
Secure and Practical Functional Dependency
Discovery in Outsourced Databases

Xinle Cao
Zhejiang University
Hangzhou, China
xinle@zju.edu.cn

Yuhan Li
Zhejiang University
Hangzhou, China

yuhan2165@zju.edu.cn

Dmytro Bogatov§

Amazon Inc.
Boston, MA 02210

bogatov@amazon.com

Jian Liu§

Zhejiang University
Hangzhou, China

liujian2411@zju.edu.cn

Kui Ren
Zhejiang University
Hangzhou, China
kuiren@zju.edu.cn

Abstract—The popularity of cloud computing has made
outsourced databases prevalent in real-world applications.
To protect data security, numerous encrypted outsourced
databases have been proposed for this paradigm. However,
the maintenance of encrypted databases has scarcely been
addressed. In this paper, we focus on a typical maintenance task
— functional dependency (FD) discovery. We develop novel FD
protocols in encrypted databases while guaranteeing minimal
leakages: nothing is revealed besides the database size and the
actual discovered FDs. As far as we know, we are the first to
formally define secure FD discovery with minimal leakage.

We present two oblivious FD protocols and prove them
secure in the presence of the persistent adversary (monitoring
processes on the server). The first protocol leverages Oblivious
RAM (ORAM) and is suitable for dynamic databases. The
second protocol relies on oblivious sorting and is more practical
in static databases due to high parallelism. We also present a
thorough experimental evaluation of the proposed methods.

Index Terms—encrypted databases, data management, func-
tional dependency discovery, obliviousness

I. INTRODUCTION

With the popularity of cloud computing and the growth
of data volume, an outsourced database has become an im-
portant and practical paradigm: the client C uploads its large
database to a cloud server S for storage and management. C
accesses and utilizes the database by directly issuing queries
to S. In this way, C does not need to purchase expensive
equipment and manage it themselves. C can also elastically
adjust the cloud resource rented from S according to its
business demand.

Although an outsourced database provides multiple ad-
vantages, it also poses a risk to data security as now
possibly untrusted S can observe the database. To this end,
plenty of encrypted databases [5], [13], [29], [36], [46],
[54], [50] have been proposed, which encrypt the database
before uploading. They adopt some advanced cryptographic
techniques [44], [55] and secure enclaves [13] to allow
database operations while avoiding the leakage of sensitive
information. Encrypted outsourced database has become a

§This work is not related to the work of Dmytro Bogatov in Amazon.
§Jian Liu is the corresponding author.

promising direction in the database community, and many
works have been presented to solve query processing in
encrypted databases such as range queries [5], [29], [45],
[44] and join queries [10], [27], [53], [47].

A. Database Maintenance

Despite rich work on query processing, there is little
work on database maintenance in encrypted databases [14],
[30]. Database maintenance generally cannot be performed
via query interface as that can result in unexpected leak-
ages [30]. This issue makes most of the existing encrypted
databases [13], [19], [29], [44] lack solutions for database
maintenance with formal security guarantees. Database
maintenance, however, is very important in data manage-
ment. It guarantees the database is organized reasonably,
the data quality is promoted, and the query processing is
well-optimized.

A typical task in database maintenance is functional
dependency (FD) discovery [32]. Given two attribute sets
A,B, an FD: A → B constraint means that the values of
A uniquely determine the values of B. For example, the
FD: Zipcode → City implies that all records with the same
Zipcode values have the same City values. FD reveals the
relationships between different attribute sets and is a typical
type of data dependency. With FDs in the database, we can
solve multiple problems in database maintenance including
schema normalization [12], data cleaning [16], and database
(re)design [57]. Here we give an application scenario of
an FD in query optimization to show why FD discovery
is important in encrypted databases.
EXAMPLE. Consider an employee table that preserves
records for employees in the company. Each record stores
the Position and Department of an employee. If there
is an FD : Position → Department, then we can
identify only the Position value to retrieve required
records instead of both Position and Department. We
note that in encrypted databases in particular, reducing two
equality tests for attributes to one is significant, e.g., half
costs can be reduced in [44].

This work focuses on FD discovery in encrypted databases
as the necessary prerequisite for database maintenance.

B. Secure FD Discovery

The FD discovery in encrypted databases is challeng-
ing because of an extra requirement on minimal leakage.
As a crucial task in data management, FD discovery has
been studied by [16], [23], [32], [52] in the last decades.
Nonetheless, it is far from trivial to apply these approaches
in encrypted databases because these approaches do not
consider data security. Dong et al. [14] are the first to
present FD discovery in encrypted databases with a formal
security guarantee. But they enable FD discovery at the cost
of the leakage of well-defined partial frequency information
about plaintexts. As the frequency leakage has been proven
extremely dangerous to C [20], [39], this leakage may be
unacceptable.

In this paper, we require protocols for FD discovery to
leak minimal information to an adversary. Following existing
literature [10], [13], [36], we assume a persistent adver-
sary [5], [44] who is honest-but-curious and can observe
everything available in S during the whole execution of
protocols for FD discovery. Now we intuitively define secure
FD discovery in encrypted databases:

Secure FD discovery protocol leaks minimal information
necessary to obtain the result (leaks only the database size

and discovered FDs) under the persistent adversary.

The leakage of size is generally accepted in encrypted
databases [44], [10], [27] and the leakage of discovered FDs
is necessary to complete the task, therefore we refer to them
as the minimal leakages of secure FD discovery.

To achieve secure FD discovery in the presence of per-
sistent adversary, we have to avoid leakage from not only
ciphertexts (i.e., snapshot) but also access patterns — the
patterns of memory accesses [24], [26], [28]. We follow prior
works [50], [29] to apply semantically secure encryption to
conceal the leakage from ciphertexts. The more challenging
part is to mitigate the leakage from access patterns, which
requires the whole process of FD discovery to be oblivious.
That is, the access patterns should only depend on the
database size. To this end, we apply cryptographic primitives
Oblivious RAM (ORAM) and oblivious sorting for perform-
ing FD discovery obliviously. We note that the ”oblivious”
primitives can still be used insecurely. For example, the
number of accesses to ORAM protocols can leak sensitive
information [10], [5]. Extra care is needed to integrate the
primitives into a system and prove it is oblivious [9], [10].

C. Contributions

To summarize, this paper makes the following contributions:

• The first security definition for FD discovery in secure
outsourced databases requiring minimal leakage.

• A flexible ORAM-based secure FD discovery protocol
applicable to both static and dynamic databases.

• A practical secure FD discovery protocol with oblivious
sorting for static databases that exhibits high parallelism.

• The implementation and experimental evaluation of the
two methods in the cloud setting.

II. PRELIMINARIES

Notations. For a set I , |I| denotes the cardinality of I , i.e.,
the number of elements in I . For a positive integer k, we use
[k] to denote the contiguous integer set {0, 1, 2, ..., k − 1}.
Let 1{b} returns an integer 1 if b is true and 0 otherwise.
We denote the security parameter as λ.

A. Outsourced Database

Without loss of generality, we suppose a client C owns
a database DB with n rows and m attributes (columns)
where each row represents an individual record. We denote
the value of record r in attribute X as r[X]. In particular,
we assume each record r in DB can be represented or
mapped by a unique number denoted by r[ID], like their
row numbers. In data outsourcing, C encrypts DB to ”DB
and uploads ”DB to a cloud server S. To access D̂B, C
issues queries and lets S execute them. In particular, it is
possible that C will modify the database by issuing insertion
and deletion queries, i.e., ”DB can be dynamic. Similar to
prior works [15], [44], [58], we assume the encryption is
conducted at a cell level: each attribute value in a record is
encrypted individually.

Note: This work assumes a fairly generic outsourced
database (individually accessible symmetrically en-
crypted record values). Also, C and S do not need query
processing session to run FD protocols nor do the FD
protocols conflict with query processing. This way the
proposed FD discovery can run in online and offline
settings, similar to the works in secure multiparty com-
putation (MPC) [37] and private information retrieval
(PIR) [35]. Therefore, the proposed methods are highly
applicable to existing outsourced database designs.

B. Functional Dependency Discovery

Given two attribute sets A and B in database DB, there
exists an FD F between A and B, denoted by F : A→ B
iff for any pair of records r1, r2 in DB, if r1[A] = r2[A],
then r1[B] = r2[B]. For a functional dependency F , we
denote the attribute sets at its left and right hand as LHS(F)
and RHS(F), respectively. Note LHS(F) and RHS(F)
represent attribute sets, so they may consist of single or
multiple attributes, e.g., F : {Course ID, Semester} →
{Professor,Classroom}.

There has been a line of work [32], [41], [42] showing
how to discover all FDs in DB efficiently without encryption
and security. They effectively solve two problems: (1) given
two attribute sets A and B in DB, how to validate if F : A→
B holds; (2) given a database DB, how to plan the validation
on different attribute sets to discover all FDs efficiently, e.g.,
if F1 : A → B and F2 : A → C have been shown to hold,
then F3 : A → B ∪ C must hold and does not need to
be validated. In this paper, we focus on the first problem
because the validation plan on DB is natural following the
prior works [32], [23].

C. Partition-based Methods

Given an attribute set X , two records r, r′ in database DB
are equivalent if r[X] = r′[X]. We denote the equivalent
class of a record r with attribute set X as [r]X := {r′ ∈
DB|r′[X] = r[X]}. Now records in DB can be classified
according to their equivalence class. The set πX = {[r]X |r ∈
DB} is called a partition of DB under X . The partition
consists of multiple disjoint sets and each set has a unique
value on attribute set X for the records in it. The partitions
under different attribute sets can be used to validate FDs
with the following theorem [32].

Theorem 1. Given any two attribute sets A,B, an FD F :
A→ B holds iff |πA| = |πA∪B |.

This theorem is widely known and used in prior works on
FD discovery [32], [40], [61]. These partition-based methods
are typical and efficient solutions for FD discovery. Here we
give an example in Fig. 1 to show how this theorem works. In
the example, we can calculate that |π{Name}| = |π{Name, City}|
and |π{Name}| ≠ |π{Name, Birth}|. So we know Name → City
holds, but Name → Birth does not. In this paper, we also
follow this theorem and calculate the partitions securely to
achieve secure FD discovery.

Name City Birth
r1 Alice Boston Jan
r2 Bob Boston May
r3 Bob Boston Jan
r4 Carol New York Sep

Fig. 1. An example for Theorem 1. It can be calculated
that π{Name} = π{Name,City} = {{r1}, {r2, r3}, {r4}} and
π{Name,Birth} = {{r1}, {r2}, {r3}, {r4}}.

III. PROBLEM OVERVIEW

A. Problem Definition

The encrypted database system consists of two entities:
the client C and the server S. The client has a database
with n rows and m attributes whose set is denoted by T :=
{T1, T2, ..., Tm}. For data outsourcing, C encrypts DB to

”DB and uploads ”DB to S. To achieve FD discovery, C and
S interact with each other to run a protocol Π on ”DB and
output a set S consisting of pairs such that

(A,B) ∈ S ⇐⇒ A,B ⊂ T and A→ B.

Note C has only limited resources (including small mem-
ory), e.g., personal computers, wearables, so it cannot down-
load the whole database to discover FDs locally. C has to
interact with S to complete the FD discovery revealing the
access patterns on ”DB to S in the process, leaking sensitive
information about DB. This setting is common in recent
encrypted databases [10], [27] and is especially consistent
with those based on hardware enclaves [13], [21], [36] as
the enclave can also be regarded as such client. Therefore,
the protocols proposed in this paper can be easily integrated
with most existing encrypted databases to achieve database
maintenance.

B. Security Model

In this paper, we consider the server S an honest-but-
curious persistent adversary. It follows the predefined pro-
tocols Π as expected to discover FDs. But it tries to get as
much sensitive information as possible from its view during
the execution. Before we introduce the security notion, we
define the minimal leakage function of FD discovery on DB

L(DB) := {Size(DB),FD(DB)}

where Size(DB) is the database size (m,n) and FD(DB) is
the set of all FDs in DB. We call it the minimal leakage func-
tion because there is no other leakage besides the database
size Size(DB) and functional dependency FD(DB). The size
information is commonly leaked in encrypted databases [13],
[44], [54] and the FD leakage is necessary to do database
maintenance. Now we can formally define the secure FD
discovery protocol Π. Following prior works [11], [44],
we adopt a simulation-based security notion. We assume a
passive adversary A that has all the view of S and wants
to distinguish the real world (Real) and the ideal world
(Ideal). In the real world, the protocol Π is conducted on”DB while in the ideal world, given the access of the leakages
L(DB), a simulator Sim simulates the execution of Π on ”DB.
Definition 1 (Secure FD discovery). For any probabilistic
polynomial-time (PPT) adversary A that has all the views
of S, we say that Π is a secure FD discovery protocol if
there exists a PPT simulator Sim such that

|Pr[RealΠA = 1]− Pr[IdealΠA,Sim,L = 1]| ≤ negl(λ)

where λ is the security parameter and negl(λ) is a negligible
function in λ.

The security analysis and proof of our protocols are
available in Section VI.

C. Obliviousness
To achieve secure FD discovery, we have to conceal the

leakage from ciphertexts and access patterns. Similar to prior
works [13], [27], we adopt semantically secure encryption
which avoids any leakage about plaintexts (besides the plain-
text length) from ciphertexts. The decryption of ciphertexts
only happens inside C. We also let C apply re-encryption to
guarantee the ciphertexts read and written are distinct.

The challenge is to mitigate the leakage from access
patterns [24], [26], [28] in S, which requires oblivious
algorithms. That is, the distribution of access patterns in S
is dependent on only the database size and has no relation to
database contents. Formally, we define oblivious algorithms
in encrypted databases as below:

Definition 2 (Oblivious algorithm). For any two databases
DB0 and DB1 with the same size, denote the access pat-
terns in S of running algorithm P on DB0 and DB1 as
Trace(DB0,P) and Trace(DB1,P), respectively. P is an
oblivious algorithm if Trace(DB0,P) and Trace(DB1,P)
are computationally indistinguishable.

In this paper, we introduce two oblivious algorithms for
calculating partitions of any attribute set X . They are used
to construct secure FD protocols. One is based on oblivious
sorting while the other applies the well-known Oblivious
RAM (ORAM), used in the recent works [10], [27] for
designing oblivious algorithms in encrypted databases.

a) Oblivious sorting: Oblivious sorting is widely used
in encrypted databases and has attracted a lot of research
interest [1], [7], [48]. There exist some oblivious sorting
algorithms [18] with only O(n log n) complexity and Lin
et al. [31] have proven that this complexity is the lower
bound. Unfortunately, these optimal algorithms are either
inefficient because of the large constant overhead or cannot
be run in parallel, making them impractical. In this paper, we
follow prior works [13], [27] and adopt bitonic sorting [4].
Although this sorting requires O(n log2 n) computational
complexity, it is efficient in practice and can achieve high
parallelism. As this sorting will be used like a black box in
our algorithms, we refer to [4] for more details. We param-
eterize the oblivious sorting with the following definition.
Definition 3 (Oblivious sorting). Consider a database DB
consisting of n records and m attributes, given a positive
integer k ≤ m, we define

DB′ ← ObliviousSort(attrk,DB)

which is an oblivious algorithm that inputs the database DB,
and returns a new database DB′ that consists of the same
n records as DB but has them in an order such that

∀i, j ∈ [n], i < j ⇐⇒ DB′[i][attrk] ≤ DB′[j][attrk].

Here we assume that the data in each cell orderable.

b) Oblivious RAM: ORAM is a well-known crypto-
graphic protocol used to allow C to access a record from”DB obliviously. However, algorithms using ORAM to ac-
cess data are not necessarily oblivious. For example, the
number of accesses ORAM makes can reveal some sensitive
information [5], [10]. Therefore, algorithms with ORAM still
need to be designed carefully to make them oblivious and
efficient. In this paper, we adopt one of the most simple
and efficient ORAM constructions named PathORAM [55].
We apply the non-recursive PathORAM (like [5], [10]) to
improve the efficiency. We also use ORAM in a black-box
fashion and define the interfaces for calling ORAM as below.

Definition 4 (ORAM). An ORAM protocol consists of
three oblivious subprotocols (Setup,Read,Write). C and S
interact with each other to run the following subprotocols.
• (st,O) ← Setup(1λ): This protocol takes the security

parameter λ as input, and outputs a secret state st for
C and an encrypted memory O for S.

• (value,O)← Read(key,O): In this protocol, C inputs a
key and retrieves the value corresponding to the key. The
pair (key, value) is stored encrypted in O (if there exists
no pair associated with key, then ⊥ is returned). S inputs
the encrypted memory O, updates and outputs it.

• O ← Write((key, value),O): In this protocol, C inputs
a key-value pair (key, value) and gets nothing, S inputs
the encrypted memory and gets it updated such that the
pair (key, value) is stored encrypted in it.

The protocols Read and Write are mutually indistinguishable
for S. We write them separately for the ease of presentation.

IV. SECURE FD DISCOVERY ON STATIC DATABASES

In this section, we consider secure FD discovery on the
basic scenario where DB is static. After C encrypts DB and
uploads ”DB, it will not issue insertion, deletion, or update
queries to modify ”DB. We first clarify the framework for the
FD discovery and then introduce an important technique in
our algorithms. Finally, we describe our specific algorithms.

A. Framework

The tasks for FD discovery on DB based on partitions can
be divided into three levels as below:
• Attribute-level: Given an attribute set X in DB, calculate

the partition πX and |πX | (i.e., the number of distinct
values under attribute set X).

• Set-level: Given two attribute sets (X,Y), check if |πX | =
|πX∪Y |. The FD: X → Y holds iff the equation holds.

• Database-level: Given the database DB, determine all
attribute sets that need to be checked in the set level.
We illustrate the framework in Fig. 2. In this paper, we

will focus on only the attribute-level task because the set-
level and database-level tasks are natural and do not leak any

Fig. 2. The framework of partition-based methods.

information besides the minimal leakages we allow. The set-
level task can be done by just checking if two variables are
equal. The checking results reveal only if the FDs hold. For
the database-level task, in the worst case, it can be done by
checking every two attribute sets, which is very expensive.
We adopt the top-down method (including its pruning rules)
in [23], [40], which makes use of discovered FDs to remove
some attribute sets from checking. For example, if F : X →
Y does not hold, then F : X → Y ∪ Z also does not hold
and should not be checked. This method also leaks nothing
else besides discovered FDs. There is an important property
in this method, we introduce it here and refer to [23] for
more details.

Property 1 (Partition-friendly). For any attribute set X
where |X| ≥ 2, it is guaranteed that, before calculating πX ,
there exists two distinct attribute sets X1, X2 ⫋ X such that
X1 ∪X2 = X and (πX1

,πX2
) have been calculated.

This property is important for partition-based meth-
ods [23], [40] of FD discovery and our secure FD discovery
protocols because πX can be calculated efficiently with
(πX1 , πX2) [23]. In the remaining sections, we will propose
two distinct oblivious algorithms to calculate (πX , |πX |)
for any attribute set X . Secure FD discovery protocols are
constructed by directly combining them with the simple set-
level checking and the database-level top-down method.

B. Attribute Compression

We apply the attribute compression to make the parti-
tion calculation can be done in a constant way. Attribute
compression is an important optimization in FD discovery
without security. It compresses values under attribute set
X when calculating πX . The compression can effectively
accelerate the calculation: it reduces the length of attribute
values such that the processing time and I/O cost are
smaller [42], especially for the case where |X| is large. Here
we give a simple example for illustrating the compression,
consider three records under a single attribute {Name}
like (r1[Name], r2[Name], r3[Name]) = (Alice,Bob,Bob).
Map each distinct attribute value to a unique number, the
three values can be compressed to (1, 2, 2) while preserving

πName = {{r1}, {r2, r3}}. Our algorithms also compress
attribute values and preserve πX with the compression.

The prior methods [42], [52] compress each distinct value
under X to a unique integer in [n] even if |X| ≥ 2.
However, they cannot be deployed in our methods as they
leak sensitive information like plaintext frequency. We adopt
a new injective mapping to compress attribute values. For a
record r and an attribute set X , we assign a pair denoted by
(keyX , labelX) to compress it. We define keyX as

keyX =

®
r[X] , |X| = 1,

r[X]C , |X| > 1.

where r[X]C is a unique number in [n2+n] mapped by the
value of r[X] and labelX is a unique number in [n] mapped
by keyX .

Now we explain the calculation of r[X]C . Recall Prop-
erty 1 guarantees that before we calculate πX , there exist
two different subsets of X denoted by X1 and X2 (X1 ∪
X2 = X) whose partitions have been calculated. As their
compression is also conducted when calculating partitions,
we now have two pairs for each record r: (keyX1 , labelX1)
and (keyX2 , labelX2). Then we define

r[X]C := labelX1 · n+ labelX2 .

and then map this keyX to a unique labelX . In this way,
we ensure each distinct value under X is compressed to
a unique keyX and also a unique labelX . The length of
keyX is the same as r[X] when |X| = 1 and no more
than 2⌈log n⌉ + 1 when |X| ≥ 2. The length of labelX is
always no more than ⌈log n⌉ + 1 no matter what |X| is.
We illustrate the compression with an example in Fig. 3.
An important fact is that the partition calculation for two
attribute sets X and Y can be identical even if |X| = 2
and |Y | = 100 because (keyX , labelX) and (keyY , labelY)
have the same length. This fact allows our algorithms to
calculate πX when |X| ≥ 2 constantly. The cost does not
increase with the increase of |X|.

X1 X2

r1 Alice Jan
r2 Bob Jan
r3 Bob Jan
r4 Carol Sep

labelX1 labelX2 keyX
r1 1 1 5
r2 2 1 9
r3 2 1 9
r4 3 2 14

(a) Database DB (b) Compressed values (X = X1 ∪X2)

Fig. 3. An example showing our attribute compression
(keyX = labelX1

· 4+ labelX2
). To calculate πX , take r1 as

an example, we input 5 instead of the long union string of
Alice and Jan.

C. ORAM-based Oblivious Algorithm

In this section, we propose the oblivious algorithm
based on ORAM for calculating partitions. Besides static

Algorithm 1: Calculate |πX | for a single attribute
Input: {(ri[X], ri[id])}ni=1

Output: Integer |πX |, ORAMs (OKL
X ,OIL

X)

/* Initialize ORAMs */

1 OKL
X ← Setup(1λ), OIL

X ← Setup(1λ)
2 cardX = 0

/* Establish ORAMs */

3 for i = 1; i ≤ n; i++ do
4 keyX = ri[X]
5 (labelX ,OKL

X)← Read(keyX ,OKL
X)

6 flag = 1{labelX ̸= ⊥}
7 labelX = flag · labelX + (1− flag) · cardX

8 OIL
X ←Write((ri[ID], labelX),OIL

X)
9 OKL

X ←Write((keyX , labelX),OKL
X)

10 cardX = cardX + (1− flag)
11 end

12 Return |πX | := cardX , πX := (OKL
X ,OIL

X)

databases, it allows C to insert new records. It is flexible as
it can be extended to dynamic databases with both insertion
and deletion, which we will show in Section V.

a) Setup: For any attribute set X , the value of |πX |
is equivalent to the number of distinct values of r[X] in
DB. Recall in Section IV-B, we introduced our approach for
compressing attribute value r[X] to a unique keyX and a
unique labelX for any attribute set X . Thus we can calculate
|πX | by counting the distinct values of keyX . We establish
two ORAMs to achieve the calculation:
• Key-Label ORAM OKL

X . This ORAM is designed to
count the number of distinct keyX . For each distinct
keyX , this ORAM stores the pair (keyX , labelX). It
records labelX to guarantee each keyX corresponds to
a unique labelX . When this ORAM has been established,
the number of pairs in it is the value of |πX |.

• ID-Label ORAM OIL
X . For each record r, this ORAM

stores a pair (r[ID], labelX) where r[ID] is the unique
representation of record r and labelX is the unique value
corresponding to r[X]. This ORAM is not used in calcu-
lating πX but is necessary for the calculation of πY for
any attribute set Y such that X ⫋ Y . Also, we note this
ORAM preserves πX as it stores r[ID].

We show the detailed algorithms for establishing the two
ORAMs in Algorithm 1 and 2. The algorithms are designed
in an oblivious style [27]: instead of If-else, all variables
are accessed independently of their values (e.g., line 7 in
Algorithm 1). Notably, C and S interact with each other to
conduct the algorithms. It is required that only C can decrypt

Algorithm 2: Calculate |πX | for multiple attributes

Input: (OKL
X1

, OIL
X1

), (OKL
X2

, OIL
X2

)
Output: Integer |πX |, ORAMs (OKL

X ,OIL
X)

/* Initialize ORAMs */

1 OKL
X ← Setup(1λ), OIL

X ← Setup(1λ)
2 cardX = 0

/* Establish ORAMs */

3 for i = 1; i ≤ n; i++ do
/* Construct keyX */

4 (labelX1
,OIL

X1
)← Read(ri[ID],OIL

X1
)

5 (labelX2
,OIL

X2
)← Read(ri[ID],OIL

X2
)

6 keyX = labelX1 · n+ labelX2

7 (labelX ,OKL
X)← Read(keyX ,OKL

X)
8 flag = 1{labelX ̸= ⊥}
9 labelX = flag · labelX + (1− flag) · cardX

10 OIL
X ←Write((ri[ID], labelX),OIL

X)
11 OKL

X ←Write((keyX , labelX),OKL
X)

12 cardX = cardX + (1− flag)
13 end

14 Return |πX | := cardX , πX := (OKL
X ,OIL

X)

ciphertexts and see variable values. Although S knows the
whole algorithms, it can only observe variable ciphertexts
and transfer them to C. For example, in line 4 of Algorithm 1,
S transfers the ciphertext of ri[X] to C while C decrypts it to
assign keyX with the value. This design paradigm is widely
adopted in encrypted databases [10], [45], [50].

b) Calculation: The ORAM establishment for a single
attribute X (i.e., |X| = 1) is shown in Algorithm 1. It
traverses each record to get the value of keyX from r[X].
It accesses OKL

X and stores keyX in the ORAM when this
keyX has not been stored before. The injective mapping
between keyX (also r[X]) and labelX is constructed with the
incremental variable cardX : each time a new keyX appears,
cardX is added with 1 to guarantee a unique labelX . Finally,
the value of cardX is equivalent to the number of distinct
keyX (i.e., |πX |) and (OKL

X ,OIL
X) preserves πX .

Algorithm 2 is proposed for calculating |πX | when a given
attribute set X consists of multiple attributes (i.e., |X| ≥ 2).
Now it does not need to input the value from r[X], whose
length can be very large as X includes multiple attributes.
The injective mapping between r[X] and short keyX solves
this challenge well. Recall Property 1 in Section IV-A
guarantees:
• There exist two distinct attribute sets X1, X2 ⫋ X such

that X1 ∪X2 = X .

• Before calculating |πX |, the ORAMs for X1 and X2

have been established denoted by (OKL
X1

,OIL
X1

) and
(OKL

X2
,OIL

X2
), respectively.

So we can apply the established ORAMs to extract labelX1

and labelX2 , which are uniquely mapped by r[X1] and
r[X2]. As (r[X1], r[X2]) also maps a unique r[X], line 6 in
Algorithm 2 constructs a keyX uniquely corresponding to
r[X]. Then we can establish the ORAMs for X similar to
that for a single attribute. We remark that although we use
r[ID] in the algorithms, without loss of generality, r[ID]
can be some predefined numbers like row numbers, so C
can directly adopt i as ri[ID] and do not need to get it by
retrieving its ciphertext from S.

c) Analysis: The algorithms in this section allow inser-
tion queries to DB because it works by traversing records
one by one. So the newly inserted records can be regarded as
untraversed records to continue the process. It does not work
with deletion because multiple records can correspond to
the same pair stored in OKL

X , making the deletion incorrect.
For example, given (r1[X], r2[X]) = (Alice,Alice), and
suppose the corresponding pair in OKL

X is (keyX , labelX) =
(Alice, 13). If C directly removes (Alice, 13) from OKL

X

when deleting r1, then the calculation is incorrect because
the pair should be preserved for r2.

We briefly mention some details about checking if |πX | =
|πX∪Y | for any two attribute sets X and Y . These explain
how the algorithms here are combined with the set-level task.
After calculating (|πX |, |πX∪Y |) with the algorithms, their
ciphertexts are stored in S. So S transfers them to C and
lets C tell it if the plaintexts are equal. This guarantees that
S learns nothing about the values of (|πX |, |πX∪Y |) besides
if they are equal.

D. Oblivious Algorithm based on Oblivious Sorting

In this section, we introduce the second oblivious algo-
rithm for calculating partitions which is based on oblivious
sorting. Compared with the ORAM-based algorithm, it is
easy to implement. Especially, it allows high parallelism,
making it much more efficient and practical in reality.

a) Setup: We still follow the design of (keyX , labelX)
introduced in Section IV-B. For each record r and attribute
set X , we assign a unique keyX and labelX for r[X].

• |X| = 1: If X includes only a single attribute, then keyX
is assigned with the value of r[X].

• |X| ≥ 2: If X consists of multiple attributes, according to
the Property 1, we can find two distinct sets X1, X2 ⫋ X
such that X1∪X2 = X and (labelX1

, labelX2
) have been

calculated. Then we assign

keyX := labelX1
· n+ labelX2

Algorithm 3: Calculate |πX | with sorting

Input: A := {(keyiX , ri[ID])}ni=1

Output: Integer |πX |, Partition πX

/* Sort A according to keyX */

1 A′ = ObliviousSort(keyX , A)
2 tmp = A′[1][keyX], cardX = 0

3 for i = 1; i ≤ n; i++ do
4 flag = 1{A′[i][keyX] ̸= tmp}
5 tmp = A′[i][keyX] · flag + tmp · (1− flag)

6 cardX = cardX + flag
7 A′[i][keyX] = cardX
8 end

/* Sort A′ according to r[ID] */

9 B := ObliviousSort(r[ID], A′)
10 Return |πX | := cardX + 1, πX := B

where labelX1 , labelX2 are two integers in [n]. We will
show how to extract labelX1 and labelX2 in the next
Calculation subroutine.

b) Calculation: After Setup subroutine, now we have
a column of pairs denoted by A := {(keyiX , ri[ID])}ni=1 as
inputs. Then we show the detailed algorithm in Algorithm 3:

1) We conduct oblivious sorting on the pairs such that they
are ordered by keyX . In this way, records with the same
keyX are placed consecutively.

2) We traverse the ordered pairs. For records with the same
keyX , we assign them a unique integer with the variable
cardX . We replace keyX with the integer to compress
keyX to an integer in [n].

3) Finally, we sort records to make them ordered by r[ID].
The final array denoted by B preserves the information
about πX and (cardX+1) records the number of distinct
keyX , e.g., |πX |.

The step 2) compresses each distinct keyX to a unique
integer in [n]. We use and denote them as the unique labelX
for keyX . Therefore, although we use keyX for sorting (in
Line 1 of Algorithm 3), our final results B only preserve
the short labelX .

Now we can introduce given two attribute sets X1, X2

whose partitions have been calculated, how to extract
labelX1

and labelX2
for each record. Suppose the arrays

that preserve (πX1
, πX2

) are (BX1
, BX2

). Then each array
is ordered by r[ID] (required by Line 9 in Algorithm 3).
So BX1 [i] and BX2 [i] represents the same record ri as they
share the same r[ID]. So we just extract

labeliX1
:= BX1

[i][labelX1
],

labeliX2
:= BX2 [i][labelX2]

where (labeliX1
, labeliX2

) is for record ri.
c) Analysis: The algorithm applies bitonic sorting,

which enables n/2 parallelism degree for sorting n elements.
Also, it is easy to see the algorithm in this section is
very simple and requires only O(1) memory in C (for
comparison). Therefore, this algorithm is very suitable for
those encrypted databases based on secure enclaves, which
require simple programs and small trusted memories. We
conduct this algorithm with secure enclaves to show this in
experiments (cf. Section VII-D).

V. EXTENSION ON DYNAMIC DATABASES

In this section, we extend the ORAM-based algorithms in
Section IV-C to dynamic databases with both insertions and
deletions1. It can be applied to construct the first non-trivial
secure FD discovery protocol on dynamic databases.

A. Dynamic Databases and Trivial Solutions

Dynamic databases are common in real-world scenarios
and encrypted databases[6], [22]. C can insert some new
records into DB, making prior FDs invalid. Also, it can
delete some records from DB to result in new FDs [52].
Therefore, it is necessary to design secure FD discovery
protocols for dynamic databases.

A naive solution is to treat the database after insertions
and deletions as an entirely new database to re-conduct the
prior two protocols for static databases in Section IV. But
this is very expensive. Especially, when there are only a few
changes in the database like several records are deleted, it
is unacceptable to conduct FD discovery protocols on the
whole database. We call such expensive solutions as trivial.

Definition 5 (Trivial). Suppose a database DB with n
records whose FDs have been discovered. Given any FD
F : X → Y where X and Y separately include only one
single attribute in DB, it is trivial to re-validate this FD
with Ω(n) computational complexity after one insertion or
deletion.

We do not count the attribute number in complexity, thus
we require X and Y to include only one single attribute in
the above definition. Clearly, we hope non-trivial solutions
can operate only on the newly inserted or deleted records
instead of all records to re-validate the FDs.

B. The Extended Setup

We first extend the setup of ORAM-based algorithms in
Section IV-C. Specifically, we require the ORAMs to store
more information about the database e.g., the frequency of
plaintexts.

1The update can be regarded as the composition of deletion and insertion.

Algorithm 4: Extended version of Algorithm 1
Input: {(ri[X], ri[id])}ni=1

Output: Integer |πX |, ORAMs (OKLF
X ,OIKL

X)

/* Initialize ORAMs */

1 OKLF
X ← Setup(1λ), OIKL

X ← Setup(1λ)
2 cardX = 0

/* Establish ORAMs */

3 for i = 1; i ≤ n; i++ do
4 keyX = ri[X]
5 ((labelX , freX),OKLF

X)← Read(keyX ,OKLF
X)

flag = 1{(labelX , freX) ̸= (⊥,⊥)}

/* Treat ⊥ as 0 in computation */

6 labelX = flag · labelX + (1− flag) · cardX
7 freX = freX + 1

8 OIKL
X ←Write((ri[ID], (keyX , labelX)),OIKL

X)
9 OKLF

X ←Write((keyX , (labelX , freX)),OKLF
X)

10 cardX = cardX + (1− flag)
11 end

12 Return |πX | := cardX , πX := (OKLF
X ,OIKL

X)

We still follow the design of (keyX , labelX): for each
record r and any attribute set X , we map r[X] to a unique
keyX ∈ [n2 + n] and a unique labelX ∈ [n] where n is
the number of rows in DB. Besides, we also establish two
ORAMs:

• Key-(Label, Frequency) ORAM OKLF
X . This ORAM is

designed to count the number of distinct r[X] and their
frequencies. For each distinct r[X], denote its frequency
under this attribute as freX , this ORAM stores the pair
(keyX , (labelX , freX)).

• ID-(Key, Label) ORAM OIKL
X . For each record r, this

ORAM stores a pair (r[ID], (keyX , labelX)) where r[ID]
is the unique representation of record r.

For ease of presentation, we summarize the modification of
ORAMs from the original algorithms to the extended version
as below:

OKL
X : (keyX , labelX)→ OKLF

X : (keyX , (labelX , freX)),

OIL
X : (r[ID], labelX)→ OIKL

X : (r[ID], (keyX , labelX)).

where freX denotes the frequency of the corresponding
r[X] under the attribute set X . The modified ORAMs
additionally store freX and keyX . The length of freX is
no more than ⌈log n⌉. The length of keyX is no more than
2⌈log n⌉+ 1 when |X| ≥ 2 (cf. Section IV-B).

C. The Extended Calculation

Now we propose new oblivious algorithms for calculating
partitions on dynamic databases. For any attribute set X with
|X| = 1, we show the algorithm for calculating (πX ,|πX |) in
Algorithm 4. It extends Algorithm 1 to process the modified
ORAMs and the frequency information about r[X]. We do
not show the algorithm for the case where |X| ≥ 2 for
brevity. It is identical to Algorithm 4 in most steps but it
needs to get keyX from other ORAMs, which has been fully
shown in Algorithm 2 (line 4-6).

a) Insertion: The ORAM-based methods inherently
support insertions because they always calculate partitions
by traversing records one by one. So the inserted records can
be treated as untraversed records. We can directly continue
Algorithm 4 on these records to update πX and |πX |.

b) Deletion: The deletion can be completed naturally
with the modified ORAMs. The detailed algorithm is shown
in Algorithm 5. For a deleted record r and any attribute
set X , we conduct two steps to delete its information in
(πX , |πX |):
1) We apply its ID r[ID] to delete its pair in OIKL

X . In this
step, we can also find its corresponding keyX .

2) We apply its keyX to process its pair in OKLF
X . If the

frequency of r[X] (i.e., freX) is larger than 1, then this
pair is also shared by other records. So we subtract freX
with 1. Otherwise, this pair belongs to only the deleted
record and we remove it.

We note the deletion for any two distinct attribute sets
X and Y can be done in parallel. However, the partition
calculation and insertion process for two distinct attribute
sets must follow the order determined by the database-
level task because they need the guarantee Property 1 (cf.
Section IV-A).

The ideal security goal in this paper does not require
insertion and deletion to be indistinguishable for S as
it allows the leakage of database size. But the extended
ORAM-based method has the potential to achieve indistin-
guishability between insertion and deletion. This can be done
by treating deletion as insertion but now (1) we subtract
freX with 1 while insertion adds freX with 1; (2) we
remove the pair in ORAMs while insertion stores a new
pair in ORAMs.

VI. SECURITY ANALYSIS

In this section, we prove the protocols achieve secure FD
discovery if they consist of: (1) the database-level top-down
method; (2) the set-level checking; (3) one of our algorithms
for calculating partitions in the attribute level. That means
when applying them on a database DB, they leak nothing
besides

L(DB) := {Size(DB),FD(DB)}

Algorithm 5: Re-calculate (πX , |πX |) after deletion
Input: Integer cardX , The ID of deleted record

denoted by r[ID]
Output: Integer |πX |, ORAMs (OKLF

X ,OIKL
X)

1 ((keyX , labelX),OIKL
X)← Read(r[ID],OIKL

X)
2 ((labelX , freX),OKLF

X)← Read(keyX ,OKLF
X)

/* Delete keyX and labelX iff freX = 1 */

3 flag = 1{freX ̸= 1}

/* Define ⊥+ 0 = ⊥ */

4 keyX = flag · keyX + (1− flag) · ⊥
5 labelX = flag · labelX + (1− flag) · ⊥
6 freX = flag · (freX − 1) + (1− flag) · ⊥
7 cardX = cardX − (1− flag)

8 OKLF
X ←Write((keyX , (labelX , freX)),OKLF

X)
9 OIKL

X ←Write((r[ID], (⊥,⊥)),OIKL
X)

10 Return |πX | := cardX , πX := (OKLF
X ,OIKL

X)

where Size(DB) is the database size (i.e., the number of
rows and columns) and FD(DB) is the set of all FDs in
DB. Recall the security model in Section III-B, we consider
a PPT adversary A that tries to distinguish the real world
(Real) and ideal world (Ideal). In Real, we conduct the
protocol denoted by Π on the encrypted database ”DB to
discover FDs. In Ideal, a simulator Sim simulates execution
of Π on ”DB in the real world based on the information
L(DB). We assume Π always adopts simple checking in the
set level and top-down method in the database level. Then
we define the advantage

AdvΠSim,L(A) := |Pr[RealΠA = 1]− Pr[IdealΠA,Sim,L = 1]|

Theorem 2 (Static databases). The protocol Π achieves
secure FD discovery on any static database DB if it adopts
the algorithm in Section IV-C or Section IV-D in the attribute
level.

Proof. (Sketch) We give a series of game transitions to show
how to construct the simulator Sim. Denote the experiment
in Real as G0 where C and S executes Π interactively.
We note, in the database level, G0 inherently applies only
L(DB) to perform the task. So Sim can simulate this level
identically with L(DB).

We give game G1 that is the same as G0 but in the set
level, for any two attribute sets X and Y , it preserves two
random strings instead of the ciphertexts of (|πX |, |πX∪Y |).
It accesses the two strings (to simulate accessing the cipher-
texts) but determines if X → Y holds according to L(DB).

Denote the advantage of any PPT adversary A0 distinguish-
ing G0 and G1 as Adv(A0), then it is negligible [25].

Define game G2 that is the same as G1 but in the attribute
level, it conducts the partition calculation on a database DB′

generated by Sim. The size of DB′ is Size(DB). Define the
advantage of any PPT adversary A1 distinguishing G1 and
G2 as Adv(A1). Now we show Adv(A1) is negligible in λ.

For the algorithm based on oblivious sorting, it has fixed
access patterns in S [4]. Thus Adv(A1) is equal to that of
any PPT adversary A2 distinguishing semantically secure
ciphertexts of two databases with the same size denoted by
Adv(A2) which is negligible in λ. For the algorithm based
on ORAM, besides fixed access patterns on some variable
ciphertexts, it applies ORAM to access a sequence with a
fixed length. So Adv(A1) is equal to Adv(A2) + Adv(A3)
where Adv(A3) denotes the advantage of any PPT adversary
A3 distinguishing two sequences with the same length
accessed by ORAM. Note Adv(A3) is also negligible in
λ [55], so when the experiment in Ideal is identical to G2,
we have

AdvΠSim,L(A) = Adv(A0) + Adv(A1) ≤ negl(λ).

Theorem 3 (Dynamic databases). The protocol Π achieves
secure FD discovery on databases with insertions/deletions
DB if it adopts the algorithm in Section V in the attribute
level.

Proof. (Sketch) We only prove the basic case where there is
only one insertion/deletion. Multiple insertions and deletions
can be considered by repeating the basic case.

We still use the game transition. Define G0 to be iden-
tical to the experiment in Real. Where there is one in-
sertion/deletion, the partitions will be re-calculated in the
attribute level, and the tasks in set and database levels will
be re-executed.

We still define G1 to be the same as G0 besides the task
in the set level is done with random strings according to the
updated L(DB) after insertion/deletion. Define game G2 to
be the same as G0 besides the database and insert/delete are
generated by Sim. Then, similarly, the algorithm for inser-
tion/deletion also consists of fixed access patterns towards
variable ciphertexts and using ORAM to access a sequence
with a fixed length. Therefore, denote the advantage of any
adversary A0 distinguishing G0 and G1 as Adv(A0) and the
advantage of any adversary A1 distinguishing G1 and G2 as
Adv(A1). When the experiment in Ideal is identical to G2,
we have

AdvΠSim,L(A) = Adv(A0) + Adv(A1) ≤ negl(λ).

VII. EVALUATION

In this section, we evaluate our methods for obliviously
calculating partitions including the original ORAM-based
method (Or-ORAM), the extended ORAM-based method
(Ex-ORAM), and the method applying oblivious sorting
(Sort). The whole FD discovery protocol consists of re-
peated partition calculations for different attribute sets.

A. Setup and Dataset

There are three important metrics considered when evalu-
ating our methods: (1) runtime of the algorithms; (2) storage
usage in S; (3) memory usage in C. These metrics are
commonly considered in encrypted databases [13], [44], [45]
for practicality, thus reflect the actual performance of our
methods in encrypted databases. In the experiments, we will
demonstrate the following claims with the three metrics.
Obliviousness: The obliviousness guarantees our methods
perform identically for S on datasets with different distribu-
tions.
Scalability: The ORAM-based methods perform better in
scalability because of their lower calculation complexity.
Practicality: Sort is the most practical since it is simple
and has the potential for parallelism.
Flexibility: Ex-ORAM enables fast insertion and deletion
and thus has great flexibility.

All methods are implemented as a modular client-server
application in Python 3.10. The client C and server S are
separately played by an Ubuntu 22.04.3 machine with Intel
Xeon Platinum 8369B CPU (16 cores, 2.70GHz), 64GB of
memory, and an 80GB hard disk. The bandwidth is 1 Gbps.
Note C will apply only a little resource to be consistent
with our assumptions. We adopt the AES/CBC encryption
to guarantee semantically secure encryption. The key length
is 128 bits. For PathORAM settings, we follow [8], [10]
to place Z = 4 blocks in each bucket. We limit the stash
in C to store at most 7 log n blocks. For some experiments
in Section VII-D which apply SGX, we set up SGX on an
Alibaba Cloud Linux release 3 with an Intel Xeon Platinum
8369B CPU (4-core, 2.70GHz), 16GB memory (including
8GB secure memory), and 80GB hard disk and SGX v2.19.
The codes are going to be open-sourced soon.

We adopt four datasets in our experiments including
one synthetic dataset and three real-world datasets with
different distributions. The synthetic dataset named RND
can be generated with arbitrary columns and rows and each
plaintext in the cell level is randomly selected from [1, 220].
The three real-world datasets are also used in prior work [41]
about FD discovery and we summarize them in Table I. The
Adult originates from census data and Letter includes the
information about English alphabet. The Flight comprises
flight route data, which are extracted from data streams.

Dataset # Columns # Rows # Size
Adult 14 48,842 3528KB
Letter 16 20,000 695KB
Flight 20 500,000 71MB

TABLE I. The summary of datasets

B. Obliviousness

As the most important property, obliviousness guarantees
that our methods perform identically in the view of S
even on datasets with different distributions. That means the
storage usage in S and runtime of the whole method are
identically distributed to all datasets with the same size. To
show this, we conduct all the methods on the four datasets
and compare the storage usage and runtime. We randomly
selected 213 rows from each dataset to ensure the same size.
We test the partition calculation for attribute set X for two
cases where |X| = 1 and |X| ≥ 2. Our methods also
perform identically on two attribute sets X and Y when
|X|, |Y | > 2 (cf. Section IV-B), thus we consider |X| ≥ 2
in the whole. There are a total of four groups of experiments
we conducted:

1) S1 : For each real-world dataset, we randomly picked 9
single columns in it to conduct partition calculation with
our methods and record the runtime as set S1;

2) S2 : For each real-world dataset and any integer i in
[2, 10], we randomly picked an attribute set X such that
|X| = 1. We conduct our methods on X to calculate
partitions and record runtime as set S2;

3) S3 : We run our methods on the same single column of
RND for 9 times and record the runtime as set S3;

4) S4 : We run our methods with the the same attribute X
in RND for 9 times where |X| = 2 and record runtime
as set S4.

The obliviousness should guarantee that (S1, S3) follow
the same distribution and (S2, S4) follow the same distri-
bution. To verify this, we adopt the two-sample the two-
sample Kolmogorov–Smirnov (KS) test [38] on (S1, S3) and
(S2, S4), respectively. The test outputs p-values that indicate
if we have significant evidence to claim they follow distinct
distributions. We show the p-values in Table II. Generally,
we can claim the samples follow distinct distributions only
when the p-value is very small (< 0.05). However, all p-
values in Table II are no smaller than 0.35, which shows we
have no significant evidence to claim they follow distinct
distributions. We also show the average storage usage in S
in the last column of Table II. The storage usage is always
nearly identical when we conduct the methods on different
datasets. Therefore, in the remaining experiments, we apply
only RND dataset to show the performance of our methods
on runtime and storage cost in S.

Methods Case Adult Letter Flight Sto (MB)

Or-ORAM
|X| = 1 0.35 0.73 0.35 30.97
|X| ≥ 2 0.73 0.73 0.35 31.01

Ex-ORAM
|X| = 1 0.98 0.98 0.35 39.12
|X| ≥ 2 0.35 0.35 0.98 39.11

Sort
|X| = 1 0.98 0.73 0.98 0.25
|X| ≥ 2 0.60 0.35 0.35 0.25

TABLE II. The two-sample KS test p-value on the runtime
of methods on different datasets. Sto represents the storage
usage in S.

Methods Computation Storage in S

ORAM O(n log n(1 + log2 log n)) O(n)
Sort O(n log2 n) O(n)

TABLE III. Summary of methods. This follows [10] but ad-
ditionally assumes all sorting are done by bitonic sorting [4].

C. Scalability

Here we evaluate the row sclability of our methods, i.e.,
the performance on the dataset with different numbers of
rows. Suppose there are n rows in the dataset and we
calculate the partition under any attribute set X with our
methods. We show the theoretical complexity in Table III
and experimental results in Fig. 4 and Fig. 5.

a) Computation: For ORAM-based methods including
Or-ORAM and Ex-ORAM, their computation complexity is
smaller than that of Sort, thus they require less time when
n increases. The runtime is shown in Fig. 4.
• For |X| = 1, Sort is much more expensive than ORAM-

based methods when n > 211.
• For |X| ≥ 2, Sort is still much more expensive than Or-

ORAM when n > 211, but is comparative to Ex-ORAM
when n < 214.

From |X| = 1 to |X| ≥ 2, ORAM-based methods require
much more additional time. This is because they have to
additionally access the ORAMs of X’s two subsets, which
is very costly. Ex-ORAM is more expensive than Or-ORAM
since it needs to store and access more information in
ORAMs.

b) Storage: For each method, the storage cost in S
depends on only n. We show the storage cost in Fig. 5. All
three methods require O(n) storage for storing πX for any
attribute set X . The performance of Sort is the best because
it stores only the ciphertexts of labelX (The column of r[ID]
is stored only once). ORAM-based methods require much
more storage for two reasons. Firstly, it requires additional
dummy ciphertexts to hide real ciphertexts. Secondly, it
needs to store more information like keyX and r[ID] in the
ORAMs for each attribute set X . This also results in that

4 6 8 10 12 14 16

0

500

1,000

Rows (2x)

R
un

tim
e

(s
)

(a) |X| = 1

4 6 8 10 12 14 16

0

500

1,000

1,500

Rows (2x)

R
un

tim
e

(s
)

(b) |X| ≥ 2

Or-ORAM Ex-ORAM Sort

Fig. 4. Row scalability for runtime

4 6 8 10 12 14 16

0

50

100

150

Rows (2x)

St
or

ag
e

(M
B

)

(a) Storage usage in S

4 6 8 10 12 14 16

0

2,000

4,000

6,000

8,000

Rows (2x)

M
em

or
y

(K
B

)

(b) Memory usage in C

Or-ORAM Ex-ORAM Sort

Fig. 5. Row scalability for storage usage in S and memory
usage in C. They are the same for both |X| = 1 and |X| ≥ 2.

Ex-ORAM uses more storage than Or-ORAM as Ex-ORAM
additionally stores frequency information about plaintexts.

c) Memory: We also evaluate the memory usage in C.
We show the required memory in C to maintain information
for calculating partitions in Fig. 5. Sort performs best:
it needs to store only the 128-bit secret key for encryp-
tion/decryption. It proceeds by retrieving two ciphertexts,
processing them, and sending back them. The whole process
in C also requires only 56.2MB memory (mainly from the
socket functions) no matter how large n is. ORAM-based
methods cost O(n) memory (like [5], [10]) because the
non-recursive PathORAM requires storing stash and position
map. The storage requirement can be reduced by adopting
more advanced ORAMs [3], [43] at the cost of runtime. Here
this storage is worthwhile as it is much smaller compared
with storing r[X] when |X| is large. We note this storage
is constant due to our design of (keyX , labelX) for any
attribute set X . It is shown at most 0.8MB is needed when
n = 215. Therefore, for any ORAM, C can also transfer the
corresponding stash and position map to S encrypted and
retrieve them quickly when using the ORAM.

Therefore, ORAM-based methods perform better in run-
time, and Sort performs much better in both server-side
storage and client-side memory. Ex-ORAM should not be
chosen if there is no deletion as Or-ORAM is faster and
uses smaller storage and memory.

1 2 4 8 16
0

500

1,000

1,500

2,000

Threads

R
un

tim
e

(s
)

Single Multiple

(a) The performance with multiple
threads.

4 6 8 10 12 14 160

20

40

60

Rows (2x)

R
un

tim
e

(m
s)

|X| = 1 |X| ≥ 2

(b) The runtime in SGX.

Fig. 6. Performance of Sort in parallelism and SGX.

D. Practicality

In this section, we show Sort is the most practical method
among the three methods. It allows a high parallelism degree
(at most n/2), which makes it can be more efficient in
reality. Moreover, it is easy to implement, for example,
in secure enclaves. The simplicity enables it to be easily
integrated with all existing encrypted databases that apply
secure enclaves.

To show the parallelism, we run Sort on RND with 215

rows under different numbers of threads. Each thread is
responsible for a part of Sort. The experimental results are
shown in Fig. 6(a). It shows that one thread needs over 1500
seconds to complete the whole Sort. But with 16 threads,
the same task can be finished within 200 seconds, which is a
huge improvement. The effectiveness of adding threads also
decreases with more and more number threads added. In the
beginning, adding threads from 1 to 2 reduces half of the
runtime. In the end, adding threads from 8 to 16 affects the
runtime very incrementally.

Sort is easy to deploy, thus we also deploy it in secure
enclaves to further understand its efficiency. Note the secure
enclave can store the plaintexts in secure memory which S
cannot see, so the expensive data transfer between C and
S and most re-encryption can be discarded. This advantage
significantly accelerates Sort, which is shown in Fig. 6(b).
With SGX, the runtime for |X| = 1 and |X| ≥ 2 are nearly
identical so we can see the two curves are overlapped. The
efficiency improvement is huge: without SGX, the runtime
is over 1500s to process the case of |X| ≥ 2 when n = 215,
but now we only need 66 ms (22, 000× speedup) for this.

E. Flexibility

Here we test the performance of Ex-ORAM on insertion
and deletion operations. We generate the dataset RND with
rows from 24 to 215. We insert all these rows first and
then delete all of them. We count the average runtime per
insertion/deletion and show the results in Fig. 7. Both the in-
sertion and deletion time increases with n, the corresponding
computational complexity is O(log n log2 log n). The time
increase results from accessing ORAM with a larger size.
Fortunately, even if n = 215, the insertion and deletion under

4 6 8 10 12 14 16

10

15

20

Rows (2x)

R
un

tim
e

(m
s)

(a) |X| = 1

4 6 8 10 12 14 16

10

20

30

40

Rows (2x)

R
un

tim
e

(m
s)

(b) |X| ≥ 2

Insertion Deletion

Fig. 7. Insertion and deletion efficiency

|X| = 1 are completed within only 22ms. The insertion
under |X| ≥ 2 is more expensive but is still done within 43
ms. And the deletion under |X| ≥ 2 is more efficient, which
is executed within 22ms.

When |X| = 1, both insertion and deletion access two
ORAMs, resulting in a similar efficiency in Figure 7(a).
The insertion is a little more expensive in the beginning
because the first insertion requires the setup of ORAMs. It
becomes faster with n increasing because there are additional
O(n) decryption for deletion. For example, before the first
insertion, S knows the ORAM stores no item, thus C does
not need to decrypt ciphertexts retrieved from S in the first
insertion. When |X| = 2, the insertion time is twice as much
as the deletion time. This is because the insertion accesses
four ORAMs while deletion accesses only two ORAMs.

VIII. RELATED WORK

a) FD discovery: As a critical task in databases, FD
discovery has been studied for several decades [16], [23],
[32], [52], [60]. Most of them focus on improving its
efficiency or extending the cover range like conditional FD
without security. Besides the partition-based methods, there
are also some methods that use difference-sets [59] and
agree-sets [34]. However, the partition-based method is more
friendly to be designed obliviously. It is still open how the
other FD methods can be reconstructed to be oblivious.

The security problem of FD discovery is initiated by two
works [14], [17]. Ge et al. [17] study how to achieve FD
discovery with multiple data owners without leaking their
privacy to each other (i.e., the multi-party computation).
Dong et al. [14] are the first to discuss FD discovery in
encrypted databases. However, their construction provides
only a very weak security guarantee: partial frequency
information about plaintexts is allowed to be revealed to S.
As the frequency leakage has been recognized as dangerous
to C, it may be infeasible to deploy such a construction in
reality. This paper follows the work of Dong et al. and is
the first to define and achieve truly secure FD discovery with
minimal leakage, providing a very strict security guarantee.

b) Obliviousness: In the last decade, obliviousness has
become one of the most important topics in encrypted
databases because extensive works [24], [26], [28] have
shown how access patterns can leak dangerous and sensitive
information. Now achieving oblivious query processing such
as join and range query has motivated a lot of work in
database community [10], [27], [54]. However, all of them
do not consider database maintenance like FD discovery. So
this paper provides the first solution to all these encrypted
databases for FD discovery. It is easy to integrate our work
with them while still keeping a formal and strict security
guarantee. There are also extensive works [2], [3], [33],
[43], [49], [51], [55], [56] about improving the efficiency
of the primitives including ORAM and oblivious sorting.
As our work applies the two primitives in a black-box style,
any optimization can be applied easily for a more efficient
FD discovery. Notably, the results in [27], [13] show the
costs can be much reduced when deploying the primitives
in secure enclaves or systems with high parallelism.

IX. CONCLUSION

In this paper, we first define secure FD discovery in
encryption databases with minimal leakages which consist of
the database size and discovered FDs. Then we propose two
specific protocols to achieve secure FD discovery. The two
protocols adopt Oblivious RAM and oblivious sorting. They
can be integrated with most existing encrypted databases
to achieve FD discovery with a strict security guarantee.
They are the first step to address database maintenance in
encrypted databases. In the future, we will further improve
the efficiency of our protocols and achieve more tasks about
database maintenance in encrypted databases.

REFERENCES

[1] Gilad Asharov, TH Hubert Chan, Kartik Nayak, Rafael Pass, Ling
Ren, and Elaine Shi. Bucket oblivious sort: An extremely simple
oblivious sort. In Symposium on Simplicity in Algorithms, pages 8–
14. SIAM, 2020.

[2] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch
Peserico, and Elaine Shi. Optorama: optimal oblivious ram. In
Advances in Cryptology–EUROCRYPT 2020: 39th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings, Part II
30, pages 403–432. Springer, 2020.

[3] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Enoch Peserico, and
Elaine Shi. Optimal oblivious parallel ram. In Proceedings of the
2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2459–2521. SIAM, 2022.

[4] Kenneth E Batcher. Sorting networks and their applications. In
Proceedings of the April 30–May 2, 1968, spring joint computer
conference, pages 307–314, 1968.

[5] Dmytro Bogatov, Georgios Kellaris, George Kollios, Kobbi Nissim,
and Adam O’Neill. psolute: Efficiently querying databases while
providing differential privacy. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, CCS
’21, page 2262–2276, New York, NY, USA, 2021. Association for
Computing Machinery.

[6] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit Jutla, Hugo
Krawczyk, Marcel-Catalin Rosu, and Michael Steiner. Dynamic
searchable encryption in very-large databases: Data structures and
implementation. 2014.

[7] TH Hubert Chan, Yue Guo, Wei-Kai Lin, and Elaine Shi. Cache-
oblivious and data-oblivious sorting and applications. In Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2201–2220. SIAM, 2018.

[8] Zhao Chang, Dong Xie, and Feifei Li. Oblivious ram: A dissection
and experimental evaluation. Proceedings of the VLDB Endowment,
9(12):1113–1124, 2016.

[9] Zhao Chang, Dong Xie, Feifei Li, Jeff M. Phillips, and Rajeev
Balasubramonian. Efficient and oblivious query processing for range
and knn queries (extended abstract). In 2022 IEEE 38th International
Conference on Data Engineering (ICDE), pages 1487–1488, 2022.

[10] Zhao Chang, Dong Xie, Sheng Wang, and Feifei Li. Towards practical
oblivious join. In Proceedings of the 2022 International Conference
on Management of Data, pages 803–817, 2022.

[11] Nathan Chenette, Kevin Lewi, Stephen A. Weis, and David J. Wu.
Practical order-revealing encryption with limited leakage. In Fast
Software Encryption Workshop, 2016.

[12] Laura Chiticariu, Mauricio A Hernández, Phokion G Kolaitis, and
Lucian Popa. Semi-automatic schema integration in clio. In VLDB,
volume 7, pages 1326–1329, 2007.

[13] Emma Dauterman, Vivian Fang, Ioannis Demertzis, Natacha Crooks,
and Raluca Ada Popa. Snoopy: Surpassing the scalability bottleneck
of oblivious storage. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, pages 655–671, 2021.

[14] Boxiang Dong and Wendy Wang. Frequency-hiding dependency-
preserving encryption for outsourced databases. In 2017 IEEE 33rd
International Conference on Data Engineering (ICDE), pages 721–
732, 2017.

[15] F Betül Durak, Thomas M DuBuisson, and David Cash. What else
is revealed by order-revealing encryption? In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security, pages 1155–1166, 2016.

[16] Wenfei Fan, Floris Geerts, Jianzhong Li, and Ming Xiong. Dis-
covering conditional functional dependencies. IEEE Transactions on
Knowledge and Data Engineering, 23(5):683–698, 2010.

[17] Chang Ge, Ihab F Ilyas, and Florian Kerschbaum. Secure multi-
party functional dependency discovery. Proceedings of the VLDB
Endowment, 13(2):184–196, 2019.

[18] Michael T Goodrich. Zig-zag sort: A simple deterministic data-
oblivious sorting algorithm running in o (n log n) time. In Proceedings
of the forty-sixth annual ACM symposium on Theory of computing,
pages 684–693, 2014.

[19] Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lacharité, Lloyd
Brown, Lucy Li, Rachit Agarwal, and Thomas Ristenpart. Pancake:
Frequency smoothing for encrypted data stores. In 29th USENIX Se-
curity Symposium (USENIX Security 20), pages 2451–2468. USENIX
Association, August 2020.

[20] Paul Grubbs, Kevin Sekniqi, Vincent Bindschaedler, Muhammad
Naveed, and Thomas Ristenpart. Leakage-abuse attacks against order-
revealing encryption. In 2017 IEEE symposium on security and
privacy (SP), pages 655–672. IEEE, 2017.

[21] Peeyush Gupta, Yin Li, Sharad Mehrotra, Nisha Panwar, Shantanu
Sharma, and Sumaya Almanee. Obscure: Information-theoretic obliv-
ious and verifiable aggregation queries. Proceedings of the VLDB
Endowment, 12(9):1030–1043, 2019.

[22] Kun He, Jing Chen, Qinxi Zhou, Ruiying Du, and Yang Xiang. Secure
dynamic searchable symmetric encryption with constant client storage
cost. IEEE Transactions on Information Forensics and Security,
16:1538–1549, 2020.

[23] Yka Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen.
Tane: An efficient algorithm for discovering functional and approxi-
mate dependencies. The computer journal, 42(2):100–111, 1999.

[24] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu.
Access pattern disclosure on searchable encryption: ramification,
attack and mitigation. In Ndss, volume 20, page 12. Citeseer, 2012.

[25] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptog-
raphy. (No Title), 2014.

[26] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’neill.
Generic attacks on secure outsourced databases. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security, pages 1329–1340, 2016.

[27] Simeon Krastnikov, Florian Kerschbaum, and Douglas Stebila. Effi-
cient oblivious database joins. Proceedings of the VLDB Endowment,
13(11).

[28] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson.
Improved reconstruction attacks on encrypted data using range query
leakage. In 2018 IEEE Symposium on Security and Privacy (SP),
pages 297–314. IEEE, 2018.

[29] Dongjie Li, Siyi Lv, Yanyu Huang, Yijing Liu, Tong Li, Zheli Liu, and
Liang Guo. Frequency-hiding order-preserving encryption with small
client storage. Proc. VLDB Endow., 14(13):3295–3307, sep 2021.

[30] Mingyu Li, Xuyang Zhao, Le Chen, Cheng Tan, Huorong Li, Sheng
Wang, Zeyu Mi, Yubin Xia, Feifei Li, and Haibo Chen. Encrypted
databases made secure yet maintainable. In 17th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 23), pages
117–133, Boston, MA, July 2023. USENIX Association.

[31] Wei-Kai Lin, Elaine Shi, and Tiancheng Xie. Can we overcome the
n log n barrier for oblivious sorting? In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2419–
2438. SIAM, 2019.

[32] Jixue Liu, Jiuyong Li, Chengfei Liu, and Yongfeng Chen. Discover
dependencies from data—a review. IEEE Transactions on Knowledge
and Data Engineering, 24:251–264, 2012.

[33] Zheli Liu, Yanyu Huang, Jin Li, Xiaochun Cheng, and Chao Shen.
Divoram: Towards a practical oblivious ram with variable block size.
Information Sciences, 447:1–11, 2018.

[34] Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal. Efficient discovery
of functional dependencies and armstrong relations. In Interna-
tional Conference on Extending Database Technology, pages 350–364.
Springer, 2000.

[35] Yiping Ma, Ke Zhong, Tal Rabin, and Sebastian Angel. Incremental
Offline/Online PIR. In 31st USENIX Security Symposium (USENIX
Security 22), pages 1741–1758, Boston, MA, August 2022. USENIX
Association.

[36] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and
Raluca Ada Popa. Oblix: An efficient oblivious search index. In 2018
IEEE Symposium on Security and Privacy (SP), pages 279–296. IEEE,
2018.

[37] Payman Mohassel and Mike Rosulek. Non-interactive secure 2pc in
the offline/online and batch settings. Cryptology ePrint Archive, Paper
2017/125, 2017. https://eprint.iacr.org/2017/125.

[38] Marco Monge. Two-sample kolmogorov-smirnov tests as causality
tests. a narrative of latin american inflation from 2020 to 2022. Revista
Chilena de Economı́a y Sociedad, 2023.

[39] Muhammad Naveed, Seny Kamara, and Charles V Wright. Inference
attacks on property-preserving encrypted databases. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 644–655, 2015.

[40] Noel Novelli and Rosine Cicchetti. Fun: An efficient algorithm
for mining functional and embedded dependencies. In International
Conference on Database Theory, pages 189–203. Springer, 2001.

[41] Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert,
Jan-Peer Rudolph, Martin Schönberg, Jakob Zwiener, and Felix
Naumann. Functional dependency discovery: An experimental eval-
uation of seven algorithms. Proceedings of the VLDB Endowment,
8(10):1082–1093, 2015.

[42] Thorsten Papenbrock and Felix Naumann. A hybrid approach to func-
tional dependency discovery. In Proceedings of the 2016 International
Conference on Management of Data, pages 821–833, 2016.

[43] Sarvar Patel, Giuseppe Persiano, Mariana Raykova, and Kevin Yeo.
Panorama: Oblivious ram with logarithmic overhead. In 2018
IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS), pages 871–882. IEEE, 2018.

https://eprint.iacr.org/2017/125

[44] Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. Arx: an
encrypted database using semantically secure encryption. Cryptology
ePrint Archive, 2016.

[45] Raluca A. Popa, Frank H. Li, and Nickolai Zeldovich. An ideal-
security protocol for order-preserving encoding. 2013 IEEE Sympo-
sium on Security and Privacy, pages 463–477, 2013.

[46] Raluca Ada Popa, Catherine MS Redfield, Nickolai Zeldovich, and
Hari Balakrishnan. Cryptdb: Protecting confidentiality with encrypted
query processing. In Proceedings of the twenty-third ACM symposium
on operating systems principles, pages 85–100, 2011.

[47] Lina Qiu, Georgios Kellaris, Nikos Mamoulis, Kobbi Nissim,
and George Kollios. Doquet: Differentially oblivious range and
join queries with private data structures. Proc. VLDB Endow.,
16(13):4160–4173, 2023.

[48] Vijaya Ramachandran and Elaine Shi. Data oblivious algorithms
for multicores. In Proceedings of the 33rd ACM Symposium on
Parallelism in Algorithms and Architectures, pages 373–384, 2021.

[49] Ling Ren, Christopher Fletcher, Albert Kwon, Emil Stefanov, Elaine
Shi, Marten Van Dijk, and Srinivas Devadas. Constants count:
Practical improvements to oblivious {RAM}. In 24th USENIX
Security Symposium (USENIX Security 15), pages 415–430, 2015.

[50] Daniel S Roche, Daniel Apon, Seung Geol Choi, and Arkady Yerukhi-
movich. Pope: Partial order preserving encoding. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 1131–1142, 2016.

[51] Sajin Sasy, Aaron Johnson, and Ian Goldberg. Waks-on/waks-off: Fast
oblivious offline/online shuffling and sorting with waksman networks.
Cryptology ePrint Archive, Paper 2023/1236, 2023. https://eprint.iacr.
org/2023/1236.

[52] Philipp Schirmer, Thorsten Papenbrock, Sebastian Kruse, Felix Nau-
mann, Dennis Hempfing, Torben Mayer, and Daniel Neuschäfer-Rube.
Dynfd: Functional dependency discovery in dynamic datasets. In
International Conference on Extending Database Technology, 2019.

[53] Masoumeh Shafieinejad, Suraj Gupta, Jin Yang Liu, Koray Karabina,
and Florian Kerschbaum. Equi-joins over encrypted data for series
of queries. In 2022 IEEE 38th International Conference on Data
Engineering (ICDE), pages 1635–1648, 2022.

[54] Shantanu Sharma, Yin Li, Sharad Mehrotra, Nisha Panwar, Komal
Kumari, and Swagnik Roychoudhury. Information-theoretically secure
and highly efficient search and row retrieval. Proceedings of the VLDB
Endowment, 16(10):2391–2403, 2023.

[55] Emil Stefanov, Marten van Dijk, Elaine Shi, T-H Hubert Chan,
Christopher Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas.
Path oram: an extremely simple oblivious ram protocol. Journal of
the ACM (JACM), 65(4):1–26, 2018.

[56] Emil Stefanov, Elaine Shi, and Dawn Song. Towards practical
oblivious ram. arXiv preprint arXiv:1106.3652, 2011.

[57] Yannis Vassiliou. Functional dependencies and incomplete informa-
tion. 1980.

[58] Wai Kit Wong, Ben Kao, David Wai Lok Cheung, Rongbin Li, and
Siu Ming Yiu. Secure query processing with data interoperability
in a cloud database environment. In Proceedings of the 2014 ACM
SIGMOD international conference on Management of data, pages
1395–1406, 2014.

[59] Catharine Wyss, Chris Giannella, and Edward Robertson. Fastfds:
A heuristic-driven, depth-first algorithm for mining functional de-
pendencies from relation instances extended abstract. In Yahiko
Kambayashi, Werner Winiwarter, and Masatoshi Arikawa, editors,
Data Warehousing and Knowledge Discovery, pages 101–110, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

[60] Renjie Xiao, Yong’an Yuan, Zijing Tan, Shuai Ma, and Wei Wang.
Dynamic functional dependency discovery with dynamic hitting set
enumeration. In 2022 IEEE 38th International Conference on Data
Engineering (ICDE), pages 286–298, 2022.

[61] Hong Yao and Howard J Hamilton. Mining functional dependencies
from data. Data Mining and Knowledge Discovery, 16:197–219, 2008.

https://eprint.iacr.org/2023/1236
https://eprint.iacr.org/2023/1236

	Introduction
	Database Maintenance
	Secure FD Discovery
	Contributions

	Preliminaries
	Outsourced Database
	Functional Dependency Discovery
	Partition-based Methods

	Problem Overview
	Problem Definition
	Security Model
	Obliviousness

	Secure FD discovery on static databases
	Framework
	Attribute Compression
	ORAM-based Oblivious Algorithm
	Oblivious Algorithm based on Oblivious Sorting

	Extension on dynamic databases
	Dynamic Databases and Trivial Solutions
	The Extended Setup
	The Extended Calculation

	Security analysis
	Evaluation
	Setup and Dataset
	Obliviousness
	Scalability
	Practicality
	Flexibility

	Related work
	Conclusion
	References

