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Abstract

The Lightning Network (LN) is a second layer solution built on top of
Bitcoin, aimed to solve Bitcoin’s long transaction waiting times and high
transaction fees. Empirical and theoretical studies show that the LN is
tending towards the hub and spoke network topology. In this topology
most of the nodes, the spokes, open a single channel to one of the few
well-connected nodes, the hubs. This topology is known to be prone to
failures, attacks, and privacy issues. In this work we introduce the May-
poles protocol in which most nodes open two channels instead of one. We
show that this protocol benefits the network significantly by enhancing its
stability, privacy, and resilience to attacks. We also examine the economic
incentives of nodes to take part in Maypoles.

1 Introduction

The limited throughput is a challenge shared by all Proof of Work (PoW)
blockchains, such as Bitcoin. By design, these blockchains limit the expected
number of transaction per second, as making this number larger comes at the
expense of security.

A direct consequence of this is an auction-like dynamic for the limited space
available, driving the transaction fees up. High fees limit the usability of the
blockchain, and narrow its adoption.

Another limit of PoW blockchains is the long waiting time needed for a
transaction to be considered secure. In PoW blockchains, the longer one waits,
the more secure the transaction is. The expected time a transaction waits until
it is approved varies between blockchains, usually being somewhere between a
few minutes to an hour. Even a minute is an unacceptable waiting time for
retail transactions and other use-cases. Similar to the throughput problem, this
cannot be changed without serious security risks.

Second layer protocols are solutions to the above challenges. Generally
speaking, these protocols aggregate transactions and send a summary to the
blockchain as seldom as possible. By doing this, these protocols reduce conges-
tion on the blockchains and offer cheaper and quicker transactions.

In this paper, we focus on Bitcoin’s most predominant second layer solution,
the Lightning Network (LN) introduced in [24]. The results presented here are
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relevant in the wider context of payment channel networks that work on the
same principles. See [14] for an overview.

The basic building block of the LN is a channel. Alice and Bob open a
channel by sending a Bitcoin transaction. This transaction locks a given amount
of bitcoin inside the channel. Once the channel is open, Alice and Bob can freely
transact with each other by shifting the amount of funds owned by each party
in the channel. These transactions happen immediately, and do not entail any
fees. At any point, Alice and Bib can close the channel by sending another
Bitcoin transaction and get their respective funds back on the blockchain.

Furthermore, if Bob also has a channel with Carol, Alice can transact with
Carol through Bob, if Bob allows this. There is no theoretical limit1 on the
length of the chain of payments. So, Alice can pay Zoey through Bob, Charlie,
Donna, and so on, as long as all the parties on the way from Alice to Zoey agree
to this. Parties along the route may charge a fee. We give further details on
payments over the LN in Appendix A.

Several studies have shown the tendency of the LN towards the hub and
spoke topology. This topology can be described as follows. There is a small
number of nodes with many channels, these nodes are called hubs. The rest of
the nodes are connected to a single hub. A node connected with a single channel
to a hub is called the hub’s spoke. See Figure 1 for an illustration.

Hubs

Spokes

Figure 1: Hub and spoke topology. Each hub, a blue circle, has many spokes.
Each spoke, a green squares, is connected to a single hub.

Hub and spoke networks suffer from stability, security, and privacy issues.
These issues arise both from the lack of guarantees provided by the connections
between the hubs and from the fact that the spokes have only a single channel.

In this paper, we propose a solution called Maypoles. This solution builds on
top of the hub and spoke topology. In Maypoles, each spoke opens two channels
instead of one. The first channel to a hub of its choice, called the main hub,
through which it plans to move most of its transactions. The second channel to
a hub chosen by the spoke’s main hub, this hub is called the secondary hub. The
main hub selects the secondary hub randomly. The full details of the protocol
are given in Section 2.2.

1In practice, there is a limit of 20 hops in some implementations
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We show that by adding channels as prescribed by Maypoles, we are able to
make the network exhibit a healthy topology that is less prone to attacks and
breakdowns due to malfunction, and to enhances privacy. We also show that it
is in the best interest of the spokes to open these two channels, as this allows
them to send payments over the LN without down-times and save on channel
rebalancing fees.

1.1 Our Contribution

Topological improvements In this paper we make the first attempt, to the
best of our knowledge, to push back against the tendency of the LN to collapse to
a centralized structure such as the hub and spoke topology. While understanding
that currently most nodes open a single channel to a well-connected hub, we
offer to build on top of this to improve the network’s structure.

We prove theoretical results, with no assumptions on the structure of the
underlying LN, and then show the results of simulations on top of current LN
data. The simulations show that the average case over the current LN is even
better than the guarantees given by the theoretical results.

Local change for global impact In Maypoles the benefits to the network do
not rely on a coordinated effort of all nodes. Each hub chooses its own random
subset of secondary hubs, and each node chooses its main hub independently
of other nodes in the network. We show that local independent decisions can
improve global properties of the network.

Economic incentives To motivate improvements to the LN, we use recent
results on the economy of transactions fees in Bitcoin and of LN channels. By
examining economic incentives, we create a win-win situation where both the
network and the spokes benefit from the protocol. The economic assumption
made in proving the incentive compatibility are modest and backed by data.

2 Maypoles

2.1 The Model

The starting point we wish to improve is the hub and spoke topology. We
assume that the set of nodes is V = H ∪ S, where H is the set of hubs and S
is the set of spokes. Each spoke s ∈ S is connected to a single hub by exactly
one channel. We assume that each hub h ∈ H has at least 4 spokes. We also
assume that there is some global parameter k all the hubs use for the protocol2.

We assume that we are in the steady state of the hub and spoke model,
that is, each spoke s chose the hub hs, as it wishes to send and receive all
of its transactions through hs. When the channel between s and hs becomes

2We look at a fixed k to keep the analysis simple, the same results will hold if each hub
chooses its own value for this parameter, and we take k to be the smallest of them
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unbalanced, that is, it cannot support any more transactions that the spoke
wishes to send or receive, the spoke will rebalance the channel. For example, if
all of the balance of s in the LN is 0 and s wishes to keep sending transactions,
s will move funds from the blockchain to the LN. We give further details on
rebalancing strategies in Section 4.1.

We also assume that the fee of a Bitcoin transaction is correlated to the
urgency of the transaction, that is, at any moment in time there is a fixed fee
that will guarantee with high probability that the transaction appears in the
next block. A smaller fee will guarantee that the transaction will appear in the
next 6 block, and so on. We also assume that the cost of keeping a channel that
is always available for sending or receiving, is a monotone decreasing function
of the cost of rebalancing the channel.

2.2 The Protocol

Maypoles is built on top of a network with a hub and spoke topology. In
Maypoles, each spoke opens two channels instead of one. From the spoke’s
viewpoint, it opens a main channel to a hub of their choice. The hub then
recommends a hub for the spoke to open their secondary channel to.

To recommend a secondary channel to each spoke, every hub does the fol-
lowing protocol (independently of the other hubs)

(i) Initiate L as an empty list, and let l denote the size of L throughout the
protocol.

(ii) Choose k hubs uniformly at random. Add them to L.

(iii) Notify the hubs that they are chosen, and add any hub that chose you to
the list L.

(iv) Break the spokes into l(= |L|) sets of size as even as possible.

(v) Instruct the spokes in set i to open their secondary channels to the i’th
hub in L.

Notice that there is a symmetry between choosing a hub in step ((ii)) and being
chosen by a hub in step (3), that is, there are secondary channels between the
spokes of hubs h0 and h1 if either h0 chose h1 or h1 chose h0.

2.3 Overview of the Benefits

If the hub h0 chose the hub h1 (or vise versa) then the result will be spokes that
are connected to both of them (see Figure 2). This means that transactions can
go between h0 and h1, creating a new connection. This connection can be used
if need be.

For example, in cases of failure in the network, different nodes can use this
connection to route their transactions. Spokes can also choose to use this con-
nection to enhance their privacy by occasionally using the secondary channel to

4



1

2

3

4 5 7
8

9

h0 h1
Hubs

Spokes

Figure 2: Hubs and spokes in Maypoles. The red thick edges represent the
spokes’ main channels, and the blue thin edges represent the secondary channels

transact. The main theorem concerning the network topology shows that May-
poles guarantees various network properties. Simulations based on the current
LN show that these improvements out perform the theoretical guarantees in the
average case. Further details are given in Section 3.

We also make sure that the spokes do not lose money when opening the
secondary channel. As the cost of the LN channel strongly depends on the cost
of on-chain transactions, we can use the fact that delayed on-chain transaction
have lower fees for the benefit of the spokes. Further details are given in Section
4.

3 Maypoles and Network Topology

3.1 Network Topology

The topology of channels in the LN has a crucial effect on the stability, security,
and privacy of the network. There are several graph theoretical properties that
are of interest when we are considering the topology of the LN. We start by
giving an overview of these properties in the context of the LN.

Connectivity We say that a network is connected if for every pair of nodes
there is a path of edges between them. We say that a network is m-edge (node)
connected, if one needs to remove at least m-edge (node) to make it discon-
nected. A network’s edge connectivity is equivalent to the minimum-cut of the
network. In the context of the LN, the edges are LN channels, and the nodes
are LN nodes that take part in these channels.

Node and edge connectivity are a way to measure the network’s stability.
High connectivity in the LN ensures that even if several nodes or channels
malfunction, the other nodes can continue to transact with each other. See
Figure 3 for an example.

Furthermore, high connectivity ensures the existence of many disjoint paths
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Figure 3: Let p be the probability of an edge failing due to an attack or a
malfunction. The above figure shows the probability of the network staying
connected as a function of its edge connectivity for different values of p .

going between different nodes in the network. This helps both stability and
privacy. For example, if Alice and Zoe don’t have a channel between them,
and occasionally transact, the nodes along the path that they use can gain
information about their transaction habits (see [29] for further details). Having
many disjoint paths to choose from helps secure the privacy of both Alice and
Zoe by making it significantly more difficult to collect information.

Diameter The distance between two nodes is the length of the shortest path
connecting them in the network. The diameter of a graph is the maximum
distance between two nodes in the graph. The diameter gives us an upper
bound on the distance between nodes, which guarantees the existence of a short
path between any pair.

Long paths are a problem in the LN for two reasons. First, any node along
the path charges a fee, making the use of long routs expensive. Second, as
channels might malfunction or fail to accommodate transactions, each extra
channel in the path adds a non-negligible probability of failure.

Currently, the fees in the LN are rather small, but the failure rates are high.
Routes mostly fail due to insufficient funds in one of the channels, although
nodes going offline and other problems are also an issue. For the payment to
go through, we cannot allow even a single failure along the route. This means
that the probability of failure grows exponentially with the length of the route.
Figure 4 shows how the route successes probability diminishes as the length of
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Figure 4: Probability of a route succeeding as a function of the length of the
route, assuming the probability of a single channel to fail is p.

the route grows.
A short diameter offers an upper bound on the failure probability for a

transaction sent between any pair of nodes. This probability is an important
parameter for the usability of the LN.

Expansion A network having high expansion means that any set of nodes
has many edges connecting it to the rest of the network. In the LN, having
good expansion will ensure that any set of nodes has many channels connecting
the set to the other nodes in the network. Having high expansion guarantees
many helpful properties. For example, high expansion guarantees that breaking
the network into two large components that cannot transact with each other
requires removing a very large number of edges (see [18]). This makes a large
scale attack extremely difficult to accomplish.

High expansion also guarantees that the network is not centralized around
a small set of nodes. This is of particular importance in the LN, as the decen-
tralization helps privacy, censorship resistance and stability.

Betweenness Centrality The betweenness centrality of a node v in a net-
work is the proportion of the shortest paths, between any pair of nodes, that
goes through v. Most nodes in the LN choose to route using the shortest path3

in the network. In light of this, if there is a small set of nodes with a between-
ness centrality that is significantly greater than the average, this means that

3To be more precise, they choose the cheapest path, yet these are almost always the same
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most nodes route through that set. This allows the nodes, especially if they
are working together, to learn a vast amount of information about flows in the
network. As any form of centralization, it also opens up the network to failures
and various attacks.

To make sure that nodes do not that take up a disproportional part of the
flow in the network, we look at the values of the betweenness centrality of all
the nodes in the network, and take the standard deviation of these values. The
smaller the standard deviation is, the better, as this points to the decentraliza-
tion of the network. As this is a difficult parameter to study formally, we will
focus on it only in the simulation part.

The hub and spoke topology cannot guarantee good network parameters. By
adding channels as prescribed in Maypoles, we can ensure the network’s health.
In the next section, we give formal definitions of the above properties, state and
prove the main theorem that shows Maypoles indeed improves the topology
without making any assumption on the underlying LN. Then we present the
results of several simulations where we study the Maypoles protocol over a
snapshot of the LN and consider several variations to the protocol.

3.2 The Main Theorem

The theorem we state and prove in this section shows the benefits of Maypoles
to the network structure. Before stating and proving our theorem, we need to
give formal definitions for the LN under Maypoles and for the desired network
properties.

In Maypoles, if a hub, say h0, has chosen another hub, say h1, then h0 and
h1 are connected to each other via a subset of their spokes. This means that
h0 and h1 can transact with each other, routing through the spokes they share.
To study this relation, we define the secondary network.

Definition 3.1 (Secondary Network). The Maypoles protocol with a fixed con-
stant k creates the secondary network Lk. The nodes of Lk are all the hubs in
the LN. There is an edge between hub h0 and hub h1 in Lk if one of the hubs
chose the other in stage (2) of the Maypoles protocol, that is, if there are spokes
connected simultaneously to h0 and h1.

When considering the influence of Maypoles on the LN, we think of a new
network created by adding the edges of Lk to the existing LN. The LN together
with Lk will have edge and node connectivity greater or equal to the connectivity
of Lk. The same holds for expansion. As for the diameter, the distance between
nodes in Lk is an upper bound on the distance in the LN together with Lk, and
so the diameter can only become smaller.

To understand how the addition of Lk improves the topology we first give
the formal definitions of the network properties, then we state the theorem, and
finally prove it.

Definition 3.2. Let G = (V,E) be a connected network, where V is the set of
nodes, and E is the set of edges.
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• Connectivity G is connected if there is a path between any two node. G
is m edge (node) connected if it stays connected if we remove any set of
< m edges (nodes).

• Diameter For u, v ∈ V , let d(u, v) be the distance between u and v,
defined as the length of the shortest path from u to v. The diameter of G
is maxu,v∈V d(u, v), that is, the greatest distance between two nodes in G.

• Expansion For a set of nodes S ⊆ V define its outer boundary to be
the set of edges that have one end in S and one end outside S, that is,
∂(S) = {(u, v) ∈ E s.t. u ∈ S and v /∈ S}.
The edge expansion of G is the smallest ratio between the size of the bound-

ary of a set and the size of the set itself, that is, min
S⊆V,0<|S|≤ |V |

2

|∂(S)|
|S| .

Theorem 3.3. Let Lk be Maypoles’ secondary network with k ≥ 2. Then
w.h.p.4

(i) Lk is k edge connected

(ii) Lk is k node connected

(iii) Lk has an edge expansion of at least (1 + o(1))k

(iv) Lk has a diameter of at most (1 + o(1)) logn
k+1 , where n is the number of

nodes.

Note that the theorem does not assume anything about the underlying LN
graph, and only shows properties of Lk. When adding Lk to the LN, it could
happen that the connectivity and expansion would be even better, and the
diameter even smaller. When we simulate Maypoles with a snapshot of the LN,
we indeed see that the improvement in the average case is even better than
is guaranteed by the theorem. Further details on the simulations are given in
Section 3.3. The proof of the theorem can be found in Appendix B

3.3 Simulations and Variations

In the previous section, we have focused on theoretical results that allowed us
to give bounds on properties guaranteed by the Maypoles protocol, regardless
of the structure of the underlying LN. In this section, we simulate the effect of
Maypoles on the current topology of the LN. We also discuss and simulate some
variations of the Maypoles protocol and their effect on network properties. To
simulate Maypoles and its variation, we have used the LN snapshot from [8].
The code of the simulation can be found in [2].

In addition to studying the regular Maypoles protocol, we have also consid-
ered the following variations. In the first one, when a hub chooses k hubs to
connect to, there is a subset of hubs it prefers over the others. It is natural to

4w.h.p. meaning with high probability, that is, with probability going to 1 as the number
of nodes grows
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assume that some hubs would prefer to connect to hubs that are similar to them.
The similarity could be in relation to geography, the demography of customers,
or other parameters that will make the link between the hubs more advanta-
geous. As we do not have any meta-data on the hubs in the LN snapshot, we
chose a random-like heuristic where hubs prefer other hubs if the last digits of
their IDs are the same.

In the second variation, some hubs do not cooperate, that is, these hubs do
not instruct their spokes to open secondary channels. It could easily happen that
a hub would signal that it is interested in taking part in Maypoles, and then fail
to perform the protocol. In many cases, hubs are interested in a change, yet will
take a very long time before adopting it in practice. To simulate this, each hub
chooses whether to cooperate or not by flipping a coin with some fixed success
probability. Hubs do not know which hubs cooperate and which don’t, and so a
cooperating hub might instruct its spokes to connect to a non-cooperating hub.
This will help the non-cooperating hubs, but not as much as performing the
protocol.

We examine Maypoles and the above variations through two parameters.
The first is the edge connectivity of the network. This will tell us both how
resilient is the network to failures and attacks, and will show us the number
of different routes available between pairs of nodes. If hubs deviate from the
uniform choice by preferring some hubs, we expect to see similar results to
the uniform case, as there is a variety of edges added for every hub. Because
connectivity is very sensitive to local changes, we expect a significant change if
a large proportion of hubs do not cooperate.

The second parameter we want to examine is the betweenness centrality in
the network. Most nodes in the LN will choose to route through the shortest
path available. In any connected network, for any pair of nodes {s, t}, there is
at least one path of minimal length. For a hub h, the betweenness centrality is
the proportion of these paths that go through h. Intuitively, if the betweenness
centrality of a hub is significantly larger than the average, this means that the
network is centralized around this hub. In the context of the LN, this will mean
that a larger proportion of the payments routed in the network will go through a
specific hub. Looking through this lens, we will say the network is decentralized
if the betweenness centrality of the hubs is similar. To measure this, we look at
the standard deviation of the values of the betweenness centrality. The smaller
the standard deviation, the better the decentralization of the network.

To be more precise, the cases we have simulated are the following. For each
hub in the Network:

(i) Uniform The hub chooses k hubs uniformly at random (as prescribed by
Maypoles)

(ii) Preferred Hubs Let d be the last digit of the hub’s ID. The hub chooses
k other hubs, where the probability of a hub with a last digit d to be
chosen is 10 times greater than that of a hub with the last digit different
from d
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(iii) 10% Hub Failure With probability 90% the hub chooses k hubs uni-
formly at random, with probability 10% the hub does not add any new
connections

(iv) 50% Hub Failure With probability 50% the hub chooses k hubs uni-
formly at random, with probability 50% the hub does not add any new
connections

For all of the above we have simulated values of k between 0 and 12. Note
that k = 0 is just the snapshot of the LN without any changes. The simulation
repeated 50 times, and the average of the results was taken.

Figure 5 shows the edge connectivity of the LN as a function of k for the
various cases stated above. The LN snapshot has connectivity 8, as is shown in
the k = 0 column. As k grows, so does the edge connectivity of the network.
Notice that, for example, for k = 12 in the Uniform case, Theorem 3.3 guaran-
tees edge connectivity of 12. As the base graph has connectivity 8 and we are
adding to it a graph with connectivity 12, we could have expected a connectiv-
ity of 12 + 8 = 20. The simulation shows that the average case out performs
the theoretical bounds significantly, as the average connectivity is above 27. In
Theorem 3.3 we have shown that various properties will hold w.h.p., yet it seems
that the average case will be even better than what is stated in the theorem.

Figure 5: Edge connectivity as a function of the parameter k, for the different
variations. The greater the edge connectivity, the better is the topology of the
graph.

When comparing Uniform to the other variations in Figure 5, we see that,
as expected, nodes that do not cooperate bring the connectivity down. This is
particularly significant when the failure probability is 50%. Preferred Hubs on
the other hand will not bring connectivity as sharply down, because many edges
are added. Other properties studied in Theorem 3.3 exhibit similar improvement
dynamics, yet due to the currently small size of the LN, they are less interesting.
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With the growth of the network, the diameter and the expansion are expected
to become more significant.

Figure 6 shows the standard deviation of the betweenness centrality as a
function of k, for the different variation of hub choices. The smaller the stan-
dard deviation, the better. A small standard deviation points to a uniform
distribution of paths between the hubs. As k grows, we see that the standard
deviation becomes smaller. The fact that the routing paths are distributed more
evenly between hubs, means that no hub controls a disproportional part of the
flow in the network.

Figure 6: The standard deviation of the betweenness centrality values of hubs in
the network as a function of k. The smaller the standard deviation, the better,
as it shows the network is more decentralized.

Similarly to the previous figure, the Uniform choice gives the best results,
Preferred Hubs and 10% Hub Failure have only slightly larger standard devia-
tions. 50% Hub Failure does not perform as well as the other cases. The hubs
that do not cooperate stay behind and do not take part in many paths in the
graph, which keeps the standard deviation rather high. For example, 50% Hub
Failure for k = 12 performs similarly to Uniform with k as small as 5. This
points to the fact that hubs that do cooperate get more routes going through
them, and this could incentives hubs to join Maypoles.

4 Spokes in Maypoles

In Maypoles, spoke open two channels instead of one. Even if it benefits the
network, we cannot expect the spokes to do this without proper economic in-
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centive. In this section, we show that by opening channels as prescribed in
Maypoles, the spokes save on the costs of continuously transacting over the LN.
The savings are due to the dynamics of fees in Bitcoin.

A basic demand from any type of payment system is that it will be always
available, that is, at any moment in time the user can send funds that they own
and receive funds from other users. Looking at the LN as a mean of payment
for spokes, we assume that a spoke in LN needs to always be able to send or
receive transactions

In this section we examine the cost of having a channel that is always bal-
anced, that is, always available for sending or receiving transactions. We call
such a channel a high availability channel (HAC). We show that following May-
poles allows spokes to have an HAC for a lower cost than trying to have an
HAC without Maypoles. The reason that Maypoles is cheaper is that a large
part of the cost of an HAC is the on-chain rebalancing fees. When maintaining
and using a channel over long periods of time, one must occasionally rebalance
by moving funds on the blockchain. Maypoles allows paying smaller fees every
time we need to perform such a rebalance, without suffering any downtime.

To gain some intuition, we start with an example. Assume that Alice sells
T-shirts online and accepts payments over the LN. Any downtime in which the
channel cannot receive payments can result in loss of revenue. Thus, Alice wants
a HAC. If Alice has a single channel, when her channel gets depleted, that is, she
cannot receive payments, she needs to rebalance. As she has a single channel,
any rebalancing option includes an on-chain transaction, and so the main cost
will be the transaction fee.

One option is sending the rebalancing transaction with a fee that guarantees
it will go through as quickly as possible. This will be expensive, as the waiting
time for the transaction to be included strongly depends on the fee. Another
option is trying to rebalance in advance, yet this is not cheap either, as it entails
locking in the LN large sums (either Alice’s or the hub’s) and often opening
parallel channels to the same hub. Both of these are expensive and in some
cases hubs will not allow5 the spoke to do so.

On the other hand, if Alice’s node is a spoke in Maypoles she has two chan-
nels, main and secondary. The main channel is the one that she mostly uses
to receive payments, and so it is an HAC. Alice’s secondary channel is used to
rebalance the main channel, that is, when the main channel is depleted Alice
uses the secondary channel to rebalance it (see Figure 7 for an illustration). As
this rebalance happens on the LN, it is immediate, and the fees are negligible.
When the secondary channel needs to be rebalanced, this entails an on-chain
transaction. When rebalancing the secondary channel, Alice can wait for a long
time for the rebalancing transaction to go through, as her main channel is still
open. By allowing longer waiting times when rebalancing, Alice pays a smaller
fee. Because of the difference in the rebalancing fees, the cost of maintaining an
HAC over Maypoles is smaller than the cost of a single channel as an HAC.

In the next sections we define a general setting for channel costs, prove the

5Parallel edges are not even implemented in some LN software

13



h0 h1

a b
1 3

4 2

Figure 7: Spoke a is rebalancing the main channel it has with h0 using the cycle
a → h1 → b → h0 → a. This also benefits spoke b, as it rebalances its main
channel with h1

benefits for the spokes, and finally give some numeric examples.

4.1 The Cost of a Lightning Channel

The cost of maintaining an HAC has two main parts. The first part is the
fees paid each time the channel needs to be rebalanced. The second part is
the opportunity loss of the bitcoin locked in the channel. On the one hand, if
there is a large amount of bitcoin locked in the channel, we will rarely need to
rebalance it, but the opportunity loss is significant. On the other hand, if the
amount locked in the channel is a small, so is the opportunity loss, but we need
to rebalance the channel often. As the amount of bitcoin locked in the channel
can be chosen by the nodes opening it, they can optimize the amount to get a
minimal channel cost. As for the rebalancing fee, the smaller it is, the smaller
the cost of the channel.

Formally, denote by B the cost of rebalancing a LN channel once, and by
F (B) the minimum possible cost of an HAC as a function of B. We assume that
the transaction flow rate and the interest rate, that is the rate of opportunity
loss, are constant. A natural assumption is that F (B) decreases as B decreases.
We use this for the benefit of spokes in Maypoles.

In the LN, and similar solutions, there are two main ways to rebalance the
channel. The first one is moving funds from a different channel owned by the
same node (see [19] for further details), the second one is performing an on-chain
transaction. The LN fees are negligible in comparison to the on-chain fees, and
so we may focus on the cost arising from the need to move funds on-chain.

If a node mostly pays on the LN, it will need to move funds from the
blockchain to the network regularly, as the funds in all of its channels will run
out. Similarly, if a node mostly gets paid, it will need to move funds back to the
blockchain to allow for incoming transactions. It is rare that a node sends and
receives at exactly the same rate, yet even in this case from time to time the
node’s funds will be depleted and there will be need for an on-chain transaction
to rebalance. See [13] for further details.

Rebalancing through the blockchain entails transaction fees. As there is an
ongoing auction for space on the blockchain, a high fee will get the transaction
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Figure 8: A moving weekly average of the ratio between the estimated fee for
a transaction to appear in 6 blocks and the estimated fee for a transaction to
appear in the next block

into the blockchain quickly, while a transaction with a lower fee might wait for
hours or days. If a node is not in hurry, it can take advantage of this fact, and
send transactions with a lower fee (see [17] for further details). In Figure 8 we
show the ratio between the estimated fee for a transaction to be included in 6
blocks versus the next block, between April 2021 and April 2022 as presented in
[7]. Waiting 6 blocks cuts the transaction fee by half in most cases. We believe
that waiting even longer would allow for even lower fees.

4.2 Benefits of Maypoles for a Spoke

To show that there is a financial motivation for spokes that wish to have an
HAC, we need to show that by choosing correctly the sizes of the main and
secondary channels in Maypoles, the cost of having an HAC with Maypoles is
cheaper in expectation than the cost of a single channel HAC. With a single
channel, if one wishes it to have high availability, one needs to either open a
new channel before the old one is depleted, thus forgoing interest for large sums
in the LN, or to pay high transaction fees. Maypoles avoids this problem and
saves on rebalancing costs.

A spoke in Maypoles will hold in its main channel an amount which allows
for a few days worth of transactions. The secondary channel would be of size
optimized for a minimal cost. The spoke can make sure that the main channel
always has liquidity, by moving liquidity from the secondary channel. The move
of liquidity from the secondary channel to the main channel is done through a
short cycle in the LN, as shown in Figure 7, and so has a negligible cost.

The spoke can wait a long time before rebalancing the secondary channel,
as it is only used to rebalance the main channel. Thus, even if this is done by
an on-chain transaction, this can be done at a significantly lower cost.

In the following theorem, we show that a spoke’s HAC will be cheaper in
Maypoles than in the single channel case, if the spoke chooses the sizes of the
main and secondary channels correctly. The savings are due to the difference
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in the on-chain transaction fees. We define an immediate transaction to be a
transaction offering a fee high enough for it to be in the next block, and a delayed
transaction to be a transaction offering a fee high enough for it to appear in the
next 6 blocks. The choice of 6 blocks is rather arbitrary and can be a few days
worth of waiting, as shown in examples in Section 4.3.

Theorem 4.1. Let F (B) be the channel cost function, let Bi be the cost of
immediate rebalancing and let Bd be the cost of delayed rebalancing. For Bi >
Bd, there is a choice of sizes for the channels in Maypoles that make an HAC
cheaper in Maypoles than a single channel HAC.

Proof. Let Fi = F (Bi) be the cost of a single channel HAC, and let us compare
it to the cost of the Maypoles channels. In Maypoles, we can guarantee that
the cost of the secondary channel is Fd = F (Bd). As for the main channel,
assume that it is has K bitcoin in it. The size of the main channel, that is, the
amount locked inside it, is an upper bound on its cost, as it is never rebalanced
on-chain. Thus, the cost of the two Maypoles channels is at most Fd +K.

Choose K < Fi − Fd, and as F (B) is monotone in B, we know that we can
choose K > 0. Then we get that

Fi > Fd +K

that is, the cost of the two Maypoles channels is smaller than the cost of a single
regular channel.

An important observation is that the benefits for a spoke do not depend on
the hubs’ cooperation. Although rebalancing the spoke’s main channel is easier
and cheaper if there is a short cycle for the spoke to use, the spoke can make
do by finding a path between the two hubs it is connected to. Another solution
for the spoke is opening both channels to the same hub, yet this forgoes any
privacy benefit and not all hubs allow it.

We finish this section by giving some numeric examples based on the cost
functions derived in [13], to show that this indeed works with real world num-
bers.

4.3 Numeric Examples

Assume that nodes n0 and n1 open a channel where funds flow at rate λ0 from
n0 to n1 and at rate λ1 in the opposite direction, and assume that r is the
market interest rate. As before, B is the cost of rebalancing the channel once.
Consider the cost function whose asymptotic around r = 0 are given in [13].

Theorem 4.2 ([13]). In the limit of r near zero, the first order approximation
of the minimum cost of a channel is

(i) If λ0 > λ1 then

2

(
B(λ0 − λ1)

r

)1/2
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(ii) If λ0 = λ1 = λ then

3

(
2Bλ

r

)1/3

Example 1 Assume that a spoke spends λ0 = 10, 000$ annually over the LN
and does not receive funds over the LN, that is λ1 = 0. Furthermore, assume
that the fee for rebalancing the channel in the next block is Bi = 1$ and the
fee for a delayed rebalancing (say, going into a block in the next 24 hours) is
Bd = 0.25$ and let the interest rate be r = 0.05. Then the expected cost of a

single channel is approximately 2
(
1·10000
0.05

)1/2
$ ≈ 894$.

As for the two channel case, assume that in the main channel we deposit
50$, the amount expected to be used in two days, and in the secondary channel
the optimal amount for the minimal cost indicated by Theorem 4.2. Then, in

total, the cost is expected to be at most 50$ + 2
(
0.25·10000

0.05

)1/2
$ ≈ 274$.

From this, we see that the user is expected to save ≈ 620$ each year, which
is almost 70%.

Figure 9: In this graph, we compare the savings in Maypoles for different trans-
action rates λ, assuming various ratios C between immediate and delayed re-
funding of a channel.

Example 2 In Figure 9 we examine the amount saved by opening two May-
poles channels instead of one regular channel for various transaction rates and
ratios between transaction fees. Define C = Bd

Bi
, that is, the ratio between a

delayed transaction fee and an immediate transaction fee. In this example, we
assume that the main channel has a week’s worth of funds locked in it. We
see that the savings grow as the transaction rate grows and as the ratio C gets
smaller.

4.4 Previous Works

This work builds upon previous research on network theory, random graphs, and
the economy of the LN. This is the first protocol that offers to use the economic
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incentives in the LN to improve its topology. We give a short overview of results
used in this paper, directly or indirectly.

The starting point of this paper is the fact that the LN has a hub and spoke
topology, and that it is not expected to change. This has been shown in several
studies, both empirical (e.g., [10], [27], [20], [21], [15], [31], [32]) and theoretical
(e.g., [3], [4], [26]).

It is particularly important to note the studies that point to weaknesses of
the network due to its tendency towards the hub and spoke model. See for
example [22], [25], [28] and to some extent also [16]. Although some of this
works offer local remedies for specific attacks, the hub and spoke topology is
fragile by nature, and so in Maypoles we aim to change the topology itself and
thus resolve many of the potential problems shown in these papers.

The health of networks is a well studied subject, and there are many works
from which we can draw properties we want our network to exhibit. These
works can be both theoretical (e.g., [6], [23], [5]), and as practical as network
manuals (e.g., [9]). As the LN is decentralized and arises from economic needs,
we cannot expect the healthy topologies described in the aforementioned works
to appear on their own. To guarantee a good network topology, we need to push
the network towards it.

To prove the compatibility with node’s economic incentives, we use the re-
sults in [17] that show the correlation between waiting times and transaction
fees. When going into concrete examples, we use [13] where the authors study
closely the cost of lightning channels, together with other questions. This work
has only considered the LN on the scope of a channel, we use it to examine how
local economic incentives can be used to better the network in general.

5 Conclusion and Discussion

In this work, we have introduced and studied the Maypoles protocol, which
improves payment channel networks that have a hub and spoke topology, such
as the Lightning Network. We have shown that Maypoles increases the network
stability, privacy, and resilience to attacks. Going over several parameters that
measure the health of a network, we have shown that both in theory and in
practice, Maypoles improves them significantly.

We have also shown that by correctly choosing the channel sizes, the spokes
can save on costs of maintaining a channel that is always available for send-
ing and receiving transactions The savings are due to the correlation between
transaction fee over Bitcoin and the urgency of the transaction. This can mo-
tivate spokes to participate in the Maypoles protocol. By taking into account
the economic incentives, we made sure to create a win-win situation between
individual nodes and the network as a whole.

The framework created here can be used to examine other variation of de-
centralized changes to the topology. In Section 3.3 we have discussed a few
variations on the Maypoles protocol and simulated their performance. In the
future, it could be interesting to examine other variations tailored to the specific
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challenges of different networks.
It could also be interesting to examine the addition of channels to other

topologies, such as scale-free graphs (see, e.g, [1]). In such networks, there
won’t be a clear-cut between ”large” nodes, like hubs, and ”small” ones, like
spokes. This might prove to be more useful for the study of some payment
channel networks, especially as they grow.

Another interesting direction to look into is encouraging nodes to open more
than one channel. In Maypoles, we give economic incentive for opening two
channels. It would be better if the number of channels would be even greater.
Opening more than two channels as described in Maypoles will not offer sig-
nificant savings. It could be that there is another scheme which can motivate
spokes to have many channels.

The LN is a very young project with many changes and upgrades happening.
For example, Multi-Path Payment is a solution that allows splitting a single
payment into several smaller payments and sending the smaller payments along
different routes. The ability to do so can motivate nodes to open several channels
for better privacy and liquidity management. Studying how to better utilize
this and other developments for the health of the network would be of great
importance to the development of the LN.
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[4] Ferenc Béres, Istvan Andras Seres, and András A Benczúr. A cryp-
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A The Lightning Network

A channel in the LN is opened between two parties. Both parties lock a sum
in the channel by signing an on-chain Bitcoin transaction. Once the channel
is open, they can transact between themselves by changing the ownership over
parts of the locked funds.

For example, assume that Alice regularly buys coffee from Bob. They open
a channel where Alice locks 5 bitcoin that she is planning to pay Bob with. Bob
is not locking any funds, as he does not expect to pay Alice.

The first time Alice buys coffee, she wants to transfer 1 bitcoin to Bob, and
so they change the state of the channel to Alice having 4 bitcoin and Bob having
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1 (see Figure 10). They can continue transacting if the channel’s funds allow it,
and Bob can also send bitcoin to Alice if needed.

Figure 10: An example of Alice paying Bob 1 bitcoin over their channel

If there is also a channel between Bob and Carol, Alice can transact with
Carol without opening a new channel to her. She can pay Carol through Bob,
if Bob agrees to cooperate. Bob can charge a fee for the service he is providing
to Alice and Carol. To pay Carol 1 bitcoin, Alice sends 1 bitcoin to Bob, who
then sends 1 Bitcoin to Carol. See Figure 11 for this example.

Figure 11: An example of Alice sending Carol 1 bitcoin through Bob

The last example we want to consider is when Alice has channels both to
Bob and to Carol, and Bob and Carol have their own channel. Assume Alice
and Bob’s channel is depleted, that is, Bob owns all the bitcoin, and assume
that Alice still has funds in her channel with Carol. Then Alice can refund her
channel with Bob by moving some funds from the Alice and Carol channel to
the Alice and Bob channel. Bob and Carol must agree to this, and the channel
their channel must have sufficient funds.

For example, if Alice wants to send 1 bitcoin from her channel with Carol
to her channel with Bob, she will do this by using Carol and Bob’s channel. To
be more precise, Alice sends herself 1 Bitcoin through Carol and Bob. In the
channel of Alice and Carol, Alice sends 1 Bitcoin to Carol. In the channel of
Carol and Bob, Carol sends 1 bitcoin to Bob. In the Channel of Bob and Alice,
Bob sends 1 bitcoin to Alice. Each one has the same amount in the beginning
and the end, only the distribution between the channels changed. See Figure
12 for an illustration.

Note that this is cryptographically guaranteed to ensure that no harm can
come to any party. If Alice pays Bob, she cannot later claim that the transaction
did not happen, and if Bob and Carol agree to facilitate the transaction, they
cannot disappear with the funds and not commit their part of the deal. The
full details can be found in [24] and in several blog posts, such as [30].

B Proof of The Main Theorem

A key part of the proof of Theorem 3.3 is the observation that the Maypoles
protocol gives raise to a k-out graph, as introduced in [11].
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Figure 12: An example of Alice rebalancing her channel with Bob, by using the
funds she has in the channel with Carol

Definition B.1 (k-out graph). Starting from an empty graph G = (V, ∅) we do
the following steps

(i) For each v ∈ V (G) create a set A(v) by choosing k nodes from V (G)
uniformly, independently, and allowing repetitions

(ii) For each v ∈ V (G) add an edge between v and each node in A(v)

(iii) Remove double edges and self-loops

The resulting graph is called a k-out graph.

The proof of the main theorem builds upon the observation that Lk is a
k-out graph. To prove the claimed graph properties, we need the following two
lemmas. The first lemma is in the heart of the theorem, and shows that a k-out
graph has good expansion. The second lemma shows that graphs with good
expansion have a low diameter. We start by stating and proving the lemmas,
and then we proceed to the proof of the theorem.

Lemma B.2. Let G = (V,E) be a random k-out graph, for some constant k.
Then for every S ⊂ V , such that |S| ≤ |V |/2, we have that ∂(S) ≥ (1+o(1))k|S|
w.h.p.

Proof. We split the proof into two cases. We first focus on the more complicated
case where |S| > n1/4. After proving that the lemma holds for such S, we finish
the proof by showing the simpler case where |S| ≤ n1/4.

Let |S| = s and |V | = n. Define ∂(S) to be the random variable counting
the number of edges between S and V \ S prior to the removal of double edges
in the k-out processes, that is, prior to step (iii) of the processes. We will show
that w.h.p. ∂(S) = (1 + o(1))∂(S) and ∂(S) ≥ (1 + o(1))ks.

To show that w.h.p. ∂(S) ≥ (1 + o(1))ks, we calculate the expectation of
∂(S) and then show that ∂(S) is concentration around its expectation. Edges
in ∂(S) appear if either a node in S chooses a node in V \S or if a node in V \S
chooses a node in S, call the former type 1 and the latter type 2.

For each v ∈ S the expected number of nodes it chooses outside S is

k · |V \ S|
|V |
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Thus the expected number of edges of type 1 is

|S| · k · |V \ S|
|V |

= k
s(n− s)

n
.

Similarly, the expected number of edges of type 2 is

|V \ S| · k · |S|
|V |

= k
s(n− s)

n
.

Thus, the expected number of edges with one node in S and one node in
V \ S is

E[∂(S)] = 2k
s(n− s)

n

To show that ∂(S) is concentrated around its expectation we use Chebyshev’s
inequality

Theorem (Chebyshev’s inequality) For any random variable X and pos-
itive a

P(|X − E[X]| > a) ≤ V ar[X]

a2

The variance of the random variable ∂(S) can be calculated as follows. For
v ∈ S let Xv be the number of nodes in V \S chosen by v, and for u ∈ V \S let
Yu be the number of nodes in S chosen by u. Note that the above variables are
all independent of each other, and that ∂(S) =

∑
v∈S Xv +

∑
u∈V \S Yu. Using

these two facts we get that

V ar[∂(S)] =
∑
v∈S

V ar[Xv] +
∑

u∈V \S

V ar[Yu].

AsXv behaves as the Binomial random variable Bin(k, n−sn ), and Yu behaves
as Bin(k, s

n ), we get

V ar[∂(S)] =
∑
v∈S

k
n− s
n

(1− n− s
n

) +
∑

u∈V \S

k
s

n
(1− s

n
)

= sk
n− s
n
· s
n

+ (n− s)k s
n
· n− s

n

= n · k s
n

(n− s)
n

= k
s(n− s)

n
.

Notice that V ar[∂(S)] = 1
2E[∂(S)], and so by choosing a = E(∂(S))2/3 and

plugging it into Chebyshev’s inequality we get

P[|∂(S)− E[∂(S)]| > E[∂(S)]2/3] ≤ V ar[∂(S)]

E[∂(S)]4/3
=

1

2E[∂(S)]1/3
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It is left to show that 1
2E[∂(S)]1/3

−→
n→∞

0. As n
2 ≥ s ≥ n1/4, and as f(s) =

s(n− s) is a monotone increasing function in this range, we have that

(2E[∂(S)])−1/3 =(4k
s(n− s)

n
)−1/3

≤(4k
n1/4 · (n− n1/4)

n
)−1/3 ≤ n−1/12 → 0.

Thus we have that w.h.p.

∂(S) = (1 + o(1))E[∂(S)] = (1 + o(1))2k
s(n− s)

n

≥ (1 + o(1))2k
s(n− n/2)

n
= (1 + o(1))ks (1)

where inequality (1) holds as s ≤ n
2 .

As for the case where s ≤ n1/4, the probability that a node in S chooses a
node in V \ S is

|V \ S|
|V |

=
n− s
n
≥ n− n1/4

n
= 1− 1

n3/4
.

The probability that all the nodes in S choose nodes in V \ S is at least

(1− 1

n3/4
)ks ≥ (1− 1

n3/4
)kn

1/4

−→
n→∞

1.

From the above, if s ≤ n1/4 we have that w.h.p. all the edges that nodes in
S chose are to V \ S. This means that w.h.p. ∂(S) ≥ ks.

It is left to show that ∂(S) = (1 + o(1))∂(S). The difference between ∂(S)
and ∂(S) is the number of double edges between S and V \ S. Denote the
random variable counting these double edges by D(S), and note that

∂(S) ≥ ∂(S)−D(S). (2)

Let v ∈ S and u ∈ V \ S. The probability of more than one edge between
them is at least the probability of exactly 2 edges. The nodes v and u make
together 2k choices. The probability that u chooses v or vice versa is 1

n . Thus,
the number of edges between them follows the binomial distribution Bin(2k, 1

n )
and so

P(exactly 2 edges between u and v) =

(
2k

2

)
1

n2
(1− 1

n
)2k−2 ≤ 4k2

n2
.

From this, we get that the expected number of double edges is at most

E(D(S)) ≤ s(n− s)4k
2

n2
=

2k

n
E[∂(S)].
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By Markov’s inequality we have that

P
(
D(S) > n1/2E(D(S))

)
≤ E(D(S))

n1/2E(D(S))
=

1

n1/2
→ 0

and so w.h.p. we have that D(S) ≤ n1/2E[D(S)] ≤ n1/2 2k
n E[∂(S)] = o(E[∂(S)]).

Plugging the above into (2), we get that w.h.p.

∂(S) ≥ (1 + o(1))∂(S) ≥ (1 + o(1))ks

and this completes the proof.

Lemma B.3. Let G be a graph on n nodes. If G is a k-expander, then the
diameter of G is at most log n/(k + 1)

Proof. For any v ∈ V (g), let Si(v) be the set of nodes of distance at most
i. S0(v) = |{v}| = 1. As G is a k-expander, the number of nodes in S1(v),
including v itself, is at least S0(v) + k · S0(v) = k+ 1. If Sm−1(v) < n

2 then the
number of nodes in Sm(v) is at least Sm−1 + k · Sm−1 ≥ (k + 1)m. Choosing
m0 = 1

2 log n/ log(k+ 1), we get that there are at least n/2 nodes of distance at
most m0 from v.

Let u and v be a pair of nodes in G. From the above, there are at least n/2
nodes of distance at most m0 from u and the same holds for v. Thus, there
must be a node in both Sm0(v) and Sm0(u), and so there is a path of length at
most 2m0 = log n/ log(k + 1) from u to v.

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. The key observation we need is that Lk is equivalent to
a k-out graph. Indeed, as a hub instructs its spokes to connect to k different
hubs that are chosen uniformly at random, it creates k random edges in Lk.
This is exactly step (ii) of the k-out creation processes. If two hubs choose each
other, or a hub chooses another hub twice, we still think about the connection
between them as a single edge in Lk, and this is step (iii) of the k-out processes.
This shows that the resulting graph Lk is a k-out graph.

Items ((i)) and ((ii)) are obtained by the above observation and the following
result of Frieze.

Theorem[[12], Theorem 17.2] Let k ≥ 2 be a fixed integer. Then a k-out
graph has w.h.p. edge connectivity and node connectivity k.

Item ((iii)) is a direct consequence of the above observation and of Lemma
B.2 that shows that k-out graphs are(1 + o(1))k expanders. Item ((iv)) is ob-
tained by the observation, Lemma B.2, and Lemma B.3 that shows that ex-
panders have the needed diameter.
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