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Abstract. We study the post-quantum security of authenticated en-
cryption (AE) schemes, designed with classical security in mind. Under
superposition attacks, many CBC-MAC variants have been broken, and
AE modes employing those variants, such as EAX and GCM, thus fail
at authenticity. As we show, the same modes are IND-qCPA insecure,
i.e., they fail to provide privacy under superposition attacks. However,
a constrained version of GCM is IND-qCPA secure, and a nonce-based
variant of the CBC-MAC is secure under superposition queries. Further,
the combination of classical authenticity and classical chosen-plaintext
privacy thwarts attacks with superposition chosen-ciphertext and clas-
sical chosen-plaintext queries – a security notion that we refer to as
IND-qdCCA. And nonce-based key derivation allows generically turning
an IND-qdCCA secure scheme into an IND-qCCA secure scheme.
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1 Introduction

The advent of quantum computers can be a game-changer for cryptography.
This is well-known for current public-key cryptosystems [Sho94], thus the ongo-
ing process to find consensus for new public-key cryptosystems [CJL+16]. The
impact of quantum computers on symmetric cryptography is less understood.
There are two common attack models for adversaries with a quantum computer:
Q1 attacks allow only classical communication between the adversary and the
victim (or the “challenger” in attack definitions). In Q2 attacks, the adversary
can send queries in superposition to the challenger. Accordingly, the challenger’s
answers can also be in superposition. By a “common wisdom”, symmetric cryp-
tosystems can be made quantum-secure “by doubling the key size”. This fails in
the Q2 setting, where many symmetric cryptosystems have been broken (e.g.,
[KLLN16,BLNS21]). Even for the Q1 setting, this “common wisdom” has been
disproven: Certain Q1 attacks degrade 2.5k-bit classical security down to k-bit
Q1 security [BSS22,US22].

We focus on the Q2 model. To motivate the practical relevance of the Q2 model,
we give an example: Consider sensitive classical data (e.g. medical records),
stored in an authenticated and encrypted database. The analysis software con-
nects to a security module, which decrypts selected database entries, returning



2 Nathalie Lang, Stefan Lucks

insensitive data (e.g., by anonymizing the records and aggregating data). The
module can be a subroutine running on the same computer as the analysis soft-
ware, though with different privileges. If this computer is a quantum computer,
queries can be in superposition. The module could force queries to be classi-
cal, e.g., by performing measurements, but this would put the reason of using a
quantum computer for data analysis into question. In our example, the analysis
software only asks for the decryption of chosen ciphertexts, but never for the
encryption of any plaintexts. This inspires a constrained variant of Q2 attacks:
Q2d (“Q2 decrypt”) attacks can make chosen-ciphertext queries in superposi-
tion, while chosen-plaintext queries are always classical. Note that Q2 security
trivially implies Q2d security, Q2d security trivially implies Q1 security, and, for
chosen-plaintext attacks, Q2d and Q1 are equivalent.

Focus of this paper. We focus on the Q2 and Q2d security of authenticated
encryption (AE), motivated by the following question: “When exposed to super-
position queries, which state-of-the-art AE systems maintain a meaningful level
of security?” A “none” answer to this question would imply a difficult transition
from legacy to post-quantum cryptosystems, once superposition queries become
an issue. Beyond superposition attacks on MACs, which imply some AE sys-
tems failing to provide authenticity [KLLN16], this question has, to the best of
our knowledge, only been addressed for the OCB mode [MMPR22], and for a
sponge-based AE scheme [JS22]. We will consider other modes, but also describe
generic conditions for security under superposition attacks.

Related Work. Certain properties, like the no-cloning theorem, require the re-
consideration and revision of classical security notions to the quantum sce-
nario [AGM18b,AGM18a]. Many well-established classical message authentica-
tion codes have been found insecure in the Q2 model: Quantum period finding
breaks many message authentication codes (MACs), including common variants
of CBC-MAC [KLLN16]. (Though, there are also the positive results for HMAC
and NMAC [SY17,HI21].) Quantum linearization pushes quantum period find-
ing further, for more attacks [BLNS21]. Authenticated encryption (AE) combines
privacy with authenticity, and the above attacks also apply to the authentication
aspect of AE modes. [ATTU16] did study the privacy of unauthenticated encryp-
tion in the Q2 setting, for chosen-plaintext attacks: Some modes (e.g., counter)
are secure in the Q2 sense, even when the underlying block cipher is only Q1
secure. Other modes (e.g., CBC encryption) are secure in the Q2 sense when in-
stantiated with a Q2-secure block cipher. The same paper also describes a wicked
block cipher, which we will refer to as Ẽ, which is a 1PRP but not a qPRP. When
instantiated with Ẽ, CBC encryption is insecure in the Q2 model.

In the current paper, we consider the matching IND-qCPA and IND-qCCA no-
tions from [BZ13b] to model the privacy aspect of AE modes. These models as-
sume so-called classical “challenge queries” (two chosen messages, the challenger
will encrypt one of them), while “learning queries” (one message which the chal-
lenger will encrypt or, in the case of IND-qCCA also decrypt) can be in superposi-
tion. [CETU20] proposes stronger security notions for quantum chosen-plaintext
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security, which also allow to eliminate the distinction between challenge and
learning queries. But [CETU20] only deals with chosen-plaintext security, while
we will consider both chosen-plaintext and chosen-ciphertext attacks.

We model the authenticity aspect of AE modes by the “Plus One” (PO) notion
[BZ13a]. We refer to PO security in a Q2 setting as qPO, and to PO security in a
Q1 setting as 1PO. The stronger “Blind Unforgeability” (BU) notion [AMRS20]
seems to be less natural. Though, we can informally argue that the nonce-prefix
MAC, which we analyze in Section 5.1, is BU secure since it behaves like a qPRF,
which suffices for BU security. An alternative to “classical modes”, i.e., to modes
proposed for classical security, could be new “quantum” modes, such as QCB, a
mode for tweakable block ciphers, which has been proven IND-qCPA and qPO
secure [BBC+21]. Most of our security proofs are straightforward reductions. We
do not require Zhandry’s random oracle recording technique [Zha19]. For some
proofs, we we build on the O2H lemma [Unr15,AHU19].

Outline and Contribution

Sections 2 and 3 give preliminaries and sum up known ideas and results.

Section 4 studies the privacy in the IND-qCPA sense, of certain AE modes,
which are already known to be qPO insecure [KLLN16,BLNS21]:

(A) The generic SIV mode, GCM mode, and EAX mode are IND-qCPA insecure.

(B) A restricted variant of GCM, which, for a block size of n, only allows nonces
of size n− 32 bit, is IND-qCPA secure.1

In Section 5 we identify two techniques, which have been employed for classical
security, but which happen to also defend against superposition attacks:

(C) The nonce-prefix variant of the CBC-MAC shares the security properties
of CBC encryption described by [ATTU16]: When instantiated with a Q2-
secure block cipher, the nonce-prefix MAC is qPO secure, but, when instan-
tiated with the wicked block cipher Ẽ from [ATTU16], the MAC is insecure.

(D) Nonce-based re-keying defends against superposition chosen-plaintext queries:
It turns an IND-1CPA secure AE system into an IND-qCPA secure one.

Section 6 considers generic AE schemes:

(E) If an authenticated encryption scheme is both IND-1CPA secure and 1PO
secure, then it is also IND-qdCCA secure.

(F) Nonce-based re-keying turns an IND-qdCCA and 1PO secure AE system into
an IND-qCCA secure one

1 This seems to be good news for many practical instantiations of GCM, which often
employ n = 128 and 96-bit nonces. But the attack from [KLLN16] still applies, i.e.,
even that variant is qPO insecure.
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In Section 7 we conclude.

Note that by combining results (E) and (F) we can construct IND-qCCA secure
AE from an AE scheme, which is only Q1 secure.

2 Definitions

2.1 Notation

We refer to security against classical adversaries by the prefix “c”, to security
against Q1 adversaries by “1”, to security against Q2 adversaries by the “q”,
and to security against Q2d adversaries (“Q2 decrypt”) by “qd”. E.g., we write
“IND-qCPA” for Q2 security in a chosen-plaintext setting, “IND-qdCCA” for
Q2d security in a chosen-ciphertext setting, “1PO” for authenticity against Q1
adversaries, and “cPRP” for a classically secure PRP. If “P” is a primitive, C[P]
denotes the instantiation of a generic construction “C” by P. If S is a set of
primitives, Cr[S] denotes all instantiations C[P] for all P ∈ S. We write s||t for
the concatenation of bit-strings s, t ∈ {0, 1}∗.

Much of our methodological approach is based on reductions. Typically, we as-
sume the existence of a Q2-adversary A2 against some scheme, and we describe
a Q1 adversary A1 against another scheme, or in a different attack setting. A1

performs some simple operations to transform superposition queries from A2 into
the classical queries A1 can make, and to transform the classical responses A1

receives from its challenger into superposition responses for A2, and to compute
its own final output from A2’s final output. I.e., A1 is about as efficient as A2

(though Adv(A1) and Adv(A2) may be significantly different). We thus propose
the following notation:

Definition 1 (A1 ←wrap A2). Consider two adversaries A1 and A2. A2 makes
q2 queries Q2

1, . . . , Q
2
q2 of total length σ2 =

∑
1≤i≤q2

|Q2
i | and forwards them to

A1 who makes q1 queries Q1
1, . . . , Q

1
q1 of total length σ1 =

∑
1≤i≤q1

|Q1
i |. We

write T (Ax) for the running time of Ax. Then A2 is a wrapper for A1, written
as A1 ←wrap A2, if (σ1 ∈ O(σ2) and T (A2) ∈ T (A1) +O(σ2)).

2.2 Symmetric schemes

Definition 2 (Encryption). Let K be a finite set of secret keys. An encryption
scheme (E ,D) is a pair of two efficient algorithms E and D, in combination
with a soundness property. The encryption algorithm E takes a key K ∈ K,
a nonce N , a header H, and a message M ̸= ⊥ and generates a ciphertext
C = EK(N,H,M). The decryption algorithm D takes a key K ∈ K, a nonce N ,
a header H, and a ciphertext C and generates a message M = DK(N,H,C).
The soundness property

DK(N,H, EK(N,H,M)) = M
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holds for all K ∈ K, all nonces N , all headers H and all messages M .
Encryption schemes are either unauthenticated, i.e., for all K ∈ K, all nonces
N , all headers H, and ciphertext C, M = DK(N,H,C) is a valid message, or
authenticated, i.e., some triples (N,H,C) are invalid and cannot be decrypted.
Then, we write ⊥ = DK(N,H,C), understanding ⊥ as an error message.

Remark: All authenticated encryption schemes we consider in the current paper
have a constant-size expansion, i.e., there exists a constant τ such that |C| =
|M |+ τ for all K, N , H, and M and C = EK(N,H,M).

Definition 3 (Message authentication codes (MACs)). Let K be a fi-
nite set of secret keys. A MAC M is a deterministic function, which can be
implemented by an efficient algorithm. If M is nonce-based, it takes a key
K ∈ K, a nonce N , and a message M and computes an authentication tag
T =MK(N,M). IfM is deterministic, it takes a key K ∈ K and a message M
and computes an authentication tag T =M′

K(M).

Now we formalize the notion of privacy under chosen-plaintext attacks:

Definition 4 (The generic IND-CPA and IND-CCA games). Let (E ,D)
denote a nonce-based encryption scheme with keyspace KE and A an adversary,
making q queries. 2

The Generic IND-CCA game consists of the following three steps:

Initialize: The challenger randomly chooses K
$←− KE and b

$←− {0, 1}.
It maintains a set B of “blocked triples”, which is initially empty: B = {}.

Query Phase: For i ∈ {1, . . . , q}, A makes either of the following queries:

Forward Learning query: A chooses a nonce/header/message triple (Ni, Hi,Mi)
and receives Ci = EK(Ni, Hi,Mi).
The challenger sets B = B ∪ {(Ni, Hi,Mi)}.

Backward Learning query: A chooses a nonce/header/ciphertext triple
(Ni, Hi, Ci).
If (Ni, Hi, Ci) ∈ B, the challenger sends ⊥ to A.
Else, the challenger sends DK(Ni, Hi, Ci) to A.

Challenge query: A chooses a nonce Ni, two headers Hi,0 and Hi,1 and
two messages Mi,0 and Mi,1, receives ciphertext Ci = EK(Ni, Hi,b,Mi,b).
The challenger sets B = B ∪ {(Ni, Hi,0,Mi,0), (Ni, Hi,1,Mi,1)}.

Finalize: A outputs a classical bit b′ ∈ {0, 1}. The event win(A) occurs if b′ = b.
The advantage of A is

Adv(A) = |Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]| (1)
2 A is constrained to choose unique nonces for forward learning and challenge queries.

This will be formalized in Definition 8 below.
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The Generic IND-CPA game consists of the same steps, except that A cannot
make any backward learning queries.

In the next step, we formalize the notion of authenticity:

Definition 5 (The generic PO game). Let (E ,D) denote an encryption scheme
(authenticated or not) with key space KE . In this game, the adversary A can make
q learning queries and no challenge queries.

Initialize: The challenger randomly chooses K
$←− KE .

Query Phase: For i ∈ {1, . . . , q}, A chooses a nonce/header/message triple
(Ni, Hi,Mi) as a learning query and receives Ci = EK(Ni, Hi,Mi).

Finalize: A outputs q + 1 distinct classical triples (N ′
i , H

′
i, C

′
i) (1 ≤ i ≤ q + 1)

of nonce N ′
i , header H ′

i and ciphertext C ′
i. A wins if all triples are valid,

i.e., if
∀i ∈ {1, . . . , q + 1} : DK(N ′

i , H
′
i, C

′
i) ̸= ⊥.

A’s advantage is Adv(A) = Pr[A wins].

The generic PO game extends naturally to an adversary A′ attacking a de-
terministic MAC and to an adversary A′′ attacking a nonce-based MAC. In
the query phase, A′ chooses a message Mi and receives the authentication tag
Ti = MACK(Mi). Next, A′′ chooses a pair (Ni,Mi) of nonce and message and
receives Ti = MACK(Ni,Mi). Upon finalization, A′ outputs q+1 pairs (T ′

j ,M
′
j)

and wins if all pairs are valid. A′′ outputs q + 1 triples (T ′
j , N

′
j ,M

′
j) and wins if

all triples are valid.

Finally, we consider the primitives our modes are built from.

Definition 6 (Generic PRPs/PRFs). If $ : {0, 1}n → {0, 1}n is a permu-
tation over n bit (or $ : {0, 1}n → {0, 1}m an n-bit to m-bit function), chosen
uniformly at random, and P : {0, 1}n → {0, 1}n is another permutation (or
F : {0, 1}n → {0, 1}m another function), chosen according to some probability
distribution, we define the PRP advantage (PRF-advantage) of A by

AdvPRP(A, (P, $)) =
∣∣∣Pr[AP = 1]− Pr[A$ = 1]

∣∣∣
(or AdvPRF(A(F, $)) =

∣∣Pr[AF = 1]− Pr[A$ = 1]
∣∣).

Note that the definition of the PRP advantage allows A to choose x and query
for P (x) or $(x), respectively, but we do not allow A to query for the inverse
permutations of P and $. I.e., we do not consider “strong PRPs”.
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2.3 Quantum Attacks and Types of Adversaries

We assume the reader to be familiar with classical and quantum computers, and
their distinction.

Definition 7 (Types of queries). Let f be a function, available by an oracle.
In the case of a classical query, an adversary chooses x and receives f(x) as the
answer. In the case of a superposition query, the adversary chooses |x⟩ |y⟩ and
receives |x⟩ |y ⊕ f(x)⟩ as the answer.

Definition 8 (Types of adversaries). A classical adversary is running a clas-
sical computer and its queries are classical.

A Q1 adversary is running a quantum computer but only makes classical queries.

A Q2 adversary is running a quantum computer and can make superposition
learning queries. More precisely, for a forward learning query (Ni, Hi,Mi), the
header Hi and the message Mi can be in superposition, and the nonce Ni is clas-
sical.3 For a backward learning query, (Ni, Hi, Ci), the header Hi, the ciphertext
Ci and also the nonce Ni can be in superposition.

Challenge queries are completely classical.

A Q2d adversary is a Q2 adversary, restricted to classical forward learning
queries; only its backward learning queries can be in superposition.4

All adversaries use unique nonces for their challenge and forward learning queries.
That is, if for i ̸= j neither the i-th nor the j-th query are backward learning
queries, and the nonces for either query are Ni and Nj, then Ni ̸= Nj. 5

2.4 A Wicked PRP

[ATTU16] proposes a family of permutations over {0, 1}n, which they prove to
be a secure 1PRP, but which they show to be vulnerable under superposition
attacks, i.e., it fails to be a secure qPRP. In the current paper, we will refer to
this as the “wicked PRP Ẽ”:

Definition 9 (Wicked PRP Ẽ). Ẽ : {0, 1}n × {0, 1}n → {0, 1}n is a family
of permutations Ẽk(·) over {0, 1}n. There exist efficiently computable functions
f ′ : {0, 1}n → {0, 1}n, f ′′ : {0, 1}n → {0, 1}n, E′ : {0, 1}n × {0, 1}n → {0, 1}n−1,
3 Prohibiting superposition nonces is the established approach in the related work

since the nonce, even though we model it as chosen by the adversary, is a counter, a
timestamp, or a random value generated by the sender’s communication machinery.

4 Similarly, a Q2e (“Q2 encrypt”) adversary can make superposition forward learning
queries, but only classical backward learning queries. Though, we do not need Q2e
adversaries in our context.

5 Ni ̸= Nj is well-defined, even in the Q2 model with forward learning queries in
superposition, since the nonces Ni and Nj are always classical.
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and E′′ : {0, 1}n × {0, 1}n → {0, 1}, such that for every key k, Ẽk(x) can be
written as

Ẽk(x) = E′
f ′(k)(x)||E

′′
f ′′(k)(x).

Furthermore, for all x and k, E′ satisfies

E′
f ′(k)(x) = E′

f ′(k)(x⊕ k).

See [ATTU16] for a concrete construction of the wicked PRP, based on an n−1-
bit PRP and some random oracles. [ATTU16] prove Ẽ to be a secure 1PRP. Even
though Ẽ is a 1PRP, is not a qPRP: The adversary can use Simon’s algorithm
to find k, and then it is trivial to distinguish Ẽk from random. Thus, Ẽ can be
seen as a 1PRP, i.e., secure against Q1-adversaries, but with a built-in backdoor
for Q2-adversaries.

3 Known Ideas and Results

We summarize some known ideas and results, which we draw on in subsequent
sections: Firstly, we recall Simon’s algorithm. Secondly, we consider the security
of the Counter- and the CBC-Mode under superposition chosen-plaintext queries
[ATTU16]. Thirdly, we consider quantum period finding attacks [KLLN16], us-
ing chosen-message queries in superposition to break numerous message authen-
tication codes, such as most variants of the CBC-MAC and MACs based on
polynomial hashing. Fourth, we recall quantum linearization attacks [BLNS21],
an extension of quantum period finding to break (among other things) beyond-
birthday message authentication codes.

3.1 Simon’s problem, -subprogram, and -algorithm

Given oracle access to a function f : {0, 1}m → {0, 1}n with f(x) = f(y) ⇔
x ⊕ y ∈ {0, s} for a hidden nonzero “period” s ∈ {0, 1}m. Simon’s algorithm
[Sim97] allows to generically recover s in polynomial time. A classical generic
algorithm would require time Ω(2m/2). Here, “generic” means without exploiting
any specific property of f , except for the existence of the hidden period s.

The algorithm can be described as running Simon’s subprogram O(m) times,
and then solving a system of linear equations. Simon’s subprogram performs the
following steps:

1. Initialize a 2n-qubit register to a superposition of 2n values: 2−n/2
∑

x |x⟩ |0⟩.
(One can do so by initializing the first n qubits to |0⟩ and applying the
Hadamard transform to get 2−n/2

∑
x |x⟩ = H⊕n |0⟩.)

2. Call the f -oracle for 2−n/2
∑

x |x⟩ |f(x)⟩.

3. Measure the second register. Let v be the result of the measurement. The
state in the 2n-qubit register collapses to a superposition of only two values:
2−1/3(|y⟩+ |y ⊕ s⟩) |v⟩.
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4. Apply the Hadamard-transform to the first n qubits: H⊕n(2−1(|y⟩+|y + s⟩) |y⟩.

5. Measure the first n qubits. This yields a random z with z · s = 0. Return z.

Each evaluation of Simon’s subprogram implies one superposition query (cf.
step 2). Simon’s algorithm runs Simon’s subprogram until m linearly indepen-
dent equations zi · s = 0 have been collected. In the algorithm’s final step,
one computes s by solving this system. Note that with overwhelming proba-
bility, it suffices to call Simon’s subprogram O(m) times. Below, we will write
T (Simon(m)) for the run time required to recover an m-bit secret this way.

[KLLN16] made two observations, which are helpful for the application of Si-
mon’s algorithm for cryptanalytic purposes:

1. Assume many independent functions f1, f2, all with the same period s (i.e.,
fi(x) = fi(y) ⇔ x ⊕ y ∈ {0, s}). Even if each oracle call provides access to
another function fi, one can apply Simon’s algorithm to recover s.

2. One can even apply Simon’s algorithm with a relaxed version of Simon’s
problem. Assume a period s, such that f(x) = f(y) ⇐ x ⊕ y ∈ {0, s} but
allow for certain cases of f(x) = f(y) even if x ⊕ y ̸∈ {0, s}. As long as
maxt∈{0,1}m/{0,s} Prx[f(x) = f(x ⊕ t)] is negligible, Simon’s algorithm will
provide the period s in O(m) queries with overwhelming probability. E.g.,
this is the case if, apart from the constraining f(x) = f(x⊕ s), f is chosen
randomly.

3.2 Counter- and CBC-Mode Under Superposition
Queries [ATTU16]

Definition 10 (Stream cipher). Assume a pseudorandom function FK , such
that for every input N , FK(N) ∈ {0, 1}∗ is an infinite random string of bits.
We write Fm

K (N) ∈ {0, 1}m for the first m bits of FK(N). An F -based stream
cipher takes nonces Ni, a messages Mi and computes ciphertext Ci of length
|Ci| = |Mi| as Ci = F

|Mi|
K (Ni)⊕Mi.

Theorem 1 (Similar to Lemma 5 of [ATTU16]). Assume a PRF-based
stream cipher and a Q2-adversary A2 against the stream cipher. Then a Q1-
adversary A1 and a Q2-adversary A2 against the same stream cipher exists with
A1 ←wrap A2 and Adv(A1) = Adv(A2).

The proof for Theorem 1 is essentially the same as the proof given in [ATTU16].
But since [ATTU16] only claim polynomial-time equivalence of A1 and A2 and
assume a random nonce, we provide the proof in Appendix A .

Definition 11 (Counter mode and CBC). Assume an n-bit block cipher E
and a key K. Given a nonce N < 2n, the counter mode key stream is an infinite
string CntK(N) = EK(N)||EK(N+1)||EK(N+2)|| . . . , where the addition N+i
is modulo 2n. Counter mode encryption is the stream cipher based on CntK .
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CBC-MACK(M1, . . . ,Mm)

1 C0 ← 0
2 for i ∈ {1, . . . ,m} do
3 Ci = EK(Ci−1 ⊕Mi)

4 return (Cm)

CMACK(M)

1 (M1, . . . ,Mm−1,Mm)←parse(M)
2 L← EK(0)
3 if |Mm| = n then
4 M∗

m ← 2L⊕Mm

5 else
6 M∗

m ← 4L⊕ (Mm||1||0n−|Mm|−1)

7 T ← CBC-MACK(M1, . . . ,Mm−1,M
∗
m)

8 return (T )

Fig. 1: Pseudocode of CBC-MAC6 and CMAC7. Both algorithms receive a key K and
a message (M1, . . . ,Mm). For CBC-MAC it holds that ∀i: Mi ∈ {0, 1}n.

Given an m-block messsage M = (M1, . . .Mm) ∈ ({0, 1}n)m, CBC encryption
consists of two steps: first randomly choose C0 ∈ {0, 1}n, then compute Ci =
EK(Mi⊕Ci−1). The ciphertext from CBC encryption is the (m+1)-block string
(C0, C1, . . . , Cm).

Counter[E] and CBC[E] are the instantiations of the Counter- and the CBC-
mode by E.

Definition 12. Two nonce-message pairs (N,M) and (N ′,M ′) with nonempty
messages M and M ′ are counter-overlapping, if ((N ≤ N ′) and (N ′ − N <
|M |/n)) or ((N ≥ N ′) and (N −N ′ < |M ′|/n)). Else, they are counter-overlap
free.

According to Theorem 1, superposition queries fail to provide any benefit at all
over classical queries – for the counter mode:

Theorem 2 (Similar to Theorem 3 of [ATTU16]). If A2 is a Q2-adversary
on the counter mode, a Q1-adversary A1 ←wrap A2 on the counter mode exists
with Adv(A1) = Adv(A2).

CBC encryption. For the CBC-mode, the adversary can benefit greatly from
superposition queries, except when the underlying block cipher is secure against
such queries:

Theorem 3 ([ATTU16]). CBC[Ẽ] is IND-1PRP secure. CBC[Ẽ] is IND-qCPA
insecure. CBC[qPRP] is IND-qCPA secure.

Recall that we write Ẽ for the wicked PRP from Definition 9.
6 CBC-MAC by itself is classically insecure when applied to messages where one mes-

sage is allowed to be a prefix of a longer message. On the other hand, CMAC has
been proven secure, assuming the block cipher E to be secure (i.e., a good PRF).

7 For CMAC, 2L and 4L are defined as products over GF(2n), and the “parse” oper-
ation splits any nonempty M into n-bit blocks M1, . . . , Mm−1 and one block Mm
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EAXK(N,H,M)

1 N ′ ← CMACK(⟨0⟩ || N)
2 H ′ ← CMACK(⟨1⟩ || H)
3 C ← CtrK(N ′,M)

4 C′ ← CMACK(⟨2⟩ || C)
5 T ← N ′ ⊕H ′ ⊕ C′

6 return (T,C)

Fig. 2: The EAX mode. It takes a key K, nonce N , header H, and message M as input.
By ⟨i⟩ ∈ {0, 1}n, we denote an initial block encoding the number i ∈ {0, 1, 2}.

3.3 Quantum Period Finding Attacks [KLLN16]

Quantum period finding [KLLN16] applies Simon’s algorithm to create forgeries
for a variety of messsage authentication codes (MACs). This also breaks the
authenticity of AE schemes employing these MACs. We will outline the attacks
on the CMAC and GMAC, due to their relevance for the rest of this paper.

The CBC-MAC and its variants. Given the learning queries as the interface, the
core idea is to define a function f maintaining Simon’s promise, such that finding
the period s is useful for the adversary. Kaplan et al [KLLN16] used these to
attack the two-key variant of CBC-MAC, but, as they pointed out, the attack
applies to many other CBC-MAC variants. Here, we consider the attack on the
one-key variant, also dubbed CMAC.

Attacking CMAC [KLLN16]. CMAC is a variant of CBC-MAC see Figure 1. For
the attack we assume a string constant σ ∈ ({0, 1}n)∗, two constants β0 ̸= β1 in
{0, 1}n, and the function f : {0, 1} × {0, 1}n → {0, 1}n by

f(b, x) = CMACK(σ||βb||x) = EK(x⊕ 2L⊕ EK(

αb︷ ︸︸ ︷
βb ⊕ CBC-MACK(σ))).

The secret period s is s = (1||EK(α0)⊕ EK(α1)), since

f(0, x) = f(1, y)⇔ x⊕ y = EK(α0)⊕ EK(α1).

Assume finding s did require q′ ∈ Ω(n) learning queries. The adversary now
makes q′ + 1 queries for Ti = CMACK(σ||β0||Xi), with distinct Xi. Thanks to
the secret period s = 1||(EK(α0)⊕EK(α1)) we know Ti = CMACK(σ||β1||Xi).
In total, we made q = 2q′ + 1 learning queries and got q + 1 = 2q′ + 2 pairs
(Mi, Ti), thus winning the qPO game.

Attacking EAX. Consider the EAX mode for authenticated encryption, as de-
picted in Figure 2. Note that EAX makes three calls to the CMAC. If the message
is empty, EAX is essentially a nonce-dependent MAC for the header, and the
CMAC attack applies to EAX just as well. Thus, EAX is not qPO secure.

with |Mm| ∈ {1, . . . , n}. If M is the empty string, then parse(M) = M1 with M1

being an empty block: |M1| = 0.
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GHASHL(M1, . . . ,Mm)

1 H ←
⊕

1≤i≤m+1 MiL
|M|−i+1

2 return (H)

CtrK(J0,M)

1 (M1, . . . ,Mm)← pad0(M)
2 for i ∈ {1, . . . ,m} do
3 Ci ← EK(J0 + i)⊕Mi

4 C ← trunc|M|(C1, . . . , Cm)
5 return (C)

GCMK(N,H,M)

1 L← EK(0)
2 if |N|=n-32 then
3 J0 ← N ||031||1 ∈ {0, 1}n

4 else
5 J0 ←

GHashL(pad0(N)||⟨|N |⟩)
6 C ← CtrK(J0,M)
7 R← pad0(H)||pad0(C)

8 S ← GHashL(R||⟨2n/2|H|+ |M |⟩)
9 T ← EK(J0)⊕ S

10 return (T,C)

Fig. 3: GHash under key L8 of a message (M1, . . . ,Mm) of n-bit blocks, Ctr-mode to
encrypt a message M with a start counter J0 ∈ {0, 1}n and GCM encryption of a
message M9, depending on a key K, nonce N , and a header H. For S ∈ {0, 1}∗, the
operation pad0(S) denotes appending the minimum number of 0-bits, such that the
length of the result is a multiple of the block size n. We will refer to EK(N), EK(N +
1), . . . as the key stream.

Attacking GMAC/GCM [KLLN16] GCM and its related algorithms are pre-
sented in Figure 3. Unlike EAX, GCM does not employ any variant of CBC-
MAC, but rather employs a polynomial hash. When calling GCM with an empty
message ϵ, GCM is de facto used as a nonce-based MAC for the header. We will
refer to this as GMACK(N,X) = GCMK(N,X,M). As it turns out, GMAC,
and, by implication, GCM, are not qPO secure. Furthermore, the attack is es-
sentially the same as for CMAC: define σ ∈ /{0, 1}n)∗, β0 ̸= β1 in {0, 1}n and
the f : {0, 1} × {0, 1}n → {0, 1}n by

fN (b, x) = CMACK(N, σ||βb||x). (2)

The secret period s ∈ {0, 1}n+1 is

s = 1 || (Lβ0 ⊕ Lβ1) = 1 || (L(β0 ⊕ β1)). (3)

Since s does not depend on the nonce N , one can apply Simon’s algorithm
exactly as in the case of CMAC: “As for the CBC-MAC, repeating these two
steps leads to an existential forgery attack” [KLLN16].

3.4 Quantum Linearization for Beyond-Birthday MACs
[BLNS21]

We continue by giving examples for quantum linearization attacks. A deeper un-
derstanding of such attacks is not necessary for the reader. However, for further
8 Li denotes exponentiation in GF(2n) and MiL

i is a product in GF(2n).
9 The length of messages is restricted to less than 232 blocks.
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GenericSIVK,L(N,H,M)

1 V ← MACL(I(N,H,M)) 2 C ← EncK(V,M), 3 return (V,C)

Fig. 4: Pseudocode of the generic SIV encryption, combining a MAC and a nonce-based
encryption operation Enc, using two independent keys K and L. I(N,H,M) is an
input encoding of a nonce N , header H, and message M , which satisfies I(N,H,M) ̸=
I(N ′, H ′,M ′) if (N,H,M) ̸= (N ′, H ′,M ′). Given (V,C), authenticated SIV decryption
first computes M = Enc−1

K (V,C), and then V ′ = MACL(I(N,H,M)). If V = V ′,
authenticated SIV decryption returns M , else it rejects (V,C).

reading we refer to [BLNS21]. Typical Variants of CBC-MAC (e.g. CMAC), and
typical MACs based on polynomial hashing (e.g. GMAC), only provide classical
security up to the birthday bound of 2n/2, where n is the block size. Coinci-
dently, many beyond-birthday MACs (against classical adversaries) seem to be
save from a straightforward application of period finding. [BLNS21] extended
period finding to linearization. At the cost of increasing the size of each query
from Θ(1) blocks to Θ(n) blocks, quantum linearization allows breaking several
beyond-birthday MACs (and also many other schemes).

Attacking the GCM-SIV2 and the GCM-SIV2-MAC. SIV is a mode of oper-
ation to perform “deterministic authenticated encryption”, i.e., authenticated
encryption with minimal damage when nonces are reused [RS06]. Generic SIV
is depicted in Figure 4. Many instantiations of generic SIV have been proposed
by different authors. GCM-SIV2 is a beyond-birthday-secure instantiation, com-
bining a beyond-birthday secure MAC with a beyond-birthday secure variant
of the counter mode [IM16]. The MAC, which we refer to as GCM-SIV2-MAC,
takes two n-bit keys L1, L2, four block cipher keys K ′

1, K ′
2, K ′

3, and K ′
4, a nonce

N , a header H = (H1, . . . ,Hj), and a message M(M1, . . . ,Mm) and computes
a 2n-bit authentication tag

(T1, T2) = GCM-SIV2-MACL1,L2,K′
1,K

′
2,K

′
3,K

′
4
(N,H,M).

After parsing the joint input H and M as a sequence (X1, . . . , Xa+m+1) of
a +m + 1 n-bit blocks, with the last block (⟨|H|⟩||⟨|M |⟩) holding encodings of
the lengths of H and M , GCM-SIV2-MAC computes intermediate values

V1 = N ⊕
⊕

1≤i≤a+m+1

Li
1Xi and V2 = N ⊕

⊕
1≤i≤a+m+1

Li
2Xi

and then returns

T1 = EK′
1
(V1)⊕ EK′

3
(V2) and T2 = EK′

2
(V1)⊕ EK′

4
(V2)

Plain quantum period finding fails for the GCM-SIV2-MAC, but quantum lin-
earization succeeds [BLNS21]. To attack the MAC, one generates pairs (N,H,M) ̸=
(N,H ′,M ′) with the same authentication tag

T = GCM-SIV2-MACK(N,H,M) = GCM-SIV2-MACK(N,H ′,M ′).



14 Nathalie Lang, Stefan Lucks

This not only allows to break the qPO security of the MAC but also of GCM-
SIV2 itself: For any such pair, ask for (C, T ) = GCM-SIV2K(N,H,M). Then
decrypting (N,C ′, H ′, T ) with C ′ = C ⊕M ⊕M ′ will return M ′.

4 Privacy under Q2 Attacks (or Lack Theorof)

As we argued in Section 3, AE modes, such as EAX, GCM, and GCM-SIV2,
directly inherit qPO insecurity from the MAC schemes they are based on. Thus
authenticity is lost – but could any of these AE modes still preserve privacy, at
least in the IND-qCPA sense?

4.1 GCM-SIV2

Recall the generic SIV mode from Figure 4. It uses the result of the MAC opera-
tion as the nonce for the encryption operation Enc. Thus, when instantiated with
any of the MACs studied in Section 3, the adversary can force a nonce-reuse for
Enc. One such instantiation is GCM-SIV2, which furthermore instantiates Enc
by the counter mode. Using the counter mode with the same nonce is insecure.
Thus, GCM-SIV2 is IND-qCPA insecure.

4.2 GCM

For GCM, it is easy to recover the internal secret L = EK(0) from Equation 3,
since β0, β1, and i are known to the adversary, and the computations are in
GF(2n)). But can we exploit knowing L for a qCPA attack? The answer depends
on the nonce length. Observe that GCM treats nonces N of size |N | = n − 32
differently from different-sized nonces, cf. lines 2–5 in GCM (Figure 3). The
case GCM|N |=n−32 will be considered below. But, GCM without restrictions on
the nonce-space is not IND-qCPA secure – not even if the block cipher is a
qPRP. If |N | ̸= n− 32, the initial counter J0 is derived by calling GHash: J0 =
GHashL(pad0(N)||⟨|N |⟩). Knowing L allows us to create overlapping counters
efficiently. We present two approaches.

Our first approach employs two nonces N and N ′, with |N ′| = n−32 ̸= |N |. We
do not need unplausibly long nonces; as a reasonable choice, we set |N | = n. Fix
N ′ and J0 = N ′||031||1. Now the adversary just has to compute N with

GHashL(N ||⟨n⟩) = L2N ⊕ L⟨n⟩ = J0,

i.e., compute N = (J0 ⊕ L⟨n⟩) ∗ L−2 in GF(2n). A nonce-respecting adversary
uses either N or N ′ in a learning query, and the other one in the challenge query.
Both nonces generate the same J0 and thus the same key stream.

Our second approach even works for nonces N ̸= N ′ of equal size |N | = |N ′| = n.
We choose N and N ′ such that J ′

0 = J0 + 1. This creates a counter overlap.
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Namely, we fix N ′, compute J ′
0 and then solve the equation below for N :

J0︷ ︸︸ ︷
L2N ⊕ L⟨n⟩ =

J′
0︷ ︸︸ ︷

(L2N ′ ⊕ L⟨n⟩)−1.

Due to J ′
0 = J0 + 1, the keystreams overlap, except for the first output block

from the J0 key stream.

GCM|N |=n−32, a Restricted Variant of GCM. If we restrict all nonces N to
|N | = n−32, the initial counter is set to J0 = N ||031||1, without invoking GHash.
As with all variants of GCM, GCM|N |=n−32 fails at authenticity, i.e., is qPO
insecure. But the restriction |N | = n− 32 preserves privacy: Due to the message
length restriction, all nonce-respecting queries are overlap-free. According to
Theorem 1, GCM|N |=n−32 is IND-qCPA secure if the block cipher is a 1PRP,
even when the adversary knows L.

4.3 EAX

Reconsider CMAC. We aim to recover the key-dependent secret L = EK(0).
Recall lines 3–6 of Algorithm 2. Consider an arbitrary n1-bit string X and set
X1 = X||1 ∈ n{0, 1}n. If Mm = X, then M∗

m = X1 ⊕ 4L. If Mm = X1,
then M∗

m = X1 ⊕ 2L. For the attack, we thus assume learning queries with a
superposition of two identical messages, except for Mm being either X or X1.10
We continue with the attack to recover 6L (and by implication: L). Note that
this attack is specific to CMAC, and would not apply to most other CBC-MAC
variants:

1. Guess β = LSB(6L).

2. Define the function fβ : {0, 1} × {0, 1}n−1 → {0, 1}n by

fβ(b, x) =

{
CMACK(x) if b=0
CMACK(x||β) else .

3. Note that if β = LSB(6L), then f is periodic: fβ(0||x) = fβ(1||x⊕MSBn−1(6L).
Apply Simon’s algorithm to recover the period s = MSBn−1(6L).

4. If Simon’s algorithm fails, replace β by 1− β and go to step 2.
Else return 6L = (s||β)

For MAC forgeries, there seems to be no benefit over the attack from Section 3.3.
But knowing L allows us to mount the following simple IND-qCPA attack:
10 The design of a quantum interface for the superposition of messages of different

lengths may not be obvious. For concreteness, assume a maximum message length
µ, and a message of length m = |M | ≤ µ is encoded as a (µ+ log2(µ))-qubit string
|M⟩ |0µ−m⟩ |m⟩ of message, padding and message length.
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1. Choose an n-bit nonce N0 = L⊕ 2L, a 2n-bit nonce N1 = (L||N0), a header
H and two messages M0 ̸= M1 with |M0| = |M1|.

2. Make
{

a learning query for (T1, C1) = EAXK(N0, H,M0), and
a challenge query for (T2, C2) = EAXK(N1, H,Mb) for unknown b.

3. If C1 = C2 then return 0; else return 1.

As it turns out, this attack succeeds with advantage 1. Namely, we generate the
same keystream in either query and thus, if b = 0 then C1 = C2. Also, if b = 1
then C1 = C2 ⊕M1 ⊕M2 ̸= C1. To verify this claim, observe

CMACK(⟨0⟩||N0) = CMACK(⟨0⟩||(L⊕ 2L))

= EK(EK(0)⊕ L⊕ 2L⊕ 2L) = EK(0) = L

and

CMACK(⟨0⟩||L||N0) = CMACK(⟨0⟩||L||(L⊕ 2L))

= EK(EK(EK(0)⊕ L)⊕ L⊕ 2L⊕ 2L)

= EK(EK(0)⊕ L⊕ 2L⊕ 2L) = EK(0) = L.

Note that this attack does not work for nonces of equal sizes.

5 Accidential Protection from Q2 Attacks

All AE modes we studied in the context of the current research have been de-
signed and proposed with classical security in the mind. Thus, one must not
blame the modes’ authors for insecurities under quantum attacks. But we found
some design aspects in some of the modes we studied, which happen to protect
against Q2 attacks.

5.1 The Nonce-Prefix MAC from the CCM Mode

CCM [WHF03] is an early AE mode. Though criticized for a variety of practical
undesirabilities [RW03], CCM did inspire the evolution of improved AE modes
(“improved” from a classical point of view), such as EAX. We focus on CCM-
MAC, which applies CBC-MAC to (N, |M |,M), where N is the nonce, |M | is
the message length, and M is the message itself. The original CCM-MAC did
allow to squeeze the nonce N of length |N | ≪ n and the encoding of |M | into
the first input block for the CBC-MAC, while we propose NP-MAC, where the
nonce N ∈ {0, 1}n fits exactly into the first block, see Figure 5. We tried to find
possible attacks on NP-MAC by using quantum period finding and quantum
linearization. Not only did we not find any feasible attacks, but instead we could
even prove that those two techniques would not work in attacking NP-MAC. As
we will show below, it is secure when instantiated with a qPRP and used with
random nonces, but insecure when instantiated with the wicked 1PRP Ẽ (cf.
Definition 9), just like CBC encryption.
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NP-MACK(M)

1 choose nonce N ∈ {0, 1}n at random
2 T ← CBC-MACK(N, |M |, pad0(M))

3 return (T )

Fig. 5: The NP-MAC with a full-block nonce N ∈ {0, 1}n; for simplicity, we assume
the encoding of the message length |M | < 2n to be a full-block value |M | ∈ {0, 1}n.
We write NP-MAC[E] for the instantiation of NP-MAC with a block cipher E.

Theorem 4. For NP-MAC[Ẽ] a Q2-Adversary A exists, which recovers the se-
cret key. The accumulated length of all queries from A is O(n2), and T (A) ∈
O(T (Simon(n))).

Proof. Assume a single-block-message M =
∑

x∈{0,1}n |x⟩ as the superposi-
tion M = M1 =

∑
x∈{0,1}n |x⟩. Note that |M | = n and pad0(M) = M . Ev-

ery learning query will be of the form (Ni,M) with a unique nonce Ni and
M in superposition11. The challenger responds T = CBC-MACK(Ni, |M |,M),
also in superposition. The first two blocks Ni and |M | are classical values.
Thus, γ = CBC-MACk(Ni, |M |) is a classical constant. The final block is M =∑

x∈{0,1}n |x⟩. Thus, the authentication tag is

T =
∑

x∈{0,1}n

|x⟩ |fk,Ni(M)⟩ =
∑

x∈{0,1}n

|x⟩ |Ẽk(x⊕
γ︷ ︸︸ ︷

CBC-MACk(Ni, |M |) )⟩ (4)

=
∑

x∈{0,1}n

|x⟩ |Ẽk(x)⟩ . (5)

Recall the definition of Ẽk in Definition 9: The first n − 1 bits of Ẽ form a
subfunction E′

f(k), with period k, i.e., E′
f(k)(x) = E′

f(k)(y) if and only if x = y
or x = y ⊕ k. Thus, the first n − 1 bits of fk,Ni

also form a function with the
same period. This allows a Q2 adversary to recover the secret key k by running
Simon’s algorithm. The adversary makes O(n) queries, each of length n, so the
total query length is O(n2).12

Corollary 1. NP-MAC[Ẽ] is qPO insecure.

Theorem 5. Let E be a qPRF. For every adversary A2, distinguishing NP-
MAC[E] from random, an adversary A1 ←wrap A2 exists, which distinguishes
CBC[EK ] from random with Adv(A1) = Adv(A2).
11 We would like to point out that there is no need for Ni to be in superposition since

the attack already works for classical nonces.
12 Here, the query length is counted in bits.
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Proof. Let Ni be the random nonce for i-th chosen message |Mi⟩ of length
mi

13 from A2. For each such |Mi⟩, A1 creates its own chosen message M ′
i =

(0n ||mi || |Mi⟩) and requests the CBC encryption of M ′
i from the challenger, us-

ing the nonce Ni. A1 ignores the answer to its query, except for the final block,
Ci,mi

, which it returns to A2. Observe Ci,mi
= CBC-MACK(Ni, |Mi⟩). Thus,

A2 receives exactly the answer it expects. A1 ←wrap A2, since A1 extends each
query from A2 by prepending just two blocks, and otherwise, A1 performs no
additional work beyond invoking A2 and the challenger. Similarly, A1 succeeds
if and only if A2 succeeds, hence Adv(A1) = Adv(A2).

Corollary 2. NP-MAC[qPRP] is qPO secure, and a quantum-secure MAC.

We do not claim NP-MAC[qPRP] to be a qPRF. NP-MAC is not even a function,
as its output depends on the random nonce N chosen in the first step as presented
in Figure 5. But once N has been set, NP-MAC is a function, and if N is chosen
at random, the output is indistinguishable from random. In that sense, NP-
MAC[qPRP] can be regarded as a “weak qPRF”. Here, the next input block,
after the nonce, does not actually need to be an encoding of the message length
|M |. For qPO security, we just need classical security (and, of course, the random
nonce as the first block). For the classical security of NP-MAC, any prefix-free
encoding of M suffices [Jon02], and |M | ||M is such an encoding.

5.2 Key Derivation, as in AES-GCM-SIV

AES-GCM-SIV is another instantiation of the generic SIV principle (cf. Fig-
ure 4). It follows the approach of nonce-based key derivation, see Figure 6. The
goal is to improve the concrete security of GCM-SIV against classical attacks,
while maintaining much of the original performance of GCM-SIV. (This is in
contrast to GCM-SIV2, which improves the security of GCM-SIV at the perfor-
mance costs of running GCM-SIV twice.)

KD-EncK(N,H,M)

1 KN ← KDK(N)
2 (T,C)← AEncKN (N,H,M)
3 return (T,C)

KD-DecK(N,H, T,C)

1 KN ← KDK(N)
2 M ← AEncKN (N,H, T,C)
3 return (M)

Fig. 6: Nonce-based key derivation scheme KD-Enc taking as input a nonce N , header
H, and message M . It is based on an authenticated encryption scheme AEnc and a
random function KD to derive the temporary key KN from N and K. We write KD-
Enc[FKD, EAE ] for the instantiation of the KD-Enc scheme with a key derivation
scheme FKD and an authenticated encryption scheme EAE .

13 The chosen messages |Mi⟩ can be in superposition, but all messages |Mi⟩ in super-
position are of the same length mi
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Chosen-plaintext queries in the IND-qCPA attack games must use different clas-
sical nonces. Nonce-based key derivation thus forces a fresh temporary key for
every chosen-plaintext query. This has two implications. The first implication is
that we get Q2 security w.r.t. chosen-plaintext attacks, from Q1 security:

Theorem 6. Let E be a block cipher and assume a Q2-adversary A2 attacking
the IND-qCPA security of KD-Enc[E,AEnc]. Then a Q1-adversary A1PRF at-
tacking the 1PRF security of KD and a Q1-adversary AIND-1CPA attacking the
IND-1CPA security of AEnc exist, such that

A1PRF ←wrap A2, and AIND-1CPA ←wrap A2, and
Adv(A2) ≤ 2Adv(A1PRF) + Adv(AIND-1CPA).

Proof. Let A2 be given. Define games GA2,A2
, GKD,KD, G$,KD, and G$,A2

. Game
GA2,A2

is plainly running A2: Adv(A2) = |Pr[A2 = 1|b = 1]− Pr[A2 = 1|b = 0]|.
The other games are defined in Figure 7. From an adversarial point of view,
the games GA2,A2 and GKD,KD are identical, just that GA2,A2 employs the chal-
lenger’s secret key while GKD,KD uses its on key K ′, thus

|Pr[Exp(GA2,A2
, 0) = 1]− Pr[Exp(GKD,KD, 0) = 1]| (6)

= |Pr[Exp(GA2,A2
, 1) = 1]− Pr[Exp(GKD,KD, 1) = 1]| = 0.

Similarly to the argument for Equation 6, the games G$,KD and G$,A2
are iden-

tical, and thus:

|Pr[Exp(G$,KD, 0) = 1]− Pr[Exp(G$,A2
, 0) = 1]|

= |Pr[Exp(G$,KD, 1) = 1]− Pr[Exp(G$,A2
, 1) = 1]| = 0.

Next, we define the adversaries A1PRF and AIND-1CPA

– A1PRF randomly chooses b ∈ {0, 1} and runs either Exp(GKD,KD, b) or
Exp(G$,KD, b). The advantage of A1PRF satisfies

2 ·Adv(A1PRF) ≤
∣∣Pr[Exp(G$,KD, 0) = 1]− Pr[Exp(GKD,KD, 0) = 1]

∣∣
+
∣∣Pr[Exp(G$,KD, 1) = 1]− Pr[Exp(GKD,KD, 1) = 1]

∣∣ .
– AIND-1CPA runs Exp(G$,A2

, b) for a b chosen by the challenger and unknown
to AIND-1CPA. The resulting advantage is

Adv(AIND-1CPA) =
∣∣Pr[Exp(G$,A2

, 0) = 1]− Pr[Exp(G$,A2
, 1) = 1]

∣∣ .
Only learning queries can be in superposition, and all of the games GKD,KD,
G$,KD and G$,A2

compute their response to learning queries on their own, with-
out invoking an oracle. Thus, both A1PRF and AIND-1CPA are Q1 adversaries.
Also, all of these games are wrappers around A2, thus A1PRF ←wrap A2, and
AIND-1CPA ←wrap A2. Finally, for the claimed bound on the advantage of A:
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Exp(G, b)

1 if G = GKD,KD or G = G$,KD

then
2 K′ $←− {0, 1}k

3 for i ∈ 1 . . . p(n) do
4 Perform either Learn(G) or

Challenge(G,b)
5 Receive guess b′ from A2

6 return b′

Learn(G)

1 Receive (Ni, Hi,Mi) from A2

2 if G = GKD,KD then
3 Ki ← KDK′(Ni)
4 Ci ← AEncKi(Ni, Hi,Mi)

5 else
6 Ri

$←− {0, 1}k
7 Ci ← AEncRi(Ni, Hi,Mi)

8 Send Ci to A2

Challenge(G, b)

1 Receive (Ni, Hi,0, Hi,1,Mi,0,Mi,1)
from A2

2 if G = G$,A2
then

3 Forward query to challenger
4 Receive Ci,b from challenger

5 else
6 Ki ← KDK′(Ni)
7 Ci,b ← AEncKi(Ni, Hi,b,Mi,b)

8 Send Ci,b to A2

Fig. 7: Experiment run by the adversary. G can be GKD,KD, G$,KD, or G$,A2
. Note that

here we do not consider G = GA2,A2 .

Adv(A2) = |Pr[Exp(GA2,A2 , 0) = 1]− Pr[Exp(GA2,A2 , 1) = 1]|
≤ |Pr[Exp(GA2,A2 , 0) = 1]− Pr[Exp(GKD,KD, 0) = 1]|
+
∣∣Pr[Exp(GKD,KD, 0) = 1]− Pr[Exp(G$,KD, 0) = 1]

∣∣
+
∣∣Pr[Exp(G$,KD, 0) = 1]− Pr[Exp(G$,A2

, 0) = 1]
∣∣

+
∣∣Pr[Exp(G$,A2

, 0) = 1]− Pr[Exp(G$,A2
, 1) = 1]

∣∣
+
∣∣Pr[Exp(G$,A2

, 1) = 1]− Pr[Exp(G$,KD, 1) = 1]
∣∣

+
∣∣Pr[Exp(G$,KD, 1) = 1]− Pr[Exp(GKD,KD, 1) = 1]

∣∣
+ |Pr[Exp(GKD,KD, 1) = 1]− Pr[Exp(GA2,A2

, 1) = 1]|
≤ 4 · 0 + 2 ·Adv(A1PRF) + Adv(AIND-1CPA)

(7)

Corollary 3. If AEnc is IND-1CPA secure, KD-Enc[1PRP, AEnc] is IND-
qCPA secure.

6 Generic Approaches for Q2d and Q2 Security

We describe how to turn Q1-secure AE schemes into Q2d-secure and even proper
Q2-secure AE schemes. The definition of the IND-qdCCA security stems from
the generic IND-CCA game (cf. Definition 4) and that of a Q2d adversary (cf.
Definition 8). Below, Subsection 6.1 provides an intuitive and informal overview
over core ideas. Subsections 6.2 to 6.4 are more formal and technical. Subsection
6.5 briefly discusses the tightness of the concrete results.
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6.1 Intuition

Consider a Q1-secure AE scheme AEnc. Assume that AEnc provides both chosen-
plaintext privacy (1CPA) and authenticity (1PO) when all queries are classical.
We claim that in such case, AEnc is also Q2d-secure. For instance, it provides
privacy even when decryption queries are in superposition. To prove this claim,
assume an adversary making decryption queries (Ni, Hi, Ci) in superposition.
Imagine to measure one such query. The measurement result (N ′

i , H
′
i, C

′
i) can

be old (i.e., C ′
i stems from a matching encryption query (N ′

i , H
′
i,M

′
i) for some

M ′
i) or invalid (decryption returns ⊥). If there is a non-negligible probability for

(Ni, Hi, Ci) in superposition to be found neither old nor invalid after a potential
measurement, then we refer to (Ni, Hi, Ci) as pivotal. Based on this notion, we
distinguish two cases: (1) The adversary makes no pivotal decryption queries.
Then, the ability to choose decryption queries in superposition, or to choose de-
cryption queries at all, does not provide any significant advantage over making
only classical encryption queries. A successful attack in this scenario would thus
violate 1CPA security. (2) The adversary makes at least one pivotal decryption
query. By guessing the index of a pivotal query and actually measuring it, one
can generate a forgery. A successful attack in this scenario would thus violate
1PO security. The proof of Theorem 7 centers around this idea.

We also claim that key derivation with a 1PRF secure key derivation function
can turn a Q2d chosen-ciphertext secure and 1PO secure scheme AEnc into
a fully Q2 chosen-ciphertext secure scheme. Thus, if AEnc is secure against
adversaries making decryption queries in superposition, then the derived scheme
is also secure against adversaries making all queries in superposition. This is
the intuitution for Theorem 8. For the proof, recall the proof of Theorem 6: The
main key is only used to generate nonce-dependent derived keys, and each chosen
plaintext is encrypted under another derived key. In this case, it turns out that
the benefit from choosing plaintexts in superposition is negligible.

By combining both results, one can create a proper Q2-secure AE scheme (en-
cryption and decryption queries in superposition) from a (seemingly much weaker)
Q1-secure AE scheme and a 1PRF.

6.2 The O2H (“One-Way to Hiding”) Lemma

To analyze the approach to gather Q2d and Q2 security from Q1 security, we
first explain the semi-classical one-way to hiding (O2H) lemma from [AHU19],
an improved version of the classical O2H lemma from [Unr15]. At its core are so-
called punctured oracles. Consider a subset S from the set of inputs to the oracle
H. H\S (H punctured by S) takes a value x as input and computes whether
x ∈ S or not. The event “Find” denotes the case this measurement returns that
x ∈ S is true. When Find does not occur, the outcome of AH/S is independent
of H(x) for x ∈ S.

Lemma 1 (Semi-Classical O2H [AHU19]). Let S ⊂ X be random. Let
G,H : X → Y be random functions satisfying ∀x ̸∈ S. G(x) = H(x). Let z be a
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random bitstring. (S,G,H, z may have arbitrary joint distribution.) Let A be an
oracle algorithm of query depth d (not necessary unitary). Let

Pleft := Pr[b = 1 : b← AH(z)], Pright := Pr[b = 1 : b← AG(z)]

Pfind := Pr[Find : AG\S(z)] = Pr[Find : AH\S(z)]

Then

|Pleft − Pright| ≤ 2
√
(d+ 1) · Pfind, (8)

|
√

Pleft −
√

Pright| ≤ 2
√

(d+ 1) · Pfind. (9)

This lemma needs to be contextualized. Firstly, the notion “depth d” considers
an adversary to perform multiple queries in parallel. In our context, it suffices
to point out that d ≤ q holds for every q-query adversary.

Secondly, Relationship 8 results in better bounds for our purpose. We deal with
Relationship 9 in Appendix B . Thus, Relationship 8 can be rewritten as

Pleft ≤ 2
√

(d+ 1) · Pfind + Pright. (10)

Thirdly, in the context of that paper, Pr[b = 1 : b ← AH(z)] in the notation
of [AHU19] is the same as win(A) = Pr[b = b′] in our notation, where b′ is
the output from A and b the challenger’s internal choice (cf. Definition 4 and
Equation 1). As we define the advantage of an adversary by Adv(A) = |Pr[b′ =
1|b = 1]− Pr[b′ = 1|b = 0]|, we have

win(A) = (Adv(A) + 1)/2.

6.3 From Q1 Security to Q2d Security

Theorem 7. Let AEnc be an AE scheme producing an n-bit output and assume
a Q2d-adversary AqdCCA attacking the IND-qdCCA security of AEnc. Then a
Q1-adversary A1PO attacking the 1PO security and a Q1-adversary A1CPA at-
tacking the IND-1CPA security of AEnc exists, such that

A1PO ←wrap AqdCCA and A1CPA ←wrap AqdCCA and

Adv(AqdCCA) ≤ 4
√

(q + 1)
√

Adv(A1PO) + Adv(A1CPA).

Proof. Consider an IND-qdCCA adversary A, and define the H oracle: H is
identical to the Q2d challenger, responding to all queries from A, including
backward learning queries in superposition. I.e., AqdCCA, when connected to its
challenger, can be written as AH .

Define S as the set of those backward learning queries, which return a valid
message: S = (Ni, Hi, Ci) : ADecK(Ni, Hi, Ci) ̸= ⊥. Recall that the set B of
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“blocked” triples from Definition 4 includes the triples (Ni, Hi, Ci) known from
forward learning queries, and, any backward query trying to decrypt a “blocked”
triple returns ⊥. Thus, whenever the event Find occurs, there is a new triple
(Ni, Hi, Ci), which has not been known from any other queries. This allows an
adversary to win the PO game by measuring (Ni, Hi, Ci) ̸∈ B but (Ni, Hi, Ci) ∈
S. A PO forgery consists of the new triple (Ni, Hi, Ci) and all the known triples.
This defines A1PO. Obviously, A1PO ←wrap AqdCCA and Adv(A1PO) = PFind.

Let G be an oracle, which relays challenge and forward learning queries to a Q1
challenger, and which responds to all backward learning queries by returning ⊥.
Clearly, H\S and G\S behave identically. We write A1CPA as AG. Obviously
A1CPA ←wrap AqdCCA.

We still have to prove the bound

Adv(AqdCCA) ≤ 2
√

(q + 1)
√

Adv(A1PO) + Adv(A1CPA).

If Adv(A1CPA) ≥ Adv(AqdCCA), this is trivial. For the rest of this proof, we
assume Adv(A1CPA) < Adv(AqdCCA). In our context, Pleft = win(AqdCCA),
Pright = win(A1CPA), and Pfind = A1PO.

Equation 8 (or rather, the derived Equation 10) implies

win(AqdCCA) ≤ 2
√

(q + 1)
√

Adv(A1PO) + win(A1CPA).

We apply win(A) = (Adv(A) + 1)/2 and simplify the expression to

Adv(AqdCCA) ≤ 4
√

(q + 1)
√

Adv(A1PO) + Adv(A1CPA).

Corollary 4. If AEnc is both IND-1CPA secure and 1PO secure, then AEnc is
also IND-qdCCA secure.

6.4 Transitioning Q2d Security into Q2 Security

Theorem 8. Let E be a block cipher and assume a q-query Q2-adversary A2

attacking the IND-qCCA security of KD-Enc[E,AEnc]. Then a Q1-adversary
A1PRF attacking the 1PRF security of KD, a Q2d-adversary AInd-qdCCA attack-
ing the IND-qdCCA security of AEnc and a Q1-adversary A1PO exists, attacking
the 1PO security of AEnc, such that

A1PRF ←wrap A2, and AIND-qdCCA ←wrap A2, and A1PO ←wrap A2, and

Adv(A2) ≤ 2
√
(q + 1) · (2 ·Adv(A1PRF) + Adv(AqdCCA) + 4 ·Adv(A1PO)).

Proof. The proof resembles the proof of Thm. 6. First, we need to redefine
the games introduced in Figure 7 by introducing a modified Experiment Exp′

which also includes backwards learning queries. We handle those queries in a
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cheating manner such that for all games, the adversary runs Acheat
2 but answers

all backwards learning queries with ⊥. GA2,A2
now becomes GA2,⊥,A2

with

Adv(Acheat
2 ) = |Pr[Exp′(GA2,⊥,A2

, 0) = 1]− Pr[Exp′(GA2,⊥,A2
, 1) = 1]|.

Furthermore, we add the event Find previously defined in Lemma 1. Figure 8
at page 32 shows the pseudocode of the new Experiment Exp′.

Similar to before, the following equalities hold:

|Pr[Exp′(GA2,⊥,A2 , 0) = 1]− Pr[Exp′(GKD,⊥,KD, 0) = 1]| (11)
= |Pr[Exp′(GA2,⊥,A2 , 1) = 1]− Pr[Exp′(GKD,⊥,KD, 1) = 1]| = 0.

|Pr[Exp′(G$,⊥,A2
, 0) = 1]− Pr[Exp′(G$,⊥,KD, 0) = 1]| (12)

= |Pr[Exp′(G$,⊥,A2
, 1) = 1]− Pr[Exp′(G$,⊥,KD, 1) = 1]| = 0.

Furthermore, for the adversary, the advantages when running the games GA2,⊥,A2

and GA2,⊥,Find and the games GKD,⊥,KD and GKD,⊥,Find are identical since we
assume that the hardness of distinguishing the ciphertexts and triggering the
event Find is equivalent. Thus,

|Pr[Exp′(GA2,⊥,A2 , 0) = 1]− Pr[Exp′(GA2,⊥,Find, 0) = 1]| (13)
= |Pr[Exp′(GA2,⊥,A2 , 1) = 1]− Pr[Exp′(GA2,⊥,Find, 1) = 1]| = 0.

|Pr[Exp′(GKD,⊥,KD, 0) = 1]− Pr[Exp′(GKD,⊥,Find, 0) = 1]| (14)
= |Pr[Exp′(GKD,⊥,KD, 1) = 1]− Pr[Exp′(GKD,⊥,Find, 1) = 1]| = 0.

We continue by defining the adversaries A1PRF, AqdCCA and A1PO.

– A1PRF randomly chooses b ∈ {0, 1} and runs either Exp′(GKD,⊥,KD, b) or
Exp′(G$,⊥,KD, b). The advantage of A1PRF can be bounded by

2 ·Adv(A1PRF) ≤
∣∣Pr[Exp′(G$,⊥,KD, 0) = 1]− Pr[Exp′(GKD,⊥,KD, 0) = 1]

∣∣
+
∣∣Pr[Exp′(G$,⊥,KD, 1) = 1]− Pr[Exp′(GKD,⊥,KD, 1) = 1]

∣∣ .
– A1PO randomly chooses b ∈ {0, 1} and runs either Exp′(GA2,⊥,Find, b), Exp′(G$,⊥,Find, b)

or Exp′(GKD,⊥,Find, b). Note that b is not explicitly needed in those games.
It is mainly used to improve the notation. The resulting advantage is

2 ·Adv(A1PO) ≤
∣∣Pr[Exp′(GA2,⊥,Find, b) = 1]− Pr[Exp′(G$,⊥,Find, b) = 1]

∣∣
+
∣∣Pr[Exp′(G$,⊥,Find, b) = 1]− Pr[Exp′(GKD,⊥,Find, b) = 1]

∣∣ .
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– AqdCCA runs Exp′(G$,⊥,A2
, b) for a b chosen by the challenger and unknown

to AqdCCA. This results in the following advantage:

Adv(AqdCCA) =
∣∣Pr[Exp′(G$,⊥,A2

, 0) = 1]− Pr[Exp′(G$,⊥,A2
, 1) = 1]

∣∣ .
Like before, only learning queries can be in superposition and all of the games are
wrappers around Acheat

2 , such that A1PRF ←wrap Acheat
2 , AqdCCA ←wrap Acheat

2

and A1PO ←wrap Acheat
2 . Now we are able to bound the advantage of Acheat

2 :

Adv(Acheat
2 ) =

∣∣Pr[Exp′(GA2,⊥,A2
, 0) = 1]− Pr[Exp′(GA2,⊥,A2

, 1) = 1]
∣∣

≤
∣∣Pr[Exp′(GA2,⊥,A2

, 0) = 1]− Pr[Exp′(GA2,⊥,Find, 0) = 1]
∣∣

+
∣∣Pr[Exp′(GA2,⊥,Find, 0) = 1]− Pr[Exp′(G$,⊥,Find, 0) = 1]

∣∣
+
∣∣Pr[Exp′(G$,⊥,Find, 0) = 1]− Pr[Exp′(GKD,⊥,Find, 0) = 1]

∣∣
+
∣∣Pr[Exp′(GKD,⊥,Find, 0) = 1]− Pr[Exp′(GKD,⊥,KD, 0) = 1]

∣∣
+
∣∣Pr[Exp′(GKD,⊥,KD, 0) = 1]− Pr[Exp′(G$,⊥,KD, 0) = 1]

∣∣
+
∣∣Pr[Exp′(G$,⊥,KD, 0) = 1]− Pr[Exp′(G$,⊥,A2

, 0) = 1]
∣∣

+
∣∣Pr[Exp′(G$,⊥,A2

, 0) = 1]− Pr[Exp′(G$,⊥,A2
, 1) = 1]

∣∣
+
∣∣Pr[Exp′(G$,⊥,A2

, 1) = 1]− Pr[Exp′(G$,⊥,KD, 1) = 1]
∣∣

+
∣∣Pr[Exp′(G$,⊥,KD, 1) = 1]− Pr[Exp′(GKD,⊥,KD, 1) = 1]

∣∣
+
∣∣Pr[Exp′(GKD,⊥,KD, 1) = 1]− Pr[Exp′(GKD,⊥,Find, 1) = 1]

∣∣
+
∣∣Pr[Exp′(GKD,⊥,Find, 1) = 1]− Pr[Exp′(G$,⊥,Find, 1) = 1]

∣∣
+
∣∣Pr[Exp′(G$,⊥,Find, 1) = 1]− Pr[Exp′(GA2,⊥,Find, 1) = 1]

∣∣
+
∣∣Pr[Exp′(GA2,⊥,Find, 1) = 1]− Pr[Exp′(GA2,⊥,A2 , 1) = 1]

∣∣
≤ 6 · 0 + 2 ·Adv(A1PRF) + Adv(AqdCCA) + 4 ·Adv(A1PO)

(15)

We can apply the semi-classical O2H Lemma (see Lemma 1) for bounding the
actual advantage of A2. It is easy to see that Acheat

2 corresponds to Pfind from
the Lemma. Thus, we conclude that for q queries

Adv(A2) ≤ 2
√
(q + 1) ·Adv(Acheat

2 )

≤ 2
√
(q + 1) · (2 ·Adv(A1PRF) + Adv(AqdCCA) + 4 ·Adv(A1PO)).

Corollary 5. If AEnc is IND-qdCCA and 1PO secure, then KD-Enc[1PRP,
AEnc] is IND-qCCA secure.

6.5 On the Tightness of the Reductions

As abstract results, Theorems 7 and 8 and Corollaries 4 and 5 are very encourag-
ing: Classical security concerning quantum adversaries (i.e. 1PO and IND-1CPA
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security) suffices to achieve security even when chosen-ciphertext queries can be
in superposition (i.e., IND-qdCCA security).

But, while the other reductions in the current paper are tight, the connection
between the required 1PO and IND-1CPA security level and the IND-q(d)CCA
security level granted by Theorems 7 and 8 is not. We provide a numerical
example for IND-qdCCA (Theorem 7). Consider an AE scheme with a key size of
256 bit, and adversaries restricted to iterate Grover’s algorithm about 280 times.
The probability to recover the secret key would thus be about 22∗80−256 = 2−96.
Assume that the best 1PO or IND-1CPA attack is equivalent to key recovery, i.e.,
Adv(A1PO) = Adv(A1CPA) = 2−96. Under these assumptions, and for q < 220,
the bound from Theorem 7 is

Adv(AqdCCA) ≤ 4 ·
√

(q + 1)
√

Adv(A1PO) + Adv(A1CPA)

≤ 4 · 2102−48 + 2−96 ≈ 2−36.

If we increase the limit on the number of queries to, say, q < 250, the same
calculation gives the bound Adv(AqdCCA) ≤ 4 · 2252−48 + 2−96 ≈ 2−21. This
should still be fine for most practical purposes. Nevertheless, given the ultra-
strong bounds of 2−96 each for the 1PO and the IND-1CPA advantage, the
bounds on Adv(AqdCCA) may be surprising.

7 Final Remarks

Recall our motivating question: “When exposed to superposition queries, which
state-of-the-art AE systems maintain a meaningful level of security?” The first
answers are negative: EAX, GCM, and variants of SIV do not only fail at au-
thenticity (as known before), but they also fail at privacy under chosen-plaintext
queries. We conclude that all of those modes fail to provide any meaningful level
of security under superposition queries. Other answers are positive: A restricted
variant of GCM avoids the vulnerability to superposition chosen-plaintext at-
tacks. The nonce-prefix MAC is secure under superposition attacks, and can thus
be used as a building block for superposition-resistant AE systems. Theorem 7
provides a path from chosen-plaintext privacy and authenticity in the Q1 model
(IND-1CPA and 1PO security) to chosen-ciphertext security in the Q2d model
(IND-qdCCA). If we also consider Theorem 8 (i.e., if we apply nonce-based key-
derivation), the path leads to chosen-ciphertext privacy in the unrestricted Q2
model (IND-qCCA). To some degree, Theorems 7 and 8 resemble results from
[BN00], which provide a generic path from classical chosen-plaintext privacy and
classical authenticity to classical chosen-ciphertext privacy.

Based on our findings, new questions arise: (1) By definition, the nonce-prefix
MAC requires random nonces. Could a variant of the nonce-prefix MAC, with
nonces chosen by a nonce-respecting adversary, also be qPO secure? (2) The
concrete bounds for IND-q(d)CCA security from Theorems 7 and 8 are a bit
unsatisfactory. Is there a matching attack? Or can one improve the concrete
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bounds? An answer to either question might require different methods than
ours, or, perhaps, a stronger variant of the O2H Lemma.
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A Proof of Theorem 1

To simplify reading this paper, we first restate the theorem:

Theorem 1 (Similar to Lemma 5 of [ATTU16]) Assume a PRF-based stream
cipher and a Q2-adversary A2 against the stream cipher. Then a Q1-adversary A1

and a Q2-adversary A2 against the same stream cipher exists with A1 ←wrap A2

and Adv(A1) = Adv(A2).

Proof (Proof (Thm. 1).). Assume a Q1-challenger having secretly chosen a key
K and a bit b. Also, assume the existence of A2. A Q2 learning query from A2
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consists of a classical nonce N1 and a 2|Mi|-qubit quantum state |Mi⟩ |Ci⟩. Since
the Q1-challenger cannot deal with a Q2 query, A1 performs the following steps
for each learning query from A2:

1. request Si ← PRF|Mi|
K (Ni)⊕ 0|Mi| as the encryption of 0|Mi| under K,

2. update the quantum register from |Mi⟩ |Ci⟩ to |Mi⟩ |Ci ⊕ Si ⊕Mi⟩,

3. and return the quantum register to A2.

Clearly, A1 and A2 are tightly equivalent, and when A2 outputs a bit b′, A1 also
outputs b′, thus Adv(A1) = Adv(A2).

B The Bound for Relationship 9

In Section 6 we focused on Relationship 8. We continue by presenting the same
proof concerning Relationship 9.

If we assume Pleft > Pright Relationship 9 can be rewriten as

Pleft ≤ 4 · (d+ 1) · Pfind + 4
√

(d+ 1) · Pfind
√

Pright + Pright. (16)

Theorem 9. Let AEnc be an AE scheme producing an n-bit output and assume
a Q2d-adversary AqdCCA attacking the IND-qdCCA security of AEnc. Then a
Q1-adversary A1PO attacking the 1PO security and a Q1-adversary A1CPA at-
tacking the IND-1CPA security of AEnc exists, such that

A1PO ←wrap AqdCCA and A1CPA ←wrap AqdCCA and

Adv(AqdCCA) ≤ 8((q + 1) ·Adv(A1PO)) + 8
√
(q + 1) ·Adv(A1PO)

√
2
√

Adv(A1CPA) + 1

+ Adv(A1CPA).

Proof. Consider an IND-qdCCA adversary A, and define the H oracle: H is
identical to the Q2d challenger, responding to all queries from A, including
backward learning queries in superposition. I.e., AqdCCA, when connected to its
challenger can be written as AH .

Define S as the set of those backward learning queries, which return a valid
message: S = (Ni, Hi, Ci) : ADecK(Ni, Hi, Ci) ̸= ⊥. Recall that the set B of
“blocked” triples from Definition 4 includes the triples (Ni, Hi, Ci) known from
forward learning queries, and, any backward query trying to decrypt a “blocked”
triple returns ⊥. Thus, whenever the event Find occurs, there is a new triple
(Ni, Hi, Ci), which has not been known from any other queries. This allows an
adversary to win the PO game by measuring (Ni, Hi, Ci) ̸∈ B but (Ni, Hi, Ci) ∈
S. A PO forgery consists of the new triple (Ni, Hi, Ci) and all the known triples.
This defines A1PO. Obviously A1PO ←wrap AqdCCA and Adv(A1PO) = PFind.
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Let G be an oracle, which relays challenge and forward learning queries to a Q1
challenger, and which responds to all backward learning queries by returning ⊥.
Clearly, H\S and G\S behave identically. We write A1CPA as AG. Obviously
A1CPA ←wrap AqdCCA.

So we still have to prove the bound

Adv(AqdCCA) ≤ 4((q + 1) ·Adv(A1PO)) + 4
√

(q + 1) ·Adv(A1PO)
√

Adv(A1CPA)

+ Adv(A1CPA).

If Adv(A1CPA) ≥ Adv(AqdCCA), this is trivial. For the rest of this proof, we
assume Adv(A1CPA) < Adv(AqdCCA).

In our context, Pleft = win(AqdCCA), Pright = win(A1CPA), and Pfind = A1PO.

Equations 9 (or rather, the derived Equation 16) implies

win(AqdCCA) ≤ 4((q + 1) ·Adv(A1PO)) + 4
√

(q + 1) ·Adv(A1PO)
√

win(A1CPA)

+ win(A1CPA).

We apply win(A) = (Adv(A) + 1)/2 and simplify the expression to

Adv(AqdCCA) ≤ 8((q + 1) ·Adv(A1PO)) + 8
√

(q + 1) ·Adv(A1PO)
√
2
√

Adv(A1CPA) + 1

+ Adv(A1CPA).

as claimed.
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LearnForward(G)

1 Receive (Ni, Hi,Mi) from Acheat
2

2 if G = GKD,⊥,KD or
G = GKD,⊥,Find then

3 Ki ← KDK′(Ni)
4 Ci ← AEncKi(Ni, Hi,Mi)

5 else
6 if G = G$,⊥,A2

or
G = G$,⊥,KD or
G = G$,⊥,Find then

7 Ri
$←− {0, 1}k

8 Ci ← AEncKi(Ni, Hi,Mi)

9 else
10 Forward (Ni, Hi,Mi) to

challenger
11 Receive Ci from

challenger

12 Send Ci to A2

LearnBackward()

1 Receive (Ni, Hi, Ci) from Acheat
2

2 Send ⊥ to Acheat
2

Challenge(G, b)

1 Receive (Ni, Hi,0, Hi,1,Mi,0,Mi,1)

from Acheat
2

2 if G = G$,⊥,A2
or G = GA2,⊥,A2

then
3 Forward query to challenger
4 Receive Ci,b from challenger

5 else
6 if G = G$,⊥,KD or

G = GKD,⊥,KD then
7 Ki ← KDK′(Ni)
8 Ci,b ←

AEncKi(Ni, Hi,b,Mi,b)

9 else
10 Choose new

(Ni+1, Hi+1, Ci+1)

11 Send Ci,b to Acheat
2

Exp′(G, b)

1 if G = GKD,⊥,KD or G = G$,⊥,KD or
G = GKD,⊥,Find then

2 K′ $←− {0, 1}k

3 for i ∈ 1 . . . p(n) do
4 Perform either LearnForward(G),

LearnBackward() or Challenge(G,b)

5 if G = GA2,⊥,Find or G = G$,⊥,Find or
G = GKD,⊥,Find then

6 Receive answer X from challenger
7 if X = ⊥ then
8 return 0

9 return 1

10 Receive guess b′ from Acheat
2

11 return b′

Fig. 8: Experiment run by the adversary. G can be GA2,⊥,A2 , G$,⊥,A2
, GA2,⊥,Find,

GKD,⊥,KD, G$,⊥,KD, GKD,⊥,Find, or G$,⊥,Find.
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