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Abstract
A monotone policy batchNP languageLR,% is parameterized by a monotone policy % : {0, 1}: → {0, 1} and anNP

relationR. A statement (G1, . . . , G: ) is a yes instance if there existsF1, . . . ,F: where % (R(G1,F1), . . . ,R(G: ,F: )) = 1.
For example, we might say that an instance (G1, . . . , G: ) is a yes instance if a majority of the statements are true. A
monotone policy batch argument (BARG) for NP allows a prover to prove that (G1, . . . , G: ) ∈ LR,% with a proof of
size poly(_, |R |, log:), where _ is the security parameter, |R | is the size of the Boolean circuit that computes R, and
: is the number of instances. Recently, Brakerski, Brodsky, Kalai, Lombardi, and Paneth (CRYPTO 2023) gave the
�rst monotone policy BARG for NP from the learning with errors (LWE) assumption.

In this work, we describe a generic approach for constructing monotone policy BARGs from any BARG for NP
together with an additively homomorphic encryption scheme. This yields the �rst constructions of monotone policy
BARGs from the :-Lin assumption in prime-order pairing groups as well as the (subexponential) DDH assumption in
pairing-free groups. Central to our construction is a notion of a zero-�xing hash function, which is a relaxed version
of a predicate-extractable hash function from the work of Brakerski et al. Our relaxation enables a direct realization
of zero-�xing hash functions from BARGs for NP and additively homomorphic encryption, whereas the previous
notion relied on leveled homomorphic encryption, and by extension, the LWE assumption.

As an application, we also show how to combine a monotone policy BARG with a puncturable signature scheme
to obtain a monotone policy aggregate signature scheme. Our work yields the �rst (statically-secure) monotone policy
aggregate signatures that supports general monotone Boolean circuits from standard pairing-based assumptions.
Previously, this was only known from LWE.

1 Introduction
A non-interactive batch argument (BARG) for NP allows a prover to convince a veri�er that a collection of : statements
G1, . . . , G: is true with a proof whose size scales sublinearly with : . Beyond the immediate application to amortizing
the communication cost of NP veri�cation, batch arguments for NP also play a key role in constructing delegation
for RAM programs (also known as a succinct non-interactive argument (SNARG) for P) [KVZ21, CJJ21b, KLVW23]
and incrementally veri�able computation [DGKV22, PP22]. These objects have received extensive study recently, and
to date, we have constructions from most standard algebraic assumptions in cryptography such as the learning with
errors (LWE) assumption [CJJ21b], the :-Lin assumption on groups with bilinear maps [WW22], the (sub-exponential)
decisional Di�e-Hellman (DDH) assumption in pairing-free groups [CGJ+23], or combinations of quadratic residuosity
and (sub-exponential) DDH in pairing-free groups [CJJ21a, HJKS22].

Beyond batch NP and P. The recent successes in constructing succinct arguments for batch NP and for P from
standard cryptographic assumptions has motivated the study of other (sub)-classes of NP for which we can build
succinct non-interactive arguments from standard (falsi�able) assumptions. Very recently, Brakerski, Brodsky, Kalai,
Lombardi, and Paneth [BBK+23] showed how to construct SNARGs for monotone policy batch NP. At a high level,
the monotone policy batch NP language LR,% is de�ned with respect to an NP relation R together with a monotone
policy % : {0, 1}: → {0, 1} as follows:

LR,% = {(G1, . . . , G: ) | ∃(F1, . . . ,F: ) : % (R(G1,F1), . . . ,R(G: ,F: )) = 1} .
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In words, an instance (G1, . . . , G: ) is true as long as an acceptable subset of the statements are true (as determined by
the policy % ). Such “monotone policy batch arguments” capture policies like majority, general thresholds, and more.
The standard batch argument corresponds to the special case where the policy % is a simple conjunction.

Brakerski et al. [BBK+23] provided two constructions of monotone policy BARGs for NP. The �rst construction
only relies on standard (somewhere extractable) BARGs and collision-resistant hash functions, but could only support
monotone policies of logarithmic depth (i.e., monotone NC1). To extend to monotone policies of arbitrary polynomial
depth, they combine standard BARGs with a new notion of a predicate-extractable hash function, which they then
build from the LWE assumption (speci�cally, they rely on leveled homomorphic encryption). This yields a monotone
policy batch argument for arbitrary monotone policies from the LWE assumption. Due to the current reliance on
leveled homomorphic encryption to construct the predicate-extractable hash function, instantiations of monotone
policy BARGs for arbitrary-depth policies rely on the LWE assumption.

1.1 Our Results
Our main result in this work is showing how to construct BARGs for monotone policies by combining a (standard)
BARG with an additively homomorphic encryption scheme (which can in turn be built from most number-theoretic
assumptions [Gam84, Pai99, Reg05]). Combined with the recent progress on constructing BARGs from pairing-based
groups [WW22] and pairing-free groups [CGJ+23], we obtain the �rst monotone policy BARGs for NP from the
:-Lin assumption over pairing groups and from the (sub-exponentially) DDH assumption in pairing-free groups. We
provide an overview of our techniques in Section 1.2 and summarize our main results in the following theorem:

Theorem 1.1 (Informal). Assuming any of (1) the plain LWE assumption, (2) the :-Lin assumption over pairing groups
for any constant : ∈ N, or (3) the (sub-exponential) DDH assumption in pairing-free groups, there exists a monotone policy
BARG for all polynomial-size monotone circuit policies. The monotone policy BARG satis�es non-adaptive soundness and
the proof size is poly(_ + |� | + log |% |), where |� | denotes the size of the Boolean circuit computing the NP relation, and
|% | is the size of the monotone policy.

Monotone policy aggregate signatures. A key di�erence between Theorem 1.1 and the previous LWE-based
construction [BBK+23] is that we obtain a non-adaptively-sound BARG for monotone circuit policies whereas the
[BBK+23] construction satis�ed a stronger “somewhere extractability” notion. That is, in [BBK+23], the common
reference string (CRS) can be sampled in a trapdoor mode and the trapdoor can be used to recover a witness for
some G8 given a valid proof on statements (G1, . . . , G: ). While extractability is often useful to have in a cryptographic
primitive, it is not always essential.

As an illustrative example, we show how to use monotone policy BARGs in conjunction with (puncturable)
signatures [GVW19] to construct a monotone policy aggregate multi-signature scheme. In an aggregate multi-
signature scheme, there is a set of : signers, each with a signing/veri�cation key-pair (sk8 , vk8 ). Given a policy % and
a set of signatures f8 for 8 ∈ ( (where f8 veri�es with respect to vk8 ) on a common message<, if the set ( satis�es
the policy % , then it is possible to aggregate {f8 }8∈( into a single short signature whose size is sublinear in |( |. For
instance, % might encode a “threshold” policy that accepts all sets of size at least C . Crucially, static security of our
monotone policy aggregate signature scheme only relies on non-adaptive soundness of the monotone policy BARG and
security of the puncturable signature scheme. There is no need for an explicit extraction requirement. Very brie�y, a
puncturable signature scheme allows one to sample a “punctured” veri�cation key vk (and associated signing key) for
some message<∗. The punctured veri�cation key is computationally indistinguishable from a normal veri�cation
key, but has the property that there does not exist any signatures on the punctured message<∗ with respect to the
punctured key. As shown in [GVW19], puncturable (or “all-but-one signatures”) can be constructed from many
standard number-theoretic assumptions. We summarize this result in the following theorem:

Theorem 1.2 (Informal). Assuming the existence of a non-adaptively sound monotone BARG and a puncturable signature
scheme, there exists a monotone policy aggregate multi-signature scheme. The scheme satis�es static unforgeability and
the size of the aggregate signature is poly(_ + log |% |), where |% | denotes the size of the circuit computing the monotone
policy.
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Theorem 1.2 shows that in combination with puncturable signatures, soundness alone is su�cient for building
aggregate signatures for general monotone policies. Notably, Theorem 1.2 also provides the �rst monotone policy
aggregate signature from pairing-based assumptions (in the plain model). Previous work have shown how to build
vanilla aggregate signatures using (vanilla) non-interactive batch arguments [WW22, DGKV22]. In an independent
and concurrent work, [BCJP24] also show how to construct a monotone policy aggregate multi-signature. Their work
provides two constructions of monotone policy aggregate (multi)-signatures. The �rst scheme supports monotone
policies that can be implemented by a read-once, bounded-space Turing machine and is also adaptively secure. This
scheme relies on somewhere extractable BARGs and a veri�able private information retrieval scheme [BKP22],
and can be instantiated from standard pairing-based or lattice-based assumptions. The second scheme supports
policies implemented by an arbitrary monotone Boolean circuit, but achieves a weaker security de�nition (closer to
static security) and also relies on fully homomorphic encryption (which to date, is not known from pairing-based
assumptions). Theorem 1.2 gives a statically-secure monotone policy aggregate signature scheme that supports all
monotone Boolean circuits, and does not rely on fully homomorphic encryption. This enables a new instantiation
from pairings.

Soundness vs. extraction. While Theorem 1.2 shows that extraction is unnecessary for all applications of mono-
tone policy BARGs, our proof strategy for arguing soundness can nonetheless be extended to achieve a notion of
extractability (see Section 8). The notion we achieve is similar to the somewhere extractability notion from [BBK+23],
where for every monotone policy % , they de�ne a notion of a “necessary set” associated with % (i.e., a set with
the property that for every satisfying input (G1, . . . , G=) to % , there exists 8 ∈ ( where G8 = 1). The somewhere
extractability notion from [BBK+23] programs ( into the common reference string, and asserts that whenever the
prover comes up with an accepting proof for statements (G1, . . . , G: ) for an NP relation R and policy % , then the
extractor will output F8 for 8 ∈ ( where R(G8 ,F8 ) = 1. Our construction satis�es a looser variant of this property
where the success probability of the extractor is smaller by a factor of 1/: . We refer to this notion as semi-somewhere
extractability. While our construction does achieve this notion of extraction with essentially no modi�cation (see
Section 8), we choose to focus on the simpler notion of non-adaptive soundness in the core part of this paper. Our
rationale is twofold:

• First, there is a lack of consensus on what the “right” notion of extraction is when it comes to the setting of
monotone policy BARGs. Notably, the recent and concurrent work of [BCJP24] that builds monotone policy
aggregate signatures highlighted the inadequacy of the somewhere extractability notion from [BBK+23] for
their particular application to constructing monotone policy aggregate signatures. Indeed, the work of [BCJP24]
propose two di�erent and seemingly incomparable notions of extraction for their application. This illustrates
that the most useful or desirable notion of extraction for monotone policy BARGs may be application-dependent.

• Second, while it is straightforward to show that our construction satis�es some notion of extractability, proving
this property does not appear to confer additional capabilities. For the main application to statically-secure
aggregate signatures, we showed above that non-adaptive soundness already su�ces. There is no need for
extraction if this is the end goal. The main advantage of having some kind of extractability de�nition is we can
apply this construction to compile any digital signature scheme into a monotone policy aggregate signature
scheme, as opposed to restricting ourselves to puncturable signatures (and we show this in Section 8.1). While
there is a qualitative bene�t to this, we do not view it as strong evidence that semi-somewhere extractability is
a clearly more powerful or more useful notion than non-adaptive soundness.

A new application: general-policy BARGs for NP ∩ coNP. We also highlight a simple application of BARGs
for monotone policy batch NP to constructing a BARG that supports arbitrary policies over languages in NP ∩ coNP.
Our observation essentially follows the similar strategy of extending monotone closure of SZK to non-monotone
closure [Vad06]. Speci�cally, for a language X ∈ NP ∩ coNP and an arbitrary policy % : {0, 1}: → {0, 1}, we de�ne
the language

LX,% = {(G1, . . . , G: ) | % (11, . . . , 1: ) = 1 where 18 = 1 {G8 ∈ X}} ,
where 1 {G8 ∈ X} is the indicator function that outputs 1 if G8 ∈ X and 0 otherwise. Importantly, in this context,
we allow % to be any arbitrary (possibly non-monotone) Boolean circuit. It is not di�cult to see that a BARG for
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monotone policy batch NP immediately implies a BARG for LX,% . Namely, we �rst re-express the circuit % on :
inputs 11, . . . , 1: as a new monotone circuit % ′ on 2: inputs corresponding to the original input bits 11, . . . , 1: as well
as their negations 1̄1, . . . , 1̄: . We can then apply a BARG for monotone policy batch NP on the set of 2: inputs with
the policy % ′. For this transformation to work, it is important that for each statement G8 , the prover can either provide
a proof of membership G8 ∈ X (which sets 18 = 1) or a proof of non-membership G8 ∉ X (which sets 1̄8 = 1).

1.2 Technical Overview
The starting point of our BARG construction is the “canonical protocol” from [BBK+23, §2.1]. We recall this below. In
our description, we will consider the NP relation of Boolean circuit satis�ability.

• Given a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1}, a monotone policy % : {0, 1}: → {0, 1}, statements
G1, . . . , G: ∈ {0, 1}= , witnessesF1, . . . ,F: ∈ {0, 1}ℎ , the prover �rst computes 18 ← � (G8 ,F8 ) for all 8 ∈ [:].

• The prover then evaluates the circuit % (11, . . . , 1: ). The prover commits to all of the wire values in % (11, . . . , 1: )
using a succinct commitment com that supports local openings. We index the input wires with the integers
1, . . . , : , the output wire by B (where B is the number of wires in % ), and the intermediate wires with :+1, . . . , B−1.

• The prover uses a batch argument to prove the following statements with respect to the commitment com:

– Input wires: For every input wire 9 ∈ [:], it proves that there exists a local opening of com to a value
1 9 ∈ {0, 1} at index 9 , and moreover, 1 9 = � (G 9 ,F 9 ).

– Gate computation: For every gate 6 in % with input wires 9l, 9r and output wire 9 , it proves that there
exists a local opening of com to wire values 1 9l , 1 9r , 18 ∈ {0, 1} at indices 9l, 9r, 9 ∈ [B], respectively, and
moreover, 1 9 = 6(1 9l , 1 9r ).

– Output wire: It proves that there exists a local opening to the value 1 at index B for com.

The proof consists of the commitment com together with the batch argument c .

When the policy circuit % has logarithmic depth, the authors of [BBK+23] describe a simple inductive argument to
argue the security of this construction by relying on somewhere extractability of the underlying BARG. Somewhere
extractability says that the common reference string of the BARG can be programmed at a small number of (hidden)
indices 81, . . . , 8ℓ . Given a valid proof c for (G1, . . . , G=) along with a trapdoor, one can extract witnesses for G81 , . . . , G8ℓ .
However, when % has super-logarithmic depth, the basic inductive argument no longer su�ces (speci�cally, the
security loss of the reduction decays exponentially in the depth of % ).

Predicate-extractable hash functions for bit-�xing constraints. To construct monotone policy BARGs for
policies % of arbitrary depth, the authors of [BBK+23] replace the Merkle hash of the wire values with a more
sophisticated “predicate-extractable” hash function for bit-�xing constraints.1

A predicate-extractable hash function for bit-�xing predicates is a hash function where the hash key can be
programmed in one of two computationally indistinguishable modes: (1) a normal mode and (2) a bit-�xing mode. In
bit-�xing mode, the setup algorithm takes as input a set of indices ( ⊆ [=] along with a collection of bits {(8, ~8 )}8∈( ,
where = is the input length. It outputs a hash key hk and an extraction trapdoor td. The correctness requirement says
that if dig = Hash(hk, x) for an input x where G8 = ~8 for all 8 ∈ ( , then Extract(td, dig) = Matching. Alternatively,
if dig is a digest for an input x where G8 ≠ ~8 for some 8 ∈ ( , then Extract(td, dig) should output (NotMatching, 8∗)
where 8∗ ∈ ( is an index where G8∗ ≠ ~8∗ . Essentially, the extractor is deciding whether dig corresponds to the hash
of an input that is consistent with {(8, ~8 )}8∈( . If the hash is declared inconsistent, the extractor outputs one of the
inconsistent indices. Finally, the hash function supports succinct local openings to individual bits of an input. The
two key security properties are as follows:

• For a hash digest dig where Extract(td, dig) = Matching, then it should be computationally di�cult to construct
an opening for dig to a value G8 ≠ ~8 for any 8 ∈ ( .

1This is conceptually similar to the notion of function-binding hash functions introduced concurrently in [FWW23].
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• For a hash digest dig where Extract(td, dig) = (NotMatching, 8∗), then it should be computationally di�cult
for the adversary to open index 8∗ to the value ~8∗ .

In the monotone BARG construction, the prover takes the Boolean circuit � , the policy % , the statements (G1, . . . , G: )
and the witnesses (F1, . . . ,F: ), and computes 18 ← � (G8 ,F8 ) and % (11, . . . , 1: ). Let (11, . . . , 1B ) be the complete set
of wire values in % (11, . . . , 1: ), arranged in topological order. The prover hashes the wire values (11, . . . , 1B ) using
the predicate-extractable hash function. In fact, the prover computes two independent hashes dig1, dig2 of the wire
values, and the BARG will check validity of the openings against both hashes. To argue non-adaptive soundness, the
authors of [BBK+23] �rst de�ne the zero-set � associated with a circuit � , policy % , and statement (G1, . . . , G: ):

• For each 8 ∈ [:], let V∗8 = 1 if there existsF8 such that � (G8 ,F8 ) = 1 and let V∗8 = 0 otherwise.

• Let V∗1, . . . , V∗B = % (V∗1, . . . , V∗: ) be the wire values in % (V∗1, . . . , V∗B ), where the wires are ordered topologically.

• Let � =
{
8 ∈ [:] : V∗8 = 0

}
. For a layer index C , de�ne �C ⊆ � to just contain the indices of wires in layer C of % .

The proof of non-adaptive soundness now proceeds as follows:2

• Take any circuit � , monotone policy % , and statements G1, . . . , G: . The invariant they use roughly says the
following: if hk0, hk1 are programmed to bind to the all-zeroes string on the zero-sets �8 , �8−1 for layers 8 and
8 − 1 of % , and the digest associated with the upper layer is NotMatching, then the digest associated with the
lower layer is also NotMatching.

• To establish this invariant, the proof critically relies on BARG security and security of the predicate-extractable
hash function. Namely, if the extractor declares an index 9 ∈ �8 in the upper layer to be NotMatching and the
BARG is set to be extracting on wire 9 , then that means the adversary must have opened one of the input
wires 9 ′ (to the gate computing wire 9 ) to a 1 where 9 ′ ∈ �8−1 (since the policy % is monotone). Security of
the hash function then says that the extractor must declare the digest associated with the lower layer to be
NotMatching.

• To complete the proof, they argue that the output layer must be NotMatching (by programming the BARG
to be extracting on the output wire). By propagating the invariant to the input wires, they conclude that the
input layer must be NotMatching (when one of the hash keys is programmed to bind on the input layer). In
this case, programming the BARG to be extracting on the wire identi�ed by the NotMatching input (output
by the extractor for the hash function) yields a contradiction (in this case, the BARG extractor would need to
output a witness for a false NP statement).

The authors of [BBK+23] then show how to construct a predicate-extractable hash function for bit-�xing predicates
using the learning with errors (LWE) assumption. Their construction speci�cally relies on leveled homomorphic
encryption (similar to the construction of somewhere statistically binding hash functions [HW15]). In conjunction
with BARGs for NP based on LWE [CJJ21b], this yields a monotone policy BARG for NP from LWE.

This work: zero-�xing hash functions. The starting point of our work is a relaxation of a predicate-extractable
hash function for bit-�xing predicates we call a zero-�xing hash function. Like the predicate-extractable hash
function, the zero-�xing hash function supports succinct local openings and moreover, the hash key for a zero-�xing
hash function can be sampled in one of two computationally-indistinguishable modes: (1) a normal mode and (2)
a zero-�xing mode. In zero-�xing mode, the setup algorithm takes as input a set ( ⊆ [=] of indices (that should
be zero) and outputs a hash key hk along with a trapdoor td. There is also an extract algorithm Extract that takes
as input the hash key hk and a digest dig, and outputs either Matching or NotMatching. The key distinction with
predicate-extractable hash functions is that Extract only outputs the �ag; it does not output an index when it declares a
digest NotMatching. Correspondingly, the zero-�xing security requirement only imposes a requirement for matching
digests:
2With a suitable strengthening of the notion of predicate-extractable hash functions, the authors of [BBK+23] also show how to obtain a somewhere
extractable monotone policy BARG. In this work, we focus on achieving the core notion of non-adaptive soundness.
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• Zero-�xing: Suppose (hk, td) are sampled in zero-�xing mode for a set ( . Then, for any digest dig where
Extract(td, dig) outputs Matching, it should be hard to �nd an opening to an index 8 ∈ ( to the value 1.

While this distinction of having the extractor output a mismatching index 9 or not might seem like a small di�erence,
it has two signi�cant implications:

• Simpler to construct: By only requiring the zero-�xing hash function declare whether a digest is Matching
or NotMatching, we signi�cantly simplify the construction of the hash function. Whereas computing and
propagating an index of a “mismatching bit” (as in [BBK+23]) relies heavily on (leveled) homomorphic encryption,
checking whether there exists a mismatching index or not can be realized from simpler tools. As we show
in this work (and describe later on), we can construct zero-�xing hash functions generically from BARGs
for NP together with any additively homomorphic encryption scheme (Section 5). If we prefer to avoid non-
black-box techniques altogether, we also describe a direct algebraic construction using composite-order pairing
groups (Section 6). This is the critical distinction that allows us to obtain monotone policy BARGs from group-
based assumptions (which give additively homomorphic encryption [Gam84] but not leveled homomorphic
encryption).

• Su�cient for monotone policy BARGs: A second important fact is that our notion of zero-�xing hash
function still su�ces to build monotone policy BARGs. As noted in the preceding sketch, the soundness analysis
from [BBK+23] critically relied on the hash function extractor outputting an index of a mismatching bit. This
is so that when the BARG is programmed to bind on the wire associated with the mismatching index, the
NotMatching invariant propagates from the output layer to the input layer. In our setting, the zero-�xing
extractor only outputs Matching or NotMatching, and in the case where the extractor outputs NotMatching,
we cannot de�nitively declare an index to be “mismatching.” This requires a new proof strategy as well as
imposing additional security requirements on the zero-�xing hash function. We describe these properties as
well as our new proof strategy in more detail below.

Monotone policy BARGs from zero-�xing hash functions. Our main construction is similar to the canonical
protocol from [BBK+23] sketched above, except the prover commits to all of the wires of the policy circuit % using two
zero-�xing hash functions (with hash keys hk1 and hk2). Our security analysis takes a di�erent bottom-up approach
rather than the previous top-down approach. The bottom-up approach is more natural when using our zero-�xing
hash function. Here, we provide a sketch of our non-adaptive soundness analysis.

To argue non-adaptive soundness, �x a Boolean circuit � , a monotone policy % (assumed to be a layered Boolean
circuit), and a false statement (G1, . . . , G: ). Similar to [BBK+23], we de�ne the zero-set � associated with � , % , and
(G1, . . . , G: ). The zero-set � contains the indices of the wires with value 0 in the computation % (V∗1, . . . , V∗: ) where
V∗8 = 1 if there existsF8 where � (G8 ,F8 ) = 1 and 0 otherwise. Since % is monotone, for allF1, . . . ,F: , the wire values
of % (� (G1,F1), . . . ,� (G: ,F: )) on the set � will be zero. As before, let �8 ⊂ � be the subset of wires in layer 8 of % .

Our soundness argument proceeds layer-by-layer, starting from the input layer (i.e., layer 1) and progressing to
the output layer (i.e., layer 3 , where 3 is the depth of % ). Our goal establishes the following invariant: if the hash keys
hk1 and hk2 are zero-�xing on �8 and �8+1 and the digest associated with the lower layer (i.e., layer 8) is Matching,
then the digest associated with the upper layer (i.e., layer 8 + 1) is also Matching. We provide a sketch of this step. For
ease of exposition, suppose hk1 is zero-�xing on �8 and the digest dig1 is Matching. The goal is to show that hk2 is
zero-�xing on �8+1, then the digest dig2 is also Matching:3

• Initially, we set hk2 to be binding on the empty set. We require in this case that dig2 is always Matching. We
refer to this property as an extractor validity property on the zero-�xing hash function.

• We now iteratively build up hk2. Let �8+1 [1] be the �rst element of �8+1. We set hk2 to be binding on the set
{�8+1 [1]}. Our goal is to argue that dig2 is still Matching. While it might seem like this property should follow

3This step is straightforward if we had a predicate-extractable hash function where the extractor outputs a mismatching index. Namely, if the
upper layer digest is NotMatching, then the extractor outputs an index 9 ∈ �8+1 that is mismatching (i.e., cannot be opened to a 0). This means
the e�cient adversary can only open wire 9 to the value 1. Now, if the BARG is extracting on the statement associated with wire 9 , then we either
(1) obtain the opening of some index 9 ′ ∈ �8 to a 1, which breaks security of the hash function (since the lower layer digest is Matching); or (2)
the value of wire 9 is inconsistent with the input wires associated with the gate computing wire 9 , which breaks security of the BARG.
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assuming a basic index hiding property on the zero-�xing hash function (i.e., that the hash key hk hides which
set it is binding on), this is insu�cient. The reason is that when hk2 is binding on ∅, the adversary might output
a Matching digest dig2, but if hk2 is binding on {�8+1 [1]}, the output digest dig2 might be NotMatching. We
cannot use such an adversary to construct an index hiding distinguisher, because in the index hiding security
game, the distinguisher does not have the extraction trapdoor. As such, an attempted reduction algorithm
cannot e�ciently decide whether the adversary was successful or not. Indeed, this is a fundamental issue since
knowledge of the extraction trapdoor would trivially break index hiding.

• To advance the proof, we introduce a stronger notion of index hiding security for zero-�xing hash functions,
which essentially requires that no e�cient adversary can output a digest dig that causes the output of Extract
to di�er depending on whether the hash key is binding on a set ( or a set ( \ {8}.4 Of course, this is only
meaningful when the digest is computed over an input that is 0 on index 8 .5 Thus, we require this stronger
index hiding with extracted guess property to hold only for digests dig where the adversary can provide an
opening to index 0 for the target index 8 . We de�ne this property formally in De�nition 3.1.

• To leverage the index hiding with extracted guess property, we need to enforce the fact that dig2 opens to
a 0 on index �8+1 [1]. We ensure this by appealing to the somewhere extractability of the BARG along with
zero-�xing security of the hash function. Speci�cally, suppose that the BARG is binding on wire �8+1 [1]. The
BARG extractor then produces openings to the wire �8+1 [1] with respect to dig2 as well as opening to the
wires 9l, 9r with respect to dig1 (corresponding to the input wires for the gate computing �8+1 [1]). Since dig1 is
zero-�xing on �8 and dig1 is also Matching, if either 9l, 9r ∈ �8 , then the extracted openings must be openings
to 0 (otherwise, we break zero-�xing of the hash function). But by monotonicity of % , this means the value of
the output wire �8+1 [1] must also be 0, and thus the BARG extractor produces an opening to 0 for wire �8+1 [1].
Now, by the index hiding with extracted guess property, we conclude that programming hk2 to zero-�x on set
{�8+1 [1]} will still cause dig2 to be Matching (except with a negligible loss in probability).

• We can now iteratively apply the argument and build up hk2 until it is binding on all of �8+1.

To complete the proof, we consider the input and output layers for % :

• Handling the input layers: The base case in our analysis is to show that if hk1 is binding on �1 (the input
layer), then it is Matching. This follows using the same layer-wise strategy sketched above for proving our
invariance, except for each index �1 [8], we rely on the fact that the associated statement G8 is false (i.e., no witness
exists) to argue that the only valid opening for dig1 on index 8 is 0. Otherwise, we either break somewhere
extractability of the BARG (i.e., extracting an invalid witness for index 8) or the index hiding with extracted
guess property.

• Output layer: Starting from the input layer, we now iteratively apply our basic invariant to argue that when
the hash keys are binding to �3 (the output layer), the associated digests are also Matching. Now, if we have a
valid proof, and the BARG is set to extract on the output layer, then the BARG extractor outputs an opening of
the output wire to 1 with respect to the hash digests. However, since the output wire is contained in �3 (since
the statement is false), and the digest is matching, this breaks zero-�xing security of the hash function.

Thus, the above analysis su�ces to show non-adaptive soundness of our construction. The critical security requirement
we require on our zero-�xing hash function is the strengthened index hiding with extracted guess property. This
property allows us to complete the proof via an iterative approach without needing to rely on the extractor outputting
a mismatching index as in previous work [BBK+23]. As we discuss below, this is an easier property to realize than
full-�edged index extraction. We refer to Section 3 for the formal de�nition of zero-�xing hash functions and Section 4
for our construction of monotone policy BARGs.
4This type of property where the output of the extractor does not change for di�erent choices of the CRS is often referred to as a “no-signaling”
extraction property [PR17, KPY19, GZ21, KVZ21, CJJ21b].

5Otherwise, an honest digest on the input that is 1 at index 8 (and 0 everywhere else) would be declared Matching if the hash key was zero-�xing
on a set ( that contains 8 and NotMatching if the hash key was zero-�xing on the set ( \ {8 }
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Constructing zero-�xing hash functions. Our second contribution in this work is a generic construction of
zero-�xing hash functions from vanilla BARGs together with an additively homomorphic encryption scheme. We
start with a basic construction that captures the key ideas underlying our construction and refer to Section 5 for the
formal description and analysis:

• Let = ∈ N be the input length. For ease of exposition, we assume that = = 2: is a power-of-two. Suppose we
want to zero-�x on a (possibly-empty) set ( ⊆ [=]. The setup algorithm �rst samples a public/secret key-pair
(pk, sk) for an additively homomorphic encryption scheme. For each 8 ∈ [=], the setup algorithm construct an
encryption ct8 ← Enc(pk, 1) of 1 if 8 ∈ ( and an encryption of ct8 ← Enc(pk, 0) of 0 if 8 ∉ ( . It also constructs an
encryption ctzero ← Enc(pk, 0) of 0. Finally, it constructs a commitment comhk to the ciphertexts (ct1, . . . , ct=).
The hash key is then hk = (pk, ctzero, ct1, . . . , ct=, comhk), and the extraction trapdoor is the decryption key sk.

• To hash an input G ∈ {0, 1}= , the user constructs a complete binary tree where each of the = leaves is associated
with a ciphertext. If G8 = 1, then the user associates leaf 8 with ct8 , and if G8 = 0, then the user associates
leaf 8 with ctzero. The value of each internal node in the binary tree is de�ned to be the sum of the ciphertexts
associated with its two children. By construction, the value of the root node is an encryption of the sum of the
values associated with the = leaf nodes. We refer to the tree of ciphertexts as the “ciphertext-evaluation tree.”
The digest dig then consists of the ciphertext ctroot associated with the root node along with a commitment
comct to all of the ciphertexts in the ciphertext-evaluation tree.

• A local opening for index 8∗ and value 18∗ ∈ {0, 1} for the digest dig = (ctroot, comct) is a BARG proof. The
BARG statements correspond to the indices of the nodes in the ciphertext-evaluation tree. The associated
relation is parameterized by the target index 8∗, the root ciphertext ctroot, the encryption ctzero of 0 from the
hash key, and the commitment to the input ciphertexts comhk. The BARG relation then checks the following:

– Leaf nodes: For each leaf node 8 , comct opens to either ctzero or ct8 at index 8 . For the particular index 8∗,
it checks that comct opens to ctzero if 18∗ = 0 and comct opens to ct8∗ if 18∗ = 1. Since the BARG relation
only has comhk and not ct8 itself, the prover provides ct8 as part of its witness along with a proof of
opening for ct8 with respect to comhk. The proof of opening ensures that the correct ct8 is provided.

– Internal nodes: For an internal node 8 (with children indexed 9l, 9r), the BARG checks that comct opens
to ciphertexts ct8 , ct9l , ct9r where ct8 is the sum of ciphertexts ct9l and ct9r .

– Root node: For the root node, the BARG checks that comct opens to ctroot.

• To test whether a digest dig = (ctroot, comct) is matching or not, the Extract algorithm outputs Matching if
ctroot decrypts to 0 and NotMatching otherwise.

By de�nition, the ciphertext ctroot in any (honestly-generated) hash digest is the sum of the ciphertexts associated with
the leaves of the ciphertext-evaluation tree. On an input G , if G8 = 0, then the associated ciphertext is an encryption of
0 and does not contribute to the sum. If G8 = 1, then the ciphertext associated with the leaf is an encryption of 1 if
8 ∈ ( and encryption of 0 otherwise. Thus, the sum is only incremented if G8 = 1 for some 8 ∈ ( . This is precisely
when Extract outputs NotMatching (i.e., the digest is for an input G where G8 = 1 for 8 ∈ ().

To argue that it is hard to open a Matching, but possibly-malformed digest to a 1 at an index 8 ∈ ( , we appeal to
soundness of the BARG. In this case, the root ciphertext ctroot in dig decrypts to a non-zero value, and yet the user
constructed a valid BARG proof of opening for an index 8 ∈ ( . The key observation is that the structure of the BARG
used in the above construction is very similar to the structure of the canonical protocol from [BBK+23] described
at the beginning of Section 1.2 for demonstrating correct evaluation of a monotone circuit. Moreover, because the
ciphertext-evaluation tree is perfectly balanced, it has depth log=, where = = poly(_) is the input length. As such, we
are able to adapt the proof strategy for arguing soundness of the monotone policy BARGs for log-depth circuits to
directly argue zero-�xing security of our hash function. Speci�cally, we rely on BARG security to ensure that if the
adversary uses an encryption of 1 as one of the leaves to the ciphertext (which it must if it opens an index 8 ∈ ( to a 1),
then the root ciphertext necessarily is an encryption of a non-zero value. We provide the full details in Section 5.1.3.

While the core construction described here satis�es zero-�xing security, we need to augment the construction to
satisfy the additional security requirements we impose on a zero-�xing hash function. We summarize these here, and
defer to the technical sections (Sections 5, 5.1.4 and 5.1.5) for the full details:
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• Extractor validity: Recall that this property says that when the hash function is zero-�xing on the empty set,
it should be hard for an adversary to come up with a “valid” digest that is NotMatching. To satisfy this property,
we simply include a BARG proof of validity to the digest, where the BARG proof of validity simply checks that
the ciphertext-evaluation tree was correctly constructed. When the hash key is binding to the empty set, all of
the ciphertexts ct8 are an encryption of 0, so the root of a properly computed ciphertext-evaluation tree will
also be an encryption of 0. We provide the details in Section 5.1.4.

• Index hiding with extracted guess: Recall that this property says that the adversary cannot produce a digest
dig where the extractor output disagrees depending on whether the hash key is zero-�xing on a set ( or a set
( \ {8} (provided that the adversary provides an opening to 0 for index 8). The only di�erence between the
hash keys in these two cases is ct8 in the CRS changes from an encryption of 0 to an encryption of 1, which
we could in principle show using semantic security. However, the reduction algorithm would have no way
of checking whether a digest dig output by the adversary is Matching or NotMatching (since it does not and
cannot know the decryption key). Thus, to argue this we adopt a Naor-Yung type of strategy [NY90] and
encrypt twice. Namely, we introduce two parallel copies of the scheme (i.e., two independent public keys and
two independent sets of ciphertexts). The digest now consists of two ciphertexts ct(0)root, ct

(1)
root for the roots of the

two ciphertext-evaluation trees. The same BARG would validate both roots. The key idea now is we can switch
ct(0)
8

from an encryption of 0 (i.e., zero-�xing at ( \ {8}) to an encryption of 1 (i.e., zero-�xing at () while being
able to decrypt (i.e., extract) for the parallel encryption scheme. We can leverage soundness of the BARG to
argue that for a valid digest/opening, both ct(0)root and ct(1)root encrypt identical values. This allows us to leverage
semantic security to switch the ciphertexts for one scheme while being able to detect whether the output of
Extract changed or not (using knowledge of the secret key for the parallel scheme). We provide the full details
in Section 5.1.5.

Taken together, we obtain a zero-�xing hash function from any standard BARG together with an additively-
homomorphic encryption scheme. By instantiating with BARGs from the:-Lin assumption over pairing groups [WW22]
or the (sub-exponential) DDH assumption over pairing-free groups [CGJ+23], we obtain zero-�xing hash functions
from the same underlying assumptions. In conjunction with our generic construction from above, this yields
Theorem 1.1.

An algebraic construction of zero-�xing hash functions. As another contribution, we also describe an alge-
braic approach to construct zero-�xing hash functions directly from (composite-order) bilinear maps. This construction
has the advantage that it only makes black-box use of cryptography. We give a brief sketch of the construction here,
but defer the details to Section 6. The basic version is an adaptation of the Catalano-Fiore vector commitment [CF13]:

• Let G = (G,G) , # , 6, 4) be a composite-order bilinear group of order # , generator 6, and an e�ciently-
computable non-degenerate bilinear map 4 : G ×G→ G) . In the actual construction, we will require that # be
a product of six primes. In the description here, we will just describe the basic scheme that operates primarily
in just two subgroups. Let 61 and 62 be generators of two orthogonal subgroups of G.

• To sample a hash key for a set ( ⊆ [=], the setup algorithm samples exponents U8 , V8 r← Z# . If 8 ∈ ( , it
sets �8 ← (6162)U8 and if 8 ∉ ( , it sets �8 ← 6

U8
1 . It sets �8 ← 6

V8
1 and for 8 ≠ 9 , it computes the cross term

�8, 9 ← 6
U8V 9
1 . The hash key then contains �8 , �8 for 8 ∈ [=] and �8, 9 for all 8 ≠ 9 .

• The hash of an input G ∈ {0, 1}= is then dig =
∏
8∈[=] �

G8
8

. The opening to an index 8 is + =
∏

9≠8 �
G 9
9,8

. To verify
an opening to a bit 1 at index 8 , the veri�er checks

4 (dig, �8 ) = 4 (�8 , �8 )1 · 4 (61,+ ).

• To check whether a digest dig is Matching or not, the extraction algorithm output Matching if 4 (dig, 62) = 1
and NotMatching otherwise.
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The basic principle is to move the “encoding elements” �8 for 8 ∈ ( to have a component in the span of 62. The
components �8 for 8 ∉ ( are only in the span of 61. Then, any digest that includes an index 8 ∈ ( will contain a
non-zero element in the span of 62, and thus, be declared NotMatching. Arguing the security of this scheme is more
delicate and will require introducing a number of additional randomizing components (and subgroups). We refer to
Section 6 for the details.

Constructing monotone policy aggregate multi-signatures Our �nal contribution is a construction of mono-
tone policy aggregate multi-signatures. While previous construction of aggregate signatures relied on extractable
BARGs [WW22, DGKV22], a similar implication is possible by combining a non-adaptively-sound BARG together with
a “puncturable signature” scheme (also called an all-but-one signature scheme) [GVW19]. We sketch our construction
below, and provide the full details in Section 7.

In a puncturable signature scheme, it is possible to puncture a veri�cation key on a message<∗. The property
is that there does not exist signatures on<∗ that verify with respect to the punctured veri�cation key. Moreover, a
punctured veri�cation key is computationally indistinguishable from an honestly-generated veri�cation key, even if
the adversary is able to see signatures on arbitrary messages< ≠<∗. Goyal, Vusirikala, and Waters [GVW19] showed
how to construct puncturable signatures from most standard number-theoretic assumptions (e.g., RSA, pairing-based
assumptions, and LWE). We can use a non-adaptively-sound monotone policy BARG together with a puncturable
signature scheme to construct a (statically-secure)6 aggregate multi-signature scheme for any policy computed by a
monotone Boolean circuit. We provide a sketch below:

• Setup: Consider a scheme with : signers. Each signer 8 ∈ [:] has a signing key sk8 and a veri�cation key vk8
for the punctured signature scheme. The public parameters of the aggregation scheme contain the common
reference string for a monotone policy BARG.

• Signing: To sign a message<, each user signs with their individual signing key.

• Aggregation: Given a set of signatures {f8 }8∈( on the same message< and a (monotone) aggregation policy
% , a user can aggregate the signatures by giving a monotone policy BARG proof for the policy % with respect
to the natural relation R[<] = {(vk, f) : Verify(vk,<, f)}. The aggregate signature is simply the BARG proof
for the statements (vk1, . . . , vk: ) with the witness (f1, . . . , f: ).

• Veri�cation: To verify an aggregate multi-signature with respect to a policy % , the veri�er just checks the
BARG proof.

Note that one could also construct an aggregate multi-signature by sending the set ( where % (() = 1 and then
use a vanilla BARG to prove knowledge of a signature f8 for every 8 ∈ ( . However, this approach would require
communicating the set ( as part of the aggregate signature. Using monotone policy BARGs, the aggregate signature
only consists of the BARG proof, and thus has size, poly(_, log |% |). It is straightforward to prove static security of
the above multi-signature scheme just assuming non-adaptive-soundness on the underlying BARG. We sketch the
reduction below:

• In the static security game, the adversary has to pre-commit to the message<∗ it wants to forge on, the set
of veri�cation keys (vk∗1, . . . , vk∗: ) it wants to use (which can be a mix of honest veri�cation keys chosen by
the challenger and veri�cation keys chosen adversarially), and the aggregation policy % before seeing the
aggregation parameters.

• Let ( ⊆ [:] be the set of indices 8 where the chosen key vk∗8 is uncorrupted (i.e., chosen by the challenger). The
admissibility requirement is that % (11, . . . , 1: ) = 0 where 18 = 0 if 8 ∈ ( and 18 = 1 otherwise; this is saying that
the adversary cannot satisfy the policy % just by providing signatures under keys it controls.

• In the security reduction, we �rst puncture the honest users’ veri�cation keys vk8 on the challenge message<∗.
This means that there does not exist valid signatures on the challenge message<∗ with respect to the honest
users’ veri�cation keys vk8

6In the static security model, we require that the adversary declare the set of corrupted veri�cation keys, its challenge message, and the aggregation
policy at the beginning of the security game.

10



• Consider the relation R[<∗] used for veri�cation. By de�nition of the set ( and the fact that the honest
veri�cation keys are punctured at<∗, the statement (vk∗1, . . . , vk∗: ) is false for the policy % with respect to the
relation R[<∗]. By non-adaptive soundness of the monotone policy BARG, the probability that the adversary
can produce a valid aggregate signature (i.e., a valid proof on a false statement) is negligible.

Observe that in the above sketch, the veri�cation time is linear in : . However, using a RAM delegation scheme, we
can achieve fast veri�cation. We refer to Remark 7.8 for additional details.

2 Preliminaries
Throughout this work, we write _ to denote the security parameter. For = ∈ N, we write [=] to denote the set
{1, . . . , =}. For 0, 1 ∈ N we write [0, 1] to denote the set {0, 0 + 1, . . . , 1}. We write poly(_) to denote a function that
is bounded by a �xed polynomial in _, and negl(_) to denote a function that is > (_−2 ) for all 2 ∈ N. We say an event
happens with overwhelming probability if its complement occurs with negligible probability. For a �nite set ( , we
write G r← ( to denote that G is a uniformly random element of ( . For a distribution D we write G ← D to denote
that G is a random draw from D.

We say an algorithm is e�cient if it runs in probabilistic polynomial time in the length of its input. A non-uniform
algorithm A consists of a pair of algorithms (A1,A2) where A1 is a (possibly-unbounded) algorithm that takes as
input 1_ and outputs an advice string d_ of poly(_) size. Algorithm A2 is an e�cient algorithm. The output of A on
an input G ∈ {0, 1}_ is de�ned as �rst computing the advice string d_ ← A1 (1_) and then outputting A2 (G, d_). We
say two ensembles of distributions D1 =

{
D1,_

}
_∈N and D2 =

{
D2,_

}
_∈N are computationally indistinguishable if no

e�cient adversary can distinguish them with non-negligible probability. We say they are statistically indistinguishable
if their statistical distance is bounded by negl(_).

2.1 Cryptographic Building Blocks
In this section, we recall the de�nition of a few standard cryptographic building blocks we use in this work.

Additively-homomorphic encryption. We start by reviewing the notion of an additively homomorphic en-
cryption. For our applications, it su�ces to consider constructions that only support decryption of values residing
in a bounded message space. Such additively homomorphic encryption schemes can be built from most standard
number-theoretic assumptions that imply public-key encryption such as the decisional Di�e-Hellman (DDH) assump-
tion [Gam84], decisional composite residuosity (DCR) [Pai99], or the learning with errors (LWE) assumption [Reg05].

De�nition 2.1 (Additively Homomorphic Encryption). An additively homomorphic encryption with bounded
support is a tuple of polynomial time algorithms ΠHE = (Gen, Enc,Dec,Add) with the following syntax:

• Gen(1_, 1=) → (sk, pk): On input a security parameter _ ∈ N and a range parameter = ∈ N, the key-generation
algorithm outputs a secret key sk and a public key pk. We assume that the secret key and the public key
includes an implicit description of the range parameter 1= .

• Enc(pk,msg) → ct: On input a public key pk and an integer msg ∈ {0, . . . , =}, the encryption algorithm outputs
a ciphertext ct.

• Dec(sk, ct) → msg: On input a secret key sk and a ciphertext ct, the decryption algorithm either outputs a
plaintext msg ∈ {0, . . . , =} or a special symbol msg = ⊥. The decryption algorithm is deterministic.

• Add(pk, ct1, ct2) → ct′: On input a public key pk and two ciphertexts ct1, ct2, the homomorphic addition
algorithm outputs a new ciphertext ct′. The addition algorithm is deterministic.

We require the following properties:

• Correctness: For all _, = ∈ N and all messages msg ∈ {0, . . . , =}, it holds that:

Pr
[
Dec(sk, ct) = msg : (sk, pk) ← Gen(1_, 1=)

ct← Enc(pk,msg)

]
= 1.
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• Evaluation correctness: For all _, = ∈ N, all (sk, pk) in the support of Gen(1_, 1=) and all ciphertexts ct1, ct2
where Dec(sk, ct1) ≠ ⊥, Dec(sk, ct2) ≠ ⊥, and Dec(sk, ct1) + Dec(sk, ct2) ∈ {0, . . . , =}, it holds that

Dec(sk,Add(pk, ct1, ct2)) = Dec(sk, ct1) + Dec(sk, ct2).

• Compactness: There exists a polynomial poly(·) such that for all _, = ∈ N, all (sk, pk) in the support of
Gen(1_, 1=), all ciphertexts ct in the support of Enc(pk, ·) and Add(pk, ·, ·), it holds that |pk| ≤ poly(_ + log=)
and |ct| ≤ poly(_ + log=).

• CPA-security: For an adversary A and a bit 1 ∈ {0, 1}, de�ne the CPA-security experiment ExptSSA (_,1) as
follows:

1. On input the security parameter 1_ , the adversary A starts by outputting a range parameter 1= .
2. The challenger samples a key pair (sk, pk) ← Gen(1_, 1=) and sends pk to the adversary.
3. The adversary can now make (arbitrarily many) queries on pairs of messages (msg0,msg1). On each

query, the challenger replies with Enc(pk,msg1).
4. After the adversary A is done making queries, it outputs a guess 1 ′ ∈ {0, 1}.

We say that ΠHE is semantically secure if for every e�cient adversary A, there exists a negligible function
negl(·) such that

��Pr[ExptSSA (_, 1) = 1] − Pr[ExptSSA (_, 0) = 1]
�� = negl(_).

Fact 2.2 (Additively Homomorphic Encryption [Gam84, Pai99, Reg05]). Assuming any of (1) the decisional Di�e-
Hellman assumption (DDH), (2) the decisional composite residuosity assumption (DCR), or (3) the learning with
errors (LWE) assumption, there exists an additively homomorphic encryption scheme with a bounded support.

Vector commitments. Next, we recall the notion of a vector commitment scheme with succinct local openings.
Such commitments can be built from any collision-resistant hash function [Mer87].

De�nition 2.3 (Vector Commitment). A vector commitment with local openings is a tuple of e�cient algorithms
ΠCom = (Setup,Commit,Verify) with the following properties:

• Setup(1_, 1=, ℓ) → crs: On input the security parameter _ ∈ N, the block length = ∈ N, and the vector length
ℓ ∈ N (in binary), the setup algorithm outputs a common reference string crs. We assume the common reference
string implicitly contains the parameters 1= and ℓ .

• Commit(crs, (G1, . . . , GC )) → (com, f1, . . . , fC ): On input the common reference string crs and a vector of C ≤ ℓ
messages G1, . . . , GC ∈ {0, 1}= , the commit algorithm outputs a commitment com and openings f1, . . . , fC .

• Verify(crs, com, 8, ~, f) → 1 ′: On input the common reference string crs, the commitment com, an index 8 ∈ [ℓ],
a message ~ ∈ {0, 1}= , and an opening f , the veri�cation algorithm outputs a bit 1 ′ ∈ {0, 1}.

Moreover, ΠCom should satisfy the following properties:

• Correctness: For all _, =, ℓ ∈ N, and all positive C ≤ ℓ , all G1, . . . , GC ∈ {0, 1}= , and indices 8 ∈ [C],

Pr
[
Verify(crs, com, 8, G8 , f8 ) = 1 : crs← Setup(1_, 1=, 1ℓ ),

(com, f1, . . . , fC ) ← Commit(crs, (G1, . . . , GC ))

]
= 1.

• Computational binding: For an adversary A, de�ne the computational binding experiment as follows:

1. On input the security parameter 1_ , algorithm A starts by outputting the block length 1= and vector
length ℓ .

2. The challenger responds with crs← Setup(1_, 1=, ℓ).
3. Algorithm A outputs a commitment com, an index 8 ∈ [ℓ], and openings (~0, f0) and (~1, f1).

12



4. The output of the experiment is 1 = 1 if Verify(crs, com, 8, ~0, f0) = 1 = Verify(crs, com, 8, ~1, f1) and
~0 ≠ ~1. Otherwise, the output is 1 = 0.

The commitment scheme is binding if for all e�cient adversaries A, there exists a negligible function negl(·)
such that Pr[1 = 1] = negl(_) in the binding experiment.

• Succinctness: There exists a universal polynomial poly(·) such that for all _, =, ℓ ∈ N, all crs in the support of
Setup(1_, 1=, ℓ), all C ≤ ℓ , and all (com, f1, . . . , fC ) in the support of Commit(crs, ·), the following holds:

– Succinct CRS: |crs| = poly(_ + log= + log ℓ).
– Succinct commitment: |com| = poly(_ + log= + log ℓ).
– Succinct local opening: For all 8 ∈ [ℓ], |f8 | = poly(_ + log= + log ℓ).

Fact 2.4 (Vector Commitments from Collision-Resistant Hash Functions [Mer87]). Assuming the existence of collision-
resistant hash functions, there exists a vector commitment scheme with local openings.

2.2 Batch Arguments for NP
In this section, we recall the notion of a non-interactive batch argument (BARG) for NP, the special case of a BARG for
index languages (i.e., an “index BARG” [CJJ21b]) and the notion of a BARG for monotone policy batch NP [BBK+23].

Batch arguments for NP. We begin with the notion of a somewhere extractable batch argument for NP. Our
presentation is adapted from [CJJ21b, WW22]. Here, we provide a more general syntax where the batch arguments
supports extraction on up to ℓ indices.

De�nition 2.5 (Boolean Circuit Satis�ability). We de�ne the circuit satis�ability language LCSAT as

LCSAT =

{
(�, G)

��� � : {0, 1}= × {0, 1}ℎ → {0, 1}, G ∈ {0, 1}=
∃F ∈ {0, 1}∗ : � (G,F) = 1

}
.

De�nition 2.6 (Non-Interactive Batch Argument). A somewhere-extractable non-interactive batch argument (BARG)
for Boolean circuit satis�ability is a tuple of e�cient algorithms ΠBARG = (Gen, Prove,Verify, TrapGen, Extract) with
the following syntax:

• Gen(1_, 1: , 1=, 1B , 1ℓ ) → (crs, vk): On input the security parameter _ ∈ N, the number of instances : ∈ N,
the instance length = ∈ N, a bound on the size of the Boolean circuit B ∈ N, and a bound on the size of the
extraction set ℓ ∈ N, the generator algorithm outputs a common reference string crs and a veri�cation key vk.

• Prove(crs,�, (G1, . . . , G: ), (F1, . . . ,F: )) → c : On input the common reference string crs, a Boolean circuit
� : {0, 1}= × {0, 1}ℎ → {0, 1}, statements G1, . . . , G: ∈ {0, 1}: , and witnesses F1, . . . ,F: ∈ {0, 1}ℎ , the prove
algorithm outputs a proof c .

• Verify(vk,�, (G1, . . . , G: ), c) → 1: On input the veri�cation key vk, a Boolean circuit� : {0, 1}=×{0, 1}ℎ → {0, 1},
statements G1, . . . , G: ∈ {0, 1}= and a proof c , the veri�cation algorithm outputs a bit 1 ∈ {0, 1}.

• TrapGen(1_, 1: , 1=, 1B , 1ℓ , () → (crs, vk, td): On input the security parameter _ ∈ N, the number of instances
: ∈ N, the instance size = ∈ N, a bound on the size of the Boolean circuit B ∈ N, a bound on the size of the
extraction set ℓ ∈ N, and a set ( ⊆ [:] of size at most ℓ , the trapdoor generator algorithm outputs a common
reference string crs, a veri�cation key vk and an extraction trapdoor td.

• Extract(td,�, (G1, . . . , G: ), c, 8) → F . On input the trapdoor td, a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1},
a collection of statements G1, . . . , G: ∈ {0, 1}= , a proof c and an index 8 ∈ [:], the extraction algorithm outputs
a witnessF .
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For notational convenience, when ℓ = 1, we omit the �nal input 1ℓ and instead, write Gen(1_, 1: , 1=, 1B ) to de-
note Gen(1_, 1: , 1=, 1B , 11). Similarly, we also write TrapGen(1_, 1: , 1=, 1B , 8) to denote TrapGen(1_, 1: , 1=, 1B , 11, {8}).
Finally, we require that ΠBARG satisfy the following properties:

• Completeness: For all _, :, =, B, ℓ ∈ N, all Boolean circuits � : {0, 1}= × {0, 1}ℎ → {0, 1} of size at most B , all
statements G1, . . . , G: ∈ {0, 1}= and witnessesF1, . . . ,F: ∈ {0, 1}ℎ where � (G8 ,F8 ) = 1 for all 8 ∈ [:],

Pr
[
Verify(vk,�, (G1, . . . , G: ), c) = 1 : (crs, vk) ← Gen(1_, 1: , 1=, 1B , 1ℓ ),

c ← Prove(crs,�, (G1, . . . , G: ), (F1, . . . ,F: ))

]
= 1.

• Set hiding: For an adversaryA and a bit 1 ∈ {0, 1}, de�ne the set hiding experiment ExptSHA (_,1) as follows:

1. On input the security parameter 1_ , algorithm A starts by outputting the number of instances 1: , the
instance size 1= , the bound on the circuit size 1B , the bound on the size of the extraction set 1ℓ , and a set
( ⊆ [:] of size at most ℓ .

2. If 1 = 0, the challenger gives (crs, vk) ← Gen(1_, 1: , 1=, 1B , 1ℓ ) to A. If 1 = 1, the challenger samples
(crs, vk, td) ← TrapGen(1_, 1: , 1=, 1B , 1ℓ , () and gives (crs, vk) to A.

3. Algorithm A outputs a bit 1 ′ ∈ {0, 1}, which is the output of the experiment.

Then, ΠBARG satis�es set hiding if for every e�cient adversary A, there exists a negligible function negl(·)
such that ��Pr[ExptSHA (_, 0) = 1] − Pr[ExptSHA (_, 1) = 1]

�� = negl(_).

When ℓ = 1, we might refer to this property as index hiding.

• Somewhere extractable in trapdoor mode: For an adversary A, de�ne the somewhere extractable security
game as follows:

1. On input the security parameter 1_ , algorithm A starts by outputting the number of instances 1: , the
instance size 1= , the bound on the circuit size 1B , a bound on the size of the extraction set 1ℓ , and a
nonempty set ( ⊆ [:] of size at most ℓ .

2. The challenger samples (crs, vk, td) ← TrapGen(1_, 1: , 1=, 1B , 1ℓ , () and gives (crs, vk) to A.
3. Algorithm A outputs a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1} of size at most B , statements
G1, . . . , G< ∈ {0, 1}= , and a proof c .

4. The output of the game is 1 = 1 if Verify(vk,�, (G1, . . . , G<), c) = 1 and there exists an index 8 ∈ ( for
which � (G8 ,F8 ) ≠ 1 whereF8 ← Extract(td,�, (G1, . . . , G: ), c, 8). Otherwise, the output is 1 = 0.

Then ΠBARG is somewhere extractable in trapdoor mode if for every adversary A, there exists a negligible
function negl(·) such that Pr[1 = 1] = negl(_) in the somewhere extractable game.

• Succinctness: There exists a �xed polynomial poly(·) such that for all _, :, =, B, ℓ ∈ N, all crs in the support
of Gen(1_, 1: , 1=, 1B , 1ℓ ), and all Boolean circuits � : {0, 1}= × {0, 1}ℎ → {0, 1} of size at most B , the following
properties hold:

– Succinct proofs: The proof c output by Prove(crs,�, ·, ·) satis�es |c | ≤ poly(_ + log: + B + ℓ).
– Succinct CRS: |crs| ≤ poly(_ + : + = + ℓ) + poly(_ + log: + B + ℓ).
– Succinct veri�cation key: |vk| ≤ poly(_ + log: + B + ℓ).

Fact 2.7 (Batch Arguments for NP [CJJ21b, WW22, KLVW23, CGJ+23]). Assuming any of (1) the plain LWE as-
sumption, (2) the :-Lin assumption over pairing groups for any constant : ∈ N, or (3) the (sub-exponential) DDH
assumption in pairing-free groups, there exists a non-interactive batch argument for NP.
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Set hiding with extraction. For our main construction (Section 5), we require a slight strengthening of the
somewhere extractability property from De�nition 2.6. Our stronger set-hiding property essentially says that if the
extraction key is programmed to extract either on (0 ⊆ [:] or (1 ⊆ [:], then the extracted witness on “common
indices” 8∗ ∈ (0 ∩ (1 is computationally indistinguishable in the two cases. This type of property is often referred to
as a “no-signaling” extraction property [PR17, KPY19, GZ21, KVZ21, CJJ21b]. We de�ne this formally below and
show that it follows generically from the standard vanilla extractability in Appendix A.

De�nition 2.8 (Set Hiding with Extraction). Let ΠBARG = (Gen, Prove,Verify, TrapGen, Extract) be a somewhere
extractable batch argument for Boolean circuit satis�ability (De�nition 2.6). For an adversary A and a bit 1 ∈ {0, 1},
de�ne the set hiding with extraction experiment ExptSHwEA (_,1) as follows:

1. On input the security parameter _, algorithm A starts by outputting the number of instances 1: , the instance
length 1= , the bound on the circuit size 1B , the bound on the extraction set 1ℓ , a set ( ⊆ [:] of size at most ℓ ,
and an index 8∗ ∈ ( .

2. If 1 = 0, the challenger samples (crs, vk, td) ← TrapGen(1_, 1: , 1=, 1B , 1ℓ , (). If 1 = 1, the challenger samples
(crs, vk, td) ← TrapGen(1_, 1: , 1=, 1B , 1ℓ , {8∗}). The challenger replies to A with (crs, vk).

3. Algorithm A outputs a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1}, statements G1, . . . , G: ∈ {0, 1}= , and a
proof c .

4. If Verify(vk,�, (G1, . . . , G: ), c) ≠ 1, then the experiment halts with output 0. Otherwise, the challenger replies
withF∗ ← Extract(td,�, (G1, . . . , G: ), c, 8∗).

5. Algorithm A outputs a bit 1 ′ ∈ {0, 1}, which is the output of the experiment.

Then, ΠBARG satis�es set hiding with extraction if for every e�cient adversary A, there exists a negligible function
negl(·) such that for all _ ∈ N,��Pr[ExptSHwEA (_, 0) = 1] − Pr[ExptSHwEA (_, 1) = 1]

�� = negl(_).

Index BARGs. An index BARG [CJJ21b] is a batch argument for the batch index language where the instance is
always the tuple (1, . . . , :). Since the statements are the integers, they have a succinct description, so we can impose
a stronger requirement on the running time of the Verify algorithm. We de�ne this below:

De�nition 2.9 (Index BARG [CJJ21b]). An index BARG is a special case of a BARG where the instances (G1, . . . , G: )
are restricted to the integers (1, . . . , :). In this setting, the Gen algorithm to the index BARG does not separately take
in the instance length = as a separate input. Moreover, instead of providing G1, . . . , G: as input to the Prove, Verify,
and Extract algorithms, we just give the single index : (in binary). Moreover, we require the additional succinctness
property on the running time of Verify:

• Succinct veri�cation time: There exists a �xed polynomial poly(·) such that for all _, :, =, B, ℓ ∈ N, all (crs, vk)
in the support of Gen(1_, 1: , 1=, 1B , 1ℓ ) and all Boolean circuits � : {0, 1}= × {0, 1}ℎ → {0, 1} of size at most B ,
the running time of Verify(vk,�, :, ·) is bounded by poly(_ + log: + B + ℓ).

Monotone policy BARG. Next, we recall the notion of a SNARG for monotone policy BatchNP [BBK+23], which
we refer to more succinctly as a “monotone policy BARG.” In this work, we just focus on the simplest notion of
non-adaptive soundness.

De�nition 2.10 (Monotone Policy BatchNP). A Boolean circuit % : {0, 1}: → {0, 1} is a monotone Boolean policy if
% is a Boolean circuit comprised entirely of and and or gates. Let � : {0, 1}= × {0, 1}ℎ → {0, 1} be a Boolean circuit
and % : {0, 1}: → {0, 1} be a monotone Boolean policy. We de�ne the monotone policy BatchNP language LMP-CSAT
to be

LMP-CSAT =

{
(�, %, G1, . . . , G: )

��� � : {0, 1}= × {0, 1}ℎ → {0, 1}, % : {0, 1}: → {0, 1}, G1, . . . , G: ∈ {0, 1}=
∃F1, . . . ,F: ∈ {0, 1}ℎ : %

(
� (G1,F1), . . . ,� (G: ,F: )

)
= 1

}
. (2.1)
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De�nition 2.11 (Monotone Policy BARG [BBK+23, adapted]). A monotone policy BARG is a triple of e�cient
algorithms ΠMP-BARG = (Gen, Prove,Verify) with the following syntax:

• Gen(1_, 1=, 1B2 , 1B? ) → crs: On input the security parameter _ ∈ N, the instance size = ∈ N, a bound on the size
of the Boolean circuit B2 ∈ N, and a bound on the size of the policy B? ∈ N, the generator algorithm outputs a
common reference string crs.

• Prove(crs,�, %, (G1, . . . , G: ), (F1, . . . ,F: )) → c : On input the common reference string crs, a Boolean circuit
� : {0, 1}= × {0, 1}ℎ → {0, 1}, a monotone Boolean policy % : {0, 1}: → {0, 1}, statements G1, . . . , G: ∈ {0, 1}= ,
and witnessesF1, . . . ,F: ∈ {0, 1}ℎ , the prove algorithm outputs a proof c .

• Verify(crs,�, %, (G1, . . . , G: ), c) → 1: On input the common reference string crs, a Boolean circuit � : {0, 1}= ×
{0, 1}ℎ → {0, 1}, a monotone Boolean policy % : {0, 1}: → {0, 1}, statements G1, . . . , G: ∈ {0, 1}= , and a proof c ,
the veri�cation algorithm outputs a bit 1 ∈ {0, 1}.

Moreover, ΠMP-BARG should satisfy the following properties:

• Completeness: For all _, =, B2 , B? ∈ N, all Boolean circuits � : {0, 1}= × {0, 1}ℎ → {0, 1} of size at most B2 ,
all monotone Boolean policies % : {0, 1}: → {0, 1} of size at most B? , all statements G1, . . . , G: ∈ {0, 1}= and
witnessesF1, . . . ,F: ∈ {0, 1}ℎ where % (� (G1,F1), . . . ,� (G: ,F: )) = 1, it holds that

Pr
[
Verify(crs,�, %, (G1, . . . , G: ), c) = 1 : crs← Gen(1_, 1=, 1B2 , 1B? )

c ← Prove(crs,�, %, (G1, . . . , G: ), (F1, . . . ,F: ))

]
= 1.

• Non-adaptive soundness: For any adversary A, de�ne the non-adaptive soundness game as follows:

1. On input the security parameter 1_ , algorithmA starts by outputting the instance size 1= , the bound on the
size of the NP relation 1B2 , the bound on the size of the policy 1B? , a Boolean circuit� : {0, 1}= × {0, 1}ℎ →
{0, 1} of size at most B2 , a monotone Boolean circuit % : {0, 1}: → {0, 1} of size at most B? , and statements
G1, . . . , G: ∈ {0, 1}= .

2. The challenger samples crs← Gen(1_, 1=, 1B2 , 1B? ) and gives it to A.
3. Algorithm A outputs a proof c .
4. The output of the game is 1 = 1 if Verify(crs,�, %, (G1, . . . , G: ), c) = 1 and (�, %, (G1, . . . , G: )) ∉ LMP-CSAT.

We say that ΠMP-BARG is non-adaptively sound if for every e�cient adversary A, there exists a negligible
function negl(·) such that Pr[1 = 1] = negl(_) in the non-adaptive soundness game.

• Succinctness: There exists a �xed polynomial poly(·) such that for all _, =, B2 , B? ∈ N, all crs in the support
of Gen(1_, 1=, 1B2 , 1B? ), all Boolean circuits � : {0, 1}= × {0, 1}ℎ → {0, 1} of size at most B2 , and all monotone
Boolean policies % : {0, 1}: → {0, 1} of size |% | ≤ B? , the following properties hold:

– Slightly succinct proofs: The proof c output by Prove(crs,�, %, ·, ·) satis�es |c | ≤ poly(_ + B2 + log B? ).
– Succinct proofs: The proof c output by Prove(crs,�, %, ·, ·) satis�es |c | ≤ poly(_ + B2 + log |% |).

Remark 2.12 (Slightly Succinct Proofs to Succinct Proofs). In a “slightly succinct” proof system, the size of the proof
scales logarithmically with the bound B? on the size of the policy circuit, rather than the size of the policy circuit
itself. It is straightforward to transform a scheme with slightly succinct proofs into one that satis�es the standard
notion of succinctness. We use a “powers-of-two” construction. Namely, we generate ℓ = dlog B?e di�erent common
reference strings, where the 8th CRS supports policies of size at most 28 . The prover and veri�er will use the CRS for
scheme 8 when proving or verifying statements with respect to policies of size between 28−1 and 28 . In this case, the
size of the proof scales polylogarithmically with the size of the policy % rather than the bound B? . This approach only
incurs logarithmic overhead in the CRS size. In the rest of this work, we will focus on constructions satisfying the
simpler requirement of having slightly succinct proofs.
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Remark 2.13 (Short Veri�cation Key via RAM Delegation). In De�nition 2.11, the setup algorithm outputs a single
CRS that is used both for generating proofs and for verifying proofs. The size of the CRS is allowed to grow with the
size of both the circuit � and the size of the monotone policy % . It is possible to obtain a construction with a short
veri�cation key (that grows polylogarithmically with |� | and |% |) by “delegating” the veri�cation process using a RAM
delegation scheme [CJJ21b, WW22, KLVW23, CGJ+23]. In this case, the veri�cation key would be a succinct hash of
the actual CRS. Since this provides a generic approach for realizing a short veri�cation key, in our constructions, we
will not explicitly decompose the CRS into a proving key and a separate short veri�cation key. A similar approach
was also used in [BBK+23] in their construction of predicate-extractable hash functions.

3 Zero-Fixing Hash Functions
In this section, we formally introduce the notion of a zero-�xing hash function. As we show in Section 4, we can
combine a zero-�xing hash function with a vanilla BARG to obtain a monotone policy BARG. Recall from Section 1.2
that a zero-�xing hash function is a keyed hash function that supports succinct local openings. Moreover, the hash
key is associated with a set of indices ( ⊆ [=], where = is the input length. Moreover, there is a trapdoor td associated
with the hash key hk that can be used to decide whether a hash digest dig is Matching or NotMatching on the set
( . The zero-�xing security requirement then says that if the extractor outputs Matching for a digest dig, it must be
computationally hard to open dig to a 1 on any index 8 ∈ ( .

As discussed in Section 1.2, our zero-�xing hash function is similar to the predicate-extractable hash function for
bit-�xing predicates from [BBK+23]. A key distinction is that when the extraction algorithm outputs NotMatching,
the predicate-extractable hash function also outputs an index 8 ∈ [=] where it is computationally infeasible to open
the digest to a 1. In contrast, with our zero-�xing hash function, the extraction algorithm only outputs a single
Matching or NotMatching �ag. At the same time, we require our zero-�xing hash functions to satisfy additional
security requirements that were not required in [BBK+23]. These additional security properties are necessary for our
construction of monotone policy BARGs (Section 4). We now give the formal de�nition:

De�nition 3.1 (Zero-Fixing Hash Function). A zero-�xing hash function is a tuple of polynomial-time algorithms
ΠH = (Setup,Hash, ProveOpen,VerOpen, Extract,ValidateDigest) with the following syntax:

• Setup(1_, 1=, () → (hk, vk, td): On input a security parameter _, an input length =, and a set ( ⊆ [=], the setup
algorithm outputs a hash key hk, a veri�cation key vk and a trapdoor td. We implicitly assume that hk includes
_ and =.

• Hash(hk, G) → dig: On input a hash key hk and a string G ∈ {0, 1}= , the hash algorithm outputs a digest dig.
This algorithm is deterministic.

• ValidateDigest(vk, dig) → 1: On input a hash key vk and a digest dig, the digest validation algorithm outputs
a bit 1 ∈ {0, 1}. This algorithm is deterministic.

• ProveOpen(hk, G, 8) → f : On input a hash key hk, a string G ∈ {0, 1}= and an index 8 ∈ [=], the prove algorithm
outputs an opening f .

• VerOpen(vk, dig, 8, 1, f) → 1 ′: On input a hash key vk, a digest dig, an index 8 ∈ [=], a bit 1 ∈ {0, 1} and an
opening f , the veri�cation algorithm outputs a bit 1 ′ ∈ {0, 1}. The veri�cation algorithm is deterministic.

• Extract(td, dig) → <: On input a trapdoor td and a digest dig, the extraction algorithm outputs a value
< ∈ {Matching,NotMatching}. This algorithm is deterministic.

We require ΠH satisfy the following e�ciency and correctness properties:

• Succinctness: There exists a universal polynomial poly(·) such that for all parameters _, = ∈ N, all (hk, vk, td)
in the support of Setup(1_, 1=, ·), all inputs G ∈ {0, 1}= and all indices 8 ∈ [=], the following properties hold:

– Succinct veri�cation key: |vk| ≤ poly(_ + log=).
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– Succinct digest: The digest dig output by Hash(hk, G) satis�es |dig| ≤ poly(_ + log=).
– Succinct openings: The opening f output by ProveOpen(hk, G, 8) satis�es |f | ≤ poly(_ + log=).
– Succinct veri�cation: The running time of VerOpen(vk, ·, ·, ·, ·) is poly(_ + log=).

• Correctness: For all _, = ∈ N, every G ∈ {0, 1}= , and every 8 ∈ [=], the following properties hold:

– Opening correctness:

Pr
[
VerOpen(vk, dig, 8, G8 , f) = 1 : (hk, vk, td) ← Setup(1_, 1=,∅)

dig← Hash(hk, G), f ← ProveOpen(hk, G, 8)

]
= 1.

– Digest correctness:

Pr
[
ValidateDigest(vk, dig) = 1 : (hk, vk, td) ← Setup(1_, 1=,∅), dig← Hash(hk, G)

]
= 1.

We additionally require the following security properties:

• Set hiding: For a bit 1 ∈ {0, 1} and an adversary A, we de�ne the set hiding game ExptSHA (_,1) as follows:

1. On input 1_ , the adversary A outputs 1= and a set ( ⊆ [=].
2. If 1 = 0, the challenger samples (hk, vk, td) ← Setup(1_, 1=,∅) and if 1 = 1, the challenger samples
(hk, vk, td) ← Setup(1_, 1=, (). It gives (hk, vk) to A.

3. Algorithm A outputs a bit 1 ′ which is the output of the experiment.

The hash function satis�es set binding if for all e�cient adversariesA, there exists a negligible function negl(·)
such that ��Pr[ExptSHA (_, 0) = 1] − Pr[ExptSHA (_, 1) = 1]

�� = negl(_).

• Index hiding with extracted guess: For an adversaryA and a bit 1 ∈ {0, 1}, we de�ne the index hiding with
extracted guess game ExptIHEA (_,1) as follows:

1. On input 1_ , algorithm A outputs 1= , a set ( ⊆ [=], and an index 8∗ ∈ ( .
2. If 1 = 0, the challenger samples (hk, vk, td) ← Setup(1_, 1=, ( \ {8∗}). Otherwise, it samples (hk, vk, td) ←

Setup(1_, 1=, (). The challenger sends (hk, vk) to A.
3. Algorithm A outputs a digest dig and an opening f .
4. The output of the experiment is 1 if VerOpen(hk, dig, 8∗, 0, f) = 1 and Extract(td, dig) outputs Matching.

Otherwise, the output is 0.

The hash function satis�es index hiding with extracted guess if for all e�cient adversaries A, there exists a
negligible function negl(·) such that��Pr[ExptIHEA (_, 0) = 1] − Pr[ExptIHEA (_, 1) = 1]

�� = negl(_).

• Zero �xing: For an adversary A, we de�ne the adaptive zero-�xing game ExptZFA (_) as follows:

1. On input 1_ , algorithm A outputs 1= and a set ( ⊆ [=].
2. The challenger samples (hk, vk, td) ← Setup(1_, 1=, () and gives (hk, vk) to A.
3. Algorithm A outputs a digest dig, an index 8 ∈ ( and an opening f .
4. The output of the experiment is 1 if Extract(td, dig) outputs Matching and VerOpen(hk, dig, 8, 1, f) = 1.

Otherwise, the output is 0.

The hash function satis�es zero-�xing if for all e�cient adversariesA, there exists a negligible function negl(·)
such that Pr[ExptZFA (_) = 1] = negl(_).
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• Extractor validity: For an adversary A, we de�ne the extractor validity game ExptEVA (_) as follows:

1. On input 1_ , the adversary A outputs 1= .
2. The challenger samples (hk, vk, td) ← Setup(1_, 1=,∅) and sends (hk, vk) to the adversary.
3. Algorithm A outputs a digest dig.
4. The output of the experiment is 1 if ValidateDigest(hk, dig) = 1 and Extract(td, dig) = NotMatching.

Otherwise, the output is 0.

The hash function satis�es the extractor validity property if for every e�cient adversary A, there exists a
negligible function negl(·) such that Pr[ExptEVA (_) = 1] = negl(_).

Remark 3.2 (Selective Zero-Fixing Security). We can de�ne a weaker selective notion of zero-�xing security where
the adversary outputs the index 8 ∈ ( at the beginning of the security game (i.e., before seeing hk and vk). Note
that the selective zero-�xing security de�nition is equivalent to the zero-�xing de�nition in De�nition 3.1. To see
that selective zero �xing implies standard zero-�xing, consider a reduction algorithm that guesses the index 8 r← (

at the beginning of the security reduction and aborts whenever the guess is incorrect. This reduction succeeds
with probability 1/|( |; since |( | = poly(_), this incurs only a polynomial loss in advantage. In our construction
(Construction 4.4), we will work with the adaptive notion of security, but in our constructions (Constructions 5.2
and 6.3), we will work with the simpler selective de�nition.

One-sided index hiding. For our application, it su�ces to consider a weaker notion of “one-sided” index hiding
where we only require that the adversary’s advantage cannot increase (but could decrease). Proving one-sided security
is often easier than proving two-sided security, so we de�ne the simpler notion here:

De�nition 3.3 (One-Sided Index-Hiding with Extracted Guess). We say a zero-�xing hash function ΠH satis�es
one-sided index-hiding with extracted guess security if for all e�cient adversariesA, there exists a negligible function
negl(·) such that

Pr[ExptIHEA (_, 1) = 1] ≥ Pr[ExptIHEA (_, 0) = 1] − negl(_).

4 Constructing Monotone Policy BARGs
In this section, we describe how to construct monotone policy BARGs from a standard batch argument for NP together
with a zero-�xing hash function. We start by de�ning the conventions we use for describing Boolean circuits.

De�nition 4.1 (Monotone Circuit Wire Indexing). Let % : {0, 1}: → {0, 1} be a monotone Boolean circuit consisting
exclusively of and and or gates with fan-in two. Let B be the size of % (i.e., the number of wires in % ). A topological
indexing of the wires of � is an assignment of an index 8 ∈ [B] to each wire in % with the following properties:

• Input wire: For 8 ∈ [:], the 8th input to % is associated with the index 8 .

• Output wire: The output wire is associated with the index B .

• Intermediate wires: The intermediate wires are associated with an index 8 ∈ {: + 1, . . . , B − 1} with the
property that the value of index 8 is completely determined by the values of the wires with indices 98,1, 98,2 ∈
{1, . . . , 8 − 1}.

Every monotone circuit % has a canonical topological indexing that can be computed e�ciently (e.g., by applying a
deterministic topological sort to the wires of % ).

De�nition 4.2 (Layered Monotone Circuit). Let % : {0, 1}: → {0, 1} be a (monotone) Boolean circuit of size B . We
denote by !% (8) the layer of the wire 8 and de�ne it as follows:

• If 8 ∈ [:] (i.e., an input wire), then !% (8) = 1.
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• If 8 > : then !% (8) = 1 + max{!% ( 98,1), !% ( 98,2)}, where 98,1, 98,2 ∈ {1, . . . , 8 − 1} are the indices of the wires to
the gate that computes the value of wire 8 .

The depth of the circuit is de�ned to be the layer associated with the output wire: 3 = !% (B). A circuit is layered if
for every 8 ∈ {: + 1, . . . , B}, it holds that !% ( 98,1) = !% ( 98,2). For a layer index ℓ ∈ [3], we de�ne layerℓ (%) = {8 ∈ [B] :
!% (8) = ℓ} to be the set of wire indices in layer ℓ of the circuit.

Remark 4.3 (Layered Monotone Circuit). Every monotone circuit % : {0, 1}: → {0, 1} of size B can be converted
into a layered monotone circuit of size poly(B). Thus, without loss of generality, we exclusively consider layered
monotone circuits in the remainder of this work.

4.1 Monotone Policy BARG Construction
We now describe our construction of a monotone policy BARG for NP.

Construction 4.4 (Monotone Policy BARG). Let Π′BARG = (Gen′, Prove′,Verify′, TrapGen′, Extract′) be a somewhere
extractable BARG for Boolean circuit satis�ability. Let ΠH = (H.Setup,H.Hash,H.ProveOpen,H.VerOpen,H.Extract,
H.ValidateDigest) be a zero-�xing hash function. We construct a monotone policy BARG ΠMP-BARG = (Gen, Prove,
Verify) as follows:

• Gen(1_, 1=, 1B2 , 1B? ): On input the security parameter _, the input length =, the bound on the size of the Boolean
circuit B2 , and the bound on the size of the monotone policy B? , the setup algorithm proceeds as follows:

– Sample two hash keys (hk0, vk0, td0) ← H.Setup(1_, 1B? ,∅) and (hk1, vk1, td1) ← H.Setup(1_, 1B? ,∅).
– Let B ′ be a bound on the size of the circuit that computes the relation R[�, :, B? , vk0, vk1, dig0, dig1] from

Fig. 1 when instantiated with an arbitrary Boolean circuit � of size at most B2 , an input length : ≤ B?
and digests dig0, dig1 associated with the hash and veri�cation keys (hk0, vk0) and (hk1, vk1). Let =′ =
3 · dlog B?e + 1 be the bound on the statement length. Sample (crsBARG, vkBARG) ← Gen′(1_, 1B? , 1=′, 1B′).7

It outputs the common reference string crs = (crsBARG, vkBARG, hk0, hk1, vk0, vk1).

• Prove(crs,�, %, (G1, . . . , G: ), (F1, . . . ,F: )): On input crs = (crsBARG, vkBARG, hk0, hk1, vk0, vk1), a Boolean circuit
� : {0, 1}= × {0, 1}ℎ → {0, 1}, a monotone layered Boolean policy circuit % : {0, 1}: → {0, 1}, statements
G1, . . . , G: ∈ {0, 1}= , and witnessesF1, . . . ,F: ∈ {0, 1}ℎ , the prove algorithm does the following:

– Let B be the size of % . Index the wires of % under a canonical topological ordering (De�nition 4.1). For
each wire 8 ∈ {: + 1, . . . , B}, let 68 ∈ {and, or} be its type. Let 98,1, 98,2 ∈ {1, . . . , 8 − 1} be the indices of the
input wires to the gate 8 .

– For each 8 ∈ [B], let V8 ∈ {0, 1} be the value of wire 8 in the evaluation of % on input (� (G1,F1), . . . ,� (G: ,F: )).
For 8 ∈

{
B + 1, . . . , B?

}
, let V8 = 0. (This corresponds to “padding” the B? − B unused slots).

– Compute the digest dig0 ← H.Hash(hk0, (V1, . . . , VB? )) and dig1 ← H.Hash(hk1, (V1, . . . , VB? )).

– For each 8 ∈ [B] and each 1 ∈ {0, 1}, compute the opening f (1)
8
← H.ProveOpen(hk1, (V1, . . . , VB? ), 8).

– Let �aug be the circuit that computes the relation R[�, :, B, vk0, vk1, dig0, dig1] shown in Fig. 1.
– For each 8 ∈ [B? ], construct the statement Ĝ8 and witness F̂8 as follows:

∗ If 8 ∈ [:], let Ĝ8 = (8, G8 ) and F̂8 =
(
V8 , f

(0)
8
, f
(1)
8
,F8

)
.

∗ If 8 ∈ {: + 1, . . . , B}, let Ĝ8 = (8, (68 , 98,1, 98,2)) and F̂8 =
(
V8 , f

(0)
8
, f
(1)
8
,
(
V 98,1 , f

(0)
98,1
, f
(1)
98,1
, V 98,2 , f

(0)
98,2
, f
(1)
98,2

) )
.

∗ If 8 > B , let Ĝ8 = ⊥ and F̂8 = ⊥.
Essentially, there is an instance Ĝ8 associated with each wire 8 of % .

– Compute cBARG ← Prove′(crsBARG,�aug, (Ĝ1, . . . , ĜB? ), (F̂1, . . . , F̂B? )) and output c = (dig0, dig1, cBARG).

20



Statement: index 8 and auxiliary statement G
Witness: value 1, openings (f (0) , f (1) ) and auxiliary witnessF
Hard-Coded: circuit � : {0, 1}= × {0, 1}ℎ → {0, 1}, the number of inputs : , the policy size B , the hash keys
hk0, hk1, and the digests dig0, dig1

On input a statement (8, G) and a witness (1, f (0) , f (1) ,F):

– If 8 ≤ : , output 1 if all of the following conditions are met, otherwise output 0:

∗ Opening validity: For all U ∈ {0, 1}, H.VerOpen
(
vkU , digU , 8, 1, f

(U) ) = 1.
∗ Wire consistency: � (G,F) = 1.

– If 8 ∈ {: + 1, . . . , B}, parse G = (6, 91, 92) where 6 ∈ {and, or} and 91, 92 ∈ {1, . . . , 8 − 1}. Parse F =

(11, f
(0)
1 , f

(1)
1 , 12, f

(0)
2 , f

(1)
2 ). Check each of the following conditions for U ∈ {0, 1}: Output 1 if all of the

following conditions are met, otherwise output 0:

∗ Opening validity: For all U ∈ {0, 1}, all of the following holds:

– H.VerOpen
(
vkU , digU , 91, 11, f

(U)
1

)
= 1;

– H.VerOpen
(
vkU , digU , 92, 12, f

(U)
2

)
= 1;

– H.VerOpen
(
vkU , digU , 8, 1, f

(U) ) = 1.
∗ Wire consistency: 1 = 6(11, 12).
∗ Output gate: If 8 = B , check that 1 = 1.

– If 8 > B , then output 1.

Figure 1: The relation R[�, :, B, vk0, vk1, dig0, dig1].

• Verify(crs,�, %, (G1, . . . , G: ), c): On input the common reference string crs = (crsBARG, vkBARG, hk0, hk1, vk0, vk1),
a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1}, a layered monotone Boolean policy % : {0, 1}: → {0, 1}, state-
ments G1, . . . , G: ∈ {0, 1}= , and a proof c = (dig0, dig1, cBARG), the veri�cation algorithm does the following:

– If H.ValidateDigest(vk0, dig0) = 0 or H.ValidateDigest(vk1, dig1) = 0, then output 0.
– Let B be the size of % . Index the wires of % under a canonical topological ordering (De�nition 4.1). For

each wire 8 ∈ {: + 1, . . . , B}, let 98,1, 98,2 ∈ {1, . . . , 8 − 1} be the indices of the input wires of the gate
68 ∈ {and, or} that computes wire 8 . For each 8 ∈ [B? ], construct the statement Ĝ8 as follows:

∗ If 8 ∈ [:], let Ĝ8 = (8, G8 ).
∗ If 8 ∈ {: + 1, . . . , B}, let Ĝ8 = (8, (68 , 98,1, 98,2)).
∗ If 8 > B , let Ĝ8 = ⊥.

– Let �aug be the circuit that computes the relation R[�, :, B, vk0, vk1, dig0, dig1] from Fig. 1.
– Output Verify′(vkBARG,�aug, (Ĝ1, . . . , ĜB? ), cBARG).

Theorem 4.5 (Completeness). If Π′BARG is complete and ΠH is correct, then Construction 4.4 is complete.

Proof. Take any _, =, B2 , B? ∈ N, any Boolean circuit� : {0, 1}= × {0, 1}ℎ → {0, 1} of size at most B2 , and any monotone
Boolean policy % : {0, 1}: → {0, 1} of size B ≤ B? . Let G1, . . . , G: ∈ {0, 1}= andF1, . . . ,F: ∈ {0, 1}ℎ be a collection of
statements and witnesses such that % (� (G1,F1), . . . ,� (GC ,FC )) = 1. We start by de�ning the following quantities:
7Recall that when the bound on the extraction set parameter ℓ is not given, it defaults to the value 1.
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• For each 8 ∈ [B? ], let V8 ∈ {0, 1} be the value of wire 8 for predicate % on input (� (G1,FC ), . . . ,� (GC ,FC )).

• Let crs = (crsBARG, vkBARG, hk0, hk1, vk0, vk1) ← Gen(1_, 1=, 1B2 , 1B? ). By construction, the hash keys are
sampled as (hk1, vk1, td1) ← H.Setup(1_, 1B? ,∅) for each 1 ∈ {0, 1}.

• Let c ← Prove(crs,�, %, (G1, . . . , G: ), (F1, . . . ,F: )). Let

dig0 = H.Hash(hk0, (V1, . . . , VB? )) and dig1 = H.Hash(hk1, (V1, . . . , VB? ))

be the digests computed by the Prove algorithm. Moreover, by correctness of ΠH, H.ValidateDigest(vk1, dig1) =
1 for 1 ∈ {0, 1}.

Consider now the relation R[�, :, B, vk0, vk1, dig0, dig1] de�ned in Fig. 1. We show that for all 8 ∈ [B? ], the statement
(Ĝ8 , F̂8 ) de�ned in Prove satis�es the relation. First, for all 8 ∈ [B? ] and 1 ∈ {0, 1}, the Prove algorithm computes
f
(1)
8
← H.ProveOpen(hk1, (V1, . . . , VB? ), 8). Correspondingly, by correctness of ΠH, we conclude that for all 8 ∈ [B? ]

and 1 ∈ {0, 1},
H.VerOpen

(
vk1, dig1, 8, V8 , f

(1)
8

)
= 1. (4.1)

We now consider each index 8 ∈ [B? ]:

• If 8 ∈ [:], then Ĝ8 = (8, G8 ) and F̂8 =
(
V8 , f

(0)
8
, f
(1)
8
,F8

)
. In this case, the opening validity passes by Eq. (4.1).

Moreover, by de�nition, we have that V8 = � (G8 ,F8 ). Hence, the relation is satis�ed.

• If 8 ∈ {: + 1, . . . , B}, let Ĝ8 = (8, (68 , 98,1, 98,2)) and F̂8 =
(
V8 , f

(0)
8
, f
(1)
8
,
(
V 98,1 , f

(0)
98,1
, f
(1)
98,1
, V 98,2 , f

(0)
98,2
, f
(1)
98,2

) )
. Again, the

opening validity check passes by Eq. (4.1). Moreover, by de�nition, V8 = 68
(
V 98,1 , V 98,2

)
so the wire consistency-

check passes. Finally, if 8 = B , then VB = % (� (G1,F1), . . . , (GC ,FC )) = 1 by construction.

• Finally, if 8 > B , the relation is always satis�ed.

Thus, we conclude that for all 8 ∈ [B? ], the relation R is always satis�ed. By completeness of Π′BARG, this means
Verify′(vkBARG,�aug, (Ĝ1, . . . , ĜB? ), cBARG) = 1, where cBARG ← Prove′(crsBARG,�aug, (Ĝ1, . . . , ĜB? ), (F̂1, . . . , F̂B? )). Let-
ting c = (dig0, dig1, cBARG), we conclude that Verify(crs,�, %, (G1, . . . , G: ), c) = 1, and completeness follows. �

Theorem 4.6 (Succinctness). If Π′BARG and ΠH satisfy succinctness, then Construction 4.4 has slightly succinct proofs.

Proof. Fix _, =, B2 , B? ∈ N, a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1} of size at most B2 , and a monotone Boolean
policy % : {0, 1}: → {0, 1} of size B ≤ B? . Take any crs = (crsBARG, vkBARG, hk0, hk1, vk0, vk1) in the support of
Gen(1_, 1=, 1B2 , 1B? ). Consider any collection of statements G1, . . . , G: ∈ {0, 1}= and witnesses F1, . . . ,F: ∈ {0, 1}ℎ
where % (� (G1,F1), . . . ,� (GC ,FC )) = 1. We bound the size of cBARG ← Prove(crs,�, %, (G1, . . . , G: ), (F1, . . . ,F: )):

• First, the Prove algorithm computes dig0 and dig1 using the hash keys hk0 and hk1, respectively. Since
(hk, vk, td) ← H.Setup(1_, 1B? ,∅), we appeal to succinctness of ΠH to conclude that |dig0 |, |dig1 | ≤ poly(_ +
log B? ).

• Next, consider the size of the BARG proof cBARG. We �rst bound the size of the circuit �aug for computing the
relation R[�, :, B, vk0, vk1, dig0, dig1] from Fig. 1. By construction, �aug performs a constant number of calls to
H.VerOpen and also needs to evaluate the underlying circuit � (which has size at most B2 ). By succinctness of
ΠH, each invocation of H.VerOpen can be computed by a circuit of size poly(_ + log B? ). Hence, the size of the
circuit�aug can be bounded by poly(_ + log B? + B2 ). By succinctness of ΠBARG, we conclude that the size of the
proof cBARG output by Prove′ is bounded by poly(_ + |�aug | + log B? ) ≤ poly(_ + B2 + log B? ).

Putting the pieces together, the proof c = (dig0, dig1, cBARG) output by Prove is bounded by poly(_ + B2 + log B? ), and
(slight) succinctness follows. �
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Soundness. We now state the soundness theorem, but give the proof in the subsequent section (Section 4.2).

Theorem 4.7 (Non-Adaptive Soundness). If ΠH satis�es set hiding, index hiding with extracted guess, zero �xing and
extractor validity against non-uniform adversaries, and ΠBARG is somewhere extractable and satis�es set hiding against
non-uniform adversaries, then Construction 4.4 satis�es non-adaptive soundness against non-uniform adversaries.

4.2 Proof of Theorem 4.7 (Non-Adaptive Soundness)
In this section, we prove non-adaptive soundness of Construction 4.4. Take any e�cient non-uniform adversary
A = (A1,A2) for the non-adaptive soundness game. Then, for any _ ∈ N, let (1=, 1B2 , 1B? ,�, %, x, stA) ← A1 (1_),
where

• � : {0, 1}= × {0, 1}ℎ → {0, 1} is a Boolean circuit of size at most B2 ;

• % : {0, 1}: → {0, 1} is a layered monotone Boolean circuit of size B ≤ B? ; and

• x = (G1, . . . , G: ) ∈ {0, 1}:= where G8 ∈ {0, 1}= for all 8 ∈ [:].

Let 3 be the depth of % . For each 8 ∈ [:], let V8 ∈ {0, 1} be equal to 1 if (�, G8 ) ∈ LCSAT and 0 otherwise. Extending
the de�nition to all 8 ∈ [B], let V8 ∈ {0, 1} be the value of wire 8 in the evaluation of % on input (V1, . . . , V: ). For each
layer 8 ∈ [3], de�ne

�8 = { 9 ∈ layer8 (%) : V 9 = 0} (4.2)
to be the indices of the zero wires in layer 8 of % (V1, . . . , V: ). We model each �8 as an ordered set (ordered in ascending
order). We write �8 [C] to denote the C th element in �8 and �8 [1, . . . , C] =

⋃
9 ∈[C ] �8 [ 9] to denote the �rst C elements of �8 .

4.2.1 Hybrid Experiment Speci�cation

To prove Theorem 4.7, we start by de�ning a sequence of hybrid experiments. Each of these hybrids is indexed
implicitly by the security parameter _, but we omit this for ease of exposition.

Outer games. We start by de�ning a sequence of “outer hybrids.” Here, we provide a general overview of our
methodology. The initial hybrid Hyb0 corresponds to the real non-adaptive soundness game, while Hyb8 corresponds
to the hybrid where one of the zero-�xing hash keys is binding on the set �8 (as de�ned by Eq. (4.2)). We show that
the outputs of each adjacent pair of hybrid distributions can only change by a negligible amount, and moreover, that
the zero-�xing hash function binding on �8 in Hyb8 outputs Matching. Finally, in hybrid Hyb3 , the following two
conditions hold:

• The hash key is zero-�xing on the single output wire (since we know that % (V1, . . . , V: ) = 0, where V8 is the
indicator bit for whether (�, G8 ) ∈ LCSAT).

• The hash function declares the output bit to be Matching.

Consider the probability that the proof veri�es in Hyb3 :

• Suppose the BARG is extractable on the instance associated with the output wire of % . In this case, if the proof
veri�es in Hyb3 , then somewhere extractability of the BARG allows us to extract an opening to 1 with respect
to both zero-�xing hash functions. This follows by de�nition of the instance ĜB in Prove and Verify (where B is
the size of % ).

• Since % (V1, . . . , V: ) = 0, one of the zero-�xing hash functions will be zero-�xing on the output wire in hybrid
Hyb3 . Moreover, this hash function outputs Matching. If we can extract an opening to 1 for the output wire,
this breaks zero-�xing security of the hash function.

Thus, when the BARG is extractable on the instance associated with the output wire, the probability that the proof
veri�es in Hyb3 is negligible. Finally, if the outputs of each adjacent pair of hybrids cannot di�er by a non-negligible
amount, we conclude the probability that the proof veri�es in Hyb0 is also negligible. This demonstrates non-adaptive
soundness. We now de�ne the sequence of games:
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• Hyb0: This is the non-adaptive soundness game. For ease of exposition, we partition the game into two phases:

– Phase 1: On input the security parameter 1_ , algorithmA1 outputs 1=, 1B2 , 1B? , a Boolean circuit� : {0, 1}= ×
{0, 1}ℎ → {0, 1} of size at most B2 , a monotone Boolean circuit % : {0, 1}: → {0, 1} of size B ≤ B? , an instance
x = (G1, . . . , G: ) ∈ {0, 1}:= , and the state stA . If (�, %, x) ∈ LMP-CSAT, then the experiment outputs 0.

– Phase 2: The challenger computes crs ← Gen(1_, 1=, 1B2 , 1B? ). Speci�cally, the challenger samples the
following components:

∗ (crsBARG, vkBARG) ← Gen′
(
1_, 1B? , 1=′, 1B′).

∗ (hk0, vk0, td0) ← H.Setup(1_, 1B? ,∅).
∗ (hk1, vk1, td1) ← H.Setup(1_, 1B? ,∅).

The challenger sets crs = (crsBARG, hk0, hk1, vk0, vk1) and runsA2 on input (crs, stA). AlgorithmA2 outputs
a proof string c = (dig0, dig1, cBARG). Let x̂ = (Ĝ1, . . . , ĜB? ) and �aug be as de�ned in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):

∗ H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
∗ Verify′(vkBARG,�aug, x̂, cBARG) = 1.

• Hyb8 for 8 ∈ [3]: Same as Hyb0, but hklow binds on �8 , where low = 8 mod 2 and high = 1 − low. Speci�cally,
the game proceeds as follows:

– Phase 1: On input the security parameter 1_ , algorithmA1 outputs 1=, 1B2 , 1B? , a Boolean circuit� : {0, 1}= ×
{0, 1}ℎ → {0, 1} of size at most B2 , a monotone Boolean circuit % : {0, 1}: → {0, 1} of size B ≤ B? , an instance
x = (G1, . . . , G: ) ∈ {0, 1}:= , and the state stA . If (�, %, x) ∈ LMP-CSAT, then the experiment outputs 0. In
addition, the challenger computes the following quantities:

∗ For 9 ∈ [:], let V 9 = 1 if (�, G 9 ) ∈ LCSAT (De�nition 2.5) and V 9 = 0 otherwise.
∗ For 9 ∈ [: + 1, B], let V8 to be the value of the wire 9 in the evaluation of % on (V1, . . . , V: ).
∗ For each layer ℓ ∈ [3], let �ℓ = { 9 ∈ layerℓ (%) : V 9 = 0}.

– Phase 2: The challenger samples the following components:
∗ (crsBARG, vkBARG) ← Gen′

(
1_, 1B? , 1=′, 1B′).

∗ (hklow, vklow, tdlow) ← H.Setup(1_, 1B? , �8 ).
∗ (hkhigh, vkhigh, tdhigh) ← H.Setup(1_, 1B? ,∅).

The challenger sets crs = (crsBARG, hk0, hk1, vk0, vk1) and runsA2 on input (crs, stA). AlgorithmA2 outputs
a proof string c = (dig0, dig1, cBARG). Let x̂ = (Ĝ1, . . . , ĜB? ) and �aug be as de�ned in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):

∗ H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
∗ Verify′(vkBARG,�aug, x̂, cBARG) = 1.
∗ H.Extract(tdlow, diglow) = Matching.

Inner games. To argue that each pair of outer hybrids is computationally indistinguishable, we now de�ne a
sequence of “inner hybrids.” Whereas the outer hybrids advance layer by layer, the inner hybrids advance across
a layer. In more detail, recall that the di�erence between Hyb8 and Hyb8+1 is that one of the two hash keys (i.e.,
hklow) goes from binding on �8 to binding on �8+1. The idea in the inner hybrids is to program the other hash key (i.e.,
hkhigh) to be binding on �8+1. Initially, hkhigh is binding on the empty set. We then step through |�8+1 | intermediate
hybrids, where on the C th step, the hash key hkhigh goes from being binding on �8+1 [1, . . . , C − 1] to being binding on
�8+1 [1, . . . , C]. Each transition relies on the security of the BARG and the zero-�xing hash function. We now de�ne
the full sequence of hybrids; each one is indexed by 8 ∈ {0, . . . , 3}.

• Hyb8,C,1 for C ∈ [|�8+1 |]: Same as Hyb8 , but hkhigh binds on the �rst C − 1 wires in �8+1.

– Phase 1: Same as Hyb8 .
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– Phase 2: The challenger samples the following components:
∗ (crsBARG, vkBARG) ← Gen′

(
1_, 1B? , 1=′, 1B′).

∗ If 8 = 0, (hklow, vklow, tdlow) ← H.Setup(1_, 1B? ,∅). Otherwise, (hklow, vklow, tdlow) ← H.Setup(1_, 1B? , �8 ).
∗ (hkhigh, vkhigh, tdhigh) ← H.Setup(1_, 1B? , �8+1 [1, . . . , C − 1]).

The challenger sets crs = (crsBARG, hk0, hk1, vk0, vk1) and runsA2 on input (crs, stA). AlgorithmA2 outputs
a proof string c = (dig0, dig1, cBARG). Let x̂ = (Ĝ1, . . . , ĜB? ) and �aug be as de�ned in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):

∗ H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
∗ Verify′(vkBARG,�aug, x̂, cBARG) = 1.
∗ If 8 ≥ 1, then H.Extract(tdlow, diglow) = Matching.
∗ H.Extract(tdhigh, dighigh) = Matching.

• Hyb8,C,2 for C ∈ [|�8+1 |]: Same as Hyb8,C,1, but crsBARG is set to be extractable on index �8+1 [C].

– Phase 1: Same as Hyb8 .
– Phase 2: The challenger samples the following components:

∗ (crsBARG, tdBARG) ← TrapGen′(1_, 1B? , 1=′, 1B′, �8+1 [C]).
∗ If 8 = 0, (hklow, vklow, tdlow) ← H.Setup(1_, 1B? ,∅). Otherwise, (hklow, vklow, tdlow) ← H.Setup(1_, 1B? , �8 ).
∗ (hkhigh, vkhigh, tdhigh) ← H.Setup(1_, 1B? , �8+1 [1, . . . , C − 1]).

The challenger sets crs = (crsBARG, hk0, hk1, vk0, vk1) and runsA2 on input (crs, stA). AlgorithmA2 outputs
a proof string c = (dig0, dig1, cBARG). Let x̂ = (Ĝ1, . . . , ĜB? ) and �aug be as de�ned in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):

∗ H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
∗ Verify′(vkBARG,�aug, x̂, cBARG) = 1.
∗ If 8 ≥ 1, then H.Extract(tdlow, diglow) = Matching.
∗ H.Extract(tdhigh, dighigh) = Matching.

• Hyb8,C,3 for C ∈ [|�8+1 |]: Same as Hyb8,C,2, but the challenger additionally checks that it extracts a valid witness
for Ĝ �8+1 [C ] .

– Phase 1: Same as Hyb8 .
– Phase 2: The challenger samples the following components:

∗ (crsBARG, tdBARG) ← TrapGen′(1_, 1B? , 1=′, 1B′, �8+1 [C]).
∗ If 8 = 0, (hklow, vklow, tdlow) ← H.Setup(1_, 1B? ,∅). Otherwise, (hklow, vklow, tdlow) ← H.Setup(1_, 1B? , �8 ).
∗ (hkhigh, vkhigh, tdhigh) ← H.Setup(1_, 1B? , �8+1 [1, . . . , C − 1]).

The challenger sets crs = (crsBARG, hk0, hk1, vk0, vk1) and runsA2 on input (crs, stA). AlgorithmA2 outputs
a proof string c = (dig0, dig1, cBARG). Let x̂ = (Ĝ1, . . . , ĜB? ) and �aug be as de�ned in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):

∗ H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
∗ Verify′(vkBARG,�aug, x̂, cBARG) = 1.
∗ If 8 ≥ 1, then H.Extract(tdlow, diglow) = Matching.
∗ H.Extract(tdhigh, dighigh) = Matching.
∗ �aug (Ĝ �8+1 [C ], F̂) = 1 where F̂ = (1, f (0) , f (1) ,F) ← Extract′(tdBARG,�aug, x̂, cBARG, �8+1 [C]).

• Hyb8,C,4 for C ∈ [|�8+1 |]: Same as Hyb8,C,3, but the challenger additionally checks that the extracted value for
wire �8+1 [C] is a 0.

– Phase 1: Same as Hyb8 .
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– Phase 2: The challenger samples the following components:
∗ (crsBARG, tdBARG) ← TrapGen′(1_, 1B? , 1=′, 1B′, �8+1 [C]).
∗ If 8 = 0, (hklow, vklow, tdlow) ← H.Setup(1_, 1B? ,∅). Otherwise, (hklow, vklow, tdlow) ← H.Setup(1_, 1B? , �8 ).
∗ (hkhigh, vkhigh, tdhigh) ← H.Setup(1_, 1B? , �8+1 [1, . . . , C − 1]).

The challenger sets crs = (crsBARG, hk0, hk1, vk0, vk1) and runsA2 on input (crs, stA). AlgorithmA2 outputs
a proof string c = (dig0, dig1, cBARG). Let x̂ = (Ĝ1, . . . , ĜB? ) and �aug be as de�ned in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):

∗ H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
∗ Verify′(vkBARG,�aug, x̂, cBARG) = 1.
∗ If 8 ≥ 1, then H.Extract(tdlow, diglow) = Matching.
∗ H.Extract(tdhigh, dighigh) = Matching.
∗ �aug (Ĝ �8+1 [C ], F̂) = 1 and 1 = 0 where F̂ = (1, f (0) , f (1) ,F) ← Extract′(tdBARG,�aug, x̂, cBARG, �8+1 [C]).

• Hyb8,C,5 for C ∈ [|�8+1 |]: Same as Hyb8,C,4 but hkhigh now binds on �8+1 [1, . . . , C].

– Phase 1: Same as Hyb8 .
– Phase 2: The challenger samples the following components:

∗ (crsBARG, tdBARG) ← TrapGen′(1_, 1B? , 1=′, 1B′, �8+1 [C]).
∗ If 8 = 0, (hklow, vklow, tdlow) ← H.Setup(1_, 1B? ,∅). Otherwise, (hklow, vklow, tdlow) ← H.Setup(1_, 1B? , �8 ).
∗ (hkhigh, vkhigh, tdhigh) ← H.Setup(1_, 1B? , �8+1 [1, . . . , C]).

The challenger sets crs = (crsBARG, hk0, hk1, vk0, vk1) and runsA2 on input (crs, stA). AlgorithmA2 outputs
a proof string c = (dig0, dig1, cBARG). Let x̂ = (Ĝ1, . . . , ĜB? ) and �aug be as de�ned in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):

∗ H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
∗ Verify′(vkBARG,�aug, x̂, cBARG) = 1.
∗ If 8 ≥ 1, then H.Extract(tdlow, diglow) = Matching.
∗ H.Extract(tdhigh, dighigh) = Matching.
∗ �aug (Ĝ �8+1 [C ], F̂) = 1 and 1 = 0 where F̂ = (1, f (0) , f (1) ,F) ← Extract′(tdBARG,�aug, x̂, cBARG, �8+1 [C]).

• Hyb8,C,6 for C ∈ [|�8+1 |]: Same as Hyb8,C,5 but the challenger does not check the extracted witnesses.

– Phase 1: Same as Hyb8 .
– Phase 2: The challenger samples the following components:

∗ (crsBARG, tdBARG) ← TrapGen′(1_, 1B? , 1=′, 1B′, �8+1 [C]).
∗ If 8 = 0, (hklow, vklow, tdlow) ← H.Setup(1_, 1B? ,∅). Otherwise, (hklow, vklow, tdlow) ← H.Setup(1_, 1B? , �8 ).
∗ (hkhigh, vkhigh, tdhigh) ← H.Setup(1_, 1B? , �8+1 [1, . . . , C]).

The challenger sets crs = (crsBARG, hk0, hk1, vk0, vk1) and runsA2 on input (crs, stA). AlgorithmA2 outputs
a proof string c = (dig0, dig1, cBARG). Let x̂ = (Ĝ1, . . . , ĜB? ) and �aug be as de�ned in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):

∗ H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
∗ Verify′(vkBARG,�aug, x̂, cBARG) = 1.
∗ If 8 ≥ 1, then H.Extract(tdlow, diglow) = Matching.
∗ H.Extract(tdhigh, dighigh) = Matching.

In particular, the challenger does not check any conditions on F̂ ← Extract′(tdBARG,�aug, x̂, cBARG, �8+1 [C]).

• Hyb8,C,7 for C ∈ [|�8+1 |]: Same as Hyb8,C,6, except the BARG is restored to normal mode.
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– Phase 1: Same as Hyb8 .
– Phase 2: The challenger samples the following components:

∗ crsBARG ← Gen′(1_, 1B? , 1=′, 1B′).
∗ If 8 = 0, (hklow, vklow, tdlow) ← H.Setup(1_, 1B? ,∅). Otherwise, (hklow, vklow, tdlow) ← H.Setup(1_, 1B? , �8 ).
∗ (hkhigh, vkhigh, tdhigh) ← H.Setup(1_, 1B? , �8+1 [1, . . . , C]).

The challenger sets crs = (crsBARG, hk0, hk1, vk0, vk1) and runsA2 on input (crs, stA). AlgorithmA2 outputs
a proof string c = (dig0, dig1, cBARG). Let x̂ = (Ĝ1, . . . , ĜB? ) and �aug be as de�ned in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):

∗ H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
∗ Verify′(vkBARG,�aug, x̂, cBARG) = 1.
∗ If 8 ≥ 1, then H.Extract(tdlow, diglow) = Matching.
∗ H.Extract(tdhigh, dighigh) = Matching.

• Hyb8,final: Same as Hyb8, | �8+1 |,7, but we no longer checks that diglow matches the binding set �8 .

– Phase 1: Same as Hyb8 .
– Phase 2: The challenger samples the following components:

∗ crsBARG ← Gen′(1_, 1B? , 1=′, 1B′).
∗ If 8 = 0, (hklow, vklow, tdlow) ← H.Setup(1_, 1B? ,∅). Otherwise, (hklow, vklow, tdlow) ← H.Setup(1_, 1B? , �8 ).
∗ (hkhigh, vkhigh, tdhigh) ← H.Setup(1_, 1B? , �8+1).

The challenger sets crs = (crsBARG, hk0, hk1, vk0, vk1) and runsA2 on input (crs, stA). AlgorithmA2 outputs
a proof string c = (dig0, dig1, cBARG). Let x̂ = (Ĝ1, . . . , ĜB? ) and �aug be as de�ned in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):

∗ H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
∗ Verify′(vkBARG,�aug, x̂, cBARG) = 1.
∗ H.Extract(tdhigh, dighigh) = Matching.

In particular, the challenger no longer checks if H.Extract(tdlow, diglow) = Matching when 8 > 1.

4.2.2 Analysis of Hybrid Experiments

We now show that the probability of a hybrid experiment outputting 1 cannot decrease by a non-negligible amount
when transitioning from one hybrid to the next. The goal is to eventually show that Pr[Hyb8−1 (A) = 1] is negligibly
close to Pr[Hyb8 (A) = 1] for all 8 ∈ [3]. We argue this via a sequence of non-uniform reductions to the security
properties of the underlying zero-�xing hash function and BARG. Speci�cally, our reduction algorithms construct
a non-uniform adversary where there is an initial (ine�cient) preprocessing phase that outputs an advice string
of polynomial size, and a polynomial-time online algorithm that takes the advice as input and interacts with the
challenger according to the speci�cations of the target security game. Our reductions share a common preprocessing
phase, which we abstract out as a standalone Preprocess algorithm de�ned as follows:

• Preprocess(�, %, x): On input a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1}, a monotone Boolean policy
% : {0, 1}: → {0, 1} of size B , and an instance x = (G1, . . . , G: ) ∈ {0, 1}:= , the preprocessing algorithm �rst
checks if (�, %, x) ∈ LMP-CSAT. If so, it outputs ⊥. Otherwise, it computes V8 ∈ {0, 1} for 8 ∈ [B] as follows:

– For 8 ∈ [:], set V8 = 1 if and only if (�, G8 ) ∈ LCSAT.
– For 8 ∈ [: + 1, B], set V8 to be the value of the wire 8 in the evaluation of % on (V1, . . . , V: ).

Output g =
(
�, %, x, (V1, . . . , VB )

)
.

We now analyze each pair of adjacent hybrid experiments.
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Claim 4.8. If ΠH satis�es extractor validity against e�cient non-uniform adversaries, then there exists a negligible
function negl(·) such that for every 8 ∈ {0, . . . , 3 − 1}, it holds that��Pr[Hyb8 (A) = 1] − Pr[Hyb8,1,1 (A) = 1]

�� ≤ negl(_).

Proof. Take any 8 ∈ {0, . . . , 3 − 1} and suppose
��Pr[Hyb8 (A) = 1] − Pr[Hyb8,1,1 (A) = 1]

�� = Y (_) for some non-
negligible Y. By construction, the only di�erence between Hyb8 and Hyb8,1,1 is the additional check in Hyb8,1,1:

H.Extract(tdhigh, dighigh) = Matching.

Thus, with probability at least Y, the adversary A in an execution of Hyb8,1,1 and Hyb8 outputs a proof c =

(dig0, dig1, cBARG) where H.ValidateDigest(vkhigh, dighigh) = 1 and H.Extract(tdhigh, dighigh) = NotMatching. In
all other cases, the output of the two experiments are identical. We use A to construct a non-uniform adversary B
that breaks extract validity of ΠH as follows:

• Preprocessing phase: On input the security parameter 1_ , run (1=, 1B2 , 1B? ,�, %, x, stA) ← A1 (1_). Compute
g ← Preprocess(�, %, x) and output stB = (1=, 1B2 , 1B? , g, stA).

• Online phase: On input the state stB = (1=, 1B2 , 1B? , g, stA) where g =
(
�, %, x, (V1, . . . , VB )

)
, proceed as follows:

1. Send 1B? and the set ∅ to the challenger. The challenger replies with a hash key hk and a veri�cation key
vk.

2. Sample (crsBARG, vkBARG) ← Gen′
(
1_, 1B? , 1=′, 1B′), where =′, B ′ are de�ned as in Construction 4.4. If 8 = 0,

sample (hklow, vklow, tdlow) ← H.Setup(1_, 1B? ,∅). Otherwise, if 8 ≠ 0, sample (hklow, vklow, tdlow) ←
H.Setup(1_, 1B? , �8 ), where �8 = { 9 ∈ layer8 (%) : V 9 = 0}. Let hkhigh ← hk and vkhigh ← vk.

3. Let crs = (crsBARG, hk0, hk1, vk0, vk1) and run c ← A2 (crs, stA). Parse c = (dig0, dig1, cBARG) and output
dighigh.

By construction, algorithm B perfectly simulates an execution of Hyb8 and Hyb8,1,1 for A, so with probability at
least Y, the digest dighigh satis�es H.ValidateDigest(vkhigh, dighigh) = 1 and H.Extract(tdhigh, dighigh) = NotMatching.
Correspondingly, algorithm B breaks extractor validity with advantage Y. �

Claim 4.9. If ΠBARG satis�es set hiding against e�cient non-uniform adversaries, then there exists a negligible function
negl(·) such that for every 8 ∈ {0, . . . , 3 − 1} and C ∈ [|�8+1 |], it holds that��Pr[Hyb8,C,1 (A) = 1] − Pr[Hyb8,C,2 (A) = 1]

�� ≤ negl(_).

Proof. Take any 8 ∈ {0, . . . , 3 − 1} and C ∈ [|�8+1 |], and suppose
��Pr[Hyb8,C,1 (A) = 1] − Pr[Hyb8,C,2 (A) = 1]

�� = Y (_)
for some non-negligible Y. We construct a non-uniform adversary B that breaks set hiding of ΠBARG:

• Preprocessing phase: On input the security parameter 1_ , run (1=, 1B2 , 1B? ,�, %, x, stA) ← A1 (1_). Compute
g ← Preprocess(�, %, x) and output stB = (1=, 1B2 , 1B? , g, stA).

• Online phase: On input the state stB = (1=, 1B2 , 1B? , g, stA) where g =
(
�, %, x, (V1, . . . , VB )

)
, proceed as follows:

1. Compute �8 = { 9 ∈ layer8 (%) : V 9 = 0} and �8+1 = { 9 ∈ layer8+1 (%) : V 9 = 0}.
2. Send 1B? , 1=′ , 1B′ , and the index �8+1 [C] to the challenger, where =′, B ′ are computed as in Construction 4.4.

The challenger replies with crsBARG.
3. If 8 = 0, sample (hklow, vklow, tdlow) ← H.Setup(1_, 1B? ,∅). Otherwise, if 8 > 0, sample (hklow, vklow, tdlow) ←

H.Setup(1_, 1B? , �8 ). Sample (hkhigh, vkhigh, tdhigh) ← H.Setup(1_, 1B? , �8+1 [1, . . . , C − 1]).
4. Let crs = (crsBARG, hk0, hk1, vk0, vk1) and run c ← A2 (crs, stA).
5. Let c = (dig0, dig1, cBARG) and let x̂ = (Ĝ1, . . . , ĜB? ) and �aug be as de�ned in Prove and Verify in Con-

struction 4.4. Output 1 if all of the following conditions hold (and abort with ⊥ otherwise):
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– H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
– Verify′(vkBARG,�aug, x̂, cBARG) = 1.
– If 8 ≥ 1 then H.Extract(tdlow, diglow) = Matching.
– H.Extract(tdhigh, dighigh) = Matching

We consider two possibilities:

• In ExptSHB (_, 0), the challenger samples crsBARG ← Gen′(1_, 1B? , 1=′, 1B′). In this case, by the construction of
B, it holds that crs is sampled exactly as in Hyb8,C,1. Moreover, B computes its output exactly as speci�ed by
Hyb8,C,1. This means that B perfectly simulates Hyb8,C,1 (A) and thus

Pr[ExptSHB (_, 0) = 1] = Pr[Hyb8,C,1 (A) = 1] .

• In ExptSHB (_, 1), the challenger samples crsBARG ← TrapGen′(1_, 1B? , 1=′, 1B′, �8+1 [C]). In this case, by the
construction of B, it holds that crs is sampled exactly as in Hyb8,C,2. Moreover, B computes its output exactly
as speci�ed by Hyb8,C,2. This means that B perfectly simulates Hyb8,C,2 (A) and thus

Pr[ExptSHB (_, 1) = 1] = Pr[Hyb8,C,2 (A) = 1] .

We conclude that algorithm B breaks the index hiding property of ΠBARG with the same advantage Y. �

Claim 4.10. If ΠBARG satis�es somewhere extractability in trapdoor mode against e�cient non-uniform adversaries,
then there exists a negligible function negl(·) such that for every 8 ∈ {0, . . . , 3 − 1}, C ∈ [|�8+1 |], it holds that��Pr[Hyb8,C,2 (A) = 1] − Pr[Hyb8,C,3 (A) = 1]

�� ≤ negl(_).

Proof. Take any 8 ∈ {0, . . . , 3 − 1} and C ∈ [|�8+1 |]. Suppose
��Pr[Hyb8,C,2 (A) = 1] − Pr[Hyb8,C,3 (A) = 1]

�� = Y (_) for
some non-negligible Y. By construction, the only di�erence between Hyb8,C,2 and Hyb8,C,3 is the additional check in
Hyb8,C,3:

�aug (Ĝ �8+1 [C ], F̂) = 1 where F̂ ← Extract′(tdBARG,�aug, x̂, cBARG, �8+1 [C]). (4.3)
Thus, with probability at least Y, the adversary A in an execution of Hyb8,C,2 and Hyb8,C,3 outputs a proof c =

(dig0, dig1, cBARG) where Verify′(vkBARG,�aug, x̂, cBARG) = 1 and Eq. (4.3) does not hold (i.e., �aug (Ĝ �8+1 [C ], F̂) = 0).
In all other cases, the outputs of Hyb8,C,2 and Hyb8,C,3 are identical. We use A to construct an adversary B for the
somewhere extractability game of ΠBARG:

• Preprocessing phase: On input the security parameter 1_ , run (1=, 1B2 , 1B? ,�, %, x, stA) ← A1 (1_). Compute
g ← Preprocess(�, %, x) and output stB = (1=, 1B2 , 1B? , g, stA).

• Online phase: On input the state stB = (1=, 1B2 , 1B? , g, stA) where g =
(
�, %, x, (V1, . . . , VB )

)
, proceed as follows:

1. Compute �8 = { 9 ∈ layer8 (%) : V 9 = 0} and �8+1 = { 9 ∈ layer8+1 (%) : V 9 = 0}.
2. Send 1B? , 1=′ , 1B′ and the index �8+1 [C] to the challenger, where =′, B ′ are computed as in Construction 4.4.

The challenger replies with crsBARG.
3. If 8 = 0, sample (hklow, vklow, tdlow) ← H.Setup(1_, 1B? ,∅). Otherwise, if 8 > 0, sample (hklow, vklow, tdlow) ←

H.Setup(1_, 1B? , �8 ). Sample (hkhigh, vkhigh, tdhigh) ← H.Setup(1_, 1B? , �8+1 [1, . . . , C − 1]).
4. Let crs = (crsBARG, hk0, hk1, vk0, vk1) and run c ← A2 (crs, stA). Let x̂ = (Ĝ1, . . . , ĜB? ) and �aug be as

de�ned in Prove and Verify in Construction 4.4. Parse c = (dig0, dig1, cBARG) and output the circuit �aug,
the statements x̂, and the proof cBARG.

By construction, algorithmB perfectly simulates an execution ofHyb8,C,2 andHyb8,C,3 forA, so with probability Y, it out-
puts cBARG such that Verify′(vkBARG,�aug, x̂, cBARG) = 1 and Eq. (4.3) does not hold. In particular, this means the proof
cBARG veri�es with respect to crsBARG and yet�aug (Ĝ �8+1 [C ], F̂) = 0 where F̂ ← Extract′(tdBARG,�aug, x̂, cBARG, �8+1 [C]),
and tdBARG is the trapdoor associated with crsBARG that the challenger sampled. This means B wins the somewhere
extractability game with the same advantage Y. �
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Claim 4.11. If ΠH satis�es zero-�xing against e�cient non-uniform adversaries, then there exists a negligible function
negl(·) such that for every 8 ∈ {0, . . . , 3 − 1}, C ∈ [|�8+1 |], it holds that��Pr[Hyb8,C,3 (A) = 1] − Pr[Hyb8,C,4 (A) = 1]

�� ≤ negl(_).

Proof. By construction, the only di�erence between Hyb8,C,3 and Hyb8,C,4 is the additional check in Hyb8,C,4 that the
extracted bit 1 satis�es 1 = 0. We consider two cases in our analysis:

• Suppose 8 = 0. In this case, �1 [C] refers to an input wire in % , which means �1 [C] ≤ : . Suppose Hyb8,C,3 (A)
outputs 1. This means that �aug

(
Ĝ �1 [: ], F̂

)
= 1 where

F̂ =
(
1, f (0) , f (1) ,F

)
← Extract′(tdBARG,�aug, x̂, cBARG, �1 [C]) .

Since �1 [:] ≤ : and by construction of x̂, we have that Ĝ �1 [: ] =
(
�1 [:], G �1 [: ]

)
. By de�nition of �aug (see Fig. 1),

we have that �aug (Ĝ �1 [: ], F̂) = 1 only if � (G �1 [: ],F) = 1. However, by de�nition of �1, it must be the case that(
�, G �1 [: ]

)
∉ LCSAT. This means � (G �1 [: ],F) = 0 = 1. In this case, Hyb8,C,4 (A) also outputs 1. Conversely,

since the veri�cation conditions in Hyb8,C,4 are a superset of the conditions in Hyb8,C,3, if Hyb8,C,4 (A) = 1, then
Hyb8,C,3 (A) = 1. We conclude that in this case

Pr[Hyb8,C,3 (A) = 1]] = Pr[Hyb8,C,4 = 1] .

• Suppose 8 > 0. In this case, security reduces to the zero-�xing security of ΠH. We give this proof below.

To argue the second case, take any 8 ∈ {1, . . . , 3 − 1} and C ∈ [|�8+1 |], and suppose that��Pr[Hyb8,C,3 (A) = 1] − Pr[Hyb8,C,4 (A) = 1]
�� = Y (_)

for some non-negligible Y. By construction, the only di�erence between Hyb8,C,3 and Hyb8,C,4 is the additional check in
Hyb8,C,4 that 1 = 0 where F̂ = (1, f (0) , f (1) ,F) ← Extract′(tdBARG,�aug, x̂, cBARG, �8+1 [C]). Thus, with probability at
least Y, the adversary A in an execution of Hyb8,C,3 and Hyb8,C,4 will output a proof c = (dig0, dig1, cBARG) where

H.Extract(tdlow, diglow) = Matching and �aug
(
Ĝ �8+1 [C ], F̂

)
= 1 and 1 ≠ 0. (4.4)

In all other cases, the outputs of Hyb8,C,3 and Hyb8,C,4 are identical. We use A to construct an adversary B for the
zero-�xing game for ΠH:

• Preprocessing phase: On input the security parameter 1_ , run (1=, 1B2 , 1B? ,�, %, x, stA) ← A1 (1_). Compute
g ← Preprocess(�, %, x) and output stB = (1=, 1B2 , 1B? , g, stA).

• Online phase: On input the state stB = (1=, 1B2 , 1B? , g, stA) where g =
(
�, %, x, (V1, . . . , VB )

)
, proceed as follows:

1. Compute �8 = { 9 ∈ layer8 (%) : V 9 = 0} and �8+1 = { 9 ∈ layer8+1 (%) : V 9 = 0}.
2. Send 1B? and the set �8 to the challenger. The challenger replies with a hash key hk and a veri�cation key

vk.
3. Set (hkhigh, vkhigh, tdhigh) ← H.Setup(1_, 1B? , �8+1 [1, . . . , C − 1]), hklow ← hk, and vklow ← vk. Finally,

sample (crsBARG, tdBARG) ← TrapGen′
(
1_, 1B? , 1=′, 1B′, �8+1 [C]), where B ′ is de�ned as in Construction 4.4.

4. Let crs = (crsBARG, hk0, hk1, vk0, vk1) and run c ← A2 (crs, stA).
5. Let c = (dig0, dig1, cBARG) and suppose x̂ = (Ĝ1, . . . , ĜB? ) and �aug be as de�ned in Prove and Verify in

Construction 4.4. Compute

F̂ = (1, f (0) , f (1) ,F) ← Extract′(tdBARG,�aug, x̂, cBARG, �8+1 [C]),

and parse the extracted witnessF asF =
(
11, f

(0)
1 , f

(1)
1 , 12, f

(0)
2 , f

(1)
2

)
.
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6. Parse Ĝ �8+1 [C ] = (6, 91, 92). If there exists U ∈ {1, 2} such that 9U ∈ �8 and 1U = 1, output the digest diglow,
the index 9U , and the opening f (low)U .

By construction, algorithm B perfectly simulates an execution of Hyb8,C,3 and Hyb8,C,4 for A. Thus, with probability
at least Y, algorithm A will output a proof c = (dig0, dig1, cBARG) where Eq. (4.4) holds. Since �aug

(
Ĝ �8+1 [C ], F̂

)
= 1,

the following properties hold:

• 1 = 6(11, 12), where 6 = 6�8+1 [C ] ∈ {and, or} is the gate in the circuit % that computes wire �8+1 [C].

• H.VerOpen
(
vklow, diglow, 91, 11, f

(low)
1

)
= 1 and H.VerOpen

(
vklow, diglow, 92, 12, f

(low)
2

)
= 1.

By de�nition, 91, 92 are the indices of the input wires to the gate whose output wire is �8+1 [C]. We consider two
possibilities:

• Suppose 11 ≤ V 91 and 12 ≤ V 92 . By de�nition (see the details of the Preprocess algorithm), V �8+1 [C ] = 6(V 91 , V 92 ).
Since �8+1 [C] ∈ �8+1, this means V �8+1 [C ] = 0. Since 6 is a monotone gate and 11 ≤ V 91 and 12 ≤ V 92 , we have that
1 = 6(11, 12) ≤ 6(V 91 , V 92 ) = 0. Since 1 ∈ {0, 1}, this means that 1 = 0. However, if Eq. (4.4) holds, then 1 ≠ 0, so
this case does not happen.

• Suppose there exist U ∈ {1, 2} such that 1U > V 9U . This means that V 9U = 0 and 1U = 1. Since % is a layered
monotone circuit, this means 91, 92 ∈ layer8 (%). Since V 9U = 0, this means that 9U ∈ �8 . In conjunction with
Eq. (4.4), this means

H.Extract(tdlow, diglow) = Matching and H.VerOpen
(
vklow, diglow, 9U , 1, f

(low)
U

)
= 1 and 9U ∈ �8 ,

where (hklow, vklow, tdlow) ← H.Setup(1_, 1B? , �8 ) is the hash function parameters sampled by the zero-�xing
challenger. In this case, algorithm B wins the zero-�xing game.

We conclude that if the proof c output byA satis�es Eq. (4.4) with probability Y, then algorithm B wins the zero-�xing
game with advantage at least Y. �

Claim 4.12. If ΠH satis�es one-sided index hiding with extracted guess security against e�cient non-uniform adversaries,
then there exists a negligible function negl(·) such that for every 8 ∈ {0, . . . , 3 − 1}, C ∈ [|�8+1 |], it holds that

Pr[Hyb8,C,5 (A) = 1] ≥ Pr[Hyb8,C,4 (A) = 1] − negl(_).

Proof. Take any 8 ∈ {0, . . . , 3 − 1} and C ∈ [|�8+1 |]. Suppose Pr[Hyb8,C,5 (A) = 1] ≤ Pr[Hyb8,C,4 (A)] − Y (_) for some
non-negligible Y. We use A to construct a non-uniform adversary B for the index hiding with extracted guess game
of ΠH:

• Preprocessing phase: On input the security parameter 1_ , run (1=, 1B2 , 1B? ,�, %, x, stA) ← A1 (1_). Compute
g ← Preprocess(�, %, x) and output stB = (1=, 1B2 , 1B? , g, stA).

• Online phase: On input the state stB = (1=, 1B2 , 1B? , g, stA) where g =
(
�, %, x, (V1, . . . , VB )

)
, proceed as follows:

1. Compute �8 = { 9 ∈ layer8 (%) : V 9 = 0} and �8+1 = { 9 ∈ layer8+1 (%) : V 9 = 0}.
2. Send 1B? , the set �8+1 [1, . . . , C], and the index �8+1 [C] to the challenger. The challenger replies with hk and

vk.
3. If 8 = 0, sample (hklow, vklow, tdlow) ← H.Setup(1_, 1B? ,∅). Otherwise, if 8 > 0, sample (hklow, vklow, tdlow) ←

H.Setup(1_, 1B? , �8 ). Let hkhigh ← hk and vkhigh ← vk.
4. Sample (crsBARG, tdBARG) ← TrapGen′

(
1_, 1B? , 1=′, 1B′, �8+1 [C]), where B ′ is de�ned as in Construction 4.4.

5. Let crs = (crsBARG, hk0, hk1, vk0, vk1) and run c ← A2 (crs, stA). Let x̂ = (Ĝ1, . . . , ĜB? ) and �aug be
as de�ned in Prove and Verify in Construction 4.4. Parse c = (dig0, dig1, cBARG) and compute F̂ =

(1, f (0) , f (1) ,F) ← Extract′(tdBARG,�aug, x̂, cBARG, �8+1 [C]).
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6. Check each of the following conditions:
– H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
– Verify′(vkBARG,�aug, x̂, cBARG) = 1.
– If 8 ≥ 1, then H.Extract(tdlow, diglow) = Matching.
– �aug (Ĝ �8+1 [C ], F̂) = 1 and 1 = 0.

If any condition fails to verify, then output ⊥. Otherwise, output the digest dighigh and the opening f (high) .

We consider the two possibilities:

• Suppose the challenger responds according to the speci�cation of ExptIHEB (_, 0). In this case, the challenger
samples (hkhigh, vkhigh, tdhigh) ← H.Setup(1_, 1B? , �8+1 [1, . . . , C − 1]). By construction, algorithm B perfectly
simulates an execution of Hyb8,C,4 for A. The output of ExptIHEB (_, 0) is 1 if and only if all of the following
events occur:

– H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
– Verify′(vkBARG,�aug, x̂, cBARG) = 1.
– If 8 ≥ 1, then H.Extract(tdlow, diglow) = Matching.
– �aug (Ĝ �8+1 [C ], F̂) = 1 and 1 = 0.
– H.VerOpen

(
vkhigh, dighigh, �8+1 [C], 0, f (high)

)
= 1 and H.Extract

(
tdhigh, dighigh

)
= Matching.

We now argue that
ExptIHEB (_, 0) = 1 ⇐⇒ Hyb8,C,4 (A) = 1.

The forward direction is immediate since the set of conditions under which ExptIHEB (_, 0) outputs 1 is a strict
superset of the conditions under which Hyb8,C,4 (A) outputs 1. For the backward direction, it su�ces to show
that if �aug (Ĝ �8+1 [C ], F̂) = 1 and 1 = 0, then H.VerOpen

(
vkhigh, dighigh, �8+1 [C], 0, f (high)

)
= 1. By construction of

�aug, we have that �aug (Ĝ �8+1 [C ], F̂) = 1 implies that for all U ∈ {1, 2}, it holds that

H.VerOpen
(
vkU , digU , �8+1 [C], 0, f (U)

)
= 1.

In particular, this holds for U = high, so the claim holds. We conclude then that

Pr[ExptIHEB (_, 0) = 1] = Pr[Hyb8,C,4 (A) = 1] .

• Suppose the challenger responds according to the speci�cation of ExptIHEB (_, 1). In this case, the challenger
samples (hkhigh, vkhigh, tdhigh) ← H.Setup(1_, 1B? , �8+1 [1, . . . , C]). Thus, algorithm B perfectly simulates an
execution of Hyb8,C,5 for A. Since Hyb8,C,4 and Hyb8,C,5 share identical veri�cation conditions, we can appeal to
the same argument as before to argue that

ExptIHEB (_, 1) = 1 ⇐⇒ Hyb8,C,5 (A) = 1.

Correspondingly,
Pr[ExptIHEB (_, 1) = 1] = Pr[Hyb8,C,5 (A) = 1] .

We conclude that B breaks the one-sided index hiding with extracted guess with the same advantage Y. �

Claim 4.13. For every 8 ∈ {0, . . . , 3 − 1}, C ∈ [|�8+1 |], it holds that

Pr[Hyb8,C,6 (A) = 1] ≥ Pr[Hyb8,C,5 (A) = 1] .

Proof. The only di�erence between Hyb8,C,5 and Hyb8,C,6 is that Hyb8,C,5 performs an additional check that the extracted
witness F̂ satis�es certain properties. Thus, whenever Hyb8,C,6 outputs 1, hybrid Hyb8,C,5 also outputs 1 and the claim
follows. �
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Claim 4.14. If ΠBARG satis�es set hiding against e�cient non-uniform adversaries, then there exists a negligible function
negl(·) such that for every 8 ∈ {0, . . . , 3 − 1} and C ∈ [|�8+1 |], it holds that��Pr[Hyb8,C,6 (A) = 1] − Pr[Hyb8,C,7 (A) = 1]

�� ≤ negl(_).

Proof. This follows by a similar argument as the proof of Claim 4.9. �

Claim 4.15. For every 8 ∈ {0, . . . , 3 − 1}, it holds that

Pr[Hyb8,final (A) = 1] ≥ Pr[Hyb8, | �8+1 |,7 (A) = 1] .

Proof. The only di�erence between Hyb8, | �8+1 |,7 and Hyb8,final is that Hyb8, | �8+1 |,7 performs an additional check that
diglow is Matching. Thus, whenever Hyb8,final outputs 1, hybrid Hyb8, | �8+1 |,7 also outputs 1 and the claim follows. �

Claim 4.16. If ΠH satis�es set hiding property against e�cient non-uniform adversaries then there exists a negligible
function negl(·) such that for every 8 ∈ {0, . . . , 3 − 1}, it holds that��Pr[Hyb8,final (A) = 1] − Pr[Hyb8+1 (A) = 1]

�� ≤ negl(_).

Proof. We consider two cases in our analysis:

• Suppose 8 = 0. Then, in hybrid Hyb0,final, the challenger samples (hk0, vk0, td0) ← H.Setup(1_, 1B? ,∅) and
(hk1, vk1, td1) ← H.Setup(1_, 1B? , �1). This is identical to how the challenger samples hk0 and hk1 in Hyb1.
Similarly, the veri�cation conditions in the two experiments are identical, so we conclude that

Pr[Hyb0,final (A) = 1] = Pr[Hyb8+1 (A) = 1] .

• Suppose 8 > 0. Let U = 8 mod 2. By construction, in hybrid Hyb8,final, the challenger samples

(hkU , vkU , tdU ) ← H.Setup(1_, 1B? , �8 ) and (hk1−U , vk1−U , td1−U ) ← H.Setup(1_, 1B? , �8+1).

In hybrid Hyb8+1, the challenger samples

(hkU , vkU , tdU ) ← H.Setup(1_, 1B? ,∅) and (hk1−U , vk1−U , td1−U ) ← H.Setup(1_, 1B? , �8+1). (4.5)

Both experiments check H.Extract(td1−U , dig1−U ) = Matching. Thus, the only di�erence between Hyb8,final and
Hyb8+1 is the distribution of hkU . In this case, security reduces to the set hiding security of ΠH. We give this
proof below.

To argue the second case, take any 8 ∈ {1, . . . , 3 − 1} and suppose that | Pr[Hyb8,final (A) = 1] − Pr[Hyb8+1 (A) = 1] | =
Y (_) for some non-negligible Y. We use A to build an e�cient non-uniform adversary B that breaks set hiding of ΠH
as follows:

• Preprocessing phase: On input the security parameter 1_ , run (1=, 1B2 , 1B? ,�, %, x, stA) ← A1 (1_). Compute
g ← Preprocess(�, %, x) and output stB = (1=, 1B2 , 1B? , g, stA).

• Online phase: On input the state stB = (1=, 1B2 , 1B? , g, stA) where g =
(
�, %, x, (V1, . . . , VB )

)
, proceed as follows:

1. Compute �8 = { 9 ∈ layer8 (%) : V 9 = 0} and �8+1 = { 9 ∈ layer8+1 (%) : V 9 = 0}.
2. Send 1B? and the set �8 to the challenger. The challenger replies with hk and vk.
3. Sample (crsBARG, vkBARG) ← Gen′

(
1_, 1B? , 1=′, 1B′), where B ′ is de�ned as in Construction 4.4. Let U =

8 mod 2. Sample (hk1−U , vk1−U , td1−U ) ← H.Setup(1_, 1B? , �8+1) and set hkU ← hk, vkU ← vk.
4. Let crs = (crsBARG, hk0, hk1, vk0, vk1) and run c ← A2 (crs, stA).
5. Let c = (dig0, dig1, cBARG). Let x̂ = (Ĝ1, . . . , ĜB? ) and �aug be as de�ned in Prove and Verify in Construc-

tion 4.4. Output 1 if all of the following conditions hold (and 0 otherwise):
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– H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
– Verify′(vkBARG,�aug, x̂, cBARG) = 1.
– H.Extract(td1−U , dig1−U ) = Matching.

We now consider two possibilities:

• In ExptSHB (_, 0), the challenger samples (hk, vk, td) ← H.Setup(1_, 1B? ,∅). In this case, algorithm B samples
crs according to the speci�cation of Hyb8+1. Moreover, algorithm B computes its output exactly as described in
Hyb8+1. This means that B perfectly simulates Hyb8+1 (A) and thus

Pr[ExptSHB (_, 0) = 1] = Pr[Hyb8+1 (A) = 1] .

• In ExptSHB (_, 1), the challenger samples (hk, vk, td) ← H.Setup(1_, 1B? , �8 ). In this case, algorithm B samples
crs according to the speci�cation of Hyb8,final. Moreover, algorithm B computes the output exactly as described
in Hyb8,final. This means that B perfectly simulates Hyb8,final (A) and thus:

Pr[ExptSHB (_, 1) = 1] = Pr[Hyb8,final (A) = 1] .

We conclude that algorithm B breaks the set hiding property with advantage Y in this case and the claim follows. �

Completing the proof. Combining Claims 4.8 to 4.16, we conclude that there exists a negligible function ` (·)
such that for all 8 ∈ [3],

Pr[Hyb8 (A) = 1] ≥ Pr[Hyb8−1 (A) = 1] −$ (1) · |�8 | · ` (_).

Moreover, by the same sequence, we conclude that

Pr[Hyb3−1,1,4 (A) = 1] ≥ Pr[Hyb3−1 (A) = 1] −$ (1) · ` (_).

Putting the pieces together,

Pr[Hyb3−1,1,4 (A) = 1] ≥ Pr[Hyb0 (A) = 1] −$ (1) · 3 · |�8 | · ` (_) = Pr[Hyb0 (A) = 1] − negl(_),

since 3 · |�8 | ≤ B = poly(_). Note that we take Hyb3−1,1,4 to be our �nal hybrid since it imposes the most constraints
(subsequent hybrids remove requirements from the experiment). To complete the proof we show that for all adversaries
A, Pr[Hyb3−1,1,4 (A) = 1] = negl(_).

Claim 4.17. For all adversaries A, Pr[Hyb3−1,1,4 (A) = 1] = 0.

Proof. Fix an adversary A = (A1,A2) and let (1=, 1B2 , 1B? ,�, %, x, stA) be the output of A1 (1_). Let B = |% | and 3 be
the depth of % . As usual, for 8 ∈ [:], let V8 = 1 if (�, G8 ) ∈ LCSAT and V8 = 0 otherwise. For 8 ∈ [: + 1, B], let V8 be the
value of wire 8 in the evaluation of % on (V1, . . . , V: ). By construction, all hybrids require that VB = % (V1, . . . , V: ) = 0,
and therefore �3 [1] = {VB }. However, the conditions for H̃yb3−1,1,4 to output 1 cannot hold simultaneously:

• On the one hand, there must exist a witness F̂ = (1, f (0) , f (1) ,F) for instance ĜB (of the relation in Fig. 1) where
1 = 0.

• On the other hand, by de�nition of instance ĜB , since B is the output wire, it must be that 1 = 1.

Therefore H̃yb3−1,1,4 is unwinnable. �

Combining Eq. (4.5) and Claim 4.17, we conclude that there exists a negligible function negl(·) such that

0 ≥ Pr[Hyb0 (A) = 1] − negl(_).

This means that Pr[Hyb0 (A) = 1] ≤ negl(_), which proves Theorem 4.7. �
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5 Generic Construction of Zero-Fixing Hash Functions
In this section, we show how to construct a zero-�xing hash function by combining an index BARG (De�nition 2.9), an
additively homomorphic encryption scheme with bounded support (De�nition 2.1), and a vector encryption scheme
with succinct local openings (De�nition 2.3).

Binary tree indexing. In the following construction, we will work with complete binary trees. We will use the
following procedure to associate a unique index with each node in the binary tree:

De�nition 5.1 (Binary Tree Indexing). Let T be a complete binary tree with = = 2: leaves. Then T contains exactly
2= − 1 nodes. We associate a unique index 8 ∈ [2= − 1] via the following procedure:

• First, associate the value E = 1 to the root node.

• If E is the value associated with a node, then associate values 2E and 2E+1 with its left and right child. Recursively
apply this process to assign a value to every node in the tree.

• The index 8 associated with a node is de�ned to be 2= − E , where E is the value associated with the node.

By design, De�nition 5.1 has the following properties:

• The leaf nodes are indexed 1 through = and the root node is indexed 2= − 1.

• The index of every non-leaf node is greater than the index of its children.

• Given the index of any non-leaf node, we can e�ciently compute the indices of its left and right child.

Construction 5.2 (Zero-Fixing Hash Function). Our construction will rely on the following building blocks:

• Let Π′BARG = (Gen′, Prove′,Verify′, TrapGen′, Extract′) be a somewhere extractable index BARG (De�nition 2.9).

• Let ΠHE = (HE.Gen,HE.Enc,HE.Dec,HE.Add) be an additively homomorphic encryption scheme with bounded
support (De�nition 2.1). For a security parameter _ and a range parameter =, let ℓct (_, =) be a bound on the
length of the ciphertexts output by either HE.Enc(pk, ·) or HE.Add(pk, ·, ·) for any (sk, pk) in the support of
HE.Gen(1_, 1=).

• Let ΠCom = (Com.Setup,Com.Commit,Com.Verify) be a vector commitment scheme with succinct local
openings (De�nition 2.3).

We construct a zero-�xing hash ΠH = (Setup,Hash, ProveOpen,VerOpen, Extract,ValidateDigest). In the following
description, we assume without loss of generality that the bound on the input length = ∈ N is a power of two (i.e.,
= = 2: for some integer : ∈ N). Next, we de�ne the following NP relation which we will be using in our construction:
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Statement: index 8 ∈ [=]
Witness: ciphertexts Ê (0) , Ê (1) , openings f (0) , f (1) , and an auxiliary witness F̃
Hard-coded: the common reference string crsCom for ΠCom, an index 8∗ ∈ [=] ∪ {⊥}, a value ~ ∈ {0, 1,⊥}, and
for each 1 ∈ {0, 1}, a public key pk1 for ΠHE, commitments com(1)hk and two ciphertexts ct(1)zero, ct(1)root

On input a statement 8 ∈ [=] and a witness
(
Ê (0) , Ê (1) , f (0) , f (1) , F̃

)
:

• Leaf nodes: If 8 ∈ [=], then parse F̃ =
(
ĉt(0) , ĉt(1) , f (0)hk , f

(1)
hk

)
. Output 1 if the following conditions hold:

1. Opening to ciphertext: for 1 ∈ {0, 1}, Com.Verify
(
crsCom, com1, 8, Ê

(1) , f (1)
)
= 1.

2. Opening to ciphertext in hk: for 1 ∈ {0, 1}, Com.Verify
(
crsCom, com

(1)
hk , 8, ĉt

(1)
, f
(1)
hk

)
= 1.

3. Consistent choice of ciphertexts:
(
Ê (0) = ct(0)zero ∧ Ê (1) = ct(1)zero

)
or

(
Ê (0) = ĉt(0) ∧ Ê (1) = ĉt(1)

)
.

4. Validity of ciphertext at target index: If 8 = 8∗, then additionally check that:

Ê (1) =

{
ct(1)zero ~ = 0
ĉt(1) ~ = 1.

If any of these conditions are not satis�ed, output 0.

• Non-leaf nodes: If 8 ∈ [= + 1, 2= − 1], then parse F̃ = (F̃l, F̃r), where F̃3 =
(
Ê
(0)
3
, Ê
(1)
3
, f
(0)
3
, f
(1)
3

)
for

3 ∈ {l, r}. Output 1 if all of the following conditions hold for all 1 ∈ {0, 1}:

1. Opening to ciphertext: Com.Verify
(
crsCom, com1, 8, Ê

(1) , f (1)
)
= 1.

2. Opening to child ciphertexts: Com.Verify(crsCom, com1, 8l, Ê
(1)
l , f

(1)
l ) = 1 and

Com.Verify(crsCom, com1, 8r, Ê
(1)
r , f

(1)
r ) = 1, where 8l and 8r are the indices of the left and

right child of 8 (according to the indexing scheme from De�nition 5.1).

3. Correctness of evaluation: Ê (1) = HE.Add
(
pk1, Ê

(1)
l , Ê

(1)
r

)
.

4. Validity of root: If 8 = 2= − 1 then Ê (1) = ct(1)root.

If any of these conditions are not satis�ed, output 0.

Figure 2: The index relation R
[
crsCom,

{
pk1, com

(1)
hk , com1, ct

(1)
zero, ct

(1)
root

}
1∈{0,1}, 8

∗, ~
]
.

We describe our construction below:

• Setup(1_, 1=, (): On input a security parameter _, the input length = = 2: , and a set ( ⊆ [=], the setup algorithm
starts by sampling the following:

– Sample a pair of public keys: (sk0, pk0) ← HE.Gen(1_, 1=) and (sk1, pk1) ← HE.Gen(1_, 1=).
– Sample the CRS for the commitment scheme with block length ℓct (_, =) and up to 2= − 1 blocks: crsCom ←

Com.Setup(1_, 1ℓct (_,=) , 2= − 1).
– Sample the CRS for an index BARG (that supports extractability on up to 3 positions): (crsBARG, vkBARG) ←

Gen′(1_, 12=−1, 1B , 13), where B is a bound on the size of the circuit computing the index relation from
Fig. 2. Note that since ΠBARG is an index BARG, Gen′ does not separately take the statement length as
input (De�nition 2.9).

Next, for each 1 ∈ {0, 1}, construct an encryption of 0: ct(1)zero ← HE.Enc(pk1, 0). Next, for each 8 ∈ ( and
1 ∈ {0, 1}, construct the hash key ciphertexts as follows:
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– If 8 ∈ ( , compute ct(1)
8
← HE.Enc(pk1, 1).

– If 8 ∉ ( , compute ct(1)
8
← HE.Enc(pk1, 0).

Next, the setup algorithm constructs a commitment to the ciphertexts associated with the hash key. Speci�cally,
for each 1 ∈ {0, 1}, it computes(

com(1)hk , f
(1)
hk,1, . . . , f

(1)
hk,=

)
← Com.Commit

(
crsCom, (ct(1)1 , . . . , ct(1)= )

)
.

Finally, the setup algorithm constructs the hash key hk, the veri�cation key vk, and the trapdoor td as follows:

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1)
zero, ct

(1)
1 , . . . , ct(1)= , f

(1)
hk,1, . . . , f

(1)
hk,=

}
1∈{0,1}

)
(5.1)

vk =
(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
(5.2)

td = (sk0, sk1). (5.3)

• Hash(hk, G): On input a hash key hk (parsed as in Eq. (5.1)) and a string G ∈ {0, 1}= , the hashing algorithm
proceeds as follows:

– Construct two complete binary trees T0,T1, each with = leaves. For each tree T1 , we assign a ciphertext
E
(1)
8

to each node 8 ∈ [2B − 1] in the tree as follows (where the nodes are indexed using De�nition 5.1):

∗ If 8 ∈ [=], let E (1)
8
← ct(1)zero if G8 = 0 and E (1)

8
← ct(1)

8
if G8 = 1.

∗ For each internal node 8 ∈ [= + 1, 2= − 1], let E (1)
8
← HE.Add

(
pk1, E

(1)
8l
, E
(1)
8r

)
, where 8l and 8r are the

indices associated with the left and right child of node 8 under the canonical tree indexing scheme
(De�nition 5.1).

– For 1 ∈ {0, 1}, construct commitments (com1, f
(1)
1 , . . . , f

(1)
2=−1) ← Com.Commit(crsCom, (E (1)1 , . . . , E

(1)
2=−1))

to the ciphertexts associated with T1 .

– For 1 ∈ {0, 1}, let ct(1)root = E
(1)
2=−1 (i.e., the ciphertext associated with the root of T1 ). Let �⊥ be the circuit

that computes the following instantiation of the relation from Fig. 2:

R
[
crsCom,

{
pk1, com

(1)
hk , com1, ct

(1)
zero, ct

(1)
root

}
1∈{0,1},⊥,⊥

]
.

– For each 8 ∈ [2= − 1], let g8 =
(
E
(0)
8
, E
(1)
8
, f
(0)
8
, f
(1)
8

)
be the opening for the ciphertexts associated with node

8 in T0 and T1. Then, for each 8 ∈ [2B − 1], de�ne the auxiliary witness F̃8 to be

∗ If 8 ∈ [=] then F̃8 =
(
ct(0)
8
, ct(1)

8
, f
(0)
hk,8 , f

(1)
hk,8

)
.

∗ If 8 ∈ [= + 1, 2= − 1] then F̃8 = (g8l , g8r ) where 8l, 8r are the indices of the left and right child of node 8 ,
respectively.

Finally, letF8 = (g8 , F̃8 ) for each 8 ∈ [2=−1]. Compute cdig ← Prove′(crsBARG,�⊥, 2=−1, (F1, . . . ,F2=−1)).
– Output the digest

dig =

(
ct(0)root, ct

(1)
root, com0, com1, cdig

)
.

• ProveOpen(hk, G, 8∗): On input a hash key hk (parsed as in Eq. (5.1)), a string G ∈ {0, 1}= and an index 8∗ ∈ [=],
the opening algorithm proceeds as follows:

– Let �8∗,G8∗ be the circuit that computes the following instantiation of the relation from Fig. 2:

R
[
crsCom,

{
pk1, com

(1)
hk , com1, ct

(1)
zero, ct

(1)
root

}
1∈{0,1}, 8

∗, G8∗
]
.

– Compute the witnessesF8 for each 8 ∈ [2= − 1] using the same procedure as in the Hash algorithm.
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– Output the opening f ← Prove′(crsBARG,�8∗,G8∗ , 2= − 1, (F1, . . . ,F2=−1))

• VerOpen(vk, dig, 8, 1, f): On input the veri�cation key vk (parsed according to Eq. (5.2)), a digest dig =(
ct(0)root, ct

(1)
root, com0, com1, cdig

)
, an index 8∗ ∈ [=], a bit 1 ∈ {0, 1} and an opening f , the veri�cation algo-

rithm outputs Verify′(vkBARG,�8∗,1, 2= − 1, f) where �8∗,1 is the circuit computing the following relation from
Fig. 2:

R
[
crsCom,

{
pk1, com

(1)
hk , com1, ct

(1)
zero, ct

(1)
root

}
1∈{0,1}, 8

∗, 1
]
.

• Extract(td, dig): On input a trapdoor td = (sk0, sk1) and a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, cdig

)
, the

extraction algorithm outputs Matching if HE.Dec(sk0, ct
(0)
root) = 0. Otherwise, it outputs NotMatching.

• ValidateDigest(vk, dig): On input the veri�cation key vk (parsed according to Eq. (5.2)) and a digest dig =(
ct(0)root, ct

(1)
root, com0, com1, cdig

)
, the digest-validation algorithm outputs Verify′(vkBARG,�⊥, 2= − 1, cdig) where

�⊥ is the circuit computing the following relation from Fig. 2:

R
[
crsCom,

{
pk1, com

(1)
hk , com1, ct

(1)
zero, ct

(1)
root

}
1∈{0,1},⊥,⊥

]
.

Theorem 5.3 (Correctness). Suppose ΠCom is correct and Π′BARG is complete. Then, Construction 5.2 is correct.

Proof. Take any _, = ∈ N and G ∈ {0, 1}= . Let 8∗ ∈ [=] be an index. Suppose (hk, vk, td) ← Setup(1_, 1=,∅). Parse

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1)
zero, ct

(1)
1 , . . . , ct(1)= , f

(1)
hk,1, . . . , f

(1)
hk,=

}
1∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
td = (sk0, sk1).

We now show each property individually.

Opening correctness. Take any index 8∗ ∈ [=] and let f ← ProveOpen(hk, G, 8∗). By de�nition, this means
f ′← Prove′(crsBARG,�8∗,G8∗ , 2= − 1, (F1, . . . ,F2=−1)), where �8∗,G8∗ is the circuit that computes the index relation

R
[
crsCom,

{
pk1, com

(1)
hk , com1, ct

(1)
zero, ct

(1)
root

}
1∈{0,1}, 8

∗, G8∗
]

from Fig. 2. By construction of ProveOpen (and by correspondence, Hash),F8 = (g8 , F̃8 ) and g8 =
(
E
(0)
8
, E
(1)
8
, f
(0)
8
, f
(1)
8

)
.

We now show that �8∗,G8∗ (8,F8 ) = 1 for all 8 ∈ [2= − 1]:

• Leaf nodes: Suppose 8 ∈ [=]. Then, F̃8 =
(
ct(0)
8
, ct(1)

8
, f
(0)
hk,8 , f

(1)
hk,8

)
. Consider each of the conditions:

1. Opening to ciphertext: By construction of Hash, for 1 ∈ {0, 1}, the commitment com1 is a vector
commitment to

(
E
(1)
1 , . . . , E

(1)
2=−1

)
, and the opening for position 8 is f (1)

8
. This check follows by correctness

of the vector commitment scheme.
2. Opening to ciphertext in hk: By construction of Setup, for 1 ∈ {0, 1}, the commitment com1 is a

vector commitment to
(
ct(1)1 , . . . , ct(1)=

)
with opening f (1)hk,8 . This check follows by correctness of the vector

commitment scheme.
3. Consistent choice of ciphertexts: By construction of Hash, for 1 ∈ {0, 1}, we have that depending on

the value of G8 , either E (1)
8

= ct(1)zero or E (1)
8

= ct(1)
8

, and the check passes.

4. Validity of ciphertext at target index: By construction of Hash, E (1)
8∗ = ct(1)zero if G8∗ = 0 and E (1)

8∗ = ct(1)

if G8∗ = 1. As such, this check passes.

• Non-leaf nodes: Suppose 8 ∈ [= + 1, 2= − 1]. Then, F̃8 =
(
g8l , g8r

)
. Consider each of the conditions:
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1. Opening to ciphertext: This follows by the same reason as above.
2. Opening to child ciphertexts: This also follows by construction of com1 (namely, com1 is a vector

commitment to
(
Ê
(1)
1 , . . . , Ê

(1)
2=−1

)
with openings f (1)1 , . . . , f

(1)
2=−1).

3. Correctness of evaluation: By construction of Hash, for all non-leaf nodes 8 ∈ [= + 1, 2= − 1], it holds
that E (1)

8
← HE.Add

(
pk1, E

(1)
8l
, E
(1)
8r

)
, and the checks passes (since HE.Add is deterministic).

4. Validity of root: The Hash algorithm de�nes ct(1)root = E
(1)
2=−1, so this condition is trivially satis�ed.

Since �8∗,G8∗ (8,F8 ) = 1 for all 8 ∈ [2= − 1], correctness follows by completeness of Π′BARG.

Digest correctness. This follows by an analogous argument as that used to argue opening correctness, with the
one di�erence being the circuit �⊥ computes the the index relation

R
[
crsCom,

{
pk1, com

(1)
hk , com1, ct

(1)
zero, ct

(1)
root

}
1∈{0,1},⊥,⊥

]
.

In other words, �⊥ (as de�ned in Hash and in ValidateDigest) does not de�ne a target index 8∗ or value 1 ∈ {0, 1},
and thus checks a strict subset of the conditions as �8∗,G8∗ de�ned in VerOpen. Finally, the witness (F1, . . . ,F2=−1) is
de�ned in an identical manner as before, so all of the required conditions checked by �⊥ are satis�ed. �

Theorem 5.4 (Succinctness). If ΠHE is compact and ΠCom, ΠBARG are succinct, then Construction 5.2 is succinct.

Proof. Take any _, = ∈ N and any (hk, vk, td) in the support of Setup(1_, 1=,∅). Take any input G ∈ {0, 1}= and index
8 ∈ [=], and let dig← Hash(hk, G), cProveOpen ← ProveOpen(hk, G, 8). Parse

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1)
zero, ct

(1)
1 , . . . , ct(1)= , f

(1)
hk,1, . . . , f

(1)
hk,=

}
1∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
td = (sk0, sk1)

dig =

(
ct(0)root, ct

(1)
root, com0, com1, cHash

)
By compactness of ΠHE, the lengths of the public keys pk0, pk1 as well as the ciphertexts ct(1)zero, ct

(1)
8

for all 8 ∈ [=]
and 1 ∈ {0, 1} are bounded by poly(_ + log=). By succinctness of ΠCom, it holds that crsCom, com(0)hk , com

(1)
hk , com0 and

com1 all have length poly(_ + log=). Next, let B be a bound on the size of the circuits computing the relation in Fig. 2
The relation in Fig. 2 requires a constant number of opening of ciphertext checks, each of which can be implemented
by a circuit of size poly(_ + log=). Similarly, the correctness of homomorphic evaluation check and the constant
number of ciphertext comparisons also require a circuit of size poly(_ + log=). Thus, the size B of the circuit in Fig. 2
is bounded by poly(_ + log=). By succinctness of ΠBARG, it holds that the length of the veri�cation key vkBARG and
the proofs cHash and cProveOpen have size poly(_ + log=). In total, everything is polynomial in poly(_ + log=) and
therefore all of the succinctness requirements (De�nition 3.1) are satis�ed by Construction 5.2. �

Security. In the subsequent sections, we prove each of the required security properties on Construction 5.2.
Instantiating the underlying batch argument (Fact 2.7), the additively homomorphic encryption (Fact 2.2), and the
vector commitment scheme with existing constructions (Fact 2.4), we obtain the following corollary:

Corollary 5.5 (Zero-Fixing Hash Functions). Assuming any of (1) the plain LWE assumption, (2) the :-Lin assumption
over pairing groups for any constant : , or (3) the (sub-exponential) DDH assumption in pairing-free groups, there exists a
zero-�xing hash function.

Theorem 1.1 now follows in conjunction with our generic construction (Construction 4.4).

5.1 Security Analysis of Construction 5.2
In this section, we prove that Construction 5.2 satis�es the security requirements on a zero-�xing hash function.
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5.1.1 Additive Invariants on Ciphertexts and Predicate Propagation

At a high level, the di�erent security properties of the zero-�xing hash function (zero �xing, extractor validity, and
index hiding with extracted guess) will rely on reasoning about various properties on the ciphertext associated
with the root node in our tree of ciphertexts (i.e., the hash digest). The analysis of each of these properties follow
a similar strategy where we �rst establish that a certain predicate holds for the ciphertexts in the leaves (i.e., the
honestly-generated ciphertexts in the hash key). Then, we appeal to the security of the BARG to “propagate” the
invariants to the root ciphertext. In this section, we describe a general abstraction for this predicate-propagation
strategy that will help unify the analysis of the di�erent security requirements. This construction exploits the fact
that the ciphertext tree is perfectly balanced and has depth log= (where = is the input length); as such, we can rely
on a similar type of inductive analysis as that in [BBK+23] for arguing soundness of a monotone policy BARG for
log-depth predicates. We start by formally de�ning the type of invariants we consider in our security analysis.

De�nition 5.6 (Tree-Based Additive Invariant on Ciphertexts). Let = be a power of two and let ΠHE = (Gen, Enc,
Dec,Add) be a homomorphic encryption scheme. We say that an e�ciently-computable predicate % : {0, 1}∗ → {0, 1}
is a tree-based additive invariant for ΠHE if for all _, = ∈ N, all indices 8∗ ∈ [=] ∪ {⊥}, all key-pairs (sk0, pk0), (sk1, pk1)
in the support of Gen(1_, 1=), all indices 9, 9l, 9r ∈ [2= − 1] where 9l and 9r are the children of 9 according to the
indexing scheme in De�nition 5.1, and all ciphertexts

(
ct(0)l , ct(1)l

)
,
(
ct(0)r , ct(1)r

)
where

%
(
8∗, ct(0)l , ct(1)l , sk, sk′, 9l

)
= 1 and %

(
8∗, ct(0)r , ct(1)r , sk, sk′, 9r

)
= 1,

it holds that
%
(
8∗, ctsum, ct′sum, sk, sk

′, 9
)
= 1,

where ct(0)sum = Add
(
pk, ct(0)l , ct(0)r

)
and ct(1)sum = Add

(
pk1, ct

(0)
l , ct(1)r

)
. This implies that if % holds for the two children

of a node, then it also holds for the parent node.

Predicate propagation experiment. We now de�ne the general predicate propagation experiment we use in the
analysis of Construction 5.2. This is a general experiment speci�cation that captures the structure of the security
de�nitions for a zero-�xing hash function.

De�nition 5.7 (Predicate Propagation Experiment). The predicate propagation experiment for Construction 5.2 is
parameterized by the following two components:

• A tree-based additive invariant % (De�nition 5.6) for the homomorphic encryption scheme ΠHE.

• An e�ciently-computable “challenge-derivation” function DeriveChal((, 8) that takes as input a set ( ⊆ [=]
and an index 8 ∈ [=] and outputs two sets (0, (1 ⊆ [=] and an index idx that is either a pair (8∗, ~∗) or ⊥. In the
predicate propagation experiment, the sets (0 and (1 will determine the distribution of the ciphertexts in the
common reference string. The index idx will determine the veri�cation check. Each of the security properties
(i.e., zero �xing, extractor validity, and index hiding with extracted guess) will induce a di�erent choice of
DeriveChal (to be speci�ed in their respective proofs).

We now de�ne the predicate propagation experiment Expt[%,DeriveChal] between a challenger and an adversary A:

1. On input the security parameter 1_ , algorithmA outputs the input length 1= , a set ( ⊆ [=], and an index 8∗ ∈ (
(or a special symbol ⊥).

2. The challenger computes ((0, (1, idx) ← DeriveChal((, 8∗).

3. The challenger now samples the following quantities as in Setup:

• Sample (sk0, pk0) ← HE.Gen(1_, 1=) and (sk1, pk1) ← HE.Gen(1_, 1=).
• Sample crsCom ← Com.Setup(1_, 1ℓct (_,=) , 2= − 1).
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• Sample (crsBARG, vkBARG) ← Gen′(1_, 12=−1, 1B , 13), where B is a bound on the size of the circuit computing
the index relation from Fig. 2.

• For each 1 ∈ {0, 1}, sample ct(1)zero ← HE.Enc(pk1, 0). Then, for each 8 ∈ [=] and 1 ∈ {0, 1}, if 8 ∈ (1 ,
sample ct(1)

8
← HE.Enc(pk1, 1); otherwise, if 8 ∉ (1 , sample ct(1)

8
← HE.Enc(pk1, 0).

• For each 1 ∈ {0, 1}, let
(
com(1)hk , f

(1)
hk,1, . . . , f

(1)
hk,=

)
← Com.Commit

(
crsCom, (ct(1)1 , . . . , ct(1)= )

)
4. The challenger constructs hk and vk according to Eqs. (5.1) and (5.2):

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1)
zero, ct

(1)
1 , . . . , ct(1)= , f

(1)
hk,1, . . . , f

(1)
hk,=

}
1∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
The challenger gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, cdig

)
and a proof c .

6. The output of the experiment is 1 if

Verify′(vkBARG,�idx, 2= − 1, c) = 1 and %
(
8∗, ct(0)root, ct

(1)
root, sk0, sk1, 2= − 1

)
= 0.

Otherwise, the output is 0. Here, the circuit �idx computes the relation from Fig. 2:

• If idx = (8, ~), then�idx computes the relation R
[
crsCom,

{
pk1, com

(1)
hk , com1, ct

(1)
zero, ct

(1)
root

}
1∈{0,1}, 8, ~

]
as in

VerOpen.
• If idx = ⊥, then �idx computes the relation R

[
crsCom,

{
pk1, com

(1)
hk , com1, ct

(1)
zero, ct

(1)
root

}
1∈{0,1},⊥,⊥

]
as in

ValidateDigest.

In words, the adversary “wins” the game if it produces a proof c that veri�es, but the digest does not satisfy the
tree-based additive invariant % .

Proof strategy. As we show in the subsequent sections (Sections 5.1.2 to 5.1.5), most of the security properties for
the zero-�xing hash function (zero �xing, extractor validity, and index hiding with extracted guess) are a special case
of the general predicate propagation experiment (with a suitable choice of the tree-based additive invariant % and the
challenge-derivation function DeriveChal). Our goal below is to show that if speci�c “pre-conditions” hold, then for
all e�cient adversaries A, the probability that Expt[%,DeriveChal] outputs 1 is negligible. In turn, this will imply
the desired security properties on the zero-�xing hash function.

Predicate propagation hybrid experiment. The proof c the adversary outputs is a BARG on 2= − 1 statements.
We can associate these 2= − 1 statements with the nodes of a complete binary tree with = leaves. For each 9 ∈ [2= − 1],
we now de�ne an intermediate predicate propagation experiment Expt9 [%,DeriveChal] where instead of checking
the tree-based additive invariant holds for the values ct(0)root, ct

(1)
root from the digest dig, the challenger instead checks

the invariant for the value associated with node 9 in the tree obtained by extracting a witness from the BARG. In the
subsequent analysis (Theorem 5.9), we show (inductively) that if the invariant holds for the values extracted from the
children of a node 9 , then it also holds for the values extracted from node 9 itself. In this way, if the invariant % holds
for all the values associated with the leaves of the tree, then the invariant also holds for the values associated with
the root of the tree. Finally, the relation in Fig. 2 from Construction 5.2 enforces that the adversarially-chosen values
ct(0)root, ct

(1)
root are consistent with the values that would be extracted from the root of the tree. This allows us to reason

about properties of the adversarially-chosen values ct(0)root, ct
(1)
root. We de�ne this experiment below and then state the

main predicate propagation theorem (Theorem 5.9).

De�nition 5.8 (Predicate Propagation Hybrid Experiment). Let 9 ∈ N be an index. For a tree-based additive
invariant % and a challenge-derivation function DeriveChal, we de�ne the predicate propagation hybrid experiment
Expt9 [%,DeriveChal] between a challenger and an adversary A as follows:
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1. On input the security parameter 1_ , algorithmA outputs the input length 1= , a set ( ⊆ [=], and an index 8∗ ∈ ( .

2. The challenger computes ((0, (1, idx) ← DeriveChal((, 8∗).

3. The challenger now samples the following quantities as in Setup:

• Sample (sk0, pk0) ← HE.Gen(1_, 1=) and (sk1, pk1) ← HE.Gen(1_, 1=).
• Sample crsCom ← Com.Setup(1_, 1ℓct (_,=) , 2= − 1).
• Sample (crsBARG, vkBARG, tdBARG) ← TrapGen′(1_, 12=−1, 1B , 13, { 9}), where B is a bound on the size of the

circuit computing the index relation from Fig. 2.
• For each 1 ∈ {0, 1}, sample ct(1)zero ← HE.Enc(pk1, 0). Then, for each 8 ∈ [=] and 1 ∈ {0, 1}, if 8 ∈ (1 ,

sample ct(1)
8
← HE.Enc(pk1, 1); otherwise, if 8 ∉ (1 , sample ct(1)

8
← HE.Enc(pk1, 0).

• For each 1 ∈ {0, 1}, let
(
com(1)hk , f

(1)
hk,1, . . . , f

(1)
hk,=

)
← Com.Commit

(
crsCom, (ct(1)1 , . . . , ct(1)= )

)
4. The challenger constructs hk and vk according to Eqs. (5.1) and (5.2):

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1)
zero, ct

(1)
1 , . . . , ct(1)= , f

(1)
hk,1, . . . , f

(1)
hk,=

}
1∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
The challenger gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, cdig

)
and a proof c .

6. The challenger computes
(
Ê
(0)
9
, Ê
(1)
9
, f
(0)
9
, f
(1)
9
, F̃ 9

)
← Extract′(tdBARG, c, 9).

7. The output of the experiment is 1 if the following conditions hold:

Verify′(vkBARG,�idx, 2=− 1, c) = 1 and �idx
(
9, (Ê (0)

9
, Ê
(1)
9
, f
(0)
9
, f
(1)
9
, F̃ 9 )

)
= 1 and %

(
8∗, Ê (0)

9
, Ê
(1)
9
, sk0, sk1, 9

)
= 0.

Otherwise, the output is 0. As in De�nition 5.7, the circuit �idx computes the relation from Fig. 2:

• If idx = (8, ~), then �idx computes the relation R
[
crsCom,

{
pk1, com

(1)
hk , com1, ct

(1)
zero, ct

(1)
root

}
1∈{0,1}, 8, ~

]
.

• If idx = ⊥, then �idx computes the relation R
[
crsCom,

{
pk1, com

(1)
hk , com1, ct

(1)
zero, ct

(1)
root

}
1∈{0,1},⊥,⊥

]
.

Otherwise, the output is 0.

Theorem 5.9 (Predicate Propagation). Let % be a tree-based additive invariant and let DeriveChal be a challenge-
derivation function. Suppose ΠCom satis�es computational binding and ΠBARG satis�es set hiding with extraction, set
hiding, and somewhere extractability. LetA be any e�cient adversary for the predicate propagation experiment. Suppose
that for every index 9 ∈ [=] (where = = =(_) is the input length chosen by A), there exists a negligible function Y 9 (·)
such that

Pr[Expt9 [%,DeriveChal] (A) = 1] = Y 9 (_).
Then there exists a negligible function negl(·) such that

Pr[Expt[%,DeriveChal] (A) = 1] = negl(_).
Proof. To simplify notation, we write Expt := Expt[%,DeriveChal] and Expt9 := Expt9 [%,DeriveChal] in the following
proof. Fix an adversaryA and let= be the input length chosen byA. We proceed by induction on the index 9 ∈ [2=−1].
In the following, we will view the index 9 as an index of a node in a (complete) binary tree with = leaves (indexed
according to De�nition 5.1). As such, we can refer to the “height” of an index 9 . Then, we show the following lemma:

Lemma 5.10. Suppose the conditions of Theorem 5.9 hold. Take any index 9 ∈ [2= − 1] and let ℎ be the height of node 9
(where the leaf nodes have height 0). Then, there exists a negligible function Y 9 (_) such that

Pr[Expt9 (A) = 1] = 2ℎ · Y 9 (_).
Proof. Suppose the conditions of Theorem 5.9 hold. We prove the lemma by induction on the height ℎ of the index
9 ∈ [2= − 1].
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Base case. For the indices 9 ∈ [=] of height 0 (i.e., the leaves of the tree), the lemma follows by assumption.

Inductive step. Suppose the inductive hypothesis holds for every index 9 ′ ∈ [2= − 1] of height ℎ. Let 9 ∈ [2= − 1]
be an index with height ℎ + 1. Let 9l, 9r ∈ [2= − 1] be the indices of the left and right child of node 9 (as de�ned in
De�nition 5.1). By construction, 9l and 9r have height ℎ. The inductive hypothesis now asserts that for 9∗ ∈ { 9l, 9r},

Pr
[
Expt9∗ (A) = 1

]
= 2ℎ · Y 9∗ (_), (5.4)

for some negligible function Y 9∗ (_). We now de�ne an intermediate experiment Expt′9 for each node 9 of height ℎ > 0:

1. On input the security parameter 1_ , algorithmA outputs the input length 1= , a set ( ⊆ [=], and an index 8∗ ∈ ( .

2. The challenger computes ((0, (1, idx) ← DeriveChal((, 8∗).

3. The challenger now samples the following quantities as in Setup:

• Sample (sk0, pk0) ← HE.Gen(1_, 1=) and (sk1, pk1) ← HE.Gen(1_, 1=).
• Sample crsCom ← Com.Setup(1_, 1ℓct (_,=) , 2= − 1).
• Sample (crsBARG, vkBARG, tdBARG) ← TrapGen′(1_, 12=−1, 1B , 13, { 9, 9l, 9r}), where B is a bound on the size

of the circuit computing the index relation from Fig. 2.

• For each 1 ∈ {0, 1}, sample ct(1)zero ← HE.Enc(pk1, 0). Then, for each 8 ∈ [=] and 1 ∈ {0, 1}, if 8 ∈ (1 ,
sample ct(1)

8
← HE.Enc(pk1, 1); otherwise, if 8 ∉ (1 , sample ct(1)

8
← HE.Enc(pk1, 0).

• For each 1 ∈ {0, 1}, let
(
com(1)hk , f

(1)
hk,1, . . . , f

(1)
hk,=

)
← Com.Commit

(
crsCom, (ct(1)1 , . . . , ct(1)= )

)
4. The challenger constructs hk and vk according to Eqs. (5.1) and (5.2):

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1)
zero, ct

(1)
1 , . . . , ct(1)= , f

(1)
hk,1, . . . , f

(1)
hk,=

}
1∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
The challenger gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, cdig

)
and a proof c .

6. The challenger computes
(
Ê
(0)
9
, Ê
(1)
9
, f
(0)
9
, f
(1)
9
, F̃ 9

)
← Extract′(tdBARG, c, 9).

7. The output of the experiment is 1 if the following conditions hold:

Verify′(vkBARG,�idx, 2=− 1, c) = 1 and �idx
(
9, (Ê (0)

9
, Ê
(1)
9
, f
(0)
9
, f
(1)
9
, F̃ 9 )

)
= 1 and %

(
8∗, Ê (0)

9
, Ê
(1)
9
, sk0, sk1, 9

)
= 0.

Otherwise, the output is 0.

In our analysis below, we de�ne an additional set of events in an execution of Expt′9 withA. First, de�ne the following
two quantities:

•
(
Ê
(0)
9l
, Ê
(1)
9l
, f
(0)
9l
, f
(1)
9l
, F̃ 9l

)
← Extract′(tdBARG, c, 9l).

•
(
Ê
(0)
9r
, Ê
(1)
9r
, f
(0)
9r
, f
(1)
9r
, F̃ 9r

)
← Extract′(tdBARG, c, 9r).

Now, de�ne the following events:

• E( 9)Verify: This is the event that Verify′(vkBARG,�idx, 2= − 1, c) = 1.

• E( 9)
%,9∗ for each 9∗ ∈ { 9, 9l, 9r}: This is the event where %

(
8∗, Ê (0)

9∗ , Ê
(1)
9∗ , sk0, sk1, 9

∗) = 1.
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• E( 9)ValidCom, 9∗ for each 9∗ ∈ { 9l, 9r}: This is the event

Com.Verify
(
crsCom, com0, 9

∗, Ê (0)
9∗ , f

(0)
9∗

)
= 1 = Com.Verify

(
crsCom, com1, 9

∗, Ê (1)
9∗ , f

(1)
9∗

)
.

• E( 9)SAT, 9∗ for each 9∗ ∈ { 9, 9l, 9r}: This is the event �idx
(
9∗,

(
Ê
(0)
9∗ , Ê

(1)
9∗ , f

(0)
9∗ , f

(1)
9∗ , F̃ 9∗

) )
= 1.

We now relate the probability that Expt9 (A) outputs 1 to the probability that Expt9l (A) and Expt9r (A) outputs 1. To
do so, we �rst program the BARG to be extracting on the set { 9, 9l, 9r}. We then argue via somewhere extractability
of the BARG and computational binding of the commitment scheme that if the values associated with the nodes 9l
and 9r satisfy the predicate % and the proof veri�es, then the value associated with 9 must also satisfy the predicate % .
In this case, the output of Expt9 (A) is guaranteed to be 0.

Claim 5.11. If ΠBARG satis�es set hiding with extraction, then there exists a negligible function negl(·) such that for all
9∗ ∈ { 9, 9l, 9r}, it holds that���Pr[Expt9∗ (A) = 1] − Pr

[
E( 9)Verify ∧ E

( 9)
SAT, 9∗ ∧ ¬E

( 9)
%,9∗

] ��� = negl(_).

Proof. Take any 9∗ ∈ { 9, 9l, 9r} and suppose���Pr[Expt9∗ (A) = 1] − Pr
[
E( 9)Verify ∧ E

( 9)
SAT, 9∗ ∧ ¬E

( 9)
%,9∗

] ��� ≥ Y (_),
for some non-negligible Y. Importantly, note that the events E( 9)Verify, E( 9)SAT, 9∗ , and E( 9)

%,9∗ are de�ned for Expt′9 and not
Expt9∗ . We use A to construct an adversary B for the set hiding with extraction game of ΠBARG:

1. On input the security parameter 1_ , algorithm B runs algorithmA to obtain the input length 1= , the set ( ⊆ [=],
and an index 8∗ ∈ ( .

2. AlgorithmB outputs 12=−1, 1B , 13, the challenge set � = { 9, 9l, 9r}, and the challenge index 9∗ ∈ � to the challenger,
where B is the bound on the size of the circuit in Fig. 2. The challenger responds with (crsBARG, vkBARG).

3. Algorithm B computes ((0, (1, idx) ← DeriveChal((, 8∗). It then samples the following components:

• Sample (sk0, pk0) ← HE.Gen(1_, 1=) and (sk1, pk1) ← HE.Gen(1_, 1=).
• Sample crsCom ← Com.Setup(1_, 1ℓct (_,=) , 2= − 1).
• For each 1 ∈ {0, 1}, sample ct(1)zero ← HE.Enc(pk1, 0). Then, for each 8 ∈ [=] and 1 ∈ {0, 1}, if 8 ∈ (1 ,

sample ct(1)
8
← HE.Enc(pk1, 1); otherwise, if 8 ∉ (1 , sample ct(1)

8
← HE.Enc(pk1, 0).

• For each 1 ∈ {0, 1}, let
(
com(1)hk , f

(1)
hk,1, . . . , f

(1)
hk,=

)
← Com.Commit

(
crsCom, (ct(1)1 , . . . , ct(1)= )

)
4. Algorithm B constructs hk and vk according to Eqs. (5.1) and (5.2):

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1)
zero, ct

(1)
1 , . . . , ct(1)= , f

(1)
hk,1, . . . , f

(1)
hk,=

}
1∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
Algorithm B gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, cdig

)
and a proof c .

6. Let �idx be the circuit as de�ned in De�nition 5.7. Algorithm B �rst checks

Verify′(vkBARG,�idx, 2= − 1, c) = 1.

If the check fails, algorithm B aborts with output ⊥. Otherwise, algorithm B sends the circuit�idx, the instance
number 2= − 1, and the proof c to the challenger. The challenger replies with a string which B parses as(
Ê
(0)
9∗ , Ê

(1)
9∗ , f

(0)
9∗ , f

(1)
9∗ , F̃ 9∗

)
.
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7. Algorithm B outputs 1 if

�idx
(
9∗,

(
Ê
(0)
9∗ , Ê

(1)
9∗ , f

(0)
9∗ , f

(1)
9∗ , F̃ 9∗

) )
= 1 and %

(
8∗, Ê (0)

9∗ , Ê
(1)
9∗ , sk0, sk1, 9

)
= 0.

Otherwise, algorithm B outputs 0.

Let (crsBARG, vkBARG, tdBARG) be the parameters sampled by the challenger in the set hiding with extraction game.
In the game, after B outputs (�idx, 2= − 1, c), the challenger checks Verify′(vkBARG,�idx, 2= − 1, c) = 1. If the check
passes, it replies with

(
Ê
(0)
9∗ , Ê

(1)
9∗ , f

(0)
9∗ , f

(1)
9∗ , F̃ 9∗

)
← Extract′(tdBARG, c, 9∗). We now consider the two possibilities:

• Suppose the challenger responds according to the speci�cation of ExptIHEA (_, 0). In this case, the chal-
lenger samples (crsBARG, vkBARG, tdBARG) ← TrapGen′(1_, 12=−1, 1B , 13, { 9, 9l, 9r}). Thus, algorithm B perfectly
simulates for A an execution of Expt′9 . We claim that algorithm B outputs 1 if and only if the event
E( 9)Verify ∧ E

( 9)
SAT, 9∗ ∧ ¬E

( 9)
%,9∗ occurs. This event corresponds to the following set of conditions:

Verify′(vkBARG,�idx, 2=−1, c) = 1 and�idx
(
9∗, (Ê (0)

9∗ , Ê
(1)
9∗ , f

(0)
9∗ , f

(1)
9∗ , F̃ 9∗ )

)
= 1 and %

(
8∗, Ê (0)

9∗ , Ê
(1)
9∗ , sk0, sk1, 9

∗) = 0.

where
(
Ê
(0)
9∗ , Ê

(1)
9∗ , f

(0)
9∗ , f

(1)
9∗ , F̃ 9∗

)
← Extract′(tdBARG, c, 9∗). This is the same set of conditions that algorithm B

checks, so algorithm B outputs 1 with probability Pr
[
E( 9)Verify ∧ E

( 9)
SAT, 9∗ ∧ ¬E

( 9)
%,9∗

]
in this case.

• Suppose the challenger responds according to the speci�cation of ExptIHEA (_, 1). In this case, the challenger
samples (crsBARG, vkBARG, tdBARG) ← TrapGen′(1_, 12=−1, 1B , 13, { 9∗}). Thus, algorithm B simulates for A an
execution of Expt9∗ . We claim that algorithm B outputs 1 if and only if Expt9∗ (A) outputs 1. The latter
corresponds to the following conditions being satis�ed:

Verify′(vkBARG,�idx, 2=−1, c) = 1 and�idx
(
9∗, (Ê (0)

9∗ , Ê
(1)
9∗ , f

(0)
9∗ , f

(1)
9∗ , F̃ 9∗ )

)
= 1 and %

(
8∗, Ê (0)

9∗ , Ê
(1)
9∗ , sk0, sk1, 9

∗) = 0.

where
(
Ê
(0)
9∗ , Ê

(1)
9∗ , f

(0)
9∗ , f

(1)
9∗ , F̃ 9∗

)
← Extract′(tdBARG, c, 9∗). Once again, this is the same set of conditions that B

checks. Thus, in this case algorithm B outputs 1 with probability Pr[Expt9∗ (A) = 1].

We conclude that the distinguishing advantage of B is precisely���Pr[Expt9∗ (A) = 1] − Pr
[
E( 9)Verify ∧ E

( 9)
SAT, 9∗ ∧ ¬E

( 9)
%,9∗

] ��� = Y,
which completes the proof. �

Claim 5.12. If ΠBARG is somewhere extractable then there exists a negligible function negl(·) such that for all 9∗ ∈
{ 9, 9l, 9r}, it holds that Pr

[
E( 9)Verify ∧ ¬E

( 9)
SAT, 9∗

]
= negl(_).

Proof. Take any 9∗ ∈ { 9, 9l, 9r} and suppose Pr
[
E( 9)Verify ∧ ¬E

( 9)
SAT, 9∗

]
≥ Y (_) for some non-negligible Y. We use A to

construct an adversary B that breaks somewhere extractability of ΠBARG:

1. On input the security parameter 1_ , algorithm B runs algorithmA to obtain the input length 1= , the set ( ⊆ [=],
and an index 8∗ ∈ ( .

2. AlgorithmB outputs 12=−1, 1B , 13, the challenge set � = { 9, 9l, 9r}, and the challenge index 9∗ ∈ � to the challenger,
where B is the bound on the size of the circuit in Fig. 2. The challenger responds with (crsBARG, vkBARG).

3. Algorithm B computes ((0, (1, idx) ← DeriveChal((, 8∗). It then samples the following components:

• Sample (sk0, pk0) ← HE.Gen(1_, 1=) and (sk1, pk1) ← HE.Gen(1_, 1=).
• Sample crsCom ← Com.Setup(1_, 1ℓct (_,=) , 2= − 1).
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• For each 1 ∈ {0, 1}, sample ct(1)zero ← HE.Enc(pk1, 0). Then, for each 8 ∈ [=] and 1 ∈ {0, 1}, if 8 ∈ (1 ,
sample ct(1)

8
← HE.Enc(pk1, 1); otherwise, if 8 ∉ (1 , sample ct(1)

8
← HE.Enc(pk1, 0).

• For each 1 ∈ {0, 1}, let
(
com(1)hk , f

(1)
hk,1, . . . , f

(1)
hk,=

)
← Com.Commit

(
crsCom, (ct(1)1 , . . . , ct(1)= )

)
4. Algorithm B constructs hk and vk according to Eqs. (5.1) and (5.2):

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1)
zero, ct

(1)
1 , . . . , ct(1)= , f

(1)
hk,1, . . . , f

(1)
hk,=

}
1∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
Algorithm B gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, cdig

)
and a proof c .

6. Let �idx be the circuit as de�ned in De�nition 5.7. Algorithm B outputs the circuit �idx, the instance number
2= − 1, and the proof c .

By construction, algorithm B perfectly simulates an execution of Expt9 . Thus, with probability at least Y, the digest
dig and proof c output by A satis�es E( 9)Verify but not E( 9)SAT, 9∗ . This means

Verify′(vkBARG,�idx, 2= − 1, c) = 1 and �idx
(
9∗,

(
Ê
(0)
9∗ , Ê

(1)
9∗ , f

(0)
9∗ , f

(1)
9∗ , F̃ 9∗

) )
= 0.

This means algorithm B successfully breaks somewhere extractability of ΠBARG and the claim holds. �

Claim 5.13. Suppose the conditions in Claims 5.11 and 5.12 hold. Then, there exists a negligible function negl(·) such
that

Pr
[
Expt′9 (A) = 1 ∧

(
¬E( 9)ValidCom, 9l

∨ ¬E( 9)
%,9l
∨ ¬E( 9)ValidCom, 9r

∨ ¬� ( 9)
%,9r

) ]
≤ 2ℎ+1 · Y 9 (_) + negl(_),

where Y 9 (_) = max(Y 9l (_), Y 9r (_)).

Proof. By Claim 5.11 there exists a negligible function negl1 (·) such that for all 9∗ ∈ { 9l, 9r}, it holds that:���Pr[Expt9∗ (A) = 1] − Pr
[
E( 9)Verify ∧ E

( 9)
SAT, 9∗ ∧ ¬E

( 9)
%,9∗

] ��� ≤ negl1 (_). (5.5)

By Claim 5.12 there exists a negligible function negl2 (·) such that for all 9∗ ∈ { 9l, 9r} it holds that

Pr
[
E( 9)Verify ∧ ¬E

( 9)
SAT, 9∗

]
≤ negl2 (_). (5.6)

By de�nition, if Expt′9 (A) = 1, then event E( 9)Verify also occurs. Thus, for all events E, it holds that

Pr[Expt′9 (A) = 1 ∧ E] ≤ Pr
[
E( 9)Verify ∧ E

]
. (5.7)

Similarly, by construction of the circuit �idx, the event ¬E( 9)ValidCom, 9∗ implies event ¬E( 9)SAT, 9∗ . Thus, for any event E, it
holds that

Pr
[
¬E( 9)ValidCom, 9∗ ∧ E

]
≤ Pr

[
¬E( 9)SAT, 9∗ ∧ E

]
. (5.8)

Take any 9∗ ∈ { 9l, 9r}. Since the height of 9∗ is ℎ, the inductive hypothesis applies and Eq. (5.4) holds. We �rst show
that

Pr
[
Expt′9 (A) = 1 ∧ ¬E( 9)

%,9∗
]
≤ 2ℎ · Y 9∗ (_) + negl1 (_) + negl2 (_). (5.9)
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This follows by the following sequence of calculations:

Pr
[
Expt′9 (A) = 1 ∧ ¬E( 9)

%,9∗
]
≤ Pr

[
E( 9)Verify ∧ ¬E

( 9)
%,9∗

]
by Eq. (5.7)

= Pr
[
E( 9)Verify ∧ E

( 9)
SAT, 9∗ ∧ ¬E

( 9)
%,9∗

]
+ Pr

[
E( 9)Verify ∧ ¬E

( 9)
SAT, 9∗ ∧ ¬E

( 9)
%,9∗

]
≤ Pr[E( 9)Verify ∧ E

( 9)
SAT, 9∗ ∧ ¬E

( 9)
%,9∗ ] + negl2 (_) by Eq. (5.6)

≤ Pr[Expt9∗ (A) = 1] + negl1 (_) + negl2 (_) by Eq. (5.5)

≤ 2ℎ · Y 9∗ (_) + negl1 (_) + negl2 (_) by Eq. (5.4).

Next, we have

Pr
[
Expt′9 (A) = 1 ∧ ¬EValidCom, 9∗

]
≤ Pr

[
E( 9)Verify ∧ ¬EValidCom, 9∗

]
by Eq. (5.7)

≤ Pr
[
E( 9)Verify ∧ ¬ESAT, 9∗

]
by Eq. (5.8)

≤ negl2 (_) by Eq. (5.6).

Combined with Eq. (5.9) and applying a union bound, we have

Pr
[
Expt′9 (A) = 1 ∧

(
¬E( 9)ValidCom, 9l

∨ ¬E( 9)
%,9l
∨ ¬E( 9)ValidCom, 9r

∨ ¬� ( 9)
%,9r

) ]
≤ 2ℎ ·

(
Y 9l (_) + Y 9r (_)

)
+ X (_)

≤ 2ℎ+1 · Y 9 (_) + X (_),

where X (_) = 2negl1 (_) + 4negl2 (_) = negl(_) and Y 9 (_) = max(Y 9l (_), Y 9r (_)). �

Claim 5.14. If % is a tree-based additive invariant and ΠCom is computationally binding, then there exists a negligible
function negl(·) such that

Pr
[
Expt′9 (A) = 1 ∧ E( 9)ValidCom, 9l

∧ E( 9)
%,9l
∧ E( 9)ValidCom, 9r

∧ E( 9)
%,9r

]
≤ negl(_).

Proof. Suppose
Pr

[
Expt′9 (A) = 1 ∧ E( 9)ValidCom, 9l

∧ E( 9)
%,9l
∧ E( 9)ValidCom, 9r

∧ E( 9)
%,9r

]
≥ Y (_),

for some non-negligible Y. We use A to construct an adversary B for the binding game for ΠCom as follows:

1. On input the security parameter 1_ , algorithm B runs algorithmA to obtain the input length 1= , the set ( ⊆ [=],
and an index 8∗ ∈ ( .

2. Algorithm B outputs the block length 1ℓct (_,=) and the vector length 2= − 1 to the challenger. The challenger
responds with crsCom.

3. Algorithm B computes ((0, (1, idx) ← DeriveChal((, 8∗). It then samples the following components:

• Sample (sk0, pk0) ← HE.Gen(1_, 1=) and (sk1, pk1) ← HE.Gen(1_, 1=).
• Sample (crsBARG, vkBARG, tdBARG) ← TrapGen′(1_, 12=−1, 1B , 13, { 9, 9l, 9r}).
• For each 1 ∈ {0, 1}, sample ct(1)zero ← HE.Enc(pk1, 0). Then, for each 8 ∈ [=] and 1 ∈ {0, 1}, if 8 ∈ (1 ,

sample ct(1)
8
← HE.Enc(pk1, 1); otherwise, if 8 ∉ (1 , sample ct(1)

8
← HE.Enc(pk1, 0).

• For each 1 ∈ {0, 1}, let
(
com(1)hk , f

(1)
hk,1, . . . , f

(1)
hk,=

)
← Com.Commit

(
crsCom, (ct(1)1 , . . . , ct(1)= )

)
4. Algorithm B constructs hk and vk according to Eqs. (5.1) and (5.2):

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1)
zero, ct

(1)
1 , . . . , ct(1)= , f

(1)
hk,1, . . . , f

(1)
hk,=

}
1∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
Algorithm B gives (hk, vk) to A.
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5. Algorithm A outputs a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, cdig

)
and a proof c .

6. Algorithm B computes the following:

•
(
Ê
(0)
9
, Ê
(1)
9
, f
(0)
9
, f
(1)
9
, F̃ 9

)
← Extract′(tdBARG, c, 9).

•
(
Ê
(0)
9l
, Ê
(1)
9l
, f
(0)
9l
, f
(1)
9l
, F̃ 9l

)
← Extract′(tdBARG, c, 9l).

•
(
Ê
(0)
9r
, Ê
(1)
9r
, f
(0)
9r
, f
(1)
9r
, F̃ 9r

)
← Extract′(tdBARG, c, 9r).

In addition, it parses F̃ 9 = (F̃ 9,l, F̃ 9,r) and F̃l =
(
Ê
(0)
9,l , Ê

(1)
9,l , f

(0)
9,l , f

(1)
9,l

)
and F̃r =

(
Ê
(0)
9,r , Ê

(1)
9,r , f

(0)
9,r , f

(1)
9,r

)
.

7. Algorithm B checks if there exists 1 ∈ {0, 1} and 3 ∈ {l, r} such that Ê (1)
93

≠ Ê
(1)
9,3

and

Com.Verify
(
crsCom, com1, 93 , Ê

(1)
9,3
, f
(1)
9,3

)
= 1 and Com.Verify

(
crsCom, com1, 93 , Ê

(1)
93
, f
(1)
93

)
= 1.

If so, it outputs the commitment com1 , the index 93 ∈ [2= − 1], and the value-opening pairs
(
Ê
(1)
9,3
, f
(1)
9,3

)
and(

Ê
(1)
93
, f
(1)
93

)
. Otherwise, algorithm B aborts with output ⊥.

By construction, algorithm B perfectly simulates an execution of Expt′9 for adversary A. By assumption, with
probability at least Y, algorithm A will output a digest dig and a proof c such that the following conditions hold:

• Expt′9 (A) = 1: This means Verify′(vkBARG,�idx, 2= − 1, c) = 1, �idx
(
9, (Ê (0)

9
, Ê
(1)
9
, f
(0)
9
, f
(1)
9
, F̃ 9 )

)
= 1, and

%
(
Ê
(0)
9
, Ê
(1)
9
, sk0, sk1, 9

)
= 0.

• E( 9)ValidCom, 9∗ for 9∗ ∈ { 9l, 9r}: This means

Com.Verify
(
crsCom, com0, 9

∗, Ê (0)
9∗ , f

(0)
9∗

)
= 1 = Com.Verify

(
crsCom, com1, 9

∗, Ê (1)
9∗ , f

(1)
9∗

)
.

• E( 9)
%,9∗ for 9∗ ∈ { 9l, 9r}: This means %

(
Ê
(0)
9∗ , Ê

(1)
9∗ , sk0, sk1, 9

∗) = 1.

We consider two possibilities:

• Suppose for all 1 ∈ {0, 1}, we have Ê (1)
9l

= Ê
(1)
9,l and Ê (1)

9r
= Ê
(1)
9,r . Since �8∗,~

(
9, (Ê (0)

9
, Ê
(1)
9
, f
(0)
9
, f
(1)
9
, F̃ 9 )

)
= 1, this

means that Ê (1)
9

= HE.Add
(
pk1, Ê

(1)
9,l , Ê

(1)
9,r

)
for all 1 ∈ {0, 1}. Combined with the third condition, this means

%
(
8∗, Ê (0)

9,l , Ê
(1)
9,l , sk0, sk1, 9l

)
= %

(
8∗, Ê (0)

9l
, Ê
(1)
9l
, sk0, sk1, 9l

)
= 1

%
(
8∗, Ê (0)

9,r , Ê
(1)
9,r , sk0, sk1, 9r

)
= %

(
8∗, Ê (0)

9r
, Ê
(1)
9r
, sk0, sk1, 9r

)
= 1.

Since % is a tree-based additive invariant, this means that

%
(
8∗, Ê (0)

9
, Ê
(1)
9
, sk0, sk1, 9

)
= 1.

However, this contradicts the condition that %
(
8∗, Ê (0)

9
, Ê
(1)
9
, sk0, sk1, 9

)
= 0, so this case does not occur.

• Suppose there exists 1 ∈ {0, 1} and 3 ∈ {l, r} where Ê (1)
93

≠ Ê
(1)
9,3

. Since�8∗,~
(
9, (Ê (0)

9
, Ê
(1)
9
, f
(0)
9
, f
(1)
9
, F̃ 9 )

)
= 1, this

means that Com.Verify
(
crsCom, com1, 93 , Ê

(1)
9,3
, f
(1)
9,3

)
= 1. By the second condition, we also have

Com.Verify
(
crsCom, com1, 93 , Ê

(1)
93
, f
(1)
93

)
= 1.

In this case, algorithm B outputs the commitment com1 , the index 93 , and the value-opening pairs
(
Ê
(1)
9,3
, f
(1)
9,3

)
and

(
Ê
(1)
93
, f
(1)
93

)
. This is a pair of valid openings for com1 so algorithm B wins the binding game.
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We conclude that algorithm B succeeds with the same advantage Y and the claim follows. �

Claim 5.15. Suppose the conditions of Claims 5.13 and 5.14 hold. Then there exists a negligible function negl(·) such
that

Pr[Expt′9 (A) = 1] ≤ 2ℎ+1 · Y 9 (_) + negl(_),

where Y 9 (_) = max(Y 9l (_), Y 9r (_)).

Proof. By the law of total probability, we have

Pr[Expt′9 (A) = 1] ≤ Pr
[
Expt′9 (A) = 1 ∧ E( 9)ValidCom, 9l

∧ E( 9)
%,9l
∧ E( 9)ValidCom, 9r

∧ E( 9)
%,9r

]
+

Pr
[
Expt′9 (A) = 1 ∧

(
¬E( 9)ValidCom, 9l

∨ ¬E( 9)
%,9l
∨ ¬E( 9)ValidCom, 9r

∨ ¬E( 9)
%,9r

) ]
.

By Claims 5.13 and 5.14, there exist negligible functions negl1 (·) and negl2 (·) such that:

Pr
[
Expt′9 (A) = 1 ∧

(
¬E( 9)ValidCom, 9l

∨ ¬E( 9)
%,9l
∨ ¬E( 9)ValidCom, 9r

∨ ¬E( 9)
%,9r

) ]
≤ 2ℎ+1 · Y 9 (_) + negl1 (_)

Pr
[
Expt′9 (A) = 1 ∧ E( 9)ValidCom, 9l

∧ E( 9)
%,9l
∧ E( 9)ValidCom, 9r

∧ E( 9)
%,9r

]
≤ negl2 (_).

where Y 9 (_) = max(Y 9l (_), Y 9r (_)). The claim follows. �

Completing the proof of Lemma 5.10. To complete the proof of the inductive step (for Lemma 5.10), we �rst
appeal to Claim 5.15 to conclude that there exists negligible function negl1 (·) such that

Pr[Expt′9 (A) = 1] ≤ 2ℎ+1 · Y 9 (_) + negl1 (_),

where Y 9 (_) = max(Y 9l (_), Y 9r (_)). From the inductive hypothesis, Y 9l (_) and Y 9r (_) are both negligible functions. By
de�nition of Expt′9 , we have that

Pr[Expt′9 (A) = 1] = Pr
[
E( 9)Verify ∧ E

( 9)
SAT, 9 ∧ ¬E

( 9)
%,9

]
.

By Claim 5.11, there exists a negligible function negl2 (·) such that���Pr[Expt9 (A) = 1] − Pr[Expt′9 (A) = 1]
��� ≤ negl2 (_).

We conclude that
Pr[Expt9 (A) = 1] ≤ 2ℎ+1 · Y 9 (_) + negl1 (_) + negl2 (_).

Setting Y ′9 (_) = max
(
Y 9 (_), (negl1 (_) + negl2 (_))/2ℎ+1

)
, we have that Pr[Expt9 (A) = 1] ≤ 2ℎ+1 · Y ′9 (_), where Y ′9 (_)

is a negligible function. Lemma 5.10 now follows by induction on the height ℎ. �

Completing the proof of Theorem 5.9. We now use Lemma 5.10 to complete the proof of Theorem 5.9. Suppose
the conditions of Theorem 5.9 hold. Noting that the index 2= − 1 has height ℎ = log= in a complete binary tree with =
leaves, we appeal to Lemma 5.10 and conclude that there exists a negligible function negl(·) such that

Pr[Expt2=−1 (A) = 1] ≤ = · negl(_). (5.10)

To complete the proof, we de�ne a sequence of hybrid experiments:

• Hyb0: This is the experiment Expt2=−1 [%,DeriveChal] with adversary A.

• Hyb1: Same as Hyb0, except the output of the experiment is 1 if the following properties hold:

– Verify′(vkBARG,�idx, 2= − 1, c) = 1;
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– �idx
(
2= − 1,

(
Ê
(0)
2=−1, Ê

(1)
2=−1, f

(0)
2=−1, f

(1)
2=−1, F̃2=−1

) )
= 1; and

– %
(
8∗, ct(0)root, ct

(1)
root, sk0, sk1, 2= − 1

)
= 1.

• Hyb2: Same as Hyb1, except the output of the experiment is 1 if the following properties hold:

– Verify′(vkBARG,�idx, 2= − 1, c) = 1; and

– %
(
8∗, ct(0)root, ct

(1)
root, sk0, sk1, 2= − 1

)
= 1.

In particular, the challenger no longer checks the value of �idx. Note that in this experiment, the challenger’s
behavior no longer depends on the BARG trapdoor tdBARG.

• Hyb3: Same as Hyb2, except when sampling the BARG parameters at the beginning of the experiment, the
challenger now samples (crsBARG, vkBARG) ← Gen′(1_, 12=−1, 1B , 13). This corresponds to the experiment
Expt[%,DeriveChal] with adversary A.

For an adversary A, we write Hyb8 (A) = 1 to denote the output of Hyb8 with adversary A. We now analyze each
pair of adjacent experiments.

Claim 5.16. It holds that Pr[Hyb1 (A) = 1] = Pr[Hyb0 (A) = 1].

Proof. These experiments are identical. Speci�cally, by de�nition of �idx (and speci�cally, the relation in Fig. 2), if
�idx

(
2= − 1,

(
Ê
(0)
2=−1, Ê

(1)
2=−1, f

(0)
2=−1, f

(1)
2=−1, F̃2=−1

) )
= 1, then Ê (1)2=−1 = ct(1)root for 1 ∈ {0, 1}. This means that

%
(
8∗, Ê (0)2=−1, Ê

(1)
2=−1, sk0, sk1, 2= − 1

)
= %

(
8∗, ct(0)root, ct

(1)
root, sk0, sk1, 2= − 1

)
= 1.

Thus, the output of Hyb0 (A) is identical to that of Hyb1 (A). �

Claim 5.17. If ΠBARG is somewhere extractable, then there exists a negligible function negl(·) such that��Pr[Hyb2 (A) = 1] − Pr[Hyb1 (A) = 1]
�� = negl(_).

Proof. Suppose Pr[Hyb2 (A) = 1] − Pr[Hyb1 (A) = 1] ≥ Y (_), for some non-negligible Y. Since the only di�erence
between Hyb1 and Hyb2 is the conditions the challenger checks at the very end of the experiment, this means that
with probability at least Y, the adversary in Hyb1 will output a digest dig and a proof c such that the following
conditions hold:

• Verify′(vkBARG,�idx, 2= − 1, c) = 1.

• %
(
8∗, ct(0)root, ct

(1)
root, sk0, sk1, 2= − 1

)
= 1.

• �idx
(
2= − 1,

(
Ê
(0)
2=−1, Ê

(1)
2=−1, f

(0)
2=−1, f

(1)
2=−1, F̃2=−1

) )
= 0.

In all other settings, the output of the two experiments are identical. We use A to construct an adversary B that
breaks somewhere extractability of ΠBARG (similar to the proof of Claim 5.12):

1. On input the security parameter 1_ , algorithm B runs algorithmA to obtain the input length 1= , the set ( ⊆ [=],
and an index 8∗ ∈ ( .

2. Let 9 = 2=−1 and 9l, 9r be the indices of the input wires that determine the value of the output wire 9 . Algorithm
B outputs 12=−1, 1B , 13, the challenge set � = { 9, 9r, 9l}, and the challenge index 9 = 2= − 1 to the challenger.
Here, B is the bound on the size of the circuit in Fig. 2. The challenger responds with (crsBARG, vkBARG).

3. Algorithm B computes ((0, (1, idx) ← DeriveChal((, 8∗). It then samples the following components:

• Sample (sk0, pk0) ← HE.Gen(1_, 1=) and (sk1, pk1) ← HE.Gen(1_, 1=).
• Sample crsCom ← Com.Setup(1_, 1ℓct (_,=) , 2= − 1).
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• For each 1 ∈ {0, 1}, sample ct(1)zero ← HE.Enc(pk1, 0). Then, for each 8 ∈ [=] and 1 ∈ {0, 1}, if 8 ∈ (1 ,
sample ct(1)

8
← HE.Enc(pk1, 1); otherwise, if 8 ∉ (1 , sample ct(1)

8
← HE.Enc(pk1, 0).

• For each 1 ∈ {0, 1}, let
(
com(1)hk , f

(1)
hk,1, . . . , f

(1)
hk,=

)
← Com.Commit

(
crsCom, (ct(1)1 , . . . , ct(1)= )

)
4. Algorithm B constructs hk and vk according to Eqs. (5.1) and (5.2):

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1)
zero, ct

(1)
1 , . . . , ct(1)= , f

(1)
hk,1, . . . , f

(1)
hk,=

}
1∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
Algorithm B gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, cdig

)
and a proof c .

6. Let �idx be the circuit as de�ned in De�nition 5.7. Algorithm B outputs the circuit �idx, the instance number
2= − 1, and the proof c .

By de�nition, the challenger samples (crsBARG, vkBARG, tdBARG) ← TrapGen′(1_, 12=−1, 1B , 13, { 9, 9l, 9r}). This means
algorithm B perfectly simulates an execution of Hyb1. Thus, with probability at least Y, the digest dig and proof c
output by A satis�es

Verify′(vkBARG,�idx, 2= − 1, c) = 1 and �idx
(
2= − 1,

(
Ê
(0)
2=−1, Ê

(1)
2=−1, f

(0)
2=−1, f

(1)
2=−1, F̃2=−1

) )
= 0,

where
(
Ê
(0)
2=−1, Ê

(1)
2=−1, f

(0)
2=−1, f

(1)
2=−1, F̃2=−1

)
← Extract′(tdBARG, c, 2= − 1). This means algorithm B successfully breaks

somewhere extractability of ΠBARG and the claim holds. �

Claim 5.18. If ΠBARG satis�es set hiding then there exists a negligible function negl(·) such that��Pr[Hyb3 (A) = 1] − Pr[Hyb2 (A) = 1]
�� = negl(_).

Proof. Suppose
��Pr[Hyb3 (A) = 1] − Pr[Hyb2 (A) = 1]

�� ≥ Y (_) for some non-negligible Y. We use A to construct an
adversary B that breaks set hiding of ΠBARG:

1. On input the security parameter 1_ , algorithm B runs algorithmA to obtain the input length 1= , the set ( ⊆ [=],
and an index 8∗ ∈ ( .

2. Let 9 = 2=−1 and 9l, 9r be the indices of the input wires that determine the value of the output wire 9 . Algorithm
B outputs 12=−1, 1B , 13 and the challenge set � = { 9, 9l, 9r} to the challenger. Here, B is the bound on the size of
the circuit in Fig. 2. The challenger responds with (crsBARG, vkBARG).

3. Algorithm B computes ((0, (1) ← DeriveChal((, 8̂). It then samples the following components:

• Sample (sk0, pk0) ← HE.Gen(1_, 1=) and (sk1, pk1) ← HE.Gen(1_, 1=).
• Sample crsCom ← Com.Setup(1_, 1ℓct (_,=) , 2= − 1).
• For each 1 ∈ {0, 1}, sample ct(1)zero ← HE.Enc(pk1, 0). Then, for each 8 ∈ [=] and 1 ∈ {0, 1}, if 8 ∈ (1 ,

sample ct(1)
8
← HE.Enc(pk1, 1); otherwise, if 8 ∉ (1 , sample ct(1)

8
← HE.Enc(pk1, 0).

• For each 1 ∈ {0, 1}, let
(
com(1)hk , f

(1)
hk,1, . . . , f

(1)
hk,=

)
← Com.Commit

(
crsCom, (ct(1)1 , . . . , ct(1)= )

)
4. Algorithm B constructs hk and vk according to Eqs. (5.1) and (5.2):

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1)
zero, ct

(1)
1 , . . . , ct(1)= , f

(1)
hk,1, . . . , f

(1)
hk,=

}
1∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
Algorithm B gives (hk, vk) to A.
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5. Algorithm A outputs a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, cdig

)
and a proof c .

6. Let �8∗,G8∗ be the circuit as de�ned in De�nition 5.7. Algorithm B outputs 1 if

Verify′(vkBARG,�idx, 2= − 1, c) = 1 and %
(
8∗, ct(0)root, ct

(1)
root, sk0, sk1, 2= − 1

)
= 1

Otherwise, algorithm B outputs 0.

We now consider the two possibilities:

• Suppose the challenger responds according to the speci�cation of ExptSHA (_, 0). In this case, the challenger
samples (crsBARG, vkBARG) ← Gen′(1_, 12=−1, 1B , 13). In this case, algorithm B perfectly simulates an execution
of Hyb3 for A. Moreover, algorithm B computes the outputs according to the same speci�cation of Hyb3, so
we conclude that algorithm B outputs 1 with Pr[Hyb3 (A) = 1].

• Suppose the challenger responds according to the speci�cation of ExptSHA (_, 1). In this case, the chal-
lenger samples (crsBARG, vkBARG, tdBARG) ← TrapGen′(1_, 12=−1, 1B , 13, { 9, 9l, 9r}). In this case, algorithm B
perfectly simulates an execution of Hyb2 for A, and correspondingly, algorithm B outputs 1 with probability
Pr[Hyb2 (A) = 1].

We conclude that the distinguishing advantage of B is exactly Y, which concludes the proof. �

Combining Claims 5.16 to 5.18, we conclude that
��Pr[Hyb0 (A) = 1] − Pr[Hyb3 (A) = 1]

�� = negl(_). By construction,
Hyb0 (A) ≡ Expt2=−1 (A) and Hyb3 (A) ≡ Expt(A). From Eq. (5.10), we have that Pr[Expt2=−1 (A) = 1] = negl(_)
and Theorem 5.9 follows. �

5.1.2 Set Hiding

In this section, we show that Construction 5.2 satis�es set hiding. This follows immediately from CPA-security of the
underlying encryption scheme. Recall that in Construction 5.2, the only di�erence between a hash key that binds to
the empty set ∅ versus the set ( is that some of the ciphertexts in the hash key switch from encryptions of 0 (when
binding to the empty set) to an encryption of 1 (when binding to the set (). We formalize this below:

Theorem 5.19 (Set Hiding). If ΠHE is CPA-secure, then Construction 5.2 satis�es set hiding.

Proof. Let A be an adversary for the set hiding game. We de�ne a hybrid experiment HybV for each V ∈ {0, 1, 2} as
follows:

1. On input 1_ , algorithm A outputs the input length 1= and set ( ⊆ [=].

2. The challenger now samples the following quantities:

• Sample (sk0, pk0) ← HE.Gen(1_, 1=) and (sk1, pk1) ← HE.Gen(1_, 1=).
• Sample crsCom ← Com.Setup(1_, 1ℓct (_,=) , 2= − 1). and (crsBARG, vkBARG) ← Gen′(1_, 12=−1, 1B , 13).
• For each 1 ∈ {0, 1}, sample ct(1)zero ← HE.Enc(pk1, 0).
• For each 8 ∈ [=] and 1 ∈ {0, 1}, if 8 ∈ ( and 1 < V , the challenger samples ct(1)

8
← HE.Enc(pk1, 1).

Otherwise, if 8 ∉ ( or 1 ≥ V , it samples ct(1)
8
← HE.Enc(pk1, 0).

• For each 1 ∈ {0, 1}, let
(
com(1)hk , f

(1)
hk,1, . . . , f

(1)
hk,=

)
← Com.Commit

(
crsCom, (ct(1)1 , . . . , ct(1)= )

)
3. Algorithm B constructs hk and vk according to Eqs. (5.1) and (5.2):

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1)
zero, ct

(1)
1 , . . . , ct(1)= , f

(1)
hk,1, . . . , f

(1)
hk,=

}
1∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
Algorithm B gives (hk, vk) to A.
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4. Algorithm A outputs a bit 1 ′ which is the output of the experiment.

LetHybV (A) be the output ofHybV with adversaryA. By construction ExptSHA (_, 0) ≡ Hyb0 (A) and ExptSHA (_, 1) ≡
Hyb2 (A). We now argue that each adjacent pair of hybrid distributions are computationally indistinguishable.

Claim 5.20. If ΠHE is CPA-secure, then there exists a negligible function negl(·) such that��Pr[Hyb1 (A) = 1] − Pr[Hyb0 (A) = 1]
�� = negl(_).

Proof. Suppose that
��Pr[Hyb1 (A) = 1] − Pr[Hyb0 (A) = 1]

�� = 1] ≥ Y (_) for some non-negligible Y. We construct a
CPA-security adversary B against ΠHE as follows:

1. On input 1_ , algorithm B runs A to obtain the input length 1= and a set ( ⊆ [=]. Denote ( = {81, . . . , 8C } ⊆ [=],
where C = |( |. Algorithm B sends 1= to the challenger as the input range. The challenger replies with a public
key pk0.

2. Algorithm B samples (sk1, pk1) ← HE.Gen(1_, 1=). It also samples crsCom ← Com.Setup(1_, 1ℓct (_,=) , 2= − 1)
and (crsBARG, vkBARG) ← Gen′(1_, 12=, 1B , 13). Finally, for 1 ∈ {0, 1}, it computes ct(1)zero ← HE.Enc(pk1, 0) for
1 ∈ {0, 1}.

3. Then, for each 8 ∈ [=], algorithm B does the following:

• If 8 ∈ ( , then it makes an encryption query on the pair (0, 1) and receives the ciphertext ct∗8 . Algorithm B
sets ct(0)

8
= ct∗8 . If 8 ∉ ( , it sets ct(0)

8
← HE.Enc(pk0, 0).

• It computes ct(1)
8
← HE.Enc(pk1, 0).

4. Finally, for 1 ∈ {0, 1}, compute
(
com(1)hk , f

(1)
hk,1, . . . , f

(1)
hk,=

)
← Com.Commit

(
crsCom, (ct(1)1 , . . . , ct(1)=

) )
.

5. Algorithm B constructs hk and vk according to Eqs. (5.1) and (5.2) and gives (hk, vk) to A.

6. Algorithm A outputs a bit 1 ′ ∈ {0, 1}, which B also outputs.

Observe that if the ct∗8 are encryptions of 0 then B perfectly simulates Hyb0. If ct∗8 are encryptions of 1, then B
perfectly simulates Hyb1 for A. We conclude that the advantage of B is Y. �

Claim 5.21. If ΠHE is CPA-secure, then there exists a negligible function negl(·) such that��Pr[Hyb2 (A) = 1] − Pr[Hyb1 (A) = 1]
�� = negl(_).

Proof. Follows by an analogous argument as the proof of Claim 5.20. The only di�erence is the reduction algorithm
B sets pk1 and the ciphertexts ct(1)

8
for 8 ∈ ( to be the public key and challenge ciphertexts it receives for the CPA

challenger, respectively. �

Theorem 5.19 now follows by combining Claims 5.20 and 5.21. �

5.1.3 Zero Fixing

In this section, we show that Construction 5.2 satis�es zero-�xing security. In the zero-�xing game, the hash key in
Construction 5.2 is chosen to bind to a set ( . This means that the ciphertext in the hash key associated with the set (
are replaced by encryptions of 1. Suppose the adversary constructs an opening to 1 for an index 8 ∈ ( . This means the
adversary must have “used” the ciphertext associated with index 8 (which encrypts 1) when constructing the digest;
formally, this will be enforced by the BARG. Since one of ciphertexts in the ciphertext tree is an encryption of 1, we
can appeal to the predicate propagation property (Theorem 5.9) to argue that the root of the tree must encrypt a
value that is non-zero. In this case, the extraction algorithm would declare the digest NotMatching and zero-�xing
holds. We now give the formal argument:
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Theorem 5.22 (Zero Fixing). Suppose ΠHE satis�es perfect correctness and evaluation correctness, ΠCom is compu-
tationally binding, and ΠBARG satis�es set hiding with extraction, set hiding, and is somewhere extractable. Then
Construction 5.2 satis�es selective zero-�xing.

Proof. We will leverage Theorem 5.9. We start by de�ning a tree-based additive invariant % as follows. Let = be a
power-of-two and take any index 8∗ ∈ [=]. We now inductively associate an interval � (8

∗)
9

with each node 9 ∈ [2= − 1]
of a complete binary tree with = leaves (indexed according to De�nition 5.1) as follows:

• For 9 ∈ [=], if 9 = 8∗ then let � (8
∗)

9
= [1, 1]. Otherwise, let � (8

∗)
9

= [0, 1].

• For an index 9 ∈ [= + 1, 2= − 1], let 9l, 9r be the indices of the children of 9 according to De�nition 5.1. If
�
(8∗)
9l

= [0l, 1l] and � (8
∗)

9r
= [0r, 1r], then de�ne � (8

∗)
9

= [0l + 0r, 1l + 1r] = � (8
∗)

9l
+ � (8

∗)
9r

, where we de�ne interval
addition to be component-wide addition: [0l, 1l] + [0r, 1r] = [0l + 0r, 1l + 1r].

We now de�ne the interval-validity predicate %ValidInt as follows: %ValidInt : {0, 1}∗ → {0, 1} as follows:

%ValidInt
(
8∗, ct(0) , ct(1) , sk0, sk1, 9

)
:=

{
1 HE.Dec

(
sk0, ct(0)

)
∈ � (8

∗)
9

0 HE.Dec
(
sk0, ct(0)

)
∉ �
(8∗)
9

.
(5.11)

We now show that %ValidInt is a tree-based additive invariant. We start by characterizing the intervals � (8
∗)

9
for all

9 ∈ [2= − 1].

Claim 5.23. For all 8∗ ∈ [=] and any node 9 ∈ [2= − 1] of height ℎ in the binary tree, if 8∗ is in the subtree rooted at 9
then � (8

∗)
9

= [1, 2ℎ]. Otherwise, � (8
∗)

9
= [0, 2ℎ].

Proof. This follows by induction starting from the leaves. For every leaf node 9 ∈ [=], the associated interval � (8
∗)

9
is

[0, 1] if 9 ≠ 8∗ and [1, 1] if 9 = 8∗. Thus, the claim holds for all of the leaf nodes. For the induction step, suppose 9 is a
node of height ℎ + 1. Let 9l, 9r be the indices of the children of 9 . If 8∗ is in the subtree of 9 , then it is either in the
subtree of 9l or 9r but not both. By the induction hypothesis, � (8

∗)
9l
+ � (8

∗)
9r

= [0, 2ℎ] + [1, 2ℎ] = [1, 2ℎ+1]. If 8∗ is not in
the subtree of 9 , then by the induction hypothesis, � (8

∗)
9l
+ � (8

∗)
9r

= [0, 2ℎ] + [0, 2ℎ] = [0, 2ℎ+1]. �

Claim 5.24. If ΠHE satis�es evaluation correctness, then %ValidInt is a tree-based additive invariant.

Proof. Take any 8∗ ∈ [=], (sk0, pk0), (sk1, pk1) in the support of HE.Gen(1_, 1=), any triple of indices 9, 9l, 9r ∈ [2=−1]
where 9l, 9r are the indices of the children of 9 , and any set of ciphertexts

(
ct(0)l , ct(1)l

)
,
(
ct(0)r , ct(1)r

)
. Suppose 9 has

height ℎ ≤ log=. Let ct(0)sum = HE.Add
(
pk0, ct

(0)
l , ct(0)r

)
and ct(1)sum = HE.Add

(
pk1, ct

(1)
l , ct(1)r

)
. Suppose

%ValidInt
(
8∗, ct(0)l , ct(1)l , sk0, sk1, 9l

)
= 1 and %ValidInt

(
8∗, ct(0)r , ct(1)r , sk0, sk1, 9r

)
= 1.

This means HE.Dec
(
sk0, ct

(0)
l

)
∈ � (8

∗)
9l

and HE.Dec
(
sk0, ct

(0)
r ) ∈ � (8

∗)
9r

. By Claim 5.23, this means

HE.Dec
(
sk0, ct

(0)
l

)
,HE.Dec

(
sk0, ct

(0)
r

)
∈ [0, 2ℎ−1] .

Since 2ℎ−1 ≤ =/2, we can appeal to evaluation correctness of ΠH and conclude that

HE.Dec
(
sk0,HE.Add

(
pk0, ct

(0)
l , ct(0)r

) )
= HE.Dec

(
sk0, ct

(0)
l

)
+ HE.Dec

(
sk0, ct

(0)
r

)
∈ � (8

∗)
9l
+ � (8

∗)
9r

= �
(8∗)
9

.

We conclude that %ValidInt
(
8∗, ct(0)sum, ct

(1)
sum, sk0, sk1, 9

)
= 1. �
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Proof of Theorem 5.22. Returning now to the proof of Theorem 5.22, let A be any e�cient adversary for the
zero-�xing security game. We start by de�ning a mapping DeriveChal as

DeriveChal((, 8) := ((, 8) ↦→ ((, (, (8, 1)).

Let Expt := Expt[%ValidInt,DeriveChal] be the predicate propagation experiment from De�nition 5.7. First, we claim
that

Pr[ExptZFA (_) = 1] ≤ Pr[Expt(A) = 1] . (5.12)

By construction, the adversary’s view in ExptZF and Expt is identical. It su�ces to consider the outputs of the two
experiments. Suppose ExptZFA (_) = 1. This means the adversary A outputs dig =

(
ct(0)root, ct

(1)
root, com0, com1, cdig

)
and an opening c such that Extract(td, dig) = Matching and VerOpen(hk, dig, 8, 1, c) = 1. This means the following:

• By construction, Extract(td, dig) outputs Matching if HE.Dec(sk0, ct
(0)
root) = 0. From Claim 5.24, we have that

�
(8∗)
2=−1 = [1, =]. Hence, in this case, HE.Dec

(
sk0, ct

(0)
root

)
∉ �
(8∗)
2=−1, so %ValidInt

(
8∗, ct(0)root, ct

(1)
root, sk0, sk1, 2= − 1

)
= 0 in

the predicate propagation experiment Expt(A).

• By de�nition, VerOpen outputs 1 if Verify′(vkBARG,�8∗,1, 2= − 1, c) = 1, where 8∗ ∈ ( is the index chosen by the
adversary at the beginning of the (selective) zero-�xing game. By construction of DeriveChal, we have that
idx = (8∗, 1) in the execution of Expt(A). This means that Verify′(vkBARG,�idx, 2= − 1, c) = 1.

Since %ValidInt
(
8∗, ct(0)root, ct

(1)
root, sk0, sk1, 2= − 1

)
= 0 and Verify′(vkBARG,�idx, 2= − 1, c) = 1, the predicate propagation

experiment Expt(A) also outputs 1. We now show using Theorem 5.9 that Pr[Expt(A) = 1] ≤ negl(_). To leverage
Theorem 5.9, we analyze the predicate propagation hybrid experiment Expt9 := Expt9 [%ValidInt,DeriveChal] from
De�nition 5.8.

Claim 5.25. If ΠHE is perfectly correct and ΠCom satis�es computational binding, then there exists a negligible function
negl(·) such that for all 9 ∈ [=], it holds that Pr[Expt9 (A) = 1] = negl(_).

Proof. Suppose there exists some 9 ∈ [=] where Pr[Expt9 (A) = 1] ≥ Y (_) for some non-negligible Y. We use A to
construct an adversary B that breaks computational binding of ΠCom:

1. On input the security parameter 1_ , algorithm B runs algorithmA to obtain the input length 1= , the set ( ⊆ [=],
and an index 8∗ ∈ ( .

2. Algorithm B outputs the block length 1ℓct (_,=) and the vector length 2= − 1 to the challenger. The challenger
responds with crsCom.

3. Algorithm B computes ((, (, (8∗, 1)) ← DeriveChal((, 8∗). It then samples the following components:

• Sample (sk0, pk0) ← HE.Gen(1_, 1=) and (sk1, pk1) ← HE.Gen(1_, 1=).
• Sample (crsBARG, vkBARG, tdBARG) ← TrapGen′(1_, 12=−1, 1B , 13, { 9}).
• For each 1 ∈ {0, 1}, sample ct(1)zero ← HE.Enc(pk1, 0). Then, for each 8 ∈ [=] and 1 ∈ {0, 1}, if 8 ∈ ( , sample
ct(1)
8
← HE.Enc(pk1, 1); otherwise, if 8 ∉ ( , sample ct(1)

8
← HE.Enc(pk1, 0).

• For each 1 ∈ {0, 1}, let
(
com(1)hk , f

(1)
hk,1, . . . , f

(1)
hk,=

)
← Com.Commit

(
crsCom, (ct(1)1 , . . . , ct(1)= )

)
4. Algorithm B constructs hk and vk according to Eqs. (5.1) and (5.2):

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1)
zero, ct

(1)
1 , . . . , ct(1)= , f

(1)
hk,1, . . . , f

(1)
hk,=

}
1∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
Algorithm B gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, cdig

)
and a proof c .
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6. Algorithm B extracts
(
Ê
(0)
9
, Ê
(1)
9
, f
(0)
9
, f
(1)
9
, F̃ 9

)
← Extract′(tdBARG, c, 9) and parses F̃ 9 =

(
ĉt(0) , ĉt(1) , f (0)hk , f

(1)
hk

)
.

7. Output the commitment com(0)hk , the index 9 , and the value-opening pairs
(
ct(0)
9
, f
(0)
hk, 9

)
and

(
ĉt(0) , f (0)hk

)
.

By construction, the challenger samples crsCom ← Com.Setup(1_, 1ℓct (_,=) , 2= − 1), which matches the speci�cation
in Expt9 . This, algorithm B perfectly simulates an execution of Expt9 for A. By assumption, with probability Y,
algorithm A outputs dig and c such that the experiment outputs 1. This means the following conditions hold:

�8∗,1
(
9,

(
Ê
(0)
9
, Ê
(1)
9
, f
(0)
9
, f
(1)
9
, F̃ 9

) )
= 1 and %ValidInt

(
8∗, Ê (0)

9
, Ê
(1)
9
, sk0, sk1, 9

)
= 0.

By de�nition of �8∗,1 and using the fact that 9 ∈ [=], this means

Com.Verify
(
crscom, com

(0)
hk , 9, ĉt

(0)
, f
(0)
hk

)
= 1 and Ê

(0)
9
∈

{
ct(0)zero , ĉt

(0)}
.

If 9 = 8∗, we additionally have that Ê (0)
9

= ĉt(0) . Next, by correctness of ΠCom,

Com.Verify
(
crscom, com

(0)
hk , 9, ct

(0)
9
, f
(0)
hk, 9

)
= 1.

It su�ces to argue that ct(0)
9

≠ ĉt(0) . We consider two cases:

• Suppose 9 = 8∗. Recall that in this case, Ê (0)
9

= ĉt(0) . By Claim 5.24, we have that � (8
∗)

9
= [1, 1]. Since

%ValidInt
(
8∗, Ê (0)

9
, Ê
(1)
9
, sk0, sk1, 9

)
= 0, this means that HE.Dec(sk0, Ê

(0)
9
) ∉ � (8

∗)
9

. Thus, HE.Dec(sk0, Ê
(0)
9
) ≠ 1. Next,

algorithm B constructs ct(0)
9

to be an encryption of 1 (since 9 = 8∗ ∈ (). By perfect correctness of ΠHE, this
means that ĉt(0) = Ê (0)

9
≠ ct(0)

9
.

• Suppose 9 ≠ 8∗. By Claim 5.24, we have that � (8
∗)

9
= [0, 1]. By the same reasoning as in the previous case, this

means that HE.Dec(sk0, Ê
(0)
9
) ∉ � (8

∗)
9

. In other words, HE.Dec(sk0, Ê
(0)
9
) ∉ {0, 1}. By construction, ct(0)zero is an

encryption of 0, so by perfect correctness of ΠHE, we have that Ê (0)
9

≠ ct(0)zero. Hence, it must be the case that
Ê
(0)
9

= ĉt(0) . Next, the ciphertext ct(0)
9

is an encryption of either 0 or 1, so we conclude that ĉt(0) = Ê (0)
9

≠ ct(0)
9

.

In both cases, we conclude that ĉt(0) ≠ ct(0)
9

. In this case, algorithm B successfully opens com(0)hk to two distinct
values ct(0)

9
≠ ĉt(0) . Thus algorithm B breaks binding with the same advantage Y. �

Since for all 9 ∈ [=], it holds that Pr[Expt9 (A) = 1] ≤ negl(_), we can invoke Theorem 5.9 to conclude that
Pr[Expt(A) = 1] ≤ negl(_). Zero-�xing security now follows via Eq. (5.12). �

5.1.4 Extractor Validity

In this section, we show that Construction 5.2 satis�es extractor validity. In the extractor validity game, the hash key
is sampled to be zero-�xing on the empty set ∅, and the goal of the adversary is to produce a valid, but non-matching
digest. In this setting, the ciphertexts in the hash key are all encryptions of 0. In order to break the extractor validity
property, the adversary needs to produce a root ciphertext that encrypts a non-zero value, and yet, still argue that the
root ciphertext was derived by summing a collection of ciphertexts that each encryption 0. The latter is ensured by
security of the BARG, and speci�cally the predicate propagation theorem (Theorem 5.9). We give the formal theorem
statement and proof below:

Theorem 5.26. If ΠHE satis�es perfect correctness and evaluation correctness, ΠCom is computationally binding, and
ΠBARG satis�es set hiding, set hiding with extraction, and somewhere extractability, then Construction 5.2 satis�es
extractor validity.
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Proof. Similar to the proof of Theorem 5.22, we leverage Theorem 5.9. We start by de�ning a tree-based additive
invariant % as follows. De�ne the “matching” predicate %Matching : {0, 1}∗ → {0, 1} as follows:

%Matching (8∗, ct(0) , ct(1) , sk0, sk1, 9) :=
{

1 HE.Dec(sk0, ct(0) ) = 0
0 HE.Dec(sk0, ct(0) ) ≠ 0.

We �rst show that %Matching is a tree-based additive invariant.

Claim 5.27. If ΠHE satis�es evaluation correctness, then %Matching is a tree-based additive invariant.

Proof. Take any 8∗ ∈ [=], any (sk0, pk0), (sk1, pk1) in the support of HE.Gen(1_, 1=), any triple of indices 9, 9l, 9r ∈
[2= − 1] where 9l, 9r are the indices of the children of 9 , and any set of ciphertexts

(
ct(0)l , ct(1)l

)
,
(
ct(0)r , ct(1)r

)
. Suppose

%Matching (8∗, ct(0)l , ct(1)l , sk0, sk1, 9l) = %Matching (8∗, ct(0)r , ct(1)r , sk0, sk1, 9r) = 1.

This means HE.Dec(sk0, ct
(0)
l ) = 0 and HE.Dec(sk0, ct

(0)
r ) = 0. For 1 ∈ {0, 1}, let ct(1)sum = HE.Add

(
pk1, ct

(1)
l , ct(1)r

)
. By

evaluation correctness of ΠHE, we have HE.Dec(sk0, ct
(0)
sum) = 0 and so %Matching

(
8∗, ct(0)sum, ct

(1)
sum, sk0, sk1, 9

)
= 1. �

Let A be an e�cient adversary for the extractor-validity game. De�ne the mapping DeriveChal as

DeriveChal((, 8) := ((, 8) ↦→ (∅,∅,⊥).

Let Expt := Expt[%Matching,DeriveChal] be the predicate propagation experiment from De�nition 5.7. First, we claim
that we can use A to construct an adversary A ′ such that

Pr[ExptEVA (_) = 1] ≤ Pr[Expt(A ′) = 1] . (5.13)

Algorithm A ′ works as follows:

1. On input the security parameter 1_ , algorithm A ′ runs A on the same security parameter. Algorithm A
outputs an input length 1= . Algorithm A ′ outputs the input length 1= , the set ( = ∅, and the index 8∗ = ⊥.

2. The challenger replies with (hk, vk) which A ′ forwards to A.

3. Algorithm A outputs a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, cdig

)
. Algorithm A ′ outputs the same digest dig

and c = cdig.

We now show that Eq. (5.13) holds. By construction, the pair (hk, vk) sampled by the challenger are distributed
according to the real setup algorithm. Thus, algorithmA perfectly simulates an execution of ExptEVA for adversaryA.
Thus, with probability Pr[ExptEVA (_) = 1], algorithmA outputs a digest dig where Extract(td, dig) = NotMatching
and ValidateDigest(hk, dig) = 1. This means the following:

• By construction, Extract(td, dig) outputs NotMatching if HE.Dec(sk0, ct
(0)
root) ≠ 0. By construction of %Matching,

this means %Matching
(
8∗, ct(0)root, ct

(1)
root, sk0, sk1, 2= − 1

)
= 0.

• Next, ValidateDigest outputs 1 if Verify′(vkBARG,�⊥, 2= − 1, cdig) = 1. By construction of DeriveChal, we have
that idx = ⊥ in the execution of Expt(A), so this means that Verify′(vkBARG,�idx, 2= − 1, cdig) = 1.

Since %Matching
(
8∗, ct(0)root, ct

(1)
root, sk0, sk1, 2=− 1

)
= 0 and Verify′(vkBARG,�idx, 2=− 1, cdig) = 1, the predicate propagation

experiment Expt(A ′) also outputs 1. Hence, we conclude that Pr[Expt(A ′) = 1] ≥ Pr[ExptEVA (_) = 1]. To complete
the proof, we now show using Theorem 5.9 that Pr[Expt(A ′) = 1] ≤ negl(_). To leverage Theorem 5.9, we analyze
the predicate propagation hybrid experiment Expt9 := Expt9 [%Matching,DeriveChal] from De�nition 5.8.

Claim 5.28. If ΠHE is perfectly correct and ΠCom satis�es computational binding, then there exists a negligible function
negl(·) such that for all 9 ∈ [=], it holds that Pr[Expt9 (A ′) = 1] = negl(_).
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Proof. Suppose there exists some 9 ∈ [=] where Pr[Expt9 (A ′) = 1] ≥ Y (_) for some non-negligible Y. We use A ′ to
construct an adversary B that breaks computational binding of ΠCom.

1. On input the security parameter 1_ , algorithm B runs algorithmA ′ to obtain the input length 1= , the set ( = ∅,
and the index 8∗ = ⊥.

2. Algorithm B outputs the block length 1ℓct (_,=) and the vector length 2= − 1 to the challenger. The challenger
responds with crsCom.

3. Algorithm B computes (∅,∅,⊥) ← DeriveChal((, 8∗). It then samples the following components:

• Sample (sk0, pk0) ← HE.Gen(1_, 1=) and (sk1, pk1) ← HE.Gen(1_, 1=).
• Sample (crsBARG, vkBARG, tdBARG) ← TrapGen′(1_, 12=−1, 1B , 13, { 9}).
• For each 1 ∈ {0, 1}, sample ct(1)zero ← HE.Enc(pk1, 0). Then, for each 8 ∈ [=] and 1 ∈ {0, 1}, sample
ct(1)
8
← HE.Enc(pk1, 0).

• For each 1 ∈ {0, 1}, let
(
com(1)hk , f

(1)
hk,1, . . . , f

(1)
hk,=

)
← Com.Commit

(
crsCom, (ct(1)1 , . . . , ct(1)= )

)
.

4. Algorithm B constructs hk and vk according to Eqs. (5.1) and (5.2):

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1)
zero, ct

(1)
1 , . . . , ct(1)= , f

(1)
hk,1, . . . , f

(1)
hk,=

}
1∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
Algorithm B gives (hk, vk) to A ′.

5. Algorithm A ′ outputs a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, cdig

)
and a proof c = cdig.

6. Algorithm B extracts
(
Ê
(0)
9
, Ê
(1)
9
, f
(0)
9
, f
(1)
9
, F̃ 9

)
← Extract′(tdBARG, c, 9) and parses F̃ 9 =

(
ĉt(0) , ĉt(1) , f (0)hk , f

(1)
hk

)
.

7. Output the commitment com(0)hk , the index 9 , and the value-opening pairs
(
ct(0)
9
, f
(0)
hk, 9

)
and

(
ĉt(0) , f (0)hk

)
.

By construction, the challenger samples crsCom ← Com.Setup(1_, 1ℓct (_,=) , 2= − 1), which matches the speci�cation
in Expt9 . This, algorithm B perfectly simulates an execution of Expt9 for A ′. By assumption, with probability Y,
algorithm A ′ outputs dig and c such that the experiment outputs 1. This means the following conditions hold:

�⊥
(
9,

(
Ê
(0)
9
, Ê
(1)
9
, f
(0)
9
, f
(1)
9
, F̃ 9

) )
= 1 and %Matching

(
8∗, Ê (0)

9
, Ê
(1)
9
, sk0, sk1, 9

)
= 0.

By de�nition of �⊥ and using the fact that 9 ∈ [=], this means

Com.Verify
(
crscom, com

(0)
hk , 9, ĉt

(0)
, f
(0)
hk

)
= 1 and Ê

(0)
9
∈

{
ct(0)zero , ĉt

(0)}
.

Next, by correctness of ΠCom,
Com.Verify

(
crscom, com

(0)
hk , 9, ct

(0)
9
, f
(0)
hk, 9

)
= 1.

It su�ces to argue that ct(0)
9

≠ ĉt(0) . Since %Matching
(
8∗, Ê (0)

9
, Ê
(1)
9
, sk0, sk1, 9

)
= 0, this means that HE.Dec(sk0, Ê

(0)
9
) ≠ 0.

Since ct(0)zero is an encryption of 0, we can appeal to perfect correctness of ΠHE to conclude that Ê (0)
9

≠ ct(0)zero. This
means that Ê (0)

9
= ĉt(0) . Moreover, ct(0)

9
is also an encryption of 0, so again by perfect correctness of the encryption

scheme, we can conclude that ct(0)
9

≠ Ê
(0)
9

= ĉt(0) . In this case, algorithm B successfully opens com(0)hk to two distinct
values ct(0)

9
≠ ĉt(0) . Thus algorithm B breaks binding with the same advantage Y. �

Since for all 9 ∈ [=], it holds that Pr[Expt9 (A ′) = 1] ≤ negl(_), we can invoke Theorem 5.9 to conclude that
Pr[Expt(A ′) = 1] ≤ negl(_). Extractor-validity security now follows via Eq. (5.13). �
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5.1.5 Index Hiding with Extracted Guess

In this section, we show that Construction 5.2 satis�es the index hiding with extracted guess property. The challenge
in this reduction is we need to switch from an encryption of 0 to an encryption of 1 (in the hash key) while retaining
the ability to decide whether the digest is “Matching” or not (which in the real scheme, requires knowledge of the
secret key for the underlying encryption scheme). As described in Section 1.2, we solve this by adopting a Naor-Yung
proof strategy.

Theorem 5.29. If ΠHE satis�es perfect correctness, evaluation correctness, and CPA-security, ΠCom is computationally
binding and ΠBARG satis�es set hiding with extraction, set hiding, and is somewhere extractable, then Construction 5.2
satis�es index hiding with extracted guess.

Proof. Let A be an e�cient adversary for the index hiding with extracted guess security game. We de�ne a sequence
of hybrid experiments:

• Hyb0: This is ExptIHEA (_, 0). Speci�cally, the game proceeds as follows:

1. On input the security parameter 1_ , algorithm A outputs the input length 1= , a set ( ⊆ [=], and an index
8∗ ∈ ( .

2. The challenger now samples the following quantities as in Setup:
– Sample (sk0, pk0) ← HE.Gen(1_, 1=) and (sk1, pk1) ← HE.Gen(1_, 1=).
– Sample crsCom ← Com.Setup(1_, 1ℓct (_,=) , 2= − 1).
– Sample (crsBARG, vkBARG) ← Gen′(1_, 12=−1, 1B , 13), where B is a bound on the size of the circuit

computing the index relation from Fig. 2.
– For each 1 ∈ {0, 1}, sample ct(1)zero ← HE.Enc(pk1, 0). Then, for each 8 ∈ [=] and 1 ∈ {0, 1}, if
8 ∈ ( \ {8∗}, sample ct(1)

8
← HE.Enc(pk1, 1); otherwise sample ct(1)

8
← HE.Enc(pk1, 0).

– For each 1 ∈ {0, 1}, let
(
com(1)hk , f

(1)
hk,1, . . . , f

(1)
hk,=

)
← Com.Commit

(
crsCom, (ct(1)1 , . . . , ct(1)= )

)
3. The challenger constructs hk and vk according to Eqs. (5.1) and (5.2):

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1)
zero, ct

(1)
1 , . . . , ct(1)= , f

(1)
hk,1, . . . , f

(1)
hk,=

}
1∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
The challenger gives (hk, vk) to A.

4. Algorithm A outputs a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, cdig

)
and an opening c .

5. The output of the experiment is 1 if

Verify′(vkBARG,�8∗,0, 2= − 1, c) = 1 and HE.Dec
(
sk0, ct

(0)
root

)
= 0.

Otherwise, the output is 0.

• Hyb1: Same as Hyb0, except the challenger samples ct(1)
8∗ ← HE.Enc(pk1, 1).

• Hyb2: Same as Hyb1, except the output of the experiment is 1 if

Verify′(vkBARG,�8∗,0, 2= − 1, c) = 1 and HE.Dec
(
sk1, ct

(1)
root

)
= 0.

Notably, the challenger’s behavior in this experiment does not depend on sk0.

• Hyb3: Same as Hyb2, except the output of the challenger samples ct(0)
8∗ ← HE.Enc(pk0, 1).

• Hyb4: Same as Hyb3, except the output of the experiment is 1 if

Verify′(vkBARG,�8∗,0, 2= − 1, c) = 1 and HE.Dec
(
sk0, ct

(0)
root

)
= 0.

This is experiment ExptIHEA (_, 1).

59



We write Hyb8 (A) to denote the output of experiment of Hyb8 with adversary A. We now analyze each pair of
hybrid experiments.

Claim 5.30. If ΠHE is CPA-secure, then there exists a negligible function negl(·) such that��Pr[Hyb1 (A) = 1] − Pr[Hyb0 (A) = 1]
�� = negl(_).

Proof. Suppose | Pr[Hyb1 (A) = 1] − Pr[Hyb0 (A) = 1] | ≥ Y (_) for some non-negligible Y. We use A to construct an
algorithm B that breaks CPA security of ΠHE:

1. On input the security parameter 1_ , algorithm B runs algorithmA on the same input to obtain the input length
1= , the set ( ⊆ [=], and an index 8∗ ∈ ( .

2. Algorithm B sends 1= as the input range. The challenger replies with a public key pk1.

3. Algorithm B now samples the following components:

• Sample (sk0, pk0) ← HE.Gen(1_, 1=).
• Sample (crsBARG, vkBARG, tdBARG) ← TrapGen′(1_, 12=−1, 1B , 13, { 9}).
• For each 1 ∈ {0, 1}, sample ct(1)zero ← HE.Enc(pk1, 0).

• For each 8 ∈ [=] \ {8∗} and 1 ∈ {0, 1}, if 8 ∈ ( , sample ct(1)
8
← HE.Enc(pk1, 1); otherwise, if 8 ∉ ( , sample

ct(1)
8
← HE.Enc(pk1, 0).

4. Algorithm B makes an encryption query on the pair (0, 1). The challenger replies with a ciphertext ct(1)
8∗ .

Algorithm B also computes ct(0)
8∗ ← HE.Enc(pk0, 0).

5. Finally, for each 1 ∈ {0, 1}, let
(
com(1)hk , f

(1)
hk,1, . . . , f

(1)
hk,=

)
← Com.Commit

(
crsCom, (ct(1)1 , . . . , ct(1)= )

)
. Next, algo-

rithm B constructs hk and vk according to Eqs. (5.1) and (5.2):

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1)
zero, ct

(1)
1 , . . . , ct(1)= , f

(1)
hk,1, . . . , f

(1)
hk,=

}
1∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
Algorithm B gives (hk, vk) to A.

6. Algorithm A outputs a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, cdig

)
and a proof c .

7. Algorithm B outputs 1 if

Verify′(vkBARG,�8∗,0, 2= − 1, c) = 1 and HE.Dec
(
sk0, ct

(0)
root

)
= 0,

where �8∗,0 is the circuit computing the relation from Fig. 2 (which is a function of the components from hk
and dig).

Observe that if ct(1)
8∗ is an encryption of 0 (under pk1), then algorithm B perfectly simulates Hyb0 forA. Alternatively,

if ct(1)
8∗ is an encryption of 1 (under pk1), then algorithm B perfectly simulates Hyb1 for A. We conclude that the

advantage of B is Y. �

Claim 5.31. If ΠHE is perfectly correct and satis�es evaluation correctness, ΠCom is computationally binding, ΠBARG
satis�es set hiding with extraction, set hiding, and is somewhere extractable, then there exists a negligible function negl(·)
such that | Pr[Hyb2 (A) = 1] − Pr[Hyb1 (A) = 1] | = negl(_).

60



Proof. By construction, the only di�erence between the execution of Hyb1 and Hyb2 is the output condition. Let E be
the following event in an execution of Hyb1 and Hyb2:

Verify′(vkBARG,�8∗,0, 2= − 1, c) = 1 and HE.Dec
(
sk0, ct

(0)
root

)
≠ HE.Dec

(
sk1, ct

(1)
root

)
. (5.14)

Observe that if E does not occur, then the output of Hyb1 and Hyb2 is identical. This means that

| Pr[Hyb2 (A) = 1] − Pr[Hyb1 (A) = 1] | ≤ Pr[E] .

We now leverage Theorem 5.9 to argue that Pr[E] = negl(_). To do so, we start by de�ning a suitable tree-based
additive invariant. Similar to the proof of Theorem 5.22, we �rst associate a “validity interval” with each index
9 ∈ [2= − 1]. For an index 8∗ ∈ [=], we de�ne the interval � (8

∗)
9

with each node 9 as follows:

• For 9 ∈ [=], if 9 = 8∗, let � (8
∗)

9
= [0, 0]. Otherwise, let � (8

∗)
9

= [0, 1].

• For an index 9 ∈ [= + 1, 2= − 1], let 9l, 9r be the indices of the children of 9 according to De�nition 5.1. If
�
(8∗)
9l

= [0l, 1l] and � (8
∗)

9r
= [0r, 1r], then de�ne � (8

∗)
9

= [0l + 0r, 1l + 1r] = � (8
∗)

9l
+ � (8

∗)
9r

, where we de�ne interval
addition to be component-wide addition: [0l, 1l] + [0r, 1r] = [0l + 0r, 1l + 1r].

By the same argument as in the proof of Claim 5.23, for all 9 ∈ [2= − 1] and all 8∗ ∈ [=], we have that � (8
∗)

9
⊆ [0, 2ℎ],

where ℎ is the height of node 9 . Now, we de�ne the validity predicate %Valid : {0, 1}∗ → {0, 1} as follows:

• On input (8∗, ct(0) , ct(1) , sk0, sk1, 9), compute G1 ← HE.Dec(sk1, ct(1) ) for each 1 ∈ {0, 1}.

• Output 1 if G0 = G1 ∈ � (8
∗)

9
and 0 otherwise.

In other words, the tuple (8∗, ct(0) , ct(1) , sk0, sk1, 9) is valid if the ciphertexts encrypt the same value, and moreover,
they are within the valid range.8 We now show that %Valid is a tree-based additive invariant.

Lemma 5.32. If ΠHE satis�es evaluation correctness, then %Valid is a tree-based additive invariant.

Proof. Take any 8∗ ∈ [=], any (sk0, pk0), (sk1, pk1) in the support of HE.Gen(1_, 1=), any triple of indices 9, 9l, 9r ∈
[2= − 1] where 9l, 9r are the indices of the children of 9 , and any set of ciphertexts

(
ct(0)l , ct(1)l

)
,
(
ct(0)r , ct(1)r

)
. Suppose

9 has height ℎ ≤ log=. For 1 ∈ {0, 1}, let ct(1)sum = HE.Add
(
pk1, ct

(1)
l , ct(1)r

)
. Suppose

%Valid (8∗, ct(0)l , ct(1)l , sk0, sk1, 9l) = %Valid (8∗, ct(0)r , ct(1)r , sk0, sk1, 9r) = 1.

This means HE.Dec(sk0, ct
(0)
l ) = HE.Dec(sk1, ct

(1)
l ) ∈ � (8

∗)
9l

and HE.Dec(sk0, ct
(0)
r ) = HE.Dec(sk1, ct

(1)
r ) ∈ � (8

∗)
9r

. As
argued above, since 9l, 9r have height ℎ − 1, we conclude that for 1 ∈ {0, 1},

HE.Dec
(
sk1, ct

(1)
l

)
,HE.Dec

(
sk1, ct

(1)
r

)
∈ [0, 2ℎ−1] .

Since 2ℎ−1 ≤ =/2, we can appeal to evaluation correctness of ΠH and conclude that

HE.Dec
(
sk0, ct

(0)
sum

)
= HE.Dec

(
sk0, ct

(0)
l

)
+ HE.Dec

(
sk0, ct

(0)
r

)
= HE.Dec

(
sk1, ct

(1)
l

)
+ HE.Dec

(
sk1, ct

(1)
r

)
= HE.Dec

(
sk1, ct

(1)
sum

)
∈ � 9l + � 9r = � 9 ,

We conclude that %Valid
(
8∗, ct(0)sum, ct

(1)
sum, sk0, sk1, 9

)
= 1. �

8The range check is needed to ensure that all of the ciphertexts decrypt to values within the (bounded) support of the homomorphic encryption
scheme. This is necessary to invoke evaluation correctness of ΠHE (see the proof of Lemma 5.32).
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To leverage the predicate-propagation theorem (Theorem 5.9) to prove Claim 5.31, we now de�ne a mapping
DeriveChal as

DeriveChal((, 8) := ((, 8) ↦→ (( \ {8} , (, (8, 0)).
Let Expt := Expt[%Valid,DeriveChal] be the predicate propagation experiment from De�nition 5.7. First, we argue
that

Pr[E] ≤ Pr[Expt(A) = 1], (5.15)

where E is the event from Eq. (5.14). By construction, the adversary’s view in Hyb1 and Expt is identical. Suppose E
occurs in an execution of Hyb1. Then the following hold:

• First Verify′(vkBARG,�8∗,0, 2= − 1, c) = 1. By construction of DeriveChal, we have that idx = (8∗, 0) in the
execution of Expt(A). Hence, this means that Verify′(vkBARG,�idx, 2= − 1, c) = 1.

• Next, HE.Dec
(
sk0, ct

(0)
root

)
≠ HE.Dec

(
sk1, ct

(1)
root

)
. This means %Valid

(
ct(0)root, ct

(1)
root, sk0, sk1, 2= − 1

)
= 0.

Correspondingly, the output in Expt is also 1 in this case. Hence, we conclude that Pr[Expt(A) = 1] ≥ Pr[E]. To
complete the proof, we analyze the predicate propagation hybrid experiment Expt9 := Expt9 [%Valid,DeriveChal].

Lemma 5.33. If ΠHE is perfectly correct and ΠCom satis�es computational binding, then there exists a negligible function
negl(·) such that for all 9 ∈ [=], it holds that Pr[Expt9 (A) = 1] = negl(_).

Proof. Suppose there exists some 9 ∈ [=] where Pr[Expt9 (A) = 1] ≥ Y (_) for some non-negligible Y. We use A to
construct an adversary B that breaks computational binding of ΠCom.

1. On input the security parameter 1_ , algorithm B runs algorithm A to obtain the input length 1= , a set ( ⊆ [=],
and an index 8∗ ∈ ( .

2. Algorithm B outputs the block length 1ℓct (_,=) and the vector length 2= − 1 to the challenger. The challenger
responds with crsCom.

3. Algorithm B computes (( \ {8∗} , (, (8∗, 0)) ← DeriveChal((, 8∗). It then samples the following components:

• Sample (sk0, pk0) ← HE.Gen(1_, 1=) and (sk1, pk1) ← HE.Gen(1_, 1=).
• Sample (crsBARG, vkBARG, tdBARG) ← TrapGen′(1_, 12=−1, 1B , 13, { 9}).
• For each 1 ∈ {0, 1}, sample ct(1)zero ← HE.Enc(pk1, 0).
• For each 8 ∈ [=] \ {8∗} and 1 ∈ {0, 1}, if 8 ∈ ( , sample ct(1)

8
← HE.Enc(pk1, 1). If 8 ∉ ( , sample

ct(1)
8
← HE.Enc(pk1, 0).

• Sample ct(0)
8∗ ← HE.Enc(pk0, 0) and ct(1)

8∗ ← HE.Enc(pk1, 1).

• For each 1 ∈ {0, 1}, let
(
com(1)hk , f

(1)
hk,1, . . . , f

(1)
hk,=

)
← Com.Commit

(
crsCom, (ct(1)1 , . . . , ct(1)= )

)
.

4. Algorithm B constructs hk and vk according to Eqs. (5.1) and (5.2):

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1)
zero, ct

(1)
1 , . . . , ct(1)= , f

(1)
hk,1, . . . , f

(1)
hk,=

}
1∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
Algorithm B gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, cdig

)
and a proof c = cdig.

6. Algorithm B extracts
(
Ê
(0)
9
, Ê
(1)
9
, f
(0)
9
, f
(1)
9
, F̃ 9

)
← Extract′(tdBARG, c, 9) and parses F̃ 9 =

(
ĉt(0) , ĉt(1) , f (0)hk , f

(1)
hk

)
.

7. Algorithm B checks if there exists 1 ∈ {0, 1} where ĉt(1) ≠ ct(1)
9

and Com.Verify
(
crsCom, com

(1)
hk , 9, ĉt

(1)
, f
(1)
hk

)
=

1. If so, it outputs the commitment com(1)hk , the index 9 , and the value-opening pairs
(
ct(1)
9
, f
(1)
hk, 9

)
and

(
ĉt(1) , f (1)hk

)
.
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By construction, the challenger samples crsCom ← Com.Setup(1_, 1ℓct (_,=) , 2= − 1), which matches the speci�cation
in Expt9 . This, algorithm B perfectly simulates an execution of Expt9 for A. By assumption, with probability Y,
algorithm A outputs dig and c such that the experiment outputs 1. This means the following conditions hold:

�8∗,0
(
9,

(
Ê
(0)
9
, Ê
(1)
9
, f
(0)
9
, f
(1)
9
, F̃ 9

) )
= 1 and %Valid

(
8∗, Ê (0)

9
, Ê
(1)
9
, sk0, sk1, 9

)
= 0.

We consider two possibilities:

• Suppose 9 = 8∗. By construction of�8∗,0 (see Fig. 2), this means Ê (1)
9

= ct(1)zero for 1 ∈ {0, 1}. By construction, ct(1)zero

is an encryption of 0 under pk1 . In this case, %Valid
(
8∗, Ê (0)

9
, Ê
(1)
9
, sk0, sk1, 9

)
= 1, which contradicts the premise.

• Suppose 9 ≠ 8∗. By construction of �8∗,0, there are now two more possibilities:

– Suppose for 1 ∈ {0, 1}, Ê (1)
9

= ct(1)zero. As in the �rst case, this means Ê (0)
9

and Ê (1)
9

decrypt to 0 under sk0

and sk1, respectively. In this case %Valid
(
8∗, Ê (0)

9
, Ê
(1)
9
, sk0, sk1, 9

)
= 1, which again contradicts the premise.

– Suppose for 1 ∈ {0, 1}, Ê (1)
9

= ĉt(1) . In this case, we also have

Com.Verify
(
crsCom, com

(0)
hk , 9, ĉt

(0)
, f
(0)
hk

)
= 1

Com.Verify
(
crsCom, com

(1)
hk , 9, ĉt

(1)
, f
(1)
hk

)
= 1.

Suppose ĉt(1) = ct(1)
9

for all 1 ∈ {0, 1}. In this case, since 9 ≠ 8∗, the ciphertexts ct(0)
9
, ct(1)

9
are either both

encryptions of 0 (if 9 ∉ () or both encryptions of 1 (if 9 ∈ (). In this case,

%Valid
(
8∗, Ê (0)

9
, Ê
(1)
9
, sk0, sk1, 9

)
= %Valid

(
8∗, ct(0)

9
, ct(1)

9
, sk0, sk1, 9

)
= 1,

which contradicts the premise. Thus, if %Valid is not satis�ed, we conclude that there exists some 1 ∈ {0, 1}
such that ĉt(1) ≠ ct(1)

9
.

Thus, there exists some 1 ∈ {0, 1} such that the following holds:

ĉt(1) ≠ ct(1)
9

and Com.Verify
(
crsCom, com

(1)
hk , 9, ĉt

(1)
, f
(1)
hk

)
= 1.

Moreover, by correctness of ΠCom, we have that

Com.Verify
(
crsCom, com

(1)
hk , 9, ct

(1)
9
, f
(1)
hk, 9

)
= 1.

In this case, algorithm B successfully breaks the binding property of the commitment scheme. �

Since for all 9 ∈ [=], it holds that Pr[Expt9 (A) = 1] = negl(_), we can invoke Theorem 5.9 to conclude that
Pr[Expt(A) = 1] = negl(_). Claim 5.31 now follows via Eqs. (5.14) and (5.15). �

Claim 5.34. If ΠHE is CPA-secure, then there exists a negligible function negl(·) such that��Pr[Hyb3 (A) = 1] − Pr[Hyb2 (A) = 1]
�� = negl(_).

Proof. Follows by an analogous argument as the proof of Claim 5.30. In particular, the reduction obtains pk0 and ct(0)
8∗

from the challenger. It samples (pk1, sk1) itself which it can use to compute the output (according to the speci�cation
in Hyb2 and Hyb3). �

Claim 5.35. If ΠHE is perfectly correct and satis�es evaluation correctness, ΠCom is computationally binding, and ΠBARG
satis�es set hiding with extraction, set hiding, and is somewhere extractable, then there exists a negligible function negl(·)
such that | Pr[Hyb4 (A) = 1] − Pr[Hyb3 (A) = 1] | = negl(_).

Proof. Follows by an analogous argument as the proof of Claim 5.31. The only di�erence is that we take the mapping
DeriveChal to be

DeriveChal((, 8) := ((, 8) ↦→ ((, (, (8, 0)).
The rest of the analysis proceeds exactly as before. �

Theorem 5.29 now follows by combining Claims 5.30, 5.31, 5.34 and 5.35. �
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6 Zero-Fixing Hash Function from Bilinear Maps
In this section, we give a direct construction of a zero-�xing hash function from composite-order pairing groups. This
construction does not require making non-black-box use of cryptography (in contrast to the construction from Sec-
tion 5) and highlights an algebraic approach for building zero-�xing hash functions. We begin by recalling the concept
of composite-order pairing groups [BGN05] and the generalized family of subgroup decision assumptions [BWY11].

De�nition 6.1 (Composite-Order Bilinear Group). Let : ∈ N be a constant. A symmetric :-prime composite-order
bilinear group generator is an e�cient algorithm CompGroupGen that takes as input the security parameter _ and
outputs a description (G,G) , {?8 }8∈[: ] , 6, 4) of a bilinear group where each ?8 is a distinct prime where ?8 = 2Ω (_) ,
G and G) are cyclic groups of order # =

∏
8∈[: ] ?8 , 6 is a generator of G, and 4 : G × G→ G) is a non-degenerate

bilinear map (called the “pairing”). We require that the group operation in G and G) as well as the pairing operation
be e�ciently computable.

Notation. Let G be a cyclic group with order # =
∏
8∈[: ] ?8 and generator 6. We write Z# to denote the ring of

integers modulo # . In the following, for 8 ∈ [:], we write G8 = 〈6# /?8 〉 to denote the subgroup of G of order ?8 .
Throughout this section, we will write 68 to denote a random generator of G8 . For a set ( ⊆ [:], we write G(() to
denote subgroup of G of order

∏
8∈( ?8 . By the Chinese Remainder Theorem, we can write G as a direct product

G � G?1 × · · · × G?: . For a group element ℎ ∈ G, we can write ℎ =
∏
8∈[: ] ℎ8 where each ℎ8 ∈ G8 ; we refer to ℎ8 as

the component of ℎ in the subgroup G8 . If two elements ℎ1, ℎ2 ∈ G are equal (i.e., ℎ1 = ℎ2), then for all 8 ∈ [:], the
component of ℎ1 and ℎ2 in G8 are also equal. We extend this terminology to G) .

General subgroup decision assumption. We now recall the general subgroup decision assumption formalized
in [BWY11]. The general subgroup decision assumption essentially states that for sets (0, (1 ⊆ [:], no e�cient
adversary can distinguish between a random element of G((0) from G((1) even given random elements from G(()
for any ( ⊆ [:] where ( ∩ (0 and ( ∩ (1 are both empty or both non-empty. We give the formal de�nition below:

De�nition 6.2 (General Subgroup Decision [BWY11, adapted]). Let : ∈ N be a constant and let CompGroupGen be
a symmetric :-prime composite-order bilinear group generator. For an adversary A and a bit 1 ∈ {0, 1}, we de�ne
the general subgroup decision game ExptSubgroupA (_,1) for CompGroupGen as follows:

1. At the beginning of the game, algorithm A outputs two non-empty sets (0, (1 ⊆ [:] and any number of sets
)1, . . . ,)= ⊆ [:]. We require that for all 8 ∈ [=] either (0 ∩)8 = ∅ = (1 ∩)8 or (0 ∩)8 ≠ ∅ ≠ (1 ∩)8 .

2. The challenger samples (G,G) , {?8 }8∈[: ] , 6, 4) ← CompGroupGen(1_). It compute # =
∏
8∈[: ] ?8 and sets

G = (G,G) , # , 6, 4). For each 8 ∈ [=], the challenger samples -8 r← G()8 ). It also samples / ← G((1), and
gives the challenge (G, -1, . . . , -=, / ) to the adversary.

3. The adversary outputs a bit 1 ′ ∈ {0, 1}, which is the output of the experiment.

We say that the general subgroup decision assumption holds with respect to CompGroupGen if for all e�cient
adversaries A

��Pr[ExptSubgroupA (_, 0) = 1] − Pr[ExptSubgroupA (_, 1)]
�� ≤ negl(_).

Constructing zero-�xing hash functions. We now describe our construction of a zero-�xing hash function from
composite-order bilinear groups. To simplify the main construction, we will describe our construction with a long
veri�cation key. The veri�cation algorithm of our construction only requires local access to the long veri�cation key,
so it is straightforward to compile our construction into one with a short veri�cation key using a collision-resistant
hash function (see Remark 6.5).

Construction 6.3 (Zero-Fixing Hash Function from Composite-Order Bilinear Maps). Let CompGroupGen be a
6-prime composite-order pairing group. We construct a zero-�xing hash function ΠH = (Setup,Hash, ProveOpen,
VerOpen, Extract,ValidateDigest) as follows:
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• Setup(1_, 1=, (): On input a security parameter _, an input length =, and a set ( ⊆ [=], the setup algorithm
samples (G,G) , {?8 }8∈[6] , 6, 4) ← CompGroupGen(1_). Let # =

∏
8∈[6] ?8 . For each 8 ∈ [6], let 68 r← G8 be a

random generator of G8 . Let G = (G,G) , # , 6, 4) be the group description. The setup algorithm now constructs
the hash key components as follows:

– Main components: For each 8 ∈ [=], sample U8 , V8 r← Z# . Set

�8 =

{
(6164)U8 8 ∉ (

(61626364)U8 8 ∈ (.

For each 8 ∈ [=], let �8 = (6165)V8 .

– Cross-terms: For each 8, 9 ∈ [=] where 8 ≠ 9 , sample A8, 9 r← Z# and let �8, 9 ← 6
U8V 9
1 (62636465)A8,9 .

– Digest validation components: Sample V∗ r← Z# and let �∗ = (6165)V
∗ . For each 8 ∈ [=], sample

A ∗8
r← Z# and let �8 = 6U8V

∗

1 (62636465)A
∗
8 .

Output the hash key hk and veri�cation key vk where

hk = vk =
(
G, 61, {�8 , �8 , �8 }8∈[=], {�8, 9 }8≠9 , �∗

)
along with the extraction trapdoor td = 6263.

• Hash(hk, G): On input a hash key hk =
(
G, 61, {�8 , �8 , �8 }8∈[=], {�8, 9 }8≠9 , �∗

)
and an input G ∈ {0, 1}= , the hash

algorithm computes ℎ =
∏
8∈[=] �

G8
8

and D =
∏
8∈[=] �

G8
8

. It outputs the digest dig = (ℎ,D).

• ValidateDigest(vk, dig): On input the veri�cation key vk =
(
G, {�8 , �8 , �8 }8∈[=], {�8, 9 }8≠9 , �∗

)
and a digest

dig = (ℎ,D), the digest-validation algorithm outputs 1 if 4 (ℎ, �∗) = 4 (61, D) and 0 otherwise.

• ProveOpen(hk, G, 8): On input a hash key hk =
(
G, 61, {�8 , �8 , �8 }8∈[=], {�8, 9 }8≠9 , �∗

)
, a string G ∈ {0, 1}= , and

an index 8 ∈ [=], the prove algorithm outputs f =
∏

9≠8 �
G 9
9,8

.

• VerOpen(vk, dig, 8, 1, f): On input a hash key vk =
(
G, 61, {(�8 , �8 )}8∈[=], �∗

)
, a digest dig = (ℎ, c), an index

8 ∈ [=], a bit 1 ∈ {0, 1}, and an opening f , the veri�cation algorithm outputs 1 if 4 (ℎ, �8 ) = 4 (�8 , �8 )1 · 4 (61, f)
and 0 otherwise.

• Extract(td, dig): On input a trapdoor td and a digest dig = (ℎ,D), the extraction algorithm outputs Matching if
4 (ℎ, td) = 1 and NotMatching otherwise.

Theorem 6.4 (Correctness). Construction 6.3 is correct.

Proof. Take any _, = ∈ N and G ∈ {0, 1}= . Let 8 ∈ [=] be an index. Suppose (hk, vk, td) ← Setup(1_, 1=,∅),
dig← Hash(hk, G) and f ← ProveOpen(hk, G, 8). By construction,

hk = vk =
(
G, 61, {�8 , �8 , �8 }8∈[=], {�8, 9 }8≠9 , �∗

)
.

Next, dig = (ℎ,D) where ℎ =
∏
8∈[=] �

G8
8

and D =
∏
8∈[=] �

G8
8

. We consider the two properties:

• Opening correctness: By construction, f =
∏

9≠8 �
G 9
9,8

. By orthogonality, we have 4 (� 9 , �8 ) = 4 (61,� 9,8 ). Then,

4 (ℎ, �8 ) =
∏
9 ∈[=]

4 (� 9 , �8 )G 9 = 4 (�8 , �8 )G8
∏
9≠8

4 (� 9 , �8 )G 9 = 4 (�8 , �8 )G8
∏
9≠8

4 (61,� 9,8 )G 9 = 4 (�8 , �8 )G84 (61, f),

so VerOpen(vk, dig, 8, G8 , f) = 1, as required.

65



• Digest correctness: Again by orthogonality, we have 4 (�8 , �∗) = 4 (61, �8 ), so

4 (ℎ, �∗) =
∏
9 ∈[=]

4 (�8 , �∗)G8 =
∏
9 ∈[=]

4 (61, �8 )G8 = 4 (61, D),

and ValidateDigest(vk, dig) = 1. �

Remark 6.5 (Supporting Fast Veri�cation). As described, the size of the veri�cation key in Construction 6.3 scales
linearly with the input length =. This is incompatible with the succinctness requirements needed by our monotone
BARG construction (Construction 4.4). However, it is straightforward to compress the veri�cation key using a
collision-resistant hash function. Observe that the veri�cation algorithm VerOpen in Construction 6.3 only requires
local access to the veri�cation key (i.e., it only needs to read elements �8 and �8 ). The approach then is to only include
a succinct commitment com to (�1, �1), . . . , (�=, �=) in the veri�cation key; the associated openings are included as
part of the (long) hash key. Then, the opening for an index 8 would additionally contain the elements �8 , �8 as well as
their openings with respect to com. The veri�er would check that the correct elements �8 and �8 were provided and
that they satisfy the veri�cation relation. Security still holds as long as the scheme is computationally binding (since
a computationally-bounded adversary would not be able to open com at 8 to any value other than (�8 , �8 )).

Security properties. We now show that each of the security requirements from De�nition 3.1 holds under the
(general) subgroup decision assumption.

Theorem 6.6 (Set Hiding). If the general subgroup decision holds with respect to CompGroupGen, then Construction 6.3
satis�es set hiding.

Proof. LetA be an e�cient adversary for the set hiding game. We begin by de�ning a sequence of hybrid experiments:

• Hyb0: This is experiment ExptSHA (_, 0). At the beginning of the game, the adversary outputs an input length
= and a set ( ⊆ [=]. Then the challenger samples (G,G) , {?8 }8∈[6] , 6, 4) ← CompGroupGen(1_). It samples
generators 68 r← G8 and sets G = (G,G) , # , 6, 4) where # =

∏
8∈[6] ?8 . It constructs the hash key components

as follows:

– Main components: For each 8 ∈ [=], sample U8 , V8 r← Z# Set �8 = (6164)U8 and �8 = (6165)V8 .

– Cross-terms: For each 8, 9 ∈ [=] where 8 ≠ 9 , sample A8, 9 r← Z# and let �8, 9 = 6
U8V 9
1 (62636465)A8,9 .

– Digest validation components: Sample V∗ r← Z# and let �∗ = (6165)V
∗ . For each 8 ∈ [=], sample

A ∗8
r← Z# and let �8 = 6U8V

∗

1 (62636465)A
∗
8 .

The challenger gives the hash key hk and veri�cation key vk to A where

hk = vk =
(
G, 61, {�8 , �8 , �8 }8∈[=], {�8, 9 }8≠9 , �∗

)
.

Algorithm A outputs a bit 1 ′ ∈ {0, 1}, which is the output of the experiment.

• Hyb1: Same as Hyb0, except the challenger now sets �8, 9 = �
V 9
8
(62636465)A8,9 and �8 = �

V∗

8
(62636465)A

∗
8 . In

particular, in this experiment, the exponents U8 only show up in the de�nition of �8 .

• Hyb2: Same as Hyb1, except for 8 ∈ ( , the challenger now sets �8 = (61626364)U8 .

• Hyb3: Same as Hyb2, except the challenger now sets �8, 9 = 6
U8V 9
1 (62636465)A8,9 and �8 = 6U8V

∗

1 (62636465)A
∗
8 . This

is experiment ExptSHA (_, 1).

We write Hyb8 (A) to denote the output of an execution of Hyb8 with adversary A. We now analyze each pair of
adjacent hybrid experiments.

Lemma 6.7. Pr[Hyb0 (A) = 1] = Pr[Hyb1 (A) = 1]
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Proof. The outputs of Hyb0 (A) and Hyb1 (A) are identically distributed. The only di�erence between these two
distributions is the distribution of the cross-terms �8, 9 and �8 . According to the speci�cation of Hyb1,

�8, 9 = �
V 9
8
(62636465)A8,9 = (6164)U8V 9 (62636465)A8,9 = 6

U8V 9
1 (626365)A8,96

A8,9+U8V 9
4 .

Since A8, 9 r← Z# (and independent of all other quantities in hk, vk), the distribution of A8, 9 + U8V 9 mod ?4 is uniform
over Z?4 . We conclude that the distribution of�8, 9 in Hyb1 is distributed exactly as in Hyb0. A similar analysis applies
to �8 , and the claim holds. �

Lemma 6.8. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that��Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1]
�� = negl(_).

Proof. Suppose there exists an adversary A where
��Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1]

�� ≥ Y (_) for some non-
negligible Y. We use A to construct an adversary B that breaks the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits (0 = {1, 4} and (1 = {1, 2, 3, 4} and the sets {1}, {4}, {2, 3, 4},
and {5} to the subgroup decision challenger.

2. The challenger replies with the challenge (G, 61, 64, -234, 65, / ), where 68 is used to denote the random generator
of G8 and -234

r← G({2, 3, 4}).

3. Algorithm B starts running algorithm A who outputs the input length 1= and a set ( ⊆ [=]. The challenger
samples U8 r← Z# , V8 r← Z# , A8, 9 r← Z# for 8, 9 ∈ [=]. It constructs the components of the hash key as follows:

�8 =

{
(6164)U8 8 ∉ (

/U8 8 ∈ (
and �8 = (6165)V8 and �8, 9 = �

V 9
8
(-23465)A8,9 .

Next, it samples V∗ r← Z# and A ∗8
r← Z# for each 8 ∈ [=]. It sets

�∗ = (6165)V
∗ and �8 = �

V∗

8
(-23465)A

∗
8 .

It sets hk = vk =
(
G, 61, {�8 , �8 , �8 }8∈[=], {�8, 9 }8≠9 , �∗

)
and gives (hk, vk) to A.

4. Algorithm A outputs a bit 1 ′ ∈ {0, 1}, which algorithm B also outputs.

The subgroup decision challenger samples the generators 68 r← G8 exactly as in Hyb1 and Hyb2. Moreover, -234 =
(626364)W for W r← Z# . Since the only element that depends on A8, 9 is �8, 9 and A8, 9 r← Z# , the distribution of - A8,9234 is
identical to the distribution of (626364)A8,9 . Similarly, the distribution of - A

∗
8

234 is identically distributed to (626364)A
∗
8 .

We now consider the two possibilities:

• Suppose / = (6164)C where C r← Z# . This corresponds to an execution of Hyb1 with U8 replaced by U8C when
8 ∈ ( . As long as C is non-zero modulo ?1 and ?4 (which happens with negligible probability), the distribution
of U8C is uniform over Z?1?4 . In this case, algorithm B outputs 1 with probability Pr[Hyb1 (A) = 1].

• Suppose / = (61626364)C where C r← Z# . This corresponds to an execution of Hyb2 with U8 replaced by
U8C whenever 8 ∈ ( . As long as C is non-zero modulo ?1, ?2, ?3, and ?4 (which happens with negligible
probability), the distribution of U8C is uniform over Z?1?2?3?4 . In this case, algorithm B outputs 1 with probability
Pr[Hyb2 (A) = 1].

We conclude that algorithm B succeeds with probability that is negligibly close to Y and the claim holds. �

Lemma 6.9. Pr[Hyb2 (A) = 1] = Pr[Hyb3 (A) = 1].
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Proof. The outputs of Hyb2 (A) and Hyb3 (A) are identically distributed by an analogous argument as the proof of
Lemma 6.7. In particular, in Hyb2, for 8 ∈ ( ,

�8, 9 = �
V 9
8
(62636465)A8,9 = (61626364)U8V 9 (62636465)A8,9 = 6

U8V 9
1 (626364)A8,9+U8V 96

A8,9
5 .

Again since A8, 9 r← Z# and independent of all other quantities in hk, vk, the distribution of A8, 9 + U8V 9 mod ?2?3?4 is
identical to the distribution of A8, 9 r← Z?2?3?4 . A similar argument applies to �8, 9 for 8 ∉ ( and the �8 terms. �

Set hiding now follows by combining Lemmas 6.7 to 6.9. �

Theorem6.10 (Index Hiding with Extracted Guess). If the general subgroup decision holds with respect toCompGroupGen,
then Construction 6.3 satis�es one-sided index hiding with extracted guess (De�nition 3.3).

Proof. LetA be an e�cient adversary for the index hiding with extracted guess game. We de�ne a sequence of hybrid
experiments:

• Hyb0: This is the index hiding with extracted guess experiment ExptIHEA (_, 0). Namely, the adversary
starts by outputting the input length 1= , a set ( ⊆ [=] and an index 8∗ ∈ ( . The challenger samples
(G,G) , {?8 }8∈[6] , 6, 4) ← CompGroupGen(1_). It samples generators 68 r← G8 and sets G = (G,G) , # , 6, 4)
where # =

∏
8∈[6] ?8 . It constructs the hash key components as follows:

– Main components: For each 8 ∈ [=], sample U8 , V8 r← Z# Set �8 = (61626364)U8 if 8 ∈ ( \ {8∗} and
�8 = (6164)U8 if 8 ∉ ( . Set �8∗ = (6164)U8∗ . Then, set �8 = (6165)V8 .

– Cross-terms: For each 8, 9 ∈ [=] where 8 ≠ 9 , sample A8, 9 r← Z# and let �8, 9 = 6
U8V 9
1 (62636465)A8,9 .

– Digest validation components: Sample V∗ r← Z# and let �∗ = (6165)V
∗ . For each 8 ∈ [=], sample

A ∗8
r← Z# and let �8 = 6U8V

∗

1 (62636465)A
∗
8 .

The challenger gives the hash key hk and veri�cation key vk to A where

hk = vk =
(
G, 61, {�8 , �8 , �8 }8∈[=], {�8, 9 }8≠9 , �∗

)
.

Algorithm A then outputs a digest dig = (ℎ,D) and an opening f . The output of the experiment is 1 if

4 (ℎ, �8∗ ) = 4 (61, f) and 4 (ℎ,6263) = 1.

• Hyb1: Same asHyb0 except the challenger sets�8∗, 9 = �
V 9
8∗ (62636465)A8∗, 9 for all 9 ≠ 8∗ and�8,8∗ = �U88∗ (62636465)A8,8∗

for all 8 ≠ 8∗. Similarly, the challenger sets �8∗ = �V
∗

8∗ (62636465)A
∗
8 . In particular, the exponents U8∗ and V8∗ only

shows up in �8∗ and �8∗ , respectively.

• Hyb2: Same as Hyb1 except the challenger sets �8∗ = (616566)V8∗ .

• Hyb3: Same as Hyb2 except the challenger sets �8∗ = (616466)U8∗ .

• Hyb4: Same as Hyb3 except the challenger sets �8∗ = (61626466)U8∗ .

• Hyb5: Same as Hyb4 except the challenger sets �8∗ = (6162636466)U8∗ .

• Hyb6: Same as Hyb5 except the challenger sets �8∗ = (61626364)U8∗ . Namely, there is no longer a G6 component
in �8∗ .

• Hyb7: Same as Hyb6 except the challenger sets �8∗ = (6165)V8∗ . Namely, there is no longer a G6 component in
�8∗ .

• Hyb8: Same as Hyb7 except the challenger sets �8∗, 9 = 6
U8∗V 9
1 (62636464)A8∗, 9 and �8,8∗ = 6

U8V8∗
1 (62636465)A8,8∗ .

Similarly, the challenger sets �8∗ = 6U8∗V
∗

1 (62636465)A
∗
8 . This is experiment ExptIHEA (_, 1).
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We write Hyb8 (A) to denote the output of an execution of Hyb8 with adversary A. We now analyze each pair of
adjacent hybrid experiments. Our goal is to show that Pr[Hyb8 (A) = 1] ≥ Pr[Hyb0 (A) = 1] − negl(_).

Lemma 6.11. Pr[Hyb0 (A) = 1] = Pr[Hyb1 (A) = 1]

Proof. The outputs of Hyb0 (A) and Hyb1 (A) are identically distributed. The only di�erence between these two
distributions is the distribution of �8∗, 9 , �8,8∗ , and �8∗ . According to the speci�cation of Hyb1,

�8∗, 9 = �
V 9
8∗ (62636465)A8∗, 9 = (6164)U8∗V 9 (62636465)A8∗, 9 = 6

U8∗V 9
1 6

A8∗, 9+U8∗V 9
4 (626365)A8∗, 9

�8,8∗ = �
U8
8∗ (62636465)A8,8∗ = (6165)U8V8∗ (62636465)A8,8∗ = 6U8V8∗1 (626364)A8,8∗6

A8,8∗+U8V8∗
5

�8∗ = �
V∗

8∗ (62636465)A
∗
8∗ = (6164)U8∗V

∗ (62636465)A
∗
8∗ = 6

U8∗V
∗

1 6
A ∗
8∗+U8∗V

∗

4 (626365)A
∗
8∗

Since A8∗, 9 , A8,8∗ , A ∗8∗
r← Z# (and independent of all other quantities in hk, vk), the elements�8∗, 9 ,�8,8∗ , �8∗ are distributed

exactly as in Hyb0. �

Lemma 6.12. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that��Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1]
�� = negl(_).

Proof. Suppose there exists an adversary A where
��Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1]

�� ≥ Y (_) for some non-
negligible Y. We use A to construct an adversary B that breaks the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits (0 = {1, 5} and (1 = {1, 5, 6} and the sets {1}, {2}, {3}, {4},
{5} to the subgroup decision challenger.

2. The challenger replies with the challenge (G, 61, 62, 63, 64, 65, / ), where68 is used to denote the random generator
of G8 .

3. Algorithm B starts running algorithm A who outputs the input length 1= , a set ( ⊆ [=] and an index 8∗ ∈ ( .
Algorithm B samples U8 r← Z# , V8 r← Z# , A8, 9 r← Z# for 8, 9 ∈ [=]. It sets

�8 =

{
(6164)U8 8 ∉ ( \ {8∗}
(61626364)U8 8 ∈ ( \ {8∗}

and �8 =

{
/ 8 = 8∗

(6165)V8 8 ≠ 8∗
and �8, 9 =


6
U8V 9
1 (62636465)A8,9 8, 9 ≠ 8∗

�
V 9
8∗ (62636465)A8∗, 9 8 = 8∗

�
U8
8∗ (62636465)A8,8∗ 9 = 8∗ .

Next, it samples V∗ r← Z# and A ∗8
r← Z# for each 8 ∈ [=]. It sets

�∗ = (6165)V
∗ and �8 =

{
6
U8V

∗

1 (62636465)A
∗
8 8 ≠ 8∗

�
V∗

8∗ (62636465)A
∗
8∗ 8 = 8∗ .

It sets hk = vk =
(
G, 61, {�8 , �8 , �8 }8∈[=], {�8, 9 }8≠9 , �∗

)
and gives (hk, vk) to A.

4. Algorithm A outputs a digest dig = (ℎ,D) and an opening f . Algorithm B outputs 1 if

4 (ℎ, �8∗ ) = 4 (�8∗ , �8∗ ) · 4 (61, f) and 4 (ℎ,6263) = 1.

The subgroup decision challenger samples the generators 68 r← G8 exactly as in Hyb1 and Hyb2. Moreover, all of the
components other than �8∗ is constructed exactly as described in Hyb1 and Hyb2. Thus, it su�ces to consider the
distribution of �∗. We consider the two possibilities:

• Suppose / = (6165)C where C r← Z# . This corresponds to an execution of Hyb1 with V8∗ = C . In this case,
algorithm B outputs 1 with probability Pr[Hyb1 (A) = 1].

• Suppose / = (616566)C where C r← Z# . This corresponds to an execution of Hyb2 with V8∗ = C . In this case,
algorithm B outputs 1 with probability Pr[Hyb2 (A) = 1].
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We conclude that algorithm B succeeds with probability Y and the claim holds. �

Lemma 6.13. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that��Pr[Hyb2 (A) = 1] − Pr[Hyb3 (A) = 1]
�� = negl(_).

Proof. Suppose there exists an adversary A where
��Pr[Hyb2 (A) = 1] − Pr[Hyb3 (A) = 1]

�� ≥ Y (_) for some non-
negligible Y. We use A to construct an adversary B that breaks the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits (0 = {1, 4} and (1 = {1, 4, 6} and the sets {1}, {2}, {3}, {4},
{5}, {1, 6} to the subgroup decision challenger.

2. The challenger replies with the challenge (G, 61, 62, 63, 64, 65, -16, / ), where 68 is used to denote the random
generator of G8 and -16

r← G({1, 6}).

3. Algorithm B starts running algorithm A who outputs the input length 1= . Algorithm B samples U8 r← Z# ,
V8

r← Z# , A8, 9 r← Z# for 8, 9 ∈ [=]. It sets

�8 =


/ 8 = 8∗

(6164)U8 8 ∉ (

(61626364)U8 8 ∈ ( \ {8∗}
and �8 =

{
-166

V8∗
5 8 = 8∗

(6165)V8 8 ≠ 8∗
and �8, 9 =


6
U8V 9
1 (62636465)A8,9 8, 9 ≠ 8∗

�
V 9
8∗ (62636465)A8∗, 9 8 = 8∗

�
U8
8∗ (62636465)A8,8∗ 9 = 8∗ .

Next, it samples V∗ r← Z# and A ∗8
r← Z# for each 8 ∈ [=]. It sets

�∗ = (6165)V
∗ and �8 =

{
6
U8V

∗

1 (62636465)A
∗
8 8 ≠ 8∗

�
V∗

8∗ (62636465)A
∗
8∗ 8 = 8∗ .

It sets hk = vk =
(
G, 61, {�8 , �8 , �8 }8∈[=], {�8, 9 }8≠9 , �∗

)
and gives (hk, vk) to A.

4. Algorithm A outputs a digest dig = (ℎ,D) and an opening f . Algorithm B outputs 1 if

4 (ℎ, �8∗ ) = 4 (�8∗ , �8∗ ) · 4 (61, f) and 4 (ℎ,6263) = 1.

The subgroup decision challenger samples the generators 68 r← G8 exactly as in Hyb2 and Hyb3. We can write
-16 = (6166)W16 where W16

r← Z# . The value W16 mod ?1?6 corresponds to the value of V8∗ mod ?1?6 in Hyb2 and Hyb3.
The remaining components other than�8∗ are sampled exactly as required in Hyb2 and Hyb3, so it su�ces to consider
�8∗ . We consider the two possibilities:

• Suppose / = (6164)C where C r← Z# . This corresponds to an execution of Hyb1 with U8∗ = C . In this case,
algorithm B outputs 1 with probability Pr[Hyb2 (A) = 1].

• Suppose / = (616466)C where C r← Z# . This corresponds to an execution of Hyb3 with U8∗ = C . In this case,
algorithm B outputs 1 with probability Pr[Hyb3 (A) = 1].

We conclude that algorithm B succeeds with probability Y and the claim holds. �

Lemma 6.14. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that
Pr[Hyb4 (A) = 1] ≥ Pr[Hyb3 (A) = 1] − negl(_).

Proof. Let dig = (ℎ,D) be the digest output byA in an execution of Hyb3 and Hyb4. For an index 8 ∈ {3, 4}, we de�ne
events E8,1 and E8,2:

• E8,1: This is the event 4 (ℎ, �8∗ ) = 4 (61, f) and 4 (ℎ,63) = 1 occurring in Hyb8 .

• E8,2: This is the event that 4 (ℎ,62) = 1 occurring in Hyb8 .

By de�nition, the output in Hyb8 is 1 if and only if both events E8,1 and E8,2 occur. To complete the proof, we start by
showing the following two properties: (1)

��Pr[E3,1] − Pr[E4,1]
�� = negl(_); and (2) Pr[E4,1 ∧ ¬E4,2] = negl(_).

70



Claim 6.15. If the subgroup decision assumption holds with respect to CompGroupGen, then
��Pr[E3,1] − Pr[E4,1]

�� =
negl(_).

Proof. Suppose
��Pr[E3,1] − Pr[E4,1]

�� ≥ Y (_) for some non-negligible Y. We use A to construct an adversary B that
breaks the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits (0 = {1, 4, 6} and (1 = {1, 2, 4, 6} and the sets {1}, {3}, {4},
{5}, {6}, {2, 3, 4}.

2. The challenger replies with the challenge (G, 61, 63, 64, 65, 66, -234, / ) where 68 is a random generator of G8 and
-234

r← G({2, 3, 4}).

3. Algorithm B starts running algorithm A who outputs the input length 1= . Algorithm B samples U8 r← Z# ,
V8

r← Z# , A8, 9 r← Z# for 8, 9 ∈ [=]. It sets

�8 =


/ 8 = 8∗

(6164)U8 8 ∉ (

(61-234)U8 8 ∈ ( \ {8∗}
and �8 =

{
(616566)V8∗ 8 = 8∗

(6165)V8 8 ≠ 8∗
and �8, 9 =


6
U8V 9
1 (-23465)A8,9 8, 9 ≠ 8∗

�
V 9
8∗ (-23465)A8∗, 9 8 = 8∗

�
U8
8∗ (-23465)A8,8∗ 9 = 8∗ .

It samples V∗ r← Z# and A ∗8
r← Z# for each 8 ∈ [=], and sets

�∗ = (6165)V
∗ and �8 =

{
6
U8V

∗

1 (-23465)A
∗
8 8 ≠ 8∗

�
V∗

8∗ (-23465)A
∗
8∗ 8 = 8∗ .

It sets hk = vk =
(
G, 61, {�8 , �8 , �8 }8∈[=], {�8, 9 }8≠9 , �∗

)
and gives (hk, vk) to A.

4. After A outputs the digest dig = (ℎ,D), algorithm B outputs 1 if

4 (ℎ, �8∗ ) = 4 (61, f) and 4 (ℎ,63) = 1.

We �rst argue that B correctly simulates the hash key according to the speci�cation of Hyb3 and Hyb4. First, we can
write -234 = (626364)W234 where W234

r← Z# . Since the challenger samples A8, 9 and A ∗8
r← Z# and each of these values

is used exactly once in the construction of hk, the distributions of �8, 9 and �8 are distributed exactly as they are in
Hyb3 and Hyb4 unless W234 is zero in the ?2, ?3, or ?4 components. This happens with negligible probability over the
choice of W234. Similarly, �8 for 8 ∈ ( \ {8∗} is distributed identically; the distributions of U8 mod ?2?3?4 and that of
U8W234 mod ?2?3?4 when U8 r← Z# are identical as long as W234 is non-zero in the ?2, ?3, and ?4 subgroups. It su�ces
to consider the distribution of �8∗ :

• Suppose / = (616466)C for C r← Z# . This corresponds to an execution of Hyb3 with U8∗ = C mod ?1?4?6. Thus,
algorithm B outputs 1 with probability Pr[E3,1].

• Suppose / = (61626466)C for C r← Z# . This corresponds to an execution of Hyb2 with U8∗ = C mod ?1?4?6. In
this case, algorithm B outputs 1 with probability Pr[E4,1].

We conclude that B succeeds with probability Y and the claim holds. �

Claim 6.16. If the subgroup decision assumption holds with respect to CompGroupGen, then Pr[E4,1∧¬E4,2] = negl(_).

Proof. Suppose Pr[E4,1 ∧ ¬E4,2] ≥ Y (_) for some non-negligible Y. We use A to construct an adversary B that breaks
the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits (0 = {3, 6} and (1 = {2, 3, 6} and the sets {1}, {3}, {4}, {5},
{6}, {2, 3}, {2, 6}.

2. The challenger replies with the challenge (G, 61, 63, 64, 65, 66, -23, -26, / ) where 68 is a random generator of G8 ,
-23

r← G({2, 3}), and -26
r← G({2, 6}).
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3. Algorithm B starts running algorithm A who outputs the input length 1= . Algorithm B samples U8 r← Z# ,
V8

r← Z# , A8, 9 r← Z# for 8, 9 ∈ [=]. It sets

�8 =


(6164)U8∗-26 8 = 8∗

(6164)U8 8 ∉ (

(6164-23)U8 8 ∈ ( \ {8∗}
and �8 =

{
(616566)V8∗ 8 = 8∗

(6165)V8 8 ≠ 8∗
and �8, 9 =


6
U8V 9
1 (-236465)A8,9 8, 9 ≠ 8∗

�
V 9
8∗ (-236465)A8∗, 9 8 = 8∗

�
U8
8∗ (-236465)A8,8∗ 9 = 8∗ .

It samples V∗ r← Z# and A ∗8
r← Z# for each 8 ∈ [=], and sets

�∗ = (6165)V
∗ and �8 =

{
6
U8V

∗

1 (-236465)A
∗
8 8 ≠ 8∗

�
V∗

8∗ (-236465)A
∗
8∗ 8 = 8∗ .

It sets hk = vk =
(
G, 61, {�8 , �8 , �8 }8∈[=], {�8, 9 }8≠9 , �∗

)
and gives (hk, vk) to A.

4. After A outputs the digest dig = (ℎ,D), algorithm B outputs 1 if

4 (ℎ, �8∗ ) = 4 (61, f) and 4 (ℎ,63) = 1 and 4 (ℎ, / ) = 1.

We �rst argue that algorithm B correctly simulates an execution of Hyb4 for A. First, we can write -23 = (6263)W23

and -26 = (6266)W26 , where W23, W26
r← Z# . With overwhelming probability, W23 is non-zero in the ?2 and ?3 subgroups.

In the following, we will assume this is the case. Since the challenger samples A8, 9 , A ∗8
r← Z# and each of these values

is used exactly once in the construction of hk, the distributions of �8, 9 and �8 are distributed exactly as required
in Hyb4. Similarly, the distribution of �8∗ coincides with setting U8∗ mod ?2?6 as W26 mod ?2?6 and U8 mod ?2?3 as
U8W23 mod ?2?3. Since each U8 r← Z# and W26

r← Z# , this matches the distribution in Hyb4. Thus, with probability at
least Y − negl(_), algorithm B outputs dig = (ℎ,D) such that

4 (ℎ, �8∗ ) = 4 (61, f) and 4 (ℎ,63) = 1 and 4 (ℎ,62) ≠ 1. (6.1)

Suppose Eq. (6.1) holds. We �rst claim that with overwhelming probability, 4 (ℎ,66) = 1. Suppose otherwise. If
V8∗ ≠ 0 mod ?6 (which happens with overwhelming probability), then �8∗ is non-zero in the order ?6 subgroup. If
4 (ℎ,66) ≠ 1, then 4 (ℎ, �8∗ ) is non-zero in the ?6 subgroup. By construction 4 (61, f) is necessarily 0 in the ?6 subgroup,
so it can no longer be the case that 4 (ℎ, �8∗ ) = 4 (61, f). Now consider the probability that B outputs 1:

• Suppose / = (6366)C for some C r← Z# . As argued previously, with overwhelming probability, if Eq. (6.1) holds,
then 4 (ℎ,66) = 1. Since 4 (ℎ,63) = 1, this means 4 (ℎ, / ) = 1 and algorithm B outputs 1 with overwhelming
probability.

• Suppose / = (626366)C for some C r← Z# . Since 4 (ℎ,62) ≠ 1, then 4 (ℎ, / ) ≠ 1 so long as C ≠ 0 mod ?2, which
holds with overwhelming probability. Thus, in this case, algorithm B outputs 1 with negligible probability.

We now compute the advantage of B. We consider three possibilities:

• Suppose A outputs (ℎ,D) such that 4 (ℎ, �8∗ ) ≠ 4 (61, f) or 4 (ℎ,63) ≠ 1. Then, the output of B is always 0.

• SupposeA outputs (ℎ,D) such that 4 (ℎ, �8∗ ) = 4 (61, f) and 4 (ℎ,63) = 1 and 4 (ℎ,62) = 1. By the previous analysis,
if 4 (ℎ, �8∗ ) = 4 (61, f), then 4 (ℎ,66) = 1 with overwhelming probability. Since / = (6366)C or / = (626366)C , this
means that B outputs 1 with overwhelming probability regardless for both possible values of / .

• Suppose A outputs (ℎ,D) such that 4 (ℎ, �8∗ ) = 4 (61, f) and 4 (ℎ,63) = 1 and (ℎ,62) ≠ 1. By the earlier analysis,
this case occurs with probability at least Y − negl(_), and in this case, algorithm B outputs 1 with probability
1 − negl(_) if / = (6366)C and with probability negl(_) if / = (626366)C .

Let d1, d2, d3 be the probabilities of each of these cases. Then,

Pr[ExptSubgroupB (_, 0) = 1] = d2 (1 − negl(_)) + d3 · (1 − negl(_))
Pr[ExptSubgroupB (_, 1) = 1] = d2 (1 − negl(_)) + d3 · negl(_)

The advantage of B is thus d3 − negl(_) ≥ Y − negl(_), and the claim holds. �
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To complete the proof we have that

Pr[Hyb4 (A) = 1] = Pr[E4,1 ∧ E4,2]
= Pr[E4,1] − Pr[E4,1 ∧ ¬E4,2]
≥ Pr[E4,1] − negl(_) by Claim 6.16
≥ Pr[E3,1] − negl(_) by Claim 6.15,

and Lemma 6.14 follows. �

Lemma 6.17. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that
Pr[Hyb5 (A) = 1] ≥ Pr[Hyb4 (A) = 1] − negl(_).

Proof. The proof follows by a similar argument as that of Lemma 6.14. Let dig = (ℎ,D) be the digest output by A in
an execution of Hyb4 and Hyb5. For an index 8 ∈ {4, 5}, we de�ne events E8,1 and E8,2 as in the proof of Lemma 6.14
(changes marked in green):

• E8,1: This is the event 4 (ℎ, �8∗ ) = 4 (61, f) and 4 (ℎ,62) = 1 occurring in Hyb8 .

• E8,2: This is the event that 4 (ℎ,63) = 1 occurring in Hyb8 .

By de�nition, the output in Hyb8 is 1 if and only if both events E8,1 and E8,2 occur. To complete the proof, we start by
showing the following two properties: (1)

��Pr[E4,1] − Pr[E5,1]
�� = negl(_); and (2) Pr[E5,1 ∧ ¬E5,2] = negl(_).

Claim 6.18. If the subgroup decision assumption holds with respect to CompGroupGen, then
��Pr[E4,1] − Pr[E5,1]

�� =
negl(_).

Proof. Suppose
��Pr[E4,1] − Pr[E5,1]

�� ≥ Y (_) for some non-negligible Y. We use A to construct an adversary B that
breaks the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits (0 = {1, 2, 4, 6} and (1 = {1, 2, 3, 4, 6} and the sets {1}, {2},
{4}, {5}, {6}, {2, 3, 4}.

2. The challenger replies with the challenge (G, 61, 62, 64, 65, 66, -234, / ) where 68 is a random generator of G8 and
-234

r← G({2, 3, 4}).

3. Algorithm B starts running algorithm A who outputs the input length 1= . Algorithm B samples U8 r← Z# ,
V8

r← Z# , A8, 9 r← Z# for 8, 9 ∈ [=]. It sets

�8 =


/ 8 = 8∗

(6164)U8 8 ∉ (

(61-234)U8 8 ∈ ( \ {8∗}
and �8 =

{
(616566)V8∗ 8 = 8∗

(6165)V8 8 ≠ 8∗
and �8, 9 =


6
U8V 9
1 (-23465)A8,9 8, 9 ≠ 8∗

�
V 9
8∗ (-23465)A8∗, 9 8 = 8∗

�
U8
8∗ (-23465)A8,8∗ 9 = 8∗ .

It samples V∗ r← Z# and A ∗8
r← Z# for each 8 ∈ [=], and sets

�∗ = (6165)V
∗ and �8 =

{
6
U8V

∗

1 (-23465)A
∗
8 8 ≠ 8∗

�
V∗

8∗ (-23465)A
∗
8∗ 8 = 8∗ .

It sets hk = vk =
(
G, 61, {�8 , �8 , �8 }8∈[=], {�8, 9 }8≠9 , �∗

)
and gives (hk, vk) to A.

4. After A outputs the digest dig = (ℎ,D), algorithm B outputs 1 if

4 (ℎ, �8∗ ) = 4 (61, f) and 4 (ℎ,62) = 1.
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We �rst argue that B correctly simulates the hash key according to the speci�cation of Hyb4 and Hyb5. First, we can
write -234 = (626364)W234 where W234

r← Z# . Since the challenger samples A8, 9 and A ∗8
r← Z# and each of these values

is used exactly once in the construction of hk, the distributions of �8, 9 and �8 are distributed exactly as they are in
Hyb4 and Hyb5 unless W234 is zero in the ?2, ?3, or ?4 components. This happens with negligible probability over
the choice of W234. Similarly, �8 for 8 ∈ ( \ {8∗} is distributed identically; the reduction algorithm e�ectively samples
U8 mod ?2?3?4, U8W234 mod ?2?3?4 which are identically distributed when U8 r← Z# and W234 is non-zero in the ?2, ?3,
and ?4 subgroups. It su�ces to consider the distribution of A8∗ :

• Suppose / = (61626466)C for C r← Z# . This corresponds to an execution of Hyb4 with U8∗ = C mod ?1?2?4?6.
Thus, algorithm B outputs 1 with probability Pr[E4,1].

• Suppose / = (6162636466)C for C r← Z# . This corresponds to an execution of Hyb5 with U8∗ = C mod ?1?2?3?4?6.
In this case, algorithm B outputs 1 with probability Pr[E5,1].

We conclude that B succeeds with probability Y and the claim holds. �

Claim 6.19. If the subgroup decision assumption holds with respect to CompGroupGen, then Pr[E5,1∧¬E5,2] = negl(_).

Proof. Suppose Pr[E5,1 ∧ ¬E5,2] ≥ Y (_) for some non-negligible Y. We use A to construct an adversary B that breaks
the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits (0 = {2, 6} and (1 = {2, 3, 6} and the sets {1}, {2}, {4}, {5},
{6}, {2, 3}, {3, 6}.

2. The challenger replies with the challenge (G, 61, 62, 64, 65, 66, -23, -36, / ) where 68 is a random generator of G8 ,
-23

r← G({2, 3}), and -36
r← G({3, 6}).

3. Algorithm B starts running algorithm A who outputs the input length 1= . Algorithm B samples U8 r← Z# ,
V8

r← Z# , A8, 9 r← Z# for 8, 9 ∈ [=]. It sets

�8 =


(616264)U8∗-36 8 = 8∗

(6164)U8 8 ∉ (

(6164-23)U8 8 ∈ ( \ {8∗}
and �8 =

{
(616566)V8∗ 8 = 8∗

(6165)V8 8 ≠ 8∗
and �8, 9 =


6
U8V 9
1 (-236465)A8,9 8, 9 ≠ 8∗

�
V 9
8∗ (-236465)A8∗, 9 8 = 8∗

�
U8
8∗ (-236465)A8,8∗ 9 = 8∗ .

It samples V∗ r← Z# and A ∗8
r← Z# for each 8 ∈ [=], and sets

�∗ = (6165)V
∗ and �8 =

{
6
U8V

∗

1 (-236465)A
∗
8 8 ≠ 8∗

�
V∗

8∗ (-236465)A
∗
8∗ 8 = 8∗ .

It sets hk = vk =
(
G, 61, {�8 , �8 , �8 }8∈[=], {�8, 9 }8≠9 , �∗

)
and gives (hk, vk) to A.

4. After A outputs the digest dig = (ℎ,D), algorithm B outputs 1 if

4 (ℎ, �8∗ ) = 4 (61, f) and 4 (ℎ,62) = 1 and 4 (ℎ, / ) = 1.

We �rst argue that algorithm B correctly simulates an execution of Hyb4 for A. First, we can write -23 = (6263)W23

and -36 = (6366)W36 , where W23, W36
r← Z# . With overwhelming probability W23 is non-zero in the ?2 and ?3 subgroups.

In the following, we will assume this is the case. Since the challenger samples A8, 9 , A ∗8
r← Z# and each of these values

is used exactly once in the construction of hk, the distributions of �8, 9 and �8 are distributed exactly as required in
Hyb5. Similarly, the distribution of �8∗ coincides with setting U8∗ mod ?2?3?6 as W236 mod ?2?3?6 and U8 mod ?2?3 as
U8W23 mod ?2?3. Since each U8 r← Z# and W23, W236

r← Z# , this matches the distribution in Hyb5. Thus, with probability
at least Y − negl(_), algorithm B outputs dig = (ℎ,D) such that

4 (ℎ, �8∗ ) = 4 (61, f) and 4 (ℎ,62) = 1 and 4 (ℎ,63) ≠ 1. (6.2)
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Suppose Eq. (6.2) holds. We �rst claim that with overwhelming probability, 4 (ℎ,66) = 1. Suppose otherwise. If
V8∗ ≠ 0 mod ?6 (which happens with overwhelming probability), then �8∗ is non-zero in the order ?6 subgroup. If
4 (ℎ,66) ≠ 1, then 4 (ℎ, �8∗ ) is non-zero in the ?6 subgroup. By construction 4 (61, f) is necessarily 0 in the ?6 subgroup,
so it can no longer be the case that 4 (ℎ, �8∗ ) = 4 (61, f). Now consider the probability that B outputs 1:

• Suppose / = (6266)C for some C r← Z# . As argued previously, with overwhelming probability, if Eq. (6.2)
holds, then 4 (ℎ,66). Since 4 (ℎ,62) = 1, this means 4 (ℎ, / ) = 1 and algorithm B outputs 1 with overwhelming
probability.

• Suppose / = (626366)C for some C r← Z# . Since 4 (ℎ,63) ≠ 1, then 4 (ℎ, / ) ≠ 1 so long as C ≠ 0 mod ?3, which
holds with overwhelming probability. Thus, in this case, algorithm B outputs 1 with negligible probability.

We now compute the advantage of B. We consider three possibilities:

• Suppose A outputs (ℎ,D) such that 4 (ℎ, �8∗ ) ≠ 4 (61, f) or 4 (ℎ,62) ≠ 1. Then, the output of B is always 0.

• SupposeA outputs (ℎ,D) such that 4 (ℎ, �8∗ ) = 4 (61, f) and 4 (ℎ,62) = 1 and 4 (ℎ,63) = 1. By the previous analysis,
if 4 (ℎ, �8∗ ) = 4 (61, f), then 4 (ℎ,66) = 1 with overwhelming probability. Since / = (6266)C or / = (626366)C , this
means that B outputs 1 with overwhelming probability regardless for both possible values of / .

• Suppose A outputs (ℎ,D) such that 4 (ℎ, �8∗ ) = 4 (61, f) and 4 (ℎ,62) = 1 and (ℎ,63) ≠ 1. By the earlier analysis,
this case occurs with probability at least Y − negl(_), and in this case, algorithm B outputs 1 with probability
1 − negl(_) if / = (6266)C and with probability negl(_) if / = (626366)C .

Let d1, d2, d3 be the probabilities of each of these cases. Then,

Pr[ExptSubgroupB (_, 0) = 1] = d2 (1 − negl(_)) + d3 · (1 − negl(_))
Pr[ExptSubgroupB (_, 1) = 1] = d2 (1 − negl(_)) + d3 · negl(_)

The advantage of B is thus d3 − negl(_) ≥ Y − negl(_), and the claim holds. �

To complete the proof we have that

Pr[Hyb5 (A) = 1] = Pr[E5,1 ∧ E5,2]
= Pr[E5,1] − Pr[E5,1 ∧ ¬E5,2]
≥ Pr[E5,1] − negl(_) by Claim 6.19
≥ Pr[E4,1] − negl(_) by Claim 6.18,

and Lemma 6.17 follows. �

Lemma 6.20. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that��Pr[Hyb5 (A) = 1] − Pr[Hyb6 (A) = 1]
�� = negl(_).

Proof. The proof is analogous to the proof of Lemma 6.13, except that the challenge subgroups are (0 = {1, 2, 3, 4}
and (1 = {1, 2, 3, 4, 6}. �

Lemma 6.21. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that��Pr[Hyb6 (A) = 1] − Pr[Hyb7 (A) = 1]
�� = negl(_).

Proof. The proof is analogous to the proof of Lemma 6.12, except that �8∗ is now in G({1, 2, 3, 4}). �

Lemma 6.22. Pr[Hyb7 (A) = 1] = Pr[Hyb8 (A) = 1].

Proof. This follows by an analogous argument as the proof of Lemma 6.11. �

Combining Lemmas 6.11 to 6.14, 6.17 and 6.20 to 6.22, the index hiding with extracted guess property holds. �
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Theorem 6.23 (Zero Fixing). If the general subgroup decision holds with respect to CompGroupGen, then Construc-
tion 6.3 satis�es selective zero-�xing.

Proof. LetA be an e�cient adversary for the zero �xing game. We begin by de�ning a sequence of hybrid experiments:

• Hyb0: This is the selective version of the experiment ExptZFA (_). Namely, the adversary starts by outputting
an input length 1= , a set ( ⊆ [=], and an index 8∗ ∈ ( . The challenger samples (G,G) , {?8 }8∈[6] , 6, 4) ←
CompGroupGen(1_). It samples generators 68 r← G8 and sets G = (G,G) , # , 6, 4) where # =

∏
8∈[6] ?8 . It

constructs the hash key components as follows:

– Main components: For each 8 ∈ [=], sample U8 , V8 r← Z# Set�8 = (6164)U8 if 8 ∉ ( and�8 = (61626364)U8
if 8 ∈ ( . Then, set �8 = (6165)V8 .

– Cross-terms: For each 8, 9 ∈ [=] where 8 ≠ 9 , sample A8, 9 r← Z# and let �8, 9 = 6
U8V 9
1 (62636465)A8,9 .

– Digest validation components: Sample V∗ r← Z# and let �∗ = (6165)V
∗ . For each 8 ∈ [=], sample

A ∗8
r← Z# and let �8 = 6U8V

∗

1 (62636465)A
∗
8 .

The challenger gives the hash key hk and veri�cation key vk to A where

hk = vk =
(
G, 61, {�8 , �8 , �8 }8∈[=], {�8, 9 }8≠9 , �∗

)
.

Algorithm A then outputs a digest dig = (ℎ,D) and an opening f . The output of the experiment is 1 if

4 (ℎ, �8∗ ) = 4 (�8∗ , �8∗ ) · 4 (61, f) and 4 (ℎ,6263) = 1.

• Hyb1: Same as Hyb0 except the challenger now sets �8∗, 9 = �
V 9
8∗ (62636465)A8∗, 9 for all 9 ≠ 8∗ and �8,8∗ =

�
U8
8∗ (62636465)A8,8∗ for all 8 ≠ 8∗. Similarly, the challenger sets �8∗ = �V

∗

8∗ (62636465)A
∗
8 . In particular, the exponents

U8∗ and V8∗ only shows up in �8∗ and �8∗ , respectively.

• Hyb2: Same as Hyb1 except the challenger now sets �8∗ = (616566)V8∗ .

• Hyb3: Same as Hyb2 except the challenger now sets �8∗ = (6162636466)U8∗

• Hyb4: Same as Hyb3 except the experiment outputs 0 if 4 (ℎ,66) ≠ 1.

We write Hyb8 (A) to denote the output of an execution of Hyb8 with adversary A. We now analyze each pair of
adjacent hybrid experiments.

Lemma 6.24. Pr[Hyb0 (A) = 1] = Pr[Hyb1 (A) = 1]

Proof. This follows by the same argument as in the proof of Lemma 6.11. �

Lemma 6.25. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that��Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1]
�� = negl(_).

Proof. Suppose there exists an adversary A where
��Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1]

�� ≥ Y (_) for some non-
negligible Y. We use A to construct an adversary B that breaks the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits (0 = {1, 5} and (1 = {1, 5, 6} and the sets {1}, {2}, {3}, {4},
{5} to the subgroup decision challenger.

2. The challenger replies with the challenge (G, 61, 62, 63, 64, 65, / ), where68 is used to denote the random generator
of G8 .
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3. Algorithm B starts running algorithm A who outputs the input length 1= , a set ( ⊆ [=] and an index 8∗ ∈ ( .
Algorithm B samples U8 r← Z# , V8 r← Z# , A8, 9 r← Z# for 8, 9 ∈ [=]. It sets

�8 =

{
(6164)U8 8 ∉ (

(61626364)U8 8 ∈ (
and �8 =

{
/ 8 = 8∗

(6165)V8 8 ≠ 8∗
and �8, 9 =


6
U8V 9
1 (62636465)A8,9 8, 9 ≠ 8∗

�
V 9
8∗ (62636465)A8∗, 9 8 = 8∗

�
U8
8∗ (62636465)A8,8∗ 9 = 8∗ .

Next, it samples V∗ r← Z# and A ∗8
r← Z# for each 8 ∈ [=]. It sets

�∗ = (6165)V
∗ and �8 =

{
6
U8V

∗

1 (62636465)A
∗
8 8 ≠ 8∗

�
V∗

8∗ (62636465)A
∗
8∗ 8 = 8∗ .

It sets hk = vk =
(
G, 61, {�8 , �8 , �8 }8∈[=], {�8, 9 }8≠9 , �∗

)
and gives (hk, vk) to A.

4. Algorithm A outputs a digest dig = (ℎ,D) and an opening f . Algorithm B outputs 1 if

4 (ℎ, �8∗ ) = 4 (�8∗ , �8∗ ) · 4 (61, f) and 4 (ℎ,6263) = 1.

The subgroup decision challenger samples the generators 68 r← G8 exactly as in Hyb1 and Hyb2. Moreover, all of the
components other than �8∗ is constructed exactly as described in Hyb1 and Hyb2. Thus, it su�ces to consider the
distribution of �∗. We consider the two possibilities:

• Suppose / = (6165)C where C r← Z# . This corresponds to an execution of Hyb1 with V8∗ = C . In this case,
algorithm B outputs 1 with probability Pr[Hyb1 (A) = 1].

• Suppose / = (616566)C where C r← Z# . This corresponds to an execution of Hyb2 with V8∗ = C . In this case,
algorithm B outputs 1 with probability Pr[Hyb2 (A) = 1].

We conclude that algorithm B succeeds with probability Y and the claim holds. �

Lemma 6.26. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that��Pr[Hyb2 (A) = 1] − Pr[Hyb3 (A) = 1]
�� = negl(_).

Proof. Suppose there exists an adversary A where
��Pr[Hyb2 (A) = 1] − Pr[Hyb3 (A) = 1]

�� ≥ Y (_) for some non-
negligible Y. We use A to construct an adversary B that breaks the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits (0 = {1, 2, 3, 4} and (1 = {1, 2, 3, 4, 6} and the sets {1}, {2},
{3}, {4}, {5}, {1, 6} to the subgroup decision challenger.

2. The challenger replies with the challenge (G, 61, 62, 63, 64, 65, -16, / ), where 68 is used to denote the random
generator of G8 and -16

r← G({1, 6}).

3. Algorithm B starts running algorithm A who outputs the input length 1= . Algorithm B samples U8 r← Z# ,
V8

r← Z# , A8, 9 r← Z# for 8, 9 ∈ [=]. It sets

�8 =


/ 8 = 8∗

(6164)U8 8 ∉ (

(61626364)U8 8 ∈ ( \ {8∗}
and �8 =

{
-166

V8∗
5 8 = 8∗

(6165)V8 8 ≠ 8∗
and �8, 9 =


6
U8V 9
1 (62636465)A8,9 8, 9 ≠ 8∗

�
V 9
8∗ (62636465)A8∗, 9 8 = 8∗

�
U8
8∗ (62636465)A8,8∗ 9 = 8∗ .

Next, it samples V∗ r← Z# and A ∗8
r← Z# for each 8 ∈ [=]. It sets

�∗ = (6165)V
∗ and �8 =

{
6
U8V

∗

1 (62636465)A
∗
8 8 ≠ 8∗

�
V∗

8∗ (62636465)A
∗
8∗ 8 = 8∗ .

It sets hk = vk =
(
G, 61, {�8 , �8 , �8 }8∈[=], {�8, 9 }8≠9 , �∗

)
and gives (hk, vk) to A.
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4. Algorithm A outputs a digest dig = (ℎ,D) and an opening f . Algorithm B outputs 1 if

4 (ℎ, �8∗ ) = 4 (�8∗ , �8∗ ) · 4 (61, f) and 4 (ℎ,6263) = 1.

The subgroup decision challenger samples the generators 68 r← G8 exactly as in Hyb2 and Hyb3. We can write
-16 = (6166)W16 where W16

r← Z# . The value W16 mod ?1?6 corresponds to the value of V8∗ mod ?1?6 in Hyb2 and Hyb3.
The remaining components other than�8∗ are sampled exactly as required in Hyb2 and Hyb3, so it su�ces to consider
�8∗ . We consider the two possibilities:

• Suppose / = (61626364)C where C r← Z# . This corresponds to an execution of Hyb1 with U8∗ = C . In this case,
algorithm B outputs 1 with probability Pr[Hyb2 (A) = 1].

• Suppose / = (6162636466)C where C r← Z# . This corresponds to an execution of Hyb3 with U8∗ = C . In this case,
algorithm B outputs 1 with probability Pr[Hyb3 (A) = 1].

We conclude that algorithm B succeeds with probability Y and the claim holds. �

Lemma 6.27. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that��Pr[Hyb3 (A) = 1] − Pr[Hyb4 (A) = 1]
�� = negl(_).

Proof. Suppose there exists an adversary A where
��Pr[Hyb3 (A) = 1] − Pr[Hyb4 (A) = 1]

�� ≥ Y (_) for some non-
negligible Y. Since the only di�erence between Hyb3 and Hyb4 is the extra condition, it must be the case that with
probability Y, algorithm A outputs (ℎ,D, f) such that

4 (ℎ, �8∗ ) = 4 (�8∗ , �8∗ ) · 4 (61, f) and 4 (ℎ,6263) = 1 and 4 (ℎ,66) ≠ 1. (6.3)

In all other cases, the output in Hyb3 and Hyb4 are identical. We use A to construct an adversary B for the general
subgroup decision assumption:

1. At the beginning of the game, algorithm B submits (0 = {2, 3, 5} and (1 = {2, 3, 5, 6} and the sets {1}, {2}, {3},
{4}, {5}, {2, 6} , {5, 6} to the subgroup decision challenger.

2. The challenger replies with the challenge (G, 61, 62, 63, 64, 65, -26, -56, / ), where 68 is used to denote the random
generator of G8 , -26

r← G({2, 6}), and -56
r← G({5, 6}).

3. Algorithm B starts running algorithm A who outputs the input length 1= . Algorithm B samples U8 r← Z# ,
V8

r← Z# , A8, 9 r← Z# for 8, 9 ∈ [=]. It sets

�8 =


(616364)U8∗-26 8 = 8∗

(6164)U8 8 ∉ (

(61626364)U8 8 ∈ ( \ {8∗}
and �8 =

{
6
V8∗
1 -56 8 = 8∗

(6165)V8 8 ≠ 8∗
and �8, 9 =


6
U8V 9
1 (62636465)A8,9 8, 9 ≠ 8∗

�
V 9
8∗ (62636465)A8∗, 9 8 = 8∗

�
U8
8∗ (62636465)A8,8∗ 9 = 8∗ .

Next, it samples V∗ r← Z# and A ∗8
r← Z# for each 8 ∈ [=]. It sets

�∗ = (6165)V
∗ and �8 =

{
6
U8V

∗

1 (62636465)A
∗
8 8 ≠ 8∗

�
V∗

8∗ (62636465)A
∗
8∗ 8 = 8∗ .

It sets hk = vk =
(
G, 61, {�8 , �8 , �8 }8∈[=], {�8, 9 }8≠9 , �∗

)
and gives (hk, vk) to A.

4. Algorithm A outputs a digest dig = (ℎ,D) and an opening f . Algorithm B outputs 1 if

4 (ℎ, �8∗ ) = 4 (�8∗ , �8∗ ) · 4 (61, f) and 4 (ℎ,6263) = 1 and 4 (ℎ, / ) = 1.
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The subgroup decision challenger samples the generators 68 r← G8 exactly as in Hyb3 and Hyb4. We can write
-26 = (6266)W26 and -56 = (6566)W56 where W26, W56

r← Z# . The value W26 mod ?1?6 corresponds to the value of
U8∗ mod ?2?6 while the value W56 corresponds to the value of V8∗ mod ?5?6. Thus, algorithm B perfectly simulates
the hash key for algorithm A. Thus, with probability at least Y − negl(_), algorithm A outputs (ℎ,D, f) that satis�es
Eq. (6.3). Then, we have the following:

• It must be the case that 4 (ℎ,65) = 1. Suppose otherwise. This means that ℎ is non-zero in the �5 subgroup.
Consider the �rst veri�cation condition 4 (ℎ, �8∗ ) = 4 (�8∗ , �8∗ ) · 4 (61, f). If ℎ is non-zero in the G5 component,
then the left-hand side 4 (ℎ, �8∗ ) is non-zero in the order-?5 subgroup unless W56 = 0 mod ?5, which happens
with negligible probability. However, the right-hand side is guaranteed to be zero in the order ?5 subgroup
(since neither �8∗ nor 61 have non-zero components in G5).

• Suppose / = (626365)C for some C r← Z# . Since 4 (ℎ,6263) = 1 and 4 (ℎ,65) = 1, this means that 4 (6, / ) = 1 and
algorithm B always outputs 1.

• Suppose / = (62636566)C for some C r← Z# . From Eq. (6.3), we have that 4 (ℎ,66) ≠ 1, so ℎ has a non-zero
component in the�6 subgroup. As long as C mod ?6 is non-zero (which happens with overwhelming probability),
then 4 (ℎ, / ) ≠ 1. In this case, algorithm B outputs 1 with negligible probability.

We have established that when Eq. (6.3) holds, algorithm B is able to successfully distinguish the subgroup decision
challenge. To complete the proof, we show that when Eq. (6.3) does not hold,9 then algorithm B’s behavior is
independent of the challenge / .

1. SupposeA outputs (ℎ,D, f) where either 4 (ℎ, �8∗ ) ≠ 4 (�8∗ , �8∗ ) ·4 (61, f) or 4 (ℎ,6263) ≠ 1. In this case, algorithm
B always outputs 0.

2. Suppose A outputs (ℎ,D, f) where 4 (ℎ, �8∗ ) = 4 (�8∗ , �8∗ ) · 4 (61, f), 4 (ℎ,6263) = 1, and 4 (ℎ,66) = 1. Since
4 (ℎ, �8∗ ) = 4 (�8∗ , �8∗ ) · 4 (61, f), our earlier analysis implies that with overwhelming probability over the choice
of W56, 4 (ℎ,65) = 1. Thus, in this case, 4 (ℎ,62636566) = 1, so 4 (ℎ, / ) = 1 for both possible choice of / . As such,
algorithm B always outputs 1 in this case.

3. Finally, suppose A outputs (ℎ,D, f) that satis�es Eq. (6.3). By our analysis above, algorithm B outputs 1 with
probability 1 when / = (626365)C and probability negl(_) when / = (62636566)C .

If we let d1, d2, d3 be the probabilities of each of these possible cases, then we have

Pr[ExptSubgroupB (_, 0) = 1] = d2 + d3

Pr[ExptSubgroupB (_, 1) = 1] = d2 + d3 · negl(_)

The advantage of B is thus d3 (1− negl(_)). By our above analysis, we have that d3 ≥ Y − negl(_) and so algorithm B
breaks the general subgroup decision assumption with advantage at least Y − negl(_). �

Lemma 6.28. Pr[Hyb4 (A) = 1] = negl(_).

Proof. In order for the output of Hyb4 to be 1, the adversary A must output (ℎ,D, f) such that

4 (ℎ, �8∗ ) = 4 (�8∗ , �8∗ ) · 4 (61, f) and 4 (ℎ,6263) = 1 and 4 (ℎ,66) = 1.

We claim that this can only happen with negligible probability over the choice of U8∗ and V8∗ . By construction in
Hyb4, as long as U8∗ , V8∗ ≠ 0 mod ?6 (which holds with overwhelming probability), 4 (�8∗ , �8∗ ) will have a non-zero
component in the order ?6-subgroup. However, if 4 (ℎ,66) = 1, then ℎ is zero in the order ?6-subgroup. Likewise,
4 (61, f) does not have an order ?6 subgroup. This means the left-hand side of the veri�cation relation is zero in the
order-?6 subgroup while the right-hand side is non-zero. As such, the veri�cation relation is unsatis�able as long as
U8∗ , V8∗ ≠ 0 mod ?6. �

9Note that algorithm B cannot check for itself whether Eq. (6.3) occurs or not since it does not know 66 (and indeed, knowledge of 66 would
trivially break the subgroup decision assumption). Thus, our proof strategy is simply to argue that when Eq. (6.3) does not happen, then the
behavior of algorithm B is independent of the challenge / .
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Combining Lemmas 6.24 to 6.28, we have that Pr[Hyb0 (A) = 1] = negl(_), and zero �xing security holds. �

Theorem 6.29 (Extractor Validity). If the general subgroup decision holds with respect to CompGroupGen, then
Construction 6.3 satis�es extractor validity.

Proof. Let A be an e�cient adversary for the extractor validity game. We begin by de�ning a sequence of hybrid
experiments:

• Hyb0: This is experiment ExptEVA (_). Namely, the adversary starts by outputting an input length 1= . The
challenger samples (G,G) , {?8 }8∈[6] , 6, 4) ← CompGroupGen(1_). It samples generators 68 r← G8 and sets
G = (G,G) , # , 6, 4), where # =

∏
8∈[6] ?8 . It constructs the hash key components as follows:

– Main components: For each 8 ∈ [=], sample U8 , V8 r← Z# Set �8 = (6164)U8 and �8 = (6165)V8 .

– Cross-terms: For each 8, 9 ∈ [=] where 8 ≠ 9 , sample A8, 9 r← Z# and let �8, 9 = 6
U8V 9
1 (62636465)A8,9 .

– Digest validation components: Sample V∗ r← Z# and let �∗ = (6165)V
∗ . For each 8 ∈ [=], sample

A ∗8
r← Z# and let �8 = 6U8V

∗

1 (62636465)A
∗
8 .

The challenger gives the hash key hk and veri�cation key vk to A where

hk = vk =
(
G, 61, {�8 , �8 , �8 }8∈[=], {�8, 9 }8≠9 , �∗

)
.

Algorithm A then outputs a digest dig = (ℎ,D) and the output of the experiment is 1 if

4 (ℎ, �∗) = 4 (61, D) and 4 (ℎ,6263) ≠ 1.

• Hyb1: Same as Hyb0, except the challenger now sets �8 = (�∗)U8 (62636465)A
∗
8 for all 8 ∈ [=]. In particular, the

exponent V∗ only shows up in the de�nition of �∗.

• Hyb2: Same as Hyb1, except the challenger now sets �∗ = (616265)V
∗ .

• Hyb3: Same as Hyb2, except the challenger now sets �∗ = (61626365)V
∗ .

We write Hyb8 (A) to denote the output of an execution of Hyb8 with adversary A. We now analyze each pair of
adjacent hybrid experiments.

Lemma 6.30. Pr[Hyb0 (A) = 1] = Pr[Hyb1 (A) = 1]

Proof. The outputs of Hyb0 (A) and Hyb1 (A) are identically distributed. The only di�erence between these two
distributions is the distribution of �8 . According to the speci�cation of Hyb1,

�8 = (�∗)U8 (62636465)A
∗
8 = (6165)U8V

∗ (62636465)A
∗
8 = 6

U8V
∗

1 (626364)A
∗
8 6
A ∗8 +U8V∗
5 .

Since A ∗8
r← Z# (and independent of all other quantities in hk, vk), the distribution of A ∗8 + U8V∗ mod ?5 is uniform

over Z?5 . We conclude that the distribution of �8 in Hyb1 is distributed exactly as in Hyb0. �

Lemma 6.31. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that
Pr[Hyb1 (A) = 1] ≤ Pr[Hyb2 (A) = 1] + negl(_).

Proof. Let dig = (ℎ,D) be the digest output byA in an execution of Hyb1 and Hyb2. For an index 8 ∈ {1, 2}, we de�ne
events E8,1 and E8,2:

• E8,1: This is the event 4 (ℎ, �∗) = 4 (61, D) and 4 (ℎ,63) ≠ 1 occurring in Hyb8 .

• E8,2: This is the event 4 (ℎ, �∗) = 4 (61, D) and 4 (ℎ,63) = 1 and 4 (ℎ,62) ≠ 1 occurring in Hyb8 .
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If the output of Hyb8 is 1, exactly one of E8,1 or E8,2 must happen (note that these events are mutually exclusive). Thus,
for 8 ∈ {1, 2}, we can write

Pr[Hyb8 (A) = 1] = Pr[E8,1] + Pr[E8,2] . (6.4)

We now analyze the probabilities of these events:

Claim 6.32. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that
| Pr[E1,1] − Pr[E2,1] | = negl(_).

Proof. Suppose | Pr[E1,1] − Pr[E2,1] | ≥ Y (_) for some non-negligible Y. We use A to construct an adversary B that
breaks the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits (0 = {5} and (1 = {2, 5} and the sets {1}, {3}, {4}, {5},
{2, 5}.

2. The challenger replies with the challenge (G, 61, 63, 64, 65, -25, / ) where 68 is a random generator of G8 , -25
r←

G({2, 5}).

3. Algorithm B starts running algorithm A who outputs the input length 1= . Algorithm B samples U8 r← Z# ,
V8

r← Z# , A8, 9 r← Z# for 8, 9 ∈ [=]. It sets

�8 = (6164)U8 and �8 = (6165)V8 and �8, 9 = 6
U8V 9
1 (-256364)A8,9 .

It samples V∗ r← Z# and A ∗8
r← Z# for each 8 ∈ [=], and sets

�∗ = 6
V∗

1 / and �8 = (�∗)U8 (-256364)A
∗
8 .

It sets hk = vk =
(
G, 61, {�8 , �8 , �8 }8∈[=], {�8, 9 }8≠9 , �∗

)
and gives (hk, vk) to A.

4. After A outputs the digest dig = (ℎ,D), algorithm B outputs 1 if

4 (ℎ, �∗) = 4 (61, D) and 4 (ℎ,63) ≠ 1.

We �rst argue that B correctly simulates the hash key according to the speci�cation of Hyb1 and Hyb2. First, we can
write -25 = (6265)W25 where W25

r← Z# . Since the challenger samples A8, 9 and A ∗8
r← Z# and each of these values is

used exactly once in the construction of hk, the distributions of�8, 9 and �8 are distributed exactly as they are in Hyb1
and Hyb2 unless W25 is zero in the ?2 or ?5 components. This happens with negligible probability over the choice of
W25. It su�ces to consider the distribution of �∗:

• Suppose / = 6C5 for C r← Z# . This corresponds to an execution of Hyb1 with V∗ = C mod ?5. Thus, algorithm B
outputs 1 with probability Pr[E1,1].

• Suppose / = (6265)C for C r← Z# . This corresponds to an execution of Hyb2 with V∗ = C mod ?2?5. In this case,
algorithm B outputs 1 with probability Pr[E2,1].

We conclude that algorithm B succeeds with advantage Y − negl(_) and the claim follows. �

Claim 6.33. If the general subgroup decision assumption holds with respect toCompGroupGen, then Pr[E1,2] = negl(_).

Proof. Suppose Pr[E1,2] ≥ Y (_) for some non-negligible Y. We use A to construct an adversary B that breaks the
general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits (0 = {2, 3} and (1 = {3} and the sets {1}, {3}, {4}, {5},
{2, 3} to the subgroup decision challenger.

2. The challenger replies with the challenge (G, 61, 63, 64, 65, -23, / ) where 68 is a random generator of G8 and
-23

r← G({2, 3}).
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3. Algorithm B starts running algorithm A who outputs the input length 1= . Algorithm B samples U8 r← Z# ,
V8

r← Z# , A8, 9 r← Z# for 8, 9 ∈ [=]. It sets

�8 = (6164)U8 and �8 = (6165)V8 and �8, 9 = 6
U8V 9
1 (-236465)A8,9 .

It samples V∗ r← Z# and A ∗8
r← Z# for each 8 ∈ [=], and sets

�∗ = (6165)V
∗ and �8 = (�∗)U8 (-236465)A

∗
8 .

It sets hk = vk =
(
G, 61, {�8 , �8 , �8 }8∈[=], {�8, 9 }8≠9 , �∗

)
and gives (hk, vk) to A.

4. After A outputs the digest dig = (ℎ,D), algorithm B output 1 if the following hold:

4 (ℎ, �∗) = 4 (61, D) and 4 (ℎ,63) = 1 and 4 (ℎ, / ) = 1.

We �rst argue that algorithm B correctly simulates an execution of Hyb1 for A. First, we can write -23 = (6263)W23

where W23
r← Z# . Since the challenger samples A8, 9 , A ∗8

r← Z# and each of these values is used exactly once in the
construction of hk, the distributions of �8, 9 and �8 are statistically close to that in Hyb1 unless W23 is zero in the ?2 or
?3 components. This happens with negligible probability over the choice of W23. In the following analysis, we assume
that W23 is non-zero in both its ?2 and ?3 components. Thus, with probability at least Y − negl(_), algorithm B outputs
dig = (ℎ,D) such that event E1,2 occurs. This means

4 (ℎ, �∗) = 4 (61, D) and 4 (ℎ,63) = 1 and 4 (ℎ,62) ≠ 1. (6.5)

Suppose Eq. (6.5) holds. We consider the probability that B outputs 1:

• If/ = (6263)C for some C r← Z# and 4 (ℎ,62) ≠ 1, then as long as C ≠ 0 mod ?2, it will be the case that 4 (ℎ, / ) ≠ 1,
so algorithm B outputs 0.

• If / = 6C3 for some C r← Z# and 4 (ℎ,63) = 1, then algorithm B always outputs 1.

We now compute the advantage of B. We consider three possibilities:

1. Suppose A outputs (ℎ,D) where either 4 (ℎ, �∗) ≠ 4 (61, D) or 4 (ℎ,63) ≠ 1. Then, the output of B is always 0.

2. Suppose A outputs (ℎ,D) where 4 (ℎ, �∗) = 4 (61, D), 4 (ℎ,63) = 1, and 4 (ℎ,62) = 1. Since / = (6263)C or / = 6C3,
in both cases, 4 (ℎ, / ) = 1 and algorithm B always outputs 1.

3. Suppose A outputs (ℎ,D) such that Eq. (6.5) holds. By the above analysis, this case happens with probability at
least Y − negl(_). Then algorithm B outputs 1 with negligible probability if / = (6263)C and with probability 1
if / = 6C3.

Let d1, d2, d3 be the probabilities of each of these cases. Then,

Pr[ExptSubgroupB (_, 0) = 1] = d2 + d3 · negl(_)
Pr[ExptSubgroupB (_, 1) = 1] = d2 + d3

The advantage of B is thus d3 (1 − negl(_)) ≥ Y − negl(_), and the claim holds. �

Returning to the proof of Lemma 6.31, we appeal to Eq. (6.4) to write

Pr[Hyb1 (A) = 1] = Pr[E1,1] + Pr[E1,2] by Eq. (6.4)
≤ Pr[E1,1] + negl(_) by Claim 6.33
≤ Pr[E2,1] + negl(_) by Claim 6.32
≤ Pr[E2,1] + Pr[E2,2] + negl(_)
= Pr[Hyb2 (A) = 1] + negl(_) by Eq. (6.4),

which proves the lemma. �
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Lemma 6.34. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that
Pr[Hyb2 (A) = 1] ≤ Pr[Hyb3 (A) = 1] + negl(_).

Proof. This follows by a similar argument as the proof of Lemma 6.31. Let dig = (ℎ,D) be the digest output by A in
an execution of Hyb2 and Hyb3. For an index 8 ∈ {2, 3}, we de�ne an analogous set of events E8,1 and E8,2 as in the
proof of Lemma 6.31 (changes marked in green):

• E8,1: This is the event 4 (ℎ, �∗) = 4 (61, D) and 4 (ℎ,62) ≠ 1 occurring in Hyb8 .

• E8,2: This is the event 4 (ℎ, �∗) = 4 (61, D) and 4 (ℎ,62) = 1 and 4 (ℎ,63) ≠ 1 occurring in Hyb8 .

Once again, we can write Pr[Hyb8 (A) = 1] Pr[E8,1] + Pr[E8,2]. We analyze the probabilities of each of these events:

Claim 6.35. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that
| Pr[E2,1] − Pr[E3,1] | = negl(_).

Proof. Suppose | Pr[E2,1] − Pr[E3,1] | ≥ Y (_) for some non-negligible Y. We use A to construct an adversary B that
breaks the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits (0 = {5} and (1 = {3, 5} and the sets {1}, {2}, {4}, {5},
{3, 5}.

2. The challenger replies with the challenge (G, 61, 62, 64, 65, -35, / ) where 68 is a random generator of G8 , -35
r←

G({3, 5}).

3. Algorithm B starts running algorithm A who outputs the input length 1= . Algorithm B samples U8 r← Z# ,
V8

r← Z# , A8, 9 r← Z# for 8, 9 ∈ [=]. It sets

�8 = (6164)U8 and �8 = (6165)V8 and �8, 9 = 6
U8V 9
1 (-356264)A8,9 .

It samples V∗ r← Z# and A ∗8
r← Z# for each 8 ∈ [=], and sets

�∗ = (6162)V
∗
/ and �8 = (�∗)U8 (-356264)A

∗
8 .

It sets hk = vk =
(
G, 61, {�8 , �8 , �8 }8∈[=], {�8, 9 }8≠9 , �∗

)
and gives (hk, vk) to A.

4. After A outputs the digest dig = (ℎ,D), algorithm B outputs 1 if

4 (ℎ, �∗) = 4 (61, D) and 4 (ℎ,62) ≠ 1.

We �rst argue that B correctly simulates the hash key according to the speci�cation of Hyb2 and Hyb3. First, we can
write -35 = (6365)W35 where W35

r← Z# . Since the challenger samples A8, 9 and A ∗8
r← Z# and each of these values is

used exactly once in the construction of hk, the distributions of�8, 9 and �8 are distributed exactly as they are in Hyb2
and Hyb3 unless W35 is zero in the ?3 or ?5 components. This happens with negligible probability over the choice of
W35. It su�ces to consider the distribution of �∗:

• Suppose / = 6C5 for C r← Z# . This corresponds to an execution of Hyb2 with V∗ = C mod ?5. Thus, algorithm B
outputs 1 with probability Pr[E2,1].

• Suppose / = (6265)C for C r← Z# . This corresponds to an execution of Hyb3 with V∗ = C mod ?2?5. In this case,
algorithm B outputs 1 with probability Pr[E3,1].

We conclude that algorithm B succeeds with advantage Y − negl(_) and the claim follows. �

Claim 6.36. If the general subgroup decision assumption holds with respect toCompGroupGen, then Pr[E2,2] = negl(_).

Proof. Suppose Pr[E2,2] ≥ Y (_) for some non-negligible Y. We use A to construct an adversary B that breaks the
general subgroup decision assumption:
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1. At the beginning of the game, algorithm B submits (0 = {2, 3} and (1 = {2} and the sets {1}, {2}, {4}, {5},
{2, 3} to the subgroup decision challenger.

2. The challenger replies with the challenge (G, 61, 62, 64, 65, -23, / ) where 68 is a random generator of G8 and
-23

r← G({2, 3}).

3. Algorithm B starts running algorithm A who outputs the input length 1= . Algorithm B samples U8 r← Z# ,
V8

r← Z# , A8, 9 r← Z# for 8, 9 ∈ [=]. It sets

�8 = (6164)U8 and �8 = (6165)V8 and �8, 9 = 6
U8V 9
1 (-236465)A8,9 .

It samples V∗ r← Z# and A ∗8
r← Z# for each 8 ∈ [=], and sets

�∗ = (616265)V
∗ and �8 = (�∗)U8 (-236465)A

∗
8 .

It sets hk = vk =
(
G, 61, {�8 , �8 , �8 }8∈[=], {�8, 9 }8≠9 , �∗

)
and gives (hk, vk) to A.

4. After A outputs the digest dig = (ℎ,D), algorithm B output 1 if the following hold:

4 (ℎ, �∗) = 4 (61, D) and 4 (ℎ,62) = 1 and 4 (ℎ, / ) = 1.

We �rst argue that algorithm B correctly simulates an execution of Hyb2 for A. First, we can write -23 = (6263)W23

where W23
r← Z# . Since the challenger samples A8, 9 , A ∗8

r← Z# and each of these values is used exactly once in the
construction of hk, the distributions of �8, 9 and �8 are statistically close to that in Hyb2 unless W23 is zero in the ?2
or ?3 component. This happens with negligible probability over the choice of W23, so in the following analysis, we
assume that this is not the case. Thus, with probability at least Y −negl(_), algorithm B outputs dig = (ℎ,D) such that

4 (ℎ, �∗) = 4 (61, D) and 4 (ℎ,62) = 1 and 4 (ℎ,63) ≠ 1. (6.6)

Suppose Eq. (6.6) holds. We consider the probability that B outputs 1:

• If / = (6263)C for some C r← Z# and 4 (ℎ,63) ≠ 1, then with overwhelming probability over the choice of C ,
4 (ℎ, / ) ≠ 1, and algorithm B outputs 0.

• If / = 6C2 for some C r← Z# and 4 (ℎ,62) = 1, so algorithm B outputs 1.

We now compute the advantage of B. We consider three possibilities:

1. Suppose A outputs (ℎ,D) where either 4 (ℎ, �∗) ≠ 4 (61, D) or 4 (ℎ,62) ≠ 1. Then, the output of B is always 0.

2. Suppose A outputs (ℎ,D) where 4 (ℎ, �∗) = 4 (61, D), 4 (ℎ,62) = 1, and 4 (ℎ,63) = 1. Since either / = (6263)C or
/ = 6C2, in both cases, 4 (ℎ, / ) = 1 and algorithm B outputs 1.

3. Suppose A outputs (ℎ,D) such that Eq. (6.6) holds. By the above analysis, this case happens with probability at
least Y − negl(_). Then algorithm B outputs 1 with negligible probability if / = (6263)C and with probability 1
if / = 6C2.

Let d1, d2, d3 be the probabilities of each of these cases. Then,

Pr[ExptSubgroupB (_, 0) = 1] = d2 + d3 · negl(_)
Pr[ExptSubgroupB (_, 1) = 1] = d2 + d3

The advantage of B is thus d3 (1 − negl(_)) ≥ Y − negl(_), and the claim holds. �
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Returning to the proof of Lemma 6.34, we can now write

Pr[Hyb2 (A) = 1] = Pr[E2,1] + Pr[E2,2]
≤ Pr[E2,1] + negl(_) by Claim 6.36
≤ Pr[E3,1] + negl(_) by Claim 6.35
≤ Pr[E3,1] + Pr[E3,2] + negl(_)
= Pr[Hyb3 (A) = 1] + negl(_),

and the lemma holds. �

Lemma 6.37. Pr[Hyb3 (A) = 1] = negl(_).

Proof. In order for the output in Hyb3 to be 1, the adversary A must output (ℎ,D, f) such that

4 (ℎ, �∗) = 4 (61, D) and 4 (ℎ,6263) ≠ 1.

We claim that this can only happen with negligible probability over the choice of V∗. Speci�cally, if V∗ is non-zero in
the ?2 and ?3 subgroups, and 4 (ℎ,6263) ≠ 1, then 4 (ℎ, �∗) is non-zero in the order ?2?3 subgroup. However 4 (61, D) is
always zero in the order ?2?3 subgroup, so the veri�cation relation is unsatis�able. �

By Lemmas 6.30, 6.31 and 6.34, we have that Pr[Hyb0 (A) = 1] ≤ Pr[Hyb3 (A) = 1] +negl(_) By Lemma 6.37, we have
that Pr[Hyb3 (A) = 1] ≤ negl(_). We conclude that Pr[Hyb0 (A) = 1] ≤ negl(_) and extractor validity holds. �

7 Monotone-Policy Aggregate Signatures
In this section, we formalize our construction of monotone policy aggregate signatures from a non-adaptively sound
monotone policy BARG for NP together with a “puncturable” signature scheme (called an all-but-one signature
scheme in [GVW19]).

De�nition 7.1 (Puncturable Signature [GVW19, adapted]). An puncturable (or all-but-one) signature scheme with
message space {0, 1}_ is a tuple of e�cient algorithms ΠPunctSig = (Gen,GenPunc, Sign,Verify) with the following
syntax:

• Gen(1_) → (vk, sk): On input the security parameter _, the key-generation algorithm outputs a key pair
(vk, sk).

• GenPunc(1_,<∗) → (vk, sk): On input a security parameter _ and a message<∗ ∈ {0, 1}_ , the punctured key
generation algorithm outputs a key pair (vk, sk).

• Sign(sk,<) → f : On input a signing key sk and a message < ∈ {0, 1}_ , the signing algorithm outputs a
signature f .

• Verify(vk,<, f) → 1: On input a veri�cation key vk, a message< ∈ {0, 1}_ , and a signature f , the veri�cation
algorithm outputs a bit 1 ∈ {0, 1}.

Moreover, the puncturable signature scheme should satisfy the following properties:

• Correctness: For all _ ∈ N and all< ∈ {0, 1}_ , it holds that

Pr
[
Verify(vk,<, f) = 1 : (vk, sk) ← Gen(1_)

f ← Sign(sk,<)

]
= 1.

• Punctured correctness: For all _ ∈ N, all<∗ ∈ {0, 1}_ , and all f∗ ∈ {0, 1}∗, it holds that

Pr
[
Verify(vk,<∗, f∗) = 1 : (vk, sk) ← GenPunc(1_,<∗)

]
= 0.
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• Veri�cation key indistinguishability: For any adversary A and any 1 ∈ {0, 1}, we de�ne the veri�cation
key indistinguishability experiment ExptVKIA (_,1) as follows:

1. On input a security parameter _, the adversary A outputs a message<∗ ∈ {0, 1}_ and sends it to the
challenger.

2. The challenger samples (vk0, sk0) ← Gen(1_) and (vk1, sk1) ← GenPunc(1_,<∗) and gives vk1 to the
adversary.

3. Next, the challenger can make signing queries on messages< ∈ {0, 1}_ \ {<∗}. On each signing query,
the challenger replies with f ← Sign(sk1,<).

4. The adversary outputs a bit 1 ′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠPunctSig satis�es veri�cation key indistinguishability if for any e�cient adversaryA there exists a
negligible function negl(·) such that��Pr[ExptVKIA (_, 0) = 1] − Pr[ExptVKIA (_, 1) = 1]

�� = negl(_).

Remark 7.2 (Multiple Veri�cation Keys). By a standard hybrid argument, we can show that any puncturable signature
scheme that satis�es veri�cation key indistinguishability also satis�es a stronger multi-key version of the de�nition
where the adversary can ask for multiple veri�cation keys (punctured at the same message<∗) and signatures on
messages< ≠<∗ with respect to those keys. We de�ne this formally below:

• Multiple veri�cation keys indistinguishability: For any adversary A and any 1 ∈ {0, 1}, we de�ne the
multiple veri�cation key indistinguishability experiment ExptMVKIA (_,1) as follows:

1. On input a security parameter _, the adversary A outputs the number of challenge keys 1= together with
a message a message<∗ ∈ {0, 1}_ .

2. For each 8 ∈ [=], the challenger samples (vk(8)0 , sk(8)0 ) ← Gen(1_) and (vk(8)1 , sk(8)1 ) ← GenPunc(1_,<∗).
It gives the veri�cation keys vk(1)

1
, . . . , vk(=)

1
to the adversary.

3. The adversary can now make signature queries. Each signing query consists of an index 8 ∈ [=] and a
message< ∈ {0, 1}_ \ {<∗}. The challenger responds with f ← Sign

(
sk(8)
1
,<

)
.

4. The adversary outputs a bit 1 ′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠPunctSig satis�es multiple veri�cation key indistinguishability if for all e�cient adversaries A,
there exists a negligible function negl(·) such that��Pr[ExptMVKIA (_, 0) = 1] − Pr[ExptMVKIA (_, 1) = 1]

�� = negl(_).

Fact 7.3 (Puncturable Signatures [GVW19]). Assuming either (1) the plain LWE assumption, or (2) the decision linear
assumption in a pairing group, there exists a puncturable signature scheme.

Monotone policy aggregate signature. We now de�ne the notion of a monotone policy aggregate (multi)-
signature.

De�nition 7.4 (Monotone Policy Aggregate Signatures). Let ΠSig = (Gen, Sign,Verify) be a digital signature scheme
with message space {0, 1}_ . A monotone policy aggregation scheme for ΠSig is a tuple of polynomial time algorithms
ΠAgg = (Setup,Aggregate,AggVerify) with the following syntax:

• Setup(1_, 1: , 1B? ) → crs: On input a security parameter _, a bound on the number of signers : , and a bound B?
on the policy size, the setup algorithm outputs a common reference string crs.

• Aggregate
(
crs,<, %, (vk1, f1), . . . , (vk: , f: )

)
→ fagg: On input the common reference string crs, a message

< ∈ {0, 1}_ , a policy circuit % : {0, 1}: → {0, 1}, a collection of veri�cation key/signature pairs (vk8 , f8 ), the
aggregation algorithm produces an aggregate signature fagg.
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• AggVerify
(
crs,<, %, (vk1, . . . , vk: ), fagg

)
→ 1: On input the common reference string crs, a message<, a policy

circuit % : {0, 1}: → {0, 1}, a tuple of : veri�cation keys and an aggregate signature fagg, the aggregate
veri�cation algorithm outputs a bit 1 ∈ {0, 1}.

Moreover, ΠAgg must satisfy the following properties:

• Correctness: For all _, :, B? ∈ N, all messages< ∈ {0, 1}_ , all monotone circuits % : {0, 1}: → {0, 1} and all
key and signature tuples {(8, vk8 , f8 )}8∈[: ] where % (Verify(vk1,<, f1), . . . ,Verify(vk: ,<, f: )) = 1, it holds that

Pr
[
AggVerify

(
crs,<, %, (vk1, . . . , vk: ), fagg

)
= 1 : crs← Setup(1_, 1: , 1B? )

fagg ← Aggregate
(
crs,<, %, (vk1, f1), . . . , (vk: , f: )

) ]
= 1.

• Succinctness: There exists a �xed polynomial poly(·) such that for all _, :, B? ∈ N, all messages< ∈ {0, 1}_ ,
all monotone circuits % : {0, 1}: → {0, 1} and all pairs {(vk8 , f8 )}8∈[: ] , the size of the aggregate signature fagg
in the correctness experiment satis�es |fagg | = poly(_ + log |% |).

• Static security: For any adversary A de�ne the static unforgeability experiment ExptSUA (_) as follows:

1. On input the security parameter _, the adversary A outputs the number of parties 1: , a number of
veri�cation keys 1= , the bound on the policy size 1B? , a challenge message<∗ ∈ {0, 1}_ , and a monotone
policy % : {0, 1}: → {0, 1}.

2. The challenger samples key-pairs (vk8 , sk8 ) ← Gen(1_) for all 8 ∈ [=] and sends vk1, . . . , vk: to the
adversary.

3. The adversary A can now issue signing queries. Each signing query consists of an index 8 ∈ [=] and a
message< ∈ {0, 1}_ \ {<∗}. The challenger responds with f ← Sign(sk8 ,<).

4. After the adversary is �nished making signing queries, it outputs a tuple of veri�cation keys (vk∗1, . . . , vk∗: ).
5. The challenger replies with the common reference string crs← Setup(1_, 1: , 1B? ).
6. The adversary A can continue to make signing queries. The challenger responds to these exactly as

before.
7. The adversary outputs the aggregate signature f∗agg.
8. The output of the experiment is 1 if all of the following holds:

– For each 8 ∈ [:], let 18 = 0 if vk∗8 = vk9 for some 9 ∈ [=]. Otherwise, let 18 = 1. Then, it holds that
% (11, . . . , 1: ) = 0.

– AggVerify
(
crs,<∗, %, (vk∗1, . . . , vk∗: ), f∗agg

)
= 1.

Otherwise, the output is 0.

We say that ΠAgg satis�es static security if for every e�cient adversary A, there exists a negligible function
negl(·) such that Pr[ExptSUA (_) = 1] = negl(_).

Aggregating puncturable signatures. We now show that we can combine any monotone policy BARG (satisfying
non-adaptive soundness) with a puncturable signature scheme to obtain a statically-secure monotone policy aggregate
signature scheme.

Construction 7.5 (Monotone Policy Aggregate Signature). Let ΠBARG = (BARG.Gen,BARG.Prove,BARG.Verify)
be a monotone policy BARG for NP and let ΠPunctSig = (PS.Gen, PS.GenPunc, PS.Sign, PS.Verify) be a puncturable
signature scheme with message space {0, 1}_ . Let ℓvk = ℓvk (_) be a bound on the length of the veri�cation keys of
ΠPunctSig. For any message< ∈ {0, 1}_ , de�ne the binary relation R[<] where

R[<] (vk, f) =
{

1 PS.Verify(vk,<, f) = 1
0 otherwise.

Let �< be the Boolean circuit that computes the relation R[<], and let B2 = B2 (_) be a bound on the size of �< . We
construct a monotone aggregate scheme ΠAgg = (Setup,Aggregate,AggVerify) for ΠPunctSig as follows:
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• Setup(1_, 1: , 1B? ): Sample crs← BARG.Gen(1_, 1ℓvk , 1B2 , 1B? ) and output crs.

• Aggregate
(
crs,<, %, (vk1, f1), . . . , (vk: , f: )

)
: Output BARG.Prove(crs,�<, %, (vk1, . . . , vk: ), (f1, . . . , f: )).

• AggVerify
(
crs,<, %, (vk1, . . . , vk: ), fagg

)
: Output BARG.Verify(crs,�<, %, (vk1, . . . , vk: ), fagg).

Theorem 7.6 (Correctness). If ΠBARG is complete, then Construction 7.5 is correct.

Proof. Fix _, :, B? ∈ N, message < ∈ {0, 1}_ , a monotone policy % : {0, 1}: → {0, 1} and : tuples {(8, vk8 , f8 )}8∈[: ]
such that % (Verify(vk1,<, f1), . . . ,Verify(vk: ,<, f: )) = 1. By construction of �< , it holds that �< (vk8 , f8 ) =

Verify(vk8 ,<, f8 ) for all 8 ∈ [:]. Thus, % (�< (vk1, f1), . . . ,�< (vk: , f: )) = 1. The theorem now follows by com-
pleteness of ΠBARG. �

Theorem 7.7 (Succinctness). If ΠBARG is succinct then Construction 7.5 has succinct aggregate signatures.

Proof. This follows directly from the succinctness of ΠBARG and the fact that the aggregate signature is simply a BARG
proof. Fix _, :, B? ∈ N, message< ∈ {0, 1}_ , a monotone policy % : {0, 1}: → {0, 1} and : tuples {(8, vk8 , f8 )}8∈[: ] . The
aggregate signature fagg is a BARG proof for circuit �< , policy % , the statements (vk1, . . . , vk: ) and the signatures
(f1, . . . , f: ). By succinctness of the BARG, the length of fagg is poly(_ + B2 + log |% |). For every message< ∈ {0, 1}_ ,
the circuit�< simply checks whether the input veri�cation key and signature verify the message<, so B2 (_) = poly(_).
Hence, the overall proof size is poly(_ + log |% |) and the claim follows. �

Remark 7.8 (Fast Veri�cation via RAM Delegation). Similar to Remark 2.13 it is possible to use a RAM delega-
tion scheme [CJJ21b, WW22, KLVW23, CGJ+23] to delegate the aggregate signature veri�cation to the aggregator.
Currently, the aggregate veri�cation algorithm AggVerify in Construction 7.5 runs in time poly(_ + |% |). This is
because the aggregation algorithm needs to read the policy as well as the veri�cation keys vk1, . . . , vk: . If the
policy % and the veri�cation keys are known in advance, the aggregator can include a proof c that the function
�crs,%,(vk1,...,vk: ) (<,fagg) := AggVerify(crs,<, %, (vk1, . . . , vk: ), fagg) satis�es �crs,%,(vk1,...,vk: ) (<,fagg) = 1. In this case,
the common reference string would also contain a CRS for the RAM delegation scheme. The new aggregate veri�cation
algorithm would only check the RAM delegation proof (with respect to the function �crs,%,(vk1,...,vk: ) ); formally, the
RAM delegation scheme would take as input a hash ℎ of the parameters (crs, %, (vk1, . . . , vk: )), and the veri�cation
algorithm for the RAM program only needs to take the (honestly-precomputed) hash ℎ, the message <, and the
signature fagg. With this modi�cation, the aggregate veri�cation algortihm (given the precomputed hash ℎ) runs in
time poly(_ + log |% |).

Theorem 7.9 (Static Security). If ΠPunctSig satis�es (multiple) veri�cation key indistinguishability and ΠBARG satis�es
non-adaptive soundness, then Construction 7.5 is statically unforgeable.

Proof. Let A be any e�cient adversary for the static security game. We begin by de�ning a sequence of hybrid
experiments:

• Hyb0: This is the static unforgeability experiment:

1. On input the security parameter _, the adversary A outputs the number of parties 1: , a number of
veri�cation keys 1= , a bound on the policy size 1B? , a challenge message<∗ ∈ {0, 1}_ , and a monotone
policy % : {0, 1}: → {0, 1}.

2. The challenger samples key-pairs (vk8 , sk8 ) ← PS.Gen(1_) for all 8 ∈ [=] and sends vk1, . . . , vk: to the
adversary.

3. The adversary A can now issue signing queries. Each signing query consists of an index 8 ∈ I and a
message< ∈ {0, 1}_ \ {<∗}. The challenger responds with f ← PS.Sign(sk8 ,<).

4. After the adversary is �nished making signing queries, it outputs a tuple of veri�cation keys (vk∗1, . . . , vk∗: ).
5. The challenger replies with the common reference string crs← BARG.Gen(1_, 1ℓvk , 1B2 , 1B? ).
6. The adversary A can continue to make signing queries. The challenger responds to these exactly as

before. When A �nishes making signing queries, the adversary outputs the aggregate signature f∗agg.
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7. The output of the experiment is 1 if all of the following holds:
– For each 8 ∈ [:], let 18 = 0 if vk∗8 = vk9 for some 9 ∈ [=]. Otherwise, let 18 = 1. Then, it holds that
% (11, . . . , 1: ) = 0.

– BARG.Verify
(
crs,�<∗ , %, (vk∗1, . . . , vk∗: ), f∗agg

)
= 1.

Otherwise, the output is 0.

• Hyb1: Same as Hyb0, except the challenger uses the following modi�ed procedure to sample key-pairs (Step 2):

– For all 8 ∈ [=], sample (vk8 , sk8 ) ← PS.GenPunc(1_,<∗).

For an adversary A, we write Hyb8 (A) to denote the output of Hyb8 with adversary A. We now show that the
output distributions of Hyb0 and Hyb1 are computationally indistinguishable, and moreover, that for all e�cient
adversaries A, the output of Hyb1 (A) is 1 with negligible probability.

Lemma 7.10. If ΠPunctSig satis�es veri�cation key indistinguishability, then there exists a negligible function negl(·)
such that | Pr[Hyb0 (A) = 1] − Pr[Hyb1 (A) = 1] | = negl(_).

Proof. Suppose
��Pr[Hyb0 (A) = 1] − Pr[Hyb1 (A) = 1]

�� = Y for some non-negligible Y. We construct an adversary B
for the multiple veri�cation key indistinguishability game of ΠPunctSig as follows:

1. On input the security parameter 1_ , algorithm B computes (1: , 1=, 1B? ,<∗, %) ← A(1_). Algorithm B forwards
<∗ and 1= , to the challenger.

2. The challenger replies with a tuple of veri�cation keys (vk1, . . . , vk=). Algorithm B forwards (vk1, . . . , vk=) to
A.

3. Whenever A makes a signing query on an index 8 ∈ [=] and a message < ∈ {0, 1}_ \ {<∗}, algorithm B
forwards (8,<) to the challenger to obtain a signature f . Algorithm B replies to A with f .

4. When the adversaryA outputs a tuple (vk∗1, . . . , vk∗: ), algorithm B computes crs← BARG.Gen(1_, 1ℓvk , 1B2 , 1B? )
and gives crs to A.

5. Whenever algorithm A makes additional signing queries, algorithm B responds in the same manner as before.

6. When A outputs a signature f∗agg, algorithm B checks the following:

• For each 8 ∈ [:], let 18 = 0 if vk∗8 = vk9 for some 9 ∈ [=]. Otherwise, let 18 = 1. Then, check that
% (11, . . . , 1: ) = 0.

• AggVerify
(
crs,<∗, %, (vk∗1, . . . , vk∗: ), f∗agg

)
= 1.

Algorithm B outputs 1 if both checks pass and 0 otherwise.

By construction, algorithm B constructs the key-pairs (vk8 , sk8 ) for 8 ∈ [:] \ I exactly as required in Hyb0 and Hyb1.
It su�ces to consider the distribution of the veri�cation keys vk8 for 8 ∈ I and the responses to the signing queries.
We consider the two possibilities:

• If the challenger responds according to the speci�cation of ExptMVKIB (_, 0), then it samples (vk8 , sk8 ) ←
Gen(1_). Moreover, the challenger responds to a signing query on ( 9,<) where 9 ∈ [=] and< ∈ {0, 1}_ \ {<∗}
with f ← Sign(sk8 ,<). This is precisely the distribution in Hyb0 (A). Finally, algorithm B computes the output
using the same procedure as in Hyb0 and Hyb1. Therefore, Pr[Hyb0 (A) = 1] = Pr[ExptMVKIB (_, 0) = 1].

• If the challenger responds according to the speci�cation of ExptMVKIB (_, 1), then it samples (vk8 , sk8 ) ←
GenPunc(1_,<∗). Moreover, the challenger responds to a signing query on ( 9,<) where 9 ∈ [=] and < ∈
{0, 1}_ \ {<∗} with f ← Sign(sk8 ,<). This is precisely the distribution in Hyb1 (A). We conclude that
Pr[Hyb1 (A) = 1] = Pr[ExptMVKIB (_, 1) = 1].
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We conclude that algorithm B wins the multiple veri�cation key indistinguishability game with the same non-
negligible advantage Y, and the claim follows. �

Lemma 7.11. If ΠBARG satis�es non-adaptive soundness, and ΠPunctSig satis�es punctured correctness, then there exists
a negligible function negl(·) such that Pr[Hyb1 (A) = 1] = negl(_).

Proof. Suppose Pr[Hyb1 (A) = 1] = Y for some non-negligible Y. We construct an adversary B for the non-adaptive
soundness game as follows:

1. On input the security parameter 1_ , algorithm B runs (1: , 1=, 1B? ,<∗, %) ← A(1_). Algorithm B then samples
(vk8 , sk8 ) ← PS.GenPunc(1_,<∗) for all 8 ∈ [=]. It forwards the veri�cation keys (vk1, . . . , vk=).

2. Whenever algorithmA makes a signing query on an index 8 ∈ [=] and a message< ∈ {0, 1}_ \ {<∗}, algorithm
B replies with a signature f ← Sign(B:8 ,<).

3. When the adversaryA outputs a tuple (vk∗1, . . . , vk∗: ), algorithmB forwards the instance size 1ℓvk , the circuit size
1B2 , the monotone policy size bound 1B? , the circuit�<∗ , the monotone policy % , and the instance (vk∗1, . . . , vk∗: )
to the BARG challenger. The challenger replies with a common reference string crs which B forwards to A.

4. Whenever algorithm A makes additional signing queries, algorithm B responds in the same manner as before.

5. At the end of the game, algorithm A outputs an aggregate signature fagg. Algorithm B forwards c = fagg to
the challenger.

The challenger constructs the common reference string as crs ← BARG.Gen(1_, 1ℓvk , 1B2 , 1B? ). Thus, algorithm B
perfectly simulates an execution of Hyb1 for A. Thus, with probability at least Y, algorithm A outputs an aggregate
signature fagg where

BARG.Verify(crs,�<∗ , %, (vk∗1, . . . , vk∗: ), fagg) = 1,

and % (11, . . . , 1: ) = 0 where 18 = 0 if vk∗8 = vk9 for some 9 ∈ [=] and 18 = 1 otherwise. We argue that algorithm B
wins the non-adaptive soundness game when this happens:

• By punctured correctness of ΠPunctSig, for all f ∈ {0, 1}∗, it holds that Verify(vk8 ,<∗, f) = 0 for all 8 ∈ [=].
Correspondingly, this means that for all 8 ∈ [=], it holds that �<∗ (vk8 , f) = 0 for all inputs f ∈ {0, 1}∗.

• Thus for all 8 ∈ [:], if vk∗8 = vk9 for some 9 ∈ [=], then�<∗ (vk∗9 , f) = 0 for all f ∈ {0, 1}∗. Next % (11, . . . , 1: ) = 0
where 18 = 0 whenever vk∗8 = vk9 for some 9 ∈ [=], and 18 = 1 otherwise. This means (�<∗ , %, (vk∗1, . . . , vk∗: )) ∉
LMP-CSAT.

• If BARG.Verify(crs,�<∗ , %, (vk∗1, . . . , vk∗: ), fagg) = 1, and (�<∗ , %, (vk∗1, . . . , vk∗: )) ∉ LMP-CSAT, then algorithm B
wins the non-adaptive soundness game.

Thus, algorithm B breaks the non-adaptive soundness of ΠBARG with the same advantage Y. �

Theorem 7.9 now follows by Lemmas 7.10 and 7.11 and a hybrid argument. �

8 Semi-Somewhere Extractability of Monotone Policy BARGs
In this section, we show that our proof of non-adaptive soundness for our monotone policy BARG in Section 4 easily
extends to achieve a notion of extractability.10 Our notion of extractability is a relaxed version of the somewhere
extractability notion from [BBK+23]. In the notion from [BBK+23], there is a trapdoor setup algorithm that takes
as input a set of indices ( and outputs an extraction trapdoor. The guarantee is that whenever the prover produces
a proof for a tuple of statements (G1, . . . , G: ) with respect to a circuit � and policy % for which ( is “critical,” then
10As we discussed in Section 1.1, it is not clear what the right or most useful notion of extraction is in the context of monotone policy BARGs.

The desired notion of extractability may in fact be application-dependent. For this reason, we focus on non-adaptive soundness for the main
construction and include this section primarily as an illustration that our approach can support some non-trivial form of extractability.
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the extraction algorithm will output a witnessF8 where � (G8 ,F8 ) = 1 for some index 8 ∈ ( . In this setting, a set ( is
critical for a policy % if every input (11, . . . , 1: ) ∈ {0, 1}: where % (11, . . . , 1: ) = 1 has an index 8 ∈ ( where 18 = 1 (i.e.,
every input that satis�es the policy % must set some index in the critical set ( to 1). In addition, the trapdoor CRS
should hide the set ( .

Semi-somewhere extractability. To extract a witness from the critical set ( , the [BBK+23] construction program
( into the CRS and then rely on an FHE-based hash function to homomorphically “propagate” one of the witnesses in
( into the hash digest. This enables an e�cient extraction procedure. In our setting, we do not use FHE. Instead, we
observe that our existing proof in Section 4 already achieves a notion of extractability by relying only on somewhere
extractability of the underlying (vanilla) BARG. The caveat of our notion is that there is a 1/: loss in the success
probability of our extractor. Namely, if an adversary produces a proof on (G1, . . . , G: ) with probability Y, then the
extractor will output a witnessF8 for some 8 ∈ ( with probability Y/: . We refer to our notion as semi-somewhere
extractability. We give the formal de�nition below:

De�nition 8.1 (Semi-Somewhere Extractable Monotone BARG). A semi-somewhere extractable monotone policy
BARG for Boolean circuit satis�ability is a tuple of polynomial time algorithms ΠMP-BARG = (Gen, Prove,Verify,
TrapGen, Extract) such that (Gen, Prove,Verify) is monotone policy BARG for Boolean circuit satis�ability and the
two additional algorithms (TrapGen, Extract) have the following syntax:

• TrapGen(1_, 1=, 1B2 , 1B? , 1: , () → (crs, td): On input the security parameter _ ∈ N, the instance size = ∈ N, the
number of instances : ∈ N, a bound on the size of the Boolean circuit B2 ∈ N, a bound on the size of the policy
B? ∈ N, and a subset ( ⊆ [:], the indexed generator algorithm outputs a common reference string crs and a
trapdoor td.

• Extract(td,�, %, (G1, . . . , G: ), c) → (8,F8 ): On input a trapdoor td, a Boolean circuit � , a monotone policy % ,
instances G1, . . . , G: , a proof c , and an index 8 , the extraction algorithm outputs an index 8 and an NP witness
F8 .

Moreover, ΠMP-BARG should satisfy the following properties:

• Set hiding: For an adversaryA and a bit 1 ∈ {0, 1}, de�ne the set hiding experiment ExptSHA (_,1) as follows:

1. On input a security parameter _, algorithm A starts by outputting the instance size 1= , the bound on the
size of the NP relation 1B2 , the bound on the size of the policy 1B? , the number of instances 1: , and a set
( ⊆ [:].

2. The challenger samples crs0 ← Gen(1_, 1=, 1B2 , 1B? ) and (crs1, td) ← TrapGen(1_, 1=, 1B2 , 1B? , 1: , () and
sends crs1 to A.

3. Algorithm A outputs a bit 1 ′ ∈ {0, 1} which is the output of the experiment.

We say that ΠMP-BARG satis�es set hiding if for every e�cient adversary A there exists a negligible function
negl(·) such that ��Pr[ExptSHA (_, 0) = 1] − Pr[ExptSHA (_, 1) = 1]

�� = negl(_).

• Semi-somewhere extractability: For an integer : ∈ N and an adversary A, de�ne the semi-somewhere
extractability experiment ExptSEA (_, :) as follows:

1. On input the security parameter 1_ , algorithm A starts by outputting the instance size 1= , the bound
on the size of the NP relation 1B2 , the bound on the size of the policy 1B? , a monotone Boolean circuit
% : {0, 1}: → {0, 1} of size at most B? , and a set ( ⊆ [:].

2. The challenger samples (crs, td) ← Gen(1_, 1=, 1B2 , 1B? , 1: , () and sends crs to A.
3. Algorithm A outputs a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1} of size at most B2 , statements
G1, . . . , G: ∈ {0, 1}= , and a proof c .

4. The challenger extracts a witness (8,F8 ) ← Extract(td,�, %, (G1, . . . , G: ), c).
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5. The output of the experiment is 1 if � (G8 ,F8 ) = 1 and 8 ∈ ( . Otherwise, the output is 0.

An adversary A is admissible if it outputs a set ( ⊆ [:] and a policy % such that % (11, . . . , 1: ) = 0 where 18 = 0
if 8 ∈ ( and 18 = 1 otherwise. Let

YA (_, :) := Pr[Verify(crs,�, %, (G1, . . . , G: ), c) = 1] (8.1)

in an execution of ExptSEA (_, :). We say that ΠBARG is semi-somewhere extractable if for every polynomial
: = : (_) and every e�cient and admissible adversary A, there exists a negligible function negl(·) such that

Pr[ExptSEA (_, :) = 1] ≥ 1
:
· YA (_, :) − negl(_) .

Remark 8.2 (On Semi-Somewhere Extractability). An important caveat of the semi-somewhere extractability notion
in De�nition 8.1 is that we allow the extractor to succeed with smaller probability (by an inverse polynomial factor)
than the honest prover. While this is still su�cient for applications to monotone policy aggregate signatures (see
Section 8.1), this may not be the case in all settings where an extraction guarantee might be employed. As an example,
suppose we have an adversary A that samples statements from one of two distributions D1 and D2 (with equal
probability) and produces a valid proof on the statement with probability Y. Normally, we would hope that the
extractor algorithm would be able to extract witnesses for statements sampled from both D1 and D2. However, since
we allow for an inverse polynomial loss in the extractor’s success probability, it could be the case that the extractor
only works for instances sampled from D1 and never outputs witnesses for instances sampled from D2. If this were
to happen in a security proof which relies on the ability to extract witnesses from instances drawn from D2, then the
proof would no longer go through. Thus, using the semi-somewhere extractability notion in the context of a security
proof could require some extra care.

Adapting Construction 4.4. We now show how to extend Construction 4.4 to support semi-somewhere extractabil-
ity. The construction relies on the fact that the proof of Construction 4.4 (Section 4.2) implicitly achieves a notion of
extractability.

Construction 8.3 (Semi-Somewhere Extractable Monotone BARG). Let (Gen, Prove,Verify) be the monotone policy
BARG of Construction 4.4. Let Π′BARG = (Gen′, Prove′,Verify′, TrapGen′, Extract′) be the underlying somewhere
extractable BARG for Boolean circuit satis�ability, and ΠH = (H.Setup,H.Hash,H.ProveOpen,H.VerOpen,H.Extract,
H.ValidateDigest) be the underlying zero-�xing hash function. We extend Construction 4.4 with the following
algorithms:

• TrapGenIndex(1_, 1=, 1B2 , 1B? , 1: , (, 9) → (crs, td9 ): On input the security parameter _ ∈ N, the instance size
= ∈ N, a bound on the size of the Boolean circuit B2 ∈ N, a bound on the size of the policy B? ∈ N, the number
of instances : , a set ( ⊆ [:], and an index 9 ∈ ( , the indexed trapdoor generator algorithm proceeds as follows:

– Let 91, . . . , 9 |( | ∈ ( be the elements of ( in ascending order. Let C ∈ [|( |] be the index where 9 = 9C . De�ne
the set (C = { 91, . . . , 9C−1} if C > 1 and (C = ∅ otherwise.

– Sample two hash keys (hk0, vk0, td0) ← H.Setup(1_, 1B? ,∅) and (hk1, vk1, td1) ← H.Setup(1_, 1B? , (C ) .
– Let B ′ be a bound on the size of the circuit that computes the relation R[�, :, B? , vk0, vk1, dig0, dig1]

from Fig. 1 when instantiated with an arbitrary Boolean circuit � of size at most B2 , an input length
: ≤ B? and digests dig0, dig1 associated with the hash and veri�cation keys (hk0, vk0) and (hk1, vk1).
Let =′ = 3 · dlog B?e + 1 be the bound on the statement length. Sample (crsBARG, vkBARG, tdBARG) ←
TrapGen′(1_, 1B? , 1=′, 1B′, 9).

– Outputs the common reference string crs = (crsBARG, vkBARG, hk0, hk1, vk0, vk1) and the trapdoor td9 =
tdBARG.

Looking ahead, the helper algorithm TrapGenIndex(1_, 1=, 1B2 , 1B? , 1: , (, 9C ) implements the setup algorithm
according to the speci�cation of the hybrid experiments H̃yb0,C,3 and H̃yb0,C,4 in the proof of Theorem 8.7. These
are the analogs of the hybrid experiments Hyb0,C,3 and Hyb0,C,4 from the proof of Theorem 4.7 in Section 4.2.
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• TrapGen(1_, 1=, 1B2 , 1B? , 1: , () → (crs, td): On input the security parameter _ ∈ N, the instance size = ∈ N,
a bound on the size of the Boolean circuit B2 ∈ N, a bound on the size of the policy B? ∈ N, the number of
instances : , and a set ( ⊆ [:], the generator algorithm proceeds as follows:

– Sample a random 9
r← ( .

– Compute (crs, td9 ) ← TrapGenIndex(1_, 1=, 1B2 , 1B? , 1: , 9).
– Output the common reference string crs, and the trapdoor td = ( 9, td9 ).

• Extract(td,�, %, (G1, . . . , G: ), c) → ( 9,F 9 ): On input a trapdoor td = ( 9, td9 ), a Boolean circuit � , a monotone
policy % , instances G1, . . . , G: , and a proof c , the algorithm computes F̂ 9 ← Extract(td9 ,�aug, (Ĝ1, . . . , ĜB? ), c, 9),
where the circuit �aug and the instances Ĝ1, . . . , ĜB? are computed from �, %, G1, . . . , G: as in Construction 4.4.
Parse F̂ 9 = (1, f (0) , f (1) ,F) and if 1 = 1, output ( 9,F). If 1 ≠ 1, output ⊥.

Theorem 8.4 (Set Hiding). If ΠBARG satis�es index hiding and ΠH satis�es set hiding, then Construction 8.3 satis�es set
hiding.

Proof. Let A be an e�cient non-uniform adversary for the set hiding game of ΠMP-BARG. We proceed via a hybrid
argument:

• Hyb0: This is experiment ExptSHA [_, 0]:

1. On input a security parameter _, algorithm A starts by outputting the instance size 1= , the bound on the
size of the NP relation 1B2 , the bound on the size of the policy 1B? , the number of instances 1: , and a set
( ⊆ [:].

2. The challenger samples crs← Gen(1_, 1=, 1B2 , 1B? ). Namely, it samples
– (hk0, vk0, td0) ← H.Setup(1_, 1B? ,∅).
– (hk1, vk1, td1) ← H.Setup(1_, 1B? ,∅).
– (crsBARG, vkBARG) ← Gen′(1_, 1B? , 1=′, 1B′), where =′, B ′ are de�ned as in Construction 8.3.

The challenger sends crs = (crsBARG, vkBARG, hk0, hk1, vk0, vk1) to A.
3. Algorithm A outputs a bit 1 ′ ∈ {0, 1} which is the output of the experiment.

• Hyb1: Same as Hyb0, except the challenger samples crsBARG to bind to a random index 9C ∈ ( . Concretely, the
challenger samples a random index 9 r← ( and samples (crsBARG, vkBARG, tdBARG) ← TrapGen′(1_, 1B? , 1=′, 1B′, 9).

• Hyb2: Same asHyb1, except the challenger samples hk1, vk1 to be zero-�xing on the set (C . This is ExptSHA [_, 1].
Speci�cally, in this experiment, the challenger samples (hk1, vk1, td1) ← H.Setup(1_, 1B? , (C ), where (C =

{ 91, . . . , 9C−1}, the indices 91, . . . , 9 |( | are the elements of ( in ascending order, and C ∈ [|( |] is the index where
9 = 9C .

We write Hyb8 (A) to denote the output of Hyb8 with adversary A. We now show that each pair of adjacent output
distributions are computationally indistinguishable.

Claim 8.5. If ΠBARG satis�es index hiding, then there exists a negligible function negl(·) such that��Pr[Hyb0 (A) = 1] − Pr[Hyb1 (A) = 1]
�� = negl(_).

Proof. Suppose | Pr[Hyb0 (A) = 1] − Pr[Hyb1 (A) = 1] | = Y for some non-negligible Y. We use A to construct an
adversary B for the index hiding game of ΠBARG as follows:

1. On input the security parameter 1_ , algorithm B runs A on input 1_ to obtain (1=, 1B2 , 1B? , 1: , ().

2. Algorithm B samples 9 r← ( and send (1B? , 1=′, 1B′, 9) to the BARG challenger. The challenger replies with
(crsBARG, vkBARG).
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3. Algorithm B computes (hk0, vk0, td0) ← H.Setup(1_, 1B? ,∅) and (hk1, vk1, td1) ← H.Setup(1_, 1B? ,∅).

4. Algorithm B sets crs = (crsBARG, vkBARG, hk0, hk1, vk0, vk1) and gives crs to A. It outputs whatever A outputs.

If the challenger samples (crsBARG, vkBARG) ← Gen′(1_, 1B? , 1=′, 1B′), then algorithm B perfectly simulates Hyb0 forA.
Conversely, if it samples (crsBARG, vkBARG, tdBARG) ← TrapGen′(1_, 1B? , 1=′, 1B′, 9), algorithm B perfectly simulates
Hyb1 for A. We conclude that the advantage of algorithm B is Y, and the claim holds. �

Claim 8.6. If ΠH satis�es set hiding, then there exists a negligible function negl(·) such that��Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1]
�� = negl(_).

Proof. Suppose | Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1] | = Y for some non-negligible Y. We construct an attacker B
for the set hiding game of ΠH as follows:

1. On input the security parameter 1_ , algorithm B runs A on input 1_ to obtain (1=, 1B2 , 1B? , 1: , ().

2. Let 91, . . . , 9 |( | ∈ ( be the elements of ( in ascending order. Algorithm B samples 9 r← ( and sets C ∈ [|( |] to
be the index where 9 = 9C . Algorithm B send (1B? , (C ) to the challenger, where (C = { 91, . . . , 9C−1} if C > 1 and
(C = ∅ otherwise. The challenger replies with (hk1, vk1).

3. Algorithm B samples a hash key (hk0, vk0, td0) ← H.Setup(1_, 1B? ,∅) along with the BARG parameters
(crsBARG, vkBARG, tdBARG) ← TrapGen′(1_, 1B? , 1=′, 1B′, 9) .

4. Algorithm B sets crs = (crsBARG, vkBARG, hk0, hk1, vk0, vk1) and gives crs to A. It outputs whatever A outputs.

If the challenger samples (hk1, vk1, td1) ← H.Setup(1_, 1B? ,∅), then algorithm B perfectly simulates Hyb1 for A.
Conversely, if the challenger samples (hk1, vk1, td1) ← H.Setup(1_, 1B? , (C ), then algorithm B perfectly simulates
Hyb2 for A. Correspondingly, the advantage of algorithm B is Y, and the claim follows. �

Theorem 8.4 now follows from Claims 8.5 and 8.6. �

Theorem 8.7. If ΠH satis�es set hiding, index hiding with extracted guess, zero �xing and extractor validity against
non-uniform adversaries, and ΠBARG is somewhere extractable and satis�es set hiding against non-uniform adversaries,
then Construction 8.3 is semi-somewhere extractable against non-uniform adversaries.

Proof. To prove Theorem 8.7, we use a similar strategy as in the proof of Theorem 4.7 (Section 4.2). Here, we give a
high-level overview. Speci�cally, we start by de�ning sequence of hybrids Hyb0, . . . ,Hyb3 , where 3 is the depth of
the monotone circuit % . These are essentially the same experiments from the proof of Theorem 4.7 in Section 4.2. The
initial hybrid corresponds to the semi-somewhere extractability experiment where the output is 1 if the adversary
outputs an accepting proof (i.e., the output in the initial hybrid is 1 with probability YA (_, :) as de�ned in Eq. (8.1)).
In the �nal hybrid, we show that the output is 1 probability 0. Finally, we argue that any di�erence in advantage
between adjacent hybrids can only occur in settings where the extractor is successful. There are a maximum of : such
experiments (one associated with each of the inputs to % ). Since the probability of an experiments drops from Y to 0,
in at least one of these intermediary experiments, the probability must decrease by Y/: (up to negligible di�erences);
this directly translates into the extractor succeeding with probability at least Y/: (up to negligible di�erences). We
give the formal argument below.

Outer hybrids. Take any polynomial : = : (_) and any e�cient (non-uniform) and admissible adversary A =

(A1,A2). Let % : {0, 1}: → {0, 1} and ( ⊆ [:] be the monotone policy and the challenge set that algorithm A1
outputs (on input the security parameter _). Let 3 be the depth of % and B be its size. We now de�ne the sequence of
outer hybrids:

• H̃yb0: This is the analog of Hyb0 from the proof of Theorem 4.7 (Section 4.2). We de�ne it here:
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– Phase 1: On input the security parameter 1_ , algorithm A1 outputs 1=, 1B2 , 1B? , a monotone Boolean circuit
% : {0, 1}: → {0, 1} of size B ≤ B? , a set ( ⊆ [:] and the state stA . The experiment outputs 0 if % (11, . . . , 1: ) = 1
where 18 = 0 if 8 ∈ ( and 18 = 1 otherwise.

– Phase 2: The challenger computes crs ← Gen(1_, 1=, 1B2 , 1B? ). Speci�cally, the challenger samples the
following components:

∗ (crsBARG, vkBARG) ← Gen′
(
1_, 1B? , 1=′, 1B′).

∗ (hk0, vk0, td0) ← H.Setup(1_, 1B? ,∅).
∗ (hk1, vk1, td1) ← H.Setup(1_, 1B? ,∅).

The challenger sets crs = (crsBARG, hk0, hk1, vk0, vk1) and runsA2 on input (crs, stA). AlgorithmA2 outputs
a Boolean circuit � of size at most B2 , an instance x = (G1, . . . , G: ), and a proof string c = (dig0, dig1, cBARG).
Let x̂ = (Ĝ1, . . . , ĜB? ) and �aug be as de�ned in Prove and Verify in Construction 4.4. The output of the
experiment is 1 if all of the following conditions hold (and 0 otherwise):

∗ H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
∗ Verify′(vkBARG,�aug, x̂, cBARG) = 1.

• H̃yb8 for 8 ∈ [3]: Same as Hyb0, but hklow binds on �8 , where low = 8 mod 2 and high = 1 − low. This is the
analog of Hyb1 from the proof of Theorem 4.7 (Section 4.2). Speci�cally, the game proceeds as follows:

– Phase 1: On input the security parameter 1_ , algorithm A1 outputs 1=, 1B2 , 1B? , a monotone Boolean circuit
% : {0, 1}: → {0, 1} of size B ≤ B? , a set ( ⊆ [:] and the state stA . The experiment outputs 0 if % (11, . . . , 1: ) = 1
where 18 = 0 if 8 ∈ ( and 18 = 1 otherwise. The challenger then computes the following quantities:

∗ For each 9 ∈ [:], let V 9 = if 9 ∈ ( and V 9 = 1 otherwise.
∗ For 9 ∈ [: + 1, B] let V 9 be the value of the wire 9 in the evaluation of % on input (V1, . . . , V: ).
∗ For each layer ℓ ∈ [3], let �ℓ =

{
9 ∈ layerℓ (%) : V 9 = 0

}
.

– Phase 2: The challenger samples the following components:
∗ (crsBARG, vkBARG) ← Gen′

(
1_, 1B? , 1=′, 1B′).

∗ (hklow, vklow, tdlow) ← H.Setup(1_, 1B? , �8 ).
∗ (hkhigh, vkhigh, tdhigh) ← H.Setup(1_, 1B? ,∅).

The challenger sets crs = (crsBARG, hk0, hk1, vk0, vk1) and runsA2 on input (crs, stA). AlgorithmA2 outputs
a proof string c = (dig0, dig1, cBARG). Let x̂ = (Ĝ1, . . . , ĜB? ) and �aug be as de�ned in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):

∗ H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
∗ Verify′(vkBARG,�aug, x̂, cBARG) = 1.
∗ H.Extract(tdlow, diglow) = Matching.

Inner games. To argue that each pair of outer hybrids is computationally indistinguishable, we de�ne a sequence
of “inner hybrids” exactly as in the proof of Theorem 4.7 in Section 4.2. Speci�cally, for each 8 ∈ {0, . . . , 3}, each
C ∈ [|�8 |] and each ℓ ∈ {1, . . . , 7}, we de�ne H̃yb8,C,ℓ as follows:

• Phase 1: Same as �Hyb8 . Note that algorithm A1 does not output the Boolean circuit � or the statements x in
this phase.

• Phase 2: Same as in Hyb8,C,ℓ from Section 4.2, except the adversary additionally outputs the Boolean circuit �
and the instances x in this phase (as in �Hyb8 ).

We now analyze each pair of hybrid experiments. With the exception of one of the transitions (from H̃yb0,C,3 to
H̃yb0,C,4), each transition follows by a similar argument as the corresponding transition in the proof of Theorem 4.7.
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Claim 8.8. If ΠH satis�es extractor validity against e�cient non-uniform adversaries, then there exists a negligible
function negl(·) such that for every 8 ∈ {0, . . . , 3 − 1}, it holds that���Pr[H̃yb8 (A) = 1] − Pr[H̃yb8,1,1 (A) = 1]

��� ≤ negl(_).

Proof. Follows by a similar argument as the proof of Claim 4.8. �

Claim 8.9. If ΠBARG satis�es set hiding against e�cient non-uniform adversaries, then there exists a negligible function
negl(·) such that for every 8 ∈ {0, . . . , 3 − 1} and C ∈ [|�8+1 |], it holds that���Pr[H̃yb8,C,1 (A) = 1] − Pr[H̃yb8,C,2 (A) = 1]

��� ≤ negl(_).

Proof. Follows by a similar argument as the proof of Claim 4.9. �

Claim 8.10. If ΠBARG satis�es somewhere extractability in trapdoor mode against e�cient non-uniform adversaries,
then there exists a negligible function negl(·) such that for every 8 ∈ {0, . . . , 3 − 1}, C ∈ [|�8+1 |], it holds that���Pr[H̃yb8,C,2 (A) = 1] − Pr[H̃yb8,C,3 (A) = 1]

��� ≤ negl(_).

Proof. Follows by a similar argument as the proof of Claim 4.10. �

Extracting valid witnesses. As mentioned above the transition from H̃yb0,C,3 to H̃yb0,C,4 diverges from the corre-
sponding analysis (Claim 4.11) in the proof of Theorem 4.7. In Claim 4.11, the relevant statement G �1 [C ] was false,
and thus, by somewhere extractability of the BARG, we were able to argue that the outputs of Hyb0,C,3 to Hyb0,C,4
could only change by a negligible amount. Upon closer inspection, the proof of Claim 4.11 actually shows a stronger
property: the di�erence between these two hybrids is exactly equal to the probability of extracting a valid witness for
the instance G �1 [C ] . In the case of Claim 4.11, the statement G �1 [C ] was false, so this probability was identically 0. In the
somewhere extractability game, this probability could be noticeable. But that means our extractor succeeds with
noticeable probability. To formalize this, we start with a full speci�cation of H̃yb0,C,3:

• Phase 1: Same as �Hyb8 .
• Phase 2: The challenger samples the following components.

– (crsBARG, tdBARG) ← TrapGen′(1_, 1B? , 1=′, 1B′, �1 [C]).
– (hklow, vklow, tdlow) ← H.Setup(1_, 1B? ,∅).
– (hkhigh, vkhigh, tdhigh) ← H.Setup(1_, 1B? , �1 [1, . . . , C − 1]).

The challenger sets crs = (crsBARG, hk0, hk1, vk0, vk1) and runs A2 on input (crs, stA). Algorithm A2 outputs
a proof string c = (dig0, dig1, cBARG). Let x̂ = (Ĝ1, . . . , ĜB? ) and �aug be as de�ned in Prove and Verify in
Construction 4.4. The challenger then computes F̂ = (1, f (0) , f (1) ,F) ← Extract′(tdBARG,�aug, x̂, cBARG, �1 [C]).
The output is 1 if the following conditions hold (and 0 otherwise):

– H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
– Verify′(vkBARG,�aug, x̂, cBARG) = 1.
– H.Extract(tdhigh, dighigh) = Matching.
– �aug (Ĝ 9C , F̂) = 1.

Since ( = �1 by construction, the challenger in H̃yb0,C,3 is sampling the common reference string crs according to
the speci�cation of TrapGenIndex(1_, 1=, 1B2 , 1B? , 1: , (, C). Similarly, the witness F̂ = (1, f (0) , f (1) ,F) in H̃yb0,C,3 is
computed using the same procedure as Extract(td,�, %, (G1, . . . , G: ), c) where td = (�1 [C], tdBARG). For C ∈ [|�1 |], let

?C := Pr
[
H̃yb0,C,3 (A) = 1 ∧ 1 = 1 in the execution of H̃yb0,C,3

]
.
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By de�nition of �aug, if H̃yb0,C,3 (A) outputs 1 and the extracted bit 1 satis�es 1 = 1, this means that � (G �1 [C ],F) = 1.
In this case, Extract(td,�, %, (G1, . . . , G: ), c) outputsF such that � (G �1 [C ],F) = 1. In particular, this means that

?C ≥ Pr

� (G( [C ],F) = 1 :

(1=, 1B2 , 1B? , %, (, stA) ← A1 (1_)
(crs, td) ← TrapGenIndex(1_, 1=, 1B2 , 1B? , 1: , (, ( [C])

(�, (G1, . . . , G: ), c) ← A2 (crs, stA)
(C ′,F) ← Extract(td,�, %, (G1, . . . , G: ), c).

 , (8.2)

where we write ( [C] to denote the C th value in ( in ascending order. We now show that the di�erence between the
outputs of H̃yb0,C,3 and H̃yb0,C,3 is exactly ?C :

Claim 8.11. It holds that Pr[H̃yb0,C,3 (A) = 1] = Pr[H̃yb0,C,4 (A) = 1] + ?C .

Proof. By construction, the only di�erence between H̃yb0,C,3 and H̃yb0,C,4 is the additional check in Hyb0,C,4 that the
extracted bit 1 satis�es 1 = 0. Let E0 be the event that 1 = 0 in the execution of H̃yb0,C,3 and E1 be the event that 1 = 1.
Then,

Pr[H̃yb0,C,4 (A) = 1] = Pr[H̃yb0,C,3 (A) = 1 ∧ E0]
= Pr[H̃yb0,C,3 (A) = 1] − Pr[H̃yb0,C,3 (A) = 1 ∧ E1]
= Pr[H̃yb0,C,3 (A) = 1] − ?C .

The claim follows. �

Claim 8.12. If ΠH satis�es zero-�xing against e�cient non-uniform adversaries, then there exists a negligible function
negl(·) such that for every 8 ∈ {1, . . . , 3 − 1}, C ∈ [|�8+1 |], it holds that���Pr[H̃yb8,C,3 (A) = 1] − Pr[H̃yb8,C,4 (A) = 1]

��� ≤ negl(_).

Proof. Follows by a similar argument as the proof of Claim 4.11 (for the case where 8 > 0). �

Claim 8.13. If ΠH satis�es one-sided index hiding with extracted guess security against e�cient non-uniform adversaries,
then there exists a negligible function negl(·) such that for every 8 ∈ {0, . . . , 3 − 1}, C ∈ [|�8+1 |], it holds that

Pr[H̃yb8,C,4 (A) = 1] ≤ Pr[H̃yb8,C,5 (A) = 1] + negl(_).

Proof. Follows by a similar argument as the proof of Claim 4.12. �

Claim 8.14. For every 8 ∈ {0, . . . , 3 − 1}, C ∈ [|�8+1 |], it holds that

Pr[H̃yb8,C,6 (A) = 1] ≥ Pr[H̃yb8,C,5 (A) = 1] .

Proof. Follows by a similar argument as the proof of Claim 4.13. �

Claim 8.15. If ΠBARG satis�es set hiding against e�cient non-uniform adversaries, then there exists a negligible function
negl(·) such that for every 8 ∈ {0, . . . , 3 − 1} and C ∈ [|�8+1 |], it holds that���Pr[H̃yb8,C,6 (A) = 1] − Pr[H̃yb8,C,7 (A) = 1]

��� ≤ negl(_).

Proof. Follows by a similar argument as the proof of Claim 4.14. �

Claim 8.16. For every 8 ∈ {0, . . . , 3 − 1}, it holds that

Pr[H̃yb8, | �8+1 |,7 (A) = 1] ≤ Pr[H̃yb8,final (A) = 1] .

Proof. Follows by a similar argument as the proof of Claim 4.15. �
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Claim 8.17. If ΠH satis�es set hiding property against e�cient non-uniform adversaries then there exists a negligible
function negl(·) such that for every 8 ∈ {0, . . . , 3 − 1}, it holds that���Pr[H̃yb8,final (A) = 1] − Pr[H̃yb8+1 (A) = 1]

��� ≤ negl(_).

Proof. Follows by a similar argument as the proof of Claim 4.16. �

Claim 8.18. If A is admissible, then Pr[H̃yb3−1,1,4 (A) = 1] = 0.

Proof. The proof is almost identical to that of Claim 4.17, but relies on the fact that A is an admissible adversary.
Namely, if A is admissible for the semi-somewhere extractability game, then it outputs a set ( and a policy % such
that % (11, . . . , 1: ) = 0 where 18 = 0 if 8 ∈ ( and 18 = 1 otherwise. By construction, the challenger in H̃yb3−1,1,4 (A) = 1
sets V8 = 18 for all 8 ∈ [:], and V:+1, . . . , VB to be the wire values for % (11, . . . , 1: ). In particular, this means that VB = 0,
and therefore �3 [1] = {VB }. In this case, H̃yb3−1,1,4 cannot always output 1 since the following two conditions must
simultaneously hold:

• On the one hand, there must exist a witness F̂ = (1, f (0) , f (1) ,F) for instance ĜB (of the relation in Fig. 1) where
1 = 0.

• On the other hand, by de�nition of instance ĜB , since B is the output wire, it must be that 1 = 1.

Therefore the output in H̃yb3−1,1,4 is always 0. �

Combining Claims 8.8 to 8.18, we conclude that

Pr[H̃yb0 (A) = 1] ≤
∑

C ∈[ |( | ]
?C + negl(_). (8.3)

To complete the proof, we relate the probability YA (_, :) from Eq. (8.1) that A outputs a valid proof in the semi-
somewhere extractability game to the probability that H̃yb0 (A) outputs 1. The only di�erence between H̃yb0 and the
semi-somewhere extractability game is the fact that in �Hyb0, the common reference string is norm (output by Gen)
whereas in the semi-somewhere extractability game, it is output by TrapGen. We give the formal reduction below:

Claim 8.19. If Construction 8.3 satis�es set hiding, then there exists a negligible function negl(·) such that

| Pr[H̃yb0 (A) = 1] − YA (_, :) | ≤ negl(_)

where YA is the probability that A outputs a verifying proof in the ExptSE experiment from De�nition 8.1.

Proof. Suppose | Pr[H̃yb0 (A) = 1] − YA (_, :) | ≥ Y for some non-negligible Y. We use A to construct an adversary B
for the set hiding game:

1. On input the security parameter 1_ , algorithm B runs (1=, 1B2 , 1B? , %, (, stA) ← A1 (1_). Algorithm B then
forwards 1= , 1B2 , 1B? , 1: (_) , and ( to the challenger.

2. The challenger replies with crs. Algorithm B runs (�, (G1, . . . , G: ), c) ← A2 (crs, stA). Algorithm B then
outputs Verify(crs,�, %, (G1, . . . , G: ), c).

If the challenger samples crs← Gen(1_, 1=, 1B2 , 1B? ), then B perfectly simulates the distribution H̃yb0 and outputs 1
with probability Pr[H̃yb0 (A)] = 1]. If the challenger samples crs← TrapGen(1_, 1=, 1B2 , 1B? , 1: , (), then B perfectly
simulates the distribution ExptSEA (_, :) and outputs 1 with probability YA (_, :). We conclude that algorithm B
succeeds with the same advantage Y. �
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Combining Eq. (8.3) with Claim 8.19, we have that

YA (_, :) ≤
∑

C ∈[ |( | ]
?C + negl(_).

Next, since TrapGen invokes TrapGenIndex on a random C ∈ ( and appealing to Eq. (8.2), we conclude that

Pr[ExptSEA (_) = 1] =
∑

C ∈[ |( | ]

?C

|( | ≥
∑

C ∈[ |( | ]

?C

:
≥ 1
:
· YA (_, :) − negl(_). �

8.1 Monotone Policy Aggregate Signature via Semi-Somewhere Extractability
In Section 7, we showed how to combine a non-adaptively-sound monotone BARG with a puncturable signature
scheme to obtain a monotone policy aggregate signature scheme. In this section, we show that the same construction
is also secure for any signature scheme (not necessarily puncturable) if we rely on semi-somewhere extractability
instead. We �rst recall the notion of a standard (non-puncturable) signature scheme:

De�nition 8.20 (Digital Signature). An digital signature scheme with message space {0, 1}_ is a tuple of e�cient
algorithms ΠSig = (Gen, Sign,Verify) with the following syntax:

• Gen(1_) → (vk, sk): On input the security parameter _, the key-generation algorithm outputs a key pair
(vk, sk).

• Sign(sk,<) → f : On input a signing key sk and a message < ∈ {0, 1}_ , the signing algorithm outputs a
signature f .

• Verify(vk,<, f) → 1: On input a veri�cation key vk, a message< ∈ {0, 1}_ , and a signature f , the veri�cation
algorithm outputs a bit 1 ∈ {0, 1}.

Moreover, the signature scheme should satisfy the following properties:

• Correctness: For all _ ∈ N and all< ∈ {0, 1}_ , it holds that

Pr
[
Verify(vk,<, f) = 1 : (vk, sk) ← Gen(1_)

f ← Sign(sk,<)

]
= 1.

• Unforgeability: For all e�cient and admissible adversaries A, there exists a negligible function negl(·) such
that

Pr
[
Verify(vk,<∗, f∗) = 1 : (vk, sk) ← Gen(1_)

(<∗, f∗) ← ASign(sk, ·) (1_, vk)

]
= negl(_),

where we sayA is admissible if it does not query the signing oracle Sign(sk, ·) on the message<∗ in the above
security game.

Theorem 8.21 (Static Unforgeability). Consider an instantiation of Construction 4.4 where the puncturable signature
schemeΠPunctSig is replaced by a standard digital signature schemeΠSig = (Sig.Gen, Sig.Sign, Sig.Verify) (De�nition 8.20).
If ΠMP-BARG is semi-somewhere extractable and satis�es set hiding, and ΠSig is unforgeable, then Construction 7.5 is
statically unforgeable.

Proof. Let A be any e�cient adversary for the static security game. We begin by de�ning a sequence of hybrid
experiments:

• Hyb0: This is the static unforgeability experiment:

1. On input the security parameter _, the adversary A outputs the number of parties 1: , a number of
veri�cation keys 1= , a bound on the policy size 1B? , a challenge message<∗ ∈ {0, 1}_ , and a monotone
policy % : {0, 1}: → {0, 1}.
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2. The challenger samples key-pairs (vk8 , sk8 ) ← Sig.Gen(1_) for all 8 ∈ [=] and sends vk1, . . . , vk= to the
adversary.

3. The adversary A can now issue signing queries. Each signing query consists of an index 8 ∈ [=] and a
message< ∈ {0, 1}_ \ {<∗}. The challenger responds with f ← Sig.Sign(sk8 ,<).

4. After the adversary is �nished making signing queries, it outputs a tuple of veri�cation keys (vk∗1, . . . , vk∗: ).
5. The challenger replies with the common reference string crs← BARG.Gen(1_, 1ℓvk , 1B2 , 1B? ).
6. The adversary A can continue to make signing queries. The challenger responds to these exactly as

before. When A �nishes making signing queries, the adversary outputs the aggregate signature f∗agg.
7. The output of the experiment is 1 if all of the following holds:

– For each 8 ∈ [:], let 18 = 0 if vk∗8 = vk9 for some 9 ∈ [=]. Otherwise, let 18 = 1. Then, it holds that
% (11, . . . , 1: ) = 0.

– BARG.Verify
(
crs,�<∗ , %, (vk∗1, . . . , vk∗: ), f∗agg

)
= 1.

Otherwise, the output is 0.

• Hyb1: Same as Hyb0, except the challenger uses the following modi�ed procedure to sample the BARG common
reference string:

– Sample (crs, td) ← BARG.TrapGen(1_, 1ℓvk , 1B2 , 1B? , 1: , (), where ( =
{
8 ∈ [:] | ∃ 9 ∈ [=] : vk∗8 = vk9

}
.

• Hyb2: Same as Hyb1, except the experiment outputs 1 if all of the following holds:

– For each 8 ∈ [:], let 18 = 0 if vk∗8 = vk9 for some 9 ∈ [=]. Otherwise, let 18 = 1. Then, it holds that
% (11, . . . , 1: ) = 0.

– Compute (8, f8 ) ← BARG.Extract(tdBARG,�<∗ , %, (vk∗1, . . . , vk∗: ), f∗agg) and check that �<∗ (vk∗8 , f8 ) = 1
and 8 ∈ ( .

If either check fails, then the challenger outputs 0. Notably, the experiment no longer checks the condition
BARG.Verify

(
crs,�<∗ , %, (vk∗1, . . . , vk∗: ), f∗agg

)
= 1.

• Hyb3: Same as Hyb2, except the challenger samples a random index 8∗ r← [=] at the beginning of the security
game. At the end of the game, after computing (8, f8 ) ← BARG.Extract(tdBARG,�<∗ , %, (vk∗1, . . . , vk∗: ), f∗agg),
the challenger additionally checks that vk∗8 = vk8∗ . If the check fails, the challenger outputs 0.

Lemma 8.22. If ΠMP-BARG satis�es set hiding, then there exists a negligible function negl(·) such that��Pr[Hyb0 (A) = 1] − Pr[Hyb1 (A) = 1]
�� = negl(_).

Proof. Suppose | Pr[Hyb0 (A) = 1] − Pr[Hyb1 (A) = 1] | ≥ Y for some non-negligible Y. We use A to construct an
adversary B for the set hiding game as follows:

1. On input a security parameter 1_ , compute (1: , 1=, 1B? ,<∗, %) ← A(1_).

2. Algorithm B samples key-pairs (vk8 , sk8 ) ← Sig.Gen(1_) for all 8 ∈ [=] and send vk1, . . . , vk= to A.

3. Whenever algorithmA makes a signing query on an index 8 ∈ [=] and a message< ∈ {0, 1}_ \ {<∗}, algorithm
B responds with f ← Sig.Sign(sk8 ,<).

4. After A is �nished making signing queries, it outputs a tuple of veri�cation keys (vk∗1, . . . , vk∗: ).

5. Let ( =
{
8 ∈ [:] | ∃ 9 ∈ [=] : vk∗8 = vk9

}
. Algorithm B sends the tuple (1ℓvk , 1B2 , 1B? , 1: , () to the ΠMP-BARG

challenger. The challenger replies with a common reference string crs, which algorithm B forwards to
algorithm A.

6. Algorithm B responds to additional signing queries exactly as before.
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7. Upon receiving an aggregate signature f∗agg from A, algorithm B outputs 1 if all of the following holds:

(a) % (11, . . . , 1: ) = 0 where 18 = 0 if 8 ∈ ( and 18 = 1 otherwise.
(b) BARG.Verify

(
crs,�<∗ , %, (vk∗1, . . . , vk∗: ), f∗agg

)
= 1.

Otherwise, algorithm B outputs 0.

If the set hiding challenger samples crs← BARG.Gen(1_, 1ℓvk , 1B2 , 1B? ), then B perfectly simulates Hyb0 for A and
outputs 1 with probability Pr[Hyb0 (A) = 1]. On the other hand, if the set hiding challenger samples (crs, td) ←
BARG.TrapGen(1_, 1ℓvk , 1B2 , 1B? , 1: , (), then B perfectly simulates an execution of Hyb1 for A and outputs 1 with
probability Pr[Hyb1 (A) = 1]. We conclude that algorithm B breaks set hiding with the same advantage Y. �

Lemma 8.23. If ΠMP-BARG is semi-somewhere extractable, then there exists a negligible function such that

Pr[Hyb2 (A) = 1] ≥ 1
:
· Pr[Hyb1 (A) = 1] − negl(_).

Proof. Let : = : (_) be the number of parties that algorithm A outputs.11 We use A to construct an adversary B for
the semi-somewhere extractability game (with parameter : = : (_) as follows:

1. On input a security parameter 1_ , algorithm B computes (1: , 1=, 1B? ,<∗, %) ← A(1_).

2. Algorithm B samples key-pairs (vk8 , sk8 ) ← Sig.Gen(1_) for all 8 ∈ [=] and send vk1, . . . , vk= to A.

3. Whenever algorithmA makes a signing query on an index 8 ∈ [=] and a message< ∈ {0, 1}_ \ {<∗}, algorithm
B responds with f ← Sig.Sign(sk8 ,<).

4. After A is �nished making signing queries, it outputs a tuple of veri�cation keys (vk∗1, . . . , vk∗: ).

5. Let ( =
{
8 ∈ [:] | ∃ 9 ∈ [=] : vk∗8 = vk9

}
. Let 18 = 0 if 8 ∈ ( and 18 = 1 otherwise. If % (11, . . . , 1: ) = 0, then

algorithm B aborts with output ⊥. Otherwise, algorithm B sends the tuple (1ℓvk , 1B2 , 1B? , %, () to the challenger
and receives a common reference string crs. Algorithm B forwards crs to A.

6. Algorithm B responds to additional signing queries exactly as before.

7. Upon receiving an aggregate signature f∗agg from A, algorithm B outputs the circuit �<∗ , the instances
(vk∗1, . . . , vk∗: ) and the proof f∗agg.

Algorithm B is admissible by construction (since % (11, . . . , 1: ) = 0 where 18 = 0 if 8 ∈ ( and 18 = 1 otherwise). Next,
algorithm B perfectly simulates the view of A in the hybrids Hyb1 and Hyb2. By assumption, with probability
Pr[Hyb1 (A) = 1], algorithm A outputs fagg where

BARG.Verify
(
crs,�<∗ , %, (vk∗1, . . . , vk∗: ), f

∗
agg

)
= 1.

This means that

YB (_, :) = Pr[BARG.Verify
(
crs,�<∗ , %, (vk∗1, . . . , vk∗: ), f

∗
agg

)
= 1] = Pr[Hyb1 (A) = 1], (8.4)

where YB (_, :) is the quantity from Eq. (8.1). By somewhere extractability of ΠMP-BARG, there exists a negligible
function negl(·) such that

Pr[ExptSEB (_, :) = 1] ≥ 1
:
· YB (_, :) − negl(_), (8.5)

Next, the output of ExptSEB (_, :) is 1 if �<∗ (vk∗8 , f8 ) = 1 and 8 ∈ ( where

(8, f8 ) ← BARG.Extract(tdBARG,�<∗ , %, (vk∗1, . . . , vk∗: ), f
∗
agg).

11We can assume that for each value of _ ∈ N, algorithm A always picks a �xed value of : . This can be the value that maximizes its success
probability for each value of _ (formally, we can take this “maximizing” value of : to be non-uniform advice provided to A).
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This is the same set of conditions checked in Hyb2 and we conclude that

Pr[ExptSEB (_, :) = 1] = Pr[Hyb2 (A) = 1] . (8.6)

Combining Eqs. (8.4) to (8.6), we have that

Pr[Hyb2 (A) = 1] ≥ 1
:
· Pr[Hyb1 (A) = 1] − negl(_). �

Lemma 8.24. Pr[Hyb3 (A) = 1] = 1
=
· Pr[Hyb2 (A) = 1].

Proof. By construction, the adversary’s view in Hyb2 and Hyb3 is identical. The only di�erence is how the output of
the experiment is computed. Suppose Pr[Hyb2 (A) = 1] = Y. Then, with probability Y, the extracted value (8, f8 ) in
Hyb2 and Hyb3 satis�es 8 ∈ ( . By de�nition of ( , there exists some 9 ∈ [=] such that vk∗8 = vk9 . Since 8∗ r← [=] (and
is entirely independent of the view of the adversary), Pr[ 9 = 8∗] = 1/=. When 9 = 8∗, the output in Hyb3 is also 1 (and
otherwise, it is 0). As such, Pr[Hyb3 (A) = 1] = 1

=
Pr[Hyb2 (A) = 1] and the claim follows. �

Lemma 8.25. IfΠSig is unforgeable, then there exists a negligible function negl(·) such that Pr[Hyb3 (A) = 1] = negl(_).

Proof. Suppose Pr[Hyb3 (A) = 1] > Y for some non-negligible Y. We useA to construct an e�cient adversary B that
breaks unforgeability of ΠSig:

1. At the beginning of the game, algorithm B receives a veri�cation key vk from the challenger.

2. On input a security parameter 1_ , algorithm B computes (1: , 1=, 1B? ,<∗, %) ← A(1_).

3. AlgorithmB samples a random index 8∗ r← [=]. For 8 ∈ [=]\{8∗}, algorithmB samples (vk8 , sk8 ) ← Sig.Gen(1_).
It sets vk8∗ := vk and send vk1, . . . , vk= to A.

4. Whenever A makes a signing query on an index 8 ∈ [=] and a message < ∈ {0, 1}_ \ {<∗}, if 8 = 8∗, then
algorithm B forwards the query to the challenger and receives a signature f . Algorithm B replies to A with f .
If 8 ≠ 8∗, then algorithm B replies with f ← Sign(sk8 ,<).

5. At some point, algorithm A outputs a collection of veri�cation keys (vk∗1, . . . , vk∗: ).

6. Let ( =
{
8 ∈ [:] | ∃ 9 ∈ [=] : vk∗8 = vk9

}
. For each 8 ∈ ( , set 18 = 0 and set 18 = 1 otherwise. If % (11, . . . , 1: ) = 1,

then algorithm B aborts. Otherwise, algorithm B samples (crs, td) ← BARG.TrapGen(1_, 1ℓvk , 1B2 , 1B? , 1: , ()
and send crs to A.

7. Algorithm B responds to additional signing queries exactly as before.

8. Upon receiving an aggregate signature f∗agg from A, algorithm B computes

(8, f8 ) ← BARG.Extract(tdBARG,�<∗ , %, (vk∗1, . . . , vk∗: ), f
∗
agg) .

If vk∗8 ≠ vk8∗ = vk then algorithm B aborts. Otherwise, algorithm output f∗ = f8 and<∗.

Algorithm B is admissible since it never needs to query its challenger for a signature on <∗. Next, algorithm B
perfectly simulates an execution of Hyb3 for A. Thus, with probability Y, algorithm A outputs a tuple of veri�cation
keys (vk∗1, . . . , vk∗: ) and a signature fagg such that the extracted index-signature pair (8, f8 ) satis�es vk∗8 = vk8∗ = vk
and �<∗ (vk∗8 , f8 ) = 1. By de�nition of �<∗ , this means that

1 = Verify(vk∗8 ,<∗, f8 ) = Verify(vk,<∗, f8 ),

in which case B wins the unforgeability game. �

Theorem 8.21 now follows immediately from Lemmas 8.22 to 8.25. �
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A Set Hiding with Extraction for BARGs
We now show to construct a BARG satisfying De�nition 2.8 from any somewhere extractable BARG that supports
extraction on a single instance (e.g., [CJJ21b, WW22, HJKS22, DGKV22, KLVW23]). Our construction is a direct
parallel of the analogous constructions from [GZ21, CJJ21b] in the setting of somewhere extractable commitments.

Construction A.1 (BARGs Satisfying Set Hiding with Extraction). Let Π′BARG = (Gen′, Prove′,Verify′, TrapGen′,
Extract′) be a somewhere-extractable BARG for Boolean circuit satis�ability that supports extraction on a single
instance. We use Π′BARG to construct a new BARG ΠBARG = (Gen, Prove,Verify, TrapGen, Extract) that supports
extraction on multiple instances and which satis�es De�nition 2.8:

• Gen(1_, 1: , 1=, 1B , 1ℓ ): On input the security parameter _, the number of instances : , the instance length =, the
bound on the size of the Boolean circuit B , and the bound on the size of the extraction set ℓ , the generator
algorithm samples (crs′8 , vk

′
8 ) ← Gen′(1_, 1: , 1=, 1B , 11) for each 8 ∈ [ℓ]. Then, it samples a random permutation

g : [ℓ] → [ℓ] and outputs crs =
(
crs′

g (1) , . . . , crs
′
g (ℓ)

)
and vk =

(
vk′
g (1) , . . . , vk

′
g (ℓ)

)
.

• Prove(crs,�, (G1, . . . , G: ), (F1, . . . ,F: )): On input the common reference string crs = (crs′1, . . . , crs′ℓ ), a Boolean
circuit � : {0, 1}= × {0, 1}ℎ → {0, 1}, statements G1, . . . , G: ∈ {0, 1}= , and witnesses F1, . . . ,F: ∈ {0, 1}ℎ ,
the prove algorithm computes c ′8 ← Prove′(crs′8 ,�, (G1, . . . , G: ), (F1, . . . ,F: )) for all 8 ∈ [:] and outputs
c = (c ′1, . . . , c ′ℓ ).

• Verify(vk,�, (G1, . . . , G: ), c): On input the veri�cation key vk = (vk′1, . . . , vk′ℓ ), a Boolean circuit � : {0, 1}= ×
{0, 1}ℎ → {0, 1}, statements G1, . . . , G: ∈ {0, 1}= , and a proof c = (c ′1, . . . , c ′ℓ ), the veri�cation algorithm outputs
1 if for all 8 ∈ [ℓ], it holds that Verify′(vk′8 ,�, (G1, . . . , G: ), c ′8 ) = 1. Otherwise, it outputs 0.
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• TrapGen(1_, 1: , 1=, 1B , 1ℓ , (): On input the security parameter _, the number of instances : , the instance size =,
the bound on the size of the Boolean circuit B , the bound on the size of the extraction set ℓ , and a set of indices
( ⊆ [:] of size at most ℓ , the trapdoor-generator algorithm proceeds as follows:

– Let ( = { 91, . . . , 93 } where 91 < 92 < · · · < 93 are in sorted order.
– For each 8 ∈ [3], sample (crs′8 , vk

′
8 , td

′
8 ) ← TrapGen′(1_, 1: , 1=, 1B , 11, { 98 }). For each 8 ∈ {3 + 1, . . . , ℓ},

sample crs′8 ← Gen′(1_, 1: , 1=, 1B , 11).
– Sample a random permutation g : [ℓ] → [ℓ], and de�ne the dictionary D where D[ 98 ] ↦→

(
g−1 (8), td′8

)
for

all 8 ∈ ( . Output crs =
(
crs′

g (1) , . . . , crs
′
g (ℓ)

)
, vk =

(
vk′
g (1) , . . . , vk

′
g (ℓ)

)
, and td = D.

• Extract(td,�, (G1, . . . , G: ), c, 8): On input the trapdoor td = D, a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1},
statements G1, . . . , G: ∈ {0, 1}= , a proof c = (c ′1, . . . , c ′ℓ ), and an index 8 , the extraction algorithm outputs ⊥ if
8 ∉ D. Otherwise, let (C, td′) ← D[8] and output Extract′

(
td′,�, (G1, . . . , G: ), c ′C , 8

)
.

Theorem A.2 (Completeness). If Π′BARG satis�es completeness, then ΠBARG in Construction A.1 is also complete.

Proof. This follows by construction. Speci�cally, take any _, :, =, B, ℓ ∈ N, any Boolean circuit � : {0, 1}= × {0, 1}ℎ →
{0, 1} of size at most B , any sequence of statements G1, . . . , G: ∈ {0, 1}= along with witnesses F1, . . . ,F: ∈ {0, 1}ℎ
where � (G8 ,F8 ) = 1 for all 8 ∈ [:]. Then, the following properties hold:

• Suppose (crs, vk) ← Gen(1_, 1: , 1=, 1B , 1ℓ ). By construction, this means crs = (crs′1, . . . , crs′ℓ ) and vk =

(vk′1, . . . , vk′ℓ ). Moreover, for all 8 ∈ [ℓ], we have that (crs′8 , vk
′
8 ) ← Gen′(1_, 1: , 1=, 1B , 11).

• Let c ← Prove(crs,�, (G1, . . . , G: ), (F1, . . . ,F: )). By construction, c = (c ′1, . . . , c ′ℓ ) where for all 8 ∈ [ℓ], we
have that c ′8 ← Prove′(crs′8 ,�, (G1, . . . , G: ), (F1, . . . ,F: )).

• By completeness of Π′BARG, Verify′(vk′8 ,�, (G1, . . . , G: ), c ′8 ) = 1 for all 8 ∈ [ℓ]. Thus, Verify(vk,�, (G1, . . . , G: ), c)
outputs 1 and completeness holds. �

Theorem A.3 (Set Hiding). If Π′BARG satis�es set hiding, then ΠBARG in Construction A.1 also satis�es set hiding.

Proof. We start by de�ning a sequence of hybrid experiments.

• Hyb0: This is experiment ExptSHA (_, 0). Namely, after the adversary chooses the parameters :, =, B, ℓ ∈ N
and the set ( ⊆ [:], the challenger replies with crs =

(
crs′

g (1) , . . . , crs
′
g (ℓ)

)
and vk =

(
vk′
g (1) , . . . , vk

′
g (ℓ)

)
where

(crs′8 , vk
′
8 ) ← Gen′(1_, 1: , 1=, 1B , 11) for all 8 ∈ [ℓ] and g is a random permutation. At the end of the experiment,

the adversary outputs a bit 1 ′ ∈ {0, 1} which is the output of the experiment.

• Hyb8 for 8 ∈ [3]: Same as Hyb0, except for indices C ≤ 8 , the challenger now computes (crs′C , vk′C , td′C ) ←
TrapGen′(1_, 1: , 1=, 1B , 11, { 9C }), where ( = { 91, . . . , 93 } and 91 < · · · < 93 .

For an adversary A, we write Hyb8 (A) to denote the output of an execution of hybrid Hyb8 with adversary A. By
construction, Hyb0 (A) ≡ ExptSHA (_, 0) and Hyb3 (A) ≡ ExptSHA (_, 1). We now show that if Π′BARG satis�es set
hiding, then for all 8 ∈ [3], and for all e�cient adversaries A, the output distributions Hyb8−1 (A) and Hyb8 (A) are
computationally indistinguishable. To see this, suppose there exists an e�cient adversary A such that��Pr[Hyb8−1 (A) = 1] − Pr[Hyb8 (A) = 1]

�� ≥ Y (_),
for some non-negligible Y. We use A to construct an e�cient algorithm B that breaks set hiding of Π′BARG:

1. On input the security parameter 1_ , algorithm B starts by running adversaryA on the same security parameter.
Algorithm A outputs 1: , 1= , 1B , 1ℓ , and a set ( = { 91, . . . , 93 }, where 91 < · · · < 93 .

2. Algorithm B sends 1: , 1= , 1B , 11, and { 98 } to the set hiding challenger for Π′BARG and receives a pair (crs∗, vk∗).
It sets crs′8 = crs∗ and vk′8 = vk∗.
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3. For C < 8 , algorithm B samples (crs′C , vk′C , td′C ) ← TrapGen′(1_, 1: , 1=, 1B , 11, { 9C }). For C ∈ {8 + 1, . . . , ℓ}, it
samples (crs′9 , vk

′
9 ) ← Gen′(1_, 1: , 1=, 1B , 11).

4. Finally, algorithm B samples a random permutation g : [ℓ] → [ℓ] and gives crs =
(
crs′

g (1) , . . . , crs
′
g (ℓ)

)
and

vk =
(
vk′
g (1) , . . . , vk

′
g (ℓ)

)
to A. It outputs whatever A outputs.

By design, if (crs∗, vk∗) ← Gen′(1_, 1: , 1=, 1B , 11), then algorithm B perfectly simulates Hyb8−1 for A and outputs
1 with probability Pr[Hyb8−1 (A) = 1]. Alternatively, if (crs∗, vk∗, td∗) ← TrapGen′(1_, 1: , 1=, 1B , 11, { 98 }), then
algorithm B perfectly simulates Hyb8 for A and outputs 1 with probability Pr[Hyb8 (A) = 1]. We conclude that
algorithm B breaks set hiding of Π′BARG with the same non-negligible advantage Y. The claim now follows by a hybrid
argument. �

Theorem A.4 (Set Hiding with Extraction). If Π′BARG satis�es set hiding, then ΠBARG in Construction A.1 satis�es set
hiding with extraction.

Proof. We begin by de�ning a sequence of hybrid experiments:

• Hyb0: This is experiment ExptSHwEA (_, 0):

– At the beginning of the game, the adversary chooses the parameters :, =, B, ℓ ∈ N, the set ( ⊆ [:], and the
index 8∗ ∈ ( . Let ( = { 91, . . . , 93 } where 91 < · · · < 93 . Let C∗ ∈ [3] be the index where 8∗ = 9C∗ .

– Then, for each 8 ∈ [3], the challenger samples (crs′8 , vk
′
8 , td

′
8 ) ← TrapGen′(1_, 1: , 1=, 1B , 11, { 98 }). For each

8 ∈ {3 + 1, . . . , ℓ}, sample (crs′8 , vk
′
8 ) ← Gen′(1_, 1: , 1=, 1B , 11). Then, it samples a random permutation

g : [ℓ] → [ℓ]. It gives crs =
(
crs′

g (1) , . . . , crs
′
g (ℓ)

)
and vk =

(
vk′
g (1) , . . . , vk

′
g (ℓ)

)
to A. The challenger also

sets td′ = td′C∗ and I = g−1 (C∗).
– Algorithm A outputs a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1}, statements G1, . . . , G: ∈ {0, 1}= , and

a proof c = (c ′1, . . . , c ′ℓ ).
– The challenger checks that for all 8 ∈ [ℓ], it holds that Verify′(vkg (8) ,�, (G1, . . . , G: ), c ′8 ) = 1. If not, the

challenger halts with output 0. Otherwise, the challenger replies with Extract′(td′,�, (G1, . . . , G: ), c ′I, 8∗).
– Algorithm A outputs a bit 1 ′ ∈ {0, 1}, which is the output of the experiment.

• Hyb1: Same asHyb0, except the challenger swaps (crs′1, vk
′
1) with (crs′

C∗ , vk
′
C∗ ). In more detail, the challenger sam-

ples (crs′1, vk
′
1, td

′
1) ← TrapGen′(1_, 1: , 1=, 1B , 11, { 9C∗ }) and (crs′

C∗ , vk
′
C∗ , td

′
C∗ ) ← TrapGen′(1_, 1: , 1=, 1B , 11, { 91}).

In addition, it sets td′ = td′1 and I = g−1 (1). The remainder of the experiment proceeds as in Hyb0.

• Hyb8 for 8 ∈ {2, . . . , 3}: Same as Hyb1 except for indices C ∈ {2, . . . , 8}, the challenger now computes
(crs′8 , vk

′
8 ) ← Gen′(1_, 1: , 1=, 1B , 11).

For an adversary A, we write Hyb8 (A) to denote the output distribution of an execution of hybrid Hyb8 with
adversary A. By construction Hyb0 (A) ≡ ExptSHwEA (_, 0) while Hyb3 (A) ≡ ExptSHwEA (_, 1). To complete the
proof, we now show that the output of each adjacent pair of hybrid experiments are indistinguishable.

Lemma A.5. For all adversaries A, we have that Hyb0 (A) ≡ Hyb1 (A).

Proof. The view of the adversary in the two experiments is identical since g is a random permutation. More precisely,
the distribution in Hyb1 corresponds to the distribution in Hyb0 where the permutation g is replaced by g ◦ f where
f : [ℓ] → [ℓ] is the elementary permutation that transposes 91 with 9C∗ (and �xes all other inputs). Since g is uniform,
the distributions of g and g ◦ f are identical. �

Lemma A.6. If Π′BARG satis�es set hiding, then for all 8 ∈ {2, . . . , 3} and all e�cient adversaries A, it holds that��Pr[Hyb8−1 (A) = 1] − Pr[Hyb8 (A) = 1]
�� = negl(_).

Proof. Suppose there exists an e�cient adversaryA where
��Pr[Hyb8−1 (A) = 1] − Pr[Hyb8 (A) = 1]

�� ≥ Y (_) for some
non-negligible Y. We use A to construct an e�cient adversary B that breaks set hiding of Π′BARG:
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1. On input the security parameter 1_ , algorithm B starts running adversary A on the same security parameter.
Algorithm A outputs 1: , 1= , 1B , 1ℓ , a set ( = { 91, . . . , 93 } where 91 < · · · < 93 , and an index 8∗ ∈ ( . Let C∗ ∈ [3]
be the index where 8∗ = 9C∗ . Let d1 = 9C∗ , dC∗ = 91, and d8 = 98 for all 8 ∉ {1, C∗}.

2. Algorithm B sends 1: , 1= , 1B , 11, and {d8 } to the set hiding challenger for Π′BARG and receives a common
reference string crs∗ and veri�cation key vk∗.

3. Algorithm B samples (crs′1, vk
′
1, td

′
1) ← TrapGen′(1_, 1: , 1=, 11, {d1}). For 2 ≤ C < 8 , algorithm B samples

(crs′8 , vk
′
8 ) ← Gen′(1_, 1: , 1=, 1B , 11). Finally, for all indices C ∈ {8 + 1, . . . , 3}, it samples (crs′8 , vk

′
8 , td

′
8 ) ←

TrapGen′(1_, 1: , 1=, 1B , 11, {d8 }). For each C ∈ {3 + 1, . . . , ℓ}, it samples (crs′8 , vk
′
8 ) ← Gen′(1_, 1: , 1=, 1B , 11). It

sets crs′8 = crs∗ and vk′8 = vk∗.

4. Algorithm B samples a random permutation g : [ℓ] → [ℓ] and gives crs =
(
crs′

g (1) , . . . , crs
′
g (ℓ)

)
and vk =(

vk′
g (1) , . . . , vk

′
g (ℓ)

)
to A. It also sets td′ = td′1 and I = g−1 (1).

5. Algorithm A outputs a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1}, statements G1, . . . , G: ∈ {0, 1}= , and a
proof c = (c ′1, . . . , c ′ℓ ).

6. Algorithm B �rst checks that for all 8 ∈ [ℓ], it holds that Verify′(vkg (8) ,�, (G1, . . . , G: ), c ′8 ) = 1. If not, it halts
with output 0. Otherwise, algorithm B replies with Extract′(td′,�, (G1, . . . , G: ), c ′I, 8∗).

7. Algorithm A outputs a bit 1 ′ ∈ {0, 1}, which B also outputs.

By design, if (crs∗, vk∗, td∗) ← TrapGen′(1_, 1: , 1=, 1B , 11, {d8 }), then algorithm B perfectly simulates Hyb8−1 for A,
so algorithm B outputs 1 with probability Pr[Hyb8−1 (A) = 1]. Conversely, if (crs∗, vk∗) ← Gen′(1_, 1: , 1=, 1B , 11),
then algorithm B perfectly simulates Hyb8 forA and algorithm B outputs 1 with probability Pr[Hyb8 (A) = 1]. Thus,
the distinguishing advantage of algorithm B is at least Y, which is non-negligible by assumption. �

Security now follows by combining Lemmas A.5 and A.6 and appealing to the fact that 3 ≤ ℓ = poly(_). �

Theorem A.7 (Somewhere Extraction). If Π′BARG is somewhere extractable in trapdoor mode, then ΠBARG in Construc-
tion A.1 is also somewhere extractable in trapdoor mode.

Proof. Suppose there exists an e�cient adversary A that breaks the somewhere extractability of Construction A.1
with non-negligible probability Y (_). We use A to construct an e�cient adversary B that breaks the somewhere
extractability of ΠBARG:

1. On input the security parameter 1_ , algorithm B starts by running algorithm A on the same parameter.
Algorithm A outputs 1: , 1= , 1B , 1ℓ , and a set ( = { 91, . . . , 93 }, where 91 < · · · < 93 . Algorithm B samples a
random index C∗ r← [3] and sends 1: , 1= , 1B , 11, and { 9C∗ } to its challenger. It receives a common reference
string crs∗ and a veri�cation key vk∗.

2. For C ∈ [3] \ {C∗}, algorithm B samples (crs′C , vk′C , td′C ) ← TrapGen′(1_, 1: , 1=, 1B , 11, { 9C }). For each 8 ∈
{3 + 1, . . . , ℓ}, it samples (crs′8 , vk

′
8 ) ← Gen′(1_, 1: , 1=, 1B , 11). Finally, it sets crs′

C∗ = crs∗.

3. Finally, algorithm B samples a random permutation g : [ℓ] → [ℓ] and gives crs =
(
crs′

g (1) , . . . , crs
′
g (ℓ)

)
and

vk =
(
vk′
g (1) , . . . , vk

′
g (ℓ)

)
to A.

4. AlgorithmA outputs a Boolean circuit� : {0, 1}= × {0, 1}ℎ → {0, 1}, statements G1, . . . , G: ∈ {0, 1}= and a proof
c = (c ′1, . . . , c ′ℓ ). Algorithm B outputs the circuit � , the statement G 9∗C , and the proof c ′

g−1 (C∗) .

First, algorithm B perfectly simulates the common reference string crs forA, so with probability at least Y, algorithm
A outputs (�, G1, . . . , G: , c) such that there exists some C ∈ [3] such that the following two conditions hold:

• Verify′
(
vk′
g (I) ,�, (G1, . . . , G: ), c ′I

)
= 1 where I = g−1 (C) ∈ [ℓ]; and

• � (G 9C ,F 9C ) ≠ 1 whereF 9C ← Extract′
(
td′C ,�, (G1, . . . , G: ), c ′I, 9C

)
.
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Moreover, the special index C∗ is perfectly hidden from the view of A, so with probability 1/|( | ≥ 1/ℓ , it will be
the case that C∗ = C . In this case, g (I) = g (g−1 (C)) = C , so we have that c ′I veri�es with respect to vk′

g (I) = vk′C∗ , but
the extracted witness F 9C∗ is such that � (G 9C∗ ,F 9C∗ ) ≠ 1. This breaks somewhere extractability of ΠBARG. Thus, if
A succeeds with advantage Y, then algorithm B succeeds with advantage at least Y/ℓ , which is non-negligible as
ℓ = poly(_). �

Theorem A.8 (Succinctness). If Π′BARG is succinct, then ΠBARG in Construction A.1 is also succinct.

Proof. Take any _, :, =, B, ℓ ∈ N and any (crs, vk) in the support of Gen(1_, 1: , 1=, 1B , 1ℓ ). Then, crs = (crs′1, . . . , crs′ℓ )
and vk = (vk′1, . . . , vk′ℓ ), where (crs′8 , vk

′
8 ) is in the support of Gen′(1_, 1: , 1=, 1B , 11). Take any Boolean circuit

� : {0, 1}= × {0, 1}ℎ → {0, 1}. We consider each condition separately:

• Succinct proof: By succinctness of ΠBARG, the proofs c ′ output by Prove′(crs′,�, ·, ·) satisfy
��c ′8 �� ≤ poly(_ +

log: + B). Then, the proofs output by Prove(crs,�, ·, ·) satisfy |c | ≤ ℓ ·
��c ′8 �� ≤ poly(_ + log: + B + ℓ).

• Succinct CRS: By succinctness of Π′BARG, each crs′8 satis�es
��crs′8 �� ≤ poly(_ + : + =) + poly(_ + log< + B). The

total size of the CRS is a factor of ℓ larger which satis�es the succinctness requirement.

• Succinct veri�cation key: By succinctness of Π′BARG, each vk′8 satis�es
��vk′8 �� ≤ poly(_ + log: + B). The

veri�cation key vk output by Setup is a factor ℓ larger, which satis�es the succinctness requirement. �

Remark A.9 (Index BARGs). While we described Construction A.1 for the case of standard BARGs, the same
construction directly extends to the case of index BARGs, and moreover, the construction preserves the e�ciency
requirements of an index BARG (since it is simply a concatenation of ℓ copies of the underlying BARG).
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