
1

Efficient Hardware Implementation for
Maiorana-McFarland type Functions

Anupam Chattopadhyay, Subhamoy Maitra, Bimal Mandal, Manmatha Roy, Deng Tang

Abstract

Maiorana–McFarland type constructions are basically concatenating the truth tables of linear functions on a smaller number of
variables to obtain highly nonlinear ones on larger inputs. Such functions and their different variants have significant applications
in cryptology and coding theory. Straightforward hardware implementation of such functions may require exponential resources
on the number of inputs. In this paper, we study such constructions in detail and provide implementation strategies for a selected
subset of this class with polynomial many gates over the number of inputs. We demonstrate that such implementations cover
the requirement of cryptographic primitives to a great extent. Several existing constructions are revisited in this direction and
exact implementations are provided with specific depth and gate counts in the hardware implementation. Related combinatorial
as well as circuit complexity-related results of theoretical nature are also analyzed in this regard. Finally we present a novel
construction of a new class of balanced Boolean functions having very low absolute indicator and very high nonlinearity that can
be implemented in polynomial circuit size over the number of inputs. In conclusion, we present that these constructions have
immediate applications to resist the signature generation in Differential Fault Attack (DFA) and to implement functions on large
number of variables in designing ciphers for the paradigm of Fully Homomorphic Encryption (FHE).

Index Terms

Balancedness, Bent Function, Boolean Function, Combinational Circuits, Hardware Implementation, Maiorana-McFarland
Construction.

I. INTRODUCTION

BOOLEAN functions (for details see [3], [4]) are an integral part of computing as well as communication science and
technology. As a subclass, the bent functions [5], [6], [16] (detailed study is available in [14]) are one of the most

interesting combinatorial structures that have applications to coding theory and cryptology. The Maiorana-McFarland (we will
call it MM from now on) construction is the simplest and one of the most fundamental techniques in this domain and has
been used in different kinds of construction that could achieve interesting properties relevant to cryptology, in particular for
the design of symmetric ciphers. To advance the proceedings technically, let us immediately describe the MM bent functions
on n = 2k variables. Consider the input variables in two different sets as x = (x1, x2, . . . , xk) and y = (y1, y2, . . . , yk). The
MM bent functions are of the form x ·π(y)⊕ g(y), where π is a permutation of k bits to k bits (a subclass of multiple output
Boolean functions) and g is a k-input 1-output Boolean function. How many such functions are there? One can see that there
are (2k)! such permutations and 22

k

possible ways to choose g(y). Thus, the total number of such functions is (2
n
2)! · 22

n
2 ,

for even n = 2k. It is easy to see that this is a huge class of functions. It is also needless to mention that implementation of
π, g may require an exponential number of gates and the depth of the circuit can also be high. On the other hand, we require
circuits that can be implemented with significantly small number of gates as well as depth. For example, if we choose π as
the identity permutation and g as identity 0, then the function can be implemented using significantly small amount of circuit
components. The function is then x1y1 ⊕ x2y2 ⊕ · · · ⊕ xkyk, which we refer henceforth as MM0 function. Indeed, It can be
implemented with k two-input AND gates placed in parallel, and k−1 two-input XOR gates placed in the form of a complete
binary tree with dlog2 ke depth.

How does such a function look like in truth table format? Say the left half of the input variables are y and the right half is
x. The linear functions

⊕k
i=1 aixi, for all 2k different options of (a1, a2, . . . , ak). Each such linear function has a truth table

of 2k length and concatenating different 2k of them, one can get a truth table of length 22k, for an n = 2k variable function.
In a generalized framework, the small truth tables of the linear functions can be permuted among each other, which is defined
by π. Moreover, whether the linear function will be presented as it is or in a complemented manner, will be decided by the
function g. It can be proved that such functions are bent, i.e., they have nonlinearity 2n−1 − 2

n
2−1. Now it is well understood

that indeed there exists a sub-class of permutation π and a sub-class of any function g, that can be implemented efficiently (to
be precise, with at most polynomial many components with respect to the input size). We explore such a class in Section II.

The bent functions are generally not directly exploited as cryptologic primitives, since they are not balanced. However, it
should be noted that globally these are the best possible Boolean functions available, where the Walsh–Hadamard (related to
confusion, and better properties to resist linear cryptanalysis) and autocorrelation (related to diffusion, and better properties to

Anupam Chattopadhyay is with Nanyang Technological University, Singapore. E-mail: anupam@ntu.edu.sg
Subhamoy Maitra and Manmatha Roy are with Indian Statistical Institute, Kolkata, India. E-mail: subho@isical.ac.in, manmatha@isical.ac.in
Bimal Mandal is with Indian Institute of Technology Jodhpur, India.E-mail: bimalmandal@iitj.ac.in
Deng Tang is with Shanghai Jiao Tong University, Shanghai. E-mail: dtang@foxmail.com

2

resist differential cryptanalysis) spectra provide the provably optimized characteristics. The nonlinearity of a Boolean function
f , denoted by nl(f), is maximum when it is bent and such functions exist only on an even number of variables. Modified
versions of such bent functions are compromised a little in terms of nonlinearity and autocorrelation values, but certain other
properties such as balancedness and resiliency could be achieved. One well known modification technique is to replace the truth
table of the all zero linear function (i.e.,

⊕k
i=1 aixi, with all ai = 0) by some nonlinear balanced functions on k = n

2 variables,
as described in [7]. This technique provides balanced functions on (even) n variables, with nonlinearity 2n−1 − 2

n
2 + nlb(n2),

where nlb(t) is the maximum nonlinearity of a balanced Boolean functions in t variables.

A. Organization & Contribution

We first present our overall idea towards the efficient implementation of certain types of MM bent functions in section II. The
techniques we exploit are known in the domain of circuit design, but they are assembled together from an engineering viewpoint
to set-up the constructions. We also present a few preliminary understanding of circuit complexity results as passing remarks.
This is the foundation of our construction in the following section. In fact, the question of such efficient implementation has
earlier been raised in [2].

In section III, we will identify how such modifications of bent functions can be accommodated with efficient circuit
implementation strategies. Toward obtaining a very good autocorrelation spectrum and very good nonlinearity, some recent
studies [10], [18], [19] considered certain modifications of MM type of constructions. Since such functions have immediate
applications as cryptographic primitives, certain works ([11], [19, Section 4.3]) considered the implementation issues, and the
gate count in those cases is exponential. This is because the circuit ideas are mostly based on decoders and thus O(2k) amount
of logic gates are used. We investigate such constructions in detail and obtain efficient polynomial implementations in this
regard. Such improvements are also presented in Section III.

Finally, in section IV, we construct balanced Boolean functions having very good nonlinearity and very low absolute indicator.
This is a novel class and efficient implementation related to this complete framework is presented.

Section V concludes the paper and outlines the future prospects in this research direction. Before proceeding to the
contributory sections, let us briefly outline a few definitions.

B. Preliminaries

First we present some basic definitions and notations of Boolean functions. Let F2 be the prime field of characteristic 2
and F2n be an nth degree extension finite field over F2. Let Fn2 be an n-dimensional vector space over F2. An element of
Fn2 is denoted by x = (x1, x2, . . . , xn), where xi ∈ F2, 1 ≤ i ≤ n. Further, the set of nonzero elements of Fn2 is denoted
by Fn∗2 . The weight of x ∈ Fn2 is defined as wt(x) =

∑n
i=1 xi, where the sum is over integers. The cardinality of a set S is

denoted as |S|, the number of elements in S. Any function from the vector space Fn2 to Fm2 is called an n-variables Boolean
function having m outputs. Without mentioning specifically, we consider m = 1, and the set of all n-variable 1-output Boolean
functions is denoted as Bn. A Boolean function f in n variables can be written as a multi-variables polynomial of the form

f(x) =
⊕
a∈Fn2

µax
a1
1 x

a2
2 · · ·xann ,

where µa ∈ F2 for all a ∈ Fn2 . This representation is called Algebraic Normal Form (ANF) of f . The algebraic degree of f is
defined by deg(f) = max{wt(a) : µa 6= 0}. If deg(f) ≤ 1, then f is called an affine function. In particular, if the constant
term of an affine function is zero, then it is called linear function. The set supp(f) = {x : f(x) = 1} is called the support of
f and its cardinality, i.e., |supp(f)|, is called weight of f . If |supp(f)| = 2n−1 of an n-variable Boolean function f , then f
is said to be a balanced function. The Walsh–Hadamard transform of f at a ∈ Fn2 is defined as

Wf (a) =
∑
x∈Fn2

(−1)f(x)⊕a·x.

The multiset [Wf (a) : a ∈ Fn2] is called Walsh–Hadamard spectrum of f . By the well known Parseval’s theorem,
∑

a∈Fn2
W 2
f (a) =

22n for all f ∈ Bn. Thus, for any Boolean function f in n variables, we have maxa∈Fn2 |Wf (a)| ≥ 2
n
2 . The nonlinearity of

f ∈ Bn is the minimum Hamming distance from all affine functions in n variables. According to the definition of Walsh–
Hadamard transform, we have nl(f) = 2n−1− 1

2 maxa∈Fn2 |Wf (a)|. It is known that the nonlinearity of f ∈ Bn is upper-bounded
by 2n−1 − 2

n
2−1. A Boolean function that achieve the nonlinearity bound is called bent function, i.e., for any bent function

f ∈ Bn, nl(f) = 2n−1 − 2
n
2−1. Thus, bent functions exist only for even number of input variables and not balanced due to

the fact that |Wf (a)| = 2
n
2 , for all a ∈ Fn2 . Another important property, the autocorrelation of f ∈ Bn at point a ∈ Fn2 , Cf (a),

is defined as
Cf (a) =

∑
x∈Fn2

(−1)f(x)⊕f(x⊕a).

The absolute indicator of f ∈ Bn is defined by ∆f = maxa∈Fn∗2 |Cf (a)|. For a bent function f ∈ Bn, Cf (a) = 0 for all
nonzero a ∈ Fn2 and Cf (0) = 2n.

3

From cryptographic point of view, one needs to construct a balanced Boolean function having very high nonlinearity and
very low absolute indicator to resist the linear and differential attacks on symmetric ciphers. In this direction many such
functions are constructed in [7], [10], [18], [19]. In [19], the number of logic gates that are required to implement the some
balanced functions are counted and it was noted that exponential order of components are required. In this paper we discuss
the hardware implementation of known balanced functions [7], [10], [18], [19] in more detail. Based on these we show that
it is possible to implement a subclass of such functions having very high nonlinearity and very low absolute indicator using
polynomial size circuit.

II. WARM UP: IDENTIFYING A SUBCLASS OF MM BENT FUNCTIONS HAVING EFFICIENT IMPLEMENTATION

In this section, we study the circuit complexity of MM functions of the form f(x,y) = x · π(y) ⊕ g(y), where π is a
permutation over Fk2 , g ∈ Bk and x,y ∈ Fk2 . It is convenient to study those constructions with the help of an implementation
view using a decoder and also without any decoder. Any MM function f in 2k variables can be written as concatenation
of 2k distinct linear functions in k variables, called linear block of length 2k. We present Fig. 1, which depicts a generic
circuit implementation for the MM Bent function f ∈ B2k, directly following the definition. To select a linear function in k

𝑥!𝑥!"#…𝑥#

0

𝑦!𝑦!"#…𝑦#

.

.

.

1

2! − 1

Linear function 1

Linear function 2

Linear function 2!

𝑦!𝑦!"#…𝑦#

𝑥!𝑥!"#…𝑥#

𝑦&𝑦&"#…𝑦#

𝑥!𝑥!"#…𝑥# 𝑥!𝑥!"#…𝑥#…
Linear Function 1 Linear Function 2 Linear Function 2!

…

Permutation Function

g()

𝑦!𝑦!"#…𝑦#

𝑘 𝑘 𝑘

Fig. 1: Generic circuit implementation for MM bent function

variables x1, x2, . . . , xk, a decoder of k inputs and 2k outputs is used, which require 2k logic gates to implement. It can be
easily observed that this naı̈ve construction leads to a circuit of exponential complexity, which we also write formally in the
following.

Lemma 1. Implementation of an n-input MM Bent function using AND, OR, XOR and NOT gates, where AND, OR, and
XOR gates have a fan-in bound of 2 basis, following the circuit given in Fig. 1 in O(n2

n
2)-size.

Proof. For establishing the result, we first need to show a sub-circuit of O(2
n
2) complexity. Considering the simplest case of

the permutation function π being identity, the overall circuit size is dominated by the k-input ⊕ gates, each of which can be
implemented with O(k)-size circuit. Since we have 2k linear functions to be implemented, the overall size is lower bounded
by O(k2k). Since k is an additive sub-part of n, in particular k = n

2 , in this case, we get the result.

This is to explain that the straightforward implementations are not efficient, which is dependent on permutation π over
Fk2 and g ∈ Bk. The kind of calculation we presented in Lemma 1 has been noted in [11], as well as in [19, Section 4.3].
However, in this work, we explain that the circuit complexity can be lowered to polynomial order for certain subclasses without
compromising any cryptographic properties. This is briefly touched upon earlier using the MM0 circuit. The construction can
be generalized leading to a large number of variants. We begin with a simple construction with π is an identity permutation
over Fk2 and g(y) = 0, for all y ∈ Fk2 . The circuit implementation of MM0 functions is given in Fig. 2.

Let π(yk, yk−1, . . . , y1) = (yk, yk−1, . . . , y1) for all (yk, yk−1, . . . , y1) ∈ Fk2 . The output of the circuit given in Fig. 2 is

g(yk, yk−1, . . . , y1)⊕ (zk ⊕ zk−1 ⊕ · · · ⊕ z1) = ykxk ⊕ yk−1xk−1 ⊕ · · · ⊕ y1x1
= (xk, xk−1, . . . , x1) · π(yk, yk−1, . . . , y1).

4

#!#!"#…##

!!

#!#!"#…##

!!"# !#…

…

Permutation Function

g()

#!#!"#…##

%!%!"#…%#

….

…. ….

Linear Function Generator

"!"!"#… "#

111

Fig. 2: Circuit implementation of MM0 functions

The smallest case of such a circuit (i.e., MM0) is when π and g are taken as identity permutation and identity 0, respectively.
For that we need k AND gates and k − 1 XOR gates (or one XOR gate with fan-in of k).

Lemma 2. Implementation of an 2k-input MM0 bent function using AND and XOR gates with fan-in of 2, given in Fig. 2,
can be done in O(n)-size circuit.

Instead of identity permutation, we now discuss the cases considering other linear permutations and some nonlinear permu-
tations that can implement in polynomial circuit size. Let us denotes the set of all invertible and orthogonal binary matrices
of order k × k by GL(k,F2) and SL(k,F2), respectively.
Case (i): Let the permutation be defined as π(y) = yA, for all y ∈ Fk2 , where A ∈ GL(k,F2). If π(y) = (wk, wk−1, . . . , w1),
then wi, 1 ≤ i ≤ k, can be written as a F2-linear of y. To implement each coordinate of π(y), we need k − 1 XOR gates in
the worst case. So, we need k2 − k XOR gates to implement the permutation π(y) = yA in the worst case (in particular, we
need strictly k2− k XOR gates). In this case, we can implement the function using k2 + k gates (k AND and k2 XOR gates),
i.e., in O(k2)-size circuit.
Case (ii): Let π(y) = yA, for all y ∈ Fk2 , where A ∈ SL(k,F2). Here we need k AND gates and k − 1 XOR gates (fan-in
of 2). So, the implementation of corresponding MM0 function in n = 2k variables is in O(n)-size circuit.
Case (iii): Instead of linear permutation, we can consider certain kinds of nonlinear permutation which can be realized in very
low-depth and small-size circuits. For a suitable f , one can construct a subclass of permutation of the form π(yk, . . . , y2, y1) =
(yk, . . . , y2, h(y)), where h ∈ Bk such that deg(h) ≥ 2. The main advantage of such permutation is that one can control the
algebraic degree of the permutation by picking suitable h, which in turn is reflected in the final function. For example, let
n = 4 and π(y4, y3, y2, y1) = (y4, y3, y2, y4y3y2 ⊕ y1). To implement π, it is required 2 AND and 1 XOR gates (with fan-in
of 2), i.e., in polynomial size.

Lemma 3. The circuit given in Fig. 2 can implement all MM bent functions realizable through the circuit given in Fig. 1.

Proof. Since π is a permutation over Fk2 , for each (yk, yk−1, . . . , y1), there is an unique (wk, wk−1, . . . , w1) ∈ Fk2 such that
(wk, wk−1, . . . , w1) = π(yk, yk−1, . . . , y1). We consider AND gate with fan-in of 2 for each pair of input xi and wi, 1 ≤ i ≤ k.
So, we can implement any MM bent using this circuit. In particular, if π is identity, wi = yi for all i = 1, 2, . . . , k.

Performance Trade-offs for Particular MM Function Construction: One can get an interesting resource-sharing opportunity.
The sub-circuit constructing the linear function can be easily extended by carrying certain input bits to the output. In this idea,
both the linear function and the permutation function can be derived from the same circuit. We discuss such possibilities now.

Construction 1. The implementation scheme given in Fig. 3 provides a MM bent function which can share same resources
for the function g and the permutation π.

5

#!#!"#…##

!!

$!$!"#…$#

!!"# !#…

…

Permutation Function g()

….

…. ….

Linear Function Generator

Permutation Function
g()

#!#!"#…##

….

%!%!"#…%#

"!"!"#… "#

Fig. 3: Variants of MM bent function circuit with performance trade-off.

We schematically capture two variants of MM circuit implementations with resource sharing in Construction 1. Since π is a
k-input, k-output function and g(.) is a k-input, 1-output function, there is always a choice to select g(.) from the final outputs
of π, or from a sub-circuit of π, allowing resource sharing. This is shown on the left portion of Fig. 3. Furthermore, as shown
on the right part of Fig. 3, it is possible to share the circuits for linear function generator, permutation function π, and g(.).
For different inputs at different stages of computing, a multiplexing logic is introduced.

By sharing the implementation of g(.) with π, there is no performance overhead though, the possible choices of g(.) get
restricted. On the other hand, when the k-input XOR circuit is shared with the permutation function π, the circuit needs to
process one set of inputs at a time. This is controlled by the multiplexer. Thus, the sharing of combinational logic leads to an
increase in the runtime. Note that the inclusion of multiplexing logic does not extend the complexity of the resulting circuit
beyond polynomial size, since the multiplexer is implemented using n

2 many 2× 1 multiplexers.

III. EFFICIENT CIRCUITS FOR MODIFIED MM BENT FUNCTIONS

The Circuits given in Fig. 1, 2 and 3, while achieving excellent nonlinearity, do not achieve balancedness and resiliency. In
1994, Dobbertin [7] constructed balanced Boolean functions in even variables 2k by modifying the all-zero linear block with
balanced functions in k variables. That is, it is to replace the truth table of the all-zero linear function with another nonlinear
balanced function on k variables. We can implement this balanced function using a single 2 × 1 multiplexer. Recently, the
balanced Boolean functions with very good autocorrelation spectrum and nonlinearity are constructed by modifying the MM
functions in [10], [18], [19]. For that, Kavut et al. [10] and Tang et al. [18] modified two fixed positions in each linear block
by two nonlinear balanced functions having certain properties. In [19], Tang et al. modified the first all-zero linear block by
a nonlinear function in k variables and all-zero input of all other linear blocks by another nonlinear function in k variables.
These two small functions satisfy certain properties. We can implement these balanced functions using two 2× 1 multiplexers.
In [19], Tang et al. counted the number of logic gates that are required to hardware implement the balanced functions given in
[18], [19] and it requires the exponential circuits. If we use the 2×1 multiplexers to modify the some outputs of MM functions,
then the hardware implementation cost of constructing such balanced functions is dependent on the hardware implementation
cost of permutation and the small functions. Here we observe that it can possible to construct balanced Boolean functions in
polynomial size considering the suitable permutation and the small functions by using 2× 1 multiplexers. Now we present the
hardware implementation of such functions.

A. Balanced functions given in [7]

Let n = 2k, π be a permutation over Fk2 with π(0) = 0, and g ∈ Bk with g(y) = 0, for all y ∈ Fk2 . The new components
added in Fig. 4 are a k-input XOR gate, a 2×1 multiplexer and a nonlinear balanced function, denoted as f(xk, xk−1, . . . , x1).
It is clear that the outputs of the circuit given in Fig. 4 is the outputs of a balanced Boolean function constructed by Dobbertin

6

𝑦!𝑦!"#…𝑦#

𝑥!

𝑦$𝑦$"#…𝑦#

𝑥!"# 𝑥#…

…

Permutation Function

𝑧!𝑧!"#… 𝑧#

𝑦! ∨ 𝑦!"# ∨⋯∨ 𝑦#

𝑓(𝑥!𝑥!"#…𝑥#)

Fig. 4: Circuit implementation for modified MM bent function, Dobbertin construction

[7]. In order to still preserve the polynomial circuit size, the nonlinear balanced function and permutation need to be polynomial
size. In that scenario, the proposed balanced function yields a circuit in polynomial size drawing on Fig. 4.

Lemma 4. Let the permutation π(y) = yA, where A ∈ GL(k,F2) and f be in polynomial size. Then the circuit given in Fig.
4 implements a balanced function with polynomial size.

Proof. The implementation of permutation π needs polynomial size logic gates. To implement this function, we add k-input
XOR gate, a 2× 1 multiplexer, and a nonlinear function f in k variables in polynomial size. Thus, the constructed balanced
Boolean function can implement in polynomial size.

Instead of linear permutation, we can consider a nonlinear permutation which can be realized in very low-depth and small-
size circuits. For example we can consider the permutation π(yk, . . . , y2, y1) = (yk, . . . , y2, ykyk−1 · · · y2 ⊕ y1) for k ≥
3. To implement π, we need k − 2 AND gates and one XOR with fan-in bound of 2, i.e., in polynomial size. Now the
question is to identify the nonlinear balanced function f in k variables in polynomial size circuit. Let us consider k ≥ 3 and
f(x1, x2, . . . , xk) = x1x2 ⊕ x3 ⊕ x4 ⊕ · · · ⊕ xk. Then f is a balanced nonlinear function in polynomial size, in particular, we
need one AND gate and k − 2 XOR gates with fan-in bound of 2 for hardware implementation.

B. Balanced functions given in [10], [18], [19]

Kavut et al. [10], Tang et al. [18] and Tang et al. [19] constructed balanced Boolean functions by modifying Maiorana-
McFarland bent functions having good cryptographic properties in terms of their autocorrelation spectrum and nonlinearity.
Instead of changing one linear block of MM function, they modified MM functions by using two different nonlinear functions
in small variables. The basic idea of this construction is to change the outputs of MM functions at two fixed positions of
each linear block or the first all-zero input of each linear block and all all-zero block by two suitable small functions. It is
noteworthy that the total number of gates, required for, hardware implementation of constructed balanced Boolean function is
exponential in k, i.e., O(k2k), using a decoder, which is exponential in k. The modification can be implemented by using two
2×1 multiplexers. For that, hardware implementation cost is mainly dependent on permutation π and two small functions. We
can consider the suitable permutations and small functions so that the hardware implementation of balanced Boolean function
given in [19] is polynomial over the input variables. Let π be a permutation over Fk2 with π(0) = 0, g ∈ Bk with g(y) = 0,
and f1, f2 ∈ Bk having certain properties. Suppose h1, h2 ∈ Bk are used to modify the outputs of bent function at two fixed
points. The circuit given in Fig. 5 generates balanced Boolean functions in 2k variables constructed in [10], [18], [19] for
different fi and hi, i = 1, 2, functions. The outputs of 2× 1 multiplexers are decided by h1 and h2, which are implemented in
polynomial size logic gates. Thus, the total number of gates to hardware implement the circuit given in Fig. 5 is dependent on
permutation π and small functions f1 and f2. It is possible to identify a circuit of balanced functions which is implemented
in polynomial size instead of exponential in k. Now we discuss such cases one by one with examples.
Circuits of balanced Boolean functions given in [10], [18]: In [10], [18], balanced Boolean functions in 2k variables (odd
k ≥ 9 in [18] and even k ≥ 10 in [10]) with good cryptographic properties are constructed by modifying the simplest PSap
bent function, a subclass of PS−, of the form Trk1(λxy), where Trk1(x) = x ⊕ x2 ⊕ · · · ⊕ x2k−1

, for all x, y, λ ∈ F2k with
λ 6= 0. For that, they first constructed two Boolean function f1 and f2 in k variables such that wt(f1) + wt(f2) = 2k. The

7

𝑦!𝑦!"#…𝑦#

𝑥!

𝑤!𝑤!"#…𝑤#

𝑥!"# 𝑥#…

…

Permutation Function

𝑧!𝑧!"#… 𝑧#𝑓#

𝑓$

ℎ$ ℎ#

Fig. 5: Construction of balanced Boolean function proposed in [10], [18], [19]

outputs of Trk1(λxy) is modified by f1(y) when x = 0, and by f2(y) when x = µ ∈ F2k \ {0}. In [19, Theorem 2], it is proved
that the bent function Trk1(λxy) can be written as a concatenation of 2k linear functions and changes are in two fixed points
in each linear function. Here, the permutation y 7−→ y2

k−2 is nonlinear over a finite filed F2k . The function corresponding to
Trk1(wx), where w = y2

k−2 and λ = 1 over vector space Fk2 × Fk2 is fixed, is linear in k variables. We first need to calculate
the gate count of this permutation over Fk2 . In 2012, Boyar et al. [1] proved that the hardware implementation of AES S-box
requires 128 logic gates with depth 16. The AES S-box is a combination of the multiplicative inverse function over F28 and
an affine transformation. Thus, the nonlinear permutation y 7−→ y2

k−2 for k = 8 might be implemented in polynomial size
and depth. So, it might be possible to implement this permutation in polynomial size and depth for some k ≥ 10. Using the
circuit given in Fig. 5, we can generate the balanced function constructed in both [10] and [18]. Let us define

h1(x) = xk ∨ xk−1 ∨ . . . ∨ x1 and h2(x) = (xk ⊕ εk) ∨ (xk−1 ⊕ εk−1) ∨ . . . ∨ (x1 ⊕ ε1),

where (ε1, ε2, . . . , ε1) 6= 0. Thus, h1 and h2 can implement in polynomial circuit size. Suppose λ = 1. Then the number of
gates requires for hardware implementation of balanced functions is dependent on the permutation y 7−→ y2

k−2 and small
function f1 and f2. We identify the functions f1 and f2 as defined in [19, Definition 3] for small number of inputs k = 9 of
the form

f1(y) = y2 ⊕ y1y2 ⊕ y2y3 ⊕ y2y4 ⊕ y1y2y3 ⊕ y1y2y4 ⊕ y5y6y7 ⊕ y5y8y9 ⊕ y6y8y9,
f2(y) = 1⊕ y1 ⊕ y2 ⊕ y1y2 ⊕ y2y3 ⊕ y1y4 ⊕ y2y4 ⊕ y1y3y3 ⊕ y2y3y4 ⊕ y5y7y9

⊕ y6y7y9 ⊕ y6y8y9.
To hardware implement of f1 (and f2), it is required 13 (14, respectively) AND and 8 (11, respectively) XOR gates. That is,
these functions are implemented in polynomial circuit size. We have also identified the functions f1 and f2 as defined in [10,
Definition 1] for small number of inputs k = 10 of the form

f1(y) = y1 ⊕ y2 ⊕ y1y3 ⊕ y1y4 ⊕ y2y4 ⊕ y3y4 ⊕ y2y5 ⊕ y4y5 ⊕ y1y2y3 ⊕ y2y3y4
⊕ y1y2y5 ⊕ y1y4y5 ⊕ y6y8y10 ⊕ y6y9y10 ⊕ y7y8y10,

f2(y) = 1⊕ y2y3 ⊕ y1y4 ⊕ y1y2y3 ⊕ y1y2y4 ⊕ y1y4y5 ⊕ y2y4y5 ⊕ y6y8y10
⊕ y7y8y10 ⊕ y7y9y10.

To hardware implement of f1 (and f2), it is required 20 (16, respectively) AND and 14 (9, respectively) XOR gates. That is,
polynomial size gates are required to implement these functions.
Polynomial size circuits of balanced Boolean functions given in [19]: Tang et al. [19] constructed balanced Boolean functions
in 2k variables having very high nonlinearity and very low absolute indicator (maximum absolute value of its autocorrelation
spectrum) by modifying simple MM bent function of the form x · π(y), where π is permutation over Fk2 with π(0) = 0. They
used two Boolean function f1 and f2 in k variables so that f1(0) = f2(0) = 0 and wt(f1) + wt(f2) = 2k−1. The outputs of
x ·π(y) is modified by f1(y) when x = 0, and by f2(x) when y = 0. It is noteworthy that the total number of gates, required
for, hardware implementation of constructed balanced Boolean function is exponential in k, i.e., O(k2k). Let us define

h1(x) = xk ∨ xk−1 ∨ . . . ∨ x1 and h2(y) = yk ∨ yk−1 ∨ . . . ∨ y1.

8

The circuit given in figure 5 generates balanced Boolean functions in 2k variables constructed in [19] for k ≥ 10. Now we
consider suitable permutations and small functions f1 and f1 to become polynomial-size circuits.

Lemma 5. Let π(y) = yA, where A ∈ GL(k,F2), f1 and f2 be two Boolean functions in k variables in polynomial size
such that f1(0) = f2(0) = 0 and wt(f1) +wt(f2) = 2k−1. Circuits given in figure 5 implement a balanced Boolean function
in 2k variables with polynomial size.

Proof. Here x · π(y) can implement with k AND gates and k2 − k XOR gates (worst case) both fan-in of 2. In addition we
need two k-input ∨ gates, two 2×1 multiplexer and two nonlinear functions f1 and f2 in polynomial size. Thus, the combined
circuit is implemented in polynomial size.

Instead of linear permutation, we can consider a nonlinear permutation which can be realized in very low-depth and small-
size circuits as discussed in section III-A. We identify two functions f1 and f2 as constructed in [19, Theorem 9] and [19,
Theorem 12], respectively, for small number of inputs k = 6 of the form

f1(y) = y1 ⊕ y2 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y1y3 ⊕ y2y4 ⊕ y1y5 ⊕ y3y5 ⊕ y2y6
⊕ y4y6 ⊕ y1y3y5 ⊕ y2y4y6

f2(x) = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x1x3 ⊕ x2x4 ⊕ x1x5 ⊕ x3x5 ⊕ x2x6
⊕ x4x6 ⊕ x1x3x5 ⊕ x2x4x6 ⊕ x1x2x3x4

For hardware implementation of f1 (and f2), we need 10 (13, respectively) AND and 13 (14, respectively) XOR gates. Here
f1 and f2 are implemented in polynomial circuit size.

IV. A CLASS OF ULTRA-LIGHTWEIGHT BOOLEAN FUNCTIONS WITH STRONG CRYPTOGRAPHIC PROPERTIES

In the previous sections we discussed the hardware implementation cost of some known balanced functions that are
constructed by modifying MM bent functions. In particular, if we used multiplexers instead of a decoder, the number of
gates that are required to implement such functions is dependent on sub-functions. In some known construction, it is difficult
to write the complete algebraic form of sub-functions for all inputs variables. In this section we propose a new construction
method of balanced Boolean function by modifying a simple MM bent function. In fact, the constructed balanced functions
are in polynomial circuit size. We first constructed two sub-functions with explicit algebraic forms. Let us recall the Maiorana-
McFarland (MM) of bent functions, which is defined as f(x,y) = x·φ(y)⊕g(y), where x,y ∈ Ft2, φ is an arbitrary permutation
on Fk2 , and g is an arbitrary Boolean function in k variables. The MM bent functions was discovered independently by Maiorana
and McFarland (see [5], [12]). In this section, we shall propose a class of ultra-lightweight balanced Boolean functions with
good autocorrelation properties and almost optimal nonlinearity. Our construction is based on modifying the MM bent functions
using two ultra-lightweight sub-functions.

A. Two ultra-lightweight sub-functions for main construction

We first define a balanced Boolean function in t ≥ 5 variables, which is a concatenation of certain bent functions.

Definition 1. Let t be an integer such that t ≥ 5. Let g be a t-variable Boolean function defined as follows:

g(r) =

ι⊕
i=1

riri+ι ⊕
t⊕

i=2ι+1

ri,

where r = (r1, r2, . . . , rt) ∈ Ft2 and ι = b t−12 c.

Since ⊕ιi=1riri+ι is a bent function in 2ι variables. If t is odd, then ι = t−1
2 , and so the function g is a concatenation of

two bent functions in t− 1 variables, a bent and its complementary. If t is even, then ι = t
2 − 1, and so, the function g is a

concatenation of four bent functions in t− 2 variables of the form

⊕ιi=1riri+ι|| ⊕ιi=1 riri+ι ⊕ 1|| ⊕ιi=1 riri+ι ⊕ 1|| ⊕ιi=1 riri+ι.

It is clear that g is a balanced function in t variables.

Lemma 6. Let t ≥ 5 be an integer and g ∈ Bt be the function defined in Definition 1. Then for any d = (d1, d2, · · · , dt) ∈ Ft2,
if t is even, we have

Wg(d) =

{
0, if (dt, dt−1) ∈ {(0, 0), (0, 1), (1, 0)}
(−1)

⊕ι
i=1 didi+ι · 2 t2+1, if (dt, dt−1) = (1, 1)

,

and if t is odd we have

Wg(d) =

{
0, if dt = 0

(−1)
⊕ι
i=1 didi+ι · 2 t+1

2 , if dt = 1
,

9

where ι = b t−12 c.

Proof. Let g1(x) = ⊕ιi=1xixi+ι, where x ∈ F2ι
2 , and t be an even integer. Then ι = t

2 −1 and g(r) = ⊕ιi=1riri+ι⊕ rt−1⊕ rt.
For any d = (d′, dt−1, dt) ∈ Ft−22 × F2 × F2, we have

Wg(d) =
∑
r∈Ft2

(−1)g(r)⊕d·r =
∑

(r′,rt−1,rt)∈Ft−2
2 ×F2×F2

(−1)g(r
′,rt−1,rt)⊕d′·r′⊕dt−1rt−1⊕dtrt

=
∑

r′∈Ft−2
2

(−1)g1(r
′)⊕d′·r′ +

∑
r′∈Ft−2

2

(−1)g1(r
′)⊕1⊕d′·r′⊕dt−1

+
∑

r′∈Ft−2
2

(−1)g1(r
′)⊕1⊕d′·r′⊕dt +

∑
r′∈Ft−2

2

(−1)g1(r
′)⊕d′·r′⊕dt−1⊕dt

=
(
1 + (−1)dt−1⊕1 + (−1)dt⊕1 + (−1)dt−1⊕dt

)
Wg1(d′)

=

{
0, if (dt, dt−1) ∈ {(0, 0), (0, 1), (1, 0)}
2
t
2+1(−1)

⊕ι
i=1 didi+ι , if (dt, dt−1) = (1, 1)

.

Suppose t is an odd integer. Then ι = t−1
2 and g(r) = ⊕ιi=1riri+ι ⊕ rt. For any d = (d′, dt) ∈ Ft−12 × F2, we have

Wg(d) =
∑
r∈Ft2

(−1)g(r)⊕d·r =
∑

(r′,rt)∈Ft−1
2 ×F2

(−1)g(r
′,rt)⊕d′·r′⊕dtrt

=
∑

r′∈Ft−1
2

(−1)g1(r
′)⊕d′·r′ +

∑
r′∈Ft−1

2

(−1)g1(r
′)⊕1⊕d′·r′⊕dt

=
(
1 + (−1)dt⊕1

)
Wg1(d′)

=

{
0, if dt = 0

2
t+1
2 (−1)

⊕ι
i=1 didi+ι , if dt = 1

.

Thus, the maximum absolute Walsh–Hadamard spectrum value of g ∈ Bt is 2
t
2+1 (and 2

t+1
2) for t is even (odd, respectively).

Lemma 7. Let t ≥ 5 be an integer and g ∈ Bt be the function defined in Definition 1. Then for any d = (d1, d2, · · · , dt) ∈ Ft2,
if t is even, we have

Cg(d) =

{
2t(−1)dt−1⊕dt , if (d1, d2 . . . , dt−2) = (0, 0, . . . , 0)
0, otherwise

,

and if t is odd we have

Cg(d) =

{
2t(−1)dt , if (d1, d2 . . . , dt−1) = (0, 0, . . . , 0)
0, otherwise,

.

Proof. Let ι = b t−12 c and b = (dι+1, . . . , d2ι, d1, . . . , dι) for d ∈ Ft2. Suppose r′ = (r1, r2, . . . , r2ι) for any r ∈ Ft2. Let t ≥ 5
be an even integer. Then 2ι = t− 2 and

Cg(d) =
∑
r∈Ft2

(−1)g(r⊕d)⊕g(r) =
∑
r∈Ft2

(−1)
⊕ι
i=1

(
(ri⊕di)(ri+ι⊕di+ι)⊕riri+ι

)
⊕dt−1⊕dt

=
∑
r∈Ft2

(−1)⊕
ι
i=1(ridi+ι⊕ri+ιdi)⊕⊕

ι
i=1didi+ι⊕dt−1⊕dt

= (−1)g(d)
∑
r∈Ft2

(−1)r
′·b

=

{
2t(−1)dt−1⊕dt , if (d1, d2 . . . , dt−2) = (0, 0, . . . , 0)
0, if otherwise .

Suppose that t ≥ 5 is an odd integer. Then 2ι = t− 1, and similarly we get the results.

Now we define the two Boolean functions in 2t ≥ 10 variables which are used to construct the sub-functions.

Definition 2. Let k = 2t ≥ 10 be an even integer. We define two Boolean functions p, q ∈ Bk as follows:

p(z, r) =

t⊕
i=1

ziri,

10

and

q(z, r) =


g(r), if z = 0
t⊕
i=2

ziri−1 ⊕ z1rt ⊕ z2rt, otherwise

= g(r)

t∏
i=1

(zi ⊕ 1)⊕
t⊕
i=2

ziri−1 ⊕ z1rt ⊕ z2rt,

where z = (z1, z2, . . . , zt), r = (r1, r2, . . . , rt) ∈ Ft2 and g ∈ Bt is given in Definition 1.

Here, p is an quadratic MM bent function in 2t variables and the algebraic degree of q ∈ B2t is t+ 2. If we consider a zero
function for z = 0 instead of g, then q is also a quadratic bent function.

Lemma 8. Let t ≥ 5 be an arbitrary integer and φ(z) = (z2, z3, . . . , zt−1, zt, z1 ⊕ z2), where z = (z1, z2, . . . , zt) ∈ Ft2.
Then both φ(z) and φ(z) ⊕ z are permutations over Ft2. Moreover, the composition inverse of φ(z) is φ−1(z) = (z1 ⊕
zt, z1, z2, . . . , zt−1).

Proof. It is clear that φ is a permutation over Ft2. Let x,y ∈ Ft2 such that φ(x)⊕ x = φ(y)⊕ y. Then

(x1 ⊕ x2, . . . , xt−1 ⊕ xt, x1 ⊕ x2 ⊕ xt) = (y1 ⊕ y2, . . . , yt−1 ⊕ yt, y1 ⊕ y2 ⊕ yt)
⇔ xi ⊕ xi+1 = yi ⊕ yi+1, for all 1 ≤ i ≤ t− 1 and x1 ⊕ x2 ⊕ xt = y1 ⊕ y2 ⊕ yt
⇔ xi = yi, for all 1 ≤ i ≤ t.

Further, the composition inverse functions of φ is φ−1(z)) = (z1 ⊕ zt, z1, . . . , zt−1).

Lemma 9. Let k = 2t ≥ 10 be an even integer and p, q ∈ Bk be the two functions defined in Definition 2. Then for any
c = (c1, c2, . . . , ct),d = (d1, d2, . . . , dt) ∈ Ft2 we have

Wp(c,d) = (−1)c·d · 2t,

Wq(c,d) =

{
0, if d = 0

(−1)c·d
′ · 2t +Wg(d), otherwise

,

and

Wp⊕q(c,d) =

{
0, if d = 0

(−1)c·d
′′ · 2t +Wg(d), otherwise

,

Wg(d) is given in Lemma 6, d′ and d′′ are the composition inverse of φ(d) and φ(d) ⊕ d, respectively, where φ(d) =
(d2, d3, . . . , dt−1, dt, d1 ⊕ d2).

Proof. Since p is a bent function in 2t variables, for any c,d ∈ Ft2, we have Wp(c,d) = 2t(−1)c·d. For any c,d ∈ Ft2,

Wq(c,d) =
∑

z,r∈Ft2

(−1)q(z,r)⊕c·z⊕d·r

=
∑
r∈Ft2

(−1)g(r)⊕d·r +
∑
z∈Ft∗2

∑
r∈Ft2

(−1)
⊕t
i=2 ziri−1⊕z1rt⊕z2rt⊕c·z⊕d·r

= Wg(d) +
∑
z∈Ft∗2

(−1)c·z
∑
r∈Ft2

(−1)
⊕t
i=2 ziri−1⊕z1rt⊕z2rt⊕d·r

= Wg(d) +
∑
z∈Ft∗2

(−1)c·z
∑
r∈Ft2

(−1)(a⊕d)·r, where a = (z2, z3, . . . , zt, z1 ⊕ z2)

= Wg(d) + 2t(−1)c·d
′
,

11

where d′ = (d1⊕dt, d1, . . . , dt). Since Wg(0) = 0 and
∑

r∈Ft2
(−1)

⊕t
i=2 ziri−1⊕z1rt⊕z2rt = 0 for z 6= 0, we have Wq(c,0) = 0.

Also

Wp⊕q(c,d) =
∑

z,r∈Ft2

(−1)p(z,r)⊕q(z,r)⊕c·z⊕d·r

=
∑
r∈Ft2

(−1)g(r)⊕d·r +
∑
z∈Ft∗2

∑
r∈Ft2

(−1)z·r⊕
⊕t
i=2 ziri−1⊕z1rt⊕z2rt⊕c·z⊕d·r

= Wg(d) +
∑
z∈Ft∗2

(−1)c·z
∑
r∈Ft2

(−1)z·r⊕
⊕t
i=2 ziri−1⊕z1rt⊕z2rt⊕d·r

= Wg(d) +
∑
z∈Ft∗2

(−1)c·z
∑
r∈Ft2

(−1)(b⊕d)·r

= Wg(d) + 2t(−1)c·d
′′
,

where b = (z1⊕ z2, . . . , zt−1⊕ zt, z1⊕ z2⊕ zt) and d′′ = (
⊕t

i=2 di,
⊕t

i=1 di, d1⊕
⊕t

i=3 di, . . . , d1⊕ dt). Since Wg(0) = 0

and
∑

r∈Ft2
(−1)z·r⊕

⊕t
i=2 ziri−1⊕z1rt⊕z2rt = 0 for z 6= 0, we have Wp⊕q(c,0) = 0.

It is clear that |Wp(c,d)| = 2t for all c,d ∈ Ft2, and

|Wq(c,d)|, |Wp⊕q(c,d)| ≤

{
2t + 2

t
2+1, if t is even

2t + 2
t+1
2 , if t is odd

.

Lemma 10. Let k = 2t ≥ 10 be an even integer and p, q ∈ Bk be the two functions defined in Definition 2. Then for any
c = (c1, c2, . . . , ct),d = (d1, d2, . . . , dt) ∈ Ft2 we have

Cp(c,d) =

{
2k, if c = d = 0
0, otherwise

,

Cq(c,d) =


2k, if c = d = 0
Cg(d)− 2t, if c = 0,d 6= 0

2(−1)c
′·dWg(c

′), if c 6= 0
,

where c′ = (c2, c3, . . . , ct, c1 ⊕ c2) for c ∈ Ft2, and Wg(c
′) and Cg(d) are given in Lemma 6 and Lemma 7, respectively.

Proof. Since p is a bent function in 2t variables, Cp(0,0) = 22t and Cp(c,d) = 0 for all nonzero c,d ∈ Ft2. we have derived
the autocorrelation values of q in different cases.
Case (i): Let c = 0. Then

q(z, r)⊕ q(z, r⊕ d) =

{
g(r)⊕ g(r⊕ d), if z = 0
⊕ti=2zidi−1 ⊕ z1dt ⊕ z2dt, otherwise

,

and so,

Cq(0,d) =
∑
r∈Ft2

(−1)g(r)⊕g(r⊕d) +
∑
z∈Ft∗2

∑
r∈Ft2

(−1)⊕
t
i=2zidi−1⊕z1dt⊕z2dt

= Cg(d) + 2t
(∑

z∈Ft2

(−1)d.z
′
− 1

)
, where z′ = (z2, z3, . . . , zt, z1 ⊕ z2)

= Cg(d) + 22tδ0(d)− 2t

Here (z1, . . . , zt−1, zt) 7−→ (z2, . . . , zt, z1 ⊕ z2) is a permutation over Ft2. If d = 0, then Cq(0,0) = 2k, and if d 6= 0, then
Cq(0,d) = Cg(d)− 2t.
Case (ii): Let c 6= 0 and d = 0. Suppose c′ = (c2, c3, . . . , ct, c1 ⊕ c2) for any nonzero c ∈ Ft2. Then

Cq(c,0) =
∑

z,r∈Ft2

(−1)q(z,r)⊕q(z⊕c,r)

= 2
∑
r∈Ft2

(−1)g(r)⊕⊕
t
i=2ciri−1⊕c1rt⊕c2rt +

∑
z∈Ft2\{0,c}

∑
r∈Ft2

(−1)⊕
t
i=2ciri−1⊕c1rt⊕c2rt

= 2
∑
r∈Ft2

(−1)g(r)⊕c
′·r + (2t − 2)

∑
r∈Ft2

(−1)c
′·r

= 2Wg(c
′) + 2t(2t − 2)δ0(c′) = 2Wg(c

′)

12

as c 6= 0.
Case (iii): Let c 6= 0 and d 6= 0. Then we have

q(z, r)⊕ q(z⊕ c, r⊕ d) =



g(r)⊕⊕ti=2ciri−1 ⊕ c1rt ⊕ c2rt⊕
⊕ti=2cidi−1 ⊕ c1dt ⊕ c2dt, if z = 0
g(r⊕ d)⊕⊕ti=2ciri−1 ⊕ c1rt ⊕ c2rt, if z = c
⊕ti=2zidi−1 ⊕ z1dt ⊕ z2dt⊕
⊕ti=2ciri−1 ⊕ c1rt ⊕ c2rt⊕
⊕ti=2cidi−1 ⊕ c1dt ⊕ c2dt, if z 6= 0, c

,

=

 g(r)⊕ c′ · r⊕ c′ · d, if z = 0
g(r⊕ d)⊕ c′ · r, if z = c
z′ · d⊕ c′ · r⊕ c′ · d, if z 6= 0, c

,

where z′ = (z2, z3, . . . , zt, z1 ⊕ z2) for z ∈ Fn2 , and so

Cq(c,d) =
∑

z,r∈Ft2

(−1)q(z,r)⊕q(z⊕c,r⊕d)

=
∑
r∈Ft2

(−1)g(r)⊕c
′·r⊕c′·d +

∑
r∈Ft2

(−1)g(r⊕d)⊕c
′·r +

∑
z∈Ft2\{0,c}

∑
r∈Ft2

(−1)z
′·d⊕c′·r⊕c′·d

= 2(−1)c
′·dWg(c

′), as c 6= 0.

Definition 3. Let k = 2t ≥ 10 be an even integer. We define two Boolean functions u, v ∈ Bk as follows:

u(z, r) = p(z, r)q(z, r) =

t⊕
i=1

ziri

t⊕
i=2

ziri−1 ⊕ (z1rt ⊕ z2rt)
t⊕
i=1

ziri,

and

v(z, r) =
(
p(z, r)⊕ 1

)
q(z, r) = u(z, r)⊕ q(z, r)

= g(r)

t∏
i=1

(zi ⊕ 1)⊕
(t⊕
i=1

ziri ⊕ 1
) t⊕
i=2

ziri−1 ⊕ (z1rt ⊕ z2rt)
(t⊕
i=1

ziri ⊕ 1
)
,

where z = (z1, z2, . . . , zt), r = (r1, r2, . . . , rt) ∈ Ft2 and g ∈ Bt is given in Definition 1.

It is clear that the algebraic degree of the functions u and v in 2t ≥ 10 variables are 4 and t + 2, respectively. Now, we
derive the Walsh spectrum values of the functions u and v given in Definition 3 using the following known results.

Lemma 11 ([19]). Let u1, u2 be two k-variable Boolean functions and define u(x) = u1(x)u2(x), where x = (x1, x2, . . . , xk) ∈
Fk2 . Then for any b ∈ Fk2 we have

Wu(b) = 2k−1δ0(b) +
1

2

(
Wu1(b) +Wu2(b)−Wu1⊕u2(b)

)
,

where δ0(·) is the Dirac (or Kronecker) symbol which is defined by δ0(b) = 1 if b = 0 and δ0(b) = 0 otherwise. For any
d ∈ Fk∗2 , we have

Cu(d) = 2k−2 +
1

4

(
Cu1(d) + Cu2(d) + Cu1⊕u2(d)

)
+

1

2

(
Wu1(0) +Wu2(0)

−Wu1⊕u2(0)
)

+
1

2

(
Cu1,u2(d)− Cu1,u1⊕u2(d)− Cu2,u1⊕u2(d)

)
.

Lemma 12. Let k = 2t ≥ 10 and u, v ∈ Bk be the functions defined by Definition 3. For any c,d ∈ Ft2, we have

Wu(c,d) =


2k−1 + 2t−1, if c = d = 0
2t−1, if c 6= 0,d = 0

2t−1((−1)c·d + (−1)c·d
′ − (−1)c·d

′′
), if otherwise

,

and

Wv(c,d) =


2k−1 − 2t−1, if c = d = 0
−2t−1, if c 6= 0,d = 0

Wg(d)− 2t−1((−1)c·d − (−1)c·d
′ − (−1)c·d

′′
), if otherwise

,

where d′ = (d1 ⊕ dt, d1, . . . , dt−1) and d′′ = (
⊕t

i=2 di,
⊕t

i=1 di, d1 ⊕
⊕t

i=3 di, . . . , d1 ⊕ dt).

13

Proof. From [19, Theorem 20] and Lemma 9, we have for any c,d ∈ Ft2

Wu(c,d) = 2k−1δ0(c,d) +
1

2

(
Wp(c,d) +Wq(c,d)−Wp⊕q(c,d)

)
= 2k−1δ0(c,d) + 2t−1(−1)c·d +

{
0, if d = 0

2t−1(−1)c·d
′
+

Wg(d)
2 , otherwise

−
{

0, if d = 0

2t−1(−1)c·d
′′

+
Wg(d)

2 , otherwise

=


2k−1 + 2t−1, if c = d = 0
2t−1, if c 6= 0,d = 0

2t−1((−1)c·d + (−1)c·d
′ − (−1)c·d

′′
), if otherwise

.

where d′ = (d1 ⊕ dt, d1, . . . , dt) and d′′ = (
⊕t

i=2 di,
⊕t

i=1 di, d1 ⊕
⊕t

i=3 di, . . . , d1 ⊕ dt). Since Wp⊕1(c,d) = −Wp(c,d)
for all c,d ∈ Ft2, we have

Wu(c,d) = 2k−1δ0(c,d) +
1

2

(
Wp⊕1(c,d) +Wq(c,d)−Wp⊕q⊕1(c,d)

)
= 2k−1δ0(c,d) +

1

2

(
−Wp(c,d) +Wq(c,d) +Wp⊕q(c,d)

)
=


2k−1 − 2t−1, if c = d = 0
−2t−1, if c 6= 0,d = 0

Wg(d)− 2t−1((−1)c·d − (−1)c·d
′ − (−1)c·d

′′
), if otherwise

.

From above results, it is clear that the maximum absolute Walsh spectrum values of the functions u and u in k = 2t ≥ 10
variables are 2k−1 + 2t−1 and 2k−1 − 2t−1, respectively.

Lemma 13. Let k = 2t ≥ 10 and u, v ∈ Bk be the functions defined by Definition 3. For any c,d ∈ Ft2, we have

2k−2 − 2t ≤Cu(c,d) ≤ 2k−2 + 2t+2, and

2k−2 − 3 · 2t+1 ≤Cv(c,d) ≤ 2k−2 + 3 · 2t+1.

Proof. We first consider the autocorrelation spectrum of Boolean function u. Let us define q′(z, r) =
t⊕
i=2

ziri−1⊕z1rt⊕z2rt =

φ(z) ·r which is a quadratic bent function, where φ(z) = (z2, z3, . . . , zt−1, zt, z1⊕r2) is a permutation over Ft2. Then we have
u(z, r) = p(z, r)q(z, r) = p(z, r)q′(z, r) since p(z, r) = 0 with z = 0. Obviously, we have Cu(c,d) = 2k if (c,d) = (0,0).
In what follows, we consider the values of Cu(c,d) with (c,d) ∈ Fk2 \ {0,0} and our strategy is based on Lemma 4.6.
First, we can easily see that Wp(0,0) = Wq′(0,0) = Wp⊕q′(0,0) = 2t. In addition, for any (c,d) ∈ Fk2 \ {0,0}, we have
Cp(c,d) = Cq′(c,d) = 0 and Cp⊕q′(c,d) = 0 since (p ⊕ q′)(z, r) is also a bent function due to z ⊕ φ(z) is a permutation
on Ft2 by Lemma 8. Furthermore, we have

Cp,q′(c,d) =
∑
z∈Ft2

∑
r∈Ft2

(−1)z·r⊕(φ(z⊕c)·(r⊕d)) =
∑
z∈Ft2

∑
r∈Ft2

(−1)z·r⊕(φ(z)⊕φ(c))·(r⊕d))

=
∑
z∈Ft2

∑
r∈Ft2

(−1)(z⊕φ(z))·r⊕φ(z)·d⊕φ(c)·r⊕φ(c)·d

=
∑
z∈Ft2

∑
r∈Ft2

(−1)(φ
−1(z)⊕z)·r⊕z·d⊕φ(c)·r⊕φ(c)·d

= (−1)φ(c)·dWφ′(z)·r(d, φ(c)) ∈ {2t,−2t},

where φ′(z) = φ−1(z) ⊕ z is a permutation over Ft2. Similarly, we have Cp,p⊕q′(c,d) ∈ {2t,−2t} and Cq′,p⊕q′(c,d) ∈
{2t,−2t}. Therefore, for any (c,d) ∈ Fk2 \ {0,0} we have

2k−2 − 2t ≤ Cpq(c,d) = Cpq′(c,d) ≤ 2k−2 + 2t+2.

We now consider the autocorrelation spectrum of Boolean function v. Similar to the case of u. We can get that

2k−2 − 2t+1 ≤ C(p⊕1)q′(c,d) ≤ 2k−2 + 2t+1.

Note that the support of v = (p⊕ 1)q equals supp((p⊕ 1)q′) ∪ supp(g) and |supp(g)| = 2t−1. Then we have

2k−2 − 3 · 2t+1 ≤ C(p⊕1)q(c,d) ≤ 2k−2 + 3 · 2t+1.

This completes the proof.

14

B. Main construction of ultra-lightweight Boolean functions

In this section, we construct a class of balanced Boolean functions by modifying a simple MM bent function using two
sub-functions defined in Definition 3.

Construction 2. Let n = 2k = 4t be an even integer not less than 20. We construct an n-variable Boolean function f over
Fk2 × Fk2 as follows

f(x,y) =

 u(y), if x = 1,y ∈ Fk2 \ {1}
v(x), if y = x ∈ Fk2
(x⊕ y) · y, otherwise

,

where u and v are the two Boolean functions over Fk2 defined in Definition 3.

Since the outputs of MM bent function (x ⊕ y) · y = x · y ⊕
⊕k

i=1 yi is modified by a sub-function u when x = 1 and
y 6= 0, and a sub-function v when x = y, where x,y ∈ Fk2 . The function f can be written as

f(x,y) = (x1x2 · · ·xk(y1y2 · · · yk ⊕ 1)⊕ 1)(x⊕ y) · y ⊕ x1x2 · · ·xk(y1y2 · · · yk ⊕ 1)u(y)

⊕ (x1 ⊕ y1 ⊕ 1)(x2 ⊕ y2 ⊕ 1) · · · (xk ⊕ yk ⊕ 1)v(x)

1) The balancedness, autocorrelation properties and nonlinearity: Now we derive the Walsh spectrum and autocorrelation
values of balanced Boolean function f in 2k variables defined in Construction 2. Then we compute the nonlinearity and
absolute indicator of f .

Theorem 1. Let n = 2k ≥ 20 and f ∈ Bn be a Boolean function generated by Construction 2. Then for any (a,b) ∈ Fk2 ×Fk2
we have

Wf (a,b) =


Wu(b) +Wv(b) + 2k, if (a,b) ∈ {0} × Fk∗2
Wu(0)(−1)1·a +Wv(a), if (a,b) ∈ Fk∗2 × {0}
Wu(b)(−1)1·a +Wv(a⊕ b) + 2k(−1)a·(1⊕b), if (a,b) ∈ Fk∗2 × Fk∗2 \ U
Wu(b)(−1)1·b +Wv(0)− 2kδ0(b)(−1)1·b, if (a,b) ∈ U

,

where U = {(c, c) : c ∈ Fk2} ⊆ Fk2 ×Fk2 and δ0(·) is the Dirac (or Kronecker) symbol which is defined by δ0(b) = 1 if b = 0
and δ0(b) = 0 otherwise.

Proof. We can easily get that
∑

x∈Fk2
(−1)c·x⊕d·y equals 0 if c ∈ Fk∗2 and equals 2k otherwise, where d and y are arbitrary

vectors in Fk2 . Then for any (a,b) ∈ Fk2 × Fk2 , according to the definition of the Walsh transform we have

Wf (a,b) =
∑

(x,y)∈Fk2×Fk2

(−1)f(x,y)⊕a·x⊕b·y

=
∑

(x,y)∈{1}×Fk2\{1}

(−1)f(x,y)⊕a·x⊕b·y +
∑

(x,y)∈U

(−1)f(x,y)⊕a·x⊕b·y

+
∑

(x,y)∈{(x,y):x∈Fk2\{1},y∈Fk2 ,y 6=x}

(−1)f(x,y)⊕a·x⊕b·y

=
∑

y∈Fk2\{1}

(−1)u(y)⊕1·a⊕b·y +
∑
x∈Fk2

(−1)v(x)⊕a·x⊕b·x

+
∑

(x,y)∈{(x,y):x∈Fk2\{1},y∈Fk2 ,y 6=x}

(−1)x·y⊕1·y⊕a·x⊕b·y.

Note that ∑
y∈Fk2\{1}

(−1)u(y)⊕1·a⊕b·y = Wu(b)(−1)1·a − (−1)u(1)⊕1·(a⊕b)

= Wu(b)(−1)1·a − (−1)1·(a⊕b) (since u(1) = 0).

15

Since
∑

x∈Fk2
(−1)v(x)⊕a·x⊕b·x = Wv(a⊕ b), and∑

(x,y)∈{(x,y):x∈Fk2\{1},y∈Fk2 ,y 6=x}

(−1)x·y⊕1·y⊕a·x⊕b·y

=
∑

(x,y)∈Fk2×Fk2\U

(−1)x·y⊕1·y⊕a·x⊕b·y −
∑

(x,y)∈{1}×Fk2\{1}

(−1)x·y⊕1·y⊕a·x⊕b·y

=

 ∑
(x,y)∈Fk2×Fk2

(−1)x·y⊕1·y⊕a·x⊕b·y −
∑
x∈Fk2

(−1)x·x⊕1·x⊕a·x⊕b·x


−

∑
y∈Fk2

(−1)1k·y⊕1·y⊕a·1⊕b·y − (−1)1·(a⊕b)


=

∑
x∈Fk2

(−1)a·x
∑
y∈Fk2

(−1)(x⊕1⊕b)·y −
∑
x∈Fk2

(−1)(a⊕b)·x


−

(−1)1·a
∑
y∈Fk2

(−1)b·y − (−1)1·(a⊕b)


= 2k(−1)a·(1⊕b) − 2kδ0(a⊕ b)− 2kδ0(b)(−1)1·a + (−1)1·(a⊕b),

Then we have

Wf (a,b) = Wu(b)(−1)1·a +Wv(a⊕ b) + 2k(−1)a·(1⊕b) − 2kδ0(a⊕ b)− 2kδ0(b)(−1)1·a

=


Wu(b) +Wv(b) + 2k, if (a,b) ∈ {0} × Fk∗2
Wu(0)(−1)1·a +Wv(a), if (a,b) ∈ Fk∗2 × {0}
Wu(b)(−1)1·a +Wv(a⊕ b) + 2k(−1)a·(1⊕b), if (a,b) ∈ Fk∗2 × Fk∗2 \ U
Wu(b)(−1)1·b +Wv(0)− 2kδ0(b)(−1)1·b, if (a,b) ∈ U

.

It follows from Theorem 1 that Wf (0) = Wu(0) + Wv(0) − 2k = 0, so we have the following results. We also get the
nonlinearity of the balanced function f .

Corollary 1. Let n = 2k = 4t be an even integer not less than 20. The n-variable Boolean function f ∈ Bn generated by
Construction 2 is balanced.

Corollary 2. Let n = 2k = 4t be an even integer not less than 20 and t be an even integer. The nonlinearity of n-variable
Boolean function f ∈ Bn generated by Construction 2 is

nl(f) = 22k−1 − 2k−1 − 3 · 2t−1 − 2
t
2 .

Further, if t is odd, the nonlinearity of f is 22k−1 − 2k−1 − 3 · 2t−1 − 2
t−1
2 ≤ nl(f) ≤ 22k−1 − 2k−1 − 3 · 2t−1.

Proof. Let a = 0 and b 6= 0 ∈ Fk2 . Suppose b = (c,d) 6= (0,0) ∈ Ft2×Ft2. If d = 0, then c 6= 0, and Wu(c,0) +Wv(c,0) +
2k = 2k. If d 6= 0, then Wu(c,d) +Wv(c,d) + 2k = 2k +Wg(d) + 2t(−1)c·d

′
, where the value of Wg(d) is given in Lemma

6. Thus,

max
c,d∈Ft2

|Wf (0,b)| =

{
2k + 2t + 2

t+1
2 , if t is odd

2k + 2t + 2
t
2+1, if t is even

.

Let a 6= 0 ∈ Fk2 and b = 0. Suppose a = (c,d) 6= (0,0) ∈ Ft2 × Ft2. Then Wf (a,0) = Wu(0,0)(−1)wt(c,d) +Wv(c,d), and
so

max
c,d∈Ft2

|Wf (a,0)| =

{
2k−1 + 2t+1 + 2

t+1
2 , if t is odd

2k−1 + 2t+1 + 2
t
2+1, if t is even

.

Let a = b ∈ Fk2 . Suppose a = (c,d) ∈ Ft2×Ft2. Then Wf (a,a) = Wu(c,d)(−1)wt(c,d)+Wv(0,0)−2k(−1)wt(c,d)δ(0,0)(c,d),
and so maxa∈Fk2 |Wf (a,a)| = 2k−1 + 2t. Let a 6= 0,b 6= 0 ∈ Fk2 and a = b. Suppose a = (c,d) and b = (e,h) ∈ Ft2 × Ft2.
Since (d ⊕ h)′ = d′ ⊕ h′ and (d ⊕ h)′′ = d′′ ⊕ h′′. If t be an even integer, then there exist values of a,b such that wt(a)
is even, a · b = 0, c · d = 0, c · d′ = 0, c · d′′ = 1, (c⊕ e) · (d⊕ h) = 1, (c⊕ e) · (d′ ⊕ h′) = 0, (c⊕ e) · (d′′ ⊕ h′′) = 0
and (dt−1 ⊕ ht−1, dt ⊕ ht) = (1, 1). Then maxa,b∈Fk2 |Wf (a,b)| = 2k + 3 · 2t + 2

t
2+1. Thus, the nonlinearity of f is

nl(f) = 22k−1 − 2k−1 − 3 · 2t−1 − 2
t
2 .

16

Let t is an odd integer. Then the maximum absolute value of Wf (a,b) satisfies the inequality

2k + 3 · 2t ≤ max
a6=b∈Fk2\{0}

|Wf (a,b)| ≤ 2k + 3 · 2t + 2
t+1
2 .

Thus, the nonlinearity of f is 22k−1 − 2k−1 − 3 · 2t−1 − 2
t−1
2 ≤ nl(f) ≤ 22k−1 − 2k−1 − 3 · 2t−1.

Theorem 2. Let n = 2k = 4t ≥ 8 and f ∈ Bn be a Boolean function generated by Construction 2. Then for any (a,b) ∈
Fk2 × Fk2 , we have

Cf (a,b) =



2n, if (a,b) = (0,0)
Cu(b) + 2Wv(b)(−1)1·b − 2(−1)u(1)⊕u(1⊕b)

+2(−1)v(1)⊕u(1⊕b) − 2(−1)v(1) − 2k + 2, if (a,b) ∈ {0} × Fk∗2
Cv(a) + 2Wu(a)(−1)1·a − 2k, if (a,b) ∈ U ′
2Wu(a)(−1)a·b + 2Wv(a⊕ b)(−1)(a⊕1)·b − 2(−1)u(1⊕a⊕b)

+2(−1)v(1⊕a)⊕u(1⊕a⊕b) − 2(−1)v(1⊕a) + 2, if (a,b) ∈ Fk∗2 × Fk2 \ U ′

,

where U ′ = {(c, c) : c ∈ Fk∗2 } ⊂ Fk2 × Fk2 .

Proof. By the definition of autocorrelation function, we immediately get that Cf (0,0) = 2n. We now consider the values
of Cf (a,b) for all (a,b) ∈ Fk2 × Fk2 \ {(0,0)}. Our discuss is mainly based on the fact that

∑
x∈Fk2

(−1)c·x⊕d·y equals 0

if c ∈ Fk∗2 and equals 2k otherwise, where d and y are arbitrary vectors in Fk2 . We consider the values of Cf (a,b) for all
(a,b) ∈ Fk2 × Fk2 \ {(0,0)} from the following three cases:

Case 1. (a, b) ∈ {0} × Fk∗2 . In this case we have

Cf (a, b) =
∑

(x,y)∈{1}×Fk2

(−1)f(1,y)⊕f(1,y⊕b) +
∑

(x,y)∈T×Fk2

(−1)f(x,y)⊕f(x,y⊕b)

=
∑

y∈Fk2\{1,1⊕b}

(−1)u(y)⊕u(y⊕b) + (−1)v(1)⊕u(1⊕b) + (−1)u(1⊕b)⊕v(1)

+
∑
x∈T

(∑
y∈Fk2\{x,x⊕b}

(−1)(x⊕y)·y⊕(x⊕y⊕b)·(y⊕b) + (−1)v(x)⊕b·(x⊕b) + (−1)b·(x⊕b)⊕v(x)
)

=
∑

y∈Fk2\{1,1⊕b}

(−1)u(y)⊕u(y⊕b) + 2(−1)v(1)⊕u(1⊕b) +
∑
x∈T

(
(2k − 2)(−1)b·x⊕1·b + 2(−1)v(x)⊕b·x⊕1·b

)
=

(
Cu(b)− 2(−1)u(1)⊕u(1⊕b) + 2(−1)v(1)⊕u(1⊕b)

)
+
(

(2k − 2)
∑
x∈Fk2

(−1)b·x⊕1·b − (2k − 2) + 2Wv(b)(−1)1k·b − 2(−1)v(1)
)

= Cu(b) + 2Wv(b)(−1)1k·b − 2(−1)u(1k)⊕u(1k⊕b) + 2(−1)v(1)⊕u(1⊕b) − 2(−1)v(1) − 2k + 2,

where T = Fk2 \ {1}. It can be easily verified that v(1) = 0 if t is odd and v(1) = 1 if t is even. In addition, we can check
that u(1) = 0. Thus, in this case we have

Cf (a, b) = Cu(b) + 2Wv(b)(−1)1·b − 2k + 2
(
1− (−1)t+1

)(
1− (−1)u(1⊕b)

)
.

Case 2. (a,b) ∈ U ′. We can get that

Cf (a, b) =
∑

(x,y)∈{1k}×Fk2

(−1)f(1,y)⊕f(1⊕a,y⊕a) +
∑

(x,y)∈{1⊕a}×Fk2

(−1)f(1⊕a,y)⊕f(1,y⊕a)

+
∑

(x,y)∈Ea×Fk2

(−1)f(x,y)⊕f(x⊕1,y⊕a)

=

 ∑
y∈Fk2\{1,1⊕a}

(−1)u(y)⊕(1⊕a⊕y⊕a)·(y⊕a) + (−1)v(1)⊕v(1⊕a) + (−1)u(1⊕a)⊕1·a


+

 ∑
y∈Fk2\{1,1⊕a}

(−1)(1⊕a⊕y)·y⊕u(y⊕a) + (−1)v(1⊕a)⊕v(1) + (−1)1·a⊕u(1⊕a)


+

∑
x∈Ea

 ∑
y∈Fk2\{x}

(−1)(x⊕y)·y⊕(x⊕a⊕y⊕a)·(y⊕a) + (−1)v(x)⊕v(x⊕a)



17

= 2

 ∑
y∈Fk2\{1,1⊕a}

(−1)u(y)⊕a·y⊕1·a + (−1)v(1)⊕v(1⊕a) + (−1)u(1⊕a)⊕1·a


+

∑
x∈Ea

∑
y∈Fk2

(−1)a·y⊕a·x − (−1)a·x⊕a·x + (−1)v(x)⊕v(x⊕a)


=

[
2Wu(a)(−1)1·a − 2(−1)u(1) + 2(−1)v(1)⊕v(1⊕a)

]
+
[
Cv(a)− 2(−1)v(1)⊕v(1⊕a) − (2k − 2)

]
= Cv(a) + 2Wu(a)(−1)1·a − 2k,

where Ea = Fk2 \ {1,1⊕ a}.
Case 3. (a,b) ∈ Fk∗2 × Fk2 \ U ′. In this case, we can obtain that

Cf (a,b) =
∑

(x,y)∈{1}×Fk2

(−1)f(1,y)⊕f(1⊕a,y⊕b) +
∑

(x,y)∈{1⊕a}×Fk2

(−1)f(1⊕a,y)⊕f(1,y⊕b)

+
∑

(x,y)∈Ea×Fk2

(−1)f(x,y)⊕f(x⊕1,y⊕b)

=

 ∑
y∈Fk2\{1,1⊕a⊕b}

(−1)u(y)⊕(1⊕a⊕y⊕b)·(y⊕b) + (−1)v(1)⊕(a⊕b)·(1⊕b) + (−1)u(1⊕a⊕b)⊕v(1⊕a)


+

 ∑
y∈Fk2\{1⊕a,1⊕b}

(−1)(1⊕a⊕y)·y⊕u(y⊕b) + (−1)v(1⊕a)⊕u(1⊕a⊕b) + (−1)(a⊕b)·(1⊕b)⊕v(1)


+

[∑
x∈Ea

(∑
y∈Fk2\{x,x⊕a⊕b}

(−1)(x⊕y)·y⊕(x⊕a⊕y⊕b)·(y⊕b) + (−1)v(x)⊕(a⊕b)·(x⊕b)

+(−1)(a⊕b)·(x⊕a⊕b)⊕v(x⊕a)

)]

= 2

[∑
y∈Fk2\{1,1⊕a⊕b}

(−1)u(y)⊕a·y⊕a·b + (−1)v(1)⊕a·(1⊕b) + (−1)v(1⊕a)⊕u(1⊕a⊕b)

]

+

[∑
x∈Ea

(∑
y∈Fk2\{x,x⊕a⊕b}

(−1)a·y⊕(a⊕1⊕x)·b + (−1)v(x)⊕(a⊕b)·x⊕a·b⊕1·b

+(−1)v(x⊕a)⊕(a⊕b)·x⊕1·(a⊕b)

)]

= 2

[∑
y∈Fk2\{1,1⊕a⊕b}

(−1)u(y)⊕a·y⊕a·b + (−1)v(1)⊕a·(1⊕b) + (−1)v(1⊕a)⊕u(1⊕a⊕b)

]

+

[∑
x∈Ea

(
− (−1)(a⊕b)·x⊕b·(1⊕a) − (−1)(a⊕b)·x⊕1·(a⊕b)

+(−1)v(x)⊕(a⊕b)·x⊕a·b⊕1·b + (−1)v(x⊕a)⊕(a⊕b)·x⊕1·(a⊕b)
)]

= [2Wu(a)(−1)a·b − 2(−1)u(1)⊕a·(1⊕b) − 2(−1)u(1⊕a⊕b) + 2(−1)v(1)⊕a·(1⊕b)

+2(−1)v(1⊕a)⊕u(1⊕a⊕b)]

+
[
2Wv(a⊕ b)(−1)(a⊕1)·b − 2(−1)v(1)⊕a·(b⊕1k) − 2(−1)v(1⊕a) + 2(−1)a·(1⊕b) + 2

]
= 2Wu(a)(−1)a·b + 2Wv(a⊕ b)(−1)(a⊕1)·b − 2(−1)u(1k⊕a⊕b)

+2(−1)v(1⊕a)⊕u(1⊕a⊕b) − 2(−1)v(1⊕a) + 2,

where Ea = Fk2 \ {1,1⊕ a}.

From the above results, we can derive the maximum absolute autocorrelation value of the constructed balanced function in
2k variables which is strictly less than 2k.

18

Corollary 3. Let n = 2k = 4t ≥ 20 and f ∈ Bn be a Boolean function generated by Construction 2. Then the absolute
indicator of f ∈ Bn is ∆f ≤ 2k − 2k−2 + 9 · 2t.

Proof. If a = b = 0 ∈ Fk2 , then Cf (a,b) = 2n. We derive the maximum absolute autocorrelation value of f on different
cases.
Case(i): Let us consider a = b 6= 0 ∈ Fk2 . Suppose a = (c,d) ∈ Ft2 × Ft2 \ {(0,0)}. Then

Cf (a,a) = Cv(a) + 2Wu(a)(−1)wt(a) − 2k = Cv(c,d) + 2Wu(c,d)(−1)wt(c,d) − 2k

=

{
Cv(c,0) + 2Wu(c,0)(−1)wt(c) − 2k, if c 6= 0,d = 0
Cv(c,d) + 2Wu(c,d)(−1)wt(c,d) − 2k, if d 6= 0

.

Since −2t ≤ 2Wu(c,0)(−1)wt(c) ≤ 2t for c 6= 0 and −3 · 2t ≤ 2Wu(c,d)(−1)wt(c,d) ≤ 3 · 2t for d 6= 0. From Lemma 13,
we have maxa∈Fk2\{0} |Cf (a,a)| ≤ 2k − 2k−2 + 9 · 2t.
Case(ii): Let a = 0 and b 6= 0 ∈ Fk2 . Suppose b = (e,h) ∈ Ft2 × Ft2 \ {(0,0)}. Then

Cf (0,b) = Cu(b) + 2Wv(b)(−1)wt(b) − 2k + 2

− 2(−1)u(1)⊕u(1⊕b) + 2(−1)v(1)⊕u(1⊕b) − 2(−1)v(1)

= A(b) +B(b),

where A(b) = Cu(b) + 2Wv(b)(−1)wt(b) − 2k and B(b) = 2− 2(−1)u(1)⊕u(1⊕b) + 2(−1)v(1)⊕u(1⊕b) − 2(−1)v(1) for all
b ∈ Fk2 . Since maxb∈Fk∗2 |B(b)| ≤ 8 and

A(b) = Cu(e,h) + 2Wv(e,h)(−1)wt(e,h) − 2k

=

{
Cu(e,0) + 2Wv(e,0)(−1)wt(e) − 2k, if e 6= 0,h = 0
Cu(e,h) + 2Wv(e,h)(−1)wt(e,h) − 2k, if h 6= 0

=


Cu(e,0)− 2t − 2k, if e 6= 0 with wt(e) is even, h = 0
Cu(e,0) + 2t + 2k, if e 6= 0 with wt(e) is odd, h = 0
Cu(e,h) + 2Wv(e,h)(−1)wt(e,h) − 2k, if h 6= 0

.

Thus from Lemma 13, we have max |A(b)| ≤ 2k − 2k−2 + 2t+1 for b = (e,0) with e 6= 0. If h 6= 0, then we have

max |A(b)| ≤

{
2k − 2k−2 + 4 · 2t + 2

t+3
2 , if t is odd

2k − 2k−2 + 4 · 2t + 2
t
2+2, if t is even

,

and so, maxb∈Fk∗2 |Cf (0,b)| ≤

{
2k − 2k−2 + 2t+2 + 2

t+3
2 + 8, if t is odd

2k − 2k−2 + 2t+2 + 2
t
2+2 + 8, if t is even

.

Case(iii): Let a 6= 0, b 6= 0 with a 6= b. Then we have

max
a,b∈Fk∗2 ,a6=b

|Cf (a,b)| ≤

{
3 · 2t+1 + 2k−2 + 2

t+3
2 + 8, if t is odd

3 · 2t+1 + 2k−2 + 2
t
2+2 + 8, if t is even

.

Combining all the three cases, we get the result.

Recently, the balanced Boolean function having good cryptographic properties are constructed in [10], [18], [19] by modifying
MM bent functions. Here we add one more class of balanced Boolean functions in polynomial-size circuit having good
cryptographic properties.

C. Efficient implementation of Boolean functions defined as in Construction 2

It is known that a 2k-variable MM bent function can be written as a concatenation of 2k affine functions in k variables.
We can implement the balanced Boolean function f in 2k = 4t ≥ 20 variables generated by Construction 2 using a decoder.
However, in that case the naive implementation will require O(2k) gates. Instead of using a decoder, one can use the circuit
given in Fig. 5 considering an identity permutation over Fk2 and a nonzero g function in k variables. The number of logic gates
that are required to implement of balanced function in 2k variables generated in Construction 2 is dependent on the k-variable
Boolean functions g, u,v, h1 and h2. Here we consider two 2×1 multiplexers. Let us define f1(y) = u(y) and f2(x) = v(x),
for all x,y ∈ Fk2 , and

h1(x) = xkxk−1 . . . x1 ⊕ 1 and h2(x) = (xk ⊕ yk) ∨ (xk−1 ⊕ yk−1) ∨ . . . ∨ (x1 ⊕ y1).

Let the output of the original bent function is ε ∈ F2. The output after applying the first multiplexer is ε1 = (1⊕h1(x))f1(y)⊕
h1(x)ε ∈ F2. Similarly, the output of the circuit i.e., after applying the second multiplexer, is (1 ⊕ h2(x))f2(x) ⊕ h2(x)ε1.
The circuit’s implementation of balanced Boolean function generated from Construction 2 is given in Fig. 6. To implement

19

𝑦!𝑦!"#…𝑦#

𝑥!

𝑦!𝑦!"#…𝑦#

𝑥!"# 𝑥#…

…

Permutation Function

g()

𝑦!𝑦!"#…𝑦#

𝑧!𝑧!"#… 𝑧#

𝑓#

𝑓$

ℎ$ ℎ#

𝜀

Fig. 6: Construction of balanced Boolean function proposed in [10], [18], [19]

two multiplexers we need 8 logic gates (4 AND and 4 XOR gates). The required logic gates (fan-in of 2) to implement the
functions g, u,v, h1 and h2 in k = 2t ≥ 10 variables are as follows:
• g requires k − 1 logic gates,
• h1 requires k logic gates,
• h2 requires 2k logic gates,
• f1 requires 2k logic gates,
• f2 requires 3k + k

2 + 1 logic gates,
i.e., total 9.5k. Here all these small functions can be implemented in polynomial circuit size over the input variables. Thus,
the balanced Boolean function generated from Construction 2 can be implemented in polynomial circuit size.

V. CONCLUSION

In this work, we have studied multiple polynomial-size constructions for MM bent functions. These constructions present
various performance, and design space choices, thus significantly augmenting the arsenal of designers. We construct a balanced
functions with polynomial-size circuit size by modifying MM bent function. Further we prove that the constructed function
have very good nonlinearity and very low absolute indicator value. One may note that most of the stream ciphers use only a few
outputs from the Feedback Shift Registers (FSRs, Linear and Nonlinear) and combine them to produce the key stream. However,
that creates a situation where all the FSR points do not contribute to the output function. This is the reason, corresponding to a
fault, signatures can be generated by comparing the stream without fault and the faulty key stream for several key-IV samples
offline (see [17] and the references therein for more details). Consequently, these signatures can be used at the time of actual
fault attack to identify the location of the fault easily. In case all the points of the FSRs are fed into a Boolean function, and the
function has a good autocorrelation property, then such signatures cannot be generated efficiently. Since most of the modern
lightweight hardware stream ciphers use around 200 length FSRs, we need to construct functions on those many variables.
Using our method this is achievable as, for n = 2k = 200, 9.5k = 950, and it is possible to implement these many logic gates
in a lightweight circuit. A concrete design of a stream cipher in this direction could be a possible research direction.

Recent years, symmetric-key cryptographic primitives, such as stream ciphers, block ciphers, hash functions, pseudo-random
generators, pseudo-random functions, message authentication codes etc., serve as fundamental building blocks for many new
applications of cryptography like secure Multi-Party Computation (MPC) [20], Zero-Knowledge proofs (ZK) [9], and Fully
Homomorphic Encryption (FHE) [8], [15]. MPC allows different users that do not necessarily trust each other to evaluate a
function on a shared secret without revealing it. FHE allows a user to operate on encrypted data without decrypting them. Finally,
ZK is a technique that allows to authenticate a secret information without disclosing it. In such scenarios, the inputs, outputs,
and keys of symmetric-key cryptographic primitives are secretly shared or distributed between two or more parties and the
cryptographic computations (expressed as an arithmetic circuit composed of gates which are multiplications and additions and
connected by wires) are also processed in a distributed manner. In MPC/ZK/FHE, the bottleneck of cryptographic computations
is the multiplicative complexity of the symmetric-key cryptographic primitives and the traditional standards like AES and SHA-3
are not any more efficient. Naturally, a line of research of MPC/ZK/FHE-friendly symmetric-key primitives has been developed.
In this regard, if one looks into the design of the stream cipher family like FLIP [13], one can see that Boolean functions on
large number of variables are in use, but those do not have significantly good cryptologic parameters. In this regard, we like

20

to underline that the functions constructed by our method has low multiplicative complexity as evident from Construction 2
(Figure 6). Here we need AND gate to implement the functions x · y, h1, f1, f2 and multiplexers, where x,y ∈ Fk2 . It is
clear that k + 4 AND gates are required to implement multiplexers and x · y. As discussed in above, we need k − 1 AND
gates for h1, k + 1 AND gates for f1, and 3t + ι + 2 AND gates for f2, where k = 2t and ι = b t−12 c. Thus, we need
3k+ t+ ι+ 6 AND gates to implement the function f ∈ B2k given in Figure 6, where k = 2t and ι = b t−12 c. In this way, we
can implement the function f given in Construction 2 using polynomial size AND gates. Therefore, such functions can be used
in the design of MPC/ZK/FHE-friendly symmetric-key primitives due to their low multiplicity complexity and additionally
very good autocorrelation properties as well as very high nonlinearity.

REFERENCES

[1] J. Boyar and R. Peralta, A small depth-16 circuit for the AES S-box, In: D. Gritzalis, S. Furnell, M. Theoharidou (eds) Information Security and Privacy
Research, SEC 2012, IFIPAICT 376 287–298 Springer.

[2] A. Canteaut, S. Maitra, H. Yoshida, L. Perrin, S. Jha, R. Rohit A. Baksi, Design of filtering functions for lightweight stream ciphers. Presentation in
ASK 2018, Kolkata, India.

[3] C. Carlet, Boolean functions for cryptography and error correcting codes, In: Y. Crama, P. Hammer (eds.), Boolean Methods and Models, Cambridge
Univ. Press, Cambridge 257–397 (2010).

[4] T. W. Cusick and P. Stănică, Cryptographic Boolean functions and applications, Elsevier–Academic Press, (2009).
[5] J. F. Dillon, Elementary Hadamard Difference Sets, PhD Thesis, University of Maryland (1974).
[6] J. F. Dillon, Elementary Hadamard Difference Sets, In: proceedings of 6th S. E. Conference of Combinatorics, Graph Theory, and Computing, Utility

Mathematics, Winnipeg, 237–249 (1975).
[7] H. Dobbertin, Construction of bent functions and balanced Boolean functions with high nonlinearity, Fast Software Encryption 1994 LNCS 1008 61–74

(1994).
[8] C. Gentry, Fully homomorphic encryption using ideal lattices, in Proceedings of the forty-first annual ACM symposium on Theory of computing, 2009,

pp. 169–178.
[9] S. Goldwasser, S. Micali, and C. Rackoff, The knowledge complexity of interactive proof-systems (extended abstract), in Proceedings of the 17th

Annual ACM Symposium on Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA, R. Sedgewick, Ed. ACM, 1985, pp. 291–304.
https://doi.org/10.1145/22145.22178

[10] S. Kavut, S. Maitra and D. Tang, Construction and search of balanced Boolean functions on even number of variables towards excellent autocorrelation
profile, Designs, Codes and Cryptography 87(2-3) 261–276 (2019).

[11] M. Khairallah, A. Chattopadhyay, B. Mandal and S. Maitra, On Hardware Implementation of Tang-Maitra Boolean Functions, Arithmetic of Finite
Fields - 7th International Workshop, WAIFI 2018, LNCS 11321 111–127 (2018).

[12] R. L. McFarland, A family of difference sets in non-cyclic groups, Journal of Combinatorial Theory, Series A 15(1) 1–10 (1973).
[13] P. Méaux, A. Journault, F.-X. Standaert, and C. Carlet, Towards stream ciphers for efficient fhe with low-noise ciphertexts, in Annual International

Conference on the Theory and Applications of Cryptographic Techniques. Springer, 2016, pp. 311–343.
[14] S. Mesnager, Bent Functions – Fundamentals and Results, Springer, Switzerland ISBN 978-3-319-32593-4 1–544 (2016).
[15] R. L. Rivest, L. Adleman and M. L. Dertouzos, On data banks and privacy homomorphisms, Foundations of secure computation, vol. 4, no. 11, pp.

169–180, 1978.
[16] O. S. Rothaus, On bent functions, Journal of Combinatorial Theory, Series A 20 300–305 (1976).
[17] D. Roy, B. N. Bathe and S. Maitra, Differential Fault Attack on Kreyvium & FLIP, IEEE Trans. Computers 70(12): 2161-2167 (2021)
[18] D. Tang and S. Maitra, Constructions of n-variable (n ≡ 2 mod 4) balanced Boolean functions with maximum absolute value in autocorrelation spectra

< 2
n
2 , IEEE Transactions on Information Theory 64(1) 393–402 (2018).

[19] D. Tang, S. Kavut, B. Mandal and S. Maitra, Modifying Maiorana–McFarland type bent functions for good cryptographic properties and efficient
implementation, SIAM Journal on Discrete Mathematics 33(1) 238–256 (2019).

[20] A. C. Yao, Protocols for secure computations, in 23rd annual symposium on foundations of computer science (FOCS 1982), IEEE, 1982, pp. 160–164.

