
A preliminary version of this paper appears in the proceedings of CT-RSA 2023. This is the full
version.

Flexible Password-Based Encryption: Securing Cloud
Storage and Provably Resisting Partitioning-Oracle

Attacks

Mihir Bellare1 Laura Shea2

February 14, 2023

Abstract

We introduce flexible password-based encryption (FPBE), an extension of traditional pass-
word-based encryption designed to meet the operational and security needs of contemporary
applications like end-to-end secure cloud storage. Operationally, FPBE supports nonces, asso-
ciated data and salt reuse. Security-wise, it strengthens the usual privacy requirement, and,
most importantly, adds an authenticity requirement, crucial because end-to-end security must
protect against a malicious server. We give an FPBE scheme called DtE that is not only proven
secure, but with good bounds. The challenge, with regard to the latter, is in circumventing
partitioning-oracle attacks, which is done by leveraging key-robust (also called key-committing)
encryption and a notion of authenticity with corruptions. DtE can be instantiated to yield an
efficient and practical FPBE scheme for the target applications.

1 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093, USA. Email: mihir@eng.ucsd.edu. URL: http://cseweb.ucsd.edu/˜mihir/. Supported in
part by NSF grant CNS-2154272.

2 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093, USA. Email: lmshea@ucsd.edu. Supported by NSF grants CNS-2048563 and CNS-1513671.

Contents

1 Introduction 2
1.1 Flexible PBE . 2
1.2 Motivation and applications . 3
1.3 Security of the DtE scheme . 4
1.4 Extended setting and results . 7

2 Related work 7

3 Preliminaries 8

4 The tool: Symmetric encryption 10

5 The goal: Flexible password-based encryption 13

6 Security of the DtE scheme 16

7 Proving DtE security via composition and PBKDFs 18

8 Attacks 22

9 Key-robustness of DtE 23

References 24

A Proofs of authenticity lemmas 27

B Proof of Theorem 5.1 29

C Proof of Theorem 6.3 31

D Proof of Theorem 7.1 38

E Proof of Theorem 7.2 40

F Proof of Theorem 7.3 42

G Proofs of attack propositions 46

H Proof of Proposition 9.1 48

1

Type encryption salt
Security

Privacy Authenticity
TPBE randomized fresh per encryption ✓

FPBE
deterministic, reusable across encryptions

✓ ✓nonce-based at discretion of application

Figure 1: Traditional password-based encryption (TPBE) and flexible password-based encryption
(FPBE), contrasted.

1 Introduction

This paper advances password-based encryption (PBE) to meet the operational and security needs
of contemporary applications like end-to-end secure cloud storage. What we call Flexible password-
based encryption (FPBE) adds support for nonces and associated data; ups the privacy requirement
to IND$; asks for authenticity in addition to privacy; and gives a scheme that is not only proven
secure, but with good bounds. The key challenge, with regard to the latter, is provably resisting
partitioning-oracle attacks [29]. We begin with some background.
Traditional PBE. PBE, currently, is closely identified with the canonical method of doing it.
As rendered in the PKCS#5 standard [26], the method is: to encrypt message M under password
P , pick a random salt S, obtain a key K ← H(P, S) by hashing the salt and password, and return
as ciphertext (S, C) where C ← SE.Enc(K, M) is an encryption of M under K using a conventional
symmetric encryption scheme SE. (We refer to SE as the base scheme.) From this, PBE emerges
simply as randomized symmetric encryption in which the key (shared between sender and receiver)
is a password, and this indeed was the syntax adopted. For this syntax, BRT [12] give a definition
of message-privacy under chosen-plaintext attack, and prove that the canonical scheme meets this
if passwords are unpredictable, the base scheme SE provides privacy and H is a random oracle.
Importantly for what is coming, these results fail to define, or prove, authenticity.

In summary, traditional PBE (which we abbreviate as TPBE) is randomized, privacy-only
encryption with a fresh, per-message salt. We now introduce FPBE. As a quick summary, Figure 1
contrasts TPBE and FPBE.

1.1 Flexible PBE

FPBE involves a new syntax, and security definitions for it, that we discuss in turn. Formal
definitions are in Section 5.
Syntax. Unlike a regular symmetric encryption scheme, an FPBE scheme FPBE has neither a
prescribed key-length nor a key-generation process; the key, now denoted P to connote a password,
can be any string, of any length. (Security will depend on the distribution of P .) Encryption is
deterministic, taking the salt S as input, and now, as in AEAD [39], a nonce N and associated
data A: we write C ← FPBE.Enc(P, S, N, M, A). Decryption recovers as M ← FPBE.Dec(P, S, N,
C, A), with the salt, nonce and associated data being sent out of band.
Security. We consider a multi-user setting where P[i] is the password of user i ∈ {1, . . . , u}. The
distribution on the vector of passwords, denoted PD, captures the strength of choices made and
parameterizes definitions of privacy and authenticity. Then we formalize the following.
1. Privacy. Denoted PIND$, this asks that ciphertexts under the hidden, target password vector

2

are indistinguishable from random strings when the salt S is honestly (randomly) chosen by the
game and known to the adversary, and a nonce is not repeated for a given salt. (The adversary
can at any time ask for a salt refresh, and a nonce is allowed to be reused once this happens.)
The game formalizing this gives oracles Salt (to obtain a fresh salt for a given user) and Enc
(that returns a challenge ciphertext, obtained either by encryption under the password of the
indicated user, or chosen at random).

2. Authenticity. Denoted PAUTH, this asks that it be infeasible to produce S, N, C, A that is
valid — meaning FPBE.Dec(P, S, N, C, A) ̸= ⊥ — except in a trivial way. Note that in the
forgery attempt, the adversary gets to pick the salt; it does not need to be an honest one used
in encryption. The game has oracle Enc return encryptions under the password of the indicated
user, and an oracle Verify that allows the adversary to make multiple forgery attempts.

3. PAE. This captures privacy and authenticity in a single, integrated way. The game gives the
adversary oracles Salt,Enc,Dec where Salt,Enc are like in PIND$ and Dec is similar to
Verify in PAUTH in the real case and returns ⊥ in the ideal case.

PIND$+PAUTH ⇒ PAE. Following [11, 16], we show in Theorem 5.1 that if an FPBE scheme
separately satisfies PIND$ and PAUTH, then it also satisfies PAE. Importantly, this result only
requires PAUTH to hold for a restricted class of adversaries, called sequential; they make all
their Enc,Salt queries before their Verify queries. Nonetheless, PAE holds fully, meaning even
for non-sequential adversaries. This allows us, for PAUTH, to restrict attention to sequential
adversaries, which simplifies proofs.
Features. Our framework allows a salt to be securely reused to encrypt multiple messages, as long
as the nonce is different each time. Associated data could be metadata (such as a file handle) and,
as per [39], is authenticated but not encrypted. Privacy strengthens that of TPBE by requiring
indistinguishability from random rather than indistinguishability of encryptions, which provides
some degree of anonymity. But the main value added is authenticity, not present in TPBE, and
crucial for the applications to which we now turn.

1.2 Motivation and applications

We discuss three motivations or applications for this work.
Securing cloud storage. Almost all cloud storage providers provide some type of encryption
for data at rest. In a first tier, represented by GoogleDrive, DropBox and Microsoft, encryption
is under a key known to the server. More interesting is a second tier of services like MEGA [32]
and Boxcryptor [17] that aim to provide end-to-end secure storage, where the encryption is under
a key known only to the user, so that even the service provider storing the encrypted file cannot
decrypt it. This security goal is coupled with an availability one: a user should be able to access
the server and decrypt her files from any of her devices. A solution has been to encrypt the files
under a user password. This second tier of systems has been highly successful; MEGA alone claims
to be storing 1,000 PB of password-encrypted data [33].

Enormous volumes of data thus are, or will be, password-encrypted for cloud storage. So we
ask, what PBE schemes should we use? The first answer is traditional PBE. But TPBE is a poor
fit for this task because, as we explain below, secure cloud storage doesn’t just require privacy; it
also requires authenticity. TPBE does not provide this; FPBE does.

Why authenticity? In end-to-end security, the intent is to maintain security even when the server
is malicious. (This model reflects a variety of real-world threats. One is insider attacks, mounted by
provider employees. Or, the provider’s systems may be infiltrated by hackers.) Suppose the user has

3

placed on the server a ciphertext C encrypting a file M under the user’s password. In the absence
of authenticity, a malicious server could modify C to another ciphertext C ′ that, when retrieved by
the user, decrypts under the user password to M ′ ̸= M . Considering that in this way the malicious
server could modify financial or personal data, lack of authenticity has critical consequences. The
threat is not merely speculative; there are attacks on MEGA that violate authenticity of stored
encrypted files [6]. Authenticity is thus a core requirement for FPBE.

Besides enhancing security, FPBE can reduce storage cost. Specifically, q messages encrypted
under TPBE with sl-bit random salts add sl · q bits of ciphertext storage overhead. With FPBE,
one can use one random salt, and then a c-bit counter as nonce, for storage overhead sl + qc. The
latter is lower than the former because the counter can be short (say, 16 bits for q ≤ 216) while
salts need to resist collisions so would need to be 128 bits or more.
Modernizing PBE. Symmetric encryption has evolved. Failures of privacy-only schemes lead
to the consensus that the goal should be authenticated encryption [10]. Alongside, randomized
encryption has given way to nonce-based encryption supporting associated data (AEAD) [39]. Part
of our motivation was to reflect these lessons and advances in PBE and align it with AEAD. Thus,
FPBE adds support for nonces and associated data and, most importantly, provides authenticity in
addition to privacy. The PIND$, PAUTH and PAE definitions we give mimic corresponding ones
for AEAD from the literature [11,39].
Provably resisting partitioning-oracle attacks. Recall that TPBE uses a (conventional)
symmetric encryption scheme that we call the base scheme. (Our DtE FPBE scheme will too.) Also
recall that such a base scheme is key-robust (also called key-committing) [1,2,7,22,24] if a ciphertext
is a commitment to the key. Surprising new attacks, called partitioning-oracle attacks [29], exploit
lack of key-robustness in the base scheme to speed up password recovery in the corresponding TPBE
scheme. The attacks need access to decryption capability under the target password and thus,
crucially, cannot be captured or understood within the prior, ind-cpa-style privacy-only frameworks
of PBE [12, 18]. Our FPBE framework fills this gap; the attacks now emerge as aiming to violate
authenticity. This puts us in a position to ask whether presence of key-robustness in the base
scheme provably provides resistance against partitioning-oracle attacks. (We will show that the
answer is yes.)

1.3 Security of the DtE scheme

The DtE scheme. We build FPBE from two ingredients: a conventional AEAD scheme SE [39]
and a password-based key-derivation function (PBKDF) F. Formally our construction is a trans-
form DtE (Derive then Encrypt) that defines FPBE scheme FPBE = DtE[SE, F] as follows:
FPBE.Enc(P, S, N, M, A) derives K ← F(P, S) and returns C ← SE.Enc(K, N, M, A). This ex-
tends BRT [12] and the classical PKCS#5 standard [26] to our setting. Practical choices for the
PBKDF F include PBKDF2 [26], BCRYPT [38], SCRYPT [3,4,35] or Argon2 [15]. Some of our re-
sults assume F is a random oracle [13]. The assumptions on SE vary. The assumptions on passwords
are discussed next.
Password strength. PBE (whether TPBE or FPBE) can only provide security when passwords
are strong, meaning are hard to guess. (This is due to brute-force dictionary attacks.) Proofs for
TPBE [12] made a necessary “password un-guessability” assumption on the password distribution
PD, and this work will do so as well.

The metric for un-guessability is the guessing probability GPPD(q), defined, for any given
integer parameter q ≥ 1, as the maximum, over all (i1, P1), . . . , (iq, Pq), of the probability that
there is some j such that Pj = P[ij] when P←$ PD [12, 42]. It emerges that un-guessability is

4

u qs, qe

q
Th. 6.1 Th. 6.2 Th. 6.3

SE: ind$ SE: auth SE: auth+krob$
xx = pind$ xx = pauth xx = pauth

> 1 > 0 qh qh + min(qv, u) · qh qh + qv

> 1 = 0 qh min(qv, u) · qh qv

= 1 > 0 qh 2qh qh + qv

= 1 = 0 qh qh qv

Figure 2: Security of DtE[SE, F] as a function of password strength. For xx ∈
{pind$, pauth}, our results give bounds of the form Advxx

DtE[SE,F],PD,u(A) ≤ GPPD(q) + δ. The
table shows the value of the number q of password guesses in this bound for privacy (xx = pind$),
authenticity (xx = pauth) when we assume only auth-security of SE (Th. 6.2) and authenticty
when we also assume key-robustness (krob$) of SE (Th. 6.3). Here u is the number of users and
qs, qe, qh the number of Salt,Enc,H queries, respectively, of A. Additionally, in the xx = pauth
case, qv is the number of Verify queries of A. The δ term is secondary and is in the theorem
statements.

not a monolithic assumption; the smaller the number q of guesses, the weaker the assumption. An
important element of our bounds is keeping q as low as possible.

Security of DtE. The scheme we analyze is FPBE = DtE[SE, F] with F(P, S) = H(P, S) where
H is modeled as a random oracle. The analysis can be seen at two levels. The first, more superficial
level, is asymptotic (or qualitative), where we seek to name assumptions that imply security. The
second, technically deeper and in practice more relevant level is concrete (or quantitative), where
we seek to obtain bounds as good as possible. Let us visit these in turn.

Asymptotic security. Assuming passwords are un-guessable, (1) Theorem 6.1 says that if base
scheme SE provides privacy, then FPBE meets our PIND$ definition of privacy for FPBE, (2)
Theorem 6.2 says that if base scheme SE provides authenticity, then FPBE meets our PAUTH
definition of authenticity for FPBE, and (3) Theorem 6.3 says that if base scheme SE provides
both authenticity and key-robustness, then FPBE again meets PAUTH. Item (3), at this level,
looks redundant; why do we add an extra assumption (key-robustness) on SE to obtain the same
conclusion as in (2)? The answer is better concrete security and resistance to partitioning-oracle
attacks, which emerges only at the concrete level we discuss next.

Concrete security. The three above-mentioned theorems bound the advantage of a given ad-
versary A, in violating privacy or authenticity of FPBE = DtE[SE, F], by an expression of the form
GPPD(q) + δ, for a q that depends on adversary resources. The number q of guesses emerges as a
crucial parameter; the lower it is, the better the result. Our quest is to minimize this value. The δ
term in the bound, shown in the theorem statements, will involve advantages of constructed adver-
saries in violating the security of SE, as well as a salt-collision term. It is secondary to GPPD(q)
assuming a long enough salt and secure SE.

The primary adversary resource is the number qh of H queries, corresponding to offline com-
putations of F = H. Other resources are the number qs, qe of queries to the above-mentioned
Salt,Enc oracles, corresponding to the number of encryptions performed, and additionally, for
PAUTH, the number qv of queries to the Verify oracle, representing the number of allowed veri-
fication attempts. Relevant below is that, due to throttling or other mitigations, qv could be very
small and in particular qv ≪ qh.

5

The values of q for our bounds are summarized in Figure 2. For privacy (PIND$) of FPBE,
the bound of Theorem 6.1 is Advpind$

FPBE,PD,u(A) ≤ GPPD(qh) + δ, meaning q = qh. Furthermore,
we show this bound is tight: leveraging the classical brute-force attack, Proposition 8.1 gives an
attack making qh H queries and violating PIND$ with probability about GPPD(qh). This yields a
full picture for privacy.

Authenticity is more involved. Theorems 6.2 and 6.3 give bounds of the form Advpauth
FPBE,PD,u(A)

≤ GPPD(q) + δ. The table of Figure 2 has two segments, with two rows in each. The first segment
is the general case with u users, but a simpler example shows the u = 1 case of the second segment.
In both segments, we consider first the case that encryptions are present (qs, qe > 0). But the case
where they are not (qs = qe = 0) is in fact important; it can arise when FPBE is used in a protocol
aiming for security against dictionary attacks.

We now explain the simplest case, that of the 4th (last) row. While q from Theorem 6.2 is
qh, additionally assuming key-robustness of SE drops it, via Theorem 6.3, to qv, which, as noted
above, is usually significantly smaller than qh due to throttling or other limitations on verification
attempts. The gap is less, but still present, in row 3. The gap is even more stark in the first
segment, where the q given by Theorem 6.2 has a product term min(qv, u) · qh that drops to just
qv with Theorem 6.3.

The conclusion is that key-robustness of SE is significantly improving the quantitative authen-
ticity guarantees for FPBE. This is the proven security against partitioning-oracle attacks that we
have sought.

PAE. We clarify that the above results for PAUTH assume that the adversary is sequential. We
can confine attention to this case due to Theorem 5.1 which (as indicated above) says that PAUTH
for sequential adversaries, combined with PIND$, implies the integrated PAE definition for all (not
necessarily sequential) adversaries. Theorems 6.4 and 6.5 put things together to show PAE for
DtE for unrestricted adversaries.

Bound tightness via attacks. One might worry that the gap above is not real, but rather an
artifact of a loose analysis in Theorem 6.2. In fact, attacks show that our bounds are tight and the
gap is thus real. Moreover, this is where we complete the circle to partitioning-oracle attacks [29].
Proposition 8.2 shows that if SE is not key-robust then these attacks can be used to violate PAUTH
with probability roughly GPPD(q) where q is as shown in the Theorem 6.2 column of Figure 2.
(The actual claim relies on a more fine-grained parameterization.)

Techniques. A possible perception is that security of FPBE = DtE[SE, F] is trivial due to the
following intuition: the key K ← F(P, S) is random so the assumed security of SE yields the
conclusion. This only scratches the surface, and ignores concrete security, which is where the main
subtleties and challenges arise. In particular, the proof of Theorem 6.3 involves new techniques.
The difficulty is that it is not obvious how key-robustness of SE helps improve the bound or how
to exploit it in the proof. The naive analysis would have a password-guessing adversary make
one guess per hash query of the PAUTH adversary A, returning us to the bound of Theorem 6.2.
Very roughly, key-robustness allows us to avoid this by using decryption instead. The proof of
Theorem 6.3 (in Appendix C) relies on a lemma, of possibly independent interest, concerning
authenticity with corruptions (AUTH-C) of SE. A standard hybrid argument shows that AUTH-C
is implied by AUTH with a factor u loss in advantage, where u is the number of users [25]. We
show in Lemma 4.2 that a tight reduction is possible when there are no encryption queries. Despite
the fact that the given adversary A is allowed encryption queries in the PAUTH game, we are able
to reduce to the AUTH-C security of SE in the absence of encryption queries and thence, by the
lemma, tightly to the regular AUTH security of SE.

6

Instantiation. To take advantage of the above results in the form of high-security FPBE schemes,
we need base AEAD schemes SE that provide privacy, authenticity and key-robustness. Attacks
from [2,29] show that current schemes like GCM [20] fail to be key-robust; indeed, this is the basis
of partitioning-oracle attacks. However, key-robust schemes have been provided in [2, 7, 19, 24],
with the last work in particular giving a GCM variant that adds key-robustness with essentially
no overhead. This yields numerous choices of base scheme SE that, when plugged into DtE, yield
efficient, high-security FPBE.
Committing security of DtE. We saw above that DtE preserves privacy and authenticity of
the base symmetric encryption scheme SE. We also show that it does the same for robustness, or
committing security. There are various definitions of robustness or committing security for which
we could show this, but we chose to use the strongest, from [7]. They define CMT-ℓ security
of the base scheme SE for ℓ = 1, 3, 4. We extend these to define PCMT-ℓ security of an FPBE
scheme. Then in Proposition 9.1 we show that if the base scheme SE is CMT-ℓ secure and F is
collision-resistant then the FPBE scheme FPBE = DtE[SE, F] is PCMT-ℓ-secure.

1.4 Extended setting and results

What we have discussed above are, for simplicity, special cases of our definitions and results; the
ones in the body of the paper are more general along several dimensions that we now summarize.

In defining authenticated encryption, we can consider two dimensions. The first dimension
relates to nonce reuse; it is either prohibited (unique-nonce or basic security), or allowed with
the stronger guarantee of nonce-misuse resistance [40], also called advanced security. The second
dimension relates to decryption; in the NBE1 syntax and corresponding AE1 notion of security [11]
the nonce is an explicit decryption input, while in the NBE2 syntax and corresponding, stronger,
AE2 notion of security, it isn’t. With two choices in each of two dimensions, we have four possible
models or definitions. What we discussed above has been the simplest case, namely unique nonces
and NBE1/AE1; this, called AEAD [39], is what was assumed of the base symmetric encryption
scheme, and then extended to FPBE. In the body of the paper, we consider all four models, in
a compact and unified way, first giving a single, parameterized syntax and corresponding security
definitions for regular symmetric encryption and then also for FPBE. Our results are stated and
proved also in a general way, fairly seamlessly covering all these variants. Through DtE and our
results about it, we now obtain FPBE schemes for all four regimes; in particular we can provide
nonce-misuse resistance and AE2 security.

2 Related work

Bellare, Ristenpart and Tessaro (BRT) [12] study PBE in the multi-instance setting, while our
results are in the more classical multi-user setting. Demay, Gaźi, Maurer and Tackmann [18] show
limits on multi-instance security in the constructive cryptography setting.

In the applications we consider, notably end-to-end secure storage, the server can run brute-
force attacks, so security is only possible with strong (un-guessable) passwords. Password hardening
through the use of an auxiliary server [21,27,28] could potentially be added to the system to mitigate
these attacks.

Better password-based key-derivation methods could also make brute-force attacks more ex-
pensive. For example, Argon2 [15], the winner of the 2013–2015 Password Hashing Competition,
and other options like BCRYPT [38] and SCRYPT [3, 4, 35] are designed to be memory-hard or
otherwise computationally expensive so that brute-force (dictionary) attacks are costly. Our results

7

in Section 6 (namely, Theorems 6.1, 6.2, 6.3) model the PBKDF as a random oracle, and results
are expressed in terms of the number of queries qh to the random oracle. The particular PBKDF
determines how expensive these qh queries are for an adversary. We suggest a new property of
PBKDFs, kd security in Section 7, that yields useful results for FPBE in the standard model.

Len, Grubbs and Ristenpart (LGR) [29] introduced the partitioning-oracle attack and imple-
mented a working attack on a PBE application called Shadowsocks [41]. While they observed that
key-robustness can foil the attack, it remained an open question as to how it might provably in-
crease the security of PBE. Our work fills this gap; Theorem 6.3, shows that yes, key-robustness
does concretely improve authenticity (PAUTH) guarantees. In Proposition 8.2 of Section 8, we
additionally prove that the authenticity bound of Theorem 6.2 is tight, using a partitioning-oracle
attack. FPBE thus allows us to resolve how partitioning-oracle attacks and key-robustness fit into
the provable security picture of password-based encryption.

Armour and Cid [5] describe how weak key forgeries can be used to mount partitioning-oracle
attacks. They generalize the setting of LGR [29] and obtain attacks in new settings that are
resistant to the LGR attacks, such as when plaintexts are formatted.

Pijnenburg and Poettering [37] introduce Encrypt-to-Self as a comprehensive model and solution
for secure outsourced storage. Their security requirements are stronger than ours; they aim to
preserve authenticity of data even if the key (password) is compromised, and for this allow the user
to have some amount of local storage for hashes.

Related to robustness, Len, Grubbs and Ristenpart [30] consider AEAD with key identification,
where the decryptor has a list of keys and must identify which one decrypts a given ciphertext.

3 Preliminaries

Notation and terminology. By ε we denote the empty string. By |Z| we denote the length of
a string Z. By x∥y we denote the concatenation of strings x, y. If S is a finite set, then |S| denotes
it size. We say that a set S is length-closed if, for any x ∈ S it is the case that {0, 1}|x| ⊆ S. (This
will be a requirement for message, header, nonce and salt spaces.) A vector V is denoted in bold.
We denote its length by |V| and entry i by V[i] for 1 ≤ i ≤ |V|.

If X is a finite set, we let x←$ X denote picking an element of X uniformly at random and
assigning it to x. Algorithms are deterministic unless otherwise indicated. If A is a deterministic
algorithm, we let y ← A[O1, . . .](x1, . . .) denote running A on inputs x1, . . ., with oracle access to
O1, . . ., and assigning the output to y. An adversary is an algorithm. Running time is worst case,
which for an algorithm with access to oracles means across all possible replies from the oracles. We
use ⊥ (bot) as a special symbol to denote rejection, and it is assumed to not be in {0, 1}∗.

To concisely state our results, it will be helpful to define the function zt (zero test) via zt(q) = 0
if q = 0 and zt(q) = 1 if q ̸= 0. In some of our games and adversaries, we will use an algorithm
Find1 that takes a value S and a vector S to return an integer i ← Find1(S, S) ∈ {0, 1, . . . , |S|}
such that: if S ∈ {S[1], . . . , S[|S|]} then i is the smallest integer such that S[i] = S, and otherwise
i = 0. An extension, algorithm Find2, takes S and a list S1, . . . , Sn of vectors, returning i ←
Find2(S, S1, . . . , Sn) ∈ {0, 1, . . . , n} such that i is the smallest value such that Find1(S, Si) ̸= 0 if
this exists, and otherwise i = 0. That is, Find2 identifies the first vector in which S occurs, if any.
Games. We use the code-based game-playing framework of BR [14]. A game G starts with an
optional Init procedure, followed by a non-negative number of additional procedures called oracles,
and ends with a Fin procedure. Execution of adversary A with game G consists of running A with
oracle access to the game procedures, with the restrictions that A’s first call must be to Init (if
present), its last call must be to Fin, and it can call these procedures at most once. The output of

8

Game Gpg
PD,u

Init:
1 P←$ PD

Test(i, g):
2 If (g = P[i]) then win← true

Fin:
3 Return win

Figure 3: The guessing game for a u-user password distribution PD.

the execution is the output of Fin. By Pr[G(A)] we denote the probability that the execution of
game G with adversary A results in this output being the boolean true.

Note that our adversaries have no output. The role of what in other treatments is the adversary
output is, for us, played by the query to Fin. Different games may have procedures (oracles) with
the same names. If we need to disambiguate, we may write G.O to refer to oracle O of game
G. In games, integer variables, set variables, boolean variables and string variables are assumed
initialized, respectively, to 0, the empty set ∅, the boolean false and ⊥. Tables are initialized with
all entries being ⊥.

Password distributions. A distribution over passwords, PD, returns a u-vector of passwords,
where u, a parameter associated to PD, is the number of users; we write P←$ PD. This is neither a
password-generation algorithm nor a prescription for how to generate passwords; rather it attempts
to model and capture choices that people make. The passwords are not assumed to be independent;
reflecting password choices in practice, they may be arbitrarily correlated. (In particular, a person
may use related passwords for different websites.) We do assume that passwords in a vector are
distinct. (Formally, P[1], . . . , P[u] are all distinct, for all P that may be generated by PD.) This is
because usage of the same password across different users leads to trivial attacks.

Password guessing. We are interested in an adversary’s ability to guess some entry of a password
vector in some number q of tries. Following [12], we measure this via a guessing game. The game
Gpg

PD,u is in Figure 3. A guess is captured by a Test query. Note that the Test oracle returns
no response to the adversary, so that the attack is effectively non-adaptive. For an adversary A,
we define the guessing advantage Advpg

PD,u(A) = Pr[Gpg
PD,u(A)] to be the probability that the game

returns true.
In proofs it is convenient to use the game- and advantage-based definition above. However, the

results are best expressed via an equivalent information-theoretic formulation in terms of guessing
probabilities and min-entropy. For a number q of guesses, we define the guessing probability
GPPD(q) and min-entropy Hq

∞(PD) of PD by

GPPD(q) = 2−Hq
∞(PD) = max

(i1,g1),...,(iq ,gq)
Pr [∃ j : P[ij] = gj :: P←$ PD] .

These definitions of guessing probability and min-entropy for q guesses generalize the ones of [42],
which correspond to the case u = 1 of the above. Now, the relation with the game-based formulation
is that GPPD(q) = maxA Advpg

PD,u(A), where the maximum is over all adversaries A that make q
Test queries.

Note that GPPD(1) is the probability of the most likely password in the vector, and GPPD(q) ≤
q ·GPPD(1). In general, however, GPPD(q) can be quite a bit smaller than q ·GPPD(1), which is
why we consider the more general definition and parameterization by q.

Suppose the entries of P are uniformly and independently distributed over a set of size N ,
subject to being distinct, and 1 ≤ q ≤ N . Then GPPD(q) = q/N . In general, however, there may
not be a simple formula for the guessing probability.

9

Sometimes we are interested in a finer-grained parameterization of the guessing probability,
which, beyond constraining the total number of guesses to some parameter q, also constrains the
number of distinct passwords, and the number of distinct users, to parameters qp, qw, respectively.
Formally we let

GPPD(q, qp, qw) max
(i1,g1),...,(iq ,gq)

Pr [∃ j : P[ij] = gj :: P←$ PD]

where the maximum is taken over all (i1, g1), . . . , (iq, gq) such that |{ gj : 1 ≤ j ≤ q }| ≤ qp and
|{ ij : 1 ≤ j ≤ q }| ≤ qw. The relation with the game-based formulation is that GPPD(q, qp, qw) =
maxA Advpg

PD,u(A), where the maximum is over all adversaries A that make q Test queries which
involve at most qp distinct passwords and at most qw distinct users.

4 The tool: Symmetric encryption

We will be building FPBE schemes from symmetric encryption (SE) schemes and accordingly start
with the latter. We give definitions that are novel, unifying the AE1 (AEAD) and AE2 notions [11]
so that our results can easily apply to both. We give the definition of key-robustness we will assume.
We define authenticity with corruptions and give two lemmas about it that we will use.
SE syntax. A symmetric encryption scheme SE specifies a key length SE.kl ∈ N, nonce space
SE.NS, message space SE.MS, and associated data (header) space SE.AS. These spaces are as-
sumed to be length-closed. Deterministic encryption algorithm SE.Enc : {0, 1}SE.kl × SE.NS ×
SE.MS × SE.AS → {0, 1}∗ returns a ciphertext C ← SE.Enc(K, N, M, A) that is a string of length
SE.cl(|M |) ≥ |M |, where SE.cl : N→ N is the ciphertext-length function. Deterministic decryption
algorithm SE.Dec : {0, 1}SE.kl × SE.NIS× {0, 1}∗ × SE.AS→ SE.MS ∪ {⊥} returns an output M ←
SE.Dec(K, I, C, A) that is either a string in SE.MS or is ⊥, where SE.NIS is the nonce-information
space. Decryption correctness requires that SE.Dec(K, SE.NI(N), SE.Enc(K, N, M, A), A) = M for
all K ∈ {0, 1}SE.kl, N ∈ SE.NS, M ∈ SE.MS and A ∈ SE.AS, where SE.NI : SE.NS → SE.NIS is the
nonce-information function.

The purpose of nonce-information (SE.NI, SE.NIS) is to allow us to recover the NBE1 [39] and
NBE2 [11] syntaxes as special cases, as follows. When SE.NI(N) = N and SE.NIS = SE.NS, the
decryption algorithm is getting the nonce as input, which means we have the NBE1 syntax. When
SE.NI(N) = ε and SE.NIS = {ε}, the decryption algorithm gets no information about the nonce,
and we have the NBE2 syntax. Our definition allows us to unify the two and give results that apply
to both. More generally it allows us to consider decryption having partial information about the
nonce.
Security games and adversary classes. There are two levels of security. The basic one re-
quires that an encryption nonce not be reused by a particular user. The advanced one is nonce-
misuse resistance, which drops this condition. We want our definitions and results to cover both in
as compact and unified a way as possible. For this we follow [11] by giving a single game per secu-
rity goal and then seeing basic and advanced security as restricting the adversary to an appropriate
class, either Ab (basic) or Aa (advanced).

The goals (games) we consider are privacy (IND$), authenticity (AUTH) and joint privacy+auth-
enticity (AE). For each, there is basic and advanced security. Known results [11, 16] say that
IND$+AUTH is equivalent to AE (a scheme meets both IND$ and AUTH iff it meets AE) for both
basic and advanced security, and this is true even when AUTH is restricted to adversaries that are
sequential, meaning make their Verify queries after their Enc queries. We let Aseq be the class
of sequential adversaries.

10

Game Gind$
SE,u

Init:
1 d←$ {0, 1} ; un← true
2 For i = 1, . . . , u do
3 Ki←$ {0, 1}SE.kl

Enc(i, N, M, A):
4 Require: CT[i, N, M, A] = ⊥
5 If (N ∈ UNi) then un← false
6 UNi ← UNi ∪ {N}
7 C1 ← SE.Enc(Ki, N, M, A)
8 C0←$ {0, 1}SE.cl(|M|)

9 CT[i, N, M, A]← Cd

10 Return Cd

Fin(d′):
11 Return (d′ = d)

Game Gauth
SE,u

Init:
1 un← true
2 For i = 1, . . . , u do
3 Ki←$ {0, 1}SE.kl

Enc(i, N, M, A):
4 If (N ∈ UNi) then un← false
5 UNi ← UNi ∪ {N}
6 C ← SE.Enc(Ki, N, M, A)
7 MT[i, SE.NI(N), C, A]←M

8 Return C

Verify(i, I, C, A):
9 If (MT[i, I, C, A] ̸= ⊥) then

10 return ⊥
11 M ← SE.Dec(Ki, I, C, A)
12 If (M ̸= ⊥) then win← true
13 Return (M ̸= ⊥)

Fin:
14 Return win

Figure 4: Games defining IND$ (left) and AUTH (right) security for symmetric encryption scheme
SE over u users.

Games will use a flag un, for “unique nonce,” that begins true. An adversary A is in the class
Ab if its execution with the game never sets un to false. Aa is simply the class of all adversaries,
meaning ones setting un to false are included. Games will at various points assert Require: some
condition, which means that all adversaries must obey this condition. This will be used to rule out
trivial wins. We now proceed to the particular definitions.

SE privacy. This is defined via game Gind$
SE,u in the left panel of Figure 4, where u is the number of

users. (This is the multi-user setting.) If A is an adversary, we let Advind$
SE,u(A) = 2 Pr[Gind$

SE,u(A)]−1
be its advantage.

SE authenticity. This is defined via game Gauth
SE,u in the right panel of Figure 4, where u is the

number of users. If A is an adversary, we let Advauth
SE,u(A) = Pr[Gauth

SE,u(A)] be its advantage.

Authenticity under corruptions. This is an extended form of authenticity defined via game
Gauth-c

SE,u of Figure 5, where u is the number of users. The new element is the Expose oracle that
allows the adversary to obtain they key of a user i. We let Advauth-c

SE,u (A) = Pr[Gauth-c
SE,u (A)] be the

advantage of adversary A.
We consider authenticity under corruptions because we will use it in the proof of Theorem 6.3.

However, the following lemmas say that it is implied by regular authenticity and thus is not an
additional assumption on SE. The first lemma, which gives up a factor of the number of users u,
is implied by [25]. For completeness we give a proof in Appendix A.

11

Game Gauth-c
SE,u

Verify(i, I, C, A):
1 If ((MT[i, I, C, A] ̸= ⊥) or i ∈ EU) then return ⊥
2 M ← SE.Dec(Ki, I, C, A)
3 If (M ̸= ⊥) then win← true
4 Return (M ̸= ⊥)

Expose(i):
5 EU← EU ∪ {i}
6 Return Ki

Figure 5: Game defining authenticity under corruptions for symmetric encryption scheme SE over
u users. The procedures Init,Enc,Fin are as in the right panel of Figure 4.

Game Gkrob$
SE,q,γ

Init:
1 For i = 1, . . . , q do Ki←$ {0, 1}SE.kl

2 Return K1, . . . , Kq

Fin(I, C, A):
3 For i = 1, . . . , q do di ← (SE.Dec(Ki, I, C, A) ̸= ⊥)
4 Return (∃ S ⊆ [1..q] : |S| = γ ∧ (∀ i ∈ S : di = true))

Figure 6: Game defining γ-way key-robustness for q keys for SE scheme SE.

Lemma 4.1 Let SE be a symmetric encryption scheme and u ≥ 1 a number of users. Let y ∈ {b, a}.
Suppose Aauth-c ∈ Ay is an adversary making qe Enc queries and qv Verify queries per user in
the Gauth-c

SE,u game. Then we can construct an adversary Aauth ∈ Ay such that

Advauth-c
SE,u (Aauth-c) ≤ u ·Advauth

SE,1(Aauth) . (1)

Adversary Aauth makes qe Enc and qv Verify queries. The running time of Aauth is close to that
of Aauth-c. If Aauth is sequential, so is Aauth-c.

Our next lemma, which is novel, shows that the factor u blowup above can be reduced to a
constant in the absence of encryption queries. We will exploit this for Theorem 6.3. The proof is
in Appendix A.

Lemma 4.2 Let SE be a symmetric encryption scheme and u ≥ 1 a number of users. Let y ∈ {b, a}.
Suppose Aauth-c ∈ Ay is an adversary making qv Verify queries per user, and no Enc queries, in
the Gauth-c

SE,u game. Then we can construct an adversary Aauth ∈ Ay such that

Advauth-c
SE,u (Aauth-c) ≤ 2 ·Advauth

SE,u(Aauth) . (2)

Adversary Aauth makes qv Verify queries and no Enc queries. The running time of Aauth is close
to that of Aauth-c. If Aauth is sequential, so is Aauth-c.

Key-robustness. Theorem 6.3 will also assume key-robustness of a symmetric encryption scheme
SE. This is defined via game Gkrob$

SE,q,γ of Figure 6 associated to scheme SE, number of keys q and
size γ of the target collision. If A is an adversary, we let Advkrob$

SE,q,γ(A) = Pr[Gkrob$
SE,q,γ(A)] be its

advantage. Security for γ = 2 implies it for higher γ, but we directly consider the latter because it

12

arises in partitioning-oracle attacks [29] and can be proved with better bounds [7]. The “$” in the
notation indicates the random choice of keys at line 1. This choice makes our notion weaker than
others in the literature [1, 2, 7, 22, 24], but this makes our results stronger because they assume a
key-robust scheme and the less that is assumed, the better.

5 The goal: Flexible password-based encryption

We give formal definitions for the FPBE primitive that we introduce. We define both privacy and
authenticity, as well as joint authenticated encryption (PAE). In Appendix B, we complete the
proof that PAE for FPBE is equivalent to privacy+authenticity. While PAE is the overarching
security goal for FPBE, considering privacy and authenticity separately in turn results in more
straightforward theorem statements and proofs.
FPBE syntax. A scheme FPBE specifies the following objects and algorithms. The key space
is FPBE.KS = {0, 1}∗, meaning any string, representing a password and thus denoted P , can
function as the key. We introduce a salt space, FPBE.SS, and as in SE, use nonce, associated
data (header), and message spaces. These spaces are assumed to be length-closed. Deterministic
encryption algorithm FPBE.Enc : FPBE.KS×FPBE.SS×FPBE.NS×FPBE.MS×FPBE.AS→ {0, 1}∗
returns a ciphertext C ← FPBE.Enc(P, S, N, M, A) that is a string of length FPBE.cl(|M |) ≥
|M |. Deterministic decryption algorithm FPBE.Dec : FPBE.KS× FPBE.SS× FPBE.NIS× {0, 1}∗ ×
FPBE.AS→ FPBE.MS∪{⊥} returns an output M ← FPBE.Dec(P, S, I, C, A) that is either a string
in FPBE.MS or is ⊥. Decryption correctness requires that FPBE.Dec(P, S, FPBE.NI(N), FPBE.Enc(
P, S, N, M, A), A) = M for all P ∈ FPBE.KS, S ∈ FPBE.SS, N ∈ FPBE.NS, M ∈ FPBE.MS and
A ∈ FPBE.AS, where FPBE.NI : FPBE.NS→ FPBE.NIS is the nonce-information function.
Salts versus nonces. One may ask why have both a salt and a nonce. In particular, if there
is a nonce, why do we also need a salt? The purpose of a salt in password-based encryption is
to preclude pre-computation in brute-force attacks, forcing the attacker to do dictionary-size, per-
user online work. Nonces will not accomplish this since they can be predictable and the same
for different users, so we retain the salt. Then one may ask, why the nonce? One benefit is a
shorter amortized ciphertext length, leading to reduced storage cost in cloud encryption. Suppose
q messages M1, . . . , Mq are encrypted and the ciphertexts C1, . . . , Cq are stored on the server. First
consider encryption under TPBE (traditional PBE, which has a per-message random salt but no
nonce). The salts have to be stored with the ciphertexts to allow decryption. If sl is the salt length,
the storage overhead is sl · q. Now consider using FPBE, where the user picks one random salt S
and encrypts Mi with S and, as nonce, ⟨i⟩c, a c-bit encoding of the integer i. Now one stores the
single salt, and the per-message nonce, so the storage overhead is sl + qc. The latter is lower than
sl · q because c can be small (say, 16 bits for q ≤ 216) while salts need to resist collisions so need to
be 128 bits or more. In fact one can do even better. Seeing the nonce as given by the index i of
the ciphertext in the list C1, . . . , Cq, only the single salt needs to be stored, for storage overhead sl.
Security games and adversary classes. We aim to bring PBE in line with modern symmetric
encryption by treating both basic and advanced security. As above, we give a single game per
security goal and then restrict to adversary classes that we continue to denote Ab (basic) or Aa
(advanced) but are redefined for the password-based case. Again, the goals we consider are privacy
(PIND$), authenticity (PAUTH) and joint privacy+authenticity (PAE). Games will again use a
flag un, for “unique nonce,” and adversary A is in the class Ab if its execution with the game
never sets un to false. Aa is simply the class of all adversaries. We now proceed to the particular
definitions.

13

Game Gpind$
FPBE,PD,u

Init:
1 d←$ {0, 1} ; un← true
2 P←$ PD // u-vector of passwords

Enc(i, N, M, A):
3 Require: s(i) ̸= 0
4 Require: CT[i, s(i), N, M, A] = ⊥
5 If (N ∈ UNi,s(i)) then un← false
6 UNi,s(i) ← UNi,s(i) ∪ {N}
7 C1 ← FPBE.Enc(P[i], Si, N, M, A)
8 C0←$ {0, 1}FPBE.cl(|M|)

9 CT[i, s(i), N, M, A]← Cd

10 Return Cd

Salt(i):
11 s(i)← s(i) + 1 ; Si←$ FPBE.SS
12 Return Si

Fin(d′):
13 Return (d′ = d)

Game Gpauth
FPBE,PD,u

Init:
1 un← true
2 P←$ PD // u-vector of passwords

Enc(i, N, M, A):
3 Require: s(i) ̸= 0
4 If (N ∈ UNi,s(i)) then un← false
5 UNi,s(i) ← UNi,s(i) ∪ {N}
6 C ← FPBE.Enc(P[i], Si, N, M, A)
7 MT[i, Si, FPBE.NI(N), C, A]←M

8 Return C

Verify(i, S, I, C, A):
9 If (MT[i, S, I, C, A] ̸= ⊥) then

10 return ⊥
11 M ← FPBE.Dec(P[i], S, I, C, A)
12 If (M ̸= ⊥) then win← true
13 Return (M ̸= ⊥)

Salt(i):
14 s(i)← s(i) + 1 ; Si←$ FPBE.SS
15 Return Si

Fin:
16 Return win

Figure 7: Games defining PIND$ (left) and PAUTH (right) security for FPBE scheme FPBE over
u users.

FPBE privacy. Let PD be a distribution over passwords, as above, for u users. Then privacy
is defined by game Gpind$

FPBE,PD,u of Figure 7. If A is an adversary, we let Advpind$
FPBE,PD,u(A) =

2 Pr[Gpind$
FPBE,PD,u(A)]− 1 be its advantage.

FPBE authenticity. Let PD be a distribution over u-vectors of passwords. Authenticity is
defined by game Gpauth

FPBE,PD,u on the right of Figure 7. If A is an adversary, we let Advpauth
FPBE,PD,u(A) =

Pr[Gpauth
FPBE,PD,u(A)] be its advantage.

In this setting, we call an adversary sequential if all its Verify queries come after all its Salt
and Enc queries. We continue to denote the class of such adversaries as Aseq. Theorem 5.1 allows
us to restrict attention to sequential adversaries when proving PAUTH.

FPBE authenticated encryption. For a password distribution PD over u users, authenticated
encryption (PAE) is defined by game Gpae

FPBE,PD,u of Figure 8. For an FPBE scheme, the advantage
of an adversary A is Advpae

FPBE,PD,u(A) = 2 Pr[Gpae
FPBE,PD,u(A)]− 1.

Recall that results from [11,16] say that if a standard symmetric encryption scheme SE is both
IND$-secure and AUTH-secure then it is also AE-secure, and moreover this is true even if AUTH is
assumed only for sequential adversaries. In the following theorem we give the analogue of this result
for FPBE. Namely, the theorem says that if FPBE is both PIND$-secure and PAUTH-secure, then

14

Game Gpae
FPBE,PD,u

Init:
1 d←$ {0, 1} ; un← true
2 P←$ PD // u-vector of passwords

Enc(i, N, M, A):
3 Require: s(i) ̸= 0
4 Require: CT[i, s(i), N, M, A] = ⊥
5 If (N ∈ UNi,s(i)) then un← false
6 UNi,s(i) ← UNi,s(i) ∪ {N}
7 C1 ← FPBE.Enc(P[i], Si, N, M, A)
8 C0←$ {0, 1}FPBE.cl(|M|)

9 CT[i, s(i), N, M, A]← Cd

10 MT[i, Si, FPBE.NI(N), Cd, A]←M

11 Return Cd

Dec(i, S, I, C, A):
12 If (MT[i, S, I, C, A] ̸= ⊥) then
13 return MT[i, S, I, C, A]
14 If (d = 0) then return ⊥
15 M ← FPBE.Dec(P[i], S, I, C, A)
16 Return M

Salt(i):
17 s(i)← s(i) + 1 ; Si←$ FPBE.SS
18 Return Si

Fin(d′):
19 Return (d′ = d)

Figure 8: Game defining PAE security for FPBE over u users.

it is also PAE-secure, and this is true even if PAUTH is assumed only for sequential adversaries.
This result allows us, in later analyses of PAUTH, to restrict attention to sequential adversaries,
and thereby simplify analyses and proofs. The proof of the following, which is in Appendix B,
follows the proof of [11].

Theorem 5.1 Let FPBE be an FPBE scheme over u ≥ 1 users, password distribution PD, and
salt length sl ≥ 1, with access to a random oracle H : D → R. Let y ∈ {b, a}. Suppose A ∈ Ay
is an adversary making qs Salt queries, qe Enc queries, qd Dec queries and qh H queries in
the Gpae

FPBE,PD,u game in the ROM. Then we can construct adversaries Apind$ ∈ Ay and Apauth ∈
Ay ∩Aseq in the ROM such that

Advpae
FPBE,PD,u(A) ≤ Advpind$

FPBE,PD,u(Apind$) + 2 ·Advpauth
FPBE,PD,u(Apauth) . (3)

The running times of Apind$, Apauth are close to that of A. Apind$ makes qs, qe Salt,Enc queries,
respectively while Apauth makes qs, qe, qd Salt,Enc,Verify queries, respectively. Both Apind$ and
Apauth make qh H queries.

Theorem 5.1 allows us to prove PAE (the end goal of FPBE) by proving PIND$ and PAUTH
independently, which simplifies proofs. Most importantly, it demonstrates the utility of defining
sequential adversaries. Crucially, we make no restriction on whether the PAE adversary A is
sequential or not; A can be non-sequential. Despite this, the constructed adversary Apauth always
is sequential. This means we need to prove PAUTH only for sequential adversaries, a simplification
we take advantage of in Theorems 6.2, 6.3.

The above theorem is stated in the random oracle model because our later results will be;
however the statement holds in the standard model as well. We note that the other direction,
PAE ⇒ PIND$ + PAUTH also holds, and is a simple proof that we omit; an adversary breaking
PIND$ or PAUTH can already break PAE with little change beyond notation.

15

Algorithm FPBE.Enc(P, S, N, M, A):

1 K ← F(P, S)
2 C ← SE.Enc(K, N, M, A)
3 Return C

Algorithm FPBE.Dec(P, S, I, C, A):

4 K ← F(P, S)
5 M ← SE.Dec(K, I, C, A)
6 Return M

Figure 9: Encryption and decryption algorithms of the scheme FPBE = DtE[SE, F] constructed
from symmetric encryption scheme SE and PBKDF F via the DtE transform.

6 Security of the DtE scheme

DtE transform. We specify a transform DtE that, given a symmetric encryption scheme SE and
a function F : {0, 1}∗×{0, 1}sl → {0, 1}SE.kl, returns a password-based scheme FPBE = DtE[SE, F].
The name DtE stands for “derive-then-encrypt.” The encryption and decryption algorithms of
FPBE are shown in Figure 9. The salt space is FPBE.SS = {0, 1}sl. The message, nonce and header
spaces are those of SE, as is the nonce-information algorithm. We refer to F as the password-based
key-derivation function (PBKDF). Choices include PBKDF2 [26], BCRYPT [38], SCRYPT [3,4,35]
or Argon2 [15]. The results in this section model F as a random oracle [13], but some of the overlying
results (Theorems 7.1, 7.2) are under a standard-model assumption on F.
Privacy of DtE. The following theorem says that if the base scheme SE is IND$-secure and
the password distribution PD has low guessing probability then the constructed scheme FPBE =
DtE[SE, F] is PIND$-secure when F is modeled as a random oracle.

Theorem 6.1 Let SE be a symmetric encryption scheme and let PBKDF F : {0, 1}∗ × {0, 1}sl →
{0, 1}SE.kl be defined by F[H](P, S) = H(P, S), where we model H : {0, 1}∗×{0, 1}sl → {0, 1}SE.kl as
a random oracle. Let FPBE = DtE[SE, F]. Let PD be a password distribution for u ≥ 1 users. Let
y ∈ {b, a}. Suppose A ∈ Ay is an adversary making qs, qe, qh queries to its Salt,Enc,H oracles,
respectively, in the Gpind$

FPBE,PD,u game in the ROM. Then we can construct an adversary ASE ∈ Ay
such that

Advpind$
FPBE,PD,u(A) ≤ GPPD(qh) + Advind$

SE,qs
(ASE) + qs(qs − 1)

2sl . (4)

Adversary ASE makes qe Enc queries and has running time close to that of A.

The proof of Theorem 6.1 is obtained by combining Theorems 7.1 and 7.3, and is given at the end
of Section 7. Note that in Theorem 6.1 the assumed IND$ security of SE is for a number of users
that is equal to the number qs of Salt queries of A, with ASE making qe Enc queries across all
these users.
Authenticity of DtE. Our first authenticity theorem says that if the base scheme SE is AUTH-
secure and PD has low guessing probability, then the derived scheme FPBE = DtE[SE, F] is PAUTH-
secure when F is modeled as a random oracle. The statement below uses the extended parameteri-
zation of the guessing probability; in Section 1 we had discussed only the q parameter. We assume
A ∈ Aseq, meaning A is sequential, which is justified by Theorem 5.1.

Theorem 6.2 Let SE be a symmetric encryption scheme and let PBKDF F : {0, 1}∗ × {0, 1}sl →
{0, 1}SE.kl be defined by F[H](P, S) = H(P, S), where we model H : {0, 1}∗×{0, 1}sl → {0, 1}SE.kl as
a random oracle. Let FPBE = DtE[SE, F]. Let PD be a password distribution for u ≥ 1 users. Let
y ∈ {b, a}. Suppose A ∈ Ay ∩ Aseq is a sequential adversary making qs, qv, qh queries to its Salt,

16

Verify,H oracles, respectively, in the Gpauth
FPBE,PD,u game in the ROM. Then we can construct an

adversary ASE ∈ Ay ∩Aseq such that

Advpauth
FPBE,PD,u(A) ≤ GPPD(q, qh, qw) + Advauth

SE,qs+qv
(ASE) + qs(qs − 1)

2sl , (5)

where qw = min(qs + qv, u) and q = zt(qs) · qh + min(qv, u) · qh. Adversary ASE makes the same
number of Enc and Verify queries as A, and has running time close to that of A.

The proof of Theorem 6.2, given at the end of Section 7, is obtained by combining Theorems 7.2
and 7.3. We note that the security of FPBE over u users is based on the security of SE over qs + qv

users, corresponding to keys arising from salts in Salt or Verify queries.
Better authenticity from key-robustness. Our second authenticity result strengthens the
first by showing that if the base scheme additionally is key-robust then the strength of passwords
required to guarantee authenticity is reduced. This shows up in the guessing probability term of the
bound. The authenticity-under-corruptions term Advauth-c

SE,qh
(Aauth-c) below can be tightly bounded

using standard authenticity via Lemma 4.2, exploiting the fact that the constructed adversary
Aauth-c makes no Enc queries. Recall that zt(qs) is 0 if qs = 0 and is 1 otherwise. As before we
assume A ∈ Aseq, meaning A below is sequential, which is justified by Theorem 5.1.

Theorem 6.3 Let SE be a symmetric encryption scheme and let PBKDF F : {0, 1}∗ × {0, 1}sl →
{0, 1}SE.kl be defined by F[H](P, S) = H(P, S), where we model H : {0, 1}∗ × {0, 1}sl → {0, 1}SE.kl

as a random oracle. Let FPBE = DtE[SE, F]. Let PD be a password distribution for u ≥ 1 users.
Let γ ≥ 2 be the key-robustness width parameter. Let y ∈ {b, a}. Suppose A ∈ Ay ∩ Aseq is a
sequential adversary making qs, qe, qv, qh queries to its Salt,Enc,Verify,H oracles, respectively,
in the Gpauth

FPBE,PD,u game in the ROM. Then we can construct an adversary Akrob$, and adversaries
Aauth, Aauth-c ∈ Ay ∩Aseq, such that

Advpauth
FPBE,PD,u(A) ≤ GPPD(zt(qs) · qh + (γ−1) · qv) + qs(qs − 1) · 2−sl−1

+ Advkrob$
SE,qh,γ(Akrob$) + Advauth

SE,qs+qv
(Aauth) + Advauth-c

SE,qh
(Aauth-c) . (6)

Adversaries Aauth, Aauth-c make qv, qh Verify queries, respectively. Aauth makes qe Enc queries,
but Aauth-c makes none. The running times of Aauth, Aauth-c, Akrob$ are close to that of A.

The simplest choice for parameter γ above is γ = 2, which is what we assumed in Section 1 and
Figure 2. We are more general in Theorem 6.3 because there are schemes SE for which slightly
increasing γ, even from 2 to 3, will significantly reduce Advkrob$

SE,qh,γ(Akrob$) [7], and one may benefit
from this tradeoff. We prove Theorem 6.3 in Appendix C.
Authenticated encryption from DtE. Given the above theorems on the privacy and authen-
ticity of DtE, and Theorem 5.1 showing the equivalence of PAE and privacy+authenticity, we can
consider the impact of key-robustness on PAE overall. The first theorem below combines Theo-
rems 6.1 and 6.2, along with Theorem 5.1. Note that the given adversary A is not restricted to be
sequential.

Theorem 6.4 Let SE be a symmetric encryption scheme and let PBKDF F : {0, 1}∗ × {0, 1}sl →
{0, 1}SE.kl be defined by F[H](P, S) = H(P, S), where we model H : {0, 1}∗×{0, 1}sl → {0, 1}SE.kl as
a random oracle. Let FPBE = DtE[SE, F]. Let PD be a password distribution for u ≥ 1 users. Let
y ∈ {b, a}. Suppose A ∈ Ay is an adversary making qs, qe, qd, qh queries to its Salt,Enc,Dec,H

17

oracles, respectively, in the Gpae
FPBE,PD,u game in the ROM. Then we can construct adversaries

Aind$ ∈ Ay and Aauth ∈ Ay ∩Aseq such that

Advpae
FPBE,PD,u(A) ≤ GPPD(qh) + 2 ·GPPD(q, qh, qw) + 3qs(qs − 1)

2sl

+ Advind$
SE,qs

(Aind$) + 2 ·Advauth
SE,qs+qd

(Aauth) , (7)

where qw = min(qs + qd, u) and q = zt(qs) · qh + min(qd, u) · qh. Adversary Aind$ makes qe Enc
queries and adversary Aauth makes qe, qd Enc,Verify queries. The running times of Aind$, Aauth
are close to that of A.

Our next theorem reconsiders PAE using the authenticity bound in Theorem 6.3 rather than
that in Theorem 6.2. Again the given adversary A is not restricted to be sequential. We see that
in our goal to minimize the guessing probability parameter in PAE, the most influential term is
2 ·GPPD(q) for a particular q that arises from authenticity. PAE thus maintains the benefits of
key-robustness as discussed in Section 1 and Figure 2.

Theorem 6.5 Let SE be a symmetric encryption scheme and let PBKDF F : {0, 1}∗ × {0, 1}sl →
{0, 1}SE.kl be defined by F[H](P, S) = H(P, S), where we model H : {0, 1}∗ × {0, 1}sl → {0, 1}SE.kl

as a random oracle. Let FPBE = DtE[SE, F]. Let PD be a password distribution for u ≥ 1 users.
Let γ ≥ 2 be the key-robustness width parameter. Let y ∈ {b, a}. Suppose A ∈ Ay is an adversary
making qs, qe, qd, qh queries to its Salt,Enc,Dec,H oracles, respectively, in the Gpae

FPBE,PD,u game
in the ROM. Then we can construct adversaries Akrob$, Aind$ ∈ Ay and Aauth, Aauth-c ∈ Ay ∩Aseq
such that

Advpae
FPBE,PD,u(A) ≤ GPPD(qh) + 2 ·GPPD(zt(qs) · qh + (γ−1) · qd) + qs(qs − 1)

2sl−1

+ Advind$
SE,qs

(Aind$) + 2 ·Advkrob$
SE,qh,γ(Akrob$)

+ 2 ·Advauth
SE,qs+qd

(Aauth) + 2 ·Advauth-c
SE,qh

(Aauth-c) . (8)

Adversaries Aauth, Aauth-c make qd, qh Verify queries, respectively. Adversary Aind$ makes qe Enc
queries, and Aauth makes qe Enc queries, but Aauth-c makes none. Their running times, and that
of Akrob$, are close to that of A.

Tightness of bounds via attacks. The bounds in Theorems 6.1, 6.2 and 6.3 all involve a term
GPPD(q) or GPPD(q, qh, qw) for parameters q, qw that vary across the results. Our quest to under-
stand the strength of the password needed for the security of FPBE = DtE[SE, F] comes down to
the question of whether these parameters are optimal. In Section 8 , we assess this by consideration
of attacks. Briefly, we find that they are indeed essentially optimal in all our theorems, in some
cases due to the classical brute-force attack and in other cases due to partitioning-oracle attacks.

7 Proving DtE security via composition and PBKDFs

We give new definitions for password-based key-derivation functions (PBKDFs). Then we give
composition theorems that show that if F meets our definition then DtE[SE, F] retains both the
privacy and authenticity of SE. We then analyze security, under our definition, of a PBKDF modeled
as a random oracle, with particular attention to minimizing the number of password guessing queries
used to bound adversary advantage. Putting all this together will yield Theorems 6.1 and 6.2 (of
Section 6) as corollaries, avoiding ad hoc proofs of the same.

18

Game Gkd
F,PD,u

Init:
1 d←$ {0, 1} ; P←$ PD

RIO(i):
2 S←$ {0, 1}sl

3 K1 ← F(P[i], S) ; K0←$ {0, 1}kl ; FT[i, S]← Kd ; Return (S, Kd)

CIO(i, S):
4 If (FT[i, S] ̸= ⊥) then return FT[i, S]
5 K1 ← F(P[i], S) ; K0←$ {0, 1}kl ; FT[i, S]← Kd ; Return Kd

Fin(d′):
6 Return (d′ = d)

Figure 10: Game defining kd-security of PBKDF F relative to u-user password space PD.

PBKDF syntax. A PBKDF F : {0, 1}∗ × {0, 1}sl → {0, 1}kl takes a password P and an input S
(the notation reflecting that in our usage it will be the salt) to deterministically return an output
F(P, S). (In our usage, the derived symmetric key.) In the random oracle model, F will have oracle
access to a random function H :D → R where D,R could depend on the scheme. In Theorems 6.1,
6.2 and 7.3, D = {0, 1}∗ × {0, 1}sl and R = {0, 1}SE.kl, where kl is the key length of the underlying
scheme SE.

PBKDF security. Security of a PBKDF F is measured, not in isolation, but relative to a u-user
password distribution PD from which passwords are drawn. The game, denoted Gkd

F,PD,u, is in
Figure 10, and the kd-advantage of adversary AF is Advkd

F,PD,u(AF) = 2 Pr[Gkd
F,PD,u(AF)] − 1. We

refer to RIO,CIO as the random-input oracle and chosen-input oracle respectively. Oracle RIO is
queried with just a user index i. The game picks a random input S and returns either F(P[i], S)
or a random string, depending on the challenge bit d. It also returns the input S. Oracle CIO is
queried with both a user index and an input S (the chosen input) and then returns either F(P[i], S)
or a random string, depending on d. In the ROM, the game adds a procedure H for the random
oracle.

Intuitively, kd-security is asking for prf-security in a multi-user setting in which the keys are
passwords, and passwords of different users may be related. This can be seen as a form of security
under related-key attack [9], correlated-input hash functions [23] or UCE [8]. Oracle CIO is the
usual one for a prf-like setting, while RIO can be seen as representing weak-PRF security [34,36].

A natural question is, isn’t RIO redundant given CIO? Indeed, queries to the former can be
simulated via queries to the latter. This means RIO can be dropped without a qualitative change in
the kd notion, but quantitatively there is an important difference that is a key point of Theorem 7.3,
namely that RIO queries are “cheaper” in the sense that the number of password guesses needed to
bound adversary advantage is less for RIO queries than for CIO queries. Eventually, this translates
to better proven quantitative security guarantees for privacy than for authenticity for FPBE.

We say that adversary AF is sequential if it makes its CIO queries after its RIO queries. (That
is, once the first CIO query has been made, no further RIO queries are allowed.) It will suffice to
prove kd-security of F (as in Theorem 7.3) for sequential adversaries because that is all we need for
our applications, as simplified by Theorem 5.1.

BRT [12] give a simulation-based definition of security for PBKDFs that is related to the

19

indifferentiability framework of [31]. We are giving a somewhat simpler and more direct version of
their definition (no simulator) that can be used in both the standard and random-oracle models,
and we are also introducing the distinction between CIO and RIO queries.
Composition theorems. The benefit of abstracting the security of the PBKDF via kd-security
is that we can see FPBE = DtE[SE, F] as obtained by composing a PBKDF F with an SE scheme
SE, and give modular security proofs for FPBE via composition theorems. In this vein, our first
composition theorem says that if the base scheme SE is IND$-secure and F is kd-secure relative to
password distribution PD, then FPBE = DtE[SE, F] is PIND$-secure relative to PD. To facilitate
the application to deriving Theorem 6.1, F is allowed access to a random oracle H that is provided
in game Gkd

F,PD,u and inherited in game Gpind$
FPBE,PD,u.

Theorem 7.1 Let SE be a symmetric encryption scheme. Let F : {0, 1}∗ × {0, 1}sl → {0, 1}SE.kl

be a PBKDF with access to a random oracle H :D → R. Let FPBE = DtE[SE, F]. Let PD be a
password distribution for u ≥ 1 users. Let y ∈ {b, a}. Suppose A ∈ Ay is an adversary making
qs, qe, qh queries to its Salt,Enc,H oracles, respectively, in the Gpind$

FPBE,PD,u game in the ROM.
Then we can construct adversaries ASE ∈ Ay and AF such that

Advpind$
FPBE,PD,u(A) ≤ Advind$

SE,qs
(ASE) + Advkd

F,PD,u(AF) . (9)

Adversary ASE makes qe Enc queries. Adversary AF makes qs, 0, qh queries to its RIO,CIO,H
oracles, respectively. The running times of ASE, AF are close to that of A.

As Eq. (9) indicates, we need IND$ security of SE in the presence of qs users. (To each user-salt
pair, the PBKDF associates a fresh key for SE, effectively creating a fresh user for SE.) We note
that the kd-security of F is needed only for RIO queries, not CIO queries. The proof follows the
natural paradigm in which we move from the real game G1 to a game G2 in which the outputs of
F are replaced by random keys. The assumed kd-security of F means that the adversary will not
notice this move. The assumed IND$ security of SE then allows us to move from G2 to a game G0
where ciphertexts are random strings. A full proof of Theorem 7.1 is in Appendix D.

Analogously, our second composition theorem says that if the base scheme SE is AUTH-secure
and F is kd-secure relative to password distribution PD, then FPBE = DtE[SE, F] is PAUTH-secure
relative to PD. A novel element relative to Theorem 7.1 is that we now need kd-security in the
presence of CIO queries. It suffices, below, to consider sequential A, because of Theorem 5.1.

Theorem 7.2 Let SE be a symmetric encryption scheme. Let F : {0, 1}∗×{0, 1}sl → {0, 1}SE.kl be a
PBKDF with access to a random oracle H :D → R. Let FPBE = DtE[SE, F]. Let PD be a password
distribution for u ≥ 1 users. Let y ∈ {b, a}. Suppose A ∈ Ay∩Aseq is a sequential adversary making
qs, qe, qv, qh queries to its Salt,Enc,Verify,H oracles, respectively, in the Gpauth

FPBE,PD,u game in
the ROM. Then we can construct adversaries ASE ∈ Ay ∩Aseq and AF such that

Advpauth
FPBE,PD,u(A) ≤ Advauth

SE,qs+qv
(ASE) + Advkd

F,PD,u(AF) . (10)

Adversary ASE makes qe, qv queries to its Enc,Verify oracles, respectively. Adversary AF is
sequential, making qs, qv, qh queries to its RIO,CIO,H oracles, respectively. The running times of
ASE, AF are close to that of A.

As Eq. (10) indicates, we need AUTH security of SE in the presence of qs +qv users, the extra qv

arising from Verify queries with salts that were not results of Salt queries. In its Verify queries,
A can choose the salt, which causes AF to need to make CIO queries in order to respond to A’s
queries. Note that the constructed AF is itself sequential, making its RIO queries before its CIO

20

queries, which allows us to use this in conjunction with Theorem 7.3. The proof of Theorem 7.2
follows the same paradigm as above, moving from the real game G0 to a game G1 in which the
outputs of F are replaced by random keys. The assumed kd-security of F means that the adversary
will not notice this move, and the assumed AUTH security of SE says the adversary is unlikely to
win G1. A full proof of Theorem 7.2 is in Appendix E.

KD-security of H-PBKDF. H-PBKDF is the PBKDF F : {0, 1}∗ × {0, 1}sl → {0, 1}kl defined
by F[H](P, S) = H(P, S) where H : {0, 1}∗ × {0, 1}sl → {0, 1}kl is a random oracle. We now want
to study its kd-security. Qualitatively, Theorem 7.3 below says that F is kd-secure as long as the
password distribution PD has high min-entropy and the input length sl is large enough. We discuss
the quantitative interpretation after the theorem statement. Note that AF below is assumed to be
sequential, meaning it makes its CIO queries after its RIO queries. Recall that zt(qr) is 0 if qr = 0
and is 1 otherwise. The proof of Theorem 7.3 is in Appendix F.

Theorem 7.3 Let PBKDF F : {0, 1}∗ × {0, 1}sl → {0, 1}kl be defined by F[H](P, S) = H(P, S),
where we model H : {0, 1}∗ × {0, 1}sl → {0, 1}kl as a random oracle. Let PD be a password distri-
bution for u ≥ 1 users. Suppose AF ∈ Aseq is a sequential adversary making qr, qc, qh queries to its
RIO,CIO,H oracles, respectively, in the Gkd

F,PD,u game in the ROM. Then

Advkd
F,PD,u(AF) ≤ GPPD(q, qh, qw) + qr(qr − 1)

2sl , (11)

where qw = min(qr + qc, u) and q = zt(qr) · qh + min(qc, u) · qh.

We note that the bound of Eq. (11) is not true if AF is not sequential. Indeed, consider the non-
sequential AF that queries Li ← CIO(1, Si) for i = 1, . . . , qc and distinct S1, . . . , Sqc , then queries
(S′

j , L′
j)← RIO(1) for j = 1, . . . , qr, and returns 1 iff there is some i, j such that (Si, Li) = (S′

j , L′
j).

Then Advkd
F,PD,u(AF) ≥ qcqr · 2−sl · (1− 2−sl), which could exceed the bound of Eq. (11).

In applications, the input S will be the salt, which can be chosen to have length 128–256 bits,
making the second term in Eq. (11) small, so the focus is the first term, namely GPPD(q, qh, qw).
The zt(qr)·qh term in q covers the RIO queries while the min(qc, u)·qh term covers the CIO queries,
indicating that the latter are more costly than the former. The difference impacts the bounds for
FPBE privacy (where qc = 0) versus authenticity (where qc could be positive). This differentiation
is indeed why we have modeled RIO and CIO separately.

In the proof, the guessing probability is used to bound the probability that a hash query includes
a target password P[i]. The difficulty is that the guessing adversary that we build does not know i.
A naive analysis accordingly expends qh Test queries per user to cover the RIO queries, which our
proof reduces to qh overall. This reduction exploits the randomness of inputs in the RIO queries,
and does not work for CIO queries.

Proofs of Theorems 6.1 and 6.2. We can now easily obtain the proofs of Theorems 6.1 and 6.2
(of Section 6) by combining the composition theorems with Theorem 7.3. In more detail, starting
with Theorem 6.1, we first apply Theorem 7.1 to get adversaries ASE, AF such that

Advpind$
FPBE,PD,u(A) ≤ Advind$

SE,qs
(ASE) + Advkd

F,PD,u(AF) ,

where AF makes qs, 0, qh queries to its RIO,CIO,H oracles, respectively. Now applying Theo-
rem 7.3 with qr = qs, qc = 0 and qh unchanged, we get

Advkd
F,PD,u(AF) ≤ GPPD(q) + qs(qs − 1)

2sl ,

21

where q = zt(qs) · qh + min(0, u) · qh ≤ qh, which yields Theorem 6.1. Similarly, for Theorem 6.2,
we first apply Theorem 7.2 to get adversaries ASE, AF such that

Advpauth
FPBE,PD,u(A) ≤ Advauth

SE,qs+qv
(ASE) + Advkd

F,PD,u(AF) ,

where AF makes qs, qv, qh queries to its RIO,CIO,H oracles, respectively. Now applying Theo-
rem 7.3 with qr = qs, qc = qv and qh unchanged, we get

Advkd
F,PD,u(AF) ≤ GPPD(q, qh, qw) + qs(qs − 1)

2sl ,

where qw = min(qs + qv, u) and q = zt(qs) · qh + min(qv, u) · qh, which yields Theorem 6.2.

8 Attacks

We describe attacks to consider whether the terms in our advantage bounds are tight. In particular,
we consider the guessing probability terms GPPD(q), and whether the parameter q in the bound
is optimal.
Tightness of Theorem 6.1. We begin with privacy (PIND$), where the tightness of the GPPD(qh)
term in Theorem 6.1 is implied by the following proposition. Given qh, select ℓ large enough so
that the subtracted term in Eq. (12) is negligible, and select Apg, making qh Test queries, so that
Advpg

PD,u(Apg) = GPPD(qh). Then Proposition 8.1 implies there is an adversary A making qh H

queries and achieving Advpind$
FPBE,PD,u(A) close to GPPD(qh). The proof uses the brute-force attack

and for completeness is included in Appendix G.

Proposition 8.1 Let SE be a symmetric encryption scheme and let PBKDF F : {0, 1}∗ × {0, 1}sl
→ {0, 1}SE.kl be defined by F[H](P, S) = H(P, S), where we model H : {0, 1}∗×{0, 1}sl → {0, 1}SE.kl

as a random oracle. Let FPBE = DtE[SE, F]. Let PD be a password distribution for u ≥ 1 users.
Let y ∈ {b, a}. Let ℓ ≥ 1. Suppose Apg is a password-guessing adversary making qh Test queries
in game Gpg

PD,u. Then we can construct an adversary A ∈ Ay such that

Advpind$
FPBE,PD,u(A) ≥ Advpg

PD,u(Apg)− qh

2SE.cl(ℓ) . (12)

Adversary A makes qh H queries and u Salt,Enc queries. Its running time is about that of Apg.

Tightness of Theorem 6.2. Next, we consider authenticity (PAUTH), as expressed in Theo-
rem 6.2. The following proposition implies tightness when qs = 0, meaning that there are no
Salt,Enc queries. We additionally assume access to a key-robustness adversary, which finds col-
lisions of arbitrary size with advantage 1; we do so because Theorem 6.2 makes no requirement of
key-robustness. This is in fact the setting of the partitioning-oracle attack, which is detailed in the
proof of Proposition 8.2.

The proposition implies tightness as follows: Given qw ≤ u and qh, select Apg making qw·qh Test
queries, covering qh password guesses over qw users, so that Advpg

PD,u(Apg) = GPPD(qw · qh, qh, qw).
Then Proposition 8.2 implies there is an adversary Apo making qh H queries and qw Verify queries,
such that Apo achieves advantage Advpauth

FPBE,PD,u(Apo) close to GPPD(qw · qh, qh, qw). This matches
the term in Theorem 6.2 when qs = 0; in particular GPPD(min(qv, u) · qh, qh, min(qv, u)), where
qv = qw ≤ u.

Proposition 8.2 Let SE be a symmetric encryption scheme and let PBKDF F : {0, 1}∗ × {0, 1}sl
→ {0, 1}SE.kl be defined by F[H](P, S) = H(P, S), where we model H : {0, 1}∗×{0, 1}sl → {0, 1}SE.kl

22

Game Gcmt-ℓ
SE,γ

Fin((K1, N1, A1, M1), . . . , (Kγ , Nγ , Aγ , Mγ)):
1 Require: WiCℓ(Ki, Ni, Ai, Mi) are all distinct
2 Return (SE.Enc(K1, N1, A1, M1) = · · · = SE.Enc(Kγ , Nγ , Aγ , Mγ))

Game Gpcmt-ℓ
FPBE,γ

Fin((P1, S1, N1, A1, M1), . . . , (Pγ , Sγ , Nγ , Aγ , Mγ)):
1 Require: PWiCℓ(Pi, Si, Ni, Ai, Mi) are all distinct
2 Return (FPBE.Enc(P1, S1, N1, A1, M1) = · · · = FPBE.Enc(Pγ , Sγ , Nγ , Aγ , Mγ))

Figure 11: Games defining key-committing security, for symmetric encryption scheme SE (above)
and FPBE (below).

Game Gcr
F

Fin((P1, S1), (P2, S2)):
1 Return ((P1, S1) ̸= (P2, S2) ∧ F(P1, S1) = F(P2, S2))

Figure 12: Game defining collision-resistance for PBKDF F.

as a random oracle. Let FPBE = DtE[SE, F]. Let PD be a password distribution for u ≥ 1 users.
Let y ∈ {b, a}. Suppose Apg is an adversary in the Gpg

PD,u game making (q, qh, qw) Test queries,
and we are also given an adversary Akrob$ which violates γ-way robustness with advantage 1 for
any γ. Then we can construct an adversary Apo ∈ Ay achieving advantage

Advpauth
FPBE,PD,u(Apo) ≥ Advpg

PD,u(Apg) . (13)

Adversary Apo makes qh H queries and qw ≤ u Verify queries.

The proof of Proposition 8.2 is given in Appendix G, along with a formalization of the partitioning-
oracle attack.

9 Key-robustness of DtE

We have seen that DtE preserves privacy and authenticity of the base symmetric encryption scheme
SE. Now we show that it does the same for robustness, or committing security. There are various
definitions of robustness or committing security for which we could show this, but we chose to use
the strongest, from [7]. In this setting, the ciphertext can be a commitment to a key, or to more;
for example it can be a commitment to the key, message, and nonce. BH [7] define CMT-ℓ security
of the base scheme SE for ℓ = 1, 3, 4. Below we extend these to define PCMT-ℓ security of an FPBE
scheme. Then in Proposition 9.1 we show that if the base scheme SE is CMT-ℓ secure and F is
collision-resistant then the FPBE scheme FPBE = DtE[SE, F] is PCMT-ℓ-secure.

The encryption-based definitions of key-committing AE are in Figure 11. The SE notion is
the same as that of [7], while we have introduced the natural extension to FPBE. We focus on
encryption-based definitions, but note that the decryption-based notions could be used with an
appropriate definition of tidiness for our syntax.

23

The function WiCℓ, as in [7], represents What is Committed. This categorizes cases where
the ciphertext could be a commitment to only the key (ℓ = 1), or a commitment to all of the
key, nonce, associated data and message (ℓ = 4). For SE, we consider ℓ ∈ {1, 4}. For FPBE, we
consider ℓ = 1, indicating that only the key P is committed; ℓ = 2, indicating that the key P
and salt S are committed; and ℓ = 5, where all five FPBE encryption inputs are committed. The
key-committing advantage of an adversary A is defined by Advcmt-ℓ

SE,γ (A) = Pr[Gcmt-ℓ
SE,γ (A)] for SE

and by Advpcmt-ℓ
FPBE,γ(A) = Pr[Gpcmt-ℓ

FPBE,γ(A)] for FPBE.
We additionally define PBKDF collision-resistance in Figure 12. The cr advantage of an adver-

sary A is given by Advcr
F (A) = Pr[Gcr

F (A)]. This is a different requirement than kd (prf) security
as discussed in Section 7.

In the following proposition, we show that the DtE transform preserves key-committing security
of the base scheme, as long as F is collision-resistant. The proof of Proposition 9.1 is in Appendix H.

Proposition 9.1 Let SE be a symmetric encryption scheme, let F : {0, 1}∗ × {0, 1}sl → {0, 1}SE.kl

be a PBKDF, and let FPBE = DtE[SE, F]. Let γ ≥ 2. Given adversary A in the Gpcmt-ℓ
FPBE,γ game,

we can construct ASE, AF such that

Advpcmt-ℓ
FPBE,γ(A) ≤ Advcmt-ℓ′

SE,γ (ASE) + Advcr
F (AF) , (14)

where when ℓ ∈ {1, 2} then ℓ′ = 1, and when ℓ = 5 then ℓ′ = 4.

Acknowledgments

We thank the anonymous reviewers for their feedback and suggestions.

References

[1] M. Abdalla, M. Bellare, and G. Neven. Robust encryption. In D. Micciancio, editor, TCC 2010,
volume 5978 of LNCS, pages 480–497. Springer, Heidelberg, Feb. 2010. 4, 13

[2] A. Albertini, T. Duong, S. Gueron, S. Kölbl, A. Luykx, and S. Schmieg. How to abuse and
fix authenticated encryption without key commitment. In 31st USENIX Security Symposium,
2022. 4, 7, 13

[3] J. Alwen, B. Chen, C. Kamath, V. Kolmogorov, K. Pietrzak, and S. Tessaro. On the complexity
of scrypt and proofs of space in the parallel random oracle model. In M. Fischlin and J.-S.
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 358–387. Springer,
Heidelberg, May 2016. 4, 7, 16

[4] J. Alwen, B. Chen, K. Pietrzak, L. Reyzin, and S. Tessaro. Scrypt is maximally memory-
hard. In J.-S. Coron and J. B. Nielsen, editors, EUROCRYPT 2017, Part III, volume 10212
of LNCS, pages 33–62. Springer, Heidelberg, Apr. / May 2017. 4, 7, 16

[5] M. Armour and C. Cid. Partition oracles from weak key forgeries. In M. Conti, M. Stevens,
and S. Krenn, editors, CANS 2021. LNCS, Springer, December 2021. 8

[6] M. Backendal, M. Haller, and K. G. Paterson. MEGA: Malleable encryption goes awry. In
T. Ristenpart and P. Traynor, editors, IEEE S&P 2023. IEEE Computer Society Press, May
2023. 4

24

[7] M. Bellare and V. T. Hoang. Efficient schemes for committing authenticated encryption. In
O. Dunkelman and S. Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276 of
LNCS, pages 845–875. Springer, Heidelberg, May / June 2022. 4, 7, 13, 17, 23, 24

[8] M. Bellare, V. T. Hoang, and S. Keelveedhi. Instantiating random oracles via UCEs. In
R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages
398–415. Springer, Heidelberg, Aug. 2013. 19

[9] M. Bellare and T. Kohno. A theoretical treatment of related-key attacks: RKA-PRPs, RKA-
PRFs, and applications. In E. Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS,
pages 491–506. Springer, Heidelberg, May 2003. 19

[10] M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. In T. Okamoto, editor, ASIACRYPT 2000,
volume 1976 of LNCS, pages 531–545. Springer, Heidelberg, Dec. 2000. 4

[11] M. Bellare, R. Ng, and B. Tackmann. Nonces are noticed: AEAD revisited. In A. Boldyreva
and D. Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages 235–265.
Springer, Heidelberg, Aug. 2019. 3, 4, 7, 10, 14, 15

[12] M. Bellare, T. Ristenpart, and S. Tessaro. Multi-instance security and its application to
password-based cryptography. In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 312–329. Springer, Heidelberg, Aug. 2012. 2, 4, 7, 9, 19

[13] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In D. E. Denning, R. Pyle, R. Ganesan, R. S. Sandhu, and V. Ashby, editors, ACM
CCS 93, pages 62–73. ACM Press, Nov. 1993. 4, 16

[14] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS,
pages 409–426. Springer, Heidelberg, May / June 2006. 8, 29, 31, 34, 43, 44

[15] A. Biryukov, D. Dinu, D. Khovratovich, and S. Josefsson. Argon2 memory-hard function for
password hashing and proof-of-work applications. IETF Network Working Group, RFC 9106,
September 2021. 4, 7, 16

[16] P. Bose, V. T. Hoang, and S. Tessaro. Revisiting AES-GCM-SIV: Multi-user security, faster key
derivation, and better bounds. In J. B. Nielsen and V. Rijmen, editors, EUROCRYPT 2018,
Part I, volume 10820 of LNCS, pages 468–499. Springer, Heidelberg, Apr. / May 2018. 3, 10,
14

[17] Boxcryptor. Technical overview. https://www.boxcryptor.com/en/technical-overview/, visited
on October 17, 2022. 3

[18] G. Demay, P. Gazi, U. Maurer, and B. Tackmann. Per-session security: Password-based
cryptography revisited. J. Comput. Secur., 27(1):75–111, 2019. 4, 7

[19] Y. Dodis, P. Grubbs, T. Ristenpart, and J. Woodage. Fast message franking: From invisible
salamanders to encryptment. In H. Shacham and A. Boldyreva, editors, CRYPTO 2018,
Part I, volume 10991 of LNCS, pages 155–186. Springer, Heidelberg, Aug. 2018. 7

25

https://www.boxcryptor.com/en/technical-overview/

[20] M. Dworkin. Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode
(GCM) and GMAC. National Institute of Standards and Technology SP 800-38D, Nov. 2007.
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf. 7

[21] A. Everspaugh, R. Chatterjee, S. Scott, A. Juels, and T. Ristenpart. The pythia PRF service.
In J. Jung and T. Holz, editors, USENIX Security 2015, pages 547–562. USENIX Association,
Aug. 2015. 7

[22] P. Farshim, C. Orlandi, and R. Roşie. Security of symmetric primitives under incorrect usage
of keys. IACR Trans. Symm. Cryptol., 2017(1):449–473, 2017. 4, 13

[23] V. Goyal, A. O’Neill, and V. Rao. Correlated-input secure hash functions. In Y. Ishai, editor,
TCC 2011, volume 6597 of LNCS, pages 182–200. Springer, Heidelberg, Mar. 2011. 19

[24] P. Grubbs, J. Lu, and T. Ristenpart. Message franking via committing authenticated encryp-
tion. In J. Katz and H. Shacham, editors, CRYPTO 2017, Part III, volume 10403 of LNCS,
pages 66–97. Springer, Heidelberg, Aug. 2017. 4, 7, 13

[25] T. Jager, M. Stam, R. Stanley-Oakes, and B. Warinschi. Multi-key authenticated encryption
with corruptions: Reductions are lossy. In Y. Kalai and L. Reyzin, editors, TCC 2017, Part I,
volume 10677 of LNCS, pages 409–441. Springer, Heidelberg, Nov. 2017. 6, 11

[26] B. Kaliski. PKCS #5: Password-Based Cryptography Specification Version 2.0. RFC 2898,
Sep. 2000. https://datatracker.ietf.org/doc/html/rfc2898. 2, 4, 16

[27] R. W. F. Lai, C. Egger, M. Reinert, S. S. M. Chow, M. Maffei, and D. Schröder. Simple
password-hardened encryption services. In W. Enck and A. P. Felt, editors, USENIX Security
2018, pages 1405–1421. USENIX Association, Aug. 2018. 7

[28] R. W. F. Lai, C. Egger, D. Schröder, and S. S. M. Chow. Phoenix: Rebirth of a cryptographic
password-hardening service. In E. Kirda and T. Ristenpart, editors, USENIX Security 2017,
pages 899–916. USENIX Association, Aug. 2017. 7

[29] J. Len, P. Grubbs, and T. Ristenpart. Partitioning oracle attacks. In M. Bailey and R. Green-
stadt, editors, 30th USENIX Security Symposium. USENIX Association, 2021. 2, 4, 6, 7, 8,
13, 47

[30] J. Len, P. Grubbs, and T. Ristenpart. Authenticated encryption with key identification. In
S. Agrawal and D. Lin, editors, ASIACRYPT 2022. LNCS, Springer, December 2022. 8

[31] U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In M. Naor, editor, TCC 2004,
volume 2951 of LNCS, pages 21–39. Springer, Heidelberg, Feb. 2004. 20

[32] MEGA. Security and why it matters. https://mega.io/security, visited on October 17, 2022.
3

[33] MEGAprivacy. Eight years of mega – tweet. https://twitter.com/MEGAprivacy/status/
1352564229044277248, visited on October 17, 2022. 3

[34] M. Naor and O. Reingold. Synthesizers and their application to the parallel construction of
pseudo-random functions. Journal of Computer and System Sciences, 58(2):336–375, 1999. 19

26

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://datatracker.ietf.org/doc/html/rfc2898
https://mega.io/security
https://twitter.com/MEGAprivacy/status/1352564229044277248
https://twitter.com/MEGAprivacy/status/1352564229044277248

[35] C. Percival. Stronger key derivation via sequential memory-hard functions. In BSDCan, 2009.
4, 7, 16

[36] K. Pietrzak and J. Sjödin. Weak pseudorandom functions in minicrypt. In L. Aceto,
I. Damg̊ard, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, edi-
tors, ICALP 2008, Part II, volume 5126 of LNCS, pages 423–436. Springer, Heidelberg, July
2008. 19

[37] J. Pijnenburg and B. Poettering. Encrypt-to-self: Securely outsourcing storage. In L. Chen,
N. Li, K. Liang, and S. A. Schneider, editors, ESORICS 2020, Part I, volume 12308 of LNCS,
pages 635–654. Springer, Heidelberg, Sept. 2020. 8

[38] N. Provos and D. Mazieres. A future-adaptable password scheme. In USENIX Annual Technical
Conference, FREENIX Track, volume 1999, pages 81–91, 1999. 4, 7, 16

[39] P. Rogaway. Authenticated-encryption with associated-data. In V. Atluri, editor, ACM CCS
2002, pages 98–107. ACM Press, Nov. 2002. 2, 3, 4, 7, 10

[40] P. Rogaway and T. Shrimpton. A provable-security treatment of the key-wrap problem. In
S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 373–390. Springer,
Heidelberg, May / June 2006. 7

[41] Shadowsocks. https://github.com/shadowsocks, visited on October 18, 2022. 8

[42] J. Woodage, R. Chatterjee, Y. Dodis, A. Juels, and T. Ristenpart. A new distribution-sensitive
secure sketch and popularity-proportional hashing. In J. Katz and H. Shacham, editors,
CRYPTO 2017, Part III, volume 10403 of LNCS, pages 682–710. Springer, Heidelberg, Aug.
2017. 4, 9

A Proofs of authenticity lemmas

Proof of Lemma 4.1: We design adversary Aauth as follows. It chooses a random user index J
between 1 and u; the index J will refer to the one user in Aauth’s own game. It chooses each of
Ki←$ {0, 1}SE.kl for 1 ≤ i ≤ u, i ̸= J . It then runs Aauth-c, responding to Enc(i, N, M, A) queries
by doing:

If i = J then C ← Gauth
SE,1 .Enc(1, N, M, A) else C ← SE.Enc(Ki, N, M, A)

MT[i, SE.NI(N), C, A]←M ; Return C

When Aauth-c makes a Verify(i, I, C, A) query, it responds by doing:

If (MT[i, I, C, A] ̸= ⊥) then return ⊥
If i = J then return Gauth

SE,1 .Verify(1, I, C, A)
Else M ← SE.Dec(Ki, I, C, A) ; return (M ̸= ⊥)

When Aauth-c makes an Expose(i) query, it does:

If i = J then return ⊥ else return Ki

27

https://github.com/shadowsocks

Game G

Init:
1 For i = 1, . . . , u do
2 Ki←$ {0, 1}SE.kl

Verify(i, I, C, A):
3 If win then return ⊥
4 If (i ∈ EU) then return ⊥
5 b← (SE.Dec(Ki, I, C, A) ̸= ⊥)
6 If b then win← true
7 Return b

Expose(i):
8 If win then return ⊥
9 EU← EU ∪ {i}

10 Return Ki

Fin:
11 Return win

Games G0 , G1

Init:
12 For i = 1, . . . , u do
13 Ki,0, Ki,1←$ {0, 1}SE.kl

Verify(i, I, C, A):
14 If win then return ⊥
15 If (i ∈ EU) then return ⊥
16 b0 ← (SE.Dec(Ki,0, I, C, A) ̸= ⊥)
17 b1 ← (SE.Dec(Ki,1, I, C, A) ̸= ⊥)
18 If b1 then bad← true ; Ki,1 ← Ki,0

19 If b0 then win← true
20 Return b0

Expose(i):
21 If win then return ⊥
22 EU← EU ∪ {i}
23 Return Ki,1

Fin:
24 Return win

Figure 13: Games for the proof of Lemma 4.2, where G0 includes the boxed code and G1 does not.

Note that if Aauth-c makes qe, qv queries per user (in particular for user J) then Aauth makes qe, qv

total queries. Moreover, Aauth inherits the order of queries and the uniqueness of nonces from
Aauth-c, meaning that it preserves the adversary class and sequential status.

What is required for Aauth to win in its one-user game? Aauth-c must win during a Verify(J, ·, ·, ·)
query, which necessarily reqiuires that Expose(J) was never queried prior. Since J is chosen
uniformly at random (independent of the execution of Aauth-c) this means

Advauth
SE,1(Aauth) ≥ 1

u
·Advauth-c

SE,u (Aauth-c) .

This is the desired bound in Lemma 4.1.

Proof of Lemma 4.2: We can assume the adversary in the y = b case never sets un to false
in game Gauth-c

SE,u , and thus drop writing un variables of that game. Having done this, game G of
Figure 13 further silences the Verify,Expose oracles (meaning, has them return ⊥) if win is set.
Games Gauth-c

SE,u , G are thus the same until win is set, but Fin returns win, so we have

Advauth-c
SE,u (Aauth-c) = Pr[Gauth-c

SE,u (Aauth-c)] = Pr[G(Aauth-c)] .

Now consider games G0, G1 in Figure 13, where the former includes the boxed code and the latter
does not. At line 13, two keys, Ki,0, Ki,1, are chosen per user i, with the oracle Verify generating
results under both (lines 16,17). The setting of win, and what Verify returns, is done as per
Ki,0, but Expose(i) returns Ki,1, the intent being that Expose is now easily simulated by an
authenticity adversary. Line 18 sets bad if decryption under Ki,1 was successful, the boxed code

28

reverting Ki,1 to Ki,0 in this case. We claim that

Pr[G(Aauth-c)] = Pr[G0(Aauth-c)] . (15)

Let us explain Eq. (15). The silencing ensures the games are the same after win is set, so assume
it is not yet set. Consider the first time bad is set. We have b1 = true and two cases for b0: (1)
b0 = true, or (2) b0 = false. If (2) then the boxed code ensures consistency of the exposed key with
the Verify response. If (1) then win is set, so the silencing ensures consistency.
Games G0, G1 are identical-until-bad, so by the Fundamental Lemma of Game Playing [14],

Pr[G0(Aauth-c)] = Pr[G1(Aauth-c)] + Pr[G0(Aauth-c)]− Pr[G1(Aauth-c)]

≤ Pr[G1(Aauth-c)] + Pr[G1(Aauth-c) sets bad] .

We now observe that

Pr[G1(Aauth-c) sets bad] = Pr[G1(Aauth-c)] .

This is by symmetry. We can think of the roles of Ki,0 and Ki,1 as being swapped. Putting the
above together we now have

Advauth-c
SE,u (Aauth-c) ≤ 2 · Pr[G1(Aauth-c)] .

To conclude, we build Aauth so that

Pr[G1(Aauth-c)] ≤ Advauth
SE,u(Aauth) . (16)

Adversary Aauth picks K1,1, . . . , Ku,1←$ {0, 1}SE.kl and initializes win, EU to false, ∅, respectively. It
then runs Aauth-c, replying to its oracle queries as follows. On query Verify(i, I, C, A), it responds
via:

If win then return ⊥
If (i ∈ EU) then return ⊥
b0 ← Gauth

SE,u.Verify(i, I, C, A) ; Return b0

It responds to an Expose(i) query as per lines 21–23 of G1. As long as Aauth-c makes a winning
Verify query so will Aauth, proving Eq. (16) and completing the proof of Lemma 4.2.

B Proof of Theorem 5.1

Proof of Theorem 5.1: For this proof we refer to the games in Figure 14. We assume that
adversaries meet required conditions and omit writing those checks.
We first claim that Pr[Gpae

FPBE,PD,u(A)] = Pr[G0(A)]. This follows simply by observing that G0
consists of all the same steps as Gpae

FPBE,PD,u, with the omission of conditions we have assumed to be
met. The games of Figure 14 have also added a procedure H for the random oracle. Note that H
is accessible to the FPBE scheme, and all adversaries in the statement of Theorem 5.1 have query
access to the same RO H. It will suffice for adversaries to forward queries to H rather than to
implement its functionality.
Games G0, G1 are identical-until-bad so the Fundamental Lemma of Game Playing [14] implies that

Pr[G0(A)]− Pr[G1(A)] ≤ Pr[G1(A) sets bad] .

29

Games G0 , G1

Init:
1 d←$ {0, 1} ; P←$ PD

Enc(i, N, M, A):
2 C1 ← FPBE.Enc(P[i], Si, N, M, A) ; C0←$ {0, 1}FPBE.cl(|M|)

3 MT[i, Si, FPBE.NI(N), Cd, A]←M ; Return Cd

Dec(i, S, I, C, A):
4 If (MT[i, S, I, C, A] ̸= ⊥) then return MT[i, S, I, C, A]
5 If (d = 0) then return ⊥
6 M ← ⊥ ; M ′ ← FPBE.Dec(P[i], S, I, C, A)
7 If (M ′ ̸= ⊥) then bad← true ; M ←M ′

8 Return M

Salt(i):
9 s(i)← s(i) + 1 ; Si←$ FPBE.SS ; Return Si

H(X):
10 Return H(X)

Fin(d′):
11 Return (d′ = d)

Figure 14: Games for the proof of Theorem 5.1.

We next design Apind$, Apauth such that

Pr[G1(A)] ≤ Pr[Gpind$
FPBE,PD,u(Apind$)] (17)

Pr[G1(A) sets bad] ≤ Pr[Gpauth
FPBE,PD,u(Apauth)] . (18)

Adversary Apind$ operates as follows. It runs A and responds to Enc and Salt queries by for-
warding them to its own oracles, and returning the responses to A. It also forwards H queries. On
a Dec query, Apind$ simply returns ⊥ to A. When A guesses a bit d′, Apind$ guesses that same
challenge bit. This is precisely the setting of G1(A), and the challenge bits are consistent, justifying
Eq. (17).

Next we turn to Apauth. It chooses a bit d then runs A. In either case, it responds to H queries by
forwarding them to H itself. If d = 1, it responds to Enc queries by forwarding them to its own
oracle, then returning the response to A. If d = 0, encryption responses are a random ciphertext (of
the appropriate length). Salt queries are all forwarded to its own oracle, with the response forwarded
to A. When A makes a query Dec(i, S, I, C, A), Apauth makes a query Verify(i, S, I, C, A) and
regardless of the response, returns ⊥ to A. Recall that in the SAUTH game, Apauth wins if it
makes a verification query Verify(i, S, I, C, A) such that FPBE.Dec(P[i], S, I, C, A) ̸= ⊥. This is
precisely the bad condition on lines 6,7. Because Apauth wins as long as this condition is reached,
Eq. (18) holds.

Since Apauth only forwards queries of A, it preserves the adversary class (basic or advanced) of A, as
does Apind$. Even if A is not sequential, Apauth can be made sequential by making all of its Verify
queries at the end. Because all of the Dec responses given to A are ⊥, it makes no difference if

30

Apauth waits until the end to make its Verify queries. This justifies the claim that Apauth is always
sequential, which we use to motivate various simplifying assumptions about sequential adversaries
(throughout other proofs in this paper).

Combining the above results and advantage definitions, we have

Advpae
FPBE,PD,u(A) = 2 Pr[Gpae

FPBE,PD,u(A)]− 1

≤ 2 Pr[G0(A)]− 1

≤ 2 (Pr[G1(A)] + Pr[G1(A) sets bad])− 1

≤ 2
(
Pr[Gpind$

FPBE,PD,u(Apind$)] + Pr[Gpauth
FPBE,PD,u(Apauth)]

)
− 1

≤ Advpind$
FPBE,PD,u(Apind$) + 2 ·Advpauth

FPBE,PD,u(Apauth)

This completes the proof of Eq. (3).

C Proof of Theorem 6.3

The proof of Theorem 6.3 involves technical challenges. As discussed in Section 1, it is not obvious
why key-robustness of SE helps to improve the bound. The proof makes a connection to AUTH-C
and exploits our Lemma 4.2.

Proof of Theorem 6.3: Recall that in the ROM, game Gpauth
FPBE,PD,u adds a procedure H for the

random oracle. Below we will often, without explicit mention, exploit the assumption, from the
definition of a password distribution, that P[1], . . . , P[u] are distinct. Similarly, we will exploit
the assumption that A is sequential, meaning it makes all its Enc,Salt queries before any of its
Verify queries. The algorithms Find1, Find2, used in some games and constructed adversaries,
were defined in Section 3.

Consider the games of Figure 15, where G1 includes the boxed code and G0 does not. We have let
qs,i be the number of Salt(i) queries, so that qs = qs,1 + · · · + qs,u. Let Si,j denote the salt that
Salt(i) would pick the j-th time it is called. The games start by picking these values up front in
Init, together with keys Ki,j that Enc would use. However, while G0 picks the Si,j at random, G1
ensures that they are distinct. Down the line, this will allow password-guessing adversary Apg to
use the input to uniquely identify the user in an Enc query and thereby minimize the number of
Test queries it makes. For now, we just note that game G0 is equivalent to game Gpauth

FPBE,PD,u, so

Advpauth
FPBE,PD,u(A) = Pr[Gpauth

FPBE,PD,u(A)] = Pr[G0(A)] .

Trivially we have

Pr[G0(A)] = Pr[G1(A)] + (Pr[G0(A)]− Pr[G1(A)]) . (19)

We bound the terms above in turn, starting with the second. Games G0, G1 are identical-until-bad,
so by the Fundamental Lemma of Game Playing [14] we have

Pr[G0(A)]− Pr[G1(A)] ≤ Pr[G0(A) sets bad] .

Flag bad is set when two of the qs salts collide, so

Pr[G0(A) sets bad] ≤ qs(qs − 1)
2sl+1 .

31

Game G0 / G1

Init:
1 P←$ PD
2 For i = 1, . . . , u and j = 1, . . . , qs,i do
3 Si,j ←$ {0, 1}sl ; Ki,j ← H(P[i], Si,j)

4 If (Si,j ∈ OS) then bad← true ; Si,j ←$ {0, 1}sl \OS
5 OS← OS ∪ {Si,j}

Enc(i, N, M, A):
6 C ← SE.Enc(Ki,s(i), N, M, A) ; MT[i, Si,s(i), SE.NI(N), C, A]←M ; Return C

Verify(i, S, I, C, A):
7 If (MT[i, S, I, C, A] ̸= ⊥) then return ⊥
8 If (KT[i, S] = ⊥) then KT[i, S]← H(P[i], S)
9 M ← SE.Dec(KT[i, S], I, C, A)

10 If (M ̸= ⊥) then win← true
11 Return (M ̸= ⊥)

Salt(i):
12 s(i)← s(i) + 1 ; Return Si,s(i)

H(P, S):
13 If (HT[P, S] ̸= ⊥) then return HT[P, S]
14 HT[P, S]←$ {0, 1}kl ; Return HT[P, S]

Fin:
15 Return win

Figure 15: Games G0, G1 for the proof of Theorem 6.3, where G1 includes the boxed code and G0
does not.

Init: // Games G2, G3, G4
1 P←$ PD
2 For i = 1, . . . , u and j = 1, . . . , qs,i do
3 Si,j ←$ {0, 1}sl \OS ; Ki,j ←$ {0, 1}kl ; OS← OS ∪ {Si,j} ; FT[i, Si,j]← Ki,j

Enc(i, N, M, A): // Games G2, G3, G4
4 C ← SE.Enc(Ki,s(i), N, M, A) ; MT[i, Si,s(i), SE.NI(N), C, A]←M ; Return C

Salt(i): // Games G2, G3, G4
5 s(i)← s(i) + 1 ; Return Si,s(i)

Fin: // Games G2, G3
6 Return win

Figure 16: Some oracles for subsequent games in the proof of Theorem 6.3.

Returning to Eq. (19), we now bound the first term. Towards this, Figures 16 and 17 together
define games G2, G3, where the former includes the boxed code and the latter does not. We claim
that G2 is equivalent to G1, meaning

Pr[G1(A)] = Pr[G2(A)] . (20)

32

Games G2 , G3

Verify(i, S, I, C, A):
1 If (MT[i, S, I, C, A] ̸= ⊥) then return ⊥
2 If (FT[i, S] ̸= ⊥) then
3 M ← SE.Dec(FT[i, S], I, C, A)
4 If (M ̸= ⊥) then bad← true ; win← true ; Return true
5 Return false
6 R← { P ∈ HPS : SE.Dec(HT[P, S], I, C, A) ̸= ⊥ }
7 If (1 ≤ |R| < γ) then
8 If (P[i] ∈ R) then bad← true ; win← true ; Return true
9 If (|R| ≥ γ) then

10 bad← true ; If (P[i] ∈ R) then win← true ; Return true

11 If (KT[i, S] = ⊥) then KT[i, S]←$ {0, 1}kl

12 M ← SE.Dec(KT[i, S], I, C, A) ; b← false
13 If (P[i] ̸∈ HPS and M ̸= ⊥) then bad← true ; win← true ; b← true
14 BT[i, S, I, C, A]← b ; CCS ← CCS ∪ {(i, I, C, A)}
15 Return b

H(P, S):
16 If (HT[P, S] ̸= ⊥) then return HT[P, S]
17 HPS ← HPS ∪ {P} ; HT[P, S]←$ {0, 1}kl ; i← Find1(P, P)
18 If (i ̸= 0) then j ← Find1(S, (Si,1, . . . , Si,qs,i))
19 If (i ̸= 0 and j ̸= 0) then bad← true ; HT[P, S]← Ki,j ; Return HT[P, S]
20 For all (i, I, C, A) ∈ CCS do
21 b← (SE.Dec(HT[P, S], I, C, A) ̸= ⊥)
22 If (b ̸= BT[i, S, I, C, A]) then
23 If (P = P[i]) then bad← true ; HT[P, S]← KT[i, S]
24 Return HT[P, S]

Figure 17: Verify and H oracles for games G2, G3 for the proof of Theorem 6.3, where G2 includes
the boxed code and G3 does not. The other oracles are in Figure 16.

We now explain G2 to justify Eq. (20). As in G1, oracle Init picks distinct salts Si,j , but optimisti-
cally picks the Ki,j to be random. In G3 it stays that way. However, G2, via the inclusion of the
boxed code at line 19 of Figure 17, ensures that Ki,j = H(P[i], Si,j). So responses to Enc queries
in G2 adhere to those in G1. We now turn to arguing that the same is true for Verify queries.

Lines 2–5 handle the case that the S in the query is one of the Si,j , so now suppose not. Set HPS

(defined through line 17) holds all candidate passwords P for which H(P, S) has been queried and
HT[P, S] is thus defined. In a Verify(i, S, I, C, A) query, if P[i] ∈ HPS , then the key HT[P[i], S]
for the base scheme SE is known to A, and we cannot exploit the authenticity of SE under this
key. An obvious step is to now set bad and bound the probability of this via the advantage of
a password-guessing adversary Apg which, via its oracle, tests all P ∈ HPS for user i. However,
|HPS | could be as large as qh, leading to qh oracle queries for each Verify query, for a total of
qhqv, which would bring us back to the result of Theorem 6.2. The intent of the present result is
exactly to reduce this number of test queries by exploiting key-robustness. Towards this, say that
P ∈ HPS is a likely suspect if SE.Dec(HT[P, S], I, C, A) ̸= ⊥. (Recall i, S, I, C, A is the query to

33

Verify.) At line 6, we have let R ⊆ HPS be the set of all likely suspects. We then consider the
following cases.

The first case (lines 7,8) is that 1 ≤ |R| < γ. We set bad if P[i] equals one of the likely suspects, the
boxed code ensuring the right actions and response. To bound the probability that bad is set here,
the password-guessing adversary will need at most γ − 1 queries per Verify query, as opposed to
|HPS |-many.

The second case (lines 9,10) is that |R| ≥ γ. Testing P[i] ∈ R would now need more than the γ− 1
password-guessing queries than we want to expend. However, we expect this case to not happen
due to the key-robustness of SE. (This is where we will use this assumption.) Accordingly, we set
bad if it happens, the boxed code again ensuring correctness.

If lines 8,10 fail to return true it must be that P[i] ̸∈ R, and we reach line 11. There are two possibili-
ties: either (1) P[i] ∈ HPS \R, meaning HT[P[i], S] is defined but SE.Dec(HT[P[i], S], I, C, A) = ⊥,
or (2) P[i] ̸∈ HPS . The difficulty is that we have no way to efficiently — meaning, without having
our password-guessing adversary make more queries than we want — tell which of the two cases
holds. Our strategy is to consider M ← SE.Dec(KT[i, S], I, C, A) (line 12), where key KT[i, S],
unless it is already defined, is freshly chosen at line 11. If (1) happens, line 15 will correctly return
false. If (2) happens then HT[P[i], S] is undefined and the intent is that it takes value KT[i, S], the
setting of win and what is returned done accordingly. Expending password guesses for line 13 will
be avoided by bounding, via the authenticity of SE, the probability that M ̸= ⊥.

Now we turn to H(P, S) queries. Lines 18,19 handle the case that S is one of the Si,j . We note
that the distinctness of the latter salts, imposed by Init in Figure 16, ensures that the choice
of j is unique and thus line 18 is unambiguous. Now if P = P[i] and KT[i, S] ̸= ⊥, we would
like to set HT[P, S] to KT[i, S]. But testing the condition to do this again would cost too many
password-guessing queries. Instead, lines 20–23 check whether the default value of HT[P, S] chosen
at line 17 is consistent, with regard to Verify replies, with KT[i, S]. If NO, bad is set, and HT[P, S]
is set to KT[i, S]. If YES then HT[P, S] is left unchanged. This allows us to avoid a number of
password-guessing queries proportional to qh. The subtle thing is that at this point, HT[P[i], S]
and KT[i, S] would both be defined and likely different, so that we have two keys contending for
the role of the base key corresponding to S, P[i]. However, game G2 ensures that this creates no
discrepancy in the adversary’s view. (Replies to Verify queries stay consistent with HT[P[i], S]
if the latter is defined, and otherwise with KT[i, S].) This completes our explanation of Eq. (20)
and we now need to bound Pr[G2(A)].

Games G2, G3 are identical-until-bad, so by the Fundamental Lemma of Game Playing [14] we have

Pr[G2(A)] = Pr[G3(A)] + Pr[G2(A)]− Pr[G3(A)]

≤ Pr[G3(A)] + Pr[G3(A) sets bad] .

We now bound the two terms above. The flag win that G3 returns is only set in boxed code, which
is excluded in G3, so Pr[G3(A)] = 0.

It remains to bound Pr[G3(A) sets bad]. This task is simplified via game G4 of Figure 18. We
claim that

Pr[G3(A) sets bad] ≤ Pr[G4(A) sets bad] . (21)

Let us explain Eq. (21). Game G4 starts from G3, making simplifications due to the boxed code
being absent in G3. The “If” at line 11 of G4 drops the “P[i] ̸∈ HPS” condition of line 13 (Figure 17)
of G3, which can only increase the probability of setting bad, consistent with Eq. (21). In G3, table

34

Game G4

Verify(i, S, I, C, A):
1 If (MT[i, S, I, C, A] ̸= ⊥) then return ⊥
2 If (FT[i, S] ̸= ⊥) then
3 M ← SE.Dec(FT[i, S], I, C, A) ; If (M ̸= ⊥) then bad← true
4 Return false
5 R← { P ∈ HPS : SE.Dec(HT[P, S], I, C, A) ̸= ⊥ }
6 If (1 ≤ |R| < γ) then
7 If (P[i] ∈ R) then bad← true
8 If (|R| ≥ γ) then bad← true
9 If (KT[i, S] = ⊥) then KT[i, S]←$ {0, 1}kl

10 M ← SE.Dec(KT[i, S], I, C, A)
11 If (M ̸= ⊥) then bad← true
12 CCS ← CCS ∪ {(i, I, C, A)} ; Return false

H(P, S):
13 If (HT[P, S] ̸= ⊥) then return HT[P, S]
14 HPS ← HPS ∪ {P} ; HT[P, S]←$ {0, 1}kl ; i← Find1(P, P)
15 If (i ̸= 0) then j ← Find1(S, (Si,1, . . . , Si,qs,i))
16 If (i ̸= 0 and j ̸= 0) then bad← true
17 For all (i, I, C, A) ∈ CCS do
18 If (SE.Dec(HT[P, S], I, C, A) ̸= ⊥) then bad← true
19 Return HT[P, S]

Fin:
20 Return false

Figure 18: Verify, H and Fin oracles for game G4 for the proof of Theorem 6.3. The other oracles
are in Figure 16.

entry BT[i, S, I, C, A] would always be false. Game G4 thus does not define it, and simplifies lines
20–23 to lines 17,18, including dropping the line 23 “P = P[i]” test, which can again only increase
the probability of setting bad. Verify always returns false, as per G3. We are concerned only
with G3’s setting of bad, not with what the game returns, so we have Fin always return false. This
completes our explanation of Eq. (21).

It remains to bound Pr[G4(A) sets bad]. For this, we design adversaries Apg, Akrob$, Aauth and
Aauth-c such that:

Pr[G4(A) sets bad at lines 7 or 16] ≤ Advpg
PD,u(Apg) (22)

≤ GPPD(zt(qs) · qh + (γ−1) · qv) (23)

Pr[G4(A) sets bad at line 8] ≤ Advkrob$
SE,qh,γ(Akrob$) (24)

Pr[G4(A) sets bad at lines 3 or 11] ≤ Advauth
SE,u(Aauth) (25)

Pr[G4(A) sets bad at line 18] ≤ Advauth-c
SE,u (Aauth-c) . (26)

Putting all the above together yields Eq. (6). We proceed to the adversary constructions.

Adversary Apg is playing game Gpg
PD,u (Figure 3). It runs A, responding to its oracle queries as

35

Adversary Apg

Init:
1 For i = 1, . . . , u and j = 1, . . . , qs,i do
2 Si,j ←$ {0, 1}sl \OS ; Ki,j ←$ {0, 1}kl ; OS← OS ∪ {Si,j} ; FT[i, Si,j]← Ki,j

Verify(i, S, I, C, A):
3 If (MT[i, S, I, C, A] ̸= ⊥) then return ⊥
4 If (FT[i, S] ̸= ⊥) then return false
5 R← { P ∈ HPS : SE.Dec(HT[P, S], I, C, A) ̸= ⊥ }
6 If (1 ≤ |R| < γ) then
7 For all P ∈ R do Gpg

PD,u.Test(i, P)
8 Return false

H(P, S):
9 If (HT[P, S] ̸= ⊥) then return HT[P, S]

10 HPS ← HPS ∪ {P} ; HT[P, S]←$ {0, 1}kl ; j ← Find1(S, (Si,1, . . . , Si,qs,i))
11 If (j ̸= 0) then Gpg

PD,u.Test(j, P)
12 Return HT[P, S]

Figure 19: How adversary Apg, for the proof of Theorem 6.3, simulates A’s oracles. Enc,Salt
responses are as in Figure 16.

shown in Figure 19. The role of the P chosen in G4.Init (line 1 of Figure 16) is played by the
one chosen at line 1 of Gpg

PD,u. At lines 7,11 of Figure 19, Apg calls the Test oracle provided by
the Gpg

PD,u game it is playing, and this query is successful (sets win in Gpg
PD,u) whenever G4(A) sets

bad at lines 7,16 of Figure 18, justifying Eq. (22). The number of Test queries from line 7 is at
most (γ − 1) · qv. This is the crucial improvement, showing how defining the set R, and expending
password-guessing queries only when it has size less than γ, pays off in reducing the number of
Test queries of Apg. The number of Test queries from line 11 is 0 if qs = 0 and is otherwise at
most qh, which, put succinctly, is at most zt(qs) · qh. This justifies Eq. (23).

Adversary Akrob$ is playing game Gkrob$
SE,qh,γ (Figure 6). It runs A, responding to the latter’s oracle

queries as shown in Figure 20. At line 1, Akrob$ calls its own Init oracle to get random keys
K1, . . . , Kqh

. At line 10, it responds to H queries using its target keys K1, . . . , Kqh
, so that these

keys play the role of the HT[P, S] values. At line 7, it calls the Fin oracle of its Gkrob$
SE,qh,γ game. It

wins whenever G4(A) sets bad at line 8 of Figure 18, justifying Eq. (24).

Adversary Aauth is playing game Gauth
SE,qs+qv

(Figure 4). It runs A, responding to oracle queries as
shown in Figure 21. Counter c represents a user index. Table entry UT[i, Si,j] is the index of a
user in game Gauth

SE,qs+qv
whose key will play the role of Ki,j . Line 4 is a call to Aauth’s own Enc

oracle for user UT[i, Si,s(i)]. Lines 7,10 are calls to Aauth’s own Verify oracle, for users UT[i, S]
and VT[i, S] (respectively), and they succeed if bad is set at lines 3 or 10 (respectively) of G4
(Figure 18), justifying Eq. (25). Now, as per the theorem statement, for y ∈ {b, a}, we need to
check that if A ∈ Ay then Aauth ∈ Ay. The case y = a is clear, but the case y = b uses the fact
that the salts Si,j are all distinct; otherwise, A repeating a nonce across two such salts (allowed)
would make Aauth repeat a nonce for i (not allowed). Finally, A was assumed sequential, and Aauth
makes its Enc,Verify queries in the same order as A, and hence is also sequential.

36

Adversary Akrob$

Init:
1 (K1, . . . , Kqh)←$ Gkrob$

SE,qh,γ .Init ; c← 0
2 For i = 1, . . . , u and j = 1, . . . , qs,i do
3 Si,j ←$ {0, 1}sl \OS ; Ki,j ←$ {0, 1}kl ; OS← OS ∪ {Si,j} ; FT[i, Si,j]← Ki,j

Verify(i, S, I, C, A):
4 If (MT[i, S, I, C, A] ̸= ⊥) then return ⊥
5 If (FT[i, S] ̸= ⊥) then return false
6 R← { P ∈ HPS : SE.Dec(HT[P, S], I, C, A) ̸= ⊥ }
7 If (|R| ≥ γ) then Gkrob$

SE,qh,γ .Fin(I, C, A)
8 Return false

H(P, S):
9 If (HT[P, S] ̸= ⊥) then return HT[P, S]

10 HPS ← HPS ∪ {P} ; c← c + 1 ; HT[P, S]← Kc

11 Return HT[P, S]

Figure 20: How adversary Akrob$, for the proof of Theorem 6.3, simulates A’s oracles. Enc,Salt
responses are as in Figure 16.

Adversary Aauth

Init:
1 c← 0
2 For i = 1, . . . , u and j = 1, . . . , qs,i do
3 Si,j ←$ {0, 1}sl \OS ; OS← OS ∪ {Si,j} ; c← c + 1 ; UT[i, Si,j]← c

Enc(i, N, M, A):
4 C ← Gauth

SE,qs+qv
.Enc(UT[i, Si,s(i)], N, M, A)

5 MT[i, Si,s(i), SE.NI(N), C, A]←M ; Return C

Verify(i, S, I, C, A):
6 If (MT[i, S, I, C, A] ̸= ⊥) then return ⊥
7 If (UT[i, S] ̸= ⊥) then V ← Gauth

SE,qs+qv
.Verify(UT[i, S], I, C, A)

8 Else
9 If (VT[i, S] = ⊥) then c← c + 1 ; VT[i, S]← c

10 b← Gauth
SE,qs+qv

.Verify(VT[i, S], I, C, A)
11 Return false

Figure 21: How adversary Aauth, for the proof of Theorem 6.3, simulates A’s oracles. Salt,H
responses are as in Figure 15.

Adversary Aauth-c is playing game Gauth-c
SE,qh

(Figure 5). It runs A, responding to oracle queries as
shown in Figure 22. To each pair (P, S) where S is not one of the Si,j , table VT associates a user
index VT[P, S] ∈ [1..qh] (line 8 of Figure 22). At line 9, Aauth-c calls the Verify oracle provided
by the Gauth-c

SE,qh
game it is playing. The delicate issue is that Aauth-c now needs to return HT[P, S]

to A in response to the H query, but this is a challenge key, not available to the adversary in the
usual authenticity game. This is where exposures enter. At line 10, Aauth-c exposes the key of

37

Adversary Aauth-c

Init:
1 c← 0
2 For i = 1, . . . , u and j = 1, . . . , qs,i do
3 Si,j ←$ {0, 1}sl \OS ; Ki,j ←$ {0, 1}kl ; OS← OS ∪ {Si,j} ; FT[i, Si,j]← Ki,j

Verify(i, S, I, C, A):
4 If (MT[i, S, I, C, A] ̸= ⊥) then return ⊥
5 If (FT[i, S] ̸= ⊥) then return false
6 CCS ← CCS ∪ {(i, I, C, A)} ; Return false

H(P, S):
7 If (HT[P, S] ̸= ⊥) then return HT[P, S]
8 c← c + 1 ; VT[P, S]← c

9 For all (i, I, C, A) ∈ CCS do b← Gauth-c
SE,qh

.Verify(VT[P, S], I, C, A)
10 HT[P, S]← Gauth-c

SE,qh
.Expose(c) ; Return HT[P, S]

Figure 22: How adversary Aauth-c, for the proof of Theorem 6.3, simulates A’s oracles. Enc,Salt
responses are as in Figure 16.

the appropriate user and returns it to A as the oracle response. But the Verify queries at line 9
precede the Expose query at line 10, so Aauth-c sets win in Gauth-c

SE,qh
whenever G4(A) sets bad at

line 18. This justifies Eq. (26). Note that Aauth-c makes no queries to its Gauth-c
SE,qh

.Enc oracle; replies
to A’s Enc queries are computed under the keys Ki,j that Aauth-c picked at line 3. This justifies
Eq. (26), the final step in proving Eq. (6).

D Proof of Theorem 7.1

Proof of Theorem 7.1: Figure 23 simultaneously specifies games G0, G1, G2; a line annotated
with a game name (eg. lines 2,3) is included only in the indicated game. We assume A respects
requirements, allowing us to omit writing required conditions. In the case y = b we assume un is
never set to false and accordingly drop it and associated variables. Game Gpind$

FPBE,PD,u is extended
to the ROM by addition of a procedure H that implements a random oracle with range R as per
the theorem statement.
We recall that by definition, the advantage Advpind$

FPBE,PD,u(A) may be written, equivalently, as
2 Pr[Gpind$

FPBE,PD,u(A)] − 1, or as Pr[Gpind$
d=1 (A)] − Pr[Gpind$

d=0 (A)], where the notation Gpind$
d=d′ denotes

the PIND$ game (with parameters FPBE, PD, u) when operating with challenge bit d′. We refer to
the latter advantage definition for this proof.
We first claim that G1 is equivalent to Gpind$

d=1 , and that G0 is equivalent to Gpind$
d=0 . Game G1

returns a real ciphertext in line 2 and computes keys appropriately using the PBKDF in line 6,
as expected for the PIND$ game with challenge bit 1. Game G0 returns a random ciphertext in
line 3, as expected when the challenge bit is 0, and has no need to keep track of symmetric keys.
Applying the definition of advantage,

Advpind$
FPBE,PD,u(A) = Pr[G1(A)]− Pr[G0(A)] .

38

Games G0, G1, G2

Init:
1 P←$ PD

Enc(i, N, M, A):
2 C ← SE.Enc(Ki,s(i), N, M, A) // Games G1, G2

3 C←$ {0, 1}FPBE.cl(|M|) // Game G0
4 Return C

Salt(i):
5 s(i)← s(i) + 1
6 Si,s(i)←$ FPBE.SS ; Ki,s(i) ← F[H](P[i], Si,s(i)) // Game G1
7 Si,s(i)←$ FPBE.SS ; Ki,s(i)←$ {0, 1}SE.kl // Game G2
8 Si,s(i)←$ FPBE.SS // Game G0
9 Return Si,s(i)

H(X):
10 If HT[X] = ⊥ then HT[X]←$R
11 Return HT[X]

Fin(d′):
12 Return (d′ = 1)

Figure 23: Games for proof of Theorem 7.1.

We can trivially extend this expression to

Advpind$
FPBE,PD,u(A) = (Pr[G1(A)]− Pr[G2(A)]) + (Pr[G2(A)]− Pr[G0(A)]) .

We will design adversaries AF, ASE such that

Pr[G1(A)]− Pr[G2(A)] ≤ Advkd
F,PD,u(AF) (27)

Pr[G2(A)]− Pr[G0(A)] ≤ Advind$
SE,qs

(ASE) . (28)

We first describe adversary AF. Recall that in the kd game, described in Figure 10, the RIO oracle
responses are applications of F with challenge bit 1, or are random with challenge bit 0. AF can
thus run A, responding to oracle queries as specified in either G1 or G2. Concretely, key and salt
selection is implemented by doing (Si, Ki,s(i))← RIO(i). When RIO returns the result of applying
F, this is exactly line 6. If RIO returns random keys, this is line 7. AF responds to A’s encryption
queries using the appropriate key in line 2. When A guesses a bit d′ and terminates, AF outputs d′

as well.
As we did above with PIND$ advantage, we can write the kd advantage of AF as Pr[Gkd

d=1(AF)]−
Pr[Gkd

d=0(AF)], where the game parameters remain F, PD, u. Since AF outputs the same d′ as A, we
have Pr[Gkd

d=1(AF)] = Pr[G1(A)] and Pr[Gkd
d=0(AF)] = Pr[G2(A)], which in combination with the

definition of kd advantage, justifies Eq. (27).
Next we turn to describing adversary ASE. ASE initializes a user counter v ← 0, then runs A. When
A makes a Salt(i) query, ASE responds by doing:

s(i)← s(i) + 1 ; v ← v + 1 ; Si←$ FPBE.SS ; ki,s(i) ← v

39

Return Si // Response returned to A

When A makes an Enc(i, N, M, A) query, ASE responds by doing:

C ← Gind$
SE,qs

.Enc(ki,s(i), N, M, A) // Call own Enc oracle for user ki,s(i)

Return C // Response returned to A

When A guesses a bit d′ and ends execution, ASE guesses that same bit. We claim that ASE satisfies
Eq. (28). The qs parameter in the Advind$

SE,qs
(ASE) term is explained as follows: a user in the Gind$

SE,qs

game corresponds to a new, uniformly random key whenever a Salt query occurs in the Gpind$
FPBE,PD,u

game. Thus the number of keys in the Gind$
SE,qs

game is the number of Salt queries, qs. To explain
the rest, the oracle responses returned by ASE conform to the game G2 when ASE’s challenge bit
is 1, and ASE correctly guesses 1 whenever A does. The oracle responses conform to game G0
(random ciphertexts) when ASE’s challenge bit is 0, and again ASE guesses the same bit as A. Thus
Pr[Gind$

d=1 (ASE)] = Pr[G2(A)] and Pr[Gind$
d=0 (ASE)] = Pr[G0(A)], where the IND$ game parameters

are SE, qs. The definition of IND$ advantage directly implies Eq. (28).
The theorem statement immediately follows from Eqs. (27), (28). We have

Advpind$
FPBE,PD,u(A) = (Pr[G1(A)]− Pr[G2(A)]) + (Pr[G2(A)]− Pr[G0(A)])

≤ Advkd
F,PD,u(AF) + Advind$

SE,qs
(ASE) .

We additionally remark that ASE preserves the adversary class of A, meaning that for y ∈ {b, a},
A ∈ Ay implies that ASE ∈ Ay. Recall that the user indices used by A and ASE differ as follows: for
a user i for which A makes queries of the form Enc(i, N, M, A), ASE may make queries to multiple
SE users, corresponding to the FPBE resalts for user i. ASE forwards the same nonce and other
inputs, meaning that ASE only repeats a nonce for a particular user if A does so for a particular
user and salt. This proves the full statement of Theorem 7.1.

E Proof of Theorem 7.2

Proof of Theorem 7.2: Game Gpauth
FPBE,PD,u is extended to the ROM by addition of a procedure H

that implements a random oracle with range R as per the theorem statement. With this as starting
point, we refer to games G0, G1 in Figure 24. A line annotated with a game name (eg. lines 5,6)
is included only in the indicated game. The notation F[H] at lines 5,11 indicates that F may be a
ROM PBKDF, calling H as an oracle. We are assuming A is sequential, so all its Enc and Salt
queries are made before any of its Verify queries. We assume A respects requirements, allowing
us to drop writing required conditions. In the case y = b we assume un is never set to false and
accordingly drop it and associated variables.
We claim that G0 is equivalent to Gpauth

FPBE,PD,u, meaning that

Advpauth
FPBE,PD,u(A) = Pr[Gpauth

FPBE,PD,u(A)] = Pr[G0(A)] .

Indeed G0 maintains that Ki,s(i) = F[H](P[i], Si) = KT[i, Si] and is using the right keys at all times.
Game G1 switches the keys for the base scheme SE to random (lines 6,12). A subtle point is what
happens if a salt Si happens to equal a prior one for user i. Then Ki,s(i) is nonetheless fresh, but
KT[i, Si] at line 13 in G1 can get redefined to a new value. (The latter does not happen in G0,

40

Games G0, G1

Init:
1 P←$ PD

Enc(i, N, M, A):
2 C ← SE.Enc(Ki,s(i), N, M, A)
3 MT[i, Si, SE.NI(N), C, A]←M ; Return C

Verify(i, S, I, C, A):
4 If (MT[i, S, I, C, A] ̸= ⊥) then return ⊥
5 If (KT[i, S] = ⊥) then KT[i, S]← F[H](P[i], S) // Game G0
6 If (KT[i, S] = ⊥) then KT[i, S]←$ {0, 1}SE.kl // Game G1
7 M ← SE.Dec(KT[i, S], I, C, A)
8 If (M ̸= ⊥) then win← true
9 Return (M ̸= ⊥)

Salt(i):
10 s(i)← s(i) + 1
11 Si,s(i)←$ FPBE.SS ; Ki,s(i) ← F[H](P[i], Si,s(i)) // Game G0
12 Si,s(i)←$ FPBE.SS ; Ki,s(i)←$ {0, 1}SE.kl // Game G1
13 KT[i, Si,s(i)]← Ki,s(i) ; Return Si,s(i)

H(X):
14 If HT[X] = ⊥ then HT[X]←$R
15 Return HT[X]

Fin:
16 Return win

Figure 24: Games for proof of Theorem 7.2.

where KT[i, Si], once defined, won’t change, because F is deterministic.) However, KT[·, ·] is only
used in Verify, and since the adversary is sequential, responses will only reflect the latest KT[·, ·]
values and stay consistent with those. In particular, salt collisions create no “bad” event in the
current context; instead this is covered through the definition of kd-security of F (salt collisions are
allowed in RIO in Figure 10) and a salt-collision term shows up in Theorem 7.3.

Proceeding, we trivially have

Pr[G0(A)] = Pr[G1(A)] + Pr[G0(A)]− Pr[G1(A)] .

We will design adversaries AF, ASE so that

Pr[G0(A)]− Pr[G1(A)] ≤ Advkd
F,PD,u(AF) (29)

Pr[G1(A)] ≤ Advauth
SE,qs+qv

(ASE) . (30)

Adversary AF runs A. When A makes a Salt(i) query, AF responds as in game G1 except that
line 12 is replaced with (Si,s(i), Ki,s(i))← RIO(i), meaning the salt and key are obtained from AF’s
RIO oracle rather than being chosen directly. Now Enc queries can be answered as shown in G1.
For Verify queries, line 6 is replaced with KT[i, S]← CIO(i, S), and H queries are answered via
AF’s own H oracle. (Game Gkd

F,PD,u here is in the ROM, providing oracle H because F uses it.)

41

When A terminates, AF returns 1 if win = true and 0 otherwise. If d denotes the challenge bit in
game Gkd

F,PD,u then

Pr[Gkd
F,PD,u(AF) | d = 1] = Pr[G0(A)]

Pr[Gkd
F,PD,u(AF) | d = 0] = Pr[G1(A)] .

Subtracting yields Eq. (29).
Next we describe adversary ASE. ASE initializes a counter v ← 0, representing a user index. It now
runs A. When A makes a Salt(i) query, it does the following:

s(i)← s(i) + 1 ; v ← v + 1 ; Si←$ FPBE.SS
ki,s(i) ← v ; kT[i, Si,s(i)]← v // Set these to user indices, not keys
Return Si // Response returned to A

When A makes an Enc(i, N, M, A) query, ASE does the following:

C ← Gauth
SE,qs+qv

.Enc(ki,s(i), N, M, A) // Call own Enc oracle for user ki,s(i)

MT[i, Si, SE.NI(N), C, A]←M ; Return C // Response returned to A

When A makes a Verify(i, S, I, C, A) query, ASE does the following:

If (MT[i, S, I, C, A] ̸= ⊥) then return ⊥
If (kT[i, S] = ⊥) then v ← v + 1 ; kT[i, S]← v
e← Gauth

SE,qs+qv
.Verify(kT[i, S], I, C, A) // Call own Verify oracle for kT[i, S]

Return e // Response returned to A

When A makes a H(X) query, ASE does the following:

If HT[X] = ⊥ then HT[X]←$R
Return HT[X] // Response returned to A

Note that game Gauth
SE,qs+qv

is not in the ROM and provides no H oracle; adversary ASE is simply
simulating it for A on its own. If the execution of A with G1 sets win, then win will also be set in
the execution of ASE with Gauth

SE,qs+qv
, which justifies Eq. (30). The count of qs + qv for the number

of users for SE arises as an upper bound for the counter v.
We also need to check that if A ∈ Ab (a nonce is not repeated for a given user and salt instance)
then ASE ∈ Ab (a nonce is not repeated for a given user). This is true because we have taken care
that every pair (i, s(i)) corresponds to a different user for ASE. (This is true even if there are salt
collisions.) ASE is sequential because it makes all Enc,Verify queries in the same order as A.

F Proof of Theorem 7.3

Proof of Theorem 7.3: In the ROM, game Gkd
F,PD,u adds a procedure H for the random oracle.

Below we will often, without explicit mention, exploit the assumption, from the definition of a
password distribution, that P[1], . . . , P[u] are distinct. Similarly, we will exploit throughout the

42

Game G0 / G1

Init:
1 d←$ {0, 1} ; P←$ PD
2 For i = 1, . . . , u and j = 1, . . . , qr,i do
3 Si,j ←$ {0, 1}sl

4 If (d = 1) then Ki,j ← H(P[i], Si,j) else Ki,j ←$ {0, 1}kl

5 If (Si,j ∈ OS) then bad← true ; Si,j ←$ {0, 1}sl \OS
6 OS← OS ∪ {Si,j} ; FT[i, Si,j]← Ki,j

RIO(i):
7 s(i)← s(i) + 1 ; Return (Si,s(i), Ki,s(i))

CIO(i, S):
8 If (FT[i, S] ̸= ⊥) then return FT[i, S]
9 K1 ← H(P[i], S) ; K0←$ {0, 1}kl ; FT[i, S]← Kd ; Return Kd

H(P, S):
10 If (HT[P, S] ̸= ⊥) then return HT[P, S]
11 HT[P, S]←$ {0, 1}kl ; Return HT[P, S]

Fin(d′):
12 Return (d′ = d)

Figure 25: Games G0, G1 for proof of Theorem 7.3, where G1 includes the boxed code and G0 does
not.

assumption that AF is sequential, meaning it makes all its qr RIO queries before any of its CIO
queries. The algorithms Find1, Find2, used in some games and the constructed adversary below,
were defined in Section 3.

Consider the games of Figure 25, where G1 includes the boxed code and G0 does not. We have
let qr,i be the number of RIO(i) queries, so that qr = qr,1 + · · · + qr,u. Let Si,j denote the input
that RIO(i) would pick the j-th time it is called. The games start by picking these values up front
in Init, together with values Ki,j that RIO would return as function outputs. However, while
G0 picks the Si,j at random, G1 ensures that they are distinct. Down the line, this will allow
password-guessing adversary Apg to use the input to uniquely identify the user in an RIO query
and thereby minimize the number of Test queries it makes. For now, we just note that game G0
is equivalent to game Gkd

F,PD,u, so

Advkd
F,PD,u(AF) = 2 Pr[Gkd

F,PD,u(AF)]− 1 = 2 Pr[G0(AF)]− 1 .

Trivially we have

2 Pr[G0(AF)]− 1 = 2 Pr[G1(AF)]− 1 + 2(Pr[G0(AF)]− Pr[G1(AF)]) . (31)

Games G0, G1 are identical-until-bad, so by the Fundamental Lemma of Game Playing [14] we have

Pr[G0(AF)]− Pr[G1(AF)] ≤ Pr[G0(AF) sets bad] .

Flag bad is set when two of the qr inputs collide, so

Pr[G0(AF) sets bad] ≤ qr(qr − 1)
2sl+1 .

43

Game G2 / G3

Init:
1 P←$ PD
2 For i = 1, . . . , u and j = 1, . . . , qr,i do
3 Si,j ←$ {0, 1}sl \OS ; Ki,j ←$ {0, 1}kl

4 OS← OS ∪ {Si,j} ; FT[i, Si,j]← Ki,j

RIO(i):
5 s(i)← s(i) + 1 ; Return (Si,s(i), Ki,s(i))

CIO(i, S):
6 If (FT[i, S] ̸= ⊥) then return FT[i, S]
7 K←$ {0, 1}kl

8 If (HT[P[i], S] ̸= ⊥) then bad← true ; K ← HT[P[i], S]
9 FT[i, S]← K ; KT[i, S]← K ; Return K

H(P, S):
10 If (HT[P, S] ̸= ⊥) then return HT[P, S]
11 HT[P, S]←$ {0, 1}kl ; i← Find1(P, P)
12 If (i ̸= 0) then j ← Find1(S, (Si,1, . . . , Si,qr,i))
13 If (i ̸= 0 and j ̸= 0) then bad← true ; HT[P, S]← Ki,j

14 If (i ̸= 0 and KT[i, S] ̸= ⊥) then bad← true ; HT[P, S]← KT[i, S]
15 Return HT[P, S]

Fin(d′):
16 Return (d′ = 1)

Figure 26: Games G2, G3 for proof of Theorem 7.3, where G2 includes the boxed code and G3 does
not.

Returning to Eq. (31), we now want to bound the advantage of AF in G1, namely the quantity

2 Pr[G1(AF)]− 1 = Pr[G1(AF) | d = 1]− (1− Pr[G1(AF) | d = 0]) ,

where d is the challenge bit from line 1 of Figure 25. Towards this, games G2, G3 in Figure 26 have
been designed so that they are identical-until-bad and also

Pr[G1(AF) | d = 1] = Pr[G2(AF)] (32)

1− Pr[G1(AF) | d = 0] = Pr[G3(AF)] . (33)

We now justify the two equations above. Unlike in G1, oracle Init in G2, G3 picks no challenge bit
d, and, correspondingly, Fin(d′) is changed to return true iff d′ = 1. As in G1, oracle Init continues
to pick distinct inputs Si,j , but always optimistically picks the Ki,j to be random. In G3 it stays
that way, as per the d = 0 case of G1. As per the d = 1 case of G1, however, G2, via the inclusion
of the boxed code at line 13, ensures that Ki,j = H(P[i], Si,j). This shows that responses to RIO
queries adhere to Eqs. (32) and (33). The boxed code at lines 8 and 14, included in G2 but not G3,
ensures the same for CIO queries.

Games G2, G3 are identical-until-bad, so by the Fundamental Lemma of Game Playing [14] we have

Pr[G2(AF)]− Pr[G3(AF)] ≤ Pr[G3(AF) sets bad] .

44

Game G4

Init:
1 P←$ PD
2 For i = 1, . . . , u and j = 1, . . . , qr,i do
3 Si,j ←$ {0, 1}sl \OS ; Ki,j ←$ {0, 1}kl

4 OS← OS ∪ {Si,j} ; FT[i, Si,j]← Ki,j

RIO(i):
5 s(i)← s(i) + 1 ; Return (Si,s(i), Ki,s(i))

CIO(i, S):
6 If (FT[i, S] ̸= ⊥) then return FT[i, S]
7 CS← CS ∪ {S} ; CUS ← CUS ∪ {i}
8 K←$ {0, 1}kl ; FT[i, S]← K ; Return K

H(P, S):
9 If (HT[P, S] ̸= ⊥) then return HT[P, S]

10 HS← HS ∪ {S} ; HPS ← HPS ∪ {P}
11 HT[P, S]←$ {0, 1}kl ; Return HT[P, S]

Fin(d′):
12 For all S ∈ HS and P ∈ HPS do
13 i← Find2(S, (S1,1, . . . , S1,qr,1), . . . , (Su,1, . . . , Su,qr,u))
14 If (i ̸= 0 and P = P[i]) then bad← true
15 For all S ∈ CS ∩HS and i ∈ CUS do
16 If (P[i] ∈ HPS) then bad← true
17 Return bad

Figure 27: Game G4 for proof of Theorem 7.3.

Now we turn to bounding Pr[G3(AF) sets bad]. We claim that

Pr[G3(AF) sets bad] ≤ Pr[G4(AF)] , (34)

where game G4 is in Figure 27. Since the setting of bad in G3 does not affect what oracles return,
G4 moves the setting of bad to Fin. Through line 7, the set CS holds all inputs S that were queried
to CIO, and for each such S, set CUS holds all users for which i, S was queried to CIO. Sets
HS, HSS are analogously defined through line 10. These are used to set bad in Fin. Game G4 sets
bad at line 14 (respectively 16) whenever G3 would have set it at line 13 (respectively 8 or 14),
justifying Eq. (34). The distinctness of the Si,j inputs is important here to ensure that i at line 13
is unique.

Next we design Apg so that

Pr[G4(AF)] ≤ Advpg
PD,u(Apg) . (35)

Adversary Apg begins by executing lines 2–4 of G4 in Figure 27. (It skips line 1. The role of P
will be played by the one chosen in its game Gpg

PD,u.) It then runs AF, simulating its RIO,CIO,H
oracles as shown in game G4. When AF terminates (with an output d′ that Apg ignores), Apg does
the following:

1. For all S ∈ HS and P ∈ HPS do

45

2. i← Find2(S, (S1,1, . . . , S1,qr,1), . . . , (Su,1, . . . , Su,qr,u))
3. If (i ̸= 0) then Test(i, P)
4. For all S ∈ CS ∩HS and i ∈ CUS do
5. For all P ∈ HPS do Test(i, P)

If G4 sets bad then some Test query of Apg will set win in game Gpg
PD,u, justifying Eq. (35).

Putting things together, we have

Advkd
F,PD,u(AF) = 2 Pr[G0(AF)]− 1 ≤ 2 Pr[G1(AF)]− 1 + 2 · qr(qr − 1)

2sl+1

≤ Advpg
PD,u(Apg) + qr(qr − 1)

2sl .

To obtain Eq. (11), we show that Apg’s series of Test queries is bounded by the parameters
(q, qp, qw) defined in the theorem statement, so that Advkd

F,PD,u(AF) ≤ GPPD(q, qp, qw). We begin
by considering q, the total number of unique Test queries.
In the above code, the total number of Test queries emanating from line 3 is at most qh. The
number from line 5 is ∑

S∈CS∩HS

∑
i∈CUS

|HPS | =
∑

S∈CS∩HS
|CUS | · |HPS | . (36)

We can bound this in two ways. First, |CUS | ≤ u so the sum is at most u ·
∑

S∈HS |HPS | = uqh.
Second, |HPS | ≤ qh so the sum is at most qh ·

∑
S∈CS |CUS | = qhqc. Thus the number of Test

queries arising from line 5 is min(qc, u) · qh. Additionally there are qh Test queries if qr > 0, and
none if qr = 0. So overall, Apg makes at most q = zt(qr) · qh + min(qc, u) · qh Test queries, as
claimed. Now, the number of distinct passwords guessed among the Test queries (the qp guessing
probability parameter) is at most qh. And the number of distinct users included among the Test
queries (the qw parameter) is at most min(qr + qc, u).
We note that the reason CIO queries are more expensive in terms of Test queries is that Apg
does not have a way to know for which user to test a particular P , forcing it to try all the ones
in CUS . We avoided this for RIO queries by making the Si,j inputs distinct, so that the input
would uniquely identify the user. This is how we have made RIO queries cheaper in terms of Test
queries.

G Proofs of attack propositions

Proof of Proposition 8.1: Adversary A queries Si ← Salt(i) for i = 1, . . . , u. Then it picks a
nonce N , an ℓ-bit message M and associated data A. It lets Ci ← Enc(i, N, M, A) for i = 1, . . . , u.
It then runs Apg. When the latter makes query Test(i, P), it does the following:

K ← H(P, Si) ; C ← SE.Enc(K, N, M, A)
If (C = Ci) then Fin(1)

If the execution of Apg terminates without the “If” above ever returning true, then A ends with
Fin(0). If Apg makes qh Test queries then A makes qh H queries and u Salt,Enc queries, as
specified in Proposition 8.1.

46

Next we consider the advantage of A. If any of Apg’s Test(i, P) queries is correct, meaning that
P[i] = P , then A’s C = Ci check will return true. In the d = 1 setting this means that

Pr[Gpind$
FPBE,PD,u(A) | d = 1] ≥ Advpg

PD,u(Apg) . (37)

In the d = 0 setting, the ciphertexts are random (independent of the password guesses). A will
only return Fin(1) if a random ciphertext happens to decrypt to the correct message for at least
one of the qh tries. For one try, this probability is 1

2SE.cl(ℓ) . Over all tries this means

Pr[Gpind$
FPBE,PD,u(A) | d = 0] ≥ 1− qh

2SE.cl(ℓ) . (38)

Combining Eqs. (37), (38) gives the advantage for A. We note that A does not misuse nonces and
thus can be considered in the class Ay for either of y ∈ {b, a}.

Partitioning-oracle attack. Before presenting the proof of Proposition 8.2, which uses the
partitioning-oracle attack, we briefly summarize its context. As introduced in [29], the basic
partitioning-oracle attack targets one specific user. The attack utilizes a function MakeSplittingCT
which does the following: On inputs K1, . . . , Kn ∈ {0, 1}SE.kl for n > 0, MakeSplittingCT returns
(I ∈ SE.NIS, C ∈ {0, 1}∗, A ∈ SE.AS) such that SE.Dec(Ki, I, C, A) ̸= ⊥ for all 1 ≤ i ≤ n. Im-
portantly, this violates key-robustness with advantage 1, for an arbitrary number n of symmetric
keys.

The description of partitioning oracles in the following proof differs slightly, though the algo-
rithm remains essentially the same, in order to provide comparison to our theorems. First, it is
multi-user, considering u users rather than one. Second, it considers the more general γ-way ro-
bustness. Finally, we aim to break authenticity rather than mount a full password-recovery attack,
as [29] does. Like [29], we focus on a setting with zero Enc queries and access to a Verify oracle.
We now proceed to the proof.

Proof of Proposition 8.2: Adversary Apo begins by running Apg to obtain its sequence
(i1, g1), . . . , (iq, gq) of guesses. Since the Test oracle sends no response, all of Apg’s queries can
be made and recorded up front. Let q = n(1) + · · · + n(u), so that n(i) is the number of Test
queries to user i ∈ [1..u]. Apo then re-indexes the guesses so that gi,j is the j-th guess to user i,
where 0 ≤ j ≤ n(i) − 1 and 1 ≤ i ≤ u. It fixes a salt S ∈ FPBE.SS and lets Ki,j ← H(S, gi,j).
Note that in the proposition statement, we assume that Apg makes (q, qh, qw) Test queries, and
in particular this covers qh distinct password guesses. Thus Apo need only query H qh times, since
the salt remains fixed.
In the proposition statement we assume that robustness is completely violated, meaning that an
adversary Akrob$ violates γ-way robustness with advantage 1 for arbitrarily large γ. This is the
assumption in [29], but for now, suppose only that γ ≥ 2 and that we are given Akrob$ achieving
some advantage. Let q(i) = ⌈n(i)/γ⌉ for 1 ≤ i ≤ u. Let qv = q(1) + · · ·+ q(u) and U = { i ∈ [1..u] :
n(i) ≥ γ }.
Now for each i, Apo splits the sequence Ki,0, . . . , Ki,n(i)−1 into q(i) sub-sequences, where the first
q(i)− 1 have size γ and the last has size at most γ. The robustness adversary is run on each of the
first q(i)− 1 sub-sequences. This is detailed below:

For all i ∈ U do
For ℓ = 1, . . . , q(i)− 1 do

(I, C, A)← Akrob$(Ki,γ(ℓ−1), . . . , Ki,γℓ−1) ; Verify(i, S, I, C, A)

If the q(i)-th sub-sequence has size γ, the loop continues for one more iteration and Apo does:

47

(I, C, A)← Akrob$(Ki,γ(q(i)−1), . . . , Ki,γq(i)−1) ; Verify(i, S, I, C, A)

Otherwise, if the q(i)-th sub-sequence has size smaller than γ, the difficulty is that the robustness
adversary Akrob$ runs in a setting with γ keys. In this case, Apo chooses remaining keys uniformly
at random, so that the q(i)-th subsequence has γ keys and the above line can be executed. We
claim that this does not change Apo’s advantage lower bound, and in fact can only increase the
chance that a Verify query correctly decrypts. We also note about Akrob$ that the γ keys given
as input are always random, as expected in the Init procedure of the γ-way robustness game (as
defined in Figure 6), either from being chosen randomly or as the output of the random oracle H.

At this point, Apo has made its qh H queries and qv Verify queries; the ceiling in q(i) = ⌈n(i)/γ⌉
ensures that the number of Verify queries accounts for the second case above. We proceed to
explaining Eq. (13). In order for Apo to make a Verify query that sets win to true in its Gpauth

FPBE,PD,u

game, two conditions must hold: first, one of the keys Ki,j is such that H(P[i], S) = Ki,j for user
i; and second, Akrob$ “succeeds” on this particular key. That is, in that iteration, Akrob$ returns
(I, C, A) such that Verify(i, S, I, C, A) wins and thus SE.Dec(Ki,j , I, C, A) ̸= ⊥.

To express the requirement that both a password guess be correct, and that Akrob$ find a robustness-
violating ciphertext for that particular guess, the following is a lower bound, multiplying the re-
quired probabilities:

Advpauth
FPBE,PD,u(Apo) ≥ Advpg

PD,u(Apg) ·
∏
i∈U

Advkrob$
SE,γ,γ(Akrob$)q(i) . (39)

While Eq. (39) is a general statement, it is most useful in the setting of the proposition, when
Akrob$ violates γ-way robustness with advantage 1 for arbitrarily large γ. In this case, the righthand
robustness advantage product is simply 1, and we achieve Eq. (13). We again note that Apo makes
qh H queries, and because of the robustness assumption, at most one Verify query per user. Given
that Apg makes (q, qh, qw) Test queries, Apo thus makes min(qw, u) Verify queries, proving the
remainder of the proposition statement. We also note that Apo does not misuse nonces and thus
can be considered in the class Ay for either of y ∈ {b, a}.

H Proof of Proposition 9.1

Proof of Proposition 9.1: Given adversary A, we begin with the construction of ASE. Adversary
ASE runs A to get (P1, S1, N1, A1, M1), . . . , (Pγ , Sγ , Nγ , Aγ , Mγ), then outputs (F(P1, S1), N1, A1,
M1), . . . , (F(Pγ , Sγ), Nγ , Aγ , Mγ). If all of A’s outputs encrypt to the same ciphertext, then so will
ASE’s outputs; this follows from the fact that FPBE = DtE[SE, F] derives symmetric keys by doing
exactly F(P, S). However, it is not the case that the distinctness of P1, . . . , Pγ (if ℓ = 1) or the
distinctness of (P1, S1), . . . , (Pγ , Sγ) (if ℓ = 2) implies the distinctness of F(P1, S1), . . . , F(Pγ , Sγ).
At this point, we can say that

Advpcmt-ℓ
FPBE,γ(A) ≤ Advcmt-ℓ′

SE,γ (ASE) + Pr[F(P1, S1), . . . , F(Pγ , Sγ) are not distinct] .

Note that the above expression holds for all three cases claimed in the theorem: namely ℓ = 1 to
ℓ′ = 1 (trivially), ℓ = 2 to ℓ′ = 1, and ℓ = 5 to ℓ′ = 4.

Next we turn to AF. AF runs A to get (P1, S1, N1, A1, M1), . . . , (Pγ , Sγ , Nγ , Aγ , Mγ). Then AF
scans through the γ tuples to find i, j such that i ̸= j and F(Pi, Si) = F(Pj , Sj). If AF finds such a
pair, it outputs (Pi, Si), (Pj , Sj), and otherwise outputs ⊥. Thus AF wins the cr game if and only

48

if A’s outputs are such that F(P1, S1), . . . , F(Pγ , Sγ) are not distinct. This, along with the above
equation, proves Eq. (14).

49

	Introduction
	Flexible PBE
	Motivation and applications
	Security of the DtE scheme
	Extended setting and results

	Related work
	Preliminaries
	The tool: Symmetric encryption
	The goal: Flexible password-based encryption
	Security of the DtE scheme
	Proving DtE security via composition and PBKDFs
	Attacks
	Key-robustness of DtE
	References
	Proofs of authenticity lemmas
	Proof of Theorem 5.1
	Proof of Theorem 6.3
	Proof of Theorem 7.1
	Proof of Theorem 7.2
	Proof of Theorem 7.3
	Proofs of attack propositions
	Proof of Proposition 9.1

