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Abstract. An oblivious pseudorandom function, or OPRF, is an important primitive that is used to
build many advanced cryptographic protocols. Despite its relevance, very few post-quantum solutions
exist.
In this work, we propose a novel OPRF protocol that is post-quantum, verifiable, round-optimal, and
moderately compact. Our protocol is based on a previous SIDH-based construction by Boneh, Kogan,
and Woo, which was later shown to be insecure due to an attack on its one-more unpredictability.
We first propose an efficient countermeasure against this attack by redefining the PRF function to use
irrational isogenies. This prevents a malicious user from independently evaluating the PRF.
The SIDH-based construction by Boneh, Kogan, and Woo is also vulnerable to the recent attacks on
SIDH. We thus demonstrate how to efficiently incorporate the countermeasures against such attacks to
obtain a secure OPRF protocol. To achieve this, we also propose the first proof of isogeny knowledge
that is compatible with masked torsion points, which may be of independent interest.
Lastly, we design a novel non-interactive proof of knowledge of parallel isogenies, which reduces the
number of communication rounds of the OPRF to the theoretically-optimal two.
Putting everything together, we obtain the most compact post-quantum verifiable OPRF protocol.
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1 Introduction

An oblivious pseudorandom function (OPRF) is a two-party protocol between a user and a server. The two
parties obliviously evaluate a PRF on a user-controlled input with a secret key held by the server. After
engaging in the protocol, the user learns only the output of the PRF on their chosen input, while the server
does not learn anything, neither the user’s input nor the output of the function. Oblivious PRFs can also
satisfy a stronger property called verifiability: in a verifiable OPRF (vOPRF), the server initially commits to
its secret key, and during the execution of the protocol it provides a proof that it has behaved honestly and it
has used the previously committed secret key.

Oblivious PRFs have widespread applications: they can be used to build password-management sys-
tems [ECS+15], adaptive oblivious transfers [JL09], password-protected secret sharing [JKK14], and private
set intersection [JL09], which can in turn be used for privacy-preserving contact discovery in messaging
services [DRRT18] or for checking compromised credentials [LPA+19]. For instance, the web browser Microsoft
Edge uses an OPRF-based protocol to detect compromised passwords. Another practical use case of OPRFs is
the privacy-preserving authorisation mechanism known as Privacy Pass [DGS+18]. Developed and currently
deployed by Cloudflare, Privacy Pass reduces the number of CAPTCHAs that users need to complete by
issuing a number of tokens, which users can spend to avoid solving a second CAPTCHA. To prevent the
server (i.e. Cloudflare, in this case) from tracking users across websites, the user queries must be oblivious.
OPRFs are also used within OPAQUE [JKX18], a strong asymmetric password-authenticated key exchange
that allows a user and a server to authenticate each other based on a shared password with strong security
guarantees without the need to communicate the password. For these reasons, there are ongoing efforts to
integrate OPAQUE into TLS 1.31. Overall, OPRFs are a fundamental tool for developing privacy-preserving
solutions, and they are set to be standardized by the Crypto Forum Research Group (CFRG) [DFHSW23].
1 https://blog.cloudflare.com/opaque-oblivious-passwords/
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It is possible to build an OPRF using generic multi-party computation techniques, but such solutions
can be inefficient, and they require more rounds of communication than what an ad-hoc construction can
achieve. Indeed, highly-efficient and round-optimal (i.e., with two rounds) constructions exist based on
Diffie-Hellman [JKK14] or RSA blind signatures [Cha82]. All such constructions are classical, i.e. they are
vulnerable to quantum attacks. The rapid development of quantum computers requires an urgent transition
to post-quantum solutions, but very few quantum-resistant OPRFs are reported in the literature. The first
quantum-secure verifiable OPRF was proposed by Albrecht, Davidson, Deo and Smart [ADDS21]. The
protocol is based on the learning-with-errors problem and the short-integer-solution problem in one dimension,
and it only requires two rounds of communication. However, the construction can be characterized as a
feasibility result, as a single OPRF execution requires communicating hundreds of gigabytes of data. The only
other post-quantum solutions were proposed by Boneh, Kogan, and Woo [BKW20]. The authors proposed
two moderately-compact OPRFs based on isogenies, one relying on SIDH and one on CSIDH. The protocol
based on CSIDH is a non-verifiable, three-round OPRF, which is obtained by combining a Naor-Reingold
PRF [NR97] with a CSIDH-based oblivious transfer protocol [LGd21] to make the PRF evaluation oblivious.
The OPRF based on SIDH is verifiable, but requires an even higher number of communication rounds, since
the verifiability proof is highly interactive. A later work by Basso, Kutas, Merz, Petit and Sanso [BKM+21]
cryptanalyzed the SIDH-based OPRF by demonstrating two attacks against the one-more unpredictability of
the protocol, i.e. it showed that a malicious user can recover sufficient information to independently evaluate
the PRF on any input. The first attack is polynomial-time, but it can be easily prevented with a simple
countermeasure; the second attack is subexponential but still practical, and the authors argue that there
is no simple countermeasure against it. More recently, a series of works [CD22,MM22,Rob22] developed an
efficient attack on SIDH that also extends to the SIDH-based OPRF.

Contributions. In this work, we propose an OPRF protocol that is post-quantum secure, verifiable, round-
optimal, and moderately compact (≈9 MB per execution), with a security proof in the UC framework [Can01]
in the random-oracle model. To do so, we follow the same high-level approach as the SIDH-based OPRF by
Boneh, Kogan, Woo [BKW20], but with the following changes:

– We propose an efficient countermeasure against the one-more unpredictability attack by Basso, Kutas,
Merz, Petit, and Sanso [BKM+21]. We modify the PRF definition, and in particular we use irrational
isogenies to map the user’s input to an elliptic curve. In this way, the information that allowed an attacker
to independently evaluate the PRF is no longer defined over a field of small extension. A malicious user
may still attempt to carry out the attack from [BKM+21], but this would now require the attacker to work
with points with exponentially many coordinates over the base field, which makes the attack infeasible.
Besides preventing the attack, this change results in a smaller prime and a more compact protocol.

– We discuss how to integrate MSIDH, a recently-proposed countermeasure [FMP23] against the SIDH
attacks that relies on masked torsion, into the OPRF protocol. This requires using longer isogenies and a
larger prime, but a series of optimizations allow us to maintain a reasonable communication cost. To
integrate MSIDH, we also propose the first zero-knowledge proof of knowledge that can guarantee the
correctness of an MSIDH public key, which may be of independent interest. The proof relies on splitting
the masking value into three multiplicative shares: this enables the prover to build a commutative SIDH
square and reveal a single edge, together with the torsion point images, without leaking any information
about the witness. Repeating the process multiple times yields a proof with negligible soundness error.

– We propose a novel proof of knowledge that can guarantee that two isogenies are parallel, i.e. they are
computed by applying the same secret key to two starting curves and torsion points. The protocol is
obtained by evaluating two proofs of isogeny knowledge in parallel with correlated randomness. The proof
can be proved zero-knowledge under a new yet mild assumption. Such a proof can be used by the server
to show that it has used a previously committed secret key, which is the key ingredient to make the
OPRF verifiable. Since the proof is a proof of knowledge, it can be made non-interactive through standard
transformations; this makes the proposed OPRF the first isogeny-based OPRF to be round-optimal.
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Paper organization. In Section 2, we introduce the main constructions needed for the rest of the paper.
In Section 3, we present the OPRF ideal functionality, together with the security notions and assumptions
needed to implement it. Section 4 presents novel countermeasures against the one-more unpredictability
attack by Basso, Kutas, Merz, Petit and Sanso, while Section 5 discusses how to prevent the SIDH attacks,
and Section 6 presents the new proof of parallel isogeny used to achieve verifiability. In Section 7, we put
everything together to obtain the new OPRF protocol, estimate its communication complexity, and compare
it with the existing solutions.

2 Preliminaries

In this section, we present the notation used in the rest of the paper, and we briefly introduce the SIDH
protocol, the recent attacks on SIDH, the OPRF construction by Boneh, Kogan, and Woo [BKW20], and the
attack on the protocol by Basso, Kutas, Merz, Petit, and Sanso [BKM+21].

2.1 SIDH

The Supersingular Isogeny Diffie-Hellman (SIDH) [JD11] is a key-exchange protocol based on isogenies between
supersingular elliptic curves. For information on elliptic curves and isogenies, we refer the reader to [Sil09].
The protocol parameters include a prime p of the form p = ABf − 1, where A and B are smooth coprime
integers and f a small cofactor, a supersingular curve E0 defined over Fp2 , and the basis PA, QA and PB , QB

that span, respectively, E0[A] and E0[B]. One party samples a secret key a
$←− ZA, computes the isogeny

φA : E0 → EA := E0/〈PA + [a]QA〉, and publishes pkA = (EA, RA = φA(PB), SA = φA(QB)). The second
party proceeds similarly by sampling a secret key b $←− ZB, computing φB : E0 → EB := E0/〈PB + [b]QB〉,
and revealing pkB = (EB , RB = φB(PA), SB = φB(QA)). Then, both parties can agree on a shared secret by
translating their secret isogeny to the starting curve in the other party’s public key using the revealed torsion
information. In other words, the first party computes φ′A : EB → EAB := EB/〈RB + [a]SB〉, and the second
party computes φ′B : EA → EBA := EA/〈RA + [b]SA〉. The codomain curves EAB and EBA are isomorphic,
and thus their j-invariant is the same and provides the shared secret of the key exchange. Note that it is
possible to represent the points in the public keys more compactly than two x-coordinates, which requires
4 log p bits. If the points are expressed in terms of a canonical basis, i.e. a basis deterministically computed
from the curve, their coefficients only require 4 logA or 4 logB bits [AJK+16,CLN16]. In the rest of the
paper, we write P,Q = BN (E) for a canonical basis of order N on E. We also refer to the setup described
above as the SIDH square (E0, EA, EB , EAB) with edges (φA, φB , φ

′
A, φ

′
B).

Generally, isogenies do not commute, which means that two parties computing an SIDH-like exchange
would not agree on a shared secret if they only revealed the isogeny codomain. To avoid the problem, SIDH
reveals the image of a torsion basis that allows each party to translate their isogeny such that they commute.
Torsion points are thus a key element of the SIDH protocol, but they also allow attackers to perform adaptive
attacks against static-key SIDH [GPST16]. To prevent such attacks, both parties can provide a proof of
torsion point correctness, such as the proof proposed in [BKW20,DFDGZ22]. Unfortunately, revealing the
torsion point images also enabled the recent passive attacks on SIDH.

The SIDH attacks. The security of the SIDH protocol hinges on the hardness of recomputing the secret
isogenies given the public key. While the problem of finding an isogeny between two curves is believed to be
hard, the presence of torsion point images in SIDH makes it easier since more information is revealed about
the secret isogeny. In a series of works by Castryck and Decru [CD22], Maino and Martindale [MM22], and
Robert [Rob22], the authors propose a polynomial-time algorithm that can compute an isogeny of smooth
degree d given the domain and codomain curves, the degree d, and the image of a torsion basis of order at
least

√
d. This fully breaks the SIDH key exchange and all protocols based on it. Some counteremasures have

been proposed [FMP23], based on either secret-degree isogenies or on masked torsion images. We discuss
these approaches in the context of the OPRF protocol in Section 5.
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2.2 The OPRF construction by Boneh, Kogan, Woo

Boneh, Kogan, and Woo [BKW20] introduced a verifiable OPRF protocol based on SIDH, which uses a prime
p of the form p = NMNBNKN1N2f − 1, where the values Ni are coprime smooth integers and f is a small
cofactor. Initially, the server commits to its key k by publishing the curve EC obtained as the codomain of the
NK-isogeny starting from Ẽ with kernel 〈P̃ + [k]Q̃〉, where the values Ẽ, P̃ , Q̃ are protocol parameters. The
commitment also include a zero-knowledge proof πC of the correctness of the computation. Then, to evaluate
the PRF on input m ∈M, where M defines the input space, the user computes an isogeny φm of degree NM
by hashing the input with H :M→ ZNM and computing φm : E0 → Em := E0/〈P + [H(m)]Q〉, where the
curve E0 and the points P,Q are also protocol parameters. Then, the user blinds the curve Em by computing
a second isogeny φb : Em → Emb of degree NB. The user sends the curve Emb and the torsion images
RK = φb ◦φm(PK), SK = φb ◦φm(QK) to the server, where the points PK , QK are also protocol parameters of
order NK. The user also provides a non-interactive zero-knowledge proof that torsion information was honestly
computed. The server validates the proof, computes the isogeny φk : Emb → Embk := Emb/〈RK + [k]SK〉
based on its secret key k, and sends the curve Emrk, the image φk(Emb[NB]), and a non-interactive zero-
knowledge proof of correctness to the user. Then, the server and the user engage in an interactive protocol
where the server proves that the isogeny φk has used the same key k as the committed value. If the user
is convinced, they use the provided torsion information to undo the blinding isogeny, i.e. to compute the
translation of the dual of the blinding isogeny, to obtain the curve Emk. The output of the OPRF is then the
hash H

(
m, j(Emk), (EC , πC)

)
. The main exchange, without the commitments and the proofs, is represented

in Fig. 1.

E0 Em

Emb

Ek Emk

Embk

φm

φb

φk

φ̂′
b

φ′
m

φ′
k

Fig. 1. The OPRF construction by Boneh, Kogan, and Woo. The protocol, without the relevant zero-knowledge proofs,
is represented by the solid lines: the isogenies −→ (φm, φb, φ̂′

b) are computed by the client, while the isogeny −→ (φk)
is computed by the server. The isogenies  represent the PRF evaluation, and the isogenies 99K are relevant to the
attack presented in [BKM+21]. The figure is based on Fig 1 of [BKM+21].

2.3 The BKMPS attacks

Basso, Kutas, Merz, Petit, and Sanso [BKM+21] proposed two attacks against the one-more unpredictability
of the OPRF protocol by Boneh, Kogan, Woo [BKW20] OPRF. We refer to them as the BKMPS attacks.
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In the first attack, an attacker who acts as a malicious user engages in the OPRF with a message isogeny
φm with kernel generator a point M , of order `e. The attacker repeats the process with message isogenies
with kernel generators [`]M, [`2]M, . . . , [`e]M . The outputs of the PRF are the curves that lie on the isogeny
path of φ′m : Ek → Emk (see Fig. 1), which allows the attacker to compute a generator of the kernel of such
isogeny. The recomputed generator is a scalar multiple φ′k(M), where φ′k is the isogeny parallel to the server’s
secret isogeny, i.e. its kernel is generated by Pk + [k]Qk. By repeating this process three times with points
M1, M2 and M3 :=M1 +M2 (where M1 and M2 are linearly independent), the attacker obtains

R := [α]φ′k(M0), S := [β]φ′k(M1),

T := [γ]φ′k(M3) = [γ/α]R+ [γ/β]S,

for some unknown values α, β, γ. By expressing T in terms of R and S, the attacker obtains the values γ/α
and γ/β and the points R′ := [γ/α]R = [γ]φ′k(M0) and S′ := [γ/β]S = [γ]φ′k(M1). Finally, the attacker can
evaluate the PRF on any input m by computing EK/〈R′ + [H(m)]S′〉. The attack is polynomial time, but it
crucially rely on using message isogenies φm of varying degree. The attack can be thwarted by server checking
the order of the isogeny φm, which is possible because of the proof of knowledge provided by user.

The authors of [BKM+21] also propose a second attack that cannot be easily prevented. The attack
procceeds in a similar way to the previous one, but the malicious user uses only isogenies of full degree. To
obtain the curves on the path of φm, the attacker needs to find the middle curve between two PRF outputs.
This introduces a trade-off between the complexity of the attack and the number of queries. Minimizing both
yields a subexponential yet practical attack on the one-more unpredictability of the protocol.

3 Oblivious pseudorandom functions

Oblivious pseudorandom functions were originally proposed by Naor and Reingold [NR97], who defined an
OPRF via an ideal functionality. Subsequent work [FIPR05,JL09] defined OPRFs in terms of the two-party
computation (k, x) 7→ (⊥, f(k, x)), but such a definition has several drawbacks. On one side, it is hard to
build protocols that satisfy such a definition, because the security proof would require extracting the user’s
input, while at the same the definition is not secure enough, because it does not guarantee any security under
composability. Since OPRFs are mainly used as builiding blocks in larger protocols, such a security guarantee
is highly needed. For these reasons, Jarecki et al. [JKK14,JKKX16,JKX18] proposed new definitions in the
UC framework [Can01]. To avoid extracting the user’s input, the ideal functionality introduces a ticketing
system that increases a counter when the PRF is evaluated and decreases the counter when the user receives
the PRF output. This captures the idea that a malicious user should learn only the PRF output for one input
for each interaction. This results in the definition of Fig. 2, which is based on the definitions by Jarecki et
al. [JKK14,JKKX17,JKX18].

3.1 Security assumptions

To prove that the OPRF protocol we propose implements the functionality of Fig. 2, we will make use of the
properties listed in this section. Since our protocol and security proof follows the same high-level structure as
that of the OPRF protocol by Boneh, Kogan, and Woo [BKW20], these properties are also based on those of
the augmentable commitment framework proposed in [BKW20]. Unlike [BKW20], we avoid the abstraction of
augmentable commitments due to its restrictiveness (the counteremasures of Section 4 would not be possible
within that framework), and we prefer an explicit description throughout this work.

Correctness. Firstly, we require the OPRF to be correct, i.e. the output of the protocol is the output of
function that deterministically depends only on the user’s input and the server’s secret key. In other words,
we want that the blinding process that guarantees the obliviousness of the user’s input does not affect the
final output. In the context of our protocol, we want that the unblinding isogeny undoes the effect of the
blinding isogeny. This is contained in the following lemma, whose proof follows from the correctness of the
SIDH protocol [JD11].
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Parameters: The PRF output `, polynomial in the security parameter λ.

Convention: For every identifier S, the counter tx[S] is initially set to zero. For every value π ∈ {0, 1}∗ and
x ∈ {0, 1}∗, the value F (π, x) is initially undefined, and whenever such a value is referenced, the functionality assigns
a random `-bit string F (π, x)

$←− {0, 1}`.

Initialization

– On message init from party S, forward (init, S) to the adversary A.
– On message (Param, S, π) from adversary A, if param[S] is undefined, set param[S] = π.

Evaluation

– On message (Eval, S, x) from P ∈ {U,A}, record 〈P, x〉 and forward the message (Eval, P, S) to A.
– On message ServerComplete from server S, send (ServerComplete, S) to A and increment tx[S].
– On message (UserComplete, P, π) from A, retrieve the record 〈P, x〉, delete it from the list of records, and

decrement tx[S] if there exists an honest server S such that param[S] = π; abort if no such record exists or if
tx[S] = 0. Then, send (Eval, π, F (π, x)) to P .

Fig. 2. Functionality FvOPRF.

Lemma 1 (Correctness). Let p be a prime of the form p = NBNKf − 1, where NB, NK, f are smooth
coprime integers. Let E0 be a supersingular elliptic curve defined over Fp2 and let PB , QB and PK , QK be
respectively a basis of E0[NB] and E0[NK]. Let also b and k be two values in ZNB and ZNK . Then, consider
the isogenies

φB : E0 → EB := E0/〈PB + [b]QB〉,
φK : E0 → EK := E0/〈PK + [k]QK〉,
φ′k : EB → EBK := EB/〈φB(PK) + [k]φB(QK)〉.

If RB , SB is a basis of EB [NB] and the values b0, b1 satisfy ker φ̂B = 〈[b0]RB + [b1]SB〉, then we have

j (EBK/〈[b0]φ′k(RB) + [b1]φ
′
k(SB)〉) = j(EK).

Input hiding. To ensure that the OPRF is oblivious, we want that the server does not learn the user’s
input. That holds in the strongest sense, i.e. the server should not learn the user’s input even when the input
is randomly chosen between two inputs chosen by the server. In other words, the user must apply a blinding
step that fully hides the chosen input. In the context of isogenies, we want the following problem to be hard.

Problem 1. Let p be a prime of the form p = NBNKf − 1, where NBNK, f are smooth coprime integers. Let
E0 and E1 be two supersingular elliptic curves defined over Fp2 and chosen by the adversary, and let P0, Q0

and P1, Q1 be a basis of E0[NK] and E1[NB], respectively, such that eNK(P0, Q0) = eNK(P1, Q1). Let i be a
random bit, i.e. i $←− {0, 1}, and B a random point in Ei[NB], and write φ : Ei → E′ := Ei/〈B〉. Output i
given E′ and f(φ(Pi), φ(Qi)), where the latter is some auxiliary torsion information.

The hardness of the problem clearly depends on the function f ; if the torsion images were directly revealed,
Problem 1 would be easy due to the SIDH attacks. We thus delay specifying the function f until Section 5,
where we discuss the SIDH counteremasures to use within the OPRF protocol. In the section, we also state
the variant of the Decisional Isogeny problem that Problem 1 reduces to.

One-more unpredictability. A key property of an OPRF is that the user learns the output of the PRF
only on its input of choice. That means that a malicious user should not learn the output on more inputs
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than the number of OPRF executions. The BKMPS attack [BKM+21] on the OPRF by Boneh, Kogan,
and Woo [BKW20] targets the one-more unpredictability, since it shows that a malicious user can extract
enough information to indipendently evaluate the OPRF on any input of their choice. We propose an
efficient counteremasure against the one-more unpredictability attack in the next section; we thus delay until
then a formalization of the isogeny-related assumption (see Problem 4) we need to guarantee the one-more
unpredictability of the OPRF protocol.

Committment binding. At the beginning of the OPRF protocol, the server commits to a secret key k,
so that during each OPRF execution it can prove that the same key was used. To guarantee verifiability,
we want a commitment scheme with an associated proof of input reuse. We propose to commit to a key k
by fixing a special curve Ẽ with a basis P̃ , Q̃ of Ẽ[NK] and revealing j(Ẽ/〈P̃ + [k]Q̃〉). The proof of input
reuse, which in the context of isogenies becomes a proof of parallel isogenies, is presented in Section 5.2. To
guarantee that the committment is binding, we want that the following problem to be hard.

Problem 2 (Collision finding problem). Let E0 be a supersingular elliptic curve of unknown endomorphism
ring. Find two distinct cyclic isogenies φ0 : E0 → E and φ1 : E0 → E′ such that j(E) = j(E′).

Problem 2 has been studied in the context of the CGL hash function [CLG09], and it has been
shown to be heuristically equivalent to the following problem, which underpins every isogeny-based proto-
col [PL17,EHL+18].

Problem 3 (Endomorphism Ring problem). Let E be a supersingular elliptic curve. Find End(E).

4 Countermeasures against the one-more unpredictability attack

The original protocol by Boneh, Kogan and Woo starts by mapping an input m to an isogeny φm. If we
denote with NM the torsion space dedicated to the message, the protocol fixes a basis P,Q of E0[NM] and
computes the isogeny φm given by

φm : E0 → E0/〈P + [H(m)]Q〉 =: Em, (1)

where H(·) maps the message m onto an element of ZNM .
The subexponential attack [BKM+21] recovers the image Pk, Qk of the torsion basis P,Q, up to scalar

multiplication, under the secret isogeny φ′k : E0 → Ek. With such information, the attacker can evaluate the
PRF on any input of their choice. The output curve of the PRF is the curve computed as Ek/〈Pk+[H(m)]Qk〉.
Any countermeasures against such an attack need to prevent the attacker from evaluating the OPRF without
interacting with the server. A first approach might try to prevent the attacker from recovering the points
Pk, Qk altogether, but it appears to be hard since the curve Ek is fixed, because the server needs to hold a
long-term static key to satisfy the OPRF definition, which in turn also fixes the curve Ek. Moreover, the
BKMPS attack could be prevented by requiring the user to send only honestly-generated queries. The attacker
needs to send carefully-chosen queries, where the kernel of the message isogeny does not necessarily satisfy
Eq. (1). However, there is no simple way to prove in zero-knowledge that the kernel was honestly computed,
besides using very expensive generic techniques. An other approach might require to simply increase the
parameters. The attack is subexponential, and it is possible to obtain λ bits of security if the isogeny φm has
degree 2λ

2 (this can be reduced if we limit the number of queries the attacker can make). This would require
using very long isogenies (the degree would be 216,384 for λ = 128) and very large primes.

Instead, in this section we propose a novel and efficient countermeasure that sidesteps these issues. Our
main idea is to accept that an attacker may recover the curve Ek and points Pk, Qk on it, but to prevent
those points from being sufficient to evaluate the desired isogeny. To do so, we require that the isogeny φm
has an irrational kernel, i.e. its kernel is defined over a sufficiently-large extension field. Such an isogeny can
be efficiently computed as a composition of rational isogenies. More formally, assume that NM = `e, and e is
the highest power of ` that divides p+ 1. Then, given an input m ∈M, we compute the isogeny φm in the
following way:
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1. We first map the message m to two elements in Z`e through two hash functions H0,H1 that are collision
resistant. We thus have m0 = H0(m) and m1 = H1(m).

2. Given the starting curve E0 and two points P0, Q0 spanning E0[`
e], we compute the isogeny

φ0 : E0 → E1 := E0/〈P0 + [m0]Q0〉.

3. We determine a canonical basis P1, Q1 of E1[`
e] and compute the isogeny

φ1 : E1 → Em := E1/〈P1 + [m1]Q1〉,

4. The isogeny φm : E0 → Em is the composition φ1 ◦ φ0.

An attacker may still try to apply the one-more unpredictability attack. In the original case, the attacker
recovers three isogenies from Ek to Emk and they combine their kernel generators to obtain the image points
Pk, Qk. In the proposed construction, the attacker can still recover three (or more) isogenies from Ek to Emk.
However, the kernel generators of these isogenies are points of order `2e, and thus they are defined only over
the extension field Fp2`e . This is an exponentially large field, and even just representing such a point—let
alone doing any computation—would be exponential in the security parameter. To guarantee security, it is
important that the degree of φm is a prime power. If the degree were a product of prime powers, it is possible
to represent a large extension by working over several smaller extensions because of the Chinese Remainder
Theorem. This can reduce the complexity of working over a large extension and thus reduce the security of
the proposed countermeasures.

E0 E1 Em

Ek Em0k Emk

φ0 φ1

φm0 φm1

Fig. 3. Summary of the proposed countermeasure (this does not depict the blinding/unblinding phase). Isogenies in
red are known or can be computed by the attacker, isogenies in black are unknown to the attacker, and the dotted
isogeny represents the missing isogeny that the attacker needs to compute to succeed in the attack.

The attacker can work with the kernel generators of only the first half of the isogenies and obtain a basis
Pk, Qk of order `e (see Fig. 3). This allows them to evaluate the first isogeny φm0

to obtain the curve Em0k

for any message m. However, the attacker has no way of computing the remaining isogeny φm1
. To do so, the

attacker would need to map the canonical basis on E1 to Em0k, which does not seem to be possible without
knowing the server secret key. Alternatively, the attacker could map the points P,Q and Pk, Qk under the
isogenies φ0 and φ′k. At least one of the image points on each curve has full order, and the point of full order
on Em0k is the image of the point of full order on E1. This suggest such an approach could be used to find
a basis, but the second point on each curve is always a scalar multiple of the first point2. Hence, guessing
the remaining point has exponential complexity `e. Lastly, the attacker cannot use a similar strategy as the
one-more unpredictability attack to recover a basis on Em0k because the curve Em0k depends on the message
m. It thus changes at every interaction, and it is hard for an attacker to find two messages that have the
same first curve E1 and Em0k since we assume that the hash function H0 is collision-resistant. Note that
we require H0 and H1 to be collision-resistant, but we conjecturize that only H0 needs to be. Overall, the
knowledge of Em0k does not help the attacker learn any information on the curve Emk, which successfully
prevents the the one-more unpredictability attack.

2 If kerφ = 〈P + αQ〉, it follows that φ(P ) = −αφ(Q).
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Optimizations. We can extend this approach to obtain a more compact protocol. Rather than limiting
ourselves to two isogenies, we can extend this to an arbitrary number. Let I be an integer greater than one,
and let Hi be distinct functions for every i ∈ {1, . . . , I}, which are modelled as random oracles. Then, given
an input m and a starting curve E0, the isogeny φm and the curve Em can be computed as in Algorithm 1.
This modification can result in a more compact OPRF protocol because only the smaller isogenies φi need to
be defined over Fp2 ; thus, using more isogenies can result in a smaller prime p while maintaining the same
degree of the isogeny φm. In this case, note that the functions Hi cannot be collision-resistant if their output
space becomes smaller than 22λ; however, the case where I > 2 is clearly more secure than I = 2 because an
attacker can recover even less information. Since we require H0 to be collision-resistant when I = 2, in the
case I > 2 it is thus sufficient to ask that the concatenation H0(x)||H1(x)|| . . . ||Hn(x) is collision-resistant
where n is the smallest value such that the concatenation output is larger than 22λ. In other words, the
functions Hi can be obtained by splicing the output a collision-resistant hash function.

In the rest of the paper, we write (φm, Em) = HI(x) to refer to the function in Algorithm 1; we also write
[P0, P1, . . . , PI−1]E,N to denote a list points of order N where the point P0 belongs to E, and the point Pi

belongs to Ei := Ei1/〈Pi−1〉. We refer to this as a sequence, whose associated isogeny is the composition of
the isogenies Ei → Ei/〈Pi〉.

Algorithm 1 Function HI mapping the input m to the curve Em

1: for i← 0 to I − 1 do
2: Set mi = Hi(m);
3: Set Pi, Qi = BM (E);
4: Compute φi : Ei → Ei+1 := Ei/〈Pi + [mi]Qi〉;
5: Set φm = φI−1 ◦ . . . ◦ φ0;
6: Set Em = EI−1;
7: return φm, Em;

A new assumption. We proposed a modified protocol that prevents the existing one-more unpredictability
attacks. As in the original construction, the one-more unpredictability of the resulting protocol relies on the
hardness of a novel problem, which is the following.
Problem 4 (One-more unpredictability). Let p be a prime of the form p = NMNKf − 1, where NM and
NK are smooth coprime integers, and f a cofactor. Let HI be a function as in Algorithm 1. Let E0 be a
supersingular curve defined over Fp2 , and let K be a point on E0 of order NK. Write φK for the isogeny
φK : E0 → EK := E0/〈K〉. Given the curves E0, EK and an oracle that responds to the following queries:

– challenge: returns a random sequence [M0, . . . ,MI−1]E0,NM ,
– solve([V0, . . . , VI−1]E0,NM): returns j(EV /〈φV (K)〉), where φV is the isogeny associated to the input

sequence,
– decide(i, j): returns true if j is equal to the output of a solve query with input the response of the i-th

challenge query, and false otherwise,
For any value n, produce n pairs (i, j) such that decide(i, j) = true with less than n solve queries.

The problem is based on Game 12 of [BKW20], but compared to it, this game involves multiple points
during the challenge and solve query to abstract the behavior described in the previous section. Moreover, the
problem includes the countermeasures against the polynomial time attack of [BKM+21], i.e. the attacker can
only query points of the correct order. This can be replicated in the OPRF setting by checking the order of the
isogenies in the proof of isogeny knowledge. We included these countermeasures to prevent possible attacks
since they are inexpensive. However, we conjecture that the problem remains hard even if the adversary is
allowed to submit solve queries with points of arbitrary order. Furthermore, the problem remains hard after
the SIDH attacks since it does not involve exchanging any torsion points.
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Countermeasure costs. We briefly discuss the impact of the proposed countermeasures on the performance
of the OPRF protocol. Firstly, we need to determine the parameters `, e, and I. In the previous section, we
presented two possible attacks on the Auxiliary One-More SIDH assumption: the first requires to work over
the extension field Fp2`e , while the second obtains a point of full order on E1 and its image on Em0k, fixes a
linearly-independent point on E1, and then guesses its image Em0k. The first attack involves using points
with coordinates with `e values in Fp, while the second requires guessing the correct image out of the `e
possibilities. It may be tempting to set `e ≈ 2λ, but when I = 2 we require that the hash functions H0,H1

are collision-resistant, so their output space must be larger than 22λ. Hence, we set `e ≈ 22λ and the degree
of φm to be 24λ.

If we want to minimize the bandwidth consumption of the protocol, we can set e = 1 and `I ≈ 24λ.
Moreover, we can choose ` such that isogenies of degree ` are defined over a small extension, such Fp4 , rather
Fp2 .

The choice of e thus determines the size of the message component NM and the prime p: if I = 2,
the message component NM is already smaller than the value NM in the original construction, which used
NM ≈ 25/2λ. If e = 1, the message component NM is one, since the prime p does not need to change to allow
computations of the message isogeny. This means that not only do the proposed countermeasures protect
against existing attacks, but also they reduce the prime size leading to a more compact and efficient protocol.

5 Countermeasures against the SIDH attacks

The recent series of attacks by Castryck and Decru [CD22], Maino and Martindale [MM22], and Robert [Rob22]
exploits torsion-point information to break SIDH. These attacks trivially translate to the OPRF, where any
third party can recover both the user’s hashed input (which breaks obliviousness) and the server’s secret key.
In this section, we discuss how to adapt the existing SIDH countermeasures to work in the OPRF setting.
After modifying the main exchange, we propose a novel proof of isogeny knowledge that works together with
the countermeasures, which may be of independent interest since it is the first proof to prove the correctness
of torsion point images in the SIDH-with-countermeasure setting. This proof can be used together with the
patched SIDH to obtain a post-quantum non-interactive key-exchange.

Combining the countermeasures together with the novel proof of torsion point correctness, we obtain an
SIDH-based OPRF that is resistant against the SIDH attacks. While the countermeasures impose larger
parameters, the resulting protocol remains the most compact post-quantum vOPRF.

5.1 Protecting the exchange

The OPRF exchange is based on SIDH, but it has some differences from a simple SIDH key exchange. In
particular, in the OPRF protocol the two parties compute isogenies of different lengths and need to prove the
correctness of their outputs. Moreover, the server starts its computation from a curve provided by the user
and also needs to prove that it used the same key it has previously committed.

The attacks on SIDH recover an isogeny φ : E → E′ of degree d when provided with the curves E,E′, the
degree d and the image of the n-torsion φ(E[n]), where the size of n satisfies at least n ≈ d1/2. This suggests
three possible countermeasures, as discussed in [FMP23]:

1. Hide the degree d of the isogeny φ by choosing a random d′ | d.
2. Increase the degree d of the isogeny φ, such that d� n2,
3. Mask the exact torsion images by providing a scalar multiple.

In the OPRF setting, the hidden-degree countermeasure does not appear to work. Both parties need to prove
the correctness of their revealed torsion points, and all the proofs of isogeny knowledge in the literature rely
on constructing an SIDH square and revealing some sides. This inevitably leaks the degree of the secret
isogeny, which makes the hidden-degree countermeasure ill-suited to work with zero-knowledge proofs.

Relying only on longer isogeny may seem like a valuable approach, as it does not require on any new
assumption. In the SIDH setting, it is not possible to protect both parties with such a strategy because it
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would require both isogenies to be longer than the other. In the OPRF, however, the user computes the
message and blinding isogenies in the first round, provides enough torsion information for the server to
compute its isogeny, and the server reveals the torsion information needed for the user to invert the blinding
isogeny. This suggests that the protocol could be secure if the server’s isogeny is sufficiently longer than the
blinding isogeny, and if the composition of the message and blinding isogeny is sufficiently longer the server’s
isogeny. This approach could lead to a compact and fairly efficient protocol, but unfortunately it does not
guarantee the input hiding property. The server should not distinguish the user’s input even when the user
chooses between two server-controlled messages. This approach is thus inadequate for an OPRF, but it might
still be useful for specific applications where the message space has sufficiently-large entropy and such a
strong security assumption is not needed.

Thus, to guarantee the security of the SIDH-based OPRF we need to rely on the masked-torsion
countermeasure, as in masked SIDH (M-SIDH) [FMP23]. Let φ : E → E′ be the isogeny we want to
protect, and let P,Q be a basis of E[n], for some n coprime with d. Given a basis P ′ = φ(P ), Q′ = φ(Q),
the other party computes their isogeny with kernel 〈P ′ + [x]Q′〉, where x is the secret key. Thus, it is
possible to reveal [α]P ′, [α]Q′, for some random α coprime with the torsion order n, without affecting the
correctness of the protocol. However, an attacker can recover the value α2 from the Weil pairing, since
e([α]P ′, [α]Q′) = e(P,Q)α

2 deg φ. To ensure that the attacker cannot recover the value α, we want that any
value has at least 2λ square roots modulo n, hence n needs to be the product of at least λ prime powers. This,
however, is not enough to guarantee security, as an attacker can guess the correct square root modulo some
n′ | n with n′ > d1/2 in less than O(2λ) guesses. We thus also require that d > n′, where n′ is the product of
the powers of the λ largest primes dividing n. From now on, we write n = fMSIDH(λ, d) to denote the smallest
value n that can guarantee λ bits of security when used in M-SIDH with an isogeny of degree d. Lastly, the
countermeasure analysis in [FMP23] shows that an attack is possible for certain parameters when the starting
curve has a small endomorphism. In our case, such an attack does not apply even if the OPRF starting curve
E0 has a known endomorphism ring with a small endomorphism ι. The composition of the message and
blinding isogeny φx ◦ φm is sufficiently long that the attack does not apply, while considering the blinding
isogeny φx alone (remember that in the security game the attacker can control the messages) does not help
either. Even if the attacker can guess the input message, the smallest endomorphism known on the domain
of the blinding isogeny is φ̂m ◦ ι ◦ φm, which is too large. The server computes its isogeny starting from a
curve Emx that is sent by the user, which generally could be an avenue for attack since MSIDH is insecure
for special starting curves. However, the user also submits a proof that the user knows an isogeny of long
degree between E0 and Emx. This guarantees that the smallest known endomorphism is again sufficiently
large, and thus the attack does not apply to the server’s isogeny as well.

We can now formulate the following problem, on whose hardness the input hiding property of the OPRF
is based.

Problem 5 (Decisional M-SIDH isogeny problem). Let E0 be a supersingular elliptic curve, with a basis P,Q
be of E0[n]. Distinguish between the following distributions:

– (E1, R, S), where E1 is the codomain of a d-isogeny φ : E0 → E1, where d is coprime with n, and the
points R,S are the masked images of P,Q, i.e. R = [α]φ(P ) and S = [α]φ(Q) for some α $←− Z∗

n;
– (E1, R, S), where E1 is a random supersingular elliptic curve and the points R,S are a random basis of
E1[n] such that e(R,S) = e(P,Q)α

2d, for some value α.

The hardness of the problem clearly depends on the choices of n and d; the problem (conjecturally)
requires O(2λ) operations to solve when n > fMSIDH(λ, d), i.e. the product of the λ largest prime powers
dividing n is smaller than

√
d.

Concrete cost. We have shown it is possible to protect the OPRF protocol from the SIDH attacks.
Unfortunately, the proposed countermeasure do come at a significant cost. The degrees of the blinding isogeny
and the server’s isogeny are the same as in SIDH with the same countermeasures. At security level λ = 128,
that corresponds to isogenies of degree ≈ 22956. More generally, we see experimentally that the degree of the
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isogenies scales log-linearly in the security parameter with a constant of ≈ 3.3. We thus have that the degree
of the blinding isogeny and the server’s isogeny must be ≈ 23.3λ log λ to guarantee the security of the protocol.

5.2 Adapting the proof of isogeny knowledge

In the previous section, we showed how it is possible to protect the OPRF against the SIDH attacks using
masked torsion points. However, in the OPRF protocol both parties need to prove the correctness of their
torsion images to prevent adaptive attacks and guarantee the verifiability of the execution. This leads to an
issue, because both the user and the server want to prove that their torsion points were honestly generated,
but these points are also scaled by a secret value. Thus, two parties want to prove that both points were
honestly generated and scaled by the same value.

In this section, we propose a zero-knowledge proof of isogeny knowledge that can guarantee the correctness
of torsion points up to a scalar, i.e. a proof for the following relation:

Riso =

((E0, P0, Q0, E1, P1, Q1), (φ, α))

∣∣∣∣∣∣
φ : E0 → E1 is a cyclic d-isogeny,

P1 = [α]φ(P0),
Q1 = [α]φ(Q0).

 .

In the literature, we can find two proofs of isogeny knowledge that also guarantee the correctness of torsion
point images. The first proof constructs an SIDH square and explicitly maps the torsion images through all
the sides of the square. This proof was proposed by Boneh, Kogan, and Woo [BKW20] for the OPRF protocol,
based on a previous idea by Galbraith [Gal18]. The second proof [DFDGZ22], instead, is an extension of the
simpler proof of isogeny knowledge by De Feo and Jao [JD11]. The first proof requires a larger prime, but the
torsion images are explicitly mapped, which makes it well-suited to support masked torsion. We thus propose
a new proof based on the same approach as [BKW20] and [Gal18], although with some notable differences.
Building a more compact proof based on the second approach [DFDGZ22] remains an open problem.

The main idea is that the masking constant α can be split into three shares α = α1α2α3. The prover can
mask the torsion points with αi when computing the i-th side of the SIDH square, so that the composition of
the three side isogenies, together with their masking values, forms a commutative diagram with the isogeny φ
with masking value α. The proof remains zero-knowledge because each single value αi is independent of α.
More formally, let E0 and E1 be supersingular elliptic curves with points P0, Q0 ∈ E0[n] and P1, Q1 ∈ E0[n].
The prover wants to prove knowledge of a d-isogeny φ : E0 → E1 and a value α ∈ Zn such that P1 = [α]φ(P0)
and Q1 = [α]φ(Q0). This only makes sense if φ is secret, thus let us assume n = fMSIDH(λ, d). The prover
generates a random isogeny ψ : E0 → E2 of degree s, where s ≈ n is a smooth number coprime with both n
and d, and generates the SIDH square (E0, E1, E2, E3) with edges (φ, ψ, φ′, ψ′). To guarantee soundness, the
prover needs to show that ψ and ψ′ are parallel: the prover thus generates a s-basis R2, S2 on E2, maps it
to E3 to obtain R3, S3, and expresses the kernels of ψ̂ and ψ̂′ in terms of R2, S2 and R3, S3 with the same
linear coefficients. The prover also splits α in three shares α = α1α2α3 and maps the points P0, Q0 through
ψ and φ′ with masking values α1 and α2 to obtain the points

P2 = [α1]ψ(P0), Q2 = [α1]ψ(Q0),

P3 = [α2]φ
′(P2), Q3 = [α2]φ

′(Q2),

which implies that P3 and Q3 also satisfy the relation

[α3]P3 = ψ′(P1), [α3]Q3 = ψ′(Q1).

Hence, the SIDH square commutes with respect to the points Pi, Qi, i.e. if we restrict ourselves to the
n-torsion, we have

[α][s]φ = [α3]ψ̂′ ◦ [α2]φ
′ ◦ [α1]ψ.

Thus, the witness can be split into three components, and hence we obtain a proof with ternary challenges.
The prover initially commits to the curves E2, E3 and the relevant points on them with a commitment scheme
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C(·). Then, depending on the challenge, the prover responds with one edge of the SIDH square, the relevant
curves and points, and the corresponding commitment openings. The proof is described in Fig. 4. Since each
iteration has soundness error 2/3, the proof must be repeated −λ log2/3(2) ≈ 1 times to achieve a soundness
error of 2−λ.

Remark 1. If the kernel of the isogeny φ is not defined over a small extension field, as in the case of the
message isogeny, the proof can be computed by gluing together multiple SIDH squares, as shown in [BCC+22].

P1((E0, P0, Q0), (E1, P1, Q1), φ, α):
1: Sample a random cyclic isogeny ψ : E0 → E2 of degree s;
2: Construct the SIDH square (E0, E1, E2, E3, φ

′, ψ′) on (φ, ψ);
3: Sample random units α1, α2 mod n and set a3 := α/α1α2;
4: Set P2, Q2 := [α1]ψ(P1), [α1]ψ(Q1), and P3, Q3 := [α2]φ

′(P2), [α2]φ
′(Q2);

5: Let R2, S2 be a basis of E2[s] and set R3, S3 := φ′(R2), φ
′(R3);

6: Write K = [a]R2 + [b]S2 for K a random generator of ker ψ̂
7: Sample random strings r1, . . . , r7;
8: return

(
st,C(E2, R2, S2, P2, Q2; r1), C(E3, R3, S3, P3, Q3; r2),

C(a, b; r3), C(φ′; r4), C(α1; r5), C(α2; r6), C(α3; r7)
)
.

P2(st, chall):
1: if chall == −1 then
2: return ((E2, R2, S2, P2, Q2, r1), (a, b, r3), (α1, r5));
3: else if chall == 0 then
4: return ((E2, R2, S2, P2, Q2, r1), (E3, R3, S3, P3, Q3, r2), (φ

′, r4), (α2, r6));
5: else if chall == 1 then
6: return ((E3, R3, S3, P3, Q3, r2), (a, b, r3), (α3, r7));

V((E0, P0, Q0), (E1, P1, Q1), (com1, . . . , com9), chall, resp):
1: if chall == −1 then
2: ((E2, R2, S2, P2, Q2, r1), (a, b, r3), (α1, r5)) = resp;
3: Check com1 = C(E2, R2, S2, P2, Q2; r1),

com3 = C(a, b; r3), com5 = C(α1; r5);
4: Let ψ̂ be the isogeny with kernel 〈[a]R2 + [b]S2〉;
5: Check ψ̂ is an s-isogeny from E2 to E0;
6: Check [α1s]P0 = ψ̂(P2) and [α1s]Q0 = ψ̂(Q2);
7: else if chall == 0 then
8: ((E2, R2, S2, P2, Q2, r1), (E3, R3, S3, P3, Q3, r2), (φ

′, r4), (α2, r6)) = resp;
9: Check com1 = C(E2, R2, S2, P2, Q2; r1),

com2 = C(E3, R3, S3, P3, Q3; r2),
com4 = C(φ′; r4), com6 = C(α2; r6);

10: Check φ′ is a d-isogeny from E1 to E2;
11: Check R3, S3 = φ′(R2), φ

′(R3);
12: Check P3, Q3 = [α2]φ

′(P2), [α2]φ
′(Q2);

13: else if chall == 1 then
14: ((E3, R3, S3, P3, Q3, r2), (a, b, r3), (α3, r7)) = resp;
15: Check com2 = C(E3, R3, S3, P3, Q3; r2),

com3 = C(a, b; r3), com7 = C(α3; r7);
16: Check 〈R3, S3〉 = E3[s];
17: Let ψ̂′ be the isogeny with kernel 〈[a]R3 + [b]S3〉;
18: Check ψ̂ is an s-isogeny from E3 to E1;
19: Check [α3s]P1 = ψ̂′(P3) and [α3s]Q1 = ψ̂′(Q3);

Fig. 4. Interactive proof of knowledge for the relation Riso.
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We now sketch the proofs of correctness, three-special soundness and zero-knowledge. Given the similarity
of the zero-knowledge proof with those in [BKW20], the proofs also follow a similar approach.

– Correctness. A honest prover always generates proofs that are accepted by the verifier. The verifier
recomputes the same operations as the prover and checks that the outputs match. The only difference is
in the chall = ±1 cases, where the verifier computes the dual of ψ and ψ′, which then introduces the s
factor in the point equality check.

– Three-special soundness. The protocol is three-special sound because there exists an extractor that
extracts the witness given three accepting transcripts with the same commitments and different challenges.
The isogeny φ can be computed by mapping the kernel of φ′ (from chall = 0) under the isogeny ψ̂ (from
chall = −1). Since the isogenies ψ and ψ′ are parallel (from all the challenges combined), this guarantees
that φ is a d-isogeny from E0 to E1. The masking value α can be recomputed as the product of α1, α2,
and α3.

– Zero-knowledge. We sketch a simulator that given a statement (E0, P0, Q0, E1, P1, Q1) and a challenge
chall can simulate a valid transcript without knowledge of the witness. For the case chall = −1, the
simulator behaves like an honest prover. For chall = +1, the situation is similar: the simulator can
compute a d-isogeny ψ′, pick a random basis R3, S3 of E3[d] and a random value α3 ∈ Z∗

n, and compute
the values a, b and points P3, Q3 that pass verification. Note that the points R3, S3 are uniformly random
among the bases of E3[d], and the value α3 is uniformly random and independent of α; the simulated
values are thus distributed as the honestly-generated ones. The case of chall = 0 is more complicated:
the simulator can sample a random curve E2, generate a random basis P2, Q2 of E2[n] that satisfies
e(P2, Q2) = e(P0, Q0)

x2s for some random x, pick a random d-isogeny φ′ : E2 → E3, and compute the
image points on E3. In this case, the indistinguishability of the simulator’s output is only computational.
It is thus based on the conjectured hardness of the following problem, which is a modified version of the
Decisional Supersingular Product (DSSP) problem introduced in [JD11].

Problem 6 (DSSP with Torsion (DSSPwT) problem). Given an isogeny φ : E0 → E1 of degree d and points
P0, Q0 such that 〈P0, Q0〉 = E0[n], where n = fMSIDH(λ, d), distinguish between the following distributions:

– D0 = {(E2, P2, Q2, V )}, where E2 is the codomain of an s-isogeny ψ : E0 → E2, the points P2, Q2 satisfy
P2 = [α]ψ(P0), Q2 = [α]ψ(Q0) for some α ∈ Z∗

n, and V is a generator of ψ(kerφ).
– D1 = {(E2, P2, Q2, V )}, where E2 is a random supersingular curve with the same cardinality as E0, P2

and Q2 are two random points on E2 of order n such that e(P2, Q2) = e(P0, Q0)
α2

s for some α ∈ Z∗
n,

and the point V is a random point on E2 of order d.

Note that [BKW20] argues that a similar proof can only reveal one torsion point (either Pi or Qi) at a
time to prevent a distinguishing attack on the simulator. The attack they present relies on computing the
Weil pairing between two points of coprime order, and thus their pairing is always one. The attack thus does
not apply, and the simulated transcript remains undistinguishable under Weil pairing checks because the
sampled points P2, Q2 are guaranteed to have the same pairing as the honestly-generated points. By revealing
both points Pi and Qi we obtain a significantly more efficient proof, since it has 1/3 soundness rather than
1/6.

Optimizations. For simplicity, the proof in Fig. 4 contains a schematic description of the protocol, but the
proof can be made more efficient through a series of optimizations.

In the commitment phase, the value α2 is only revealed together with the isogeny φ′, and thus they can be
committed together. Note that we have the prover commit to φ′ to make the proof online-extractable without
recursion, which is necessary to achieve a proof in the UC model. For applications of this proof outside of the
OPRF context, the prover can avoid committing to φ′. The masking values α1 and α3 are independent of
α, even when considered together, because α2 is uniformly random. They can then be committed together
and revealed both in the response to challenges chall = ±1. Since the commitment for a, b is also revealed
when chall = ±1, the values a, b, α1, α3 can all be committed together. When chall = −1, the curve E3 and
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the points P3, Q3 are not revealed, and thus learning α3 does not provide any information. The same applies
to α1 when chall = +1. This allow us to reduce the number of commitments to four.

To further reduce the communication between prover and verifier, the basis R2, S2 on E2 can be chosen
canonically, so that it can be recomputed from E2. Moreover, for the challenge chall = −1, the prover can
avoid revealing the curve E2, the points P2, Q2 and the coefficients a, b by revealing instead a kernel generator
of ψ. The prover can recompute E2, P2, Q2 and obtain a, b by writing a kernel generator of ψ̂ in terms of
the canonical basis R2, S2. Normally, the recomputed a, b would not be the same as those computed by the
verifier since they are not unique. The problem can be avoided by fixing a canonical way to compute the
coefficients, such as prescribing that one of the two coefficients must be one, and that a must be one if both
coefficients are invertible mod s. The same approach holds for chall = +1, except that the points R3, S3 have
to be revealed by the prover. In the case of the horizontal isogeny, the prover can avoid revealing E3 and the
points R3, S3 and P3, Q3. They can all be recomputed from the remaining values.

Concrete cost. Each repetition of the proof requires two commitments, which are 2λ-bit long and use a
λ-bit long opening. When chall = −1, the prover reveals one s-isogeny, a masking value, and two commitment
openings, which requires log n+ log s+ 2λ bits. When chall = +1, the prover also reveals two torsion points
of order s: if they are compressed as in [AJK+16,CLN16], the response requires 5 log s + log n + 2λ bits.
Lastly, for chall = 0, the prover reveals a curve, a d-isogeny, two points of order n, a masking value, and three
openings; thus, the answer requires 2 log p+ log d+ 5 log n+ 3λ bits.

For server-side proofs, we can take d ≈ n ≈ s ≈ 3
√
p, which makes the largest response (when chall = 0) to

be 4 log p+ 3λ bit long. In the case of the proof run by the user, d is slightly longer to include the degree of
the message isogeny; we thus have d ≈ 3

√
p+ 4λ. In this case, the largest response is 4 log p+ 7λ bit long.

In the OPRF setting, we rely on the Unruh transformation [Unr14] to obtain a non-interactive zero-
knowledge proof that is universally composable. The bandwidth of such a proof can be bounded from
above by t(|com| + 3|rsp|), where t is the number of repetitions, the factor 3 comes from the size of the
challenge space, and |com| and |rsp| represent the size of the commitments and the longest response (in
our case, when chall = 0). Since the soundness error of the sigma protocol is 2/3, the protocol needs to be
repeated t = λ/ log(3/2) times. This gives a total size of 1.7λ(12 log p+ 25λ) bits for server-side proofs, while
user-side proofs require 1.7λ(12 log p+ 37λ) bits.

For other applications where security in the UC framework may not be required, the more efficient
Fiat-Shamir transform [FS87] is sufficient to obtain a NIZKP. In that scenario, we estimate an average proof
where the three challenges appear equally to require ≈ 1.7λ(20/9 log p+ 7/3λ) bits, while a worst-case proof,
with only chall = 0 challenges, to require ≈ 1.7λ(4 log p+ 7λ) bits.

6 Verifiability

Oblivious PRFs can satisfy a stronger security property called verifiability. Informally, this guarantees that
the server behaves honestly and always uses the same long-term static key. This is needed to guarantee the
privacy of the user in those instances where the user may later reveal the output of the OPRF. A malicious
server may behave “honestly” while also using different secret keys on different interactions. After learning
the OPRF output of the user, the server can then test which secret key was used to produce that specific
output and thus link the user to a specific user-server interaction.

The construction by Boneh, Kogan, and Woo. The OPRF protocol by Boneh, Kogan, and Woo
achieves verifiability by introducing three components. First, the server initially commits to a secret key k.
The commitment is in the form of an elliptic curve EC := E/〈P + [k]Q〉, where the curve E and the points
P,Q are fixed parameters. Second, during the OPRF execution, the server provides a zero-knowledge proof
that its computations used the same key as the one in the commitment. We refer to this proof as a proof
of parallel isogeny (PoPI). Lastly, the server also provides two proofs of isogeny knowledge (PoIKs) that
guarantee the correctness of the computations during both the commitment stage and the OPRF execution.
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The proof of parallel isogeny proposed by Boneh, Kogan, and Woo relies on the user and the server
engaging in an SIDH exchange, where one of the sides is either the commitment isogeny or the the secret
server isogeny in the OPRF protocol. The user only reveals the codomain of an isogeny starting from either
starting curve, which means the server cannot distinguish the two cases. Thus, if the keys used in the protocol
and the commitment were different, the server could not do better than randomly guessing which starting
curve the user used. By repeating the protocol λ times, the server can prove the parallelness of the isogenies
with soundness 2−λ. However, this proof is inherently interactive. Since the server also needs to defend against
adaptive attacks [GPST16], the proof uses an approach similar to the Fujisaki-Okamato transform, which
requires five rounds of interaction. Moreover, the proof relies on multiple SIDH exchanges, and it is thus
broken by the attacks on SIDH [CD22,MM22,Rob22]. It may be possible to avoid some of the issues, for
instance by starting from a curve of unknown endomorphism ring using a trusted setup and by switching to an
SIDH version that is resistant to the recent attacks. However, it seems impossible to obtain a non-interactive
proof using a similar approach.

Our proposal. We introduce a novel public-coin proof protocol of parallel isogeny that sidesteps the problems
discussed above. Since the proof does not rely on private randomness, we obtain a proof of knowledge that
can be made non-interactive via the Fiat-Shamir transform [FS87] or the Unruh transform [Unr15]. In the
OPRF setting, we will rely on the latter to achieve the online-extractability without rewinding needed to get
a proof in the UC model. Our main approach relies on executing two proofs of isogeny knowledge in parallel
with correlated randomness. Since part of the randomness used is shared, we can obtain a proof of parallelness
without needing additional computations.

Firstly, we formalize the notion of parallelness. We say that two d-isogenies φ : E0 → E1 and φ̃ : Ẽ0 → Ẽ1

are parallel with respect to the bases R,S ∈ E0[d] and R̃, S̃ ∈ E′
0[d] if there exists coefficients a, b ∈ Zd such

that kerφ = 〈[a]R+ [b]S〉 and ker φ̃ = 〈[a]R̃+ [b]S̃〉. This suggests that the parallelness relation that we are
proving is the following:

Rpar =

{
((E0, R, S,E1, Ẽ0, R̃, S̃, Ẽ1), k0, k1)

∣∣∣∣ E0/〈[k0]R+ [k1]S〉 ∼= E1,

Ẽ0/〈[k0]R̃+ [k1]S̃〉 ∼= Ẽ1

}
.

However, as discussed before, we are combining several proofs together to obtain a larger proof that
simultaneously proves knowledge of two isogenies and guarantees the two isogenies are parallel. We thus
obtain a proof for the following relation, where we consider the case of a secret key with two coefficients for
completeness. For practical reasons, the OPRF will fix k0 = 1 without any loss of security.

R∗
par =


((E0, R, S, P0, Q0, E1, P1, Q1,

Ẽ0, R̃, S̃, P̃0, Q̃0, Ẽ1, P̃1, Q̃1),
(k0, k1, α, α

′))

∣∣∣∣∣∣∣∣
kerφ = 〈[k0]R+ [k1]S〉,
kerφ′ = 〈[k0]R̃+ [k1]S̃〉,

(E0, P0, Q0, E1, P1, Q1), (φ, α) ∈ Riso,

(Ẽ0, P̃0, Q̃0, Ẽ1, P̃1, Q̃1), (φ
′, α′) ∈ Riso

 .

Now, let the curve Ẽ0 with a d-basis R̃, S̃ be fixed protocol parameters. Using the same notation as before,
assume that server has committed to its key (k0, k1) by publishing the codomain of the d-isogeny φ̃ that has
kernel 〈[k0]R̃+ [k1]S̃〉. The server may also reveal some torsion information in its commitment, but as we will
discuss later, this is not strictly needed. During the OPRF execution, the server receives a curve E0 with a
d-basis R,S on it, and it computes φ : E0 → E1 := E0/〈[k0]R+ [k1]S〉. The server then wants to prove that
it knows the isogenies φ and φ̃ and that they are parallel.

If the server simply ran two instances of the PoIK from Fig. 4 in parallel, there would be no way to
convince the prover that the isogenies are indeed parallel. If the proofs share the same challenges, i.e. the
verifier sends the same challenges to both proofs, the server would respond with both φ and φ̃′ when chall = 0.
However, the isogenies φ and φ̃′ are not parallel with respect to the bases R2, S2 and R̃2, S̃2 since they are
randomly generated. We thus to want to modify the proof such that the bases R2, S2 and R̃2, S̃2 are related
to R0, S0 and R̃0, S̃0, so that when φ and φ̃ are parallel, so are φ′ and φ̃′. One way to do this is by computing
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the basis R2, S2 as R2, S2 = ψ(R0), ψ(S0) (and similarly for R̃2, S̃2) in both proofs, where ψ is the vertical
isogeny used in the proof of knowledge. This is however not zero-knowledge, because when chall = 0, the
verifier could recompute the secret isogeny φ. Instead, we propose that the prover generates four random
coefficients w, x, y, z ∈ Zd such that wz − xy 6= 0 mod d, and computes R2 and S2 as the solution of

R0 = [w]ψ(R2) + [x]ψ(S2), S0 = [y]ψ(R2) + [z]ψ(S2).

This is then secure, because the basis R2, S2 is uniformly random. Thus, for a single proof, this change only
affects how the random points R2, S2 are generated, but does not affect the security of the proof. The rest of
the proof needs to be modified to ensure that the process is followed correctly, i.e. we want the prover to
reveal the values w, x, y, z together with ψ so that the verifier can verify the correctness of R2 and S2. The
modified proof is denoted by P∗

iso, and it is represented explicitly in Fig. 5.

P∗
1

((
(E0, R0, S0, P0, Q0), (E1, P1, Q1), φ, α

)
, (w, x, y, z)

)
:

1-4: Same as P1 in Fig. 4.
5: Set R2 := [w]ψ(R0) + [x]ψ(S0), S2 := [y]ψ(R0) + [z]ψ(S0);

6-8: Same as P1 in Fig. 4.

P∗
2(st, chall):
1: if chall == −1 then
2: return ((E2, R2, S2, P2, Q2, r1), (a, b, r3), (α1, r5), (w, x, y, z));
3: else
4: Same as P2 in Fig. 4.

V∗
(
(
(
(E0, R0, S0, P0, Q0), (E1, P1, Q1), φ, α

)
, com, chall, resp

)
:

1: if chall == −1 then
2: ((E2, R2, S2, P2, Q2, r1), (a, b, r3), (α1, r5), (w, x, y, z)) = resp;

3-6: Same as V in Fig. 4.
7: Check R2 := [w]ψ(R0) + [x]ψ(S0), S2 := [y]ψ(R0) + [z]ψ(S0);
8: else
9: Same as V in Fig. 4.

Fig. 5. Modified proof of knowledge for the relation Riso where the basis randomness is explicit. The expressions in
magenta denote the changes from Fig. 4.

Now, if the prover executes the modified proof of isogeny knowledge for φ and φ̃ in parallel, with the same
challenges, and with the same values x,w, y, z, the isogenies φ′, φ̃′ revealed when chall = 0 are parallel when
the isogenies φ, φ̃ are also parallel, as shown in the following lemma.

Lemma 2. Let notation be as above. The isogenies φ, φ̃ are parallel if and only if the isogenies φ′, φ̃′ are
also parallel.

Proof. Assume the isogeny φ has kernel 〈[k0]R0 + [k1]S0〉 and the isogeny φ̃ has kernel 〈[k̃0]R̃0 + [k̃1]S̃0〉. The
kernel of φ′ is the image of the kernel of φ under ψ, i.e. kerφ′ = ψ(kerφ). Since kerφ = 〈[k0]R0 + [k1]S0〉, it
follows that

kerφ′ = 〈[k0]ψ(R0) + [k1]ψ(S0)〉 = 〈[wk0 + yk1]R2 + [xk0 + zk1]S2〉.

Similarly, we obtain
ker φ̃′ = 〈[wk̃0 + yk̃1]R̃2 + [xk̃0 + zk̃1]S̃2〉.

If the isogenies φ, φ̃ are parallel, then k0 = k̃0 and k1 = k̃1 for some choice of k0, k1, k̃0, k̃1. Similarly, if the
isogenies φ′, φ̃′ are parallel, then wk0+yk1 = wk̃0+yk̃1 and xk0+ zk1 = xk̃0+ zk̃1, for the same k0, k1, k̃0, k̃1.
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Since the coefficients w, x, y, z were chosen such that wz − xy 6= 0 mod d, they form an invertible matrix,
which implies the two statements are equivalent, i.e.[

k0
k1

]
=

[
k̃0
k̃1

]
⇐⇒

[
w x
y z

] [
k0
k1

]
=

[
w x
y z

] [
k̃0
k̃1

]
.

P1((E0, R, S, P0, Q0, E1, P1, Q1), (Ẽ0, R̃, S̃, P̃0, Q̃0, Ẽ1, P̃1, Q̃1), k0, k1, α, α
′):

1: Sample random coefficients w, x, y, z such that wz − xy 6= 0 mod d;
2: Compute φ : E0 → E0/〈[k0]R+ [k1]S〉 ∼= E1

3: Compute φ′ : Ẽ0 → Ẽ0/〈[k0]R̃+ [k1]S̃〉 ∼= Ẽ1

4: Run P∗
1((E0, P0, Q0, E1, P1, Q1), φ, α, (w, x, y, z)) to get st, com;

5: Run P∗
1((Ẽ0, P̃0, Q̃0, Ẽ1, P̃1, Q̃1), φ̃

′, α̃′, (w, x, y, z)) to get s̃t, ˜com;
6: return

(
(st, s̃t), (com, ˜com)

)
;

P2((st, s̃t), chall):
1: return (P∗

2(st, chall),P∗
2(s̃t, chall));

V((E0, R, S, P0, Q0, E1, P1, Q1), (Ẽ0, R̃, S̃, P̃0, Q̃0, Ẽ1, P̃1, Q̃1),
(com, ˜com), chall, (resp, ˜resp)):

1: Set v := V∗((E0, R, S, P0, Q0, E1, P1, Q1), com, chall, resp);
2: Set ṽ := V∗((Ẽ0, R̃, S̃, P̃0, Q̃0, Ẽ1, P̃1, Q̃1), ˜com, chall, ˜resp);
3: return v ∧ ṽ;

Fig. 6. Interactive proof of knowledge for the relation R∗
par.

We can now use the proof P∗
iso from Fig. 5 to construct our proof of parallel isogeny knowledge. The

prover runs two such proofs in parallel, with the same randomness (w, x, y, z), and responds to the verifier’s
challenges with the responses of the individual proofs. The resulting proof is represented explicitly in Fig. 6.
The security proofs follow closely those of the PoIK Piso in Section 5.2: correctness of Piso implies correctness
of Ppar, while the soundness of Ppar follows from the soundness of Piso and Lemma 2. The argument for
zero-knowledge is also similar, but it is based on the hardness of the following problem, which takes into
consideration that the two parallel instance partially share the same randomness.

Problem 7 (Double DSSP with Torsion (DDSSPwT) problem). Let D0 and D1 be as in Problem 6. Given:
1. two d-isogenies φ : E0 → E1, φ̃ : Ẽ0 → Ẽ1,
2. the points R0, S0 ∈ E0[d] and R̃0, S̃0 ∈ Ẽ0[d],
3. the points P0, Q0 ∈ E0[n] and P̃0, Q̃0 ∈ Ẽ0[n], where n = fMSIDH(λ, d),

distinguish between the following distributions:

– D∗
0 =

{
(E2, R2, S2, P2, Q2, V ),

(Ẽ2, R̃2, S̃2, P̃2, Q̃2, Ṽ )

}
, where the curves and the n-torsion points follow the D0-distribution,

i.e. we have that (E2, P2, Q2, V )← D0, and (Ẽ2, P̃2, Q̃2, Ṽ )← D0, and moreover[
R2

S2

]
= B

[
ψ(R0)
ψ(S0)

]
, and

[
R̃2

S̃2

]
= B

[
ψ̃(R̃0)

ψ̃(S̃0)

]
,

for some B ∈ GL2(Zn), and ψ and ψ̃ being respectively the s-isogenies between E0 and E2 and Ẽ0 and
Ẽ2 that are guaranteed to exist because of the D0 distribution;
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– D∗
1 =

{
(E2, R2, S2, P2, Q2, V ),

(Ẽ2, R̃2, S̃2, P̃2, Q̃2, Ṽ )

}
, where the curves and the n-torsion points follow the D1-distribution,

i.e. we have that (E2, P2, Q2, V )← D1, and (Ẽ2, P̃2, Q̃2, Ṽ )← D1, and moreover the points R2, S2 and
R̃2, S̃2 form a random basis of E2[d] and Ẽ2[d], respectively.

The proof Ppar is a proof of knowledge, and it can be made non-interactive with standards transformations,
such as the Fiat-Shamir [FS87] or the Unruh [Unr15] transform. This is the first non-interactive proof of
parallelness.

Optimizations. For simplicity, the presentation of the proof R∗
par preferred a schematic description, but it

is possible to improve the protocol to make it more compact. Besides the optimizations applicable to the
proof Piso described in Section 5.2, we remark that parallelness is independent of torsion images. Thus, the
proofs of isogeny knowledge do not need to guarantee the correctness of torsion images to prove parallelness.
However, in the OPRF context, the correctness of the torsion images revealed by the server is needed to
guarantee verifiability: a malicious server might otherwise reveal incorrect torsion points to different users
and use that information to match OPRF outputs to specific interactions. Hence, the proof can be made
more efficient by avoiding proving the correctness of torsion images for the commitment isogeny.

Concrete cost. The proof described in Fig. 5 adds the communication of the values w, x, y, z when chall = −1.
In that case, the prover’s response requires log n+ log s+4 log d+2λ bits, while the answer to when chall = 1
remains unchanged. In the case of chall = 0, the response is also larger because the points R2, S2 need to
be communicated explicitly. However, the Riso proof for the committment isogeny does not need to include
torsion point information. Hence, the R∗

par response to chall = 0 requires 4 log p+2 log d+5 log n+4 log s+6λ.
Setting d ≈ n ≈ s ≈ 3

√
p, we obtain the size of the response to chall = 0 is |resp0| = 23/3 log p+ 6λ.

We rely on the Unruh transform [Unr14] to obtain a universally composable NIZKP, which has proof
size of 1.7λ(23 log p+ 26λ) bits. The same sigma protocol, made non-interactive with the Fiat-Shamir
transform [FS87], would require ≈ 1.7λ(49/9 log p + 26/3λ) bits for an average proof, while a worst-case
proof would require ≈ 1.7λ(9 log p+ 10λ) bits.

7 A new OPRF protocol

In this section, we combine the countermeasures presented in Section 4, the SIDH countermeasures and the
novel proof of isogeny knowledge discussed in Section 5, and the non-interactive proof of parallel isogeny
introduced in Section 6 to obtain a verifiable OPRF protocol that is post-quantum secure, round-optimal,
and moderately compact.

The OPRF protocol is a two-party protocol between a user U and a server S. Let NM, NB, NK be coprime
numbers representing the degrees of the message isogeny, the blinding isogeny, and the server’s isogeny,
respectively. Let p be a prime of the form p = NMNBNKf − 1, for some cofactor f , and let E0, Ẽ be two
supersingular elliptic curves defined over Fp2 . Moreover, let P,Q be a fixed basis of E0[NM] and let P̃ , Q̃ be a
fixed basis of Ẽ[NK]. The first curve is used to compute the PRF, while the second is used within the server’s
commitment.

At a high-level, to evaluate the OPRF on an input x, the user maps the input to a curve Em according
to Algorithm 1 and computes a blinding isogeny φb : Em → Emb. The user then sends the codomain curve,
together with torsion images and a proof of their correctness, to the server, which computes a second isogeny
φk : Emb → Embk. The torsion information is appropriately masked to avoid the SIDH attacks. The server
then responds with the curve Embk, some torsion information, a proof of their correctness, and a proof that
it has used the previously-committed secret key. The user then concludes by using the torsion information
provided by the server to undo the blinding isogeny and compute the curve Emk. Its j-invariant is then hashed
together with the input and the server’s public key to form the PRF output. The protocol is described in
Fig. 7 and it realized the OPRF ideal functionality of Fig. 2, which allows us to state the following theorem.
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Theorem 1. The protocol described in Fig. 7 realizes the ideal functionality FvOPRF of Fig. 2 in the random
oracle model.

The proof follows the same line as the security proof of the OPRF protocol by Boneh, Kogan, and
Woo [BKW20, Theorem 20], since the hardness assumption of Problem 4 and the proof Piso are a drop-
in replacement for the Auxiliary One-More SIDH assumption and the NIZKPK proof used in [BKW20],
respectively. At a high level, the case of an honest user and malicious server in the proof is simple because the
server only interacts with the user through their first query, and in that case the user’s security corresponds
to the input hiding property, guaranteed by the hardness of Problem 1. The case of a malicious user is
more complicated, because the user has output. The server can be simulated as a honest server, but to
ensure that the malicious user output is indistinguishable from the ideal-world, the random oracle H̄ can be
programmed to output the ideal-world output. This would create a problem with the ticketing system of the
ideal functionality if the adversary could produce more OPRF outputs than the number of interactions, but
the one-more unpredictability property prevents that. The main difference between this proof and that of
[BKW20] is the use of a non-interactive proof of parallel isogeny that can be simulated in the proof, which
results in a simpler proof since the proof of knowledge can be simulated. Note that the proof in [BKW20] is
written in terms of the augmentable commitment abstraction, which we preferred avoiding; since the same
security properties can be directly expressed in terms of the OPRF protocol, as shown in Section 3, the
difference is purely syntactical.

Parameter selection. Firstly, we discuss how to select the starting curves E0 and Ẽ. As mentioned in
Section 5, the cryptanalysis on masked-torsion SIDH with a starting curve with small endomorphism [FMP23,
Section 4.2] does not apply here, since the message isogeny removes this property from the starting curve of
the blinding isogeny. Hence, the curve E0 does not need to have unknown endomorphism ring. However, the
situation is different for Ẽ: as observed in [BKM+21], knowledge of End Ẽ allows to find collisions in the
server’s commitment. Thus, knowing End Ẽ would allow the server to break verifiability, since it could prove
parallelness to two distinct isogenies. It is thus necessary that the curve Ẽ is generated by a trusted party or
through a multiparty trusted setup ceremony, such as the one presented in [BCC+22].

The main parameter of the OPRF protocol is the prime p. Firstly, if the message isogeny is the composition
of many isogenies whose kernel is defined over Fp4 , the value p+1 does not need have a dedicated factor. Then,
for the main exchange, i.e. the blinding, server’s isogeny, unblinding part, we need to smooth coprime integers
NB and NK that are highly composite to prevent the SIDH attacks. Following the analysis of Section 5, we
have NB ≈ NK ≈ 23.3λ log λ. Lastly, the proofs of knowledge Piso and Ppar require a third cofactor NS that is
coprime with both NB and NK. To guarantee the hardness of Problems 6 and 7, the integer NS needs to be of
the same length as NB and NK. However, since torsion points of order NS do not need to be masked, the
value NS can be a prime power. Putting this together, we obtain that the prime p needs to be of the form
p = NBNSNKf −1 and at least 10λ log λ bit long. For λ = 128, this corresponds to 8868-bit long prime. While
it does not affect the prime size, the degree of the message isogeny φm also needs to be selected. Following
the analysis in Section 4, we set deg φm ≈ 24λ.

Note that the new computation of the message isogeny and the new proofs of knowledge has significantly
reduced the size of the prime; compared to the OPRF protocol by Boneh, Kogan, and Woo, we use a prime
that is 5.8× larger, while relying on an SIDH protocol with isogenies that are 9.2× longer.

Efficiency. We now estimate the communication cost of the OPRF protocol. The largest components
are the non-interactive proofs of knowledge: given the analysis of the previous sections, they are less
than 1.7λ(35 log p + 51λ)-bit long. Since log p ≈ 10λ log λ, we obtain that one OPRF execution requires
1.7λ2(350 log λ+ 51) bits of communication. For λ = 128, this corresponds to a transcript of 8.7 MB.

We remark that the size of the proofs is particularly large due to the Unruh transform needed to prove
security in the UC framework. If the proofs were made non-interactive via the Fiat-Shamir transform, a
3 The proof algorithm does not receive torsion points because, as discussed in Section 6, they are not necessary to

prove parallelness.
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Parameters. A prime p of the form p = NMNBNKf−1, where NM, NB, NK are smooth coprime integers and f a smooth
cofactor. E0 and Ẽ are supersingular elliptic curves defined over Fp2 , where End Ẽ is unknown, and P,Q ∈ E0[NM]

and P̃ , Q̃ ∈ E[NK] are fixed bases.
The protocol also relies on several functions:

– Hi : {0, 1}∗ → ZM for i ∈ {1, . . . , I}, where I is such that NI
M > 24λ, to use within HI ,

– H̄ : {0, 1}∗ → {0, 1}λ, to hash the final PRF output,

and two non-interactive proofs of knowledge:

– Piso, for the user to prove correctness of torsion images,
– Ppar, for the server to prove it computed honestly with the committed key.

Initialization. On input init from the environment, the server S:

– sample k ← ZK and stores it,
– computes the curve ẼC = Ẽ/〈P̃ + [k]Q̃〉,
– stores pk = (j(EC)) and outputs (init, pk).

Evaluation. On input init from the environment, the server S:

– On input (Eval, S, x), the user U proceeds as follows:
1. Sample α← Z∗

N and b← ZB ,
2. Compute (φm, Em) = HI(x);
3. Compute φb : Em → Emb := Em/〈Pm + [b]Qm〉, where Pm, Qm = BB(Em),
4. Set φmb = φb ◦ φ1 ◦ φ0, R = [α]φmb(P ), S = [α]φmb(Q),
5. Compute πc ← Piso(E0, P,Q,Emb, R, S, φmb, α),
6. Send message (Emb, R, S, πc) to the server and store φb

– On input ServerComplete from the environment and message (Emb, R, S, πc) from the user U , the server S
proceeds as follows:
1. Verify the proof πc,
2. Sample αk ← Z∗

n,
3. Compute φk : Emb → Embk := Emb/〈R+ [k]S〉,
4. Compute Rk = [αk]φk(Pb), Sk = [αk]φk(Qb), where Pb, Qb = BB(Emb),
5. Compute πk ← Ppar((Emb, Pb, Qb, Embk, Rk, Sk), (Ẽ, P̃ , Q̃, ẼC), k, αk)

3,
6. Send (pk, Embk, Rk, Sk, πk) to the user U

– On input (pk = j(Ec), Embk, Rk, Sk, πk) from the server S, the user U proceeds as follows:
1. Verify the proof πk,
2. Compute b0, b1 such that 〈[b0]Pb + [b1]Qb〉 = ker φ̂b, where Pb, Qb = Bd(Emb),
3. Compute φu : Embk → Emk := Embk/〈[b0]Rk + [b1]Sk〉,
4. Compute y = H̄(x, pk, j(Emk)) and output (Eval, pk, y).

Fig. 7. The verifiable OPRF protocol.

single execution of the verifiable OPRF with λ = 128 would require 1.9 MB of communication on average and
3.8 MB in the worst case. Such an OPRF may be used in instances where security in the UC framework is not
necessary. Alternatively, recent work [LR22] has shown it is possible to obtain NIZKPs that are secure in the
General UC framework with the Fiat-Shamir transform when the underlying sigma protocol satisfies specifc
criteria. We leave an analysis of the applicability of [LR22] to the proposed construction for future work.

A direct comparison with the protocol by Boneh, Kogan, and Woo [BKW20] is not simple since their
bandwidth estimate does not appear to include the Unruh transform overhead. We estimate that one
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execution of the OPRF from [BKW20] requires at least 10.9 MB4. Our protocol is thus more compact than
that in [BKW20], despite being round-optimal and secure against both the one-more unpredictability attack
and the SIDH attacks. This is made possible by the fact that the sigma protocols are highly optimized and
have ternary challenges, which significantly reduces the overhead introduced in the Unruh transform. Indeed,
if we compare a version of the two protocols with the Fiat-Shamir transform, our OPRF uses 31% more
bandwidth than the one in [BKW20].

We summarize the state of post-quantum OPRF protocols in Table 1. When compared to the CSIDH-based
OPRF in [BKW20], our OPRF offers verifiability and a lower number of communication rounds. This comes
at the cost of a significantly higher bandwidth; however, if we remove the large server-side proof needed for
verifiability, our protocol requires has a transcript of 3.0 MB.

Table 1. Comparison of existing post-quantum OPRF protocols. For verifiable OPRFs, the Rounds column does not
include the committment round since it takes place once and it is not repeated during each execution.

Protocol Rounds Bandwidth (avg.) Verifiable Secure

[ADDS21] (LWE/SIS) 2 >128 GB 3 3

[BKW20] (SIDH) 6 >10.9 MB 3 7

[BKW20] (CSIDH) 3 424 kB 7 3

[This work] 2 8.7 MB 3 3

8 Conclusion

In this work, we presented a post-quantum verifiable oblivious PRF protocol that is moderately compact and
round-optimal. The protocol is the first round-optimal OPRF based on isogenies, and its communication cost
is several orders of magnitude smaller than the existing round-optimal protocol. To obtain this protocol, we
started from an insecure protocol by Boneh, Kogan, and Woo, and we proposed an efficient countermeasure
against the one-more unpredictability attack, integrated the existing SIDH countermeasures, developed a
new zero-knowledge proof of isogeny that works with the SIDH countermeasures, and proposed a novel
non-interactive proof of parallel isogeny that reduced the number of rounds to two.

The protocol is an important stepping stone towards fully practical post-quantum OPRFs, but its
performance is hindered by the inefficiency of the SIDH countermeasures. In future work, we aim at
developing more efficient solutions: a moderate reduction in the degree of the isogenies would significantly
improve the efficiency of the protocol. It is also interesting to improve the proof of parallel isogeny by avoiding
validating the commitment isogeny at every interaction.

Acknowledgements. The author would like to thank Christophe Petit and Luca de Feo for several
suggestions, and Tako Boris Fouotsa, Christophe Petit, Chloe Martindale, and the anonymous reviewers of
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4 In [BKW20, Section 5], the authors estimate that the largest response in the sigma protocol Rcom requires 6 log p+5λ
bits. The protocol has a challenge space of size 6, and it needs to be repeated 3.8λ times to obtain a negligible
soundness error. Without considering the size of the committments, the Unruh-based NIZKP contains 6 hashed
values that are as long as the largest response, per each iteration. The transcript of an Rcom proof thus requires at
least 3.8λ× 6(6 log p+ 5λ) bits. The entire OPRF hence requires three times as much (three such proofs are used),
plus 5λ log p bits for the proof of parallel isogenies.
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