗
1 , z
∗
1), (i

◦
2, δ
◦
2 , z
◦
2)
)
| ≤ λ for all z∗1 and

(i◦2, δ
◦
2 , z
◦
2). We refer to Fig. 6 (right) for the involved query structure in this

subcase.

Existence of the 3t pairs. Since |Uni,ni(K, i1, δ1)| ≥ 2nR
4|I≤n| for all K ∈ K3 and

since |K3| ≥ |K2|
4|I≤n|2 , the set KUni,ni :=

{
(K,u) : K ∈ K3 ∧ u ∈ Uni,ni(K, i1, δ1)

}
has |KUni,ni| ≥ 2nR

4|I≤n| ×
|K2|

4|I≤n|2 ≥
2κ+n−8R
|I≤n|3 .

We build a bipartite graph G = (VL,VR, E) with left shore VL = {(i∗1, δ∗1 , z1) :
z1 ∈ {0, 1}m(i1)}, right shore VR = Rngni(φ

in
2 ) (see Eq. (14)) and |E| = |KUni,ni|.

G contains an edge
(
(i∗1, δ

∗
1 , z1), (i2, δ2, z2)

)
∈ E if and only if there exists (K,u) ∈

KUni,ni such that γin
1 (K,u) = (i∗1, δ

∗
1 , z1) and φin

2 (K,u) = (i2, δ2, z2). G G is a
simple bipartite graph (without duplicated edges): when there are multiple pairs
(K1, u1), (K2, u2), ... “linking” the same pair of vertexes, E only includes one
edge. Therefore, |VL| ≤ 2n and |VR| ≤ |I≤n|2n+1 by Lemma 5, while |E| ≥
|KUni,ni|/λ ≥ 2κ+n−8R

λ|I≤n|3 by our assumptions.

9 A formal argument can be given by analyzing the conditional probability
Pr

[(
(K′

1, u
′
1), (K

′
2, u

′
2), (K

′
3, u

′
3), b

′) | (i∗1, δ∗1 , z∗1), ..., (i∗3, δ∗3 , z(2)3 )
]
, but this would be

somewhat tedious.
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Then, the 3+t vertexes and 3t pairs satisfying Eq. (27) indicate a bicliqueK3,t

in G, which takes
(
(i∗1, δ

∗
1 , z

(j)
1 )

)
j=1,2,3

and
(
(i

(j)
2 , δ

(j)
2 , z

(j)
2 )

)
j=1,2,...,t

as vertexes

and
(
(K1,j , u1,j), (K2,j , u2,j), (K3,j , u3,j)

)
j=1,2,...,t

as edges. We apply Proposi-

tion 2: let M = 2n, N = |I≤n|2n+1, a = mmax and b = 2n (since mmax > 3
for sufficiently large n and t ≤ n, if G contains Kmmax,2n then it contains K3,t,
though using a = mmax prepares for Subcase 3.4 while b = 2n simplifies calcu-
lations), then the above graph G satisfies the two conditions of Proposition 2.
Moreover, when n is large enough it holds

(b− 1)
1
a ·MN1− 1

a + (a− 1)N

≤ (2n)
1

mmax · 2n · |I≤n|1−
1

mmax (2n+1)1−
1

mmax + (mmax − 1)|I≤n|2n+1

≤ 22n · (2|I≤n|)
mmax−1
mmax + (mmax − 1)|I≤n|2n+1 ≤ |I≤n|22n+1.

Therefore, G contains Kmmax,2n ⊇ K3,t as long as |E| ≥ 2κ+n−8R
λ|I≤n|3 ≥ |I≤n|2

2n+1,

meaning that κ ≥ n+9−log2 R+log2 λ+4 log2 |I≤n|. Note thatR = Ω(1/poly(n))
and λ = O(poly(n)), thus − log2 R + log2 λ = Θ(1). This is fulfilled by our as-
sumption κ ≥ 2mmax log2 |I≤n| + 2mmaxn + 6mmax + 4 as long as mmax ≥ 2
and n is large enough, and these establish the existence of 3t pairs satisfying Eq.
(27).

Attack advantage. By design, Subcase32 then makes a call to the subroutine
Scase32Check(Kj1,ℓ1 , xj1,ℓ1 ,Kj2,ℓ1 , xj2,ℓ1 ,Kj3,ℓ2 , xj3,ℓ2 , i

∗
3, δ
∗
3) at line 19, which

produces the final output. The analysis follows Subcase 3.2.1.

First, Pr
[
Scase32Check = 1 in real world

]
= 1, and we mainly need to

address the ideal world interaction. To this end, assume that the simulator S
completely knows the biclique found by Subcase32(K2, R) at line 15, and let
Queried be the event that at least one of the IC-queries at line 22 (which are
IC(Kj1,ℓ1 , xj1,ℓ1) → yj1,ℓ1 , IC(Kj2,ℓ1 , xj2,ℓ1) → yj2,ℓ1 and IC(Kj3,ℓ2 , xj3,ℓ2) →
yj3,ℓ2 using the notations in Subcase32) has been made by S before Subcase32
executing this line. Since: (i) S makes at most q IC-queries, meaning that the
number of “good” indices ℓ∗ ∈ {1, ..., t} that do not lead to Queried (i.e., do not
contain simulator-queried inputs) is at least t − q, and (ii) ℓ1, ℓ2 are uniformly
sampled from {1, ..., t} at line 17, and (iii) subsequent line 18 only has “simulator-
unaware” computations and does not provide any information about ℓ1, ℓ2, it
holds (t− 1 ≥ t/2 when mmin = poly(n) is large enough)

Pr
[
Queried

]
= 1− Pr

[
¬Queried

]
≤ 1−

(
t−q
2

)(
t
2

) ≤ 3q

t
≤ 3q

2n
. (30)

Conditioned on that Queried didn’t occur, the analyses of lines 25 and 35
are exactly the same as Subcase 3.2.1. Minor differences appears regarding lines
40 and 42. In detail, throughout the execution, S gains five P-queries from

Subcase32, i.e., P(i∗1, δ
∗
1 , z

(j1)
1 ), P(i∗1, δ

∗
1 , z

(j2)
1 ), P(i∗1, δ

∗
1 , z

(j3)
1 ), P(i∗3, δ

∗
3 , z

(1)
3 ) and

P(i∗3, δ
∗
3 , z

(2)
3 ). Conditioned on these, S cannot determine the crucial values ℓ1, ℓ2
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and b: every triple (ℓ1, ℓ2, b) ∈ {1, ..., t}×{1, ..., t}×{0, 1} has the same probabil-

ity of occurring. Therefore, S’s best strategy to choose z
′(1)
3 and z

′(2)
3 is to guess

the challenge bit b, and the success probability is 1/2. By these and following
Eq. (29), we have

Pr
[
Scase32Check = 1 in ideal world

]
≤ Pr

[
Queried

]
+ Pr

[
Badni | ¬Queried

]
+ Pr

[
Coll | ¬Badni ∧ ¬Queried

]
+

1

2
× Pr

[
¬Badni | ¬Queried

]
= Pr

[
Queried

]
+ Pr

[
Coll | ¬Badni ∧ ¬Queried

]
+

1

2
+

1

2
× Pr

[
Badni | ¬Queried

]
≤ 3q

2n
+

2

2mmin
+ 1− 1

2
×
(

R

2|I≤n|
− q

2n

)3

.

Since R, R
2|I≤n| = Ω(1/poly(n)) and q

2n ,
3q
2n = negl(n), the bound is 1/poly(n)−

negl(n) in Subcase 3.2.2. In all, attack advantage is always at least 1/poly(n)−
negl(n) in Subcase 3.2.

Discussion. Our use of b
$←− {0, 1} gains inspirations from Andreeva et al.’s

differentiator against a type of 3-round IEM cipher [1, Sect. 3.3, full version].
In particular, an earlier version of our attack closely follows Andreeva et al.,
but its effectiveness relies on the distribution of the functions γout

3 and φin
2 ,

which is difficult. We thus introduce two different pairs
(
(K1, y1), (K2, y2)

)
and(

(K1, y1), (K3, y3)
)
: the former collide in the 2nd round, while the latter do

not collide. By this, S has to guess whether it should ensure (i
(2)
2 , δ

(2)
2 , z

(2)
2 ) =

(i
(1)
2 , δ

(1)
2 , z

(1)
2 ) and cannot win easily.

9.4 Subcase 3.3: |Uni,if(K)| = Ω(2n/poly(n)) and
|Yni(K)| = Ω(2n/poly(n)) for all K ∈ K2

As mentioned, this corresponds to Case 2 in Sect. 3.4.

1: Subroutine Subcase33(K2, R)
2: Picks (i∗1, δ

∗
1), (i

∗
3, δ

∗
3) ∈ I≤n × {+,−} and K3 ⊆ K2 such that:

– |K3| ≥ |K2|
4|I≤n|2 , and

– |Uni,if(K, i∗1, δ
∗
1)| ≥ 2nR

4|I≤n| and |Yni(K, i∗3, δ
∗
3)| ≥ 2nR

2|I≤n| for all K ∈ K3.

3: z∗1
$←− {0, 1}m(i∗1), P(i∗1, δ

∗
1 , z

∗
1)→ z

′∗
1

4: K
$←− K3

5: Picks u ∈ Uni,if(K) s.t. γin
1 (K,u) = (i∗1, δ

∗
1 , z

∗
1)

6: x← γout
1

(
K, z

′∗
1 , u

)
, E(K,x)→ y

7: if y /∈ Yni(K, i∗3, δ
∗
3) then

8: Outputs 1
9: else // y ∈ Yni(K, i∗3, δ

∗
3)

10: (i∗3, δ
∗
3 , z3)← γin

3 (K, y), P(i∗3, δ
∗
3 , z3)→ z′3, w ← γout

3 (K, z′3, y)
11: Outputs 1 iff. φin

2 (K,u) = γin
2 (K,w)

12: end if
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Analysis of Subcase 3.3. Recall from Fig. 17 that the concrete condition is

|Uni,if(K)| ≥ 2nR/2, where R = minK∈K1

{
|Xni(K)|

2n , |Yni(K)|
2n

}
. We refer to Fig. 8

(left) for the involved query structure.
Using Lemma 7 and following Subcase 3.2 (Sect. 9.3), it can be shown that

Subcase33(K2, R) will succeed in finding (i∗1, δ
∗
1), (i

∗
3, δ
∗
3) at line 2. Below we

focus on the attack advantage. To this end, Subcase33(K2, R) either outputs 1
at line 8, or outputs 1 at line 11 when φin

2 (K,u) = γin
2 (K,w) holds. In the real

world, the latter equality always holds, and thus Pr[Subcase33(K2, R) = 1] = 1.
In the ideal world, let Queried be the event that either IC

(
K,x

)
→ y or

IC−1
(
K, y

)
→ x has been made by S before executing line 6. Since S makes at

most q IC-queries, and since K is uniformly picked from K3 at line 5, it holds

Pr
[
Queried

]
≤ q

|K3|
≤ 4q|I≤n|2

2κ−4
≤ 26q|I≤n|2

2κ
. (31)

If y /∈ Yni(K, i∗3, δ
∗
3) then Subcase33(K2) outputs 1 at line 8. Conditioned

on that Queried did not occur, the key K never appeared in earlier IC-queries
and IC

(
K,x

)
→ y yields a uniform y. Following Eq. (28), we have

Pr
[
y /∈ Yni(K, i∗3, δ

∗
3) at line 8

]
≤ 1−

(
R

2|I≤n|
− q

2n

)
. (32)

Once Subcase33(K2, R) enters the branch after line 9, to let it output 1,
S should “guess” K and ensure the equality φin

2 (K,u) = γin
2 (K,w) before ex-

ecuting line 11. Every key in K3 has encipherments “anchored” at the queries
P(i∗1, δ∗1 , z∗1) → z

′∗
1 and P(i∗3, δ∗3 , z∗3) → z

′∗
3 . Therefore, even if line 10 has been

executed and S has been aware of the two adversarial queries to P, since S does
not know the adversarial query to IC(K,x) → y, all keys in K3 still have the

same chance of being the selected K. We can view the experiment as K
$←− K3

happens after line 10, so that the probability to have φin
2 (K,u) = γin

2 (K,w) for
the w chosen by S is at most 2εde(φin

2 ) by Eq. (19). Gathering this with Eqs.
(31) and (32) yields

Pr
[
Subcase32(K2, R) = 1

]
≤ Pr

[
Queried

]
+ Pr

[
y /∈ Yni(K, i∗3, δ

∗
3) at line 8

]
+ Pr

[
φin
2 (K,u) = γin

2 (K,w) at line 11
]

≤ 26q|I≤n|2

2κ
+ 1−

(
R

2|I≤n|
− q

2n

)
+ 2εde(φin

2 ).

The advantage in Subcase 3.2 thus has lower bound R
2|I≤n| −

q
2n −

26q|I≤n|2
2κ −

2εde(φin
2 ). Since R, R

2|I≤n| = Ω(1/poly(n)) and q
2n ,

26q|I≤n|2
2κ , 2εde(φin

2 ) = negl(n),

the lower bound is 1/poly(n)− negl(n).

9.5 Subcase 3.4: |Uni,ni(K)| = Ω(2n/poly(n)) and
|Yni(K)| = o(2n/poly(n)) for all K ∈ K2

As mentioned, this corresponds to Case 4 in Sect. 3.4.
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1: Subroutine Subcase34(K2, R)
2: Determines the set KUni,ni :=

{
(K,u) : K ∈ K2 ∧ u ∈ Uni,ni(K)

}
3: Determines the sets KUni,ni

(
(i1, δ1, z1), (i2, δ2, z2)

)
:=

{
(K,u) : (K,u) ∈ KUni,ni ∧

γin
1 (K,u) = (i1, δ1, z1) ∧ φin

2 (K,u) = (i2, δ2, z2)
}
for all (i1, δ1, z1) and (i2, δ2, z2)

4: if ∃(i1, δ1, z1), (i2, δ2, z2) : |KUni,ni

(
(i1, δ1, z1), (i2, δ2, z2)

)
| ≥ mmax then

5: Invokes Scase34Check(KUni,ni, i1, δ1, z1, i2, δ2, z2) // See below
6: else // Multiplicity < mmax

7: λ← mmax, t← 2n

8: Picks λ + t inputs/outputs
(
(i

(j)
1 , δ

(j)
1 , z

(j)
1 )

)
j=1,2,...,λ

,
(
(i

(j)
2 , δ

(j)
2 , z

(j)
2 )

)
j=1,2,...,t

and λt pairs
(
(K1,j , u1,j), ..., (Kλ,j , uλ,j)

)
j=1,2,...,t

from KUni,ni that satisfy

γin
1

(
Kj,1, uj,1

)
= ... = γin

1

(
Kj,t, uj,t

)
= (i

(j)
1 , δ

(j)
1 , z

(j)
1 ) for all j ∈ {1, ..., λ};

φin
2

(
K1,j , u1,j

)
= ... = φin

2

(
Kλ,j , uλ,j

)
= (i

(j)
2 , δ

(j)
2 , z

(j)
2 ) for j ∈ {1, ..., t}. (33)

9: P(i
(1)
1 , δ

(1)
1 , z

(1)
1 )→ z

′(1)
1 , P(i

(2)
1 , δ

(2)
1 , z

(2)
1 )→ z

′(2)
1 , ..., P(i

(λ)
1 , δ

(λ)
1 , z

(λ)
1 )→ z

′(λ)
1

10: ℓ
$←− {1, 2, ..., t}

11: Computes λ plaintexts x1,ℓ ← γout
1 (K1,ℓ, z

′(1)
1 , u1,ℓ), x2,ℓ ← γout

1 (K2,ℓ, z
′(2)
1 , u2,ℓ),

..., xλ,ℓ ← γout
1 (Kλ,ℓ, z

′(λ)
1 , uλ,ℓ)

12: E(K1,ℓ, x1,ℓ)→ y1,ℓ, E(K2,ℓ, x2,ℓ)→ y2,ℓ, ..., E(Kλ,ℓ, xλ,ℓ)→ yλ,ℓ // λ queries
13: if ∃j ∈ {1, ..., λ} such that yj,ℓ ∈ Yni(Kj,ℓ) then
14: Outputs 1
15: else // I.e., every ciphertext yj,ℓ has yj,ℓ ∈ Yif(Kj,ℓ)

16: P(i
(ℓ)
2 , δ

(ℓ)
2 , z

(ℓ)
2 )→ z

′(ℓ)
2

17: w1,ℓ ← φout
2

(
K1,ℓ, z

′(ℓ)
2 , u1,ℓ

)
, ..., wλ,ℓ ← φout

2

(
Kλ,ℓ, z

′(ℓ)
2 , uλ,ℓ

)
18: Outputs 1 iff. φin

3 (Kj,ℓ, wj,ℓ) = γin
3 (Kj,ℓ, yj,ℓ) for all j = 1, 2, ..., λ

19: end if
20: end if

21: Subroutine Scase34Check(KU , i1, δ1, z1, i2, δ2, z2)
22: Picks λ = mmax distinct pairs (K1, u1), ..., (Kλ, uλ) from KU s.t. γin

1 (Kj , uj) =
(i1, δ1, z1) and φin

2 (Kj , uj) = (i2, δ2, z2) for all j ∈ {1, ..., λ}
23: P(i1, δ1, z1)→ z′1
24: Computes λ plaintexts x1 ← γout

1 (K1, z
′
1, u1), x2 ← γout

1 (K2, z
′
1, u2), ..., xλ ←

γout
1 (Kλ, z

′
1, uλ)

25: E(K1, x1)→ y1, E(K2, x2)→ y2, ..., E(Kλ, xλ)→ yλ // λ queries
26: Let J ⊆ {1, ..., λ} be the set of indices such that yj ∈ Yif(Kj) for all j ∈ J
27: if |J | < λ− 1 then
28: Outputs 1
29: else
30: P(i2, δ2, z2)→ z′2
31: for j ∈ J do
32: wj ← φout

2 (Kj , z
′
2, uj)

33: end for
34: Outputs 1 iff. φin

3 (Kj , wj) = γin
3 (Kj , yj) for all j ∈ J

35: end if
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Analysis of Subcase 3.4. Recall from Fig. 17 that the concrete condition

is |Uni,ni(K)| ≥ 2nR/2, where R = minK∈K1

{ |Xni(K)|
2n

}
. On the other hand, let

εni := maxK∈K1

{
|Yni(K)|/2n

}
. By the condition, it holds εni = negl(n).

Depending on whether the condition at line 4 holds, we distinguish two sub-
cases.

Subcase 3.4.1: Subcase34 enters the branch at line 5. In detail, Subcase34 in-
vokes Scase34Check. Since Scase34Check will also be used in Sect. 9.6, we
provide a lemma for this subroutine.

Lemma 8.∣∣∣Pr[Scase34Check = 1 in real world
]

− Pr
[
Scase34Check = 1 in ideal world

]∣∣∣
≥ 1− 2q2/2mmin − 2qεni − 2(4εde(φin

3 ))
mmax−1 = 1− negl(n).

For cleanness, its proof is deferred to the end of Sect. 9.5, and we refer to Fig.
7 (right) for the involved query structure. This lemma immediately yields the
advantage lower bound 1−2q2/2mmin−2qεni−2(4εde(φin

3 ))
mmax−1 = 1−negl(n)

in this subcase.

Subcase 3.4.2: Subcase34 enters the branch at line 6. We refer to Fig. 8 (right)
for the involved query structure in this subcase.

The proof that Subcase34 can find the vertexes and pairs at line 8 just
follows Subcase 3.2 (Sect. 9.3). In the real world, the equalities φin

3

(
Kj,ℓ, wj,ℓ

)
=

γin
3

(
Kj,ℓ, yj,ℓ

)
for j = 1, 2, ..., λ at line 18 always hold and Subcase34 always

outputs 1.
We now consider the ideal world interaction. Partly following Subcase 3.2

(Sect. 9.3), we also introduce an event Queried, which happens if at least one of
the λ adversarial IC-queries IC(K1,ℓ, x1,ℓ) → y1,ℓ, ..., IC(Kλ,ℓ, xλ,ℓ) → yλ,ℓ at
line 12 has been made by S before Subcase34 executing this line. The analysis
follows Subcase 3.2 (Sect. 9.3) and yields Pr

[
Queried

]
≤ q/t ≤ q/2n = negl(n).

Furthermore, let Bad+ be the event that any forward IC-query IC(K,x)→ y
yields y ∈ Yif(K). Using |Yni(K)| < 2nεni and summing over the q IC-queries,
we reach Pr[Bad+] ≤ 2qεni = negl(n).

Now, in the ideal world, we have

Pr
[
Subcase34(K2, R) = 1

]
≤ Pr

[
Queried

]
+ Pr

[
Bad+

]
+ Pr

[
Subcase34(K2, R) = 1 | ¬Queried ∧ ¬Bad+

]
.

When Subcase34(K2, R) executes line 16, S gets a “chance” of choosing a

“good” z
′(ℓ)
2 to ensure the equalities, and Pr

[
Subcase34(K2) = 1 | ¬Queried ∧

¬Bad+
]
is thus bounded by the probability that there exists z′2 ∈ {0, 1}m(i

(ℓ)
2 )

such that φin
3

(
Kj,ℓ, φ

out
2 (Kj,ℓ, z

′
2, uj,ℓ)

)
= γin

3 (Kj,ℓ, yj,ℓ) for j = 1, 2, ..., λ.
Conditioned on ¬Queried, all the λ adversarial IC-queries made at line 12

are fresh and are thus forward. By this, by ¬Bad+ and further by an argument
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similarly to Subcase 3.1, for each particular z′2 ∈ {0, 1}m(i
(ℓ)
2 ), the probability

to have φin
3

(
Kj,ℓ, φ

out
2 (Kj,ℓ, z

′
2, uj,ℓ)

)
= γin

3 (Kj,ℓ, yj,ℓ), j = 1, 2, ..., λ, is at most

(2εde(φin
3 ))

λ by Eq. (18). Therefore, with λ = mmax, we have

Pr
[
Subcase34(K2, R) = 1 | ¬Eve ∧ ¬Bad+

]
≤ 2m(i

(ℓ)
2 )(2εde(φin

3 ))
λ ≤ (4εde(φin

3 ))
mmax .

These yield the ideal world probability Pr
[
Subcase34(K2, R) = 1

]
≤ q/2n +

2qεni + (4εde(φin
3 ))

mmax and attack advantage lower bound of 1− q/2n − 2qεni −
(4εde(φin

3 ))
mmax = 1− negl(n).

Proof of Lemma 8. By design, Scase34Check outputs 1 either at line 28
due to |J | < λ− 1 or at line 34 due to the equalities φin

3 (Kj , wj) = γin
3 (Kj , yj)

for all j ∈ J . In the real world, the latter equalities always hold and thus
Pr

[
Scase34Check = 1 in real world

]
= 1. Regarding the ideal world probabil-

ity, we introduce two events:

(i) First, Bad− occurs during the interaction, if there appears a backward IC-
query IC−1(K, y) → x that has φin

1 (K,x) = φin
1 (K ′, x′) for a previously

appeared IC input/output IC(K ′, x′) = y′. Since there are at most q IC-
queries, it has Pr

[
Bad−

]
≤ 2q2/2mmin by Corollary 1.

(ii) Second, Badni occurs during the interaction, if there appears a forward IC-
query IC(K,x)→ y that has y ∈ Yni(K). Clearly, Pr

[
Badni

]
≤ 2qεni.

Now, in the ideal world, we have

Pr
[
Scase34Check = 1 in ideal world

]
≤ Pr

[
Bad−

]
+ Pr

[
Badni

]
+ Pr

[
Scase34Check = 1 | ¬Bad− ∧ ¬Badni

]
.

Conditioned on ¬Bad−, at least λ − 1 among the IC-queries E(K1, x1) → y1,
E(K2, x2) → y2, ..., E(Kλ, xλ) → yλ at line 25 are forward. Let their indices
be 1, ..., λ− 1. Further conditioned on ¬Badni, it holds y1 ∈ Yif(K1), ..., yλ−1 ∈
Yif(Kλ−1), meaning that Scase34Check never outputs 1 at line 28 in the ideal
world.

When Scase34Check executes line 30, S gets a “chance” of choosing a
“good” z′2 to ensure the equalities at line 34, and Pr

[
Scase34Check = 1 |

¬Bad− ∧ ¬Badni
]
is thus bounded by the probability that there exists z′2 ∈

{0, 1}m(i2) such that φin
3 (Kj , wj) = γin

3 (Kj , yj) for j = 1, 2, ..., λ− 1. Condi-
tioned on ¬Bad−, all the IC-queries indexed by J are forward. By this, by
an argument similarly to Subcase 3.1, for each particular z′2 ∈ {0, 1}m(i2), the
probability to have φin

3 (Kj , wj) = γin
3 (Kj , yj), j = 1, 2, ..., λ− 1, is at most

(2εde(φin
3 ))

λ−1 by Eq. (18). Therefore, with λ = mmax, we have

Pr
[
Scase34Check = 1 | ¬Bad− ∧ ¬Badni

]
≤ 2m(i2)(2εde(φin

3 ))
λ−1

≤ 2(4εde(φin
3 ))

mmax−1.

These yield Pr
[
Scase34Check = 1 in ideal world

]
≤ 2q2/2mmin + 2qεni +

2(4εde(φin
3 ))

mmax−1 and difference ≥ 1−2q2/2mmin−2qεni−2(4εde(φin
3 ))

mmax−1 =
1 − negl(n) in Subcase 3.4.2. In all, advantage is always at least 1 − negl(n) in
Subcase 3.4.
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9.6 Subcase 3.5: |Uni,if(K)| = Ω(2n/poly(n)) and
|Yni(K)| = o(2n/poly(n)) for all K ∈ K2

This corresponds to Case 5 in Sect. 3.4.

1: Subroutine Subcase35(K2)
2: Determines the set KUni,if :=

{
(K,u) : K ∈ K2 ∧ u ∈ Uni,if(K)

}
3: Determines the sets KUni,if

(
(i1, δ1, z1), (i2, δ2, z2)

)
:=

{
(K,u) : (K,u) ∈ KUni,if ∧

γin
1 (K,u) = (i1, δ1, z1) ∧ φin

2 (K,u) = (i2, δ2, z2)
}
for all (i1, δ1, z1) and (i2, δ2, z2)

4: if ∃(i1, δ1, z1), (i2, δ2, z2) : |KUni,if

(
(i1, δ1, z1), (i2, δ2, z2)

)
| ≥ mmax then

5: Invokes Scase34Check(KUni,if , i1, δ1, z1, i2, δ2, z2) // See Sect. 9.5
6: else // Multiplicity < mmax

7: λ← 2mmax

8: Picks 2λ pairs
(
(K1,j , u1,j), (K2,j , u2,j)

)
j=1,2,...,λ

and λ+ 2 oracle inputs(
(i

(j)
1 , δ

(j)
1 , z

(j)
1 )

)
j=1,2,...,λ

, (i
(1)
2 , δ

(1)
2 , z

(1)
2 ) and (i

(2)
2 , δ

(2)
2 , z

(2)
2 ), s.t.

γin
1

(
K1,j , u1,j

)
= γin

1

(
K2,j , u2,j

)
= (i

(j)
1 , δ

(j)
1 , z

(j)
1 ), j = 1, ..., λ,

φin
2

(
K1,1, u1,1

)
= φin

2

(
K1,2, u1,2

)
= ... = φin

2

(
K1,λ, u1,λ

)
= (i

(1)
2 , δ

(1)
2 , z

(1)
2 ),

φin
2

(
K2,1, u2,1

)
= φin

2

(
K2,2, u2,2

)
= ... = φin

2

(
K2,λ, u2,λ

)
= (i

(2)
2 , δ

(2)
2 , z

(2)
2 ). (34)

9: Makes λ+ 2 queries P
(
i
(1)
1 , δ

(1)
1 , z

(1)
1

)
→ z

′(1)
1 , ..., P

(
i
(λ)
1 , δ

(λ)
1 , z

(λ)
1

)
→ z

′(λ)
1 , and

P
(
i
(1)
2 , δ

(1)
2 , z

(1)
2

)
→ z

′(1)
2 , P

(
i
(2)
2 , δ

(2)
2 , z

(2)
2

)
→ z

′(2)
2

10: Derives 2λ plaintexts x1,j ← φout
1

(
K1,j , z

′(j)
1 , u1,j

)
and x2,j ← φout

1

(
K2,j , z

′(j)
1 , u2,j

)
for j = 1, ..., λ

11: Queries E(K1,j , x1,j)→ y1,j and E(K2,j , x2,j)→ y2,j for j = 1, ..., λ
12: Let J1 = {j′1, j′2, ..., j′s1} ⊆ {1, ..., λ} be the set of indices such that y1,j′ ∈
Yif(K1,j′) for all j

′ ∈ J1

13: Let J2 = {j′′1 , j′′2 , ..., j′′s2} ⊆ {1, ..., λ} be the set of indices such that y2,j′′ ∈
Yif(K2,j′′) for all j

′′ ∈ J2

14: if |J1| < λ/2 ∧ |J2| < λ/2 then
15: Outputs 1
16: else
17: if |J1| ≥ λ/2 then

18: w1,j′ ← φout
2

(
K1,j′ , z

′(1)
2 , u1,j′

)
for all j′ ∈ J1

19: Outputs 1 iff. φin
3

(
K1,j′ , w1,j′

)
= γin

3

(
K1,j′ , y1,j′

)
for all j′ ∈ J1

20: else // |J2| ≥ λ/2

21: w2,j′′ ← φout
1

(
K2,j′′ , z

′(2)
2 , u2,j′′

)
for all j′′ ∈ J2

22: Outputs 1 iff. φin
3

(
K2,j′′ , w2,j′′

)
= γin

3

(
K2,j′′ , y2,j′′

)
for all j′′ ∈ J2

23: end if
24: end if
25: end if

Analysis of Subcase 3.5. Recall from Fig. 17 that the concrete condition

is |Uni,if(K)| ≥ 2nR/2, where R = minK∈K1

{ |Xni(K)|
2n

}
. On the other hand, let

εni := maxK∈K1

{
|Yni(K)|/2n

}
.

Subcase 3.5.1: Subcase35 enters the branch at line 5. In this subcase, Subcase35
invokes Scase34Check, and Lemma 8 immediately yields the advantage lower
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bound 1 − 2q2/2mmin − 2qεni − 2(4εde(φin
3 ))

mmax−1 = 1 − negl(n). We refer to
Fig. 9 (right) for the involved query structures.
Subcase 3.5.2: Subcase35 enters the branch at line 6. We refer to Fig. 9 (left)
for the involved query structure in this subcase.

Existence of the 2λ pairs. We construct a bipartite graph G = (VL,VR, E)
with VL = Rngni(γ

in
1 ) (see Eq. (14)), VR = ∪K∈K2

Rngif(φ
in
2 ,K) (see Eq. (14))

and |E| = |KUni,if |. G contains an edge
(
(i1, δ1, z1), (i2, δ2, z2)

)
∈ E (duplica-

tion excluded), if and only if there exists (K,u) ∈ KUni,if such that γin
1 (K,u) =

(i1, δ1, z1)∧φin
2 (K,u) = (i2, δ2, z2). Since |KUni,if

(
(i1, δ1, z1), (i2, δ2, z2)

)
| < mmax

for all (i1, δ1, z1) and (i2, δ2, z2), we get a simple bipartite graph G = (VL,VR, E)
with |VL| ≤ |I≤n|2n+1 (Lemma 5), |VR| ≤

∑
K∈K2

|Domif(Π2,K)| · εde(Π2) ≤
|K2|·2n ·εde(Π2) ≤ εde(Π2)2

κ+n−4 (Lemma 4) and E ≥ |KUni,if |/mmax ≥ 2κ+n−5R
mmax

.

Then, 2λ pairs
(
(K1,j , u1,j), (K2,j , u2,j)

)
j=1,2,...,λ

satisfying Eq. (34) indi-

cate a biclique Kλ,2 in G. We apply Proposition 2: let M = |I≤n|2n+1, N =
εde(Π2)2

κ+n−4, a = λ and b = 2. Then, the bound from Proposition 2 has

(b− 1)
1
a ·MN1− 1

a + (a− 1)N ≤ |I≤n|2n+1 ×
(
εde(Π2)2

κ+n−4)1− 1
λ

+ (λ− 1)εde(Π2)2
κ+n−4.

The above graph G satisfies the two conditions of Proposition 2. Since we
have |E| ≥ 2κ+n−5R/mmax, G contains Kλ,2 as long as10

|E| ≥ 2κ+n−5R

mmax
≥ |I≤n|2n+1 ×

(
εde(Π2)2

κ+n−4)1− 1
λ + (λ− 1)εde(Π2)2

κ+n−4.

Since R = Ω(1/poly(n)), λ = 2mmax = O(poly(n)) and εde(Π2) = negl(n), when
n is large enough it holds λεde(Π2) ≪ R/4mmax, and

2κ+n−5R/mmax − (λ− 1)εde(Π2)2
κ+n−4 ≥ 2κ+n−6R/mmax.

Moreover, when n is large enough it holds R/mmax ≥ (εde(Π2))
1− 1

λ . Thus, G
contains Kλ,2 as long as

2κ+n−6R/mmax ≥ |I≤n|2n+1 ×
(
εde(Π2)2

κ+n−4)1− 1
λ ,

2κ+n−6 ≥ |I≤n|2n+1 ×
(
2κ+n−4)1− 1

λ ,

κ+ n− 6 ≥ log2 |I≤n|+ n+ 1 +
(
κ+ n− 4

)
− 1

λ

(
κ+ n− 4

)
,

1

2mmax

(
κ+ n− 4

)
≥ log2 |I≤n|+ n+ 3,

κ ≥ 2mmax log2 |I≤n|+ (2mmax − 1)n+ 6mmax + 4.

10 We can also consider a symmetrical setting, i.e., for G∗ = (V∗
L,V∗

R, E∗), |V∗
L| ≤

M = εde(Π2)2
κ+n−4, |V∗

R| ≤ N = |I≤n|2n+1, a = 2 and b = λ. The upper bound
on |E∗| such that G∗ does not contain K2,λ. Then Proposition 2 indicates |E∗| ≤
(λ− 1)1/2× εde(Π2)2

κ+n−4× |I≤n|1/22(n+1)/2 + |I≤n|2n+1. This can be fulfilled only
if εde(Π2) is exponentially small rather than merely negligible.
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This is fulfilled under our assumption κ ≥ 2mmax log2 |I≤n|+2mmaxn+6mmax+
4. Therefore, with our parameters, Subcase35(K2) can find the λ+ 2 vertexes(
(i

(j)
1 , δ

(j)
1 , z

(j)
1 )

)
j=1,2,...,mmax

, (i
(1)
2 , δ

(1)
2 , z

(1)
2 ) and (i

(2)
2 , δ

(2)
2 , z

(2)
2 ) and the 2λ pairs

(edges)
(
(K1,j , u1,j), (K2,j , u2,j)

)
j=1,2,...,λ

at line 8 that satisfy Eq. (34).

Attack advantage. Subcase35(K2) outputs 1 at either line 15 or lines 19 or
22 according to the equalities.

In the real world, the equalities checked at lines 19 or 22 always hold, and
thus Subcase35(K2) always outputs 1.

Analysis of the ideal world probability partly follows Subcase 3.1. Concretely,
we define two events Bad− and Bad+ in the interaction between D3, S and IC:

(i) Bad− happens, if right after a backward IC-query IC−1(K, y) → x, there
exists an earlier-obtained IC input/output IC(K ′, x′) = y′ such that x ∈
Xni(K) ∧ x′ ∈ Xni(K

′) ∧ φin
1 (K,x) = φin

1 (K ′, x′). Using Corollary 1, it can
be seen Pr[Bad−] ≤ 2q2/2mmin .

(ii) Bad+ occurs, if there appears a forward IC-query IC(K,x) → y that has
y ∈ Yni(K). Since |Yni(K)| < 2nεni for all K ∈ K2, it holds Pr[Bad

+] ≤ 2qεni.

By construction, after executing line 13, there have been two groups of λ IC
inputs/outputs G1 =

(
IC(K1,1, x1,1) = y1,1, ..., IC(K1,λ, x1,λ) = y1,λ

)
and G2 =(

IC(K2,1, x2,1) = y2,1, ..., IC(K2,λ, x2,λ) = y2,λ
)
in the ideal world interaction,

such that:

(i) xb,j ∈ Xni(Kb,j) for all (b, j) ∈ {1, 2} × {1, ..., λ}; and
(ii) φin

1

(
K1,j , x1,j

)
= φin

1

(
K2,j , x2,j

)
for all j = 1, ..., λ.

Conditioned on ¬Bad−, in each pair of IC inputs/outputs
(
IC(K1,j , x1,j) =

y1,j , IC(K2,j , x2,j) = y2,j
)
such that x1,j ∈ Xni(K1,j) ∧ x2,j ∈ Xni(K2,j) ∧

φin
1

(
K1,j , x1,j

)
= φin

1

(
K2,j , x2,j

)
, either IC(K1,j , x1,j) = y1,j or IC(K2,j , x2,j) =

y2,j must be obtained via a forward IC-query. By this, either G1 contains at least
λ/2 forward IC-queries, or G2 contains at least λ/2 forward IC-queries. Further
conditioned on ¬Bad+, every forward IC-query IC(K,x) → y has y ∈ Yif(K).
By these, Subcase35(K2) always enter the branch of line 16 (thus, it won’t
output 1 at line 15).

Assume that S completely knows the involved values
(
(i

(j)
1 , δ

(j)
1 , z

(j)
1 )

)
j=1,2,...,λ

,

(i
(1)
2 , δ

(1)
2 , z

(1)
2 ) and (i

(2)
2 , δ

(2)
2 , z

(2)
2 ) and 2λ edges

(
(K1,j , u1,j), (K2,j , u2,j)

)
j=1,2,...,λ

found by Subcase35 at line 8. Conditioned on ¬Bad− and on that Subcase35
has entered the branch of line 16, Subcase35 outputs 1 only if S succeeds in
pinpointing b ∈ {1, 2} and J ∗ = {j∗1 , j∗2 , ..., j∗s} ⊆ {1, ..., λ}, s ≥ λ/2, and making
s forward IC-queries IC(Kb,j∗1

, x∗1)→ y∗1 , ..., IC(K∗b,j∗s , x
∗
s)→ y∗s that have:

– There exists z′2 ∈ {0, 1}m(i
(b)
2 ) such that φin

3

(
Kb,j∗ℓ

, φout
2

(
Kb,j∗ℓ

, z′2, ub,j∗ℓ

))
=

γin
3

(
Kb,j∗ℓ

, y∗ℓ
)
for ℓ = 1, ..., s.
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(Once this is done, S may use them to fool Subcase35(K2) outputting 1 at line
19 or 22).

Let BadGroup be the event that S succeeds in making a tuple of s = λ/2
forward IC-queries as above. The remaining argument follows Subcase 3.1. Con-
cretely, for each s-tuple of IC-queries IC(Kb,j∗1

, x∗1)→ y∗1 , ..., IC(K∗b,j∗s , x
∗
s)→ y∗s ,

the probability that ∃z′2 ∈ {0, 1}m(i
(b)
2 ) with φin

3

(
Kb,j∗ℓ

, φout
2

(
Kb,j∗ℓ

, z′2, ub,j∗ℓ

))
=

γin
3

(
Kb,j∗ℓ

, y∗ℓ
)
for ℓ = 1, ..., s is at most 2m(i

(b)
2 )×(2εde(φin

3 ))
s ≤ 2mmax×(2εde(φin

3 ))
s.

Summing over the at most qs choices of possible s-tuples IC(Kb,j∗1
, x∗1) →

y∗1 , ..., IC(K∗b,j∗s , x
∗
s)→ y∗s and using s = λ/2 = mmax, we reach

Pr
[
BadGroup | ¬Bad− ∧ ¬Bad+

]
≤ qs × 2mmax × (2εde(φin

3 ))
s ≤ (2q)mmax × (2εde(φin

3 ))
mmax ≤ (4qεde(φin

3 ))
mmax .

Therefore, the total probability that Subcase35(K2) outputs 1 in the ideal
world cannot exceed Pr[Bad−] + Pr[Bad+] + Pr[BadGroup | ¬Bad− ∧ ¬Bad+] ≤
2q2/2mmin+2qεni+(4qεde(φin

3 ))
mmax , and the advantage is at least 1−2q2/2mmin−

2qεni−(4qεde(φin
3 ))

mmax = 1−negl(n) in Subcase 3.5.2. In all, advantage is always
at least 1− negl(n) in Subcase 3.5.

Further intuitions for Subcase 3.5. For E3, differentiator actions and analy-
sis in Subcase 3.5 constituted the most complicated part. Meanwhile, it requires
a large key size κ ≥ λ log2 |I≤n|+ (λ− 1)n− λ log2 mmax − log2 εde(Π2) + 4. To
justify the complexity, we provide some earlier failed attempts as follows.

Fig. 18. Query structures used in two failed attempts to attacking 3-round general
ciphers, Case 5.

First, a natural attempt is to consider a “star” structure “centered” at the
2nd round, as depicted in Fig. 18 (left). More clearly, the t encipherments collide
on a 2nd round P-call P(i2, δ2, z2). This structure resembles that used in Subcase
3.1 (see Fig. 6 (left)), and actually its size t can be exponential. But unlike Fig. 6
(left), the exponential encipherments may be non-inv-free in the 1st round. This
means they may all call P(i1, ·, ·) with m(i1) = n (i.e., an n-bit P) in the 1st
round. It is easy to see the simulator S can program P(i1, ·, ·) (a standard method
in indifferentiability simulator for IEM ciphers [1]) to make the t simulated
encipherments consistent with the ideal cipher inputs/outputs, as indicated by
the green bold lines in Fig. 18 (left).
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A second attempt is to consider a “star” structure “centered” at the 1st
round, as depicted in Fig. 18 (right). More clearly, the t encipherments collide
on a 1st round P-call P(i1, δ1, z1). This structure resembles that used in Sub-
case 3.3 (see Fig. 8 (left)), and t can also be exponential. S cannot program
P(i1, δ1, z1) to ensure consistency for all the encipherments any more. However,
the t encipherments likely invoke distinct P-calls in 2nd and 3rd rounds, as shown
in Fig. 18 (right)—at least, with polynomial queries, differentiators cannot find
more collisions in 2nd and 3rd rounds. It can be see S can program their 2nd and
3rd round P-call responses (a standard method in indifferentiability simulator
for Feistel [16]) to make the t simulated encipherments consistent with the ideal
cipher inputs/outputs, as indicated by the green bold circles in Fig. 18 (right).

In comparison, in the structure used in our attack (see Fig. 9), the involved
encipherments have collisions in both the 1st and the 2nd rounds. The simulation
strategy against our failed attempts thus do not apply. As a final remark, since
the right shore of the constructed graph G is rather large (|VR| ≈ εde(Π2)2

κ+n−4),
it is easy to see attacks cannot use exponential-size bicliques. If εde(Π2) is ex-
ponentially small (which indeed holds in common blockciphers) then the attack
may admit improvements.

9.7 Other subcases: |Xni(K)| = o(2n/poly(n)) and
|Yni(K)| = Ω(2n/poly(n)) for all K ∈ K1

In this subcase, it holds |Wni,ni(K)|+ |Wif,ni(K)| = |Yni(K)| = Ω(2n/poly(n)) for
allK ∈ K1. The pigeonhole principle indicates that there exists a subset K2 ⊆ K1

such that |K2| ≥ |K1|/2, and either of the following holds for all K ∈ K2:

– |Wni,ni(K)| ≥ 2nR/2; or
– |Wif,ni(K)| ≥ 2nR/2,

where R = Ω(1/poly(n)) is the ratio computed at line 22 (Fig. 17).
Therefore, our design of the subroutine Handle3Iter in this branch (from

line 21 in Fig. 17) is sound. Then,

– If |Wni,ni(K)| ≥ 2nR/2 for all K ∈ K2, then since we also have |Xni(K)| =
o(2n/poly(n)) for all K ∈ K2, the case is similar to Subcase 3.4 (|Uni,if(K)| =
Ω(2n/poly(n)) and |Yni(K)| = o(2n/poly(n)) for all K in that K2). The
analysis is also similar to Sect. 9.5 by symmetry, and we omit.

– If |Wif,ni(K)| ≥ 2nR/2 for all K ∈ K2, then the case is similar to Subcase
3.5. The analysis is similar to Sect. 9.6, and we omit.

9.8 Summary

In summary:

– In Case 1 and 2 (Sect. 8), attack advantage is at least 1− negl(n);
– In Subcases 3.1, 3.4 and 3.5, there exists a negligible function negl(n) such
that the attack advantage is at least 1− negl(n);
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– In Subcases 3.2 and 3.3, there exists a polynomial poly(n) and a negligible
function negl(n) such that attack advantage is at least 1/poly(n)− negl(n).

These yield the claim in Theorem 3.
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38. Kővári, P., T Sós, V., Turán, P.: On a problem of Zarankiewicz. In: Colloquium
Mathematicum. vol. 3, pp. 50–57. Polska Akademia Nauk (1954)

39. Lampe, R., Seurin, Y.: How to Construct an Ideal Cipher from a Small Set of
Public Permutations. In: ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 444–
463. Springer (2013). https://doi.org/10.1007/978-3-642-42033-7 23

40. Luby, M., Rackoff, C.: How to Construct Pseudorandom Permutations
from Pseudorandom Functions. SIAM J. Comput. 17(2), 373–386 (1988).
https://doi.org/10.1137/0217022, https://doi.org/10.1137/0217022

41. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, Impossibility
Results on Reductions, and Applications to the Random Oracle Method-
ology. In: TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer (2004).
https://doi.org/10.1007/978-3-540-24638-1 2

42. Nandi, M.: On the Optimality of Non-Linear Computations of Length-Preserving
Encryption Schemes. In: ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp. 113–133.
Springer (2015). https://doi.org/10.1007/978-3-662-48800-3 5

59

https://doi.org/10.1109/FOCS.2012.51
https://doi.org/10.1109/FOCS.2012.51
https://doi.org/10.1006/jctb.2002.2123
https://doi.org/10.1006/jctb.2002.2123
https://doi.org/10.1109/CCC.2000.856739
https://doi.org/10.1137/0217022


43. Nikiforov, V.: A contribution to the Zarankiewicz problem. Lin-
ear Algebra and its Applications 432(6), 1405–1411 (2010).
https://doi.org/https://doi.org/10.1016/j.laa.2009.10.040, https://www.

sciencedirect.com/science/article/pii/S0024379509005540

44. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with Composition: Lim-
itations of the Indifferentiability Framework. In: EUROCRYPT 2011. LNCS,
vol. 6632, pp. 487–506. Springer (2011). https://doi.org/10.1007/978-3-642-20465-
4 27

45. Rogaway, P., Steinberger, J.P.: Security/Efficiency Tradeoffs for Permutation-
Based Hashing. In: EUROCRYPT 2008. pp. 220–236. LNCS, Springer (2008).
https://doi.org/10.1007/978-3-540-78967-3 13

46. Rønjom, S., Bardeh, N.G., Helleseth, T.: Yoyo Tricks with AES.
In: ASIACRYPT 2017, Part I. pp. 217–243. LNCS, Springer (2017).
https://doi.org/10.1007/978-3-319-70694-8 8

47. Rudich, S.: Limits on the provable consequences of one-way functions. Ph. D.
Thesis, University of California (1988)

48. Shannon, C.: Communication theory of secrecy system. Bell Syst Tech J (28),
656–715 (1949)

49. Simon, D.R.: Finding Collisions on a One-Way Street: Can Secure Hash Functions
Be Based on General Assumptions? In: EUROCRYPT 1998. pp. 334–345. LNCS,
Springer (1998). https://doi.org/10.1007/BFb0054137

50. Wagner, D.: The Boomerang Attack. In: FSE. pp. 156–170. LNCS, Springer (1999).
https://doi.org/10.1007/3-540-48519-8 12

51. Wu, H., Preneel, B.: AEGIS: A Fast Authenticated Encryption Algorithm. In:
SAC 2013. pp. 185–201. LNCS, Springer (2014). https://doi.org/10.1007/978-3-
662-43414-7 10

52. Zhandry, M., Zhang, C.: Indifferentiability for Public Key Cryptosys-
tems. In: CRYPTO 2020, Part I. pp. 63–93. LNCS, Springer (2020).
https://doi.org/10.1007/978-3-030-56784-2 3

A Non-Iterated Blockciphers

As mentioned in the Introduction, blockciphers are indeed not necessarily iter-
ated, and we serve two examples in Fig. 19.

Intuitively, with the same number of primitive calls, iterated blockciphers are
more secure than non-iterated. E.g., note that in both of the instances in Fig.
19, the two calls crowd into a single round encipherment, and their weakness are
somewhat obvious. Furthermore, advantage of iterated ciphers are also supported
by various security amplification results initiated in [40].

Though, it is challenging to formally inject the above intuitions into our
argument to address fully general 2- and 3-call ciphers. In general ciphers it is
non-trivial to determine “valid” intermediate values. In addition, the proof has to
address the interference between various types of data-dependent encipherment.

With the above considerations, we leave further explorations to future work.

B Attack 1-Call Ciphers without Non-degeneracy

We first introduce a helper combinatorial lemma.
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Fig. 19. Examples of non-iterated 2-call blockciphers. (left) an instance that makes
the two calls in a single Feistel round, and its decipherment has to begin by querying
F1; (right) decipherment has to begin by querying P−1

1 .

Lemma 9. Consider a function f : X → Y. If f is not a constant function,
then there exists x◦ ∈ X such that

Pr
[
x

$←− X : f(x) = f(x◦)
]
≤ 1

2
. (35)

Proof. Let y∗ ∈ Y, and let X (y∗) ⊆ X be such that f(x) = y∗ if and only if
x ∈ X (y∗). Then,

– If |X (y∗)| ≤ |X |
2 , then for any x◦ ∈ X (y∗) it holds Pr

[
x

$←− X : f(x) =

f(x◦)
]
= |X (y∗)|

|X | ≤
1
2 ;

– If |X (y∗)| > |X |
2 , then for any x◦ ∈ X\X (y∗) it holds Pr

[
x

$←− X : f(x) =

f(x◦)
]
≤ |X |−|X (y∗)|

|X | ≤ 1
2 .

Thus the claim. ⊓⊔

In Sect. 6, the Case 2 argument crucially relies on the εde(E1)-non-degeneracy

of E1 (so that
∣∣Domif(E1,K, i, δ, z)

∣∣ > 1/εde(E1) = Ω(poly(n)) for any such
(i, δ, z)). When E1 is degenerate, we have to modify the case-study. The modified

differentiator D1
E,P

is given in Fig. 20.
Below we provide intuitions and analyses. The actions of D1 consist of three

cases.

Case 1: ∃K ∈ {0, 1}κ such that Domif(E1,K) ̸= ∅, Domni(E1,K) ̸= ∅.
Then, E1P necessarily maps x ∈ Domif(E1,K) (x ∈ Domni(E1,K), resp.) to
y ∈ Rngif(E1,K) (y ∈ Rngni(E1,K), resp.), and this constitutes our attack idea.

Wlog assume |Domif(E1,K)| ≥ |Domni(E1,K)|. Recall from Fig. 20 that

D1
E,P

samples x
$←− Domni(E1,K) and queries E(K,x) → y. When D1

E,P
is

interacting with the real world (E1P ,P), it always holds y ∈ Rngni(E1,K). In the

ideal world we have Pr
[
y

$←− {0, 1}n : y ∈ Rngni(E1,K)
]
= |Rngni(E1,K)|

2n ≤ 1/2.
Therefore, the attack advantage is at least 1/2 in Case 1.

Case 2: ∃K ∈ {0, 1}κ such that Domif(E1,K) = {0, 1}n. This means
the whole permutation E1P(K, ·) is inverse-free. It further distinguishes two
subcases as follows.
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Algorithm D1
E,P

(K)
Determines the sets Domif(E1, K) and Domni(E1, K) for all K ∈ K
if ∃K ∈ K s.t. Domif(E1, K) ̸= ∅ and Domni(E1, K) ̸= ∅ then // Case 1

if |Domif(E1, K)| ≥ |Domni(E1, K)| then
x

$←− Domni(E1, K), E(K, x)→ y
Outputs 1 iff. y ∈ Rngni(E1, K)

else // |Domni(E1, K)| ≥ |Domif(E1, K)|
x

$←− Domif(E1, K), E(K, x)→ y
Outputs 1 iff. y ∈ Rngif(E1, K)

end if
else if ∃K ∈ {0, 1}κ s.t. Domif(E1, K) = {0, 1}n then // Case 2

if φin(K, ·) is not a constant function then // Subcase 2.1

Picks x◦ ∈ {0, 1}n s.t. Pr
[
x

$←− {0, 1}n : φin(K, x) = φin(K, x◦)
]
≤ 1/2

E(K, x◦)→ y◦

Outputs 1 iff. γin(K, y◦) = φin(K, x◦)

else // Subcase 2.2: φin(K, x) = γin(K, y) is a constant for all x, y ∈ {0, 1}n
// The same as Fig. 11

end if
else // Case 3: Domni(E1, K) = {0, 1}n for all K ∈ K

// The same as Fig. 11
end if

Fig. 20. Differentiator D1
E,P

against degenerate E1.

Subcase 2.1: φin(K, ·) is not a constant function. Then, line 13 is well-defined:

by Lemma 9, there exists x◦ ∈ {0, 1}n such that Prx
[
φin(K,x) = φin(K,x◦)

]
=

|Rngif(E1,K, i◦, δ◦, z◦)|/2n ≤ 1/2. Let (i◦, δ◦, z◦) = φin(K,x◦). By Lemma 2, we
have |Rngif(E1,K, i◦, δ◦, z◦)| = |Domif(E1,K, i◦, δ◦, z◦)| (recall from Eq. (13) for
the notations Domif(E1,K, i◦, δ◦, z◦) and Rngif(E1,K, i◦, δ◦, z◦)), which implies

Pr
[
y

$←− {0, 1}n : γin(K, y) = γin(K, y◦)
]
=
|Rngif(E1,K, i◦, δ◦, z◦)|

2n
≤ 1

2
. (36)

With these observations, we analyze the attack advantage. Recall from Fig.

20 that D1
E,P

pinpoints the special x◦ and queries E(K,x◦) → y◦. When D1
is interacting with the real world, it always holds γin(K, y◦) = φin(K,x◦) by
Lemma 2. On the other hand, y◦ = IC(K,x◦) is uniform in {0, 1}n in the ideal
world, and Pr[γin(K, y◦) = φin(K,x◦)] ≤ 1/2 by Eq. (36). These yield attack
advantage at least 1/2.

Subcase 2.2: φin(K,x) = γin(K, y) = (i, δ, z) is a constant. In this subcase, for

this key K the encipherment becomes E1P(K,x) = φout
(
K,P(i, δ, z), x

)
using

P(i, δ, z) as a subkey.

Then, φout
(
K,P(i, δ, z), ·

)
defines a bijection between Domif(E1,K, i, δ, z)

and Rngif(E1,K, i, δ, z). Since Domif(E1,K, i, δ, z) = Rngif(E1,K, i, δ, z) = {0, 1}n
and since |P(i, δ, z)| = poly(n), φout

(
K,P(i, δ, z), ·

)
is a permutation on {0, 1}n

defined using a random string P(i, δ, z) of polynomial size. The attack and anal-
ysis then follow [41, Sect. 6] or Sect. 6, Case 1.

Case 3: Domni(E1,K, i, δ, z) = {0, 1}n for all K ∈ K. This part is the
same as Case 2 in Sect. 6, and advantage is at least 1− 2/2mmin .
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Summary. By the above, when n is sufficiently large, it holds

Advindif
E1P ,IC,S

(D1) ≥ min
{1

2
, 1− 1

2n
− mmax

2

2n
, 1− 2

2mmin

}
≥ 1

2
.
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