
TreePIR: Sublinear-Time and Polylog-Bandwidth
Private Information Retrieval from DDH

Arthur Lazzaretti and Charalampos Papamathou

Yale University

Abstract. In Private Information Retrieval (PIR), a client wishes to
retrieve the value of an index i from a public database of N values with-
out leaking information about the index i. In their recent seminal work,
Corrigan-Gibbs and Kogan (EUROCRYPT 2020) introduced the first
two-server PIR protocol with sublinear amortized server time and sub-
linear, O(

√
N logN) bandwidth. In a followup work, Shi et al. (CRYPTO

2021) reduced the bandwidth to polylogarithmic by proposing a construc-
tion based on privately puncturable pseudorandom functions, a primitive
whose only construction known to date is based on heavy cryptographic
primitives. Partly because of this, their PIR protocol does not achieve
concrete efficiency.
In this paper we propose TreePIR, a two-server PIR protocol with sublin-
ear amortized server time and polylogarithmic bandwidth whose security
can be based on just the DDH assumption. TreePIR can be partitioned in
two phases, both sublinear: The first phase is remarkably simple and only
requires pseudorandom generators. The second phase is a single-server
PIR protocol on only

√
N indices, for which we can use the protocol by

Döttling et al. (CRYPTO 2019) based on DDH, or, for practical pur-
poses, the most concretely efficient single-server PIR protocol. Not only
does TreePIR achieve better asymptotics than previous approaches while
resting on weaker cryptographic assumptions, but it also outperforms
existing two-server PIR protocols in practice. The crux of our protocol
is a new cryptographic primitive that we call weak privately puncturable
pseudorandom functions, which we believe can have further applications.

Keywords: Private Information Retrieval · Puncturable Pseudorandom
Functions · Privacy-Preserving Primitives.

1 Introduction

In Private Information Retrieval (PIR), a server holds a public database DB
represented as a string of N bits, and a client holds an index i. The goal of the
protocol is for the client to learn DB[i] without the server learning i. Since the
problem’s introduction [11], PIR has become a building block for a myriad of
privacy-preserving applications [1, 2, 20,26,37].

In order to circumvent PIR’s well-known linear server time lower bound by
Beimel et al. [4], Corrigan-Gibbs and Kogan propose a model with client prepro-
cessing, where the client circumvents PIR’s inherent lower bound over multiple

2 Lazzaretti and Papamanthou

queries by running an expensive preprocessing phase and storing hints. After one
expensive query-independent offline phase, subsequent queries run privately in
time sublinear in the database size. This model has shown to have many useful
applications in practice, and brings PIR query times substantially closer to the
non-private query baseline.

The core idea of the initial scheme is to process the parities of random sets
in the offline phase, interacting with one server. Then, during an online query
to index i, we find a preprocessed set S that contains i, and send to the second
server S \ {i}. The server returns the parity of the set S \ {i}, and the client can
compute the value of i through the difference of its preprocessed parity and the
new parity.

To achieve better efficiency, Corrigan-Gibbs and Kogan use small-domain
PRP keys to define the preprocessed sets. This ensures sublinear offline commu-
nication complexity, and that at query time, we can find a set S that contains
i without having to enumerate every set. However, online, we have to send the
set without i in plaintext, which means O(

√
N logN) communication, since the

PRP key leaks information about i, and puncturing a PRP key is impossible [6].
Also, instantiating small-domain PRPs that are efficient turns out to be a non-
trivial problem [31, 35, 38, 39]. A second consideration is that this scheme must
fail with small probability to ensure that sequential queries to the same index
do not leak information by omission. This means that the scheme must be run
λ times in parallel to ensure overwhelming correctness. Throughout the paper,
we will denote this initial scheme by Corrigan-Gibbs and Kogan PRP-PIR.

A second proposal, by Kogan and Corrigan-Gibbs [26] achieves logarithmic
communication through representing their preprocessed sets with Puncturable
Pseudorandom Functions [19, 25]. This approach does not directly support fast
membership testing, due to the non-invertibility of PRFs, which means that find-
ing a set with your query index takes O(N logN) expected time. In their work,
they solve this problem by using a separate data structure of size proportional to
N to help with membership testing. For many usecases of PIR, using O(N logN)
client storage is unfeasible.

A third proposal, by Shi et al. [36] instantiates these sets using Privately
Puncturable PRFs from LWE [5, 10]. Although this scheme boasts good com-
plexities relative to the database size, as of yet, there is no implementation of
these primitives, and our calculations for the concrete efficiencies of this scheme
instantiated with secure parameters show very large overheads due to large fac-
tors in the security parameter, which make it unusable in practice for now (we
discuss this further in Section 5).

Therefore, we still do not have a suitable sublinear time PIR scheme with
concrete efficiencies and low communication. Our scheme, TreePIR, was devel-
oped to bridge the gap. We paint a full picture of the asymptotics mentioned
above, including our new scheme TreePIR, in Figure 1.

1.1 Our Contribution

Our contribution is two-fold:

TreePIR 3

1. A new two-server PIR scheme that achieves polylog bandwidth and sublinear
server time and client storage, from DDH.

2. An implementation of our new PIR scheme benchmarked against the previ-
ous state-of-the-art.

Protocol Server Client Client Bandwidth
Time Time Storage

TreePIR, Lemma 4.1 O(
√
N log2 N) O(

√
N logN) O(

√
N) O(poly logN)

Shi et al. [36]β O(
√
N log5 N) O(

√
N logN) O(

√
N logN) O(poly logN)

Checklist [26] O(
√
N logN) O(

√
N logN) O(N logN) O(logN)

PRP-PIR [12] O(
√
N logN) O(

√
N logN) O(

√
N) O(

√
N logN)

β The big O notation hides factors very large in the security parameter for this scheme.

Fig. 1. Amortized Complexities over
√
N queries for a database of size N .

We refer to Figure 1 for an overview of how our new construction compares
to previous PIR protocols asymptotically. In Section 5 we go into more detail
into the scheme’s concrete performance. Our main contribution is a scheme with
optimized communication-complexity tradeoffs that is also very fast in practice.
To achieve this, we introduce a new primitive we call a Weak Privately Punc-
turable Pseudorandom Function. Our primitive is defined broadly and can find
applications outside the scope of PIR.

Our Weak Privately Puncturable PRF satisfies the strong notion of privacy
of Privately Puncturable PRFs, where the punctured key hides both the point
that was punctured and its evaluation, but with relaxed correctness. The relaxed
correctness property says that one is only able to compute the PRF values from
the punctured key if they know the point that was punctured. The punctured
index is an additional input the the evaluation algorithm for the punctured key.
A second property that a Weak Privately Puncturable PRF must satisfy is that
we can enumerate the whole domain of the Weak Privately Puncturable PRF for
all ’potentially punctured points’ in quasilinear time in the domain of the PRF.

We use Weak Privately Puncturable PRFs with domain and range
√
N to

construct pseudorandom sets. Because of its strong privacy property and fast
evaluation over many different potential punctures, these are concise, remain
concise after being punctured, and support fast membership testing. Using these
sets, we can reduce the problem of PIR on N elements to PIR on

√
N elements

during the online query, using sublinear time and logarithmic communication.
To reduce communication, we recursively apply a second PIR scheme to re-

trieve the element of interest from the resulting database, incurring the cost of
the PIR scheme used on the database of size

√
N , because we know exactly

which index is of interest within the smaller database. This means that TreePIR
benefits from previous (and future) work on non-preprocessing PIR, since it is
compatible with the state-of-the-art single-server and two-server PIR schemes.

4 Lazzaretti and Papamanthou

Our techniques paired with previous results enable us to achieve PIR with poly-
logarithmic amortized bandwidth and sublinear amortized server time, paired
with previous results in single server PIR.

Notably, paired with the result from Döttling et al. [15], our technique im-
plies the first sublinear time PIR scheme with non-trivial client storage and poly-
logarithmic communication complexity from only the Decisional Diffie-Hellman
(DDH) assumption.

We implement and benchmark our new scheme, TreePIR, against previous
state-of-the-art schemes. TreePIR achieves an amortized query time three times
faster than Checklist [26], using fifteen times less client storage. It also achieves
speed-ups of over twenty times with respect to amortized query time when bench-
marked against the state-of-the-art non-preprocessing two-server PIR, amortiz-
ing time over two thousand queries for a database of 268 million elements of 32
bytes each. We provide a full picture of comparisons against previous schemes
in Section 5.

1.2 Related Work

The first PIR protocol to achieve non-trivial communication was introduced,
along with the problem of PIR itself, by Chor et al. [11]. This scheme relies on
a two-server assumption, where the database is replicated in two non-colluding
services. This has proven to be a reasonable assumption in practice [20, 23, 26].
Later, it was shown that non-trivial communication can also be achieved without
the two-server assumption [27], albeit paying a hefty computational price on the
server. Subsequent to the seminal works on two-server PIR and single-server
PIR, many works have inched towards bring PIR closer to being practical [3,13,
14,16,17,24,28,29,40].

In 2000, Beimel et al. [4] showed that a PIR scheme must incur at least linear
work per query when the server stores no extra bits. In the same work, it was
shown that we can decrease server work by storing additional bits at the server,
although this direction has not proven very successful, with all known schemes
requiring super-linear storage to achieve noticeable reductions in computation
time.

1.3 Notation

We define ν(·) to be a negligible function, such that for every polynomial p(·),
ν(·) < 1

p(·) . We define overwhelming probability to mean that an event happens
with probability 1 − ν(·). Unless otherwise noted, let λ ∈ N be the security
parameter and m,n ∈ N be arbitrary natural numbers and N = 2n. We index a
bitstring x at index i using notation ai and an array a at index i with notation
a[i], both are 0-indexed. For any bitstring x, we define xℓ, xr such that x = xℓ||xr,
where |xℓ| = |xr| = |x|/2. For any q ∈ N, let [q] denote the set {0, . . . , q−1}. We
use the notation i

R←− S to denote that i is an element of S sampled uniformly
at random from the set of elements of S. We use

c

≈ to denote computational
indistinguishability.

TreePIR 5

1.4 Paper Outline

On Section 2, we recall definitions and constructions from previous work that
will be useful in constructing our scheme. On Section 3, we introduce our new
primitive, the Weak Privately Puncturable PRF, and show how to construct
it from one way functions. Next, we provide our PIR scheme, TreePIR on Sec-
tion 4, and prove its correctness, privacy and efficiency. Finally, we benchmark
an implementation of our scheme against previous PIR schemes in Section 5.

2 Preliminaries

Here we outline definitions and primitives that we will need throughout the
paper.

2.1 Security Definitions for PIR

We first formally define correctness and privacy for PIR.

Definition 2.1 (PIR correctness). A PIR scheme (server0,server1,client)
is correct if, for any polynomial-sized sequence of queries x1, . . . , xQ, the honest
interaction of client with server0 and server1 that store a polynomial-sized
database DB ∈ {0, 1}n, returns DB[x1],. . . , DB[xQ] with probability 1− ν(λ).

Definition 2.2 (PIR privacy). A PIR scheme (server0,server1,client) is
private with respect to server1 if there exists a PPT simulator Sim, such that
for any algorithm serv0, no PPT adversary A can distinguish the following ex-
periments with non-negligible probability:

– Expt0: client interacts with A who acts as server1 and serv0 who acts as
the server0. At every step t, A chooses the query index xt, and client is
invoked with input xt as its query.

– Expt1: Sim interacts with A who acts as server1 and serv0 who acts as the
server0. At every step t, A chooses the query index xt, and Sim is invoked
with no knowledge of xt.

In the above definition our adversary A can deviate arbitrarily from the
protocol. Intuitively the privacy definition implies that queries made to server1
will appear random to server1, assuming servers do not collude (as is the case
in our model). Privacy for server0 is defined symmetrically.

We will need these when construction our scheme in Section 4. Until then,
we shift our focus slightly to other primitives we will require to build TreePIR.

2.2 Pseudorandom Generators (PRGs) and Pseudorandom
Functions (PRFs)

Our core technique builds upon the celebrated construction of a PRF from a
length-doubling PRG by Goldreich, Goldwasser and Micali [19], henceforth de-
noted the GGM construction. We introduce both the definitions of a PRG, a
PRF, and give the GGM construction in the remainder of this section.

6 Lazzaretti and Papamanthou

Definition 2.3 (PRG). A PRG G : {0, 1}λ → {0, 1}2λ satisfies security if,
for any k ∈ {0, 1}λ and r ∈ {0, 1}2λ sampled uniformly at random, for any PPT
adversary A, there is a negligible function ν(λ) such that

|Pr[A(G(k))→ 1]− Pr[A(r)→ 1]| ≤ ν(λ) .

We also define below the pseudorandomness property for a PRF.

Definition 2.4 (PRF). A PRF F : {0, 1}λ×{0, 1}n → {0, 1}m satisfies secu-
rity if, for any k ∈ {0, 1}λ sampled uniformly at random, for any function F sam-
pled uniformly at random from the set of functions mapping {0, 1}n → {0, 1}m,
for any PPT adversary A, there is exists a negligible function ν(λ) such that

|Pr[AOF(·) → 1]− Pr[AOF (k,·) → 1]| ≤ ν(λ).

2.3 The GGM PRF Construction and Puncturing

Given a PRG G as above, the GGM construction of a PRF F works as follows.
Let us define for any output of G on input k, G(k) = G0(k)||G1(k), where
|Gb(·)| = λ for b ∈ {0, 1}. To simplify sequential applications of G, we also define
G10(·) = G1(G0(·)). From G, we construct a PRF F : {0, 1}λ×{0, 1}n → {0, 1}λ
as follows. For key k ∈ {0, 1}λ and input x ∈ {0, 1}n, let Fk(x) = Gx(k). As
shown in [19], this outputs a secure PRF with evaluation time n, assuming the
PRG is secure. The construction can be visualized as a tree with k as the root
with recursive applications of G split in half as its children.

k

G0(k)

G00(k)

G000(k) G001(k)

G01(k)

G010(k) G011(k)

G1(k)

G10(k)

G100(k) G101(k)

G11(k)

G110(k) G111(k)

Fig. 2. The GGM PRF tree.

Figure 2 represents the tree for a GGM PRF with input length n = 3, key
length λ and output length m = λ. 1 Now, this PRF construction is not ideal in
terms of practical evaluation time, since it requires sequential applications of G
linear in the size of the input. However, it is also very powerful since it allows us to
1 We note that this construction is only secure for a fixed input length. Also, we can

support any output length either truncating an output to be less than λ or reapplying
G sequentially on the final leaf node to increase the output indefinitely.

TreePIR 7

constrain the PRF key so as to disallow evaluation at one point. In the literature
this is commonly referred to as a puncturing constraint. The constraint can be
picked selectively after the key generation. We denote a PRF that selectively
allows for a puncturing constraint as a Puncturable PRF (pPRF)2. We define a
pPRF below and give additional security properties it must satisfy.

Definition 2.5 (Puncturable PRFs). Let n and m be public parameters. A
pPRF P maps n-bit inputs to m-bit outputs and is defined as a tuple of four
algorithms.

– Gen(1λ)→ k: Generates key k ∈ {0, 1}λ given security parameter λ.
– Eval(k, x) → y: Takes in a key k and a point x ∈ {0, 1}n and outputs y ∈
{0, 1}m, the evaluation of P on key k at point x.

– Puncture(k, x)→ kx: Outputs kx, the key k punctured at point x.
– PEval(kx, x′)→ y: Takes in a punctured key kx and a point x′ ∈ {0, 1}n and

outputs y, the evaluation of P ’s key kx at point x′.

Along with standard pseudorandomness (Definition 2.4), the pPRF P must
satisfy the following additional (informal) properties.

1. The punctured key kx reveals nothing about P.Eval(k, x), the evaluation of
the point x on the unpunctured key.

2. For any point x′ not equal to x, P.Eval(k, x′) equals P.PEval(kx, x′).

We formalize these below.

Definition 2.6 (Security in puncturing). A puncturable pseudorandom func-
tion (Gen,Eval,Puncture,PEval) satisfies security in puncturing if for r ∈ {0, 1}m
sampled uniformly, k ← Gen(1λ), there exists a negligible function ν(λ) such for
any PPT adversary A, A cannot distinguish between the following experiments
below with probability more than ν(λ).

– Expt0: x← A(1λ), Puncture(k, x)→ kx, b′ ← A(kx,Eval(x)).
– Expt1: x← A(1λ), Puncture(k, x)→ kx, b′ ← A(kx, r).

Definition 2.7 (Correctness in puncturing). A puncturable pseudoran-
dom function (Gen,Eval,Puncture,PEval) satisfies correctness in puncturing if
for k ← Gen(1λ), for any point x ∈ {0, 1}n, for kx ← Puncture(k, x), it holds
that ∀y ∈ {0, 1}n y not equal to x, Eval(k, y) = PEval(kx, y).

A pPRF construction based on a GGM style PRF was widely referenced in the
literature for many years before it was finally formalized by Kiayias et al. [25].
The construction goes as follows: When puncturing a point x, we remove the
“path to x” from the evaluation tree created using k and output the keys so
that the adversary can reconstruct all the other values except for x. We will be
handing the adversary a key of size n·λ (instead of just λ), that allows evaluation
of the pPRF in every point of the domain except for x. We also note that for this
2 Other works have studied adaptively picked constraints for pPRFs [22,34].

8 Lazzaretti and Papamanthou

construction to be correct we require x to be sent along with the punctured key,
so that the adversary is able to reconstruct the pPRF’s structure. We expand on
this in the next section. Kiayias et al. [25] conduct a formal analysis of this initial
pPRF scheme and show that it satisfies the security and correctness properties
above.

Next, we show how to modify this well-know GGM construction to achieve
our new desired primitive.

3 Weak Privately Puncturable PRFs

In this section we introduce a new primitive called Weak Privately Puncturable
Pseudorandom Functions that is going to be useful for our final construction.
Weak Privately Puncturable PRFs are Privately Puncturable PRFs [5, 8, 10, 33]
that satisfy a weaker notion of correctness.

But first, let us see what a Privately Puncturable PRF is: Privately Punc-
turable PRFs satisfy a stricter security definition than the pPRF introduced in
Section 2. Note that although the punctured key kx of a pPRF P reveals noth-
ing about P.Eval(k, x), it still reveals the punctured point, x. In fact, without
revealing x, there is no way to evaluate the pPRF punctured key at the other
points. This is not necessarily inherent to all pPRFs but it is certainly inherent
to the GGM scheme. In contrast, Privately Puncturable PRFs also hide the punc-
tured point! This very powerful primitive was built using techniques that depart
significantly from the GGM construction, and current schemes employ heavy ma-
chinery, such as lattices with super-polynomial moduli and fully-homomorphic
encryption to achieve private puncturing. Because of this, these are unfortunately
very far from being practical, especially for smaller domains.

So, can we have Privately Puncturable PRFs from simpler assumptions, ones
that would allow more efficient implementation? Let us take a step back and
look at one specific goal, i.e., that of hiding the index that was punctured.

We examine how this could be achieved on a standard GGM pPRF. This
requires a closer look into exactly what comprises a pPRF punctured key given
our current GGM pPRF construction. Suppose that we take the pPRF P defined
by the tree in Figure 2 and would like to puncture the point 010. In order to
satisfy our Definition 2.6 we need to remove all the nodes on the path to 010, so
that it cannot be computed given a punctured key. We are left with the tree in
Figure 3.

After removing the nodes in red, note that the strings on the nodes high-
lighted in yellow, and the punctured point, 010 are necessary (and sufficient) [25]
to reconstruct the remaining outputs of P . Put together, we require our punc-
tured key for the pPRF to be the tuple (010, [G00(k), G011(k), G1(k)]), where the
array is ordered (in a left-to-right fashion thinking of the tree)3. This punctured
key satisfies our privacy and correctness definitions for the pPRF [25].
3 It is clear that this is equivalent to a depth-first ordering up to some determinis-

tic shifting, however this ordering will be more intuitive for our approach moving
forward.

TreePIR 9

�k

���G0(k)

G00(k)

G000(k) G001(k)

���G01(k)

����G010(k) G011(k)

G1(k)

G10(k)

G100(k) G101(k)

G11(k)

G110(k) G111(k)

Fig. 3. Puncturing a GGM PRF.

Our first attempt to hide the punctured point is to simply remove it from the
key. In our example, instead of outputting the tuple (010, [G00(k), G011(k), G1(k)])
as our punctured key, we output only the ordered array [G00(k), G011(k), G1(k)].
By security of our PRG (Definition 2.3), this should not leak any information
about the punctured point—the array is just a sequence of random strings. We
now have a construction that satisfies privacy in the point punctured! However,
it is not clear as of now how this will be useful. How do we evaluate anything
with this when not given the punctured point? After all, as was noted in [25], the
point is necessary to reconstruct the original function evaluations at the other
indices.

One approach is to guess and take a punctured point as an additional input
in the P.PEval(·, ·) algorithm. A correct guess will enable us be able to evaluate
the function as before, however any incorrect guess will likely yield some other
random string. For example, if we guess 000 as the punctured point, we can
arrange our array [G00(k), G011(k), G1(k)] in a tree as if the punctured index
was 000 (it is important that to note the ordering of the array). We construct
this tree in Figure 4.

�

�

�

� G00(k)

G011(k)

G1(k)

Fig. 4. Reconstructing attempted GGM tree from index and strings.

In Figure 4, although the first half of the tree is not consistent with our
initial evaluation, G1(k) is placed correctly and therefore the evaluations of the

10 Lazzaretti and Papamanthou

last four indices will be consistent with our unpunctured key. This is not good
enough to satisfy any current definition of correctness, but it points us in the
right direction. Some evaluations will be unchanged across different guesses.

The key observation required for our work is that if we are interested in every
evaluation in the domain except the punctured point, the fact that different
“puncture guesses” are related can be used to our advantage. By construction,
we can evaluate the whole domain of input-output pairs for our initial guess
of the punctured point 000 in N logN time. Let us denote this set S000. Now,
using this S000, we can compute the entire domain of input-output pairs for the
PRF on a “puncture guess” of 001, S001, by only performing one removal and
one addition to S000.

Applying this observation across all possible punctured guesses, we iteratively
obtain the set of all input-output pairs for every “potential punctured point” in
just N logN time! Out of these N sets, one is correct (using correctness as defined
in Definition 2.74). In our example, this would be S010. Crucially, the “correct
evaluation set” still does not reveal the evaluation at the punctured point, by
security of the pPRF construction we saw in Section 2.

In the remainder of this section, we will define our new primitive, the Weak
Privately Puncturable PRF (wpPRF), give its security definitions, and provide
our construction. It follows a generalized version of the example above.

Definition 3.1 (Weak Privately Puncturable PRF). We define a Weak
Privately Puncturable Pseudorandom Function (wpPRF) F as a tuple of four
algorithms.

– Gen(1λ) → k: Takes in a security parameter λ and returns the wpPRF key
k ∈ {0, 1}λ.

– Eval(k, x)→ y: Takes x ∈ {0, 1}n as input and outputs the evaluation on key
k at x, y ∈ {0, 1}m.

– Puncture(k, i)→ ki: Takes in the wpPRF key k and an input from the domain
i and outputs the privately punctured key ki punctured at point i.

– PEval(ki, j, x) → y: Takes in a privately punctured key ki, a guess j of the
point that ki was punctured on, and the point to be evaluated x, and outputs
the evaluation of the point x for punctured key ki with potential puncturing
index j.

First, note that our Gen(·) and Eval(·, ·) algorithms must satisfy the standard
PRF pseudorandomness definition (Definition 2.4). We also require our wpPRF
to satisfy the same notion of Security in Puncturing as the pPRF (Definition 2.6.
Since the adversary picks and therefore knows x, it can evaluate PEval(kx, x, ·)
on every input except x, which is equivalent to the experiment on the original
pPRF (Definition 2.5).

Our Puncture algorithm must satisfy an additional notion of privacy with
respect to the puncture operation, aside from Definition 2.6. The puncture must
4 Note that since these sets are related, we can define all sets in N logN space, defining

the first one in full and the following ones as set differences.

TreePIR 11

hide both the evaluation at the point punctured and the point punctured. We
capture the second property below:

Definition 3.2 (Privacy in puncturing). A Weak Privately Puncturable
PRF (Gen,Eval,Puncture,PEval) satisfies privacy in puncturing if given a uni-
formly random b ∈ {0, 1}, k ∈ {0, 1}λ there exists a negligible function ν(λ) such
for any probabilistic polynomial time adversary A, A cannot correctly guess b
with probability more than 1

2 + ν(λ) in the experiment below.

– k ← Gen(1λ).
– (x0, x1)← A(1λ).
– kxb

← Puncture(k, xb).
– b′ ← A(kxb

).

Finally, we also redefine correctness with respect to private puncturing, where,
intuitively, we only require PEval(ki, j, x) to be equal to Eval(k, x) on the un-
punctured key k if i equals j. Note that by Definition 3.2 ki gives no information
about i. For i not equal to j, the output will look random, but will not necessarily
map to the original PRF output.

Definition 3.3 (Weak correctness in puncturing). A Weak Privately Punc-
turable PRF (Gen, Eval, Puncture, PEval) satisfies weak correctness in private
puncturing if given k ← Gen(1λ), for any point x ∈ {0, 1}n, kx ← Puncture(k, x),
it holds that ∀x′ ∈ {0, 1}n, x′ ̸= x, Eval(k, x′) = PEval(kx, x, x′).

Lastly, for our scheme to be useful, we require one final property, which we
will denote efficient full evaluation. This will ensure that given some punctured
key, we can evaluate our wpPRF on its full domain, for every possible punctured
index, in O(N logN) time using O(N logN) space. The definition below captures
this property.

Definition 3.4 (Efficient full evaluation). Let F be a Weak Privately Punc-
turable PRF (Gen, Eval, Puncture, PEval) and let N = 2n. Also let k ← Gen(1λ)
and ki ← Puncture(k, i) for some i ∈ {0, 1}n. Define

Sj = {(x,PEval(ki, j, x)) |x ∈ {0, 1}n ∧ x ̸= j} .

We say that F satisfies efficient full evaluation if all sets {Sj}j∈{0,1}n can be
enumerated in O(N logN) time using O(N log2 N) space.

It is clear that to satisfy efficient full evaluation there needs to be overlap
between the sets Sj , as will be the case with our construction. Otherwise, Ω(N2)
computation and space is needed.

3.1 A wpPRF construction

Our construction follows exactly our earlier description in this section, slightly
modified from the GGM pPRF to fit the new definitions. We give the full con-
struction in Figure 5.

12 Lazzaretti and Papamanthou

Our wpPRF construction.

Let G be a length-doubling PRG (satisfying Definition 2.3).
• Gen(1λ)→ k :

– Output a uniform random string of length λ.

• Eval(k, x)→ y :

– Let y ← Gx(k), output y.

• Puncture(k, i)→ ki :

– Output list of seeds not in path to i, ordered left to right, as shown in Figure 3.

• PEval(ki, j, x)→ y :

– Let y ← Gx((j, ki)). We denote with Gx((j, ki)) the leaf node at position x of
the tree reconstructed from (j, ki) as shown in Figure 4. Output y.

Fig. 5. Our wpPRF Construction.

Theorem 3.1 (wpPRFs). Assuming the security of the pseudorandom gen-
erator G (Definition 2.3), our wpPRF scheme (Definition 3.1) satisfies pseudo-
randomness (Definition 2.4), security in puncturing (Definition 2.6), privacy in
puncturing Definition 2.6, weak correctness in puncturing (Definition 3.3) and
efficient full evaluation (Definition 3.4).

Proof. Note that pseudorandomness follows from the standard GGM construc-
tion and proof from [19]. Correctness in weak puncturing follows directly by con-
struction. Security in Puncturing follows from the pPRF security proof in [25],
since our privately punctured key is a strict subset of the punctured key in the
GGM construction.

Privacy in puncturing follows from directly from the security of G. Our punc-
tured key is an ordered array of random strings, and therefore cannot leak any
information about an the index that was punctured. The key can be simulated
by generating logN random strings of size λ, and by security of G that will be
indistinguishable from our key for any probabilistic polynomial time adversary.

Finally, we show that our scheme also satisfies efficient full evaluation. Given
a punctured key ki, we enumerate all sets Sj using the following algorithm.

– Step 1: Compute S0n , as defined in Definition 3.4. This takes O(N logN)
time.

– Step 2: For j = 1, . . . , N − 1 :

1. Let h be the height of the node between index j − 1 and index j on the
tree. We denote leaf nodes to have h = 0.

2. Sj = {(v, F.PEval(ki, j, v)}v∈{j−2h−1,...,j+2h−1}.

TreePIR 13

Given that we run into a transition of height h with exactly 2n/2h times, we
have that going through this loop we will take:

NumOps =
∑

h∈[1,...,n]

2n

2h
× 2h (1)

= n2n = N logN (2)

Then, this whole process of evaluating every Sj takes time 2N logN = O(N logN).
Note that each Sj as defined above has 2h elements and so by a similar argument
we have that this conjunction of all sets can be expressed in O(N logN) space,
where we do not include factors dependent on the output size m. (Intuitively, the
first set will be constructed normally and the remaining sets will be constructed
iteratively from the first, reusing evaluations.)

Finally, we have to show that each of this set of {Si}i∈[N] does indeed repre-
sent the appropriate full evaluation for all potential puncture at points j ∈ [N].
We define the real set of mappings for a puncture guess of j to be S′

j = S′
j−1+Sj ,

where we define the + operation to be the union of both sets, except when there
are two mappings of the same index, we overwrite to the value to the latter value.
As an example, if we have S contain the entry (x, y) and S′ contain (x, y′), the
set S + S′ contains only (x, y′). It is straightforward to verify that for any j,
S′
j = S0 + S1 + . . .+ Sj corresponds to the set of all evaluations of the domain

of F given a puncture guess of j.

4 Applying wpPRFs to PIR

In this section we focus on applying our new primitive, the wpPRF, to achieve
a PIR scheme with the complexities outlined in Figure 1. We first show how our
wpPRFs can be used to construct sets, and then use these sets to build TreePIR.

4.1 Constructing pseudorandom sets from wpPRFs

As we glanced over in the introduction, all current PIR schemes that achieve
sublinear online time use some notion of pseudorandom sets. Here, we explore
how we can construct these sets from our new wpPRF primitive. In a general
sense, we want sets that satisfy the following properties:

– Short description.
– Non-trivial membership testing.
– Maintaining the short description even after removing one element.

Our approach. Here we show how to use wpPRFs to address the shortcomings
of prior work. Suppose we have a wpPRF F := (Gen,Eval,Puncture,PEval) whose

14 Lazzaretti and Papamanthou

domain and range is
√
N . We can then define a set S of

√
N elements in [N]

using F , given a uniform random key k ∈ {0, 1}λ as

S = {i||F.Eval(k, i) : i ∈
[√

N
]
} .

Our set S will contain each element in [N] with probability 1/
√
N . Also the set

will be “partitioned”, in that it will contain exactly one element for each one of
the
√
N intervals.

Let us take an example where N = 16. We represent the database with a box
for each index below. Our set will contain one element within each of the dark
boxes (one element within each range of four elements):

We pick some uniform k, and evaluate it at
√
16 = 4 points, such that

F.Eval(k, 00) = 01, F.Eval(k, 01) = 00, F.Eval(k, 10) = 01, F.Eval(k, 11) = 11.

Then, our set coverage with respect to the database would look as follows.

Now, assuming we were using a regular GGM style pPRF, a puncture to a point
would reveal its ’box’. Let us say we want to puncture the element 0001 from
the set. To do this, we run F.Puncture(k, 00) = k00. Using a regular pPRF, k00
does not reveal the evaluation 01, but it does reveal the punctured index. What
this means is that the server would know that the element is within the green
elements below:

This would enable the adversary to narrow down the query index to
√
N in-

dices. Intuitively, because our wpPRF enables us to also hide the point that was
punctured, we hide both the index within the partition and which partition we
are puncturing. Then, given the set’s punctured key, the server cannot guess the
punctured index with probability better than 1/N .

To summarize, our set satisfies the following properties:

1. It can be represented in λ bits by its key k.
2. We can check membership in one evaluation. For any x = xℓ||xr ∈ [N], we

simply check if F.Eval(k, xℓ) evaluates to xr.
3. If we puncture at a point x (by puncturing position xℓ as defined above),

the punctured key remains concise, and reveals nothing about the punctured
point or the punctured index (Definition 2.6, 3.2).

TreePIR 15

Applying our new sets to PIR We now explore how to use a punctured key
to retrieve a desired database index value. Recall that our set is defined as:

S = {i||F.Eval(k, i) : i ∈
[√

N
]
} .

We want to find the value DB[x] for some x ∈ S, note that for x = xℓ||xr, it
follows from the set definition above that:

x ∈ S ⇐⇒ F.Eval(k, xℓ) = xr .

Suppose we happen to have the respective set parity

p =
⊕
i∈S

DB[i] .

Let us now define
pt =

⊕
i∈S\{t}

DB[i] ,

To retrieve DB[x], where x = xℓ||xr = xℓ||F.Eval(k, xℓ), we first send kxℓ
←

F.Puncture(k, xℓ) to the server. Then, without revealing x to the server, we must
have the server compute px. This would allow us to locally compute DB[x] =
p⊕px. Since we are using a wpPRF, kxℓ does not allow the server to compute px.
However, because the wpPRF that we are using satisfies efficient full evaluation,
per Definition 3.4, the server uses kxℓ

and computes all
√
N values Sj (and thus

all pj) in O(
√
N log2 N) time5.

We have successfully reduced the problem of fetching a record privately from
a database of N records to fetching a record privately from a database of

√
N

records. There are two different ways we can proceed from here.

1. Download the all
√
N parities.

2. Use a single-server PIR scheme to fetch the record px from the smaller
database. The record we want from this smaller database px is exactly the
xℓ-th index.

If we are willing to allow for a three-server assumption, we can also compute the
online phase on both online servers and retrieve the parity in additional

√
N time

with logN total bandwidth and no encryption. We discuss the trade-offs of each
in more detail in Section 4.3, but note that regardless of the approach we pick,
our server time remains

√
N log2 N , since for the single-server PIR approach and

the DPF approach, we are running these protocols on a database of size
√
N .

4.2 Our TreePIR Scheme

In Figure 6, we give the full scheme, based on the intuition above. On our
implementation, we can make Step 1 of our Online Query this algorithm deter-
ministic by adding shifts [12, 32] to our wpPRF scheme. We note that wpPRFs
makes our scheme considerably simpler than previous schemes based on the same

16 Lazzaretti and Papamanthou

Our TreePIR construction.

Let F := (Gen,Eval,Puncture,PEval) be a wpPRF as defined in Definition 3.1 that
maps

√
N bits to

√
N bits. Let M = λ

√
N and DB be a vector of N indices.

• Offline: Preprocessing(client,server0).

1. client sets ki ← F.Gen(1λ), i = 1, . . . ,M−1, and sends k0, . . . , kM−1 to server0.
2. For all i = 0, . . . ,M − 1 server0 computes hints

hi = ⊕j∈SiDB[j] ,

where
Si = {v||F.Eval(ki, v) : v ∈

[√
N
]
} ,

and sends h0, . . . , hM−1 to client.
3. client stores pairs of keys and hints in a table

T = {Tj = (kj , hj)}j∈[M] .

• Online: Query(client, x)→ (q0, q1), x ∈ [N].

1. Sample k′ ← F.Gen(1λ) until F.Eval(k′, xℓ) = xr.
2. Find Tj such that F.Eval(kj , xℓ) = xr.
3. Let q0 ← F.Puncture(k′, xℓ).
4. Let q1 ← F.Puncture(kj , xℓ).
5. Send (q0, q1) to server0 and server1 respectively.

• Online Answer(serverb, qb)→ Pb for b ∈ {0, 1}.

1. Parse qb = (kpunc).
2. Compute an array of parities Pb = [p0, . . . , p√N], where pi = ⊕j∈SiDB[j],

Si = { v ||F.PEval(kpunc, i, v) }i∈[√N], for v ∈
[√

N
]
.

3. Return Pb.

• Online Reconstruct(client, P0,P1)→ DB[x].

1. DB[x]← hj ⊕ P1[x
ℓ].

2. Tj ← (k′,P0[x
ℓ]⊕ DB[x]).

Fig. 6. Our novel PIR scheme, TreePIR.

TreePIR 17

paradigm [12, 26, 36], since we do not require “failing” with certain probability
and executing a secondary protocol or executing λ instances in parallel.

We argue our scheme’s privacy and correctness in Theorem 4.1.

Theorem 4.1 (TreePIR). Assuming Theorem 3.1, TreePIR, our scheme given
in Figure 6 satisfies correctness and privacy for multi-query PIR schemes as
defined in Definition 2.1, 2.2 and runs with:

– O(λN logN) offline server time and O(λ
√
N) offline client time.

– O(
√
N log2 N) online server time and O(

√
N logN) online client time.

– No additional server space and O(
√
N) client space.

– O(λ
√
N) offline bandwidth.

– O(λ logN) upload bandwidth and
√
N download bandwidth.

Proof. Our efficiencies follow directly from construction and from Theorem 3.1.
We specifically highlight that step 2 of the Answer algorithm runs in O(

√
N log2 n)

time by the efficient full evaluation property. In step 1 of our online query phase,
we run the F.Gen(·) until we find the mapping from xℓ to xr. As is, this runs in
probabilistic O(

√
N) time. We can make it deterministic O(logN) time by in-

stantiating our sets with random shifts. The technique and proof of equivalence
follow exactly as in [12, Appendix B.5].

Privacy with respect to server1. Offline, server1 sees nothing, so we do only
consider online privacy. We first show that for the first query, we satisfy the indis-
tinguishability experiment. Then, since we show how to induct on this argument
and extend it for any polynomial number of queries. Assume the adversary picked
query index x1 for query Q1. Now consider the hybrid experiment below:

– Hyb: client interacts with A who acts as server1 and serv0 who acts as
server0. client is invoked with query x1, ignores x1, picks some random
y ∈ [N] as its query index.

By Definition 2.6, for any y ∈ [N], a query to xℓ
1||xr

1 is indistinguishable from a
query to xℓ

1||yr, since kxℓ
1||xr

1

c

≈ kxℓ
1||yr . The punctured key reveals nothing about

the evaluation at the punctured index.
Then, by Definition 3.2, a query to xℓ

1||yr is indistinguishable from a query
to yℓ||yr, because kxℓ

1||yr

c

≈ kyℓ||yr : the punctured key reveals nothing about
the index that was punctured. Therefore, by the transitive property, we have
that the punctured key for x and y (namely kx1

and ky) are computationally
indistinguishable, and since this is the only thing the server1 sees, it has no way
of distinguishing between a query to its desired index x and a random y.

It follows that Expt0 and Hyb are indistinguishable to server16. It also
follows in suit that Hyb and Exp1 are indistinguishable. Since client never uses
the invoked query x1 and instead picks a random y, we can define our simulator
5 Database accesses incur an additional logN factor per element.
6 Another way to show this is to look at the distribution of elements the server sees

for each key and verify that they are indeed the same and independent of the index
punctured.

18 Lazzaretti and Papamanthou

Sim exactly as above. Note that for the next query, we replace our used key k
with a new key k′ ← F.Gen(1λ) until F.Eval(k′, xℓ) = xr. But since our key,
k, that was used in the first query can also be seen as the output of F.Gen(1λ)
until F.Eval(k, xℓ

1) = xr, because it was the first key generated that contained
x1, we note that k and k′ are computationally indistinguishable and therefore
swapping k for k′ maintains the distribution of T . It also follows from above that
the server’s view for the next query is independent of the previous query, since
it always sees a uniform random punctured key from the same distribution.

Privacy with respect to server0. Offline privacy follows directly from the
fact that the keys are picked before any query, and therefore cannot leak any
information. Online privacy with respect to server0 can be argued symmetrically
from the same arguments as privacy with respect to server1. The only difference
is that we have to be careful to pick fresh keys from a different randomness so
they are independent from the keys sent to server0 offline.

Correctness. We argue correctness by construction and Theorem 3.1, using
an induction argument on the client’s state.

Let us first consider the first query Q1 to index x1. For any query index x1,
the probability that we do not find a set that contains x1, for some negligible
function ν(·), is:

Pr
[
x1 /∈ {Si}i∈[λ

√
N]

]
= Pr

[
∀i ∈ [λ

√
N], F.Eval(ki, xℓ

1) ̸= xr
1

]
(3)

=

(
1− 1√

N

)λ
√
N

(4)

≤
(
1

e

)λ

≤ ν(λ). (5)

This means that step 2 in our Query algorithm will always succeed for the first
query except with negligible probability. Then, by construction of our scheme
and weak correctness of our wpPRF (Definition 3.3), it follows that, if x1 ∈ Sj =
{i ||F.Eval(kj , i)}i∈[

√
N], then:

DB[x1] =

⊕
i∈Sj

DB[i]

⊕
 ⊕

i∈Sj\{x1}

DB[i]

 (6)

= hj ⊕

 ⊕
k∈S

j,xℓ
1

DB[k]

 (7)

= hj ⊕ P1[x
ℓ
1], (8)

where:

Sj,xℓ
1
= {i ||F.PEval(kj,xℓ

1
, xℓ

1, i)}i∈[
√
N], kj,xℓ

1
= F.Puncture(kj , xℓ

1).

TreePIR 19

We have shown that the first query Q1 to index x1 is correct except with
negligible probability. At the end of the query, we update T by setting Tj =
(k′,P[xℓ] ⊕ DB[x]). Correctness of the hint follows in a similar argument as
above. Also, our updated table T maintains its distribution, and holds only sets
never seen by server1, as we have shown in the privacy proof. Then, it follows
that the next query Q2 to index x2 will also be correct by the same argument
as above. By induction, this will hold for query Qt to index xt for any t < 1

ν(λ) ,
for any negligible function ν(·).

4.3 Driving communication complexity down to logarithmic

Prior works [15, 30] have studied single-server PIR and have achieved schemes
with polylogarithmic bandwidth. The bottleneck of these schemes is that the
server time grows linearly with the database size. Applying TreePIR with one of
these schemes, we can achieve a practical PIR scheme with sublinear time and
polylogarithmic bandwidth.

Lemma 4.1 (TreePIR with reduced bandwidth). Theorem 4.1 implies a
two-server PIR with the same complexities except with polylogarithmic bandwidth
online.

Proof. We can replace the last step of the server answer in our protocol with a
single-server PIR that has linear work and polylogarithmic bandwidth. This is
because we know what index we want from the string of

√
N words ahead of

time, it corresponds to exactly xℓ. The protocol then replaces the last step of
downloading

√
N words with fetch the xℓ-th word using a single-server scheme.

The privacy, efficiency, and correctness follow from Theorem 4.1 and previous
work on single-server PIR [9, 15, 17, 28, 30]. This means that we also have to
introduce any assumptions used by the scheme selected.

On Section 5 we benchmark the performance of our TreePIR paired with
SPIRAL [30]. Note that we cannot recurse with a preprocessing PIR scheme
(and this includes our TreePIR), since the

√
N words from the last step of the

Answer phase are dynamically generated and entirely dependent on the index we
decide to query.

4.4 Tuning Efficiencies in TreePIR

We have picked wpPRFs of domain and range
√
N so that we achieve O(

√
N log2 N)

server time and O(
√
N) client space. If we tune our sets to be a different size,

for example size N1/D, then we can achieve faster server time of N1/D log2 N in
exchange for a larger client storage of ND−1/D. Intuitively, this says that if we
have smaller sets in the client, we get faster server time, but we need more sets
at the client to ensure coverage of all indices. Conversely, to have less sets at the
client, they need to represent more indices and we would have to pay for it in
server time. For this work we fixed the N1/2 tradeoff.

20 Lazzaretti and Papamanthou

5 Performance

We implement TreePIR in 530 lines of C++ code and 470 lines of Go code. Our
starting point was the previous optimized implementations of PIR by Kogan and
Corrigan Gibbs [26] and Kales et al. [23].

We benchmark our scheme from Theorem 4.1 against PRP-PIR [12] imple-
mented by Ma et al. [35], Checklist by Kogan and Corrigan-Gibbs [26], and the
DPF-based PIR initially introduced by Gilboa and Ishai [7, 18, 21]. We run the
analysis of amortized query time across two thousand queries for a database
of four million elements of 256 bytes Figure 7 and a database of 268 million
elements of 32 bytes. The tests are run on a single thread in an Amazon Web
Services EC2 instance of size m5d.8xlarge.

Results for database of 222 elements of size 256 bytes.

Protocol Amortized Client
Query Time Storage

TreePIR 15ms 67MB
Checklist 18ms 78MB
PRP-PIR 315ms 67MB
DPF PIR 84ms 0

Fig. 7. Amortized query time for moderate database size.

Results for database of 228 elements of size 32 bytes.

Protocol Amortized Client
Query Time Storage

TreePIR 256ms 67MB
Checklist [26] 811ms 1GB
DPF PIR [7,18,21] 5480ms 0

Fig. 8. Amortized query time for large database of small elements.

The results seen in Figure 7 and Figure 8 represent TreePIR with no recursion.
For either database size benchmarked, recursing with a DPF query would take
less than 0.4ms, the time for a DPF query with a database of

√
228 = 214

elements, which means that the query time would be basically unchanged, but
we would require three servers. To recurse with SPIRAL, maintaining the two-
server assumption, we would pay 61ms to recurse on a database of 211 elements of
size 256 bytes, and the same 61ms to recurse on a database of 214 elements of size
32 bytes. This would mean that in reducing bandwidth on the two-server setting,
our amortized query time would be slower than Checklist’s for the databases of

TreePIR 21

222 elements of 256 bytes, but still considerably faster for a database of size
228 elements of size 32 bytes. Also, any future improvements with single-server
PIR or two-server PIR would also automatically imply a faster TreePIR. While
we report amortized query time across two thousand queries, when measuring
across more queries, TreePIR approaches an amortized query time of 23ms for
the database of 228 elements and 4.7ms for the database of size 222.

By coincidence, the client storage for TreePIR on both databases turned out
to be almost exactly the same. This is because the client storage is proportional
to both database size and element size. For larger databases, there is a significant
discrepancy in the storage needed for TreePIR and Checklist.

On the absence of the scheme by Shi et al. [36] Note that we do not
benchmark the Shi et al. scheme [36] because there is no known implementation
of the Privately Puncturable PRF primitive. However, given the sample param-
eter instantiation of privately puncturable PRFs by [5], a conservative estimate
on the punctured key size is of λ5 · log3 N . This means an online per query com-
munication cost of over 30 billion bits given a security parameter of size 128 bits,
for any database size. This makes the scheme impractical for most PIR usecases.

On the performance of PRP-PIR [12] To benchmark PRP-PIR [12], we
use a separate library provided by Ma et al. [35]. This library does not use
optimized instructions to perform the xor operation and that could partially
explain its poor performance. The other factor is that small-domain PRPs [31,
38] put overhead in the membership testing and evaluation, both of which are
performed numerous times thoroughout the scheme. We do not benchmark PRP-
PIR against the larger database sizes run the code by [35] run on a database larger
that 222 elements.

On the performance of Checklist [26] Running a very small number of
queries, Checklist outperforms TreePIR in terms of query time by around a factor
of approximately 8. However, when running many queries on large databases,
such as was the case to benchmark, it turned out that Checklist was inconsistent.
This is because the hashmap used to find the set with the desired query index
does not contain a full mapping of every set, it only contains one entry per
index. If x and y are in the same set i with the map pointing both x and y
to set i, a query to x will make the mapping of y invalid on the map with
very high probability. This means that a query to y after a query to x requires
enumerating

√
N sets in expectation and therefore requires superlinear client

work. This explains why over many queries, TreePIR outperforms Checklist. This
problem could be fixed by keeping a full mapping of all sets in the hashmap,
although this would require an additional λ factor of client storage, bringing
Checklist’s storage up to O(λN logN). We do not benchmark this scenario since
the client storage would be too large, but we note that the asymptotics reported
in Figure 1 reflect this latter case, since without this extra λ factor, Checklist’s
client time is N logN in the worst case.

22 Lazzaretti and Papamanthou

5.1 Supporting Mutable Databases

Techniques to support preprocessing in databases that change over time have
been studied in previous work [26, 35]. These techniques can also be applied to
TreePIR and are able maintain most of the benefits of preprocessing with small
overhead.

5.2 Parallelizing Evaluations

Note that although our construction highly exploits sequential computation,
many subsets of the computation can be parallelized. At a high level, it is easy
to see that the first and last output set have no overlap, their tree configurations
are completely different. This also holds true recursively within each subtree,
and the computation could be optimized to reflect this.

References

1. Angel, S., Setty, S.: Unobservable Communication over Fully Untrusted In-
frastructure. pp. 551–569 (2016), https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/angel

2. Backes, M., Kate, A., Maffei, M., Pecina, K.: ObliviAd: Provably Secure and Prac-
tical Online Behavioral Advertising. In: 2012 IEEE Symposium on Security and
Privacy. pp. 257–271 (May 2012). https://doi.org/10.1109/SP.2012.25, iSSN:
2375-1207

3. Beimel, A., Ishai, Y.: Information-Theoretic Private Information Retrieval: A
Unified Construction. In: Goos, G., Hartmanis, J., van Leeuwen, J., Orejas, F.,
Spirakis, P.G., van Leeuwen, J. (eds.) Automata, Languages and Programming,
vol. 2076, pp. 912–926. Springer Berlin Heidelberg, Berlin, Heidelberg (2001).
https://doi.org/10.1007/3-540-48224-5_74, http://link.springer.com/10.
1007/3-540-48224-5_74, series Title: Lecture Notes in Computer Science

4. Beimel, A., Ishai, Y., Malkin, T.: Reducing the Servers Computation in Private
Information Retrieval: PIR with Preprocessing. In: Bellare, M. (ed.) Advances
in Cryptology — CRYPTO 2000. pp. 55–73. Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_4

5. Boneh, D., Kim, S., Montgomery, H.: Private Puncturable PRFs from Standard
Lattice Assumptions. In: Coron, J.S., Nielsen, J.B. (eds.) Advances in Cryp-
tology – EUROCRYPT 2017. pp. 415–445. Lecture Notes in Computer Sci-
ence, Springer International Publishing, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7_15

6. Boneh, D., Kim, S., Wu, D.J.: Constrained Keys for Invertible Pseudorandom Func-
tions. In: Kalai, Y., Reyzin, L. (eds.) Theory of Cryptography. pp. 237–263. Lec-
ture Notes in Computer Science, Springer International Publishing, Cham (2017).
https://doi.org/10.1007/978-3-319-70500-2_9

7. Boyle, E., Gilboa, N., Ishai, Y.: Function Secret Sharing. In: Oswald, E., Fischlin,
M. (eds.) Advances in Cryptology - EUROCRYPT 2015. pp. 337–367. Lecture
Notes in Computer Science, Springer, Berlin, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46803-6_12

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/angel
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/angel
https://doi.org/10.1109/SP.2012.25
https://doi.org/10.1109/SP.2012.25
https://doi.org/10.1007/3-540-48224-5_74
https://doi.org/10.1007/3-540-48224-5_74
http://link.springer.com/10.1007/3-540-48224-5_74
http://link.springer.com/10.1007/3-540-48224-5_74
https://doi.org/10.1007/3-540-44598-6_4
https://doi.org/10.1007/3-540-44598-6_4
https://doi.org/10.1007/978-3-319-56620-7_15
https://doi.org/10.1007/978-3-319-56620-7_15
https://doi.org/10.1007/978-3-319-56620-7_15
https://doi.org/10.1007/978-3-319-56620-7_15
https://doi.org/10.1007/978-3-319-70500-2_9
https://doi.org/10.1007/978-3-319-70500-2_9
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-46803-6_12

TreePIR 23

8. Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private Constrained PRFs
(and More) from LWE. In: Kalai, Y., Reyzin, L. (eds.) Theory of Cryptography. pp.
264–302. Lecture Notes in Computer Science, Springer International Publishing,
Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_10

9. Cachin, C., Micali, S., Stadler, M.: Computationally Private Information Retrieval
with Polylogarithmic Communication. In: Stern, J. (ed.) Advances in Cryptology
— EUROCRYPT ’99. pp. 402–414. Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_28

10. Canetti, R., Chen, Y.: Constraint-Hiding Constrained PRFs for NC1from
LWE. In: Coron, J.S., Nielsen, J.B. (eds.) Advances in Cryptology – EUROCRYPT
2017. pp. 446–476. Lecture Notes in Computer Science, Springer International
Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_16

11. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
Journal of the ACM 45(6), 965–981 (Nov 1998). https://doi.org/10.1145/
293347.293350, https://doi.org/10.1145/293347.293350

12. Corrigan-Gibbs, H., Kogan, D.: Private Information Retrieval with Sublinear On-
line Time. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology – EURO-
CRYPT 2020. pp. 44–75. Lecture Notes in Computer Science, Springer Interna-
tional Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_
3

13. Dong, C., Chen, L.: A Fast Single Server Private Information Retrieval Protocol
with Low Communication Cost. In: Kutyłowski, M., Vaidya, J. (eds.) Computer
Security - ESORICS 2014, vol. 8712, pp. 380–399. Springer International Publish-
ing, Cham (2014). https://doi.org/10.1007/978-3-319-11203-9_22, http://
link.springer.com/10.1007/978-3-319-11203-9_22, series Title: Lecture Notes
in Computer Science

14. Dvir, Z., Gopi, S.: 2-Server PIR with Subpolynomial Communication. Journal of
the ACM 63(4), 1–15 (Nov 2016). https://doi.org/10.1145/2968443, https:
//dl.acm.org/doi/10.1145/2968443

15. Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.: Trapdoor
Hash Functions and Their Applications. In: Advances in Cryptology – CRYPTO
2019: 39th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 18–22, 2019, Proceedings, Part III. pp. 3–32. Springer-Verlag, Berlin, Hei-
delberg (Aug 2019). https://doi.org/10.1007/978-3-030-26954-8_1, https:
//doi.org/10.1007/978-3-030-26954-8_1

16. Efremenko, K.: 3-Query Locally Decodable Codes of Subexponential Length. SIAM
Journal on Computing 41(6), 1694–1703 (Jan 2012). https://doi.org/10.1137/
090772721, http://epubs.siam.org/doi/10.1137/090772721

17. Gentry, C., Ramzan, Z.: Single-Database Private Information Retrieval with Con-
stant Communication Rate. In: Hutchison, D., Kanade, T., Kittler, J., Kleinberg,
J.M., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C.,
Steffen, B., Sudan, M., Terzopoulos, D., Tygar, D., Vardi, M.Y., Weikum, G.,
Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) Au-
tomata, Languages and Programming, vol. 3580, pp. 803–815. Springer Berlin
Heidelberg, Berlin, Heidelberg (2005). https://doi.org/10.1007/11523468_65,
http://link.springer.com/10.1007/11523468_65, series Title: Lecture Notes in
Computer Science

18. Gilboa, N., Ishai, Y.: Distributed Point Functions and Their Applications. In:
Nguyen, P.Q., Oswald, E. (eds.) Advances in Cryptology – EUROCRYPT 2014. pp.

https://doi.org/10.1007/978-3-319-70500-2_10
https://doi.org/10.1007/978-3-319-70500-2_10
https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/978-3-319-56620-7_16
https://doi.org/10.1007/978-3-319-56620-7_16
https://doi.org/10.1145/293347.293350
https://doi.org/10.1145/293347.293350
https://doi.org/10.1145/293347.293350
https://doi.org/10.1145/293347.293350
https://doi.org/10.1145/293347.293350
https://doi.org/10.1007/978-3-030-45721-1_3
https://doi.org/10.1007/978-3-030-45721-1_3
https://doi.org/10.1007/978-3-030-45721-1_3
https://doi.org/10.1007/978-3-030-45721-1_3
https://doi.org/10.1007/978-3-319-11203-9_22
https://doi.org/10.1007/978-3-319-11203-9_22
http://link.springer.com/10.1007/978-3-319-11203-9_22
http://link.springer.com/10.1007/978-3-319-11203-9_22
https://doi.org/10.1145/2968443
https://doi.org/10.1145/2968443
https://dl.acm.org/doi/10.1145/2968443
https://dl.acm.org/doi/10.1145/2968443
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1137/090772721
https://doi.org/10.1137/090772721
https://doi.org/10.1137/090772721
https://doi.org/10.1137/090772721
http://epubs.siam.org/doi/10.1137/090772721
https://doi.org/10.1007/11523468_65
https://doi.org/10.1007/11523468_65
http://link.springer.com/10.1007/11523468_65

24 Lazzaretti and Papamanthou

640–658. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55220-5_35

19. Goldreich, O., Goldwasser, S., Micali, S.: How to Construct Random Functions
(Extended Abstract). In: FOCS (1984). https://doi.org/10.1109/SFCS.1984.
715949

20. Gupta, T., Crooks, N., Mulhern, W., Setty, S., Alvisi, L., Walfish,
M.: Scalable and Private Media Consumption with Popcorn. pp. 91–
107 (2016), https://www.usenix.org/conference/nsdi16/technical-sessions/
presentation/gupta-trinabh

21. Hafiz, S.M., Henry, R.: A Bit More Than a Bit Is More Than a
Bit Better: Faster (essentially) optimal-rate many-server PIR. Proceed-
ings on Privacy Enhancing Technologies 2019(4), 112–131 (Oct 2019).
https://doi.org/10.2478/popets-2019-0061, https://petsymposium.org/
popets/2019/popets-2019-0061.php

22. Hohenberger, S., Koppula, V., Waters, B.: Adaptively Secure Puncturable
Pseudorandom Functions in the Standard Model. In: Iwata, T., Cheon,
J.H. (eds.) Advances in Cryptology – ASIACRYPT 2015, vol. 9452, pp.
79–102. Springer Berlin Heidelberg, Berlin, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48797-6_4, http://link.springer.com/10.1007/
978-3-662-48797-6_4, series Title: Lecture Notes in Computer Science

23. Kales, D., Omolola, O., Ramacher, S.: Revisiting User Privacy for Certificate Trans-
parency. In: 2019 IEEE European Symposium on Security and Privacy (EuroS&P).
pp. 432–447. IEEE, Stockholm, Sweden (Jun 2019). https://doi.org/10.1109/
EuroSP.2019.00039, https://ieeexplore.ieee.org/document/8806754/

24. Kiayias, A., Leonardos, N., Lipmaa, H., Pavlyk, K., Tang, Q.: Optimal Rate
Private Information Retrieval from Homomorphic Encryption. Proceedings on
Privacy Enhancing Technologies 2015(2), 222–243 (Jun 2015). https://doi.
org/10.1515/popets-2015-0016, https://www.sciendo.com/article/10.1515/
popets-2015-0016

25. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. pp. 669–684. CCS ’13, Asso-
ciation for Computing Machinery, New York, NY, USA (Nov 2013). https://doi.
org/10.1145/2508859.2516668, https://doi.org/10.1145/2508859.2516668

26. Kogan, D., Corrigan-Gibbs, H.: Private Blocklist Lookups with Checklist.
pp. 875–892 (2021), https://www.usenix.org/conference/usenixsecurity21/
presentation/kogan

27. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database,
computationally-private information retrieval. In: Proceedings 38th Annual Sym-
posium on Foundations of Computer Science. pp. 364–373. IEEE Comput. Soc,
Miami Beach, FL, USA (1997). https://doi.org/10.1109/SFCS.1997.646125,
http://ieeexplore.ieee.org/document/646125/

28. Lipmaa, H.: An oblivious transfer protocol with log-squared communication. In:
Proceedings of the 8th international conference on Information Security. pp. 314–
328. ISC’05, Springer-Verlag, Berlin, Heidelberg (Sep 2005). https://doi.org/10.
1007/11556992_23, https://doi.org/10.1007/11556992_23

29. Lipmaa, H., Pavlyk, K.: A Simpler Rate-Optimal CPIR Protocol. In: Financial
Cryptography and Data Security, 2017 (2017), http://eprint.iacr.org/2017/
722

https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1109/SFCS.1984.715949
https://doi.org/10.1109/SFCS.1984.715949
https://doi.org/10.1109/SFCS.1984.715949
https://doi.org/10.1109/SFCS.1984.715949
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/gupta-trinabh
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/gupta-trinabh
https://doi.org/10.2478/popets-2019-0061
https://doi.org/10.2478/popets-2019-0061
https://petsymposium.org/popets/2019/popets-2019-0061.php
https://petsymposium.org/popets/2019/popets-2019-0061.php
https://doi.org/10.1007/978-3-662-48797-6_4
https://doi.org/10.1007/978-3-662-48797-6_4
https://doi.org/10.1007/978-3-662-48797-6_4
https://doi.org/10.1007/978-3-662-48797-6_4
http://link.springer.com/10.1007/978-3-662-48797-6_4
http://link.springer.com/10.1007/978-3-662-48797-6_4
https://doi.org/10.1109/EuroSP.2019.00039
https://doi.org/10.1109/EuroSP.2019.00039
https://doi.org/10.1109/EuroSP.2019.00039
https://doi.org/10.1109/EuroSP.2019.00039
https://ieeexplore.ieee.org/document/8806754/
https://doi.org/10.1515/popets-2015-0016
https://doi.org/10.1515/popets-2015-0016
https://doi.org/10.1515/popets-2015-0016
https://doi.org/10.1515/popets-2015-0016
https://www.sciendo.com/article/10.1515/popets-2015-0016
https://www.sciendo.com/article/10.1515/popets-2015-0016
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1145/2508859.2516668
https://www.usenix.org/conference/usenixsecurity21/presentation/kogan
https://www.usenix.org/conference/usenixsecurity21/presentation/kogan
https://doi.org/10.1109/SFCS.1997.646125
https://doi.org/10.1109/SFCS.1997.646125
http://ieeexplore.ieee.org/document/646125/
https://doi.org/10.1007/11556992_23
https://doi.org/10.1007/11556992_23
https://doi.org/10.1007/11556992_23
https://doi.org/10.1007/11556992_23
https://doi.org/10.1007/11556992_23
http://eprint.iacr.org/2017/722
http://eprint.iacr.org/2017/722

TreePIR 25

30. Menon, S.J., Wu, D.J.: Spiral: Fast, High-Rate Single-Server PIR via FHE Com-
position. In: IEEE Symposium on Security and Privacy, 2022 (2022), https:
//eprint.iacr.org/2022/368

31. Patarin, J.: Security of Random Feistel Schemes with 5 or More Rounds. In:
Franklin, M. (ed.) Advances in Cryptology – CRYPTO 2004. pp. 106–122. Lec-
ture Notes in Computer Science, Springer, Berlin, Heidelberg (2004). https:
//doi.org/10.1007/978-3-540-28628-8_7

32. Patel, S., Persiano, G., Yeo, K.: Private Stateful Information Retrieval. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security. pp. 1002–1019. CCS ’18, Association for Computing Machinery,
New York, NY, USA (Oct 2018). https://doi.org/10.1145/3243734.3243821,
https://doi.org/10.1145/3243734.3243821

33. Peikert, C., Shiehian, S.: Constraining and Watermarking PRFs from Milder As-
sumptions. In: Public-Key Cryptography – PKC 2020: 23rd IACR International
Conference on Practice and Theory of Public-Key Cryptography, Edinburgh, UK,
May 4–7, 2020, Proceedings, Part I. pp. 431–461. Springer-Verlag, Berlin, Hei-
delberg (May 2020). https://doi.org/10.1007/978-3-030-45374-9_15, https:
//doi.org/10.1007/978-3-030-45374-9_15

34. Pietrzak, Momchil Konstantinov, K.G.F., Rao, V.: Adaptive Security of Con-
strained PRFs (2014), https://eprint.iacr.org/undefined/undefined

35. Rabin, Ke Zhong, T.Y.M., Angel, S.: Incremental Offline/Online PIR (extended
version). In: USENIX Security 2022 (2022), https://eprint.iacr.org/2021/1438

36. Shi, E., Aqeel, W., Chandrasekaran, B., Maggs, B.: Puncturable Pseudorandom
Sets and Private Information Retrieval with Near-Optimal Online Bandwidth and
Time. In: Advances in Cryptology - CRYPTO (2021), http://eprint.iacr.org/
2020/1592

37. Singanamalla, S., Chunhapanya, S., Hoyland, J., Vavruša, M., Verma, T.,
Wu, P., Fayed, M., Heimerl, K., Sullivan, N., Wood, C.: Oblivious DNS over
HTTPS (ODoH): A Practical Privacy Enhancement to DNS. Proceedings on
Privacy Enhancing Technologies 2021(4), 575–592 (Oct 2021). https://doi.
org/10.2478/popets-2021-0085, https://www.sciendo.com/article/10.2478/
popets-2021-0085

38. Stefanov, E., Shi, E.: FastPRP: Fast pseudo-random permutations for small do-
mains. Cryptology ePrint Report 2012/254. Tech. rep. (2012)

39. Tessaro, Stefano, V.T.H., Trieu, N.: The Curse of Small Domains: New Attacks
on Format-Preserving Encryption. Tech. Rep. 556 (2018), https://eprint.iacr.
org/2018/556

40. Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length.
Journal of the ACM 55(1), 1–16 (Feb 2008). https://doi.org/10.1145/1326554.
1326555, https://dl.acm.org/doi/10.1145/1326554.1326555

https://eprint.iacr.org/2022/368
https://eprint.iacr.org/2022/368
https://doi.org/10.1007/978-3-540-28628-8_7
https://doi.org/10.1007/978-3-540-28628-8_7
https://doi.org/10.1007/978-3-540-28628-8_7
https://doi.org/10.1007/978-3-540-28628-8_7
https://doi.org/10.1145/3243734.3243821
https://doi.org/10.1145/3243734.3243821
https://doi.org/10.1145/3243734.3243821
https://doi.org/10.1007/978-3-030-45374-9_15
https://doi.org/10.1007/978-3-030-45374-9_15
https://doi.org/10.1007/978-3-030-45374-9_15
https://doi.org/10.1007/978-3-030-45374-9_15
https://eprint.iacr.org/undefined/undefined
https://eprint.iacr.org/2021/1438
http://eprint.iacr.org/2020/1592
http://eprint.iacr.org/2020/1592
https://doi.org/10.2478/popets-2021-0085
https://doi.org/10.2478/popets-2021-0085
https://doi.org/10.2478/popets-2021-0085
https://doi.org/10.2478/popets-2021-0085
https://www.sciendo.com/article/10.2478/popets-2021-0085
https://www.sciendo.com/article/10.2478/popets-2021-0085
https://eprint.iacr.org/2018/556
https://eprint.iacr.org/2018/556
https://doi.org/10.1145/1326554.1326555
https://doi.org/10.1145/1326554.1326555
https://doi.org/10.1145/1326554.1326555
https://doi.org/10.1145/1326554.1326555
https://dl.acm.org/doi/10.1145/1326554.1326555

	TreePIR: Sublinear-Time and Polylog-Bandwidth Private Information Retrieval from DDH

