
SoK: Polynomial Multiplications for Lattice-Based
Cryptosystems

Vincent Hwang

Max Planck Institute for Security and Privacy, Bochum, Germany

Abstract. We survey various mathematical tools used in software works multiplying
polynomials in

Zq[x]
⟨xn − αx − β⟩ .

In particular, we survey implementation works targeting polynomial multiplications
in lattice-based cryptosystems Dilithium, Kyber, NTRU, NTRU Prime, and Saber
with instruction set architectures/extensions Armv7-M, Armv7E-M, Armv8-A, and
AVX2.
There are three emphases in this paper: (i) modular arithmetic, (ii) homomorphisms,
and (iii) vectorization. For modular arithmetic, we survey Montgomery, Barrett, and
Plantard multiplications. For homomorphisms, we survey (a) various homomorphisms
such as Cooley–Tukey FFT, Good–Thomas FFT, Bruun’s FFT, Rader’s FFT, Karat-
suba, and Toom–Cook; (b) various algebraic techniques for adjoining nice properties
to the coefficient rings, including localization, Schönhage’s FFT, Nussbaumer’s FFT,
and coefficient ring switching; and (c) various algebraic techniques related to the
polynomial moduli, including twisting, composed multiplication, evaluation at ∞,
truncation, incomplete transformation, striding, and Toeplitz matrix-vector product.
For vectorization, we survey the relations between homomorphisms and the support
of vector arithmetic.
We then go through several case studies: We compare the implementations of modular
multiplications used in Dilithium and Kyber, explain how the matrix-to-vector
structure was exploited in Saber, and review the design choices of transformations for
NTRU and NTRU Prime with vectorization. Finally, we outline several interesting
implementation projects.
Keywords: Lattice-based cryptography · Polynomial multiplication · Modular
arithmetic · Homomorphism · Vectorization

E-mail: vincentvbh7@gmail.com (Vincent Hwang)

https://vincentvbh.github.io/
mailto:vincentvbh7@gmail.com

2 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

Contents
1 Introduction 4

1.1 Why This Paper . 4
1.2 Emphases . 4
1.3 Artifact . 7
1.4 Related Works . 7
1.5 Assumed Knowledge . 7

2 Modular Arithmetic 7
2.1 Integer Approximations . 8
2.2 Montgomery Arithmetic . 8
2.3 Barrett Arithmetic . 9
2.4 Plantard Arithmetic . 10
2.5 Comparisons . 11

3 Basic Homomorphisms 12
3.1 Notations . 12
3.2 Discrete Fourier Transform . 12
3.3 Cooley–Tukey Fast Fourier Transform . 13
3.4 Good–Thomas FFT . 14
3.5 Bruun-Like Fast Fourier Transforms . 14
3.6 Rader’s Fast Fourier Transform . 15
3.7 Karatsuba and Toom–Cook . 16
3.8 Comparisons . 16

4 Coefficient Ring Injections 17
4.1 Localization . 18
4.2 Schönhage’s and Nussbaumer’s Fast Fourier Transforms 19
4.3 Coefficient Ring Switching . 21
4.4 Comparisons . 21

5 Polynomial Moduli 22
5.1 Embedding (Polynomial Modulus) and Evaluation at ∞ 22
5.2 Twisting and Composed Multiplication . 23
5.3 Truncation . 24
5.4 Incomplete Transformation and Striding 25
5.5 Toeplitz Matrix-Vector Product . 26

6 Vectorization 29
6.1 Vector Instruction Sets/Extensions . 29
6.2 Vectorization Friendliness . 29
6.3 Permutation Friendliness . 30
6.4 Guide of Vectorization . 30

7 Case Studies 32
7.1 Dilithium : Barrett vs Montgomery Modular Arithmetic 32
7.2 Kyber : Montgomery vs Plantard Modular Arithmetic 35
7.3 Homomorphism Caching . 36
7.4 Saber : Homomorphism Caching . 37
7.5 NTRU : Toeplitz matrix-vector product 37
7.6 NTRU Prime : Vectorized FFTs . 38

Vincent Hwang 3

8 Overview of Advances 40
8.1 Modular Arithmetic . 40
8.2 Algebraic Techniques . 42

9 Directions for Future Works 43

A Modular Arithmetic for Principal Ideal Domains 43

B Roots Defining Discrete Fourier Transforms 45

C Algebraic View of Good–Thomas FFT 45

D Vector-Radix Transform 46

E Generalization of Rader’s FFT 47

F A Formal Treatment of Localization 47

G Generalizations of Schönhage and Nussbaumer 48

H Applications of Truncation 48
H.1 R[x]/⟨xr + 1⟩ from R[x]

/〈
x2r − 1

〉
for r⊥2 48

H.2 Nussbaumer from Schönhage . 49

I Interprating Multiplications in R[x]/⟨xn − αx− β⟩ as TMVPs 49

J A Formal Treatment of Bilinear Systems 49

K Implementing Transposition Matrices 50

L Constructing the Column Representation of a Toeplitz Matrix 51

References 52

4 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

1 Introduction
Lattice-based cryptosystems have gained more popularity due to their balancing perfor-
mance and the Post-Quantum Cryptography Standardization by the National Institute of
Standards and Technology [NIS]. Among the commonly used building blocks of lattice-
based cryptosystems, polynomial multiplication is one of the operations dominating the
performance cycles. In this paper, we survey various implementation aspects of polynomial
multiplications in the ring

Zq[x]
⟨xn − αx− β⟩

.

In particular, we survey polynomial multiplications in Dilithium, Kyber, NTRU, NTRU
Prime, and Saber. All of the polynomial multiplications fall into the case Zq[x]/⟨xn − αx− β⟩ :
We have Z8380417[x]

/〈
x256 + 1

〉
in Dilithium, Z3329[x]

/〈
x256 + 1

〉
in Kyber, Z2k [x]/⟨xn − 1⟩

with prime n in NTRU, Zq[x]/⟨xp − x− 1⟩ ∼= Fqp in NTRU Prime, and Z213 [x]
/〈
x256 + 1

〉
in Saber. We refer to [ABD+20a, ABD+20b, CDH+20, BBC+20, DKRV20] for the speci-
fications.

1.1 Why This Paper
Many works in the literature argue the complexity of integer and polynomial multiplications.
However, practitioners implemented specific approaches and justified the merit of the
ideas with numerical evidence. There are no systematic and definite ways to evaluate the
practical implications of the ideas since hardware gradually evolves, resulting in floating
combinations of implementation considerations. People usually implement the ideas at
the assembly-optimized level to determine the best approaches on target hardware. The
objective of this paper is to formulate and abstract the justifications/implications of the
numerical evidence in recent implementation works so when practitioners encounter similar
implementational considerations on new platforms in the future, this paper can serve as a
collection of practical techniques and guide them toward a convergence of highly optimized
implementations on their desired platforms.

1.2 Emphases
This paper is written with three emphases: (i) modular arithmetic, (ii) homomorphisms of
algebraic structures, and (iii) vectorization.

1.2.1 Modular Arithmetic

We survey various modular arithmetic computing representatives of elements in Zq. Let R
be a power of two with exponent a power of two and q ≤ R. We call log2 R the width or
precision of arithmetic. We only need the cases R = 216, 232 in this paper. If q is a power
of two, then reduction modulo q can be implemented as reduction modulo R and logical
and &.

If q is not a power of two, then there are two cases: q is an even number with an odd
factor, or q is an odd number. We leave the discussion of even q with an odd factor to
future work since it is not used in the interested implementations of this paper.

Let’s assume q is odd. For a, b ∈ ZR, there are many ways to compute c ∈ ZR with
c ≡ ab (mod q). The requirement c ∈ ZR is to ensure that everything we have at the
end can be passed to successive computations with the same width of arithmetic. In
practice, we prefer c ∈ ZB with q ≤ B ≤ R for B reasonably close to q. Montgomery
multiplication [Mon85] achieves B = 2q and Plantard multiplication [Pla21] achieves
B = q+ 1. Both modular multiplications come with multiplicative forms by design. Barrett
reduction [Bar86] effectively achieves B = 2q with b = 1, and B = q while replacing R with

Vincent Hwang 5

sufficiently large 2kR. [BHK+22b] introduced Barrett multiplication – a multiplicative form
of Barrett reduction – and showed that its range is the same as Montgomery multiplication.
They introduced the notion “integer approximation” JK mapping a real number to an
integer with a difference bounded by 1, and defined modJK as

∀a ∈ Z, q
s
a

q

{
= a− a mod JKq.

[BHK+22b] established a correspondence between Montgomery and Barrett multiplications.
While Montgomery multiplication is considered exact, Barrett multiplication encompasses
various multiplication instructions by interpreting them as high products (multiplication
instructions returning the high parts) with integer approximations. Table 1 gives a
brief overview of the required multiplication instructions in modular multiplications.
Recently, [HKS23] showed that relaxing the condition on JK enables efficient Barrett
multiplication on micro-controllers with limited multiplication instructions. Our survey
of modular multiplication is built around the generalization of integer approximations
by [HKS23]. We survey Montgomery multiplication in Section 2.2, Barrett multiplication
in Section 2.3, and Plantard multiplication in Section 2.4.

Table 1: Modular multiplications.
Topic Content

Montgomery multiplication Modular multiplication with long/high exact
multiplications.

Barrett multiplication Modular multiplication with approximated high
multiplication.

Plantard multiplication Modular multiplication with long multiplication
and middle product.

1.2.2 Homomorphisms of Algebraic Structures

This paper involves several notions of algebraic structures and their homomorphisms. An
algebraic structure is a set A of elements equipped with finitely many operations on A.
In this paper, there are always identity elements for the operations. Homomorphisms are
structure-preserving maps between two algebraic structures – a homomorphism η : A → B
must satisfy that

∀a, b ∈ A, η(a ·A b) = η(a) ·B η(b)
for ·A and ·B same type of operations. We call η a monomorphism if it is injective. Common
algebraic structures are rings, modules, and associative algebras. Associative algebras are
algebraic structures that are modules and rings at the same time. For simplicity, we call
associative algebra an algebra.

Let R be a unital commutative ring. This paper surveys various algebra homomorphisms
implementing the polynomial ring multiplication of R[x]/⟨xn − αx− β⟩ as an algebra.
Since algebra homomorphisms are ring and module homomorphisms by definition, we can
view them in both ways. In this paper, we always view algebra homomorphisms as module
homomorphisms. Suppose we find a way to decompose an algebra homomorphism η into a
composition of module homomorphisms:

· · · ◦ ηi+2 ◦ ηi+1 ◦ η ◦ · · · ◦ ηj+2 ◦ ηj+1 ◦ ηj ◦ · · · .

We identify the series of module homomorphisms resulting in ring homomorphisms. Such
series enable us to multiply the homomorphic images of multiplicands. In practice, this is
an interactive process with the target platform – we first write an algebra homomorphism

6 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

as a composition of module homomorphisms, implement a series of module homomorphisms
giving a ring homomorphism, and decide if we want to implement the remaining module
homomorphisms, or halt and multiply the images. Therefore, thoroughly exploring the
efficiency of module homomorphisms in practice is crucial.

We survey various “basic homomorphisms”, including Cooley–Tukey FFT, Good–
Thomas FFT, Bruun’s FFT, Rader’s FFT, and Toom–Cook, and their definability in
Section 3. See Table 2 for an overview.

Table 2: Basic homomorphisms.
Topic Content
Cooley–Tukey Factorizing into small dimensional binomial polynomials.

Good–Thomas
Factorizing into small dimensional polynomials with
coprime dimensions.

Bruun Factorizing into small dimensional trinomial polynomials.
Rader Prime-size factorization.
Toom–Cook Evaluation at integers.

In practice, the target polynomial ring does not always exhibit nice properties defining
the “basic homomorphisms”. We survey various coefficient ring injections adjoining the
defining structures in Section 4, including localization, Schönhage’s FFT, Nussbaumer
FFT, and coefficient ring switching. See Table 3 for an overview.

Table 3: Coefficient ring injections.
Topic Content
Localization Adjoin inverses.
Schönhage/Nussbaumer Adjoin roots of unity.
Coefficient ring switching Adjoin inverses and roots of unity.

In Section 5, we also survey generic optimizations that are closely related to the shape of
polynomial modulus, including embedding, twisting, composed multiplication, truncation,
incomplete transformation, striding, and Toeplitz matrix-vector product. See Table 4 for
an overview.

Table 4: Generic optimizations related to the shape of polynomial moduli.
Topic Content

Embedding and evaluation at ∞ Decrement the degree of polynomial modulus
by one when ∞ is not involved.

Twisting/Composed multiplication Convert R[x]/⟨g(x)⟩ into R[y]/⟨x− ζy, g (ζy)⟩ .

Truncation Convert a transformation over a polynomial
modulus into a transformation over its factor.

Incomplete transformation/striding Transformation over a substructure.

Toeplitz matrix-vector product

Convert a transformation multiplying size-n
polynomials into a polynomial multiplication
for R[x]/⟨xn − αx− β⟩ resulting in small-
dimensional Toeplitz matrix-vector products.

1.2.3 Vectorization

Vectorization is another important topic for highly-optimized assembly implementa-
tions. Common vector instruction sets are Neon on Arm Cortex-A processors and

Vincent Hwang 7

SSE/AVX/AVX2/AVX512 on Intel processors. Usually, vector instructions perform a
wide variety of permutations and vector-by-vector arithmetic, including additions, subtrac-
tions, multiplications, shift operations, and variants. Section 6.2 formalizes vectorization-
friendliness capturing the uses of vector-by-vector arithmetic, and Section 6.3 formalizes
permutation-friendliness capturing the interactions between permutations and vector-by-
vector arithmetic. In Section 6.4, we give a short guide on designing transformations
admitting efficient vectorization based on the existence of vector-by-vector and vector-by-
scalar arithmetic. See Table 5 for an overview of the formalization.

Table 5: Formalization of vectorization.
Topic Content
Vectorization-friendliness Determine mapping to vector-by-vector arithmetic.

Permutation-friendliness Determine mapping to vector-by-vector arithmetic
and permutations.

Guide Determine efficient vectorization with permutation,
vector-by-vector, and vector-by-scalar arithemtic.

1.3 Artifact

We are preparing C implementations for each of the ideas reviewed in this paper and
will make them pubicly available soon for referential purposes (we believe the material
shown in the paper is self-contained but additional examples with actual programs will be
helpful).

1.4 Related Works

There are many survey works targeting polynomial multiplications. We recommand [Win80,
Nus82, DV90, Ber01, Ber08] for the underlying mathematical ideas, and [LZ22] for appli-
cations to lattice-based cryptography.

1.5 Assumed Knowledge

This paper assumes that readers have some basic understandings of commutative algebra.
We list the following key words and corresponding references: rings from [Jac12a, Section
2] and [Bou89, Section 8, Chapter I], modules from [Jac12a, Section 3] and [Bou89, Section
1, Chapter II], dual modules from [Jac12b, Example 11, Section 1.3] and [Bou89, Section 2,
Chapter II], tensor products of modules from [Jac12b, Section 3.7] and [Bou89, Section 3,
Chapter II], associative algebras from [Jac12a, Section 7], [Jac12b, Section 3.9], and [Bou89,
Sections 1 and 2, Chapter III], and tensor products of algebras from [Jac12b, Section 3.9]
and [Bou89, Section 4].

2 Modular Arithmetic

We first survey various modular arithmetic. Section 2.1 generalizes integer approximations
for unifying the modular arithmetic used in relevant works. Section 2.2 reviews Montgomery
multiplication, Section 2.3 reviews Barrett multiplication, and Section 2.4 reviews Plantard
multiplication.

8 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

2.1 Integer Approximations
For a real number δ > 0 and an integer-valued function JK : R→ Z, we call JK a δ-integer-
approximation [BHK+22b, HKS23] if

∀r ∈ R, |JrK− r| ≤ δ.

To avoid clutter, we call JK an integer approximation as long as there is a δ such that JK
is a δ-integer-approximation. Furthermore, for a positive integer q ∈ Z>0, we define the
corresponding modular reduction modJKq : Z→ Z as

∀z ∈ Z, z modJKq = z −
s
z

q

{
q

and
∣∣modJKq

∣∣ = maxz∈Z

∣∣∣z modJKq
∣∣∣. By definition, we have

∀z ∈ Z,

{r
z
q

z
q = z − z modJKq,

z ≡ z modJKq (mod q).

We illustrate the idea with two examples: the floor function ⌊⌋ and the rounding function
⌊⌉ := r 7→

⌊
r + 1

2
⌋
.

The floor function ⌊⌋. The floor function ⌊⌋ maps a real number to the largest integer
lower-bounding the real number. Therefore, for an r ∈ R, we have r − 1 < ⌊r⌋ ≤
r −→ |⌊r⌋ − r| ≤ 1 and find ⌊⌋ a 1-integer-approximation. This function is commonly
accompanied by unsigned arithmetic. We denote the corresponding modulo reduction as
mod⌊⌋ = mod+ in this case.

The rounding function ⌊⌉. For the round function ⌊⌉ and an r ∈ R, since ⌊r⌉ =
⌊
r + 1

2
⌋

and r − 1
2 <

⌊
r + 1

2
⌋
≤ r + 1

2 , we find |⌊r⌉ − r| ≤ 1
2 and ⌊⌉ a 1

2 -integer-approximation.
If ⌊⌉ is used for signed arithmetic, we denote the corresponding modulo reduction as
mod⌊⌉ = mod±.

In this paper, we provide a unified view of Montgomery, Barrett, and Plantard mul-
tiplication using the pair

(
JK ,modJKq

)
. Usually, two pairs of integer approximations(

JK0 ,modJK0q
)

and
(
JK1 ,modJK1R

)
are involved where

(
JK0 ,modJK0q

)
refers to the one we

really want and
(
JK1 ,modJK1R

)
refers to the practically efficient one.

2.2 Montgomery Arithmetic
Let a, b be integers. We wish to compute ab mod JK0q for a modJK0q with odd q. Mont-
gomery multiplication [Mon85, Sei18] computes a representative of ab mod JK1q with possi-
ble scaling. Observe that ab+

(
ab
(
−q−1) mod JK1R

)
q is equivalent to 0 modulo R and ab

modulo q1, we have

ab+
(
ab
(
−q−1) mod JK1R

)
q

R
≡ abR−1 (mod q).

To see why this is a reduction, we bound the range as follows:∣∣∣∣∣ab+
(
ab
(
−q−1) mod JK1R

)
q

R

∣∣∣∣∣ ≤ |ab|+
∣∣modJK1R

∣∣ q
R

.

1Since R⊥q, c ≡ 0 (mod R) and c ≡ ab (mod q) solve to c = ab +
(

ab
(

−q−1
)

mod JK1 R
)

q by the
divided-difference form of the Chinese remainder theorem [CHK+21, Theorem 1]. This was pointed out
by [Wan23, YJX24].

Vincent Hwang 9

There are many ways to mitigate the scaling. A generic way is to perform an additional
Montgomery multiplication with b = R2 mod JK0q for some modJK0q. If b is known in prior,
we can precompute bR mod JK0q and compute

a
(
bR mod JK0q

)
+
(
a
(
bR mod JK0q

) (
−q−1) mod JK1R

)
q

R
≡ ab (mod q).

Since bR mod JK0q is now bounded by
∣∣modJK0q

∣∣, we have the following bound:∣∣∣∣∣a
(
bR mod JK0q

)
+
(
a
(
bR mod JK0q

) (
−q−1) mod JK1R

)
q

R

∣∣∣∣∣
≤
|a|
∣∣modJK0q

∣∣+
∣∣modJK1R

∣∣ q
R

.

For unsigned arithmetic with modJK1R = mod+R and modJK0q = mod+q, the range is

|a|
∣∣modJK0q

∣∣+
∣∣modJK1R

∣∣ q
R

≤ q
(

1 + |a|
R

)
.

For signed arithmetic with modJK1R = mod±R and modJK0q = mod±q, the resulting
range is

|a|
∣∣modJK0q

∣∣+
∣∣modJK1R

∣∣ q
R

≤ q

2

(
1 + |a|

R

)
.

Historical review. [Mon85] proposed the unsigned Montgomery multiplication, and
[Sei18] later proposed the signed variant along with the subtractive variant:

ab−
(
abq−1 mod ±R

)
q

R
.

The benefit of the subtractive variant is that (ab mod ±R)−
((
abq−1 mod ±R

)
q mod ±R

)
=

0 whereas (ab mod ±R) +
((
ab− q−1 mod ±R

)
q mod ±R

)
= 0 or R as integers. The former

implies the following computation:⌊
ab

R

⌋
−

⌊(
abq−1 mod ±R

)
q

R

⌋
.

This replaces double-size products with high products. See [KAK96, KA98] for the
multi-limb versions.

2.3 Barrett Arithmetic
Let JK0 , JK1 be integer approximations. Barrett multiplication computes

ab−

u

v
a

r
bR
q

z

0
R

}

~

1

q ≡ ab (mod q).

Obviously, this is a representative of ab mod q. The only question is if the resulting range
falls into the data width. [BHK+22b] showed the following correspondence

ab−

u

v
a

r
bR
q

z

0
R

}

~

1

q =
a
(
bR modJK0 q

)
+
(
a
(
bR modJK0 q

) (
−q−1) modJK1 R

)
q

R

10 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

and obtained the bound∣∣∣∣∣∣ab−
u

v
a

r
bR
q

z

0
R

}

~

1

q

∣∣∣∣∣∣ ≤ |a|
∣∣modJK0q

∣∣+
∣∣modJK1R

∣∣ q
R

.

In Appendix A, we prove the correspondence for principal ideal domains. This captures
the polynomial ring case with coefficient ring a finite field and is of independent interest.

Comparing Montgomery and Barrett multiplications. Since the absolute value of
the result is smaller than R

2 for signed arithmetic (R for unsigned arithmetic) in practice,
we only need to compute ab mod ±R (ab mod +R for unsigned arithmetic) instead of the

full product. Same observation holds for
s

aJ bR
q K0
R

{

1
q. Therefore, Barrett multiplication

only requires one to compute a high product implementing
s

aJ bR
q K0
R

{

1
and two low-

products multiplying in mod±R or mod+R. On the other hand, one has to compute
two full products (or high products for the subtractive variant) and one low-product for
Montgomery multiplication. [BHK+22b] saved one subtraction with Barrett multiplication
since there is a subtractive variant for low-product and not high product.

Historical review. For unsigned arithmetic, [Bar86] proposed the case b = 1, and [Sho]
proposed Barrett multiplication for generic b. The signed version and its correspondence to
Montgomery multiplication was discovered by [BHK+22b]. Interestingly, [Dhe03] proposed
the finite field version. Appendix A proves the correspondence for principal ideal domains,
and the impact for finite fields is left for future investigation. Recently, [BHK+22a, Section
2.4] improved the output range for b ≠ 1 while replacing R for some 2kR, and [HKS23]
furthered the approximation nature of JK1 and improved the modular multiplications on
microcontrollers.

2.4 Plantard Arithmetic

Recently, [Pla21] proposed an unsigned modular multiplication essentially with precision
2 log2 R. The signed versions were later proposed by [HZZ+22, AMOT22]. For multiplying
an integer a by a constant b known in prior, Montgomery multiplication results in the
bound |a|| mod JK0 q|+| mod JK1 R|q

R . If we replace the precision log2 R with 2 log2 R and compute
with

a
(
bR2 mod JK0q

)
+
(
a
(
bR2 mod JK0q

) (
−q−1) mod JK1R2) q

R2 ,

we have the bound
|a|
∣∣modJK0q

∣∣+
∣∣modJK1R2

∣∣ q
R2 .

For signed arithmetic with
∣∣modJK1R2

∣∣ ≤ R2

2 and
∣∣modJK0q

∣∣ ≤ q
2 , the bound is q

2

(
1 + |a|

R2

)
.

In practice, since |a| ≤ R and q < R, the result is stricly smaller than q
2 , and hence an

integer in
{
− q−1

2 , . . . , 0, . . . , q−1
2
}

.
We borrow the integer-approximation view from [HKS23] and proceed with [Pla21]’s

innovation for implementing the above observation. Suppose we find two integer approxi-

Vincent Hwang 11

mations JK2 and JK3 implementing:

c+
(
c
(
−q−1) mod JK1R2) q

R2

=
t
c+

(
c
(
−q−1) mod JK1R2) q

R2 −
c+

(
c
(
−q−1) mod JK1R2 mod JK2R

)
q

R2

|

3

for all c ∈ ZB with B sufficiently close to R2, we claim the following:

c+
(
c
(
−q−1) mod JK1R2) q

R2 =

u

ww
v

s
c(−q−1) mod JK1 R2

R

{

2
q

R

}

��
~

3

.

The proof is left as an exercise2. If c = ab, we can instead precompute b
(
−q−1) mod JK1R2,

and apply one middle product followed by one high product. While z 7→
q

zq
R

y
3 is

the usual high product multiplying numbers of precision log2 R, the high product z 7→s
zb(−q−1) mod JK1 R2

R

{

2
requires one to multiply a by a number with precision 2 log2 R.

[HZZ+22] identified the use case in Armv7E-M implementing the multiplication instruc-
tions smulw{b, t}3, and [AMOT22, Source code 1] implemented the idea when only
multiplication instructions with precision 2 log2 R are available.

2.5 Comparisons
We briefly review the required multiplication instructions with precision log2 R. We
categorize multiplication instructions into three groups:

• Low multiplications: mullo computes the lower log2 R bits of the product, mlalo
computes the lower log2 R bits of the product and accumulate them to a register with
log2 R-bit precision, and mlslo subtract the product from the register with log2 R-bit
precision.

• High multiplications: mulhi computes the upper log2 R bits of the product within
a reasonable approximation, mlahi is the accumulative variant, and mlshi is the
subtractive variant.

• Long multiplications: mull computes the full-size product, mlal is the accumulative
variant, and mlsl is the subtractive variant.

Table 6 is an overview.

Montgomery multiplication. For Montgomery multiplication, we need one mull, one
mullo, and one mlal (in this order) as seen in Section 2.2. As for the subtractive variant,
we need on mulhi, one mullo, and one mlshi.

Barrett multiplication. For Barrett multiplication, we need one mullo, one mulhi, and
one mlslo since we only need the lower log2 R-bit of the difference of the lower products
(cf. Section 2.3).

2Hint: cancel out the terms c
R , write the remaing as a multiple of q

R , and rewrite the rest with JK2.
3w stands for a word and {b, t} stands for the bottum or the top half-word.

12 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

Plantard multiplication. For Plantard multiplication, we need a middle product
computing the middle log2 R-bit of a product of a log2 R-bit number and a 2 log2 R-bit
number. Middle product can be implemented with one mulhi and one mlalo. As for
the multiplication followed by JK3, experiment shows that we have to add up the full-size
product and certain constant with absolute value ≤ R

2 prior to applying JK3, so we count
the last multiplication as mlal (cf. Section 2.4).

Table 6: Overview of required multiplication instructions of Montgomery, Barrett, and
Plantard multiplications where Montgomery (acc.) stands for the accumulative variant
and Montgomery (sub.) stands for the subtractive variant.

mullo mlalo mlslo mulhi mlshi mull mlal
Montgomery (acc.) 1 0 0 0 0 1 1
Montgomery (sub.) 1 0 0 1 1 0 0
Barrett 1 0 1 1 0 0 0
Plantard 0 1 0 1 0 0 1

3 Basic Homomorphisms
We survey several homomorphisms that are frequently used as key components. Section 3.2
reviews discrete Fourier transform, Section 3.3 reviews Cooley–Tukey FFT, Section 3.4
reviews Good–Thomas FFT, Section 3.5 reviews Bruun’s FFT, Section 3.6 reviews Rader’s
FFT, Section 3.7 reviews Karatsuba and Toom–Cook, and Section 3.8 compares the
domains, images, and defining conditions.

3.1 Notations
For a ring R, we denote R[x] the polynomial ring with indeterminate x and coefficients
in R. For a polynomial g ∈ R[x], we denote ⟨g⟩ := gR[x] ⊂ R[x] the ideal generated by
g and R[x]/⟨g⟩ the quotient ring. If g = xn for a positive integer n, we also denote the
quotient ring R[x]/⟨xn⟩ as R[x]<n.

Maps. For two sets S0 and S1, we denote S0 → S1 the signature of a map from S0
to S1. If the map is injective, we write S0 ↪→ S1; and if the map is surjective, we write
S0 ↠ S1. If the map is injective and surjective, we call it bijective and write S0 ∼= S1.
For a ring/module/algebra homomorphism, we call it a monomorphism if it is injective,
epimorphism if it is surjective, and isomorphism if it is bijective. We also use the same
notations as in the case of sets.

Products. For a positive integer n, and rings R0, . . . , Rn−1, we denote
∏

0≤i<n Ri as
the product ring of R0, . . . , Rn−1. Its elements are denoted as n-tuples. When the context
is clear, we simply write

∏
i where i runs over all possible values in the context.

3.2 Discrete Fourier Transform
Before jumping into various fast transformations, we first review discrete Fourier Transform
(DFT). Essentially, DFT is a special case of the Chinese remainder theorem (CRT) for
polynomial rings. For a ring R, a positive integer n, and an n-th root of unity ωn ∈ R.

Vincent Hwang 13

We call ωn principal n-th root of unity if

∀j = 1, . . . , n− 1,
∑

0≤i<n

ωij
n = 0.

The size-n DFT refers to the following isomorphism:
R[x]
⟨xn − 1⟩ →

∏
0≤i<n

R[x]
⟨x− ωi

n⟩

a(x) 7→
(
a
(
ωi

n

))
0≤i<n

with the inverse
∏

0≤i<n

R[x]
⟨x− ωi

n⟩
→ R[x]

⟨xn − 1⟩

(âi)0≤i<n 7→
∑

0≤i<n

riâi

where ri := 1
n

∑
0≤j<n ω

−ij
n xj . The correctness follows from the definition of principal

n-th root of unity.
For an invertible ζ ∈ R, discrete weighted transform (DWT) generalizes DFT into

an isomorphism between R[x]/⟨xn − ζn⟩ and
∏

0≤i<n R[x]
/〈
x− ζωi

n

〉
where the ri :=

1
n

∑
0≤j<n ζ

−jω−ij
n xj in the inversion map [CF94]. We call it cyclic when ζn = 1 and

negacyclic when ζn = −1.
In summary, we need three conditions for defining an invertible DWT for R[x]/⟨xn − ζn⟩ :

• The positive integer n must be invertible in R. Notice that positive integers are
encoded as repeat additions of the identity of R, and negative integers are encoded
as repeat additions of the additive inverse of the identity of R.

• The element ζ must be invertible in R.

• There must exist a principal n-th root of unity. When n is a power of two, the
condition is equivalent to ω

n
2

n = −1 ∈ R [Für09]. In Appendix B, we show that
the condition Φn (ωn) = 0 suffices where Φn is the n-th cyclotomic polynomial, the
unique irreducible polynomial in Z[x]that is a divisor of xn − 1 and not a divisor of
xd − 1 for all positive integer d < n.

Historical review of the conditions. For defining a DFT of size-n, [Pol71] showed that
n must be a divisor of q−1 if R = Fq and p−1 if R = Zpk for a prime p. The latter says that
for R = Zm with prime factorization m =

∏
i p

di
i , n must divide gcd(pi− 1) [Pol71, AB74].

[DV78b, Theorem 4] gave the condition when R is a product of local rings4, and [Für09,
Section 2] showed that a principal n-th root of unity suffices. The cyclotomic condition was
used in [SS71] and stated in [Für09] for a power-of-two n. The proof in [Für09] naturally
generalizes to a prime-power n. For the general case, we can’t find such a statement in the
literature and therefore, present it in Appendix B.

3.3 Cooley–Tukey Fast Fourier Transform
For the DFT implementing R[x]/⟨xn − ζn⟩ ∼=

∏
0≤i<n R[x]

/〈
x− ζωi

n

〉
, Cooley–Tukey

FFT improves the computation when n admits a factorization
∏

0≤j<h nj . We define

gi0,...,ih−1
:= x− ζω

∑
j

ij

∏
l<j

nl

n

4A ring with a unique maximal left/right-ideal.

14 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

for all 0 ≤ ij < nj and find xn − ζn =
∏

i0,...,ih−1
gi0,...,ih−1

. Since all the gi0,...,ih−1
’s are

coprime, we have the following series of isomorphisms:

R[x]
⟨xn − ζn⟩

= R[x]〈∏
i0,...,ih−1

gi0,...,ih−1

〉 ∼= ∏
i0

R[x]〈
gi0,...,ih−1

〉 ∼= · · · ∼= ∏
i0,...,ih−1

R[x]〈
gi0,...,ih−1

〉 .
Real-world example(s). In Dilithium, one is asked to implement the radix-2 FFT
defined on Z8380417[x]

/〈
x256 + 1

〉
. Since x256 + 1 = Φ512(x), the defining condition is

the same for Z8380417[x]
/〈
x512 − 1

〉
. Observe that 8380417 = 213 · 3 · 11 · 31 + 1, we

can define a cyclic FFT with transformation size a divisor of 213 · 3 · 11 · 31. This
gives the isomorphism Z8380417[x]

/〈
x512 − 1

〉 ∼= ∏
i Z8380417[x]

/〈
x− ωi

512
〉

and hence
Z8380417[x]

/〈
x256 + 1

〉 ∼= ∏
i Z8380417[x]

/〈
x− ω2i+1

512
〉

by choosing ζ = ω512 (any odd
power of ω512 works) and ω256 = ω2

512.

3.4 Good–Thomas FFT
Good–Thomas FFT exploits the factorization of n =

∏
0≤j<d nj when nj ’s are co-

prime to each other [Goo58]. For a cyclic size-n DFT implementing R[x]/⟨xn − 1⟩ ∼=∏
0≤i<n R[x]

/〈
x− ωi

n

〉
, we define principal nj-th root of unity ωnj as ωej

n for all j where
(ej)0≤j<d is the unique tuple of positive integers realizing 1 ≡

∑
0≤j<n ej (mod n) so

ωn = ω

∑
0≤j<d

ej

n =
∏

0≤j<d ωnj . If we rewrite the result of DFT as∑
0≤i<n

aiω
i
n =

∑
i0,...,id−1

ai

∏
0≤j<d

ωij
nj

=
∑
i0

· · ·
∑
id−1

ai

∏
0≤j<d

ωij
nj

where ij = i mod nj , we find that the right-hand side is a multi-dimensional cyclic DFT.
In the language of polynomial rings, the cyclic size-n DFT is implemented as the following
multi-dimensional cyclic DFT:

R[x]
⟨xn − 1⟩

∼=
R[x0, . . . , xd−1]〈

x−
∏

j xj , x
n0
0 − 1, . . . , xnd−1

d−1 − 1
〉

∼=
∏

i0,...,id−1

R[x0, . . . , xd−1]〈
x−

∏
j xj , x0 − ωi0

n0 , . . . , xd−1 − ω
id−1
nd−1

〉
∼=

∏
i

R[x]
⟨x− ωi

n⟩
.

The overall asymptotic run-time is the same as Cooley–Tukey, but we save linearly number
of multiplications. We review the algebraic view of Good–Thomas FFT in Appendix C, and
vector-radix FFT in Appendix D further improving the mult-dimensional transformation.

Real-world example(s). In [AHY22], they computed the products in R[x]
/〈
x1536 − 1

〉
via Good–Thomas. They first introduced x4 ∼ x0x1, x

3
0 ∼ 1, and x128

1 ∼ 1 for vectorization-
friendliness, and observed that vectorization-friendliness implies a flexible code-size op-
timization while permuting for Good–Thomas [AHY22, Sections 3.2 and 3.3]. We will
formally review the notion of vectorization-friendliness in Section 6.2.

3.5 Bruun-Like Fast Fourier Transforms
After the introduction of Cooley–Tukey FFT over complex numbers, many works proposed
several optimizations if the input coefficients are real. [Bru78] proposed Bruun’s FFT for

Vincent Hwang 15

the power-of-two case, [DH84] proposed split-radix FFT, [Bra84] proposed fast Hartley
transform for the discrete Hartley transform (DHT) [Har42]5, [Mur96] generalized Bruun’s
FFT to arbitrary even sizes, and [JF07, Ber07, LVB07] improved the split-radix FFT.

This section reviews the works [Bru78, Mur96] over complex numbers for historical
reasons. However, the actual use case relevant to us are the factorization of cyclotomic
polynomials over finite fields [BC87, BGM93, Mey96]. See [TW13, BMGVdO15, WYF18,
WY21] for recent progresses on this topic.

The complex case. Let nj = |Ij |, n =
∏

j nj , ξ, ζ ∈ C be invertible elements, and
ωn ∈ C a principal n-th root of unity. Bruun’s FFT [Bru78, Mur96] chooses gi0,...,ih−1

as
follows:

gi0,...,ih−1
= x2 −

(
ξω

∑
j

ij

∏
l<j

nl

n + ξ−1ω
−
∑

j
ij

∏
l<j

nl

n

)
ζx+ ζ2.

If gi0,...,ih−1
’s are coprime (namely, ξ ≠ ξ−1 in the complex case), we have a fast trans-

formation for the ring R[x]
/〈
x2n − (ξn + ξ−n) ζnxn + ζ2n

〉
since

∏
i0,...,ih−1

gi0,...,ih−1
=

x2n − (ξn + ξ−n) ζnxn + ζ2n. For ζ = 1, ξ = ω4n ∈ C, this implements the isomorphism
C[x]

/〈
x2n + 1

〉 ∼= ∏i C[x]
/〈
x− ω1+2i

4n

〉
if we further split into linear factors.

The finite field cases. In this paper, we are interested in the case R = Fq with q ≡ 3
(mod 4) which relies on the following theorem from [BGM93]:

Theorem 1 ([BGM93]). Let q ≡ 3 (mod 4) be a prime and 2w be the highest power of
q + 1. For k < w, x2k + 1 factors into irreducible trinomials x2 + γx + 1 ∈ Fq[x]. For
k ≥ w, x2k + 1 factors into irreducible trinomials x2k−w+1 + γx2k−w − 1 ∈ Fq[x].

Real-world example(s). For the NTRU Prime parameter sets ntrulpr761/sntrup761,
[HLY24] introduced a fast transformation (Good–Schönhage–Bruun) leading to computing
in Z4591[x]

/〈
x32 + 1

〉
. Since 4591 ≡ 3 (mod 4) and 4591 + 1 = 287 · 24, we can split

Z4591[x]
/〈
x32 + 1

〉
into polynomial rings modulo trinomials of the form x4 + γx2 − 1.

[HLY24] splitted into rings of the form Z4591[x]
/〈
x8 + αx4 + 1

〉
for efficiency reasons.

3.6 Rader’s Fast Fourier Transform
Let n be a positive integer, I = {0, . . . , n− 1}, and ωn ∈ R be a principal n-th root
of unity. If n is an odd prime, Rader’s FFT computes the map a 7→

(
a(ωi

n)
)

i∈I via a
size-(n− 1) cyclic convolution. See Appendix E for generalization.

We explain the idea for an odd prime n. Let I∗ := {1, . . . , n− 1} be an index
set, (aj)j∈I := a, and (âi)i∈I :=

(
a(ωi

n)
)

i∈I . Since n is prime, there is a g ∈ I with{
gk ∈ I|k ∈ Zn−1

}
= I∗ where the powers gk are reduced modulo n. We introduce the

reindexing j ∈ I∗ 7→ − logg j ∈ Zn−1 and i ∈ I∗ 7→ logg i ∈ Zn−1 where logg is the
discrete logarithm, and split the computation (aj)j∈I 7→ (âi)i∈I into â0 =

∑
j∈I aj and

âi = a0 +
∑

j∈I∗ ajω
ij
n for i ∈ I∗. For the cases i ∈ I∗, we move a0 to the left-hand side,

and rewrite it as

âglogg i − a0 =
∑
j∈I∗

ajω
ij
n =

∑
− logg j∈Zn−1

aglogg jωglogg i+logg j

n .

5One can derive DFT and DHT from each other with linearly number of arithmetic during post-
processing.

16 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

We can now compute
(
âgk − a0

)
k∈Zn−1

as the size-(n− 1) cyclic convolution of
(
ag−k

)
k∈Zn−1

and
(
ωgk

n

)
k∈Zn−1

. We give an example for n = 5 and g = 2:

(â2k − a0)k∈Z∗
5

=

a1ω

2
5 + a2ω

4
5 + a3ω

1
5 + a4ω

3
5

a1ω
4
5 + a2ω

3
5 + a3ω

2
5 + a4ω

1
5

a1ω
3
5 + a2ω

1
5 + a3ω

4
5 + a4ω

2
5

a1ω
1
5 + a2ω

2
5 + a3ω

3
5 + a4ω

4
5

 =

a24ω21

5 + a23ω24

5 + a22ω23

5 + a21ω22

5
a24ω22

5 + a23ω21

5 + a22ω24

5 + a21ω23

5
a24ω23

5 + a23ω22

5 + a22ω21

5 + a21ω24

5
a24ω24

5 + a23ω23

5 + a22ω22

5 + a21ω21

5

 .

Real-world example(s). The case (n, g) = (17, 3) was used for multiplying over
Z4591. [ACC+21] multiplied in Z4591[x]

/〈
x1530 − 1

〉
on Cortex-M4, [HLY24] multiplied in

Z4591[x]
/〈
x1632 − 1

〉
with Armv8.0-A Neon, and [Hwa24] multiplied in Z4591[x]

/〈
Φ17(x96)

〉
with Armv8.0-A Neon and Intel AVX2. Observe 1530 = 17·90 and 1632 = 17·96, their imple-
mentations relied on the size-17 cyclic FFT Z4591[x]

/〈
x17 − 1

〉 ∼= ∏i Z4591[x]
/〈
x− ωi

17
〉

,
and are implemented with Rader’s FFT. We will shortly review how [Hwa24] applied
Rader’s FFT for Z4591[x]

/〈
Φ17(x96)

〉
in Section 5.3.

3.7 Karatsuba and Toom–Cook
Let I = {0, . . . , 2n− 2} and {si}i∈I ⊂ Z be a finite set. Karatsuba [KO62] and Toom–
Cook [Too63] compute the size-(2n− 1) product of two size-n polynomials with the maps
R[x]<n ↪→ R[x]

/〈∏
i∈I(x− si)

〉 ∼= ∏i∈I R[x]/⟨x− si⟩ . [KO62] proposed the case n = 2
with the point set {0, 1,∞}, [Too63] chose n ≥ 2 and {si} ⊂ Z, and [Win80] extended the
choice of {si} to Q ∪ {∞}. Let c ∈ Z. Evaluating x at c−1 means mapping a polynomial
a(x) to cdeg(a)a(c−1) instead of a(c−1). We will review the idea of evaluating at ∞ in
Section 5.1, and localization adjoining the inverses of integers in Section 4.1.

3.8 Comparisons
We briefly compare Cooley–Tukey, Good–Thomas, Bruun, Rader, and Toom–Cook. Table 7
summarizes the domains and images, and Table 8 summarizes the defining conditions.

Cooley–Tukey vs Good–Thomas. Both Cooley–Tukey and Good–Thomas relies on
a factorization of the dimension n, the existence of a principal n-th root of unity, and
the existence of n−1 in the coefficient ring. While Cooley–Tukey works for arbitrary
factorization of n, Good–Thomas relies on a coprime factorization. As for the shape of
polynomial modulus, Cooley–Tukey is definable on R[x]/⟨xn − ζn⟩ , and Good–Thomas
reviewed in Section 3.4 is definable only on R[x]/⟨xn − 1⟩ . Generally speaking, if the order
of ζ is coprime to n, we can also define Good–Thomas on R[x]/⟨xn − ζn⟩ via truncation
as illustrated in [HVDH22, Sections 3.5 and 3.6]. See Appendix C for more explanations.
If both approaches are definable, Good–Thomas saves linearly number of multiplications.

Cooley–Tukey vs Bruun. While Cooley–Tukey factorizes into polynomial rings with
binomial moduli, Bruun factorizes into polynomial rings with trinomial moduli. If the
coefficient ring is a finite field or finite ring, Bruun works in some cases where Cooley–Tukey
doesn’t since factorizing into binomials implies factorizing into trinomials but the converse
doesn’t always hold. The downside of Bruun is the increased number of arithmetic during
the transformation.

Rader vs others. Rader converts size-n cyclic transformation into a size-(n− 1) cyclic
convolution with linear pre- and post-processing when n is an odd prime. Other approaches
rely on a factorization of n, implying that n must be composite.

Vincent Hwang 17

Toom–Cook vs others. Cooley–Tukey, Good–Thomas, Bruun, and Rader are isomor-
phisms where the dimensions are preserved during the transformation. On the hand,
Toom–Cook is a monomorphism where the dimension is essentially doubled after the
transformation. For the definability, Toom–Cook requires the existences of the inverses
of some integers. This is generally more favorable than the FFTs in this section since
one can always go for localization for constructing the inverses of integers 4.1 which, in
practice, amounts to replacing the coefficient ring with a slightly larger one. FFTs require
the existence of a principal n-th root of unity and the inverse n−1 where the former only
exists in certain coefficient ring (cf. Section 3.2).

Table 7: Overview of the domains and images for Cooley–Tukey, Good–Thomas, Bruun,
Rader, and Toom–Cook.

Approach Domain Image
Cooley–Tukey R[x]

⟨xn−ζn⟩
∏

i
R[x]

⟨x−ζωi
n⟩

Good–Thomas R[x]
⟨xn−1⟩

∏
i

R[x]
⟨x−ωi

n⟩

Bruun R[x]
⟨x2n−(ξn+ξ−n)ζnxn+ζ2n⟩

∏
i

R[x]
⟨x2−(ξωi

n+(ξωi
n)−1)ζx+ζ2⟩

Rader R[x]
⟨xn−1⟩

∏
i

R[x]
⟨x−ωi

n⟩

Toom–Cook R[x]<n

∏
i=0,...,2n−2

R[x]
⟨x−si⟩

Table 8: Overview of the defining conditions of Cooley–Tukey, Good–Thomas, Bruun,
Rader, and Toom–Cook.

Approach Requirements Comment
Cooley–Tukey ∃ωn, ζ, ζ

−1, n−1 ∈ R Fairly flexible.
Good–Thomas ∃ωn, n

−1 ∈ R ∃ coprime factorization of n.
Bruun ∃ξωi

n +
(
ξωi

n

)−1
, ζ, ζ−1, n−1 ∈ R More flexible than Cooley–Tukey.

Rader ∃ωn, n
−1 ∈ R Odd prime n.

Toom–Cook Inverses of integers. Fairly flexible.

4 Coefficient Ring Injections
This section reviews existing techniques and benefits of a coefficient ring injection:

R ↪→ R′.

In this section, we focus on the structural implications. There are two points in this
section.

• What if there are no inverses of some integers required for defining a correct algorithm?

• What if there are no principal roots of unity required for defining a correct algorithm?

Section 4.1 reviews localization at non-zero integers for adjoining inverses, Section 4.2
reviews Schönhage’s and Nussbaumer’s FFTs adjoining symbolic principal roots of unity,
Section 4.3 reviews an alternative approach choosing R′ with suitable inverses and principal
roots of unity, and Section 4.4 compares the cost of coefficient ring injections. See Table 9
for an overview of the structural implications of the techniques.

18 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

Table 9: Overview of coefficient ring injection techniques.
Technique Inverse Principal root of unity
Localization ✓ -
Schönhage/Nussbaumer - ✓
Coeff. ring switching ✓ ✓

4.1 Localization
Let n ∈ Z be non-invertible in R. Localization formulates “division by an integer nk in R.”
We quote the following from [Jac12b, Section 7.2] for the propose of localization:

Given a (commutative) ring R and a subset S of R, to construct a ring RS and
a homomorphism λS of R into RS such that every λS(s), s ∈ S, is invertible in
RS , and the pair (RS , λS) is universal for such pairs in the sense that if η is
any homomorphism of R into a ring R′ such that every η(s) is invertible, then
there exists a unique homomorphism η̃ : RS → R′ such that η = η̃ ◦ λS

6.

The ring RS is also commonly denoted as S−1R. We leave the formal treatment to
Appendix F and explain with a small example.

Suppose we want to compute c0 + c1x = (a0 + a1x)(b0 + b1x) in Z215 [x]
/〈
x2 − 1

〉
with “Cooley–Tukey FFT”. We compute a0 + a1x 7→ (a0 + a1, a0 − a1) and b0 + b1x 7→
(b0 + b1, b0 − b1), point-multiply them, and perform an add-sub pair. The result is
((a0 + a1)(b0 + b1)± (a0 − a1)(b0 − b1)) = 2(a0b0+a1b1, a0b1+a1b0). It remains to “divide
by two”. Localization means the following monomorphisms:

Z215 [x]
⟨x2 − 1⟩ ↪→

∏ Z216 [x]
⟨x± 1⟩ ↪→

Z216 [x]
⟨x2 − 1⟩ .

Since we know that the result is a 2-multiple of the desired one, we can extract the result
by maintaining the set of 2-multiples as in Z216 .

a0

1 15
a1

1 15
b0

1 15
b1

1 15
c0

15 1
c1

15 1

Figure 1: Localization for Z215 in Z216 . We store the 15-bit values a0, a1, b0, b1 as halfwords
(little endian in the Figure). For the 15-bit values c0, c1, we compute the 16-bit values 2c0
and 2c1 and extract the c0 and c1 by shifting.

Real-world example(s). Recall that for Toom-3 with the point set {0,±1, 2,∞}, we
have to apply

1 0 0 0 0
1 1 1 1 1
1 −1 1 −1 1
1 2 4 8 16
0 0 0 0 1

−1

=

1 0 0 0 0
− 1

2 1 − 1
3 − 1

6 2
−1 1

2
1
2 0 −1

1
2 − 1

2 − 1
6

1
6 −2

0 0 0 0 1

 .

6The last sentence actually ends with “such that the diagram [Figure] is commutative”. We replace the
description with the desired composition.

Vincent Hwang 19

If we work over the ring Z211 [x] used in ntruhps2048677, then we have to maintain the val-
ues in Z212 for adjoining 2−1. Another example is Toom-5. If we choose {0,±1,±2,±3, 4,∞}
as the point set for evaluation, we must adjoin 16−1. [CCHY24] showed that one can
instead switch to

{
0,±1,±2,± 1

2 , 3,∞
}

requiring only 8−1.
It should be noted that localization need not to adjoin the inverses uniformly in practice.

For example, if we apply Toom-4 with the point set {si} = {0,±1,±2, 3,∞}, then we only
need to implement the following monomorphism:

Z2k [x]
⟨
∏

i si⟩
↪→ Z2k+2 [x]

⟨x⟩
× Z2k+2 [x]
⟨x− 1⟩ ×

Z2k+3 [x]
⟨x+ 1⟩ ×

Z2k+3 [x]
⟨x− 2⟩ ×

Z2k+3 [x]
⟨x+ 2⟩ ×

Z2k+3 [x]
⟨x− 3⟩ ×

Z2k [x]
⟨x−∞⟩

.

This implies one can apply more aggressive transformations to some subproblems by
working over Z2k+2 and Z2k instead of Z2k+3 . The non-uniform property of localization
with Toom–Cook does not seem to appear in the literature, but we believe there are
practical benefits for implementations.

4.2 Schönhage’s and Nussbaumer’s Fast Fourier Transforms
Schönhage’s [Sch77] and Nussbaumer’s [Nus80] FFTs craft principal roots of unity defining
FFTs. For simplicity, we explain the ideas for the cases R[x]

/〈
x2k ± 1

〉
.

Cyclic Schönhage [Ber01, Section 9]. For the Schöhage in the cyclic case R[x]
/〈

x2k − 1
〉

,
we choose an l ≥ k

2 − 1, introduce the relation x2l ∼ y, and replace the relation with
x2l+1 ∼ −1. Define R′ := R[x]

/〈
x2l+1 + 1

〉
, and rewrite the polynomial ring as a poly-

nomial ring with indeterminate y and coefficient ring R′. Since x2l+1 = −1 ∈ R′ and
l+ 2 ≥ k− l, x22l+2−k is a principal 2k−l-th root of unity defining a size-(k− l) cyclic FFT.
In summary, we have

R[x]〈
x2k − 1

〉 ∼= R[x, y]〈
x2l − y, y2k−l − 1

〉 ↪→ R′[y]〈
y2k−l − 1

〉 ∼= ∏
i

R′[y]〈
y − ωi

2k−l

〉
where ω2k−l := x22l+2−k . The optimal choice is l =

⌈
k
2
⌉
− 1 leading to

R[x]〈
x2k − 1

〉 ↪→ R′[y]〈
y2⌊ k

2 ⌋+1
− 1
〉 ∼= ∏

i

R′[y]〈
y − x2⌈ k

2 ⌉−⌊ k
2 ⌋·l
〉

with R′ = R[x]
/〈

x2⌈ k
2 ⌉ + 1

〉
. Since multiplications by powers of x in R′ amounts

to negacyclic shifts, we only need additions and subtractions for converting a polyno-
mial multiplication in R[x]

/〈
x2k − 1

〉
into 2k−l many polynomial multiplications in

R[x]
/〈

x2l+1 + 1
〉

.

Negacyclic Schönhage [Sch77]. We can also apply Schönhage to R[x]
/〈

x2k + 1
〉

:
we choose l ≥ k−1

2 and proceed similarly as in the cyclic case. This leads to

R[x]〈
x2k + 1

〉 ∼= R[x, y]〈
x2l − y, y2k−l + 1

〉 ↪→ R′[y]〈
y2k−l + 1

〉 ∼= ∏
i

R′[y]〈
y − ω1+2i

2k−l+1

〉

20 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

where R′ := R[x]
/〈

x2l+1 + 1
〉

and ω2k−l+1 := x22l+1−k . For the optimal choice l =
⌈

k−1
2
⌉
,

we have

R[x]〈
x2k + 1

〉 ↪→ R′[y]〈
y2⌊

k+1
2 ⌋ + 1

〉 ∼= ∏
i

R′[y]〈
y − x2⌈

k−1
2 ⌉−⌊ k−1

2 ⌋·(1+2i)
〉 .

Nussbaumer [Nus80]. Nussbaumer is only applicable to the negacyclic case, but it
sometimes results in smaller subproblems. Conceptually, we swap the roles of x and y

while applying the FFT. We choose an l ≤ k
2 , introduce the relation x2l ∼ y, and replace

it with x2l+1 ∼ 1. Instead of regarding the polynomial ring as a polynomial ring with
indeterminate y in Schönhage, we regard it as a polynomial ring with indeterminate x.
Define R′ := R[y]

/〈
y2k−l + 1

〉
. Since y2k−l = −1 ∈ R′, y2k−2l is a principal 2l+1-th root

of unity defining a size-2l+1 cyclic FFT. Overall, we have

R[x]〈
x2k + 1

〉 ∼= R[x, y]〈
x2l − y, y2k−l + 1

〉 ↪→ R′[x]〈
x2l+1 − 1

〉 ∼= ∏
i

R′[x]〈
x− ωi

2l+1

〉
where ω2l+1 := y2k−2l . For the optimal choice l =

⌊
k
2
⌋
, we have

R[x]〈
x2k + 1

〉 ↪→ R′[x]〈
x2⌊ k

2 ⌋+1
− 1
〉 ∼= ∏

i

R′[x]〈
x− y2⌈ k

2 ⌉−⌊ k
2 ⌋·i
〉 .

Comparing of Schönhage and Nussbaumer. Table 10 summarizes the domains,
images, and defining conditions of radix-2 Schönhage and Nussbaumer, and Table 11
summarizes the domains and images of radix-2 Schönhage and Nussbaumer with optimal
parameters. As seen in Table 11, for the negacyclic case R[x]

/〈
x2k + 1

〉
, Nussbaumer

results in size-
⌈

k
2
⌉

negacyclic convolutions and Schönhage results in size-
⌈

k+1
2
⌉

negacyclic
convolutions. This implies Nussbaumer is more preferable in the negacyclic case if the
number of operations in R is the sole optimizing target [Ber01, Section 9].

Table 10: Overview of radix-2 Schönhage and Nussbaumer.
Domain Image Condition

Cyclic Schönhage R[x]
⟨x2k −1⟩

(
R[x]

⟨x2l+1 +1⟩

)2k−l

l ≥ k
2 − 1

Negacyclic Schönhage R[x]
⟨x2k +1⟩

(
R[x]

⟨x2l+1 +1⟩

)2k−l

l ≥ k−1
2

Nussbaumer R[x]
⟨x2k +1⟩

(
R[y]

⟨y2k−l +1⟩

)2l+1

l ≤ k
2

Generalizations. There are several directions generalizing Schönhage and Nussbaumer.
For the polynomial modulus x2k±1 in Schönhage, the idea applies to any factors of x2k±1.
In fact, the case x2k + 1 directly follows from x2k+1 − 1. As for the polynomial modulus in
Nussbaumer, we demonstrate the roles of the polynomial factors in Appendix H.2. Another
direction is to replace x by an odd power of x. In both cases, we replace the indeterminate
in the polynomial modulus of the inner ring by a power of two of an odd power. Finally,
for the general n, we refer to Appendix G.

Vincent Hwang 21

Table 11: Overview of optimal radix-2 Schönhage and Nussbaumer.
Domain Image

Cyclic Schönhage R[x]
⟨x2k −1⟩

 R[x]〈
x2⌈ k

2 ⌉+1
+1

〉

2⌊ k
2 ⌋+1

Negacyclic Schönhage R[x]
⟨x2k +1⟩

 R[x]〈
x2⌈

k+1
2 ⌉+1

〉

2⌊
k−1

2 ⌋

Nussbaumer R[x]
⟨x2k +1⟩

 R[y]〈
y2⌈ k

2 ⌉+1

〉

2⌊ k
2 ⌋+1

Real-world example(s). [BBCT22] transformed Z4591[x]
/〈

(x1024 + 1)(x512 − 1)
〉

as
follows. They started with Schönhage for

Z4591[x]
⟨(x1024 + 1)(x512 − 1)⟩

∼=
Z4591[x, y]

⟨x32 − y, (y32 + 1)(y16 − 1)⟩ ↪→

(
Z4591[x]
⟨x64+1⟩

)
[y]

⟨(y32 + 1)(y16 − 1)⟩

and applied Nussbaumer to Z4591[x]
/〈
x64 + 1

〉
.

4.3 Coefficient Ring Switching
For multiplying polynomials in Zq[x]/⟨g⟩ for g = xn ± 1, we can always multiply in
Z[x]/⟨g⟩ and reduce to Zq at the end. There are many ways to compute the result in
Z. For simplicity, let’s assume we want to multiply two polynomials. Since the result
over Z has coefficients with absolute values bounded by nq2

4 for signed arithmetic, we
choose a q′ admitting a suitable FFT over g with q′

2 > nq2

4 and compute in Zq′ [x]/⟨g⟩
with signed arithmetic. For unsigned arithmetic, the condition is replaced by q′ > nq2.
In many lattice-based cryptosystems, one of the operands has coefficients with absolute
values bounded by a small constant, and q′ only needs to be larger than a small-multiple
of nq. For example, one of the operands in NTRU [CDH+20] has coefficients drawn
from {0,±1} and the small secret polynomials in Saber [DKRV20] has coefficients drawn
from {−3, . . . , 0, . . . , 3} , {−4, . . . , 0, . . . , 4} , {−5, . . . , 0, . . . , 5}. Obviously, Zq ↪→ Zq′ is
an injection. If arithmetic defined over q′ is too large for efficient implementations,
one can also choose coprime integers qi’s as long as their product q′ :=

∏
i qi fulfills

the same conditions. The tuple of coprime integers is called a residue number system
(RNS). Multiplying over Zq′ and

∏
i Zqi

is used in many contexts, including lattice-based
cryptography [FSS20, BBC+20, ACC+21, CHK+21, ACC+22], and also before public key
cryptography [Nic71, Pol71].

4.4 Comparisons
We briefly compare the cost of coefficient ring injections. See Table 12 for a summary.

Coefficient ring switching vs localization. Localization introduces inverses of integers,
commonly 2−k. In practice, we replace the coefficient ring with the k-bit larger one. Very

22 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

often, we choose a k such that the new coefficient ring still amount to the same arithmetic
precision, so there is usually no additional cost in practice. As for coefficient ring switching,
since the bit-size is at least 2× larger, cares must be taken while choosing the new coefficient
ring.

Coefficient ring switching vs Schönhage/Nussbaumer. Schönhage and Nussbaumer
adjoin the principal roots of unity by extending the polynomial moduli, and result in
2× number of coefficients. Coefficient ring switching introduces the principal roots by
replacing the coefficient rings with much larger ones, and the polynomial moduli remain
the same. To figure out which technique is more beneficial, programmers have to first
figure out the efficiency of the multiplication in the coefficient rings. In Schönhage and
Nussbaumer, the coefficient ring remains the same but we have doubly many elements.
On the other hand, if we switch to a new coefficient ring, the bit-size of the new coefficient
ring is at least 2× larger than the original one. If the cost of multiplication in the original
coefficient ring is very fast compared to the new large coefficient ring, then Schönhage and
Nussbaumer might be more preferable.

Table 12: Summary of the cost of coefficient ring injections.
Techinque Adjoined structure Coeff. ring (bit-size) Poly. modulus
Localization 2−k k-bit larger -
Schönhage/Nussbaumer ω2k - 2× #coeff.
Coeff. ring switching 2−k, ω2k 2+× larger -

5 Polynomial Moduli
This section reviews several techniques related to the polynomial modulus g of R[x]/⟨g(x)⟩ .
Section 5.2 reviews twisting and composed multiplication converting R[x]/⟨g(x)⟩ into a
polynomial ring of the form R[y]/⟨g(ζy)⟩ , Section 5.1 reviews embedding and evaluation at
∞ for choosing a polynomial h admitting the monomorphism R[x]/⟨g(x)⟩ ↪→ R[x]/⟨h(x)⟩ .
Section 5.3 reviews truncation computing products in R[x]

/〈∏
i∈I′ gi

〉
with an isomor-

phism derived from an isomorphism for R[x]
/〈∏

i∈I gi

〉
with I ′ ⊂ I. Section 5.4 reviews

incomplete transformations and striding, and Section 5.5 reviews the Toeplitz matrix-vector
product for R[x]/⟨xn − αx− β⟩ from the dual module view of algebra homomorphisms
multiplying two size-n polynomials in R[x].

5.1 Embedding (Polynomial Modulus) and Evaluation at ∞
Let g ∈ R[x] be a polynomial with deg(g) ≤ n. An obvious approach for multiplying
polynomials in R[x]/⟨g⟩ is multiplying in R[x] followed by reducing modulo g. This is
the embedding technique for ignoring the structure of g. For R[x], one further applies
an identity map from R[x] to R[x]/⟨h⟩ where h is a polynomial with degree larger
than the product in R[x]. h is usually a polynomial with a very nice structure for fast
transformations.

Evaluation at ∞ is an optimization for choosing h [Win80]. Suppose r is the product
in R[x], d the degree, and rd the leading term of r. Instead of computing r, we compute
r − rdh by embedding into R[x]/⟨h⟩ with deg(h) = d. The term rdh is computed
individually and added back. In the literature, the idea is commonly presented as allowing
h to contain the polynomial x−∞. Historically, evaluation at ∞ was first used by [KO62].
[Too63] chose small integers for evaluation, and [Win80, Page 31] replaced a point with

Vincent Hwang 23

∞ for unifying Karatsuba and Toom–Cook. [Win80]’s idea was already as general as this
section and applied to other choices of h.

In [KO62], they computed (a0 + a1x)(b0 + b1x) with (a0 + a1x)(b0 + b1x) = a0b0 +
((a0 + a1)(b0 + b1) − a0b0 − a1b1)x + a1b1x

2. If we choose h = x2 + x, the polynomial
(a0 + a1x)(b0 + b1x) − a1b1(x2 + x) = a0b0 + (a0b1 + a1b0 − a1b1)x can be computed in
R[x]

/〈
x2 + x

〉
. Applying R[x]

/〈
x2 + x

〉 ∼= R[x]/⟨x⟩ × R[x]/⟨x− 1⟩ gives us (a0, a0 +a1)
and (b0, b0 + b1). After point-multiplying and inverting, we have a0b0 + ((a0 + a1)(b0 +
b1)− a0a1)x. Adding a1b1(x2 + x) derives the desired result.

It doesn’t seem that people have ever chosen h with x−∞ for FFT in the literature.
We believe the reason is that one usually splits h into a large number of small factors for
FFT, and the benefit of replacing one of them with x−∞ is marginal. Nevertheless, we
give the following example of multiplying (a0 + a1x)(b0 + b1x) for referential purposes. We
rewrite (a0 + a1x)(b0 + b1x) as (a0b0 + a1b1) + (a0b1 + a1b0)x + a1b1(x2 − 1), compute
(a0b0 + a1b1) + (a0b1 + a1b0)x with the isomorphism R[x]

/〈
x2 − 1

〉 ∼= ∏
R[x]/⟨x± 1⟩ ,

and finally add a1b1(x2 − 1) to the result.

5.2 Twisting and Composed Multiplication

5.2.1 Twisting

Let ζ ∈ R be an invertible element. Twisting is an isomorphism from R[x]/⟨g(x)⟩
to R[y]/⟨g(ζy)⟩ by introducing x ∼ ζy. We have the isomorphism R[x]/⟨g(x)⟩ ∼=
R[x, y]/⟨x− ζy, g(ζy)⟩ and treat R[x]/⟨x− ζy⟩ as the coefficient ring. Let n = deg(g). In
order to change the basis from (1, x, . . . , xn−1) to (1, y, . . . , yn−1) = (1, ζx, . . . , ζn−1xn−1),
we have to multiply the coefficients with the powers ζ, . . . , ζn−1. This usually amounts to
n− 1 multiplications in R. However, if n is odd and ζ = −1, we do not need any multipli-
cation for the isomorphism R[x]/⟨xn + 1⟩ ∼= R[x, y]/⟨x+ y, yn − 1⟩ . We will shortly see
how this insight can be systemized in Section 5.3.

Twisting was introduced in [GS66] for computing FFTs with R[x]/⟨xn0n1 − 1⟩ ∼=∏
i R[x]

/〈
xn1 − ωi

n0

〉 ∼= ∏
i R[x]/⟨xn1 − 1⟩ . See [DH84, Für09] for more insights on the

choices of n0 and n1.

5.2.2 Composed Multiplication

We go through a specialized approach when R = Fq. Given f0,f1 ∈ Fq[x], we defined
their composed multiplication [BC87] as

f0 ⊙ f1 :=
∏

f0(α)=0

∏
f1(β)=0

(x− αβ)

where α, β are elements from an extension field of Fq. Composed multiplication generalizes
twisting to the polynomial modulus of the form (x − ζ) ⊙ f(x). In particular, we have
Fq[x]/⟨(x− ζ)⊙ f(x)⟩ ∼= Fq[y]/⟨x− ζy,f(y)⟩ .

Another benefit of composed multiplication is systematically deriving transformations
based on (presumably much simpler) coprime factorizations. Let f0 =

∏
i0

f0,i0 and
f1 =

∏
i1

f1,i1 be coprime factorizations in Fq[x]. We have f0 ⊙ f1 =
∏

i0

(
f0,i0 ⊙ f1

)
=∏

i0,i1

(
f0,i0 ⊙ f1,i1

)
. A practically important example is f0 = xr − 1 =

∏
i0

(
x− ωi0

r

)
∈

Fq[x] and f1 = x2k − 1. Given a factorization x2k − 1 =
∏

i1
f1,i1 in Fq[x], we have

x2kr − 1 =
∏
i0

(
x2k

− ω2ki0
r

)
=
∏
i0,i1

ω
deg(f1,i1)
r f1,i1(ω−i0

r x).

24 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

Real-world example(s). For an odd number r with r|(4591−1), we have the size-r trans-
formation R[x]/⟨xr − 1⟩ ∼=

∏
i R[x]

/〈
x− ωi

r

〉
. We extend it to a size-2kr transformation

for the ease of vectorization. [HLY24] implemented the isomorphism Z4591[x]
/〈
x1632 − 1

〉 ∼=∏
i Z4591[x]

/〈
x16 ± ωi

51
〉

, and factor Z4591[x]
/〈
x16 ± ωi

51
〉

into polynomial rings modulo
the composed multiplications of x− ωi

51 and factors of x16 ± 1.

5.3 Truncation
Truncation is a simple and powerful idea. Let I ′ ⊂ I be index sets and {gi}i∈I be coprime
polynomials in R[x]. Suppose we are given the following isomorphism

η :

R[x]

/〈∏
i∈I

gi

〉
→

∏
i∈I

R[x]/⟨gi⟩ ,

a 7→ (a mod gi)i∈I .

We can naturally define an isomorphism ηI′ as

ηI′ :

R[x]

/〈∏
i∈I′

gi

〉
→

∏
i∈I′

R[x]/⟨gi⟩ ,

a 7→ (a mod gi)i∈I′ .

ηI′ is called the truncation of η at R[x]
/〈∏

i∈I′ gi

〉
. Truncation was introduced by [CF94,

Section 7]. [Ber08] (according to [vdH04], the work [Ber08] was already online prior
to [vdH04]) described the benefit in terms of complexity, and [vdH04] named the technique
“truncated Fourier transform” for the FFT case. We call it truncation since it is not
restricted to FFTs. We demonstrate some of its applications in this section. See Appendix H
for more applications to fast transformations.

5.3.1 Application I: R[x]
/〈

x2k−1 + 1
〉

from R[x]
/〈

x2k − 1
〉

We derive FFT for R[x]
/〈

x2k−1 + 1
〉

from the one for R[x]
/〈

x2k − 1
〉

. For a principal

2k-th root of unity ω2k realizing R[x]
/〈

x2k − 1
〉
∼=
∏2k−1

i=0 R[x]
/〈
x− ωi

2k

〉
, we have

R[x]
/〈

x2k−1 + 1
〉
∼=
∏2k−1−1

i=0 R[x]
/〈
x− ω1+2i

2k

〉
. We can generalize the idea to arbitrary

transformation size n. Below is a straightforward generalization of [CF94, Section 7]
outlined in [Hwa22, Section 10]. Let b = n and b̃ =

∑
j b̃j2j be the 2’s complement

representation of −n as a ⌈log2 n⌉-bit integer. We have b+ b̃ = 2⌈log2 n⌉ by definition and
define a transformation for

R[x]
/〈

x2⌈log2 n⌉ − 1∏
j

(
x2j + 1

)b̃j

〉
.

This boils down to transformations for rings of the form R[x]
/〈

x2k ± 1
〉

. An example is
the Schönhage for R[x]

/〈
(x1024 + 1)(x512 − 1)

〉
derived from R[x]

/〈
x2048 − 1

〉
.

5.3.2 Application II: Rader’s FFT

Let p be an odd prime, I = {0, . . . , p− 1}, I∗ = {z ∈ I|z⊥p}, and g be a generator of I∗.
For a principal p-th root of unity, we show how Rader’s FFT converts the computing task of
size-p cyclic FFT into a size-λ(p) cyclic convolution in Section 3.6. In this section, we show

Vincent Hwang 25

that the isomorphism R[x]
/〈∏

i∈I∗

(
x− ωi

p

)〉 ∼= ∏i∈I∗ R[x]
/〈
x− ωi

p

〉
and its inverse can

also be converted into size-λ(p) cyclic convolutions. For generalization truncating a size-n
cyclic DFT to the roots with exponents coprime to n, see [Ber23, Sections 4.12.3 and
4.12.4].

Forward transformation. Given a polynomial
∑

j∈Zλ(p)
ajx

j ∈ R[x]
/〈∏

i∈I∗

(
x− ωi

p

)〉
and its image (âi−1)i∈I∗ =

∑
j∈Zλ(p)

ajx
j mod

(
x− ωi

p

)
, we have:

âglogg i−1 = âi−1 =
∑

j∈Zλ(p)

ajω
ij
p = ω−i

p

∑
j∈Zλ(p)

ajω
i(j+1)
p = ω−i

p

∑
j∈I∗

aj−1ω
ij
p

= ω−glogg i

p

∑
− logg j∈Zλ(p)

aglogg j−1ω
glogg i+logg j

p .

If we multiply both sides by ωglogg i

p , then we find that
(
ωgk

p âgk−1

)
k∈Zλ(p)

is a size-λ(p)

cyclic convolution of
(
ag−k−1

)
k∈Zλ(p)

and
(
ωgk

n

)
k∈Zλ(p)

.

Inverse transformation. [Ber23, Section 4.8.2] showed that convolution by
(
ωgk

p

)
k∈Zλ(p)

can be inverted by convolution. By definition, convolution in the polynomial ring
R[x]

/〈
xλ(p) − 1

〉
is the ring multiplication in the group algebra R[Zλ(p)]. Therefore,

the inversion amounts to multiplying the multiplicative inverse of
(
ωgk

p

)
k∈Zλ(p)

in the

group algebra R[Zλ(p)]. The inverse of
(
ωgk

p

)
k∈Zλ(p)

is 1
p

(
ω−g−k

n − 1
)

k∈Zλ(p)
. [Ber23]

proved this by showing that the convolution of
(
ωgk

p

)
k∈Zλ(p)

and
(
ω−g−k

p − 1
)

k∈Zλ(p)
is

(δ0,kp)k∈Zλ(p)
: For all k ∈ Zλ(p), we find

∑
i+j=k

ωgi

n

(
ω−g−j

n − 1
)

=
∑

i+j=k

ω
gi(1−g−(i+j))
n −

∑
i+j=k

ωgi

n = δ0,kp

as desired.

5.4 Incomplete Transformation and Striding
5.4.1 Incomplete Transformation

For a monic polynomial g(xv) ∈ R[x], we call a homomorphism f : R[x]/⟨g(xv)⟩ → A
“incomplete” if f starts with introducing xv ∼ y and proceed as a polynomial ring in
y with the coefficient ring R[x]/⟨xv − y⟩ . There are several benefits for an incomplete
transformation: (i) the definability of fast transformation, (ii) the vectorization-friendliness
of xv ∼ y, and (iii) the code size for implementing f . We give an example for (i) in this
section. For the benefit of vectorization, see Section 6.2. As for (iii), we refer to [AHY22,
Sections 3.2 and 3.3] for more details.

Real-world example(s). Let’s take the polynomial ring Z3329[x]
/〈
x256 + 1

〉
used

in Kyber as an example. Since 3329 is a prime, we can only define a size-n cyclic
FFT for n|3328. This doesn’t permit splitting the polynomial ring into linear factors
since x256 + 1 = Φ512 and 512 ̸ | 3328. What we can do is introduce x2 ∼ y and split(
Z3329[x]

/〈
x2 − y

〉)
[y]
/〈
y128 + 1

〉
into linear factors in y.

26 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

5.4.2 Striding

A closely related idea is striding – we regard R[y]/⟨g(y)⟩ as the coefficient ring. This is
Nussbaumer (cf. Section 4.2) if we replace xv − y with an h(x), and ask g(y)|Φn′(y) and
h(x)|(xn′ − 1) with n′ ≥ 2v − 1. We also have striding Toom–Cook [Ber01, BMK+22] if
h(x) =

∏
i(x− si) for {si} ⊂ Q ∪ {∞}.

5.5 Toeplitz Matrix-Vector Product

This section goes through a generic technique converting a fast computation for R[x] into
a fast computation for R[x]/⟨xn − αx− β⟩ . We present the mathematical background in
this section and will review the architectural insights in Section 6.4.2.

5.5.1 Bilinear System

We review a generic technique for bilinear systems adapted from [Win80, Theorem 6].

Theorem 1 ([Win80, Theorem 6] for R commutative). Let R be a ring, I,J ,K be finite
index sets, and (ai)i∈I , (bj)j∈J , (ck)k∈K be tuples drawn from R. For a bilinear system

S0 : ∀k ∈ K,
∑
i∈I

∑
j∈J

r(i,j,k)aibj

with r(i,j,k) ∈ R, we construct the following bilinear systems:

S1 : ∀j ∈ J ,
∑
i∈I

∑
k∈K

r(i,j,k)aick,

S2 : ∀i ∈ I,
∑
j∈J

∑
k∈K

r(i,j,k)ckbj .

Then any bilinear algorithm for one of S0, S1 or S2 leads to algorithms for the other two.

One can prove Theorem 1 by defining a |K| × |I| matrix Bk,i :=
(∑

j∈J r(i,j,k)bj

)
,

and write S0 as Ba and S2 as BT c where a and c are the column representations of
(ai)i∈I and (ck)k∈K. See Appendix J for details. If we choose r(i,j,k) := Ji+ j = kK
where JK is the Iverson bracket7 and |K| = |I|+ |J | − 1, S0 represents the coefficients of(∑

i∈I aix
i
) (∑

j∈J bjx
j
)

in an obvious way. Then, S2 becomes

S2 : ∀i ∈ I,
∑
j∈J

∑
k∈K

Jk − j = iK ckbj .

This is called a transposed multiplication [Sho99, Section 3] or a middle product [HQZ04].
[Fid73, Theorem 4 and 5] proved that transposing an algorithm results in same numbers
of constant multiplications (rai for a constant r in R), non-constant multiplications (aibj),
and additions/subtractions with a linear difference. For the history of transposition
principle, see [BCS13, Section 4].

7Iverson bracket is an indicator function for the truthfulness. The image of JK is {0, 1}, which can be
certainly embedded into a ring.

Vincent Hwang 27

We illustrate with the case |I| = |J | = n. S0 : ∀k ∈ K,
∑

i∈I
∑

j∈J Ji+ j = kK aibj =∑
i∈I,i≤k aibk−i can be written as:

a0 0 · · · 0
...

. . .
. . .

. . .

an−1
. . .

. . .
. . .

0 . . .
. . .

. . .
...

. . .
. . .

. . .

0 . . .
. . .

. . .

 b0
...

bn−1

 .

And S2 : ∀i ∈ I,
∑

j∈J
∑

k∈K Jk − j = iK ckbj =
∑

j∈J ci+jbj can be written as:

 c0 . .
.

. .
.

... . .
.

. .
.

cn−1 · · · c2n−2

 b0

...
bn−1

 .

S2 relates S0 to polynomial multiplication modulo a polynomial.

5.5.2 Toeplitz Transform for R[x]/⟨xn − αx− β⟩

Let M be an n× n matrix. We call M a Hankel matrix if Mi,j = Mi+1,j−1 for all possible
i, j, and a Toeplitz matrix if Mi,j = Mi+1,j+1 for all possible i, j. Notice that a Hankel
matrix can be converted into a Toeplitz matrix by multiplying an anti-diagonal matrix of
ones and vice versa.

This section explains how to derive a fast computation for R[x]/⟨xn − αx− β⟩ by
looking at an already well-studied algebra homomorphism f multiplying two size-n polyno-
mials in R[x]. There are four steps: (i) interpreting multiplication in R[x]/⟨xn − αx− β⟩
as a Toeplitz matrix-vector product; (ii) interpreting the Toeplitz matrix-vector product
as a composition of applying an anti-diagonal matrix of ones and a Hankel matrix–vector
product; (iii) rewriting the Hankel matrix–vector product as a bilinear system of the form
S2; and (iv) converting the computing task into a bilinear system of the form S0. Once
we go through all the steps (i) – (iv), we can now convert an f into an algorithm for
R[x]/⟨xn − αx− β⟩ via the module–theoretic view. Notice that steps (ii) and (iii) are
sometimes described as a single step. We describe them separately for clarity.

Steps (i) – (iii) are already shown in previous paragraphs. We now explain how to
interpret the multiplication in R[x]/⟨xn − αx− β⟩ as a Toeplitz matrix-vector product
with potential post-processing. We define Toeplitzn as the following function mapping a
(2n− 1)-tuple drawn from R to a Toeplitz matrix over R:

Toeplitzn : (z2n−2, . . . , z0) 7→

zn−1 · · · z0
...

. . .
. . .

z2n−2
. . .

. . .

 .

Let a =
∑

i aix
i, b =

∑
bix

i be size-n polynomials. We recall that computing
∑

i cix
i =

28 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

ab in R[x] can be regarded as the following matrix–vector product:

 c0
...

c2n−2

 =

b0 0 · · · 0
...

. . .
. . .

. . .

bn−1
. . .

. . .
. . .

0 . . .
. . .

. . .
...

. . .
. . .

. . .

0 . . .
. . .

. . .

 a0
...

an−1

 .

Since (c0, . . . , cn−1) can be computed with a Toeplitz matrix-vector product, we only need
to convert reduction modulo xn − αx − β into the manipulation of Toeplitz matrices.
A standard approach for reducing modulo xn − αx − β is multiplying (cn, . . . , c2n−2)
by α and β and adding the results to (c1, . . . , cn−1) and (c0, . . . , cn−2). Based on this,
ab mod (xn − αx− β) can be written as

(M0 +M1 +M2) a

where {
M0 = Toeplitzn(bn−1, . . . , b0, 0, . . . , 0),
M1 = Toeplitzn(0, . . . , 0, βbn−1, . . . , βb1),

and

M2 = α

0 0 · · · 0
0 bn−1 · · · b0
...

. . .
. . .

. . .

0 . . .
. . .

. . .

 .

A specialized approach for β = 1. We review the case β = 1 implied by [FH07,
Section 3.2]. See [HB95, FD05] for related works when R = F2 and Appendix I for an
approach handling generic β with some overhead. Since β = 1, M0 +M1 is the circulant
matrix implementing ab mod (xn − 1). Obviously, if we multiply a circulant matrix by
a cyclic shift matrix (either left-multipling or right-multipling), we still have a circulant
matrix. Let P be the matrix moving the 0-th row of a circulant matrix to the bottom. We
find that both P (M0 +M1) and PM2 are Toeplitz matrices. Therefore, P (M0 +M1 +M2)
is a Toeplitz matrix and we can implement (M0 +M1 +M2) a as

(M0 +M1 +M2) a = P−1 (P (M0 +M1 +M2) a) .

In Section 6.2, we will justify why cyclic shift matrices are practically efficient.

Padding. The last instrument is padding. Suppose we have an n× n Toeplitz matrix
T = Toeplitz (z2n−2, . . . , z0). For an n′ ≥ n, we can always pad T to an n′ × n′ Toeplitz
matrix T ′ as follows:

T ′ = Toeplitz

0, . . . , 0︸ ︷︷ ︸
n′−n

, z2n−2, . . . , z0, 0, . . . , 0︸ ︷︷ ︸
n′−n

 .

The point is that if a n× n Toeplitz matrice does not admit efficient implementations, we
can pad them to slighly larger ones with efficient implementations [IKPC22, Section 3.1].

Vincent Hwang 29

6 Vectorization
This section reviews the formalization of vectorization by [Hwa24].

6.1 Vector Instruction Sets/Extensions
Vector instruction sets and extensions are important ingredients for optimized implemen-
tations since high-dimensional polynomial rings in lattice-based cryptosystems admit high
degree of parallelism. Common vector instructions sets and extensions are the Digital Sig-
nal Processing extension in Armv7-M [ARM21b, Section A1.3] (in this case, we also call it
Armv7E-M), the Neon extension in Armv7-A [ARM12, Section A2.6], the Advanced SIMD
extension Armv8-A [ARM21a, Section A1.5], the Helium extension in Armv8-M [ARM23,
Sections B5 and C2.3.1], AVX2, and AVX-512 [Int23].

A vector contains power-of-two number of bits of data, for example, we have 32-bit
registers in Armv7E-M, 128-bit vector registers in Armv7-A and Armv8-A, 256-bit vector
registers in AVX2, and 512-bit vector registers in AVX-512. In a vector instruction
set/extension, we have vector instructions with vector registers as arguments. For bit-
field arithmetic, we have logical or/exclusive-or/and/not and logical/arithmetic shift.
For arithmetic and permutations, we have additions, subtractions, multiplications, and
permutation instructions operating on vector registers as packed 8-bit, 16-bit, 32-bit, 64-bit
data. When the context is clear, we denote v as the number of elements with a fixed
bit-size in a vector register.

Roughly speaking, there are two categories of vector instructions:

• Vector-by-vector instructions: the vector instruction takes two vector registers as
inputs and returns a vector register as the output.

• Vector-by-scalar instructions: the vector instruction takes a vector registers and a
scalar (a constant, a lane of a vector register [ARM21b, ARM12, ARM21a], or a
non-vector register [ARM23])

6.2 Vectorization Friendliness
We first review the notion “vectorization-friendliness” formally relating homomorphisms
to vector-by-vector instructions [Hwa24]. Conceptually, vectorization-friendliness qualifies
if a homomorphisms can be mapped to a string of vector-by-vector instructions and
cyclic/negacyclic shifts. Cyclic and negacyclic shfits are vectorization-friendly since we
can implement them with extractions or memory operations:

• Extraction: For cyclic shift, we extract consecutive elements from a pair of vector
registers and extract again with input swapped. The resulting pair of vector registers
is now a cyclic shift of the original pair. For the negacyclic shift, we replace a vector
register by its negative value in one of the extractions. This idea is applicable to
Armv7/8-A since we have ext implementing exactly the desired operation [HLY24].

• Memory operations: We can also implement cyclic/negacyclic shift with memory
operations – we perform unaligned loads, shuffle the last vector register (and negate
it in the negacyclic case), and store the vectors to memory [BBCT22].

The set BlockDiag. We define BlockDiag as a certain set of block diagonal matrices
implementing cyclic/negacyclic shifts and twisting. Formally, BlockDiag is defined as a set
of all possible block diagonal matrices with each block a v′ × v′ matrix that is a diagonal
matrix implementing twisting or a cyclic/nagecyclic shift matrix for all v-multiple v′.

30 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

Vectorization friendliness, formally [Hwa24]. Let f be an algebra homomorphism
and Mf its matrix form. We call f vectorization-friendly if

Mf =
∏

i

(Mfi
⊗ Iv)Sfi

for Sfi ∈ BlockDiag and some matrices M ′
fi
s. One we find such a decomposition for a

vectorization-friendly f , we implement Mfi
⊗ Iv with vector additions, subtractions, and

multiplications, and Sfi
with vector multiplications and cyclic/negacyclic shifts.

Dimension requirement of vectorization friendliness. From the definition, we
know that f is vectorization friendly only if its domain has dimension a multiple of v.

Additional properties of vectorization friendliness. Obviously, if an algebra ho-
momorphism is vectorization-friendly, its inverse and module-theoretic dual are also
vectorization-friendly.

6.3 Permutation Friendliness
Conceptually, permutation-friendliness stands for vectorization-friendliness up to a special
type of permutation – interleaving.

The set Interleave [Hwa24]. Again, let v′ be a multiple of v. We define the trans-
position matrix Tv′2 as the v′2 × v′2 matrix permuting the elements as if transposing a
v′ × v′ matrix. See Appendix K for examples. We call a matrix M interleaving matrix
with step v′ if it takes the form

M = (π′ ⊗ Iv′) (Im ⊗ Tv′2) (π ⊗ Iv′)

for a positive integer m and permutation matrices π, π′ permuting mv′ elements. The
set Interleave consists of interleaving matrices of all possible steps. Obviously, we can
implement an interleaving matrix as a transposition matrix with on-the-fly permutations.

Permutation friendliness, formally [Hwa24]. Let g be an algebra homomorphism
and Mg its matrix form. We call g permutation-friendly if

Mg =
∏

i

SgiMgi

for Sgi
∈ Interleave and vectorization-friendly Mgi

’s. Once we find such a decomposition
of a permutation friendly g, we implement the vectorization-friendly parts as described in
previous section and the interleaving matrices with permutation instructions.

Dimension requirement of permutation friendliness. From the definition, permuta-
tion friendliness necessitates a stronger dimension condition than vectorization friendliness
due to the existence of interleaving matrices. Interleaving matrices necessitates that a
permutation-friendly homomorphism must have dimension a multiple of v2.

6.4 Guide of Vectorization
6.4.1 Vectorization with Vector-By-Vector Multiplication Instructions

Generally, while computing with vector-by-vector instructions, we choose algebra homo-
morphisms f and g such that f is vectorization-friendly and g is permutation-friendly.
Their composition g ◦ f then admits a suitable mapping to our target vector instruction
set.

Vincent Hwang 31

6.4.2 Vectorization Vector-By-Scalar Multiplication Instructions

For an m × n Toeplitz matrix M = Toeplitzm×n(am−1, . . . , a0, a
′
1, . . . , a

′
n−1) over the

ring R, [CCHY24] demonstrated the benefit of vector-by-scalar multiplication instructions
when applying M to a vector b = (b0, . . . , bn−1). Since polynomial multiplications in
R[x]/⟨xn − αx− β⟩ can be rephased as Toeplitz matrix-vector products (cf. Section 5.5.2
and Appendix I), we can multiply polynomials in R[x]/⟨xn − αx− β⟩ with vector-by-
scalar multiplication instructions. Conceptually, the goal is to design transformations
resulting in small-dimensional Toeplitz matrix-vector products and implement them with
vector-by-scalar multiplication instructions. We outline the overall strategy as follows.

1. Choose a vectorization-friendly algebra homomorphism f decomposing into small-
dimensional polynomial multiplications.

2. If the resulting polynomial multiplications are small-dimensional Toeplitz matrix-
vector products, then we are done.

3. If step 2 fails (for example, when some polynomial multiplications in the image are
not Toeplitz matrix-vector products), we dualize the transformation as described in
Section 5.5.2.

4. Eventually, we have small-dimensional Toeplitz matrix-vector products regardless if
f if results in small-dimensional Toeplitz matrix-vector products.

The remaining question is the relation between small-dimensional Toeplitz matrix-vector
products and vector-by-scalar multiplication instructions.

Small-dimensional Toeplitz matrix-vector products [CCHY24]. For the small-
dimensional case, [CCHY24] showed that one can implement the Toeplitz matrix-vector
product efficiently with vector-by-scalar multiplication instructions. For simplicity, we
demonstrate with the case m = n = 4 and R = Z232 :

c0
c1
c2
c3

 =

a0 a′

1 a′
2 a′

3
a1 a0 a′

1 a′
2

a2 a1 a0 a′
1

a3 a2 a1 a0

b0
b1
b2
b3

 .

For deploying vector-by-scalar multiplications, the key is to identify the reuses of the scalar
operands. Obviously, we find that each of b0, . . . , b3 is involved in four multiplications in R:
we compute a0b0, a1b0, a2b0, a3b0 for the operand b0, etc. Therefore, an obvious choice is
to map each columns to a vector and apply vector-by-scalar multiplications. There are two
ways for constructing the column vectors of Toeplitz(a3, · · · , a0, a

′
1, · · · , a′

3) from an array
storing a′

3, . . . , a
′
1, a0, . . . , a3: either loading from the addresses pointing to a0, a

′
1, . . . , a3,

or loading the first column and first row and combining them with special instructions. See
Appendix L for illustrations. After constructing the matrix column-wise, we now identify
the column vector c as the sum of columns scaled by the corresponding elements in b. In
other words,

c0
c1
c2
c3

 = b0

a0
a1
a2
a3

+ b1

a′

1
a0
a1
a2

+ b2

a′

2
a′

1
a0
a1

+ b3

a′

3
a′

2
a′

1
a0

 .

Algrotihm 1 is an illustration.

32 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

Algorithm 1 Applying a 4 × 4 Toeplitz matrix with vector-by-scalar multiplication
instructions [CCHY24].
Inputs: Toeplitz(a3, a2, a1, a0, a

′
1, a

′
2, a

′
3), (b0, b1, b2, b3).

Outputs: Toeplitz(a3, a2, a1, a0, a
′
1, a

′
2, a

′
3)(b0, b1, b2, b3).

1: t0 = a3||a2||a1||a0
2: t1 = a2||a1||a0||a′

1
3: t2 = a1||a0||a′

1||a′
2

4: t3 = a0||a′
1||a′

2||a′
3

5: c = mul(t0, b0)
6: c = mla(c, t1, b1)
7: c = mla(c, t2, b2)
8: c = mla(c, t3, b3)

7 Case Studies
We go through several case studies in this section. Section 7.1 compares Barrett and
Montgomery multiplications with Dilithium implementations for modular arithmetic, and
Section 7.2 compares Montgomery and Plantard multiplications with Kyber implemen-
tations. We then go through several algebraic techniques and vectorization. Section 7.4
explains how to exploit the matrix-to-vector structure with Saber as an example, Sec-
tion 7.5 reviews the benefit of Toeplitz matrix-vector multiplication with NTRU as an
example, and Section 7.6 details the design choices for vectorization with NTRU Prime as
an example.

7.1 Dilithium : Barrett vs Montgomery Modular Arithmetic
This section reviews the modular arithmetic used in Dilithium. In Dilithium, we want
to multiply polynomials in Zq[x]

/〈
x256 + 1

〉
for q = 223 − 213 + 1. Since q is a prime

supporting a size-213 cyclic FFT, we can split x256 + 1 into linear factors (recall that
x256 + 1 = Φ512|(x512 − 1) and 512|213). The choice of FFT is already determined by the
specification – one of the operands is assumed to be transformed. The remaining question
is to compute the modular arithmetic efficiently. For a 32-bit value a, modular reduction
is fairly simple. Since q is fairly close to 223, a−

⌊
a

223

⌉
q is a representative of a mod ±q

within an acceptable range8.
How about modular multiplications? In Section 2.5, we compare three classes of

modular multiplications – Montgomery, Barrett, and Plantard, and review the required
multiplication instructions. In practice, low multiplications are fairly common, while high
multiplications and long multiplications usually lack accumulative or subtractive variants.
See Table 13 for a summary for combinations of precisions and architectures. For the
actual instructions, see [ARM21b, Section A4.4.3], [ARM21a, Sections C3.5.14, C3.5.16,
and C3.5.18], and [Ora14, Section 3.7].

7.1.1 Armv8-A Neon Implementations

For vectorized implementations, [BHK+22b] implemented Barrett multiplication and the
subtractive variant of Montgomery multiplication with Armv8.0-A Neon. For Armv8.0-
A, there are multiplication instructions sq{, r}dmulh computing and doubling the high
products – For two values a and b, sqdmulh computes

⌊ 2ab
R

⌋
with saturations, and sqrdmulh

applies rounding ⌊⌉ instead of flooring ⌊⌋. For Montgomery multiplication, [BHK+22b]

8The actual range for −231 ≤ a < 231 is [−4186113, 4194303] by brute-force testing.

Vincent Hwang 33

Table 13: Overview of the available forms of input-independent signed multiplication
instructions in some popular instruction set architectures and extensions.

Low multiplications
mullo mlalo mlslo

Armv7-M ✓(R = 232) ✓(R = 232) ✓(R = 232)
Armv7E-M ✓(R = 232) ✓(R = 232) ✓(R = 232)
Armv8.0-A ✓(R = 28, 216, 232) ✓(R = 28, 216, 232) ✓(R = 28, 216, 232)
Armv8.1-A ✓(R = 28, 216, 232) ✓(R = 28, 216, 232) ✓(R = 28, 216, 232)
AVX2 ✓(R = 216, 232) - -

High multiplications
mulhi mlahi mlshi

Armv7-M - -
Armv7E-M ✓(R = 232) - -
Armv8.0-A ✓(R = 216, 232) - -
Armv8.1-A ✓(R = 216, 232) ✓(R = 216, 232) ✓(R = 216, 232)
AVX2 ✓(R = 216) - -

Long multiplications
mull mlal mlsl

Armv7-M - - -
Armv7E-M ✓(R = 216, 232) ✓(R = 216, 232) -
Armv8.0-A ✓(R = 28, 216, 232) ✓(R = 28, 216, 232) ✓(R = 28, 216, 232)
Armv8.1-A ✓(R = 28, 216, 232) ✓(R = 28, 216, 232) ✓(R = 28, 216, 232)
AVX2 ✓(R = 232) - -

implemented
1
2

(⌊
2ab
R

⌋
−

⌊
2
(
abq−1 mod ±R

)
q

R

⌋)

as shown in Algorithm 2. One can show that 1
2

(⌊ 2ab
R

⌋
−
⌊

2(abq−1 mod ±R)q

R

⌋)
=
⌊

ab
R

⌋
−⌊

(abq−1 mod ±R)q

R

⌋
. We leave the justification to readers9. For Barrett multiplication,

[BHK+22b] implemented(ab mod ±R
)
−

a
⌊

bR
q

⌉
2

R

 q mod ±R

 mod ±R

for ⌊⌉2 := r 7→ 2
⌊

r
2
⌉

as shown in Algorithm 3. Since there is a subtractive form for low prod-
ucts only, Barrett multiplication saves one addition/subtraction compared to Montgomery
multiplication. Additionally, [HLY24, Algorithms 3 and 4] proposed the accumulative and
subtractive variants computing representatives of d± ab mod q and [Yan22] found their
benefits for computing radix-2 Cooley–Tukey butterflies on platforms implementing barrel
shift (for example, Cortex-M4). We leave the exploration of the accumulative/subtractive
Barrett multiplication to the readers.

9Apply McEliece’s observation that for a continuous, monotonically increasing function f : R′ → R′′

with R′,R′′ ⊂ R and f(x) ∈ Z −→ x ∈ Z, we have ⌊f(x)⌋ = ⌊f (⌊x⌋)⌋ when f(x), f (⌊x⌋) ∈ R′ and
⌈f(x)⌉ = ⌈f (⌈x⌉)⌉ when f(x), f (⌈x⌉) ∈ R′ [GKP94, Equation 3.10].

34 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

Algorithm 2 Single-width Montgomery multiplication [BHK+22b, Algorithm 12].
Inputs: Values a, b ∈

[
− R

2 ,
R
2
)
.

Output: c = 1
2

(⌊ 2ab
R

⌋
−
⌊

2(abq−1 mod ±R)q

R

⌋)
.

1: sqdmulh c, a, b ▷ c =
⌊ 2ab

R

⌋
.

2: mul t, a, bq−1 mod ±R ▷ t = abq−1 mod ±R.
3: sqdmulh t, t, q ▷ t =

⌊
2(abq−1 mod ±R)q

R

⌋
.

4: shsub c, c, t ▷ c = 1
2

(⌊ 2ab
R

⌋
−
⌊

2(abq−1 mod ±R)q

R

⌋)
.

Algorithm 3 Single-width Barrett multiplication [BHK+22b, Algorithm 10].
Inputs: Values a, b ∈

[
− R

2 ,
R
2
)
.

Output: lo = ab−
⌊

a⌊ bR
q ⌉2
R

⌉
q.

1: mul lo, a, b ▷ lo = ab.
2: sqrdmulh hi, a,

⌊ bR
q ⌉2
2 ▷ hi =

⌊
a⌊ bR

q ⌉2
R

⌉
.

3: mls lo, hi, q ▷ lo = ab−
⌊

a⌊ bR
q ⌉2
R

⌉
q.

7.1.2 Armv7-M Implementations

This section reviews [HKS23]’s observation of Barrett multiplication on Cortex-M3. Cortex-
M3 implements the ISA Armv7-M where mul/mla/mls, {u, s}{mul, mla}l are the only
multiplication instructions. However, double-size products {u, s}{mul, mla}l take input-
dependent time [ARM10] and can only be used for computing public data. For computing
the 32-bit NTTs of secret data in Dilithium, [GKS21] implemented 32-bit Montgomery
multiplication while emulating the double-size products with mul/mla/mls as shown in
Algorithm 4.

Algorithm 4 Constant-time 32-bit Montgomery multiplication [GKS21, Listing 7]
Inputs: al + ah · R = a, bl + bh · R = b.
Output: tmph = ab+(−abq−1 mod ±R)q

R .
1: SBSMULL tmpl, tmph, al, ah, bl, bh ▷ tmpl + tmph · R = ab.
2: mul ah, tmpl, −q−1 mod ±R ▷ ah = abq−1 mod ±R.
3: ubfx al, ah, #0, #16
4: asr ah, ah, #16 ▷ al + ah · R = −abq−1 mod ±R.
5: SBSMLAL tmpl, tmph, al, ah, ql, qh ▷ tmph = ab+(−abq−1 mod ±R)q

R .

[HKS23] proposed using Barrett multiplication for 32-bit modular multiplications on
Cortex-M3. They observed the following:

B1 While Montgomery multiplication requires two double-size/high products and one
low product, Barrett multiplication requires one high product and two low products.

B2 In Barrett multiplication, the high product only needs to be approximately correct.

Observation B1 saves one emulation of the double-size/high product, and observation B2
enables a faster emulation with tolerable errors.

Vincent Hwang 35

Let’s consider JK the following integer approximation:

∀r ∈ R, JrK = ar,hbh +
⌊
ar,lbh√

R

⌋
+
⌊
ar,hbl√

R

⌋
for ar,l+ar,h

√
R = rR
⌊ bR

q ⌉
and bl+bh

√
R =

⌊
bR
q

⌉
. For − q

2 ≤ b <
q
2 and − R

2 ≤ ar,l+ar,h

√
R < R

2 ,

[HKS23] showed that |r − JrK| ≤ 3 and
∣∣modJKR

∣∣ ≤ 7R
2 , and computed

ab−

u

v
a
⌊

bR
q

⌉
R

}

~ q

as a representative of ab mod ±q with range bounded by

|a| |mod±q|+
∣∣modJKR

∣∣ |q|
R

≤
|a| q

2 + 7
2 Rq

R
= q

2

(
7 + |a|

R

)
.

Algorithm 5 is an illustration.

Algorithm 5 Constant-time 32-bit Barrett multiplication with approximated high prod-
uct [HKS23].
Inputs: a = a, b = b.
Output: t3 = ab−

s
a⌊ bR

q ⌉
R

{
q.

1: mul t3, a, b ▷ t3 = ab mod ±R.
2: ubfx t0, a, #0, #16
3: asr a, a, #16 ▷ t0 + a · R = a.
4: smmulr_approx t1, a, bhi, t0, blo, t2 ▷ t1 =

s
a⌊ bR

q ⌉
R

{
.

5: mls t3, t1, q, t3 ▷ t3 = ab−
s

a⌊ bR
q ⌉

R

{
q.

7.2 Kyber : Montgomery vs Plantard Modular Arithmetic
In this section, we compare the applications of Montgomery and Plantard multiplications
to Kyber, which requires modular multiplication for the coefficient ring Z3329. We assume
R = 216 in this section. [HZZ+22] and [AMOT22] independently found the signed Plantard
multiplications. [HZZ+22] identified the benefit of 16-bit modular arithmetic if there
are 16 × 32-bit multiplication instructions, and [AMOT22] identified the benefit of 32-
bit modular arithmetic using only 64-bit multiplication instructions. [HZZ+24] later
implemented 16-bit Plantard multiplication following [AMOT22]’s insights when there are
no 16× 32-bit multiplication instructions.

7.2.1 Armv7-M Implementations

In Armv7-M, since all the registers contain 32-bit values, we can compute the 16-bit
Montgomery multiplication with mul and mla in an obvious way (cf. Algorithm 6).
[HZZ+24] implemented 16-bit Plantard multiplication with [AMOT22]’s insights. For
16-bit values a ∈

[
− R

2 ,−
R
2
)

and b ∈
[
− q

2 ,
q
2
)
, we compute

⌊
−abq−1 mod ±R2

R

⌋
q + 2αq

R

36 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

as a representative of −abR−2 mod ±q. See 7 for an illustration. If b is known in prior,
we skip the computation for −bq−1 mod ±R2 and cancel out the scaling −R2 mod ±q by
precomputing −

(
−bR2 mod ±q

)
q−1 mod ±R2.

Algorithm 6 16-bit Montgomery multipliation with Armv7-M [GKS21].
Inputs: Values a, b ∈

[
− R

2 ,
R
2
)
.

Output: t0 = ab+
(
−abq−1 mod ±R

)
q.

1: mul t0, a, b ▷ t0 = ab.
2: mul t1, t0, −q−1 mod ±R
3: sxth t1, t1, #0, #16 ▷ t1 = −abq−1 mod ±R.
4: mla t0, t1, q, t0 ▷ t0 = ab+

(
−abq−1 mod ±R

)
q.

5: ▷ The desired result is stored in the upper half.

Algorithm 7 16-bit Plantard multiplication with Armv7-M [HZZ+24].

Inputs: Values a ∈
[
− R

2 ,
R
2
)
,−bq−1 ∈

[
− R2

2 ,
R2

2

)
.

Output: t =
(⌊

−abq−1 mod ±R2

R

⌋
+ 2α

)
q.

1: mul t, b, −q−1 mod ±R2 ▷ t = −bq−1 mod ±R2.
2: mul t, t, a ▷ t = −abq−1 mod ±R2.
3: add t, 2α, t, asr #16 ▷ t =

⌊
−abq−1 mod ±R2

R

⌋
+ 2α.

4: mul t, t, q ▷ t =
(⌊

−abq−1 mod ±R2

R

⌋
+ 2α

)
q.

5: ▷ The desired result is stored in the upper half.

7.2.2 Armv7E-M Implementations

We briefly compare Montgomery and Plantard multiplications with the Digital Signal
Processing extension in Armv7E-M where “E” stands for “extension”. [ABCG20] showed
that 16-bit Montgomery multiplication can be implemented with three 16-bit multiplication
instructions from the extension as shown in Algorithm 8. Recently, [HZZ+22] found that
the multiplication instruction smulwb is a nice fit for 16-bit Plantard multiplication.
Algorithm 9 is an illustration. If one of the multiplicands is known in prior, we can remove
one multiplication and cancel out the scaling with precomputation as shown in previous
section.

Algorithm 8 16-bit Montgomery multiplication with Armv7E-M [ABCG20].
Inputs: lo(a) = al, lo(b) = bl.
Outputs: hi(th) = albl+(−alblq−1 mod ±R)q

R .
1: smulbb th, a, b ▷ hi = albl.
2: smulbb tl, th, −q−1 mod ±R ▷ lo = (albl mod ±R)

(
−q−1 mod ±R

)
.

3: smlabb th, tl, q, th ▷ th = albl +
(
−alblq

−1 mod ±R
)
q.

4: ▷ The desired result is stored in the upper half.

7.3 Homomorphism Caching
Let f : A → B be an algebra monomorphism, and a0,a1, b ∈ A. Suppose we want to
implement a0b and a1b. We can compute with f−1 (f(a0)f(b)) and f−1 (f(a1)f(b)) using

Vincent Hwang 37

Algorithm 9 16-bit Plantard multiplication with Armv7E-M [HZZ+22]
Inputs: lo(a) = al, b ∈

[
− q

2 ,
q
2
)
.

Outputs: hi(t) =

⌊−albq−1 mod ±R2
R

⌋
q+2αq

R

.

1: mul t, b, −q−1 mod ±R2 ▷ t = −bq−1 mod ±R2.
2: smulwb t, t, a ▷ t =

⌊
al(−bq−1 mod ±R2)

R

⌋
.

3: smlabb t, t, q, 2αq ▷ t =
⌊

−albq−1 mod ±R2

R

⌋
q + 2αq.

4: ▷ The desired result is stored in the upper half.

only three applications of f and two applications of f−1. This is called homomorphism
caching and FFT-caching if f is an FFT. [Ber08, Section 2.9] said this was widely known in
1992. Section C will show historical evidence that caching was used implicitly in [Goo71]
dating back to 1971.

7.4 Saber : Homomorphism Caching
In Saber, the most performance-critical polynomial operation is multiplying l × l matrix
by an l× 1 vector over the polynomial ring Z8192[x]

/〈
x256 + 1

〉
. We review the benefit of

caching algebra and module homomorphisms.

Algebra homomorphism caching. Let f : Z8192[x]
/〈
x256 + 1

〉
→ S be an algebra

homomorphism, ·S be the multiplication in S, and +S be the addition in S. We denote C(−)
as the cost function of a map. If we apply f to all the polynomials, compute matrix–vector
multiplication over S, and transform back to a vector over Z8192[x]

/〈
x256 + 1

〉
, the total

cost is
(l2 + l)C(f) + l2C(·S) + (l2 − l)C(+S) + lC(f−1).

Optimizations for the matrix–vector multiplication over Z8192[x]
/〈
x256 + 1

〉
should base

the comparisons on the dominating term C(f) + C(·S) + C(+S). [KRS19] chose f as Toom–
Cook but didn’t exploit the homomorphic property. [MKV20] exploited the homomorphic
property for Toom–Cook, and [CHK+21] chose f as an FFT. The FFT-type approaches
for Saber remain the fastest [CHK+21, ACC+22, BHK+22b].

Module homomorphism caching. In the previous paragraph, we have seen the
importance of caching algebra homomorphisms. [BHK+22b] introduced “asymmetric
multiplication” which falls into module homomorphism caching. For a polynomial
a ∈ Z8192[x]

/〈
x256 + 1

〉
and an algebra homomorphism f : Z8192[x]

/〈
x256 + 1

〉
→ S,

we first regard f(a) as a module homomorphism mapping f(b) to f(a)f(b) for b ∈
Z8192[x]

/〈
x256 + 1

〉
. If f(a) amounts to polynomial multiplications modulo xv − ζ, we

can turn f(a) into a special kind of module homomorphism – Toeplitz matrix-vector
multiplication (cf. Section 5.5). In practice, the Toeplitz matrix conversion of f(a) is
cached. This is called asymmetric multiplication [BHK+22b, Section 4.2].

7.5 NTRU : Toeplitz matrix-vector product
Section 5.5 discusses how to turn arbitrary algebra homomorphisms multiplying size-n poly-
nomials inR[x] into a Toeplitz matrix-vector product for multiplying in R[x]/⟨xn − αx− β⟩ .
In Section 6.4.2, we discuss the benefit of computing Toeplitz matrix-vector products with
vector-by-scalar multiplications. We review the Toeplitz matrix-vector product approach

38 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

for multiplying polynomials in Z2048[x]
/〈
x677 − 1

〉
used by the NTRU parameter set

ntruhps2048677.

7.5.1 Armv7E-M Implementation

[IKPC22] applied Toeplitz matrix-vector product with Karatsuba and Toom–Cook. They
first considered the following sequence of Karatsuba and Toom–Cook multiplying two
size-720 polynomials:

TC-4→ K-3→ K-3→ K-2

where K-2 is the usual Karatsuba in Section 3.7 and K-3 is the subtractive variant of 3-way
Karatsuba10. They then took the dual of Toom–Cook, Karatsuba, and their inverses, and
formed Toeplitz matrix-vector products as shown in Section 5.5. [IKPC22] identified that
one no longer needs to reduce modulo a polynomial since it is merged with the polynomial
multiplication itself (cf. Section 5.5.2).

7.5.2 Armv8-A Implementation

Shortly after, [CCHY24] explored the vectorization of Toeplitz matrix-vector products
with Armv8-A. They started with the following sequence of Karatsuba and Toom–Cook
multiplying two size-720 polynomials:

TC-5→ TC-3→ TC-3→ K-2

and took the dual of all the homomorphisms. They showed that small-dimensional power-
of-two Toeplitz matrix-vector product can be implemented efficiently for the following
reasons: (i) one can construct Toeplitz matrices efficiently from its first row and column (cf.
Section 6.4.2) and (ii) the existence of vector-by-scalar multiplication instructions implement
the outer-product-based matrix-vector multiplication while avoiding permutations and
reducing register pressure significantly [CCHY24]. See [CCHY24, Section 5.1] for more
details on memory optimizations while inverting Karatsuba and Toom–Cook.

7.6 NTRU Prime : Vectorized FFTs
In this section, we go through a detailed analysis of vectorized polynomial multipliers in
NTRU Prime. Our central objective is to answer the following question:

How FFT-, vectorization-, and permutation-friendly the coefficient ring is?

For simplicity, we focus on the polynomial ring Z4591[x]
/〈
x761 − x− 1

〉
used in the pa-

rameter sets ntrulpr761 and sntrup761. We first discuss a generic approach using
Schönhage and Nussbaumer for maintaining the friendliness while exploiting no algebraic
properties of the polynomial ring. Schönhage and Nussbaumer usually adjoin algebraic
structures for friendliness with expenses. We then systematically analyze how to exploit
the algebraic structure endowed in Z4591, showing that Z4591 actually admits FFT, vector-
ization, and permutation-friendly transformations. Observe that 4591− 1 = 2 · 33 · 5 · 17
and 45912 − 1 = 25 · 33 · 5 · 7 · 17 · 41, we summarize the following findings from the
works [HLY24, Hwa24].

• We qualify Z4591 as an FFT-friendly prime by considering the application of Good–
Thomas and Rader’s FFTs based on the factorization of 4591− 1 and Bruun’s FFT
based on the factorization of 45912 − 1 [HLY24].

10In principle, we compute all possible aibi and (ai − aj)(bi − bj) for i ̸= j so arbitrary aibj can be
derived by only additions and subtractions, see [WP06, Section 3.2] for details.

Vincent Hwang 39

• We qualify Z4591 as a vectorization-friendly prime since the product 25 · 33 · 5 · 17 =
73440 (73440 = 16(4591 − 1)|(45912 − 1)) allows a wide range of FFTs resulting
small-dimensional power-of-two polynomial multiplications [HLY24].

• We qualify Z4591 as a permutation-friendly prime since 3, 5, and 17 are Fermat
primes, and truncating Fermat-prime-size Rader’s FFTs gives power-of-two transfor-
mations [Hwa24].

We review two AVX2-optimized implementations in this section: (i) [BBCT22]’s
approach with truncated Schönhage and Nussbaumer FFTs, and (ii) [Hwa24]’s approach
with truncated Rader, Good–Thomas, and Bruun FFTs.

7.6.1 A Generic Approach with Truncated Schönhage and Nussbaumer FFTs

Let’s recall the AVX2-optimized polynomial multiplication for ntrulpr761/sntrup761
from [BBCT22]. For multiplying polynomials in Z4591[x]

/〈
x761 − x− 1

〉
, [BBCT22] com-

puted the product in Z4591[x]
/〈

(x512 − 1)(x1024 + 1)
〉

as follows. They first applied
Schönhage replacing x32 − y with x64 + 1:

Z4591[x]
⟨(x512 − 1)(x1024 + 1)⟩

η0∼=
Z4591[x]
⟨x32−y⟩ [y]

⟨(y16 − 1)(y32 + 1)⟩
η1
↪→

Z4591[x]
⟨x64+1⟩ [y]

⟨(y16 − 1)(y32 + 1)⟩ .

Since x2 is a principal 64-th root of unity in Z4591[x]
/〈
x64 + 1

〉
, we have (y16−1)(y32+1) =∏

i ̸≡2 (mod 4)(y − x2i) over Z4591[x]
/〈
x64 + 1

〉
. We find Schönhage’s FFT vectorization-

friendly since 64 = 4 ·16. After splitting the polynomial ring in y, the remaining problem is
multiplying in Z4591[x]

/〈
x64 + 1

〉
. [BBCT22] interleaved the polynomials with no leftovers

and applied Nussbaumer as follows:

Z4591[x]
⟨x64 + 1⟩

η2∼=
Z4591[z]
⟨z8+1⟩ [x]
⟨x8 − z⟩

η3
↪→

Z4591[z]
⟨z8+1⟩ [x]
⟨x16 − 1⟩ .

Since z is a principal 16-th root of unity in Z4591[z]
/〈
z8 + 1

〉
, we can factor x16 − 1 into∏

j(x−zj) over Z4591[z]
/〈
z8 + 1

〉
. In summary, we are left with 1536·2·2

8 = 768 polynomial
multiplications in Z4591[z]

/〈
z8 + 1

〉
. For multiplying polynomials in Z4591[z]

/〈
z8 + 1

〉
for details.

7.6.2 A Specialized Approach with Truncated Rader, Good–Thomas, and
Bruun FFTs

We briefly review the friendliness measures found by [HLY24, Hwa24]. The state-of-the-art
AVX2 implementation [Hwa24] computed the products in Z4591[x]

/〈
Φ17(x96)

〉
. [Hwa24]

first applied truncated Rader’s FFT to the isomorphism:

Z4591[x]
⟨Φ17(x96)⟩

∼=
∏
i ̸=0

Z4591[x]〈
x96 − ωi

17
〉

and twisted each of Z4591[x]
/〈
x96 − ωi

17
〉

into Z4591[x]
/〈
x96 − 1

〉
. They then applied

Good–Thomas FFT implementing the isomorphism:

Z4591[x]
⟨x96 − 1⟩

∼=
∏

j

Z4591[x]〈
x16 − ωj

6

〉
and twisted into Z4591[x]

/〈
x16 ± 1

〉
. Since each vector registers in AVX2 contains sixteen

16-bit values, all of the above are vectorization-friendly. The remaining problems are 48

40 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

polynomial multiplications in Z4591[x]
/〈
x16 − 1

〉
and 48 in Z4591[x]

/〈
x16 + 1

〉
. Since 48

is a multiple of 16, we can interleave the polynomials with no leftovers. This implies
permutation-friendliness. For multiplying polynomials in Z4591[x]

/〈
x16 ± 1

〉
, see [Hwa24]

for details.

8 Overview of Advances
We give overviews of the advances of polynomial multiplications used in lattice-based
cryptosystem implementations with emphases on modular arithmetic, algebraic techniques,
and vectorization. Table 14 gives an overview of existing works for Dilithium, Kyber, and
Saber, and Table 15 gives an overview of existing works for NTRU and NTRU Prime.

Table 14: Target architectures/extensions of existing works for Dilithium, Kyber, and
Saber.

Dilithium Kyber Saber
[BKS19] - Armv7E-M -
[KRS19] - - Armv7E-M
[ABD+20a] AVX2 - -
[ABD+20b] - AVX2 -
[DKRV20] - - AVX2
[ABCG20] - - Armv7E-M -
[MKV20] - - Armv7E-M, AVX2
[IKPC20] - - Armv7E-M
[CHK+21] - - Armv7-M, AVX2
[GKS21] Armv7-M - -
[SKS+21] - Armv8-A -
[NG21] - Armv8-A Armv8-A
[BHK+22b] Armv8-A Armv8-A Armv8-A
[AHKS22] Armv7-M Armv7E-M -
[HZZ+22] - Armv7E-M -
[AMOT22] - - RISC-V
[HKS23] Armv7-M - -

8.1 Modular Arithmetic
We first give an overview of modular arithmetic. See Table 16 for a summary of existing
works on 8-bit AVR, Armv7-M, Armv7E-M, Armv8.0-A, MVE, and AVX2.

8.1.1 Vector architecture implementations

[Sei18] was the first work proposing signed Montgomery multiplication. They applied the
idea to the vectorized 16-bit NTT used in the Ring-LWE scheme NewHope. Their idea
nicely captured the availability of 16-bit multiplication instructions in AVX2, and it was
applied to Kyber [ABD+20b] and NTRU Prime [BBC+20]. The subtractive variant was
also implemented by [SKS+21] in Armv8-A. The “unsigned Barrett multiplication” was
implemented in [Sho].

[BHK+22b] independently11 found the signed Barrett multiplication, the correspon-
dence between Montgomery and Barrett multiplication, and their variants and implemented

11[BHK+22b] cited the eprint version of [SKS+21]. The subtractive variant of Montgomery multiplication

Vincent Hwang 41

Table 15: Target architectures/extensions of existing works for NTRU and NTRU Prime.

NTRU NTRU Prime
[KRS19] Armv7E-M -
[BBC+20] AVX2 -
[CDH+20] - AVX2
[ACC+21] - Armv7-M
[CHK+21] Armv7-M, AVX2 -
[NG21] Armv8-A -
[IKPC22] Armv7E-M -
[AHY22] Armv7-M Armv7-M
[BBCT22] - AVX2
[CCHY24] Armv8-A -
[Hwa24] - Armv8-A, AVX2
[HLY24] - Armv8-A

Table 16: Summary of existing works of modular multiplications relavent to our target
architectures and extensions.

Barrett Montgomery Plantard
[Sho] ✓ - -
[Sei18] AVX2 AVX2 -
[BKS19] Armv7E-M Armv7E-M -
[ABCG20] - Armv7E-M -
[ACC+21] Armv7E-M Armv7-M -
[GKS21] - Armv7-M -
[SKS+21] Armv8.0-A Armv8.0-A -
[BHK+22b] Armv8.0-A Armv8.0-A -
[AHKS22] Armv7E-M - -
[BHK+22a] MVE - -
[HZZ+22] - - Armv7E-M
[AMOT22] - - ✓
[HKS23] Armv7-M, 8-bit AVR - -

them with Armv8-A. [BHK+22a] later demonstrated that if one increases the precision of
the arithmetic, then we have the canonical representations of the products for some special
moduli, and implemented the idea with M-profile vector extension (MVE).

8.1.2 Microcontroller Implementations

[BKS19] implemented Barrett reduction and the subtractive variant of Montgomery multi-
plication with the SIMD instruction smul{b, t}{b, t} in Armv7E-M. [ABCG20] switched
to the accumulative variant of Montgomery multiplication and absorbed the addition by
replacing a smul{b, t}{b, t} with smla{b, t}{b, t} [ABCG20, Algorithm 11]. The
signed Barrett reduction was later improved by [ACC+21] with instructions smlaw{b,

was shown in the published version but not the eprint one. We are informing the authors of [BHK+22b]
for this miscontribution.

42 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

t}12, but it was not reported (we found this while carefully examining the assembly
programs). In [ACC+21], they also proposed the uses of s{mul, mla}l in Armv7-M for
32-bit Montgomery multiplication and smmulr in Armv7E-M for 32-bit Barrett reduction.
The 32-bit Montgomery multiplication was independently proposed by [GKS21].

The improvement of signed Barrett reduction with Armv7E-M was later reported
in [AHKS22]. [HZZ+22] and [AMOT22] independently found the signed versions of
Plantard multiplication. [HZZ+22] applied the idea to 16-bit modular arithmetic with
Armv7E-M instructions s{mul, mla}w{b, t} while [AMOT22] applied the idea to 32-bit
modular arithmetic using 64 = 64× 64 arithmetic on K210 (64-bit) [AMOT22, Section
V-B]. Shortly after, [HZZ+24] applied signed Plantard arithmetic to Armv7-M with
essentially the same idea from [AMOT22]. Recently, [HKS23] proposed the uses of Barrett
multiplication when long/high multiplication instructions are slow, unusable, or unavailable
and implemented the ideas with Armv7-M and 8-bit AVR.

8.2 Algebraic Techniques
In Dilithium and Kyber, most optimizations are about modular arithmetic, memory
footprint, and instructions scheduling, so we exclude them unless specified otherwise in
this section.

8.2.1 Vector Architecture Implementations

We first give an overview of AVX2-optimized implementations. For the big-by-small
polynomial multiplication, [BBC+20] implemented 16-bit Good–Thomas FFT with permu-
tations instantiated as logical operations for ntrulpr761/sntrup761 and applied radix-2
FFT to the power-of-two dimension. [CHK+21] applied 16-bit size-256 negacyclic FFT to
Saber and size-1024, size-1536, and size-1728 cyclic FFTs to NTRU. For the big-by-big
polynomial multiplication, [MKV20, CDH+20] applied Toom–Cook and Karatsuba to
NTRU and Saber. For NTRU Prime, [BBCT22] implemented truncated Schönhage’s
and Nussbaumer’s FFTs (cf. Section 7.6.2), and [Hwa24] applied truncated Rader’s,
Good–Thomas, and Bruun’s FFTs following [HLY24]’s Armv8-A work.

For the Armv8-A Neon implementations, [NG21] implemented 16-bit size-256 negacyclic
FFT for Saber, and 3- and 4-way Toom–Cook for NTRU. Shortly after, [BHK+22b]
demonstrated 32-bit negacyclic FFT is more performant for Saber 13. [CCHY24] deployed
5-way Toom–Cook to NTRU and showed that Toeplitz transformation with Toom–Cook was
more favorable due to the presence of vector-by-scalar multiplication instructions on Armv8-
A, and [HLY24] applied Rader’s, Good–Thomas, and Bruun’s FFTs. Finally, [Hwa24]
applied truncated Rader’s FFT, Good–Thomas FFT, and Toeplitz matrix-vector products
to small-dimensional cyclic/negacyclic convolutions.

8.2.2 Microcontroller Implementations

[KRS19] applied Toom–Cook and Karatsuba to NTRU and Saber. [MKV20] later cached
the homomorphisms in the case of Saber and [IKPC20] applied the Toeplitz matrix-
vector product to Saber with Toom–Cook and Karatsuba as the underlying homomor-
phisms. [ACC+21] proposed three implementations for NTRU Prime parameter sets
ntrulpr761/sntrup761: (i) a Good–Thomas FFT computing the big-by-small polyno-
mial multiplication with 32-bit arithmetic over Z, (ii) an FFT using radix-2, radix-
3, and radix-5 butterflies with 16-bit arithmetic over Z4591, and (iii) an FFT using

12smlaw{b, t} multiplies a 32-bit value by a certain half of a 32-bit value, accumulates the result to the
accumulator, and returns the most significant 32-bit value.

13This doesn’t say that we should do the same thing for AVX2-optimized implementation since there
are no native 32-bit multiplication instructions in AVX2.

Vincent Hwang 43

radix-3 and Rader’s radix-17 butterflies with 16-bit arithmetic over Z4591. The big-by-
small polynomial multiplication came from [BBC+20] and was later adapted to NTRU
and Saber [CHK+21]. [IKPC22] extended [IKPC20]’s work to NTRU and [AHY22] im-
proved [ACC+21, CHK+21]’s NTRU and NTRU Prime implementations by proposing
vector-radix butterflies for speed [AHY22, Section 4.1] and vectorization-friendly Good–
Thomas for code size [AHY22, Section 3.3].

9 Directions for Future Works
We point out several possible future works as follows.

Non-uniform property of localization in Toom–Cook. In Section 4.1, we explain
that localization does not need to be uniform among subproblems and illustrate the idea
with Toom–Cook. In practice, one usually applies Toom–Cook recursively. Since the
required localization for subproblems is not uniform, applying more aggressive divide-and-
conquer strategies for some subproblems is possible. We want to know the practical impact
of this observation of Toom–Cook and its Toeplitz version for NTRU and Saber.

Schönhage and Nussbaumer for NTRU and Saber. In lattice-based cryptosystem
implementations, Schönhage and Nussbaumer FFTs were only applied to NTRU Prime
where the coefficient ring is Zq for an odd q. We want to know the practical impact of
Schönhage’s FFT, Nussbaumer’s FFT, and their Toeplitz versions for NTRU and Saber
where q is a power of two.

Barrett multiplication for finite fields. The finite field versions of Montgomery
multiplication [KA98] and Barrett reduction [Dhe03] were known in the literature. Ap-
pendix A extends the correspondence between Montgomery multiplication and Barrett
multiplication [BHK+22b] to principal ideal domains. For a finite field Fp, since Fp[x]
is a principal ideal domain, the correspondence implies the finite field version of Barrett
multiplication. The Barrett reduction found by [Dhe03] is then a special case in this regard.
We want to know the practical impact of the deployment of Barrett multiplication for
finite fields.

Toeplitz matrix-vector product for NTRU Prime. Section 5.5.2 explains that
polynomial multiplication modulo xn−αx−β can be turned into a Toeplitz matrix-vector
product. Explore the Toeplitz approach for NTRU Prime.

A Modular Arithmetic for Principal Ideal Domains
Let R be a principal ideal domain, e0, e1 ∈ R be elements with gcd(e0, e1) = 1. We assume
implicitly that R/⟨e0⟩ , R/⟨e1⟩ ⊂ R by first fixing the representatives for each equivalence
classes.

Montgomery multiplication. We define Montgomery multiplication as:

ab+
(
ab
(
−e−1

0 mod ⟨e1⟩
)

mod ⟨e1⟩
)
e0

e1
≡ abe−1

1 mod ⟨e0⟩ .

If b is a constant, we compute the following instead:

a (be1 mod ⟨e0⟩) +
(
a (be1 mod ⟨e0⟩)

(
−e−1

0 mod ⟨e1⟩
)

mod ⟨e1⟩
)
e0

e1
≡ ab mod ⟨e0⟩ .

44 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

We prove the equivalence as follows.

Proof. Let term = ab+
(
ab
(
−e−1

0 mod ⟨e1⟩
)

mod ⟨e1⟩
)
e0 be an abbreviation. By defini-

tion, we have

term mod ⟨e1⟩ =
(
ab+

(
ab
(
−e−1

0 mod ⟨e1⟩
)

mod ⟨e1⟩
)
e0
)

mod ⟨e1⟩ = 0.

Therefore, term is a multiple of e1 and term
e1
∈ R. It remains to show that term

e1
≡

abe−1
1 mod ⟨e0⟩. This boils down to the fact that term ≡ ab mod ⟨e0⟩ and e0⊥e1.

Barrett multiplication. Suppose we are given an ideal ⟨e⟩ and a quotient ring R/⟨e⟩
with a choice function implementing the inclusion R/⟨e⟩ ⊂ R. For an a ∈ R, we defineq

a
e

y
as the element in R satisfying:

e
ra
e

z
= a− a mod ⟨e⟩ .

For elements a, b ∈ R, Barrett multiplication computes the following

ab−

u

v
a

r
be1
e0

z

e1

}

~ e0.

Correspondence between Montgomery and Barrett multiplication. We claim
the following equation:

ab−

u

v
a

r
be1
e0

z

e1

}

~ e0 =
a (be1 mod ⟨e0⟩) +

(
a (be1 mod ⟨e0⟩) (−e−1

0) mod ⟨e1⟩
)
e0

e1
.

Proof. We first find the following:
s
be1

e0

{
mod ⟨e1⟩ = (be1 mod ⟨e0⟩) (−e−1

0) mod ⟨e1⟩ .

Then, we have:

ab−

u

v
a

r
be1
e0

z

e1

}

~ e0

=
abe1 − a

r
be1
e0

z
e0 +

(
a

r
be1
e0

z
mod ⟨e1⟩

)
e0

e1

=
abe1 − a

r
be1
e0

z
e0 +

(
a (be1 mod ⟨e0⟩) (−e−1

0) mod ⟨e1⟩
)
e0

e1

=
abe1 − a (be1 − (be1 mod ⟨e0⟩)) +

(
a (be1 mod ⟨e0⟩) (−e−1

0) mod ⟨e1⟩
)
e0

e1

=
a (be1 mod ⟨e0⟩) +

(
a (be1 mod ⟨e0⟩) (−e−1

0) mod ⟨e1⟩
)
e0

e1
.

[KAK96, KA98] demonstrated the benefit of unsigned Montgomery multiplication for
multi-precision arithmetic. They computed Montgomery multiplication with ⟨e0⟩ = 2abZ
and arithmetic modulo 2a. We leave the principal-ideal-domain view of the multi-precision
case

〈
ek

0
〉

and its relation to Barrett multiplication as future work.

Vincent Hwang 45

B Roots Defining Discrete Fourier Transforms
Theorem 2. For a ring R, an element ζ ∈ R, and a positive integer n, we have

Φn (ζ) = 0 −→

∀j = 1, . . . , n− 1,
∑

0≤i<n

ζij = 0

 .

Lemma 1. For a positive integer n and a proper divisor j of n, Φn(x) is a divisor of∑
0≤i< n

j
xij .

Proof. ∑
0≤i< n

j

xij = xn − 1
xj − 1 =

∏
d|n Φd(x)∏
d|j Φd(x) = Φn(x) ·

∏
d|n,d̸ |j,d<n

Φd(x).

Therefore, Φn(x) is a divisor of
∑

0≤i< n
j
xij .

Lemma 2. For a ring R, an element ζ ∈ R, a positive integer n, and a proper divisor j of
n, Φn (ζ) is a divisor of

∑
0≤i< n

j −1 ζ
ij .

Proof of Theorem 2. For proving

Φn (ζ) = 0 −→

∀j = 1, . . . , n− 1,
∑

0≤i<n

ζij = 0

 ,

we distinguish between two cases: (i) j|n and (ii) j ̸ |n.

• j|n:
∑

0≤i<n ζ
ij = n

j

∑
0≤i< n

j
ζij = n

j · Φn (ζ) ·
∏

d|n,d ̸ |j,d<n Φd (ζ) = 0.

• j ̸ |n, d = gcd (j, n):
∑

0≤i<n ζ
ij = n

d

∑
0≤i< n

d
ζij = n

d

∑
0≤i< n

d
ζid = 0.

Theorem 3. For a non-commutative ring R, Theorem 2 holds when ζ belongs to the
center of R where the center is the subset consisting of elements commuting to all elements
in R.

Remark 1. For a ring R, a positive integer n, and an element ζ ∈ R, ζ is a principal n-th
root of unity defining a size-n cyclic DFT over the coefficient ring R/⟨Φn (ζ)⟩ .

Corollary 1. For a positive integer n, 2 is a principal n-th root of unity defining a size-n
cyclic DFT over ZΦn(2).

C Algebraic View of Good–Thomas FFT
This section presents an algebraic view of the Good–Thomas FFT [Goo58, Goo71]. Let
n0, . . . , nd−1 be coprime integers and n =

∏
j nj . We have R[Zn] ∼=

⊗
j R[Znj

] as
algebras, or equivalently, R[x]/⟨xn − 1⟩ ∼= R[x0, . . . , xd−1]

/〈
xn0

0 − 1, . . . , xnd−1
d−1 − 1

〉
as

polynomial rings. We leave the proof as an exercise. For a d-dimensional polynomial
a =

(
ai0,...,id−1

)
i0,...,id−1

∈
⊗

j R[Znj], we define ai0,...,ih−1 as the (d−h)-dimensional tuple(
ai0,...,id−1

)
ih,...,id−1

for h > 0 and a otherwise. Multiplying two elements a, b is regarded
as the following multi-dimensional cyclic convolution ·h defined recursively:

ai0,...,ih−1 ·h bi0,...,ih−1 =
{
ai0,...,id−1bi0,...,id−1 if h = d,∑

k

(∑
ka+kb=k ai0,...,ih−1,ka

·h+1 bi0,...,ih−1,kb

)
xk

h otherwise.

46 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

Our goal is to implement ·0, the multiplication in R[x0, . . . , xd−1]
/〈
xn0

0 − 1, . . . , xnd−1
d−1 − 1

〉
.

We now apply homomorphism caching as follows. Let f : R[xd−1]
/〈
x

nd−1
d−1 − 1

〉 ∼= Rd−1
be a homomorphism. We naturally have R[x0, . . . , xd−1]

/〈
xn0

0 − 1, . . . , xnd−1
d−1 − 1

〉 ∼=
R[x0, . . . , xd−2]

/〈
xn0

0 − 1, . . . , xnd−2
d−2 − 1

〉
⊗Rd−1. This contextualizes ·d−2 as

ai0,...,id−3 ·d−2 bi0,...,id−3 =
∑

k

f−1

(∑
ka+kb=k

f(ai0,...,id−3,ka) ·Rd−1 f(bi0,...,id−3,kb
)
)
xk

d−2.

We compute and cache f(ai0,...,id−3,kb
) and f(ai0,...,id−3,kb

), and use them for all the k’s.
Similarly, the idea applies to all other dimensions. As a side note, arbitrary additive group
isomorphism Zn

∼=
∏

j Znj suffices and there are ϕ(n) of them where ϕ is the Euler’s totient
function. In Appendix D, we survey the vector–radix transform [HMCS77] for optimizing
the multi-dimensional transformation directly.

The notion of homomorphism caching is the actual reason making the multi-dimensional
cyclic convolution fast. Historically, Good–Thomas FFT was first presented in [Goo58]14

as a correspondence between a DFT defined on R[x]/⟨xn − 1⟩ and a tensor product of the
DFTs defined on R[xj]

/〈
x

nj

j − 1
〉

. This was cited as a motivation of Cooley–Tukey FFT
in [CT65]. [GS66, Sto66] pointed out the use of Cooley–Tukey FFT for cyclic convolutions.
[Goo71] explained the differences between Good–Thomas FFT and Cooley–Tukey FFT,
and acknowledged the application of multi-dimensional transform to multi-dimensional
cyclic convolution. Based on this, we believe that homomorphism caching was already
used in [Goo71].

D Vector-Radix Transform

In Section 3.4, we know that one-dimensional size-n cyclic convolution can be turned into
a multi-dimensional cyclic convolution of dimensionals based on a coprime factorization of
n. If we apply isomorphism for each dimension and cache the results, then we save the cost
of transformation significantly. This section explains how one can save more by directly op-
timizing a multi-dimensional transform ⊗jfj with vector-radix transformation [HMCS77].

Frequently, fj is a composition of one-dimensional isomorphisms shown in Section 3.
Let’s write fj = fj,0 ◦ · · · ◦ fj,h−1. A crucial property while tensoring two compositions
f0,0 ◦ f0,1 and f1,0 ◦ f1,1 is that (f0,0 ◦ f0,1) ⊗ (f1,0 ◦ f1,1) = (f0,0 ⊗ f1,0) ◦ (f0,1 ⊗ f1,1).
Usually, fj can be characterized as a composition of multiplicative steps and additive
steps. During the multiplicative steps, we only multiply coefficients by some constants.
For the additive steps, we perform additions and subtractions. One observation is that
multiplicative steps are faster if we apply their composition directly. Suppose we have
two multiplicative steps represented as matrix multiplications by

(
1 0
0 ζ0

)
⊗ I2 and

I2 ⊗
(

1 0
0 ζ1

)
. Since

((
1 0
0 ζ0

)
⊗ I2

)(
I2 ⊗

(
1 0
0 ζ1

))
=

1 0 0 0
0 ζ1 0 0
0 0 ζ0 0
0 0 0 ζ0ζ1

, we only

need three multiplications on the right-hand side. If we compute with the left-hand side,
then we need four multiplications. The high-dimensional generalization and fj ’s as series
of compositions are obivous. See [AHY22] for applications.

14In the literature, people commonly attribute the idea to [Goo58, Tho63]. However, we are unable to
locate the work [Tho63], and only find the publication information. If someone finds a copy, we would like
to see how general the idea was in [Tho63].

Vincent Hwang 47

E Generalization of Rader’s FFT
If n is an odd prime power, we define I∗ := {z ∈ Zn|z⊥n} and find a g satisfying{
gk|k ∈ Zλ(n)

}
= I∗ where λ is Carmichael’s lambda function.15. We can now split

the DFT map (aj)j∈I 7→ (âi)i∈I into i ∈ I∗ and i ∈ I − I∗. For i ∈ I∗, we move∑
j∈I−I∗ ajω

ij
n to the left-hand side and find

âglogg i −
∑

j∈I−I∗

ajω
ij
n =

∑
j∈I∗

ajω
ij
n =

∑
− logg j∈Zλ(n)

aglogg jωglogg i+logg j

n .

Obviously, collecting the right-hand side forms a system of equations implementing a
size-λ(n) cyclic convolution [Win78, Section IV]. See [Ber23, Sections 4.12.3 and 4.12.4]
for further generalization exploiting multiplicative subgroups in I∗ for arbitrary n.

F A Formal Treatment of Localization
For a ring R and a multiplicative set S ⊂ R, localization is a standard technique introducing
inverses of S. In this paper, we are interested in the case when R is a polynomial ring
over Z2k and S is the set {1, 2, 4, . . .}.

Multiplicative set. For a subset S of a ring, we call it multiplicative set if it is closed
under the ring multiplication. For example,

{
1, z, z2, . . .

}
⊂ Z is a multiplicative set for

any z ∈ Z.

Localization of a ring. For a ring R and a multiplicative set S ⊂ R, localization
formally introduces divisions by elements in S. Consider the set R× S and the following
equivalence relation

∀(r1, s1), (r2, s2) ∈ R× S, (r1, s1) ∼ (r2, s2)←→ ∃s ∈ S, ss2r1 = ss1r2.

The localization of R at S is defined as the quotient ring S−1R := R× S/∼ . The most
common example is the set of rational numbers Q – we define Q as the localization of Z at
Z− {0}.

Inverting a monomorphism. Let A and B be rings and η : A → B be a ring
monomorphism. For an integer z ∈ Z− {0}, suppose we find a map ψz : η(A)→ A such
that

∀a ∈ A, (ψz ◦ η)(a) = za.

We define a homomorphism ξ : Z−1η(A)→ Z−1A as

∀z−kη(a) ∈ Z−1η(A), ξ
(
z−kη(a)

)
:= z−1−kψz(η(a)).

If we restrict the image of ξ to η(A), we find ξ|η(A) :=
(
η(a) 7→ z−1ψz(η(a))

)
= η−1. In

summary, to invert η while given ψz with z ∈ Z− {0} non-invertible in A, it suffices to
define ξ : Z−1η(A)→ Z−1A and apply ξ|η(A).

Notice that applying ξ assumes an already existing approach for multiplying z−1. An
alternative way is to find ψz0 and ψz1 with z0⊥z1 and integers e0, e1 satisfying e0z0 +e1z1 =
1, and define η−1 as

η−1 := r 7→ e0ψz0(r) + e1ψz1(r).
Since e0 and e1 are integers, η−1 can be implemented entirely with arithmetic in R.
[CK91] used localization and Schönhage’s [Sch77] radix-2 and radix-3 FFTs for multiplying
polynomials over arbitrary unital (possibly-noncommutative) rings.

15There is always such a g since n is an odd prime.

48 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

G Generalizations of Schönhage and Nussbaumer
Let g(xn1) ∈ R[x] be a degree-n0n1 monic polynomial. Schönhage and Nussbaumer exploit
the structure of g(xn1) by introducing xn1 ∼ y (so R[x]/⟨g(xn1)⟩ ∼= R[x, y]/⟨xn1 − y, g(y)⟩).
Schönhage splits the structure into small structures by adjoining the defining condition.
On the other hand, Nussbaumer adjoins a structure for splitting and uses g(xn1) as the
defining condition. We start by replacing xn1 − y with h(x) satisfying deg(h) ≥ 2n1 − 1.

Schönhage. Schönhage identifies an n satisfying g(y)|(yn − 1) and h(x)|Φn(x), and
treats R[x]/⟨h(x)⟩ as the coefficient ring. We then split as follows:

R[x]
⟨g(xn1)⟩

∼=
R[x, y]

⟨xn1 − y, g(y)⟩ ↪→
R[x, y]

⟨h(x), g(y)⟩
∼=

(
R[x]

⟨h(x)⟩

)
[y]

⟨g(y)⟩
∼=
∏

i

(
R[x]

⟨h(x)⟩

)
[y]

⟨y − xi⟩
.

Since h(x)|Φn(x), Φn(x) = 0 ∈ R[x]/⟨h(x)⟩ and x is a principal n-th root of unity defining
a size-n cyclic FFT. Furthermore, since g(y)| (yn − 1), we apply truncation and obtain an
FFT with indeterminate y, coefficient ring R[x]/⟨h(x)⟩ , and polynomial modulus g(y).

Nussbaumer. Nussbaumer identifies an n satisfying g(y)|Φn(x) and h(x)|(xn − 1), and
splits as follows:

R[x]
⟨g(xn1)⟩

∼=
R[x, y]

⟨xn1 − y, g(y)⟩ ↪→
R[x, y]

⟨h(x), g(y)⟩
∼=

(
R[y]

⟨g(y)⟩

)
[x]

⟨h(x)⟩
∼=
∏

i

(
R[y]

⟨g(y)⟩

)
[x]

⟨x− yi⟩
.

See [MV83a, MV83b, Ber01] for more discussions generalizing the notion of principal
roots of unity to automorphisms defining FFTs.

H Applications of Truncation

H.1 R[x]/⟨xr + 1⟩ from R[x]/⟨x2r − 1⟩ for r⊥2
Our second application is to systematically generalize the isomorphism R[x]/⟨xr + 1⟩ ∼=
R[x, y]/⟨x+ y, yr − 1⟩ for an odd r. Let ψ : Z2r

∼= Z2 × Zr be the additive group isomor-
phism 1 7→ (1, 1). Recall that ψ induces an algebra isomorphism ψ′ : R[x]

/〈
x2r − 1

〉 ∼=
R[z]

/〈
z2 − 1

〉
⊗ R[y]/⟨yr − 1⟩ (cf. Section C). From R[z]

/〈
z2 − 1

〉 ∼= ∏
R[z]/⟨z ± 1⟩ ,

we have
R[x]
⟨xr + 1⟩

∼= ψ′−1
(

R[z]
⟨z + 1⟩ ⊗

R[y]
⟨yr − 1⟩

)
∼=

R[x, y]
⟨x+ y, yr − 1⟩ .

Similarly, whenever we are working on a polynomial ring with modulus a factor of xq0q1 − 1
for q0⊥q1, we can always look for transformations for R[z]/⟨zq0 − 1⟩ ⊗ R[y]/⟨yq1 − 1⟩
and pull them back to the desired domain (in our example, we exploit R[z]

/〈
z2 − 1

〉 ∼=∏
R[z]/⟨z ± 1⟩). Examples in the literature are the CRT negacyclic/tricyclic transform

in [HVDH22, Sections 3.5 and 3.6].
One should notice that we could derive optimizations by exploiting some properties

of a factor of xq0q1 − 1 and bring the resulting computation back to the isomorphism
R[x]/⟨xq0q1 − 1⟩ ∼= R[z]/⟨zq0 − 1⟩ ⊗ R[y]/⟨yq1 − 1⟩ . The optimization comes from split-
ting Φ3·2k =

(
x2k − ω6

)(
x2k − ω5

6

)
exploiting the identity ω6 + ω5

6 = 1 [LS19] and
Φ3 = (x− ω3)(x− ω2

3) exploiting the identity ω3 + ω2
3 = −1 [DV78a, Has22, AHY22]. We

leave them as exercises for the readers.

Vincent Hwang 49

H.2 Nussbaumer from Schönhage
As we know, for arbitrary g a factor of x2k−1, we can derive the corresponding Schönhage’s
FFT via truncating the Schönhage’s FFT for R[x]

/〈
x2k − 1

〉
. We now show how to

exploit the same idea for Nussbaumer’s FFT systematically. An example is to derive the
Nussbaumer for R[x]

/〈
x1536 + 1

〉
from the Schönhage for R[x]

/〈
(x1024 + 1)(x512 − 1)

〉
.

Given polynomials g(z)|(zn′ − 1) and h(z)|Φn′(z) with deg(g) = 2n0 and deg(h) = 2n1,
we have a size-2n0n1 transformation via Schönhage as follows

R[x]
⟨g (xn1)⟩

∼=
R[x, y]

⟨xn1 − y, g(y)⟩ ↪→
R[x, y]

⟨h(x), g(y)⟩
∼=

(
R[x]

⟨h(x)⟩

)
[y]

⟨g(y)⟩ .

We exchange x and y in (R[x]/⟨h(x)⟩) [y]/⟨g(y)⟩ , and invert the derivation of Nussbaumer.
This gives us the following transformation for Nussbaumer

R[x]
⟨h (xn0)⟩

∼=
R[x, y]

⟨xn0 − y,h(y)⟩ ↪→
R[x, y]

⟨g(x),h(y)⟩
∼=

(
R[y]

⟨h(y)⟩

)
[x]

⟨g(x)⟩ .

I Interprating Multiplications in R[x]/⟨xn − αx− β⟩ as
TMVPs

We outline [Yan23]’s ideas interprating multiplications in R[x]/⟨xn − αx− β⟩ as Toeplitz
matrix-vector products for generic β as follows. For reducing modulo xn−αx, if we addition-
ally add the element

∑n−2
j=0 αbn−1−jaj to c0, then the resulting computation is compatible

with a Toeplitz matrix-vector product. This gives us the following transformation matrix
mapping a to ab ∈ R[x]/⟨xn − αx− β⟩ :

M0 +M1 +M ′
2 −

αbn−1 · · · αb1 0

0 · · · 0 0
...

. . .
...

...
0 · · · 0 0

where M0 and M1 are the same as previous paragraph and

M ′
2 = Toeplitzn(0, . . . , 0, αbn−1, . . . , αb1, 0).

Since M0 +M1 +M ′
2 is the Toeplitz matrix

Toeplitzn(bn−1, . . . , b1, b0 + αbn−1, βbn−1 + αbn−2, . . . , βb2 + αb1, βb1),

ab ∈ R[x]/⟨xn − αx− β⟩ can be written as a Toeplitz matrix-vector product with post-
processing as follows:

ab mod (xn − αx− β) = (M0 +M1 +M ′
2) a−

αbn−1 · · · αb1 0

0 · · · 0 0
...

. . .
...

...
0 · · · 0 0

a.

J A Formal Treatment of Bilinear Systems
Let A,B, C be modules over the ring R. We call a map η : A× B → C a bilinear map if

50 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

• ∀a ∈ A, η(a,−) : B → C is a module homomorphism.

• ∀b ∈ B, η(−, b) : A → C is a module homomorphism.

Suppose we have maps ψ : A∗ → A′, κ : B → B′, ι : C′ → C∗, and a bilinear map
ξ : C′ × B′ → A′ satisfying

∀b ∈ B, ξ (−, κ (b)) = ψ ◦ η (−, b)∗ ◦ ι.

If η (−, b) = fb ◦ gb for some fb and gb, we have the corresponding factorization for
ξ (−, κ (b)):

∀b ∈ B, ξ (−, κ (b)) = ψ ◦ g∗
b ◦ f∗

b ◦ ι.

In Section 5.5, we present the ideas with bilinear systems. We now rephrase the core idea
of [Win80] as follows: Let’s assume A′ = A,B′ = B, C′ = C, ψ = a∗ 7→ a, κ = idB, and
ι = c 7→ c∗. For finite index sets I,J ,K and (r(i,j,k))(i,j,k)∈I×J ×K, define a = (ai)i∈I ∈
A, b = (bj)j∈J ∈ B, c = (ck)k∈K ∈ C. Then, we write

∑
i∈I

∑
j∈J

r(i,j,k)aibj

k∈K

= η(−, b)(a)

∑
j∈J

∑
k∈K

r(i,j,k)ckbj

i∈I

= ξ(−, b)(c)

and find ξ(−, b) = (ψ ◦ η(−, b)∗ ◦ ι).

K Implementing Transposition Matrices
We give a conceptual review of transposing a matrix with vector instructions. The idea
was introduced by [Flo72] under the context of permuting with pages and more recently
by [War12, Section 7.3] for permuting bit matrices. It was also used in [NG21, BBCT22,
BHK+22b, CCHY24, Hwa24, HLY24] for vectorized polynomial multiplications.

v0

v1

v2

v3

a0 a1 a2 a3

a4 a5 a6 a7

a8 a9 a10 a11

a12 a13 a14 a15

v0

v1

v2

v3

a0 a1 a8 a9

a4 a5 a12 a13

a2 a3 a10 a11

a6 a7 a14 a15

v0

v1

v2

v3

a0 a1 a8 a9

a4 a5 a12 a13

a2 a3 a10 a11

a6 a7 a14 a15

v0

v1

v2

v3

a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

Figure 2: Top-down transposition of the 4× 4 matrix with rows (a0, . . . , a3), (a4, . . . , a7),
(a8, . . . , a11), and (a12, . . . , a15).

Vincent Hwang 51

For simplicity, we illustrate how to transpose a 4× 4 matrix. Suppose the matrix is
represented in the row-major fashion by four vectors v0, . . . , v3 with each holding four
elements. There are two steps: (i) transpose as if we are transposing a 2× 2 matrix with
each entries 2× 2 matrix, and (ii) transpose each of the 2× 2 matrices. We implement step
(i) by permuting the pairs (v0, v2) and (v1, v3), and for step (ii), we permute the pairs
(v0, v1) and (v2, v3). See Figure 2 for an illustration. Obviously, the idea generalizes to
transposing arbitrary 2k×2k matrices – we transpose as if we are transposing a 2×2 matrix
with entries 2k−1 × 2k−1 matrices, and transpose the 2k−1 × 2k−1 matrices recursively.
Since we start from the root level of the recursion tree, we call the approach top-down
transposition. Notice that we can swap the order of (i) and (ii). We call the resulting
approach bottum-up transposition (cf. Figure 3).

v0

v1

v2

v3

a0 a1 a2 a3

a4 a5 a6 a7

a8 a9 a10 a11

a12 a13 a14 a15

v0

v1

v2

v3

a0 a4 a2 a6

a1 a5 a3 a7

a8 a12 a10 a14

a9 a13 a11 a15

v0

v1

v2

v3

a0 a4 a2 a6

a1 a5 a3 a7

a8 a12 a10 a14

a9 a13 a11 a15

v0

v1

v2

v3

a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

Figure 3: Bottum-up transposition of the 4× 4 matrix with rows (a0, . . . , a3), (a4, . . . , a7),
(a8, . . . , a11), and (a12, . . . , a15).

L Constructing the Column Representation of a
Toeplitz Matrix

Algorithm 10 constructs the columns with only memory loads, and Algorithm 11 replaces
some memory instructions with permutation instructions.

Algorithm 10 Constructing the columns of a Toeplitz matrix from its array form with
memory loads [CCHY24].
Inputs: Array M[8] = {0, a′

3, a′
2, a′

1, a0, a1, a2, a3}.
Outputs: Vector registers t0 = (a0, a1, a2, a3), t1 = (a′

1, a0, a1, a2), t2 = (a′
2, a

′
1, a0, a1),

and t3 = (a′
3, a

′
2, a

′
1, a0).

1: t0 = M[4-7]
2: t1 = M[3-6]
3: t2 = M[2-5]
4: t3 = M[1-4]
5: ▷ Memory load.

52 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

Algorithm 11 Constructing the columns of a Toeplitz matrix from its array form with
memory loads and permutations [Hwa24].
Inputs: Array M[8] = {0, a′

3, a′
2, a′

1, a0, a1, a2, a3}.
Outputs: Vector registers t0 = (a0, a1, a2, a3), t1 = (a′

1, a0, a1, a2), t2 = (a′
2, a

′
1, a0, a1),

and t3 = (a′
3, a

′
2, a

′
1, a0).

1: t0 = M[4-7]
2: t3 = M[0-3]
3: ▷ Memory load.
4: t1 = ext(t3, t0, 3)
5: t2 = ext(t3, t0, 2)
6: t3 = ext(t3, t0, 1)

References
[AB74] Ramesh C. Agarwal and Charles S. Burrus. Fast convolution using Fermat

number transforms with applications to digital filtering. IEEE Transactions
on Acoustics, Speech, and Signal Processing, 22(2):87–97, 1974. https:
//ieeexplore.ieee.org/abstract/document/1162555. 13

[ABCG20] Erdem Alkim, Yusuf Alper Bilgin, Murat Cenk, and François Gérard.
Cortex-M4 optimizations for {R, M} LWE schemes. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, 2020(3):336–357,
2020. https://tches.iacr.org/index.php/TCHES/article/view/8593.
36, 40, 41

[ABD+20a] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler,
and Damien Stehlé. CRYSTALS–Dilithium. Submission to the NIST
Post-Quantum Cryptography Standardization Project [NIS], 2020. https:
//pq-crystals.org/dilithium/. 4, 40

[ABD+20b] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and
Damien Stehlé. CRYSTALS–Kyber. Submission to the NIST Post-Quantum
Cryptography Standardization Project [NIS], 2020. https://pq-crystals.
org/kyber/. 4, 40

[ACC+21] Erdem Alkim, Dean Yun-Li Cheng, Chi-Ming Marvin Chung, Hülya Evkan,
Leo Wei-Lun Huang, Vincent Hwang, Ching-Lin Trista Li, Ruben Nieder-
hagen, Cheng-Jhih Shih, Julian Wälde, and Bo-Yin Yang. Polynomial
Multiplication in NTRU Prime Comparison of Optimization Strategies on
Cortex-M4. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2021(1):217–238, 2021. https://tches.iacr.org/index.php/
TCHES/article/view/8733. 16, 21, 41, 42, 43

[ACC+22] Amin Abdulrahman, Jiun-Peng Chen, Yu-Jia Chen, Vincent Hwang,
Matthias J. Kannwischer, and Bo-Yin Yang. Multi-moduli NTTs for
Saber on Cortex-M3 and Cortex-M4. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2022(1):127–151, 2022. https:
//tches.iacr.org/index.php/TCHES/article/view/9292. 21, 37

[AHKS22] Amin Abdulrahman, Vincent Hwang, Matthias J. Kannwischer, and Dann
Sprenkels. Faster Kyber and Dilithium on the Cortex-M4. In Applied Cryp-
tography and Network Security: 20th International Conference, ACNS 2022,

https://ieeexplore.ieee.org/abstract/document/1162555
https://ieeexplore.ieee.org/abstract/document/1162555
https://tches.iacr.org/index.php/TCHES/article/view/8593
https://pq-crystals.org/dilithium/
https://pq-crystals.org/dilithium/
https://pq-crystals.org/kyber/
https://pq-crystals.org/kyber/
https://tches.iacr.org/index.php/TCHES/article/view/8733
https://tches.iacr.org/index.php/TCHES/article/view/8733
https://tches.iacr.org/index.php/TCHES/article/view/9292
https://tches.iacr.org/index.php/TCHES/article/view/9292

Vincent Hwang 53

Rome, Italy, June 20–23, 2022, Proceedings, pages 853–871, 2022. https://
link.springer.com/chapter/10.1007/978-3-031-09234-3_42. 40, 41,
42

[AHY22] Erdem Alkim, Vincent Hwang, and Bo-Yin Yang. Multi-Parameter Support
with NTTs for NTRU and NTRU Prime on Cortex-M4. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, 2022(4):349–371,
2022. https://tches.iacr.org/index.php/TCHES/article/view/9823.
14, 25, 41, 43, 46, 48

[AMOT22] Daichi Aoki, Kazuhiko Minematsu, Toshihiko Okamura, and Tsuyoshi
Takagi. Efficient Word Size Modular Multiplication over Signed Integers.
In 2022 IEEE 29th Symposium on Computer Arithmetic (ARITH), pages
94–101. IEEE, 2022. https://ieeexplore.ieee.org/document/9974215.
10, 11, 35, 40, 41, 42

[ARM10] ARM. Cortex-M3 Technical Reference Manual, 2010. https://developer.
arm.com/documentation/ddi0337/h. 34

[ARM12] ARM. ARM Architecture Reference Manual, 2012. https://developer.
arm.com/documentation/ddi0406/cb. 29

[ARM21a] ARM. Arm Architecture Reference Manual, Armv8, for Armv8-A ar-
chitecture profile, 2021. https://developer.arm.com/documentation/
ddi0487/gb/?lang=en. 29, 32

[ARM21b] ARM. Armv7-M Architecture Refernce Manual, 2021. https://developer.
arm.com/documentation/ddi0403/ed. 29, 32

[ARM23] ARM. Armv8-M Architecture Reference Manual, 2023. https://developer.
arm.com/documentation/ddi0553/latest. 29

[Bar86] Paul Barrett. Implementing the Rivest Shamir and Adleman Public Key
Encryption Algorithm on a Standard Digital Signal Processor. In CRYPTO
1986, LNCS, pages 311–323. SV, 1986. https://link.springer.com/
chapter/10.1007/3-540-47721-7_24. 4, 10

[BBC+20] Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, Chitchanok
Chuengsatiansup, Tanja Lange, Adrian Marotzke, Bo-Yuan Peng, Nicola Tu-
veri, Christine van Vredendaal, and Bo-Yin Yang. NTRU Prime. Submission
to the NIST Post-Quantum Cryptography Standardization Project [NIS],
2020. https://ntruprime.cr.yp.to/. 4, 21, 40, 41, 42, 43

[BBCT22] Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, and Nicola
Tuveri. OpenSSLNTRU: Faster post-quantum TLS key exchange. In
31st USENIX Security Symposium (USENIX Security 22), pages 845–
862, 2022. https://www.usenix.org/conference/usenixsecurity22/
presentation/bernstein. 21, 29, 39, 41, 42, 50

[BC87] J. V. Brawley and L. Carlitz. Irreducibles and the composed product
for polynomials over a finite field. Discrete Mathematics, 65(2):115–
139, 1987. https://www.sciencedirect.com/science/article/pii/
0012365X8790135X. 15, 23

[BCS13] Daniel J. Bernstein, Tung Chou, and Peter Schwabe. Mcbits: Fast constant-
time code-based cryptography. In Cryptographic Hardware and Embedded
Systems-CHES 2013: 15th International Workshop, Santa Barbara, CA,

https://link.springer.com/chapter/10.1007/978-3-031-09234-3_42
https://link.springer.com/chapter/10.1007/978-3-031-09234-3_42
https://tches.iacr.org/index.php/TCHES/article/view/9823
https://ieeexplore.ieee.org/document/9974215
https://developer.arm.com/documentation/ddi0337/h
https://developer.arm.com/documentation/ddi0337/h
https://developer.arm.com/documentation/ddi0406/cb
https://developer.arm.com/documentation/ddi0406/cb
https://developer.arm.com/documentation/ddi0487/gb/?lang=en
https://developer.arm.com/documentation/ddi0487/gb/?lang=en
https://developer.arm.com/documentation/ddi0403/ed
https://developer.arm.com/documentation/ddi0403/ed
https://developer.arm.com/documentation/ddi0553/latest
https://developer.arm.com/documentation/ddi0553/latest
https://link.springer.com/chapter/10.1007/3-540-47721-7_24
https://link.springer.com/chapter/10.1007/3-540-47721-7_24
https://ntruprime.cr.yp.to/
https://www.usenix.org/conference/usenixsecurity22/presentation/bernstein
https://www.usenix.org/conference/usenixsecurity22/presentation/bernstein
https://www.sciencedirect.com/science/article/pii/0012365X8790135X
https://www.sciencedirect.com/science/article/pii/0012365X8790135X

54 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

USA, August 20-23, 2013. Proceedings 15, pages 250–272. Springer, 2013.
https://link.springer.com/chapter/10.1007/978-3-642-40349-
1_15#:~:text=Abstract,a%20single%20Ivy%20Bridge%20core. 26

[Ber01] Daniel J. Bernstein. Multidigit multiplication for mathematicians. 2001.
https://cr.yp.to/papers.html#m3. 7, 19, 20, 26, 48

[Ber07] Daniel J. Bernstein. The tangent FFT. In Applied Algebra, Algebraic
Algorithms and Error-Correcting Codes: 17th International Symposium,
AAECC-17, pages 291–300, 2007. https://link.springer.com/chapter/
10.1007/978-3-540-77224-8_34. 15

[Ber08] Daniel J. Bernstein. Fast multiplication and its applications. Algo-
rithmic number theory, 44:325–384, 2008. https://cr.yp.to/papers.
html#multapps. 7, 24, 37

[Ber23] Daniel J. Bernstein. Fast norm computation in smooth-degree abelian
number fields. Research in Number Theory, 9(4):82, 2023. https://link.
springer.com/article/10.1007/s40993-022-00402-0. 25, 47

[BGM93] Ian F. Blake, Shuhong Gao, and Ronald C. Mullin. Explicit Factor-
ization of x2k + 1 over Fp with Prime p ≡ 3 mod 4. Applicable Alge-
bra in Engineering, Communication and Computing, 4(2):89–94, 1993.
https://link.springer.com/article/10.1007/BF01386832. 15

[BHK+22a] Hanno Becker, Vincent Hwang, Matthias J. Kannwischer, Lorenz Panny,
and Bo-Yin Yang. Efficient Multiplication of Somewhat Small Integers using
Number–Theoretic Transforms. In International Workshop on Security,
pages 3–23. Springer, 2022. https://link.springer.com/chapter/10.
1007/978-3-031-15255-9_1. 10, 41

[BHK+22b] Hanno Becker, Vincent Hwang, Matthias J. Kannwischer, Bo-Yin Yang,
and Shang-Yi Yang. Neon NTT: Faster Dilithium, Kyber, and Saber on
Cortex-A72 and Apple M1. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2022(1):221–244, 2022. https://tches.iacr.org/
index.php/TCHES/article/view/9295. 5, 8, 9, 10, 32, 33, 34, 37, 40, 41,
42, 43, 50

[BKS19] Leon Botros, Matthias J. Kannwischer, and Peter Schwabe. Memory-
Efficient High-Speed Implementation of Kyber on Cortex-M4. In Progress
in Cryptology - AFRICACRYPT 2019, volume 11627 of Lecture Notes in
Computer Science, pages 209–228. Springer, 2019. https://doi.org/10.
1007/978-3-030-23696-0_11. 40, 41

[BMGVdO15] F.E. Brochero Martínez, C. R. Giraldo Vergaraand, and L. Batista
de Oliveira. Explicit factorization of xn − 1 ∈ Fq[x]. Designs, Codes and
Cryptography, 77:277–286, 2015. https://link.springer.com/article/
10.1007/s10623-014-0005-y. 15

[BMK+22] Hanno Becker, Jose Maria Bermudo Mera, Angshuman Karmakar, Joseph
Yiu, and Ingrid Verbauwhedeg. Polynomial multiplication on embedded
vector architectures. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2022(1):482–505, 2022. https://tches.iacr.org/
index.php/TCHES/article/view/9305. 26

[Bou89] Nicolas Bourbaki. Algebra I. Springer, 1989. 7

https://link.springer.com/chapter/10.1007/978-3-642-40349-1_15#:~:text=Abstract,a%20single%20Ivy%20Bridge%20core.
https://link.springer.com/chapter/10.1007/978-3-642-40349-1_15#:~:text=Abstract,a%20single%20Ivy%20Bridge%20core.
https://cr.yp.to/papers.html#m3
https://link.springer.com/chapter/10.1007/978-3-540-77224-8_34
https://link.springer.com/chapter/10.1007/978-3-540-77224-8_34
https://cr.yp.to/papers.html#multapps
https://cr.yp.to/papers.html#multapps
https://link.springer.com/article/10.1007/s40993-022-00402-0
https://link.springer.com/article/10.1007/s40993-022-00402-0
https://link.springer.com/article/10.1007/BF01386832
https://link.springer.com/chapter/10.1007/978-3-031-15255-9_1
https://link.springer.com/chapter/10.1007/978-3-031-15255-9_1
https://tches.iacr.org/index.php/TCHES/article/view/9295
https://tches.iacr.org/index.php/TCHES/article/view/9295
https://doi.org/10.1007/978-3-030-23696-0_11
https://doi.org/10.1007/978-3-030-23696-0_11
https://link.springer.com/article/10.1007/s10623-014-0005-y
https://link.springer.com/article/10.1007/s10623-014-0005-y
https://tches.iacr.org/index.php/TCHES/article/view/9305
https://tches.iacr.org/index.php/TCHES/article/view/9305

Vincent Hwang 55

[Bra84] Ronald N. Bracewell. The Fast Hartley Transform. Proceedings of the
IEEE, 72(8):1010–1018, 1984. https://ieeexplore.ieee.org/document/
1457236. 15

[Bru78] Georg Bruun. z-transform DFT Filters and FFT’s. IEEE Transactions
on Acoustics, Speech, and Signal Processing, 26(1):56–63, 1978. https:
//ieeexplore.ieee.org/document/1163036. 14, 15

[CCHY24] Han-Ting Chen, Yi-Hua Chung, Vincent Hwang, and Bo-Yin Yang. Algo-
rithmic Views of Vectorized Polynomial Multipliers – NTRU. In Anupam
Chattopadhyay, Shivam Bhasin, Stjepan Picek, and Chester Rebeiro, editors,
Progress in Cryptology – INDOCRYPT 2023, pages 177–196. Springer Na-
ture Switzerland, 2024. https://link.springer.com/chapter/10.1007/
978-3-031-56235-8_9. 19, 31, 32, 38, 41, 42, 50, 51

[CDH+20] Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hulsing, Joost
Rijneveld, John M. Schanck, Peter Schwabe, William Whyte, Zhenfei
Zhang, Tsunekazu Saito, Takashi Yamakawa, and Keita Xagawa. NTRU.
Submission to the NIST Post-Quantum Cryptography Standardization
Project [NIS], 2020. https://ntru.org/. 4, 21, 41, 42

[CF94] Richard Crandall and Barry Fagin. Discrete Weighted Transforms and
Large-integer Arithmetic. Mathematics of computation, 62(205):305–324,
1994. https://www.ams.org/journals/mcom/1994-62-205/S0025-5718-
1994-1185244-1/?active=current. 13, 24

[CHK+21] Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, Gregor
Seiler, Cheng-Jhih Shih, and Bo-Yin Yang. NTT Multiplication for NTT-
unfriendly Rings New Speed Records for Saber and NTRU on Cortex-M4
and AVX2. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2021(2):159–188, 2021. https://tches.iacr.org/index.php/
TCHES/article/view/8791. 8, 21, 37, 40, 41, 42, 43

[CK91] David G. Cantor and Erich Kaltofen. On Fast Multiplication of Polynomials
over Arbitrary Algebras. Acta Informatica, 28(7):693–701, 1991. https:
//link.springer.com/article/10.1007/BF01178683. 47

[CT65] James W. Cooley and John W. Tukey. An Algorithm for the Machine Calcu-
lation of Complex Fourier Series. Mathematics of Computation, 19(90):297–
301, 1965. https://www.ams.org/journals/mcom/1965-19-090/S0025-
5718-1965-0178586-1/. 46

[DH84] Pierre Duhamel and Henk Hollmann. ‘Split Radix’ FFT Algorithm. Electron-
ics letters, 20(1):14–16, 1984. https://digital-library.theiet.org/
content/journals/10.1049/el_19840012. 15, 23

[Dhe03] Jean-François Dhem. Efficient Modular Reduction Algorithm in Fq[x] and
Its Application to “Left to Right” Modular Multiplication in F2[x]. pages
203–213, 2003. https://link.springer.com/chapter/10.1007/978-3-
540-45238-6_17. 10, 43

[DKRV20] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik
Vercauteren. SABER. Submission to the NIST Post-Quantum Cryptography
Standardization Project [NIS], 2020. https://www.esat.kuleuven.be/
cosic/pqcrypto/saber/. 4, 21, 40

https://ieeexplore.ieee.org/document/1457236
https://ieeexplore.ieee.org/document/1457236
https://ieeexplore.ieee.org/document/1163036
https://ieeexplore.ieee.org/document/1163036
https://link.springer.com/chapter/10.1007/978-3-031-56235-8_9
https://link.springer.com/chapter/10.1007/978-3-031-56235-8_9
https://ntru.org/
https://www.ams.org/journals/mcom/1994-62-205/S0025-5718-1994-1185244-1/?active=current
https://www.ams.org/journals/mcom/1994-62-205/S0025-5718-1994-1185244-1/?active=current
https://tches.iacr.org/index.php/TCHES/article/view/8791
https://tches.iacr.org/index.php/TCHES/article/view/8791
https://link.springer.com/article/10.1007/BF01178683
https://link.springer.com/article/10.1007/BF01178683
https://www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-1/
https://www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-1/
https://digital-library.theiet.org/content/journals/10.1049/el_19840012
https://digital-library.theiet.org/content/journals/10.1049/el_19840012
https://link.springer.com/chapter/10.1007/978-3-540-45238-6_17
https://link.springer.com/chapter/10.1007/978-3-540-45238-6_17
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/

56 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

[DV78a] Eric Dubois and Anastasios N. Venetsanopoulos. A New Algorithm for the
Radix-3 FFT. IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, 26(3):222–225, 1978. https://ieeexplore.ieee.org/document/
1163084. 48

[DV78b] Eric Dubois and Anastasios N. Venetsanopoulos. The discrete Fourier
transform over finite rings with application to fast convolution. IEEE
Computer Architecture Letters, 27(07):586–593, 1978. https://ieeexplore.
ieee.org/document/1675158. 13

[DV90] Pierre Duhamel and Martin Vetterli. Fast Fourier transforms: a tutorial re-
view and a state of the art. Signal processing, 19(4):259–299, 1990. https://
www.sciencedirect.com/science/article/pii/016516849090158U. 7

[FD05] Haining Fan and Yiqi Dai. Fast Bit-Parallel GF(2/sup n/) Multiplier for
All Trinomials. IEEE Transactions on Computers, 54(4):485–490, 2005.
https://ieeexplore.ieee.org/document/1401867. 28

[FH07] Haining Fan and M. Anwar Hasan. A New Approach to Subquadratic
Space Complexity Parallel Multipliers for Extended Binary Fields. IEEE
Transactions on Computers, 56(2):224–233, 2007. https://ieeexplore.
ieee.org/document/4042682. 28

[Fid73] Charles M. Fiduccia. On the Algebraic Complexity of Matrix Multiplication.
1973. https://cr.yp.to/bib/entries.html#1973/fiduccia-matrix. 26

[Flo72] Robert W Floyd. Permuting Information in Idealized Two-Level Storage.
In Complexity of Computer Computations: Proceedings of a symposium on
the Complexity of Computer Computations, held March 20–22, 1972, at the
IBM Thomas J. Watson Research Center, Yorktown Heights, New York,
and sponsored by the Office of Naval Research, Mathematics Program, IBM
World Trade Corporation, and the IBM Research Mathematical Sciences
Department, pages 105–109. Springer, 1972. https://link.springer.com/
chapter/10.1007/978-1-4684-2001-2_10. 50

[FSS20] Tim Fritzmann, Georg Sigl, and Johanna Sepúlveda. RISQ-V: Tightly Cou-
pled RISC-V Accelerators for Post-Quantum Cryptography. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, 2020(4):239–280,
2020. https://tches.iacr.org/index.php/TCHES/article/view/8683.
21

[Für09] Martin Fürer. Faster Integer Multiplication. SIAM Journal on Computing,
39(3):979–1005, 2009. https://doi.org/10.1137/070711761. 13, 23

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete
Mathematics: a Foundation for Computer Science. Addison-Wesley, second
edition, 1994. 33

[GKS21] Denisa O. C. Greconici, Matthias J. Kannwischer, and Daan Sprenkels. Com-
pact Dilithium Implementations on Cortex-M3 and Cortex-M4. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, 2021(1):1–24,
2021. https://tches.iacr.org/index.php/TCHES/article/view/8725.
34, 36, 40, 41, 42

[Goo58] I. J. Good. The Interaction Algorithm and Practical Fourier Analysis.
Journal of the Royal Statistical Society: Series B (Methodological), 20(2):361–
372, 1958. https://www.jstor.org/stable/2983896. 14, 45, 46

https://ieeexplore.ieee.org/document/1163084
https://ieeexplore.ieee.org/document/1163084
https://ieeexplore.ieee.org/document/1675158
https://ieeexplore.ieee.org/document/1675158
https://www.sciencedirect.com/science/article/pii/016516849090158U
https://www.sciencedirect.com/science/article/pii/016516849090158U
https://ieeexplore.ieee.org/document/1401867
https://ieeexplore.ieee.org/document/4042682
https://ieeexplore.ieee.org/document/4042682
https://cr.yp.to/bib/entries.html#1973/fiduccia-matrix
https://link.springer.com/chapter/10.1007/978-1-4684-2001-2_10
https://link.springer.com/chapter/10.1007/978-1-4684-2001-2_10
https://tches.iacr.org/index.php/TCHES/article/view/8683
https://doi.org/10.1137/070711761
https://tches.iacr.org/index.php/TCHES/article/view/8725
https://www.jstor.org/stable/2983896

Vincent Hwang 57

[Goo71] I. J. Good. The relationship between two fast Fourier transforms. IEEE
Transactions on Computers, 100(3):310–317, 1971. https://ieeexplore.
ieee.org/document/1671829. 37, 45, 46

[GS66] W. M. Gentleman and G. Sande. Fast Fourier Transforms: For Fun and
Profit. In Proceedings of the November 7-10, 1966, Fall Joint Computer
Conference, AFIPS ’66 (Fall), pages 563–578. Association for Computing
Machinery, 1966. https://doi.org/10.1145/1464291.1464352. 23, 46

[Har42] Ralph VL Hartley. A More Symmetrical Fourier Analysis Applied to
Transmission Problems. Proceedings of the IRE, 30(3):144–150, 1942. https:
//ieeexplore.ieee.org/document/1694454. 15

[Has22] Chenar Abdulla Hassan. Radix-3 NTT-Based Polynomial Multiplication
for Lattice-Based Cryptography. Master’s thesis, Middle East Technical
University, 2022. https://open.metu.edu.tr/handle/11511/97928. 48

[HB95] M.A. Hasan and V.K. Bhargava. Architecture for a low complexity
rate-adaptive Reed-Solomon encoder. IEEE Transactions on Computers,
44(7):938–942, 1995. https://ieeexplore.ieee.org/document/392853.
28

[HKS23] Vincent Hwang, YoungBeom Kim, and Seog Chung Seo. Barrett Multipli-
cation for Dilithium on Embedded Devices. 2023. https://eprint.iacr.
org/2023/1955. 5, 8, 10, 34, 35, 40, 41, 42

[HLY24] Vincent Hwang, Chi-Ting Liu, and Bo-Yin Yang. Algorithmic Views of Vec-
torized Polynomial Multipliers – NTRU Prime. pages 24–46, 2024. https:
//link.springer.com/chapter/10.1007/978-3-031-54773-7_2. 15, 16,
24, 29, 33, 38, 39, 41, 42, 50

[HMCS77] David B. Harris, James H. McClellan, David S. K. Chan, and Hans W.
Schuessler. Vector Radix Fast Fourier Transform. In ICASSP’77. IEEE
International Conference on Acoustics, Speech, and Signal Processing, vol-
ume 2, pages 548–551, 1977. https://ieeexplore.ieee.org/document/
1170349. 46

[HQZ04] Guillaume Hanrot, Michel Quercia, and Paul Zimmermann. The Middle
Product Algorithm I. Applicable Algebra in Engineering, Communica-
tion and Computing, 14(6):415–438, 2004. https://link.springer.com/
article/10.1007/s00200-003-0144-2. 26

[HVDH22] David Harvey and Joris Van Der Hoeven. Polynomial Multiplication over
Finite Fields in time O (n log n). Journal of the ACM, 69(2):1–40, 2022.
https://dl.acm.org/doi/full/10.1145/3505584. 16, 48

[Hwa22] Vincent Hwang. Case Studies on Implementing Number–Theoretic
Transforms with Armv7-M, Armv7E-M, and Armv8-A. Master’s thesis,
2022. https://github.com/vincentvbh/NTTs_with_Armv7-M_Armv7E-
M_Armv8-A. 24

[Hwa24] Vincent Hwang. Pushing the Limit of Vectorized Polynomial Multiplication
for NTRU Prime. 2024. To appear at ACISP 2024, currently available at
https://eprint.iacr.org/2023/604. 16, 29, 30, 38, 39, 40, 41, 42, 50,
52

https://ieeexplore.ieee.org/document/1671829
https://ieeexplore.ieee.org/document/1671829
https://doi.org/10.1145/1464291.1464352
https://ieeexplore.ieee.org/document/1694454
https://ieeexplore.ieee.org/document/1694454
https://open.metu.edu.tr/handle/11511/97928
https://ieeexplore.ieee.org/document/392853
https://eprint.iacr.org/2023/1955
https://eprint.iacr.org/2023/1955
https://link.springer.com/chapter/10.1007/978-3-031-54773-7_2
https://link.springer.com/chapter/10.1007/978-3-031-54773-7_2
https://ieeexplore.ieee.org/document/1170349
https://ieeexplore.ieee.org/document/1170349
https://link.springer.com/article/10.1007/s00200-003-0144-2
https://link.springer.com/article/10.1007/s00200-003-0144-2
https://dl.acm.org/doi/full/10.1145/3505584
https://github.com/vincentvbh/NTTs_with_Armv7-M_Armv7E-M_Armv8-A
https://github.com/vincentvbh/NTTs_with_Armv7-M_Armv7E-M_Armv8-A
https://eprint.iacr.org/2023/604

58 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

[HZZ+22] Junhao Huang, Jipeng Zhang, Haosong Zhao, Zhe Liu, Ray CC Cheung,
Çetin Kaya Koç, and Donglong Chen. Improved Plantard Arithmetic
for Lattice-based Cryptography. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2022(4):614–636, 2022. https://tches.
iacr.org/index.php/TCHES/article/view/9833. 10, 11, 35, 36, 37, 40,
41, 42

[HZZ+24] Junhao Huang, Haosong Zhao, Jipeng Zhang, Wangchen Dai, Lu Zhou,
Ray CC Cheung, Cetin Kaya Koc, and Donglong Chen. Yet another
Improvement of Plantard Arithmetic for Faster Kyber on Low-end 32-
bit IoT Devices. 2024. To appear at IEEE Transactions on Information
Forensics & Security. 35, 36, 42

[IKPC20] Írem Keskinkurt Paksoy and Murat Cenk. TMVP-based Multiplication for
Polynomial Quotient Rings and Application to Saber on ARM Cortex-M4.
Cryptology ePrint Archive, 2020. https://eprint.iacr.org/2020/1302.
40, 42, 43

[IKPC22] Írem Keskinkurt Paksoy and Murat Cenk. Faster NTRU on ARM Cortex-
M4 with TMVP-based multiplication. IEEE Transactions on Circuits and
Systems I: Regular Papers, 69(10):4083–4092, 2022. https://ieeexplore.
ieee.org/document/9835023. 28, 38, 41, 43

[Int23] Intel. Intel Architecture Instruction Set Extensions Programming Ref-
erence, 2023. https://www.intel.com/content/www/us/en/developer/
articles/technical/intel-avx-512-instructions.html. 29

[Jac12a] Nathan Jacobson. Basic Algebra I. Courier Corporation, 2012. 7

[Jac12b] Nathan Jacobson. Basic Algebra II. Courier Corporation, 2012. 7, 18

[JF07] Steven G. Johnson and Matteo Frigo. A Modified Split-Radix FFT With
Fewer Arithmetic Operations. IEEE Transactions on Signal Processing,
55(1):111–119, 2007. https://ieeexplore.ieee.org/document/4034175.
15

[KA98] Cetin Kaya Koc and Tolga Acar. Montgomery Multiplication in GF (2k). De-
signs, Codes and Cryptography, 14:57–69, 1998. https://link.springer.
com/article/10.1023/A:1008208521515. 9, 43, 44

[KAK96] Cetin Kaya Koc, Tolga Acar, and Burton S. Kaliski. Analyzing and com-
paring Montgomery multiplication algorithms. IEEE Micro, 16(3):26–33,
1996. https://ieeexplore.ieee.org/document/502403. 9, 44

[KO62] A. Karatsuba and Yu. Ofman. Multiplication of many-digital numbers by
automatic computers. In Doklady Akademii Nauk, volume 145(2), pages
293–294, 1962. http://cr.yp.to/bib/1963/karatsuba.html. 16, 22, 23

[KRS19] Matthias J. Kannwischer, Joost Rijneveld, and Peter Schwabe. Faster
Multiplication in Z2m [x] on Cortex-M4 to Speed up NIST PQC Candidates.
In International Conference on Applied Cryptography and Network Security,
pages 281–301. Springer, 2019. https://link.springer.com/chapter/
10.1007/978-3-030-21568-2_14. 37, 40, 41, 42

[LS19] Vadim Lyubashevsky and Gregor Seiler. NTTRU: Truly Fast NTRU Us-
ing NTT. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2019(3):180–201, 2019. https://tches.iacr.org/index.php/
TCHES/article/view/8293. 48

https://tches.iacr.org/index.php/TCHES/article/view/9833
https://tches.iacr.org/index.php/TCHES/article/view/9833
https://eprint.iacr.org/2020/1302
https://ieeexplore.ieee.org/document/9835023
https://ieeexplore.ieee.org/document/9835023
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-avx-512-instructions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-avx-512-instructions.html
https://ieeexplore.ieee.org/document/4034175
https://link.springer.com/article/10.1023/A:1008208521515
https://link.springer.com/article/10.1023/A:1008208521515
https://ieeexplore.ieee.org/document/502403
http://cr.yp.to/bib/1963/karatsuba.html
https://link.springer.com/chapter/10.1007/978-3-030-21568-2_14
https://link.springer.com/chapter/10.1007/978-3-030-21568-2_14
https://tches.iacr.org/index.php/TCHES/article/view/8293
https://tches.iacr.org/index.php/TCHES/article/view/8293

Vincent Hwang 59

[LVB07] T. Lundy and James Van Buskirk. A new matrix approach to real FFTs
and convolutions of length 2k. Computing, 80:23–45, 2007. https://link.
springer.com/article/10.1007/s00607-007-0222-6. 15

[LZ22] Zhichuang Liang and Yunlei Zhao. Number Theoretic Transform and Its
Applications in Lattice-based Cryptosystems: A Survey. arXiv preprint
arXiv:2211.13546, 2022. https://arxiv.org/abs/2211.13546. 7

[Mey96] Helmut Meyn. Factorization of the Cyclotomic Polynomial x2n + 1
over Finite Fields. Finite Fields and Their Applications, 2(4):439–
442, 1996. https://www.sciencedirect.com/science/article/pii/
S107157979690026X. 15

[MKV20] Jose Maria Bermudo Mera, Angshuman Karmakar, and Ingrid Verbauwhede.
Time-memory trade-off in Toom-Cook multiplication: an application to
module-lattice based cryptography. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2020(2):222–244, 2020. https://tches.
iacr.org/index.php/TCHES/article/view/8550. 37, 40, 42

[Mon85] Peter L. Montgomery. Modular Multiplication Without Trial
Division. Mathematics of computation, 44(170):519–521, 1985.
https://www.ams.org/journals/mcom/1985-44-170/S0025-5718-
1985-0777282-X/?active=current. 4, 8, 9

[Mur96] Hideo Murakami. Real-valued fast discrete Fourier transform and cyclic
convolution algorithms of highly composite even length. In 1996 IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing Conference
Proceedings, volume 3, pages 1311–1314, 1996. https://ieeexplore.ieee.
org/document/543667. 15

[MV83a] Jean-Bernard Martens and Marc C. Vanwormhoudt. Convolution Using
a Conjugate Symmetry Property for Number Theoretic Transforms Over
Rings of Regular Integers. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 31(5):1121–1125, 1983. https://ieeexplore.ieee.org/
document/1164198. 48

[MV83b] Jean-Bernard Martens and Marc C. Vanwormhoudt. Convolutions of Long
Integer Sequences by Means of Number Theoretic Transforms Over Residue
Class Polynomial Rings. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 31(5):1125–1134, 1983. https://ieeexplore.ieee.org/
abstract/document/1164201. 48

[NG21] Duc Tri Nguyen and Kris Gaj. Fast NEON-based multiplication for lattice-
based NIST post-quantum cryptography finalists. In Post-Quantum Cryp-
tography: 12th International Workshop, PQCrypto 2021, Daejeon, South
Korea, July 20–22, 2021, Proceedings, pages 234–254, 2021. https://link.
springer.com/chapter/10.1007/978-3-030-81293-5_13. 40, 41, 42, 50

[Nic71] Peter J. Nicholson. Algebraic Theory of Finite Fourier Transforms. Jour-
nal of Computer and System Sciences, 5(5):524–547, 1971. https://www.
sciencedirect.com/science/article/pii/S0022000071800144. 21

[NIS] NIST, the US National Institute of Standards and Technology. Post-
Quantum Cryptography Standardization Project. https://csrc.nist.
gov/Projects/post-quantum-cryptography. 4, 52, 53, 55

https://link.springer.com/article/10.1007/s00607-007-0222-6
https://link.springer.com/article/10.1007/s00607-007-0222-6
https://arxiv.org/abs/2211.13546
https://www.sciencedirect.com/science/article/pii/S107157979690026X
https://www.sciencedirect.com/science/article/pii/S107157979690026X
https://tches.iacr.org/index.php/TCHES/article/view/8550
https://tches.iacr.org/index.php/TCHES/article/view/8550
https://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/?active=current
https://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/?active=current
https://ieeexplore.ieee.org/document/543667
https://ieeexplore.ieee.org/document/543667
https://ieeexplore.ieee.org/document/1164198
https://ieeexplore.ieee.org/document/1164198
https://ieeexplore.ieee.org/abstract/document/1164201
https://ieeexplore.ieee.org/abstract/document/1164201
https://link.springer.com/chapter/10.1007/978-3-030-81293-5_13
https://link.springer.com/chapter/10.1007/978-3-030-81293-5_13
https://www.sciencedirect.com/science/article/pii/S0022000071800144
https://www.sciencedirect.com/science/article/pii/S0022000071800144
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://csrc.nist.gov/Projects/post-quantum-cryptography

60 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

[Nus80] Henri J. Nussbaumer. Fast Polynomial Transform Algorithms for Digital
Convolution. IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, 28(2):205–215, 1980. https://ieeexplore.ieee.org/document/
1163372. 19, 20

[Nus82] Henri J. Nussbaumer. Fast Fourier Transform and Convolution Algorithms.
Springer Berlin, Heidelberg, 2nd edition, 1982. https://doi.org/10.1007/
978-3-642-81897-4. 7

[Ora14] Oracle. x86 Assembly Language Reference Manual, 2014. https://docs.
oracle.com/cd/E36784_01/html/E36859/enmzx.html#scrolltoc. 32

[Pla21] Thomas Plantard. Efficient word size modular arithmetic. IEEE Trans-
actions on Emerging Topics in Computing, 9(3):1506–1518, 2021. https:
//ieeexplore.ieee.org/document/9416314. 4, 10

[Pol71] John M. Pollard. The Fast Fourier Transform in a Finite Field. Mathematics
of computation, 25(114):365–374, 1971. https://www.ams.org/journals/
mcom/1971-25-114/S0025-5718-1971-0301966-0/?active=current.
13, 21

[Sch77] Arnold Schönhage. Schnelle Multiplikation von Polynomen über Körpern
der Charakteristik 2. Acta Informatica, 7(4):395–398, 1977. https://link.
springer.com/article/10.1007/bf00289470. 19, 47

[Sei18] Gregor Seiler. Faster AVX2 optimized NTT multiplication for Ring-LWE
lattice cryptography. 2018. https://eprint.iacr.org/2018/039. 8, 9,
40, 41

[Sho] Victor Shoup. NTL: a Library for Doing Number Theory. http://www.
shoup.net/ntl/. 10, 40, 41

[Sho99] Victor Shoup. Efficient Computation of Minimal Polynomials in Alge-
braic Extensions of Finite Fields. In Proceedings of the 1999 international
symposium on Symbolic and algebraic computation, pages 53–58, 1999.
https://dl.acm.org/doi/10.1145/309831.309859. 26

[SKS+21] Pakize Sanal, Emrah Karagoz, Hwajeong Seo, Reza Azarderakhsh, and
Mehran Mozaffari-Kermani. Kyber on ARM64: Compact implementa-
tions of Kyber on 64-bit ARM Cortex-A processors. In Security and
Privacy in Communication Networks: 17th EAI International Conference,
SecureComm 2021, Virtual Event, September 6–9, 2021, Proceedings, Part
II, pages 424–440. Springer, 2021. https://link.springer.com/chapter/
10.1007/978-3-030-90022-9_23. 40, 41

[SS71] Arnold Schönhage and Volker Strassen. Schnelle Multiplikation großer
Zahlen. Computing, 7(3-4):281–292, 1971. https://link.springer.com/
article/10.1007/BF02242355. 13

[Sto66] Thomas G. Stockham, Jr. High-Speed Convolution and Correlation. In
Proceedings of the April 26-28, 1966, Spring joint computer conference, pages
229–233, 1966. https://dl.acm.org/doi/10.1145/1464182.1464209. 46

[Tho63] Llewellyn Hilleth Thomas. Using a computer to solve problems in physics.
Applications of digital computers, pages 44–45, 1963. 46

https://ieeexplore.ieee.org/document/1163372
https://ieeexplore.ieee.org/document/1163372
https://doi.org/10.1007/978-3-642-81897-4
https://doi.org/10.1007/978-3-642-81897-4
https://docs.oracle.com/cd/E36784_01/html/E36859/enmzx.html#scrolltoc
https://docs.oracle.com/cd/E36784_01/html/E36859/enmzx.html#scrolltoc
https://ieeexplore.ieee.org/document/9416314
https://ieeexplore.ieee.org/document/9416314
https://www.ams.org/journals/mcom/1971-25-114/S0025-5718-1971-0301966-0/?active=current
https://www.ams.org/journals/mcom/1971-25-114/S0025-5718-1971-0301966-0/?active=current
https://link.springer.com/article/10.1007/bf00289470
https://link.springer.com/article/10.1007/bf00289470
https://eprint.iacr.org/2018/039
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/
https://dl.acm.org/doi/10.1145/309831.309859
https://link.springer.com/chapter/10.1007/978-3-030-90022-9_23
https://link.springer.com/chapter/10.1007/978-3-030-90022-9_23
https://link.springer.com/article/10.1007/BF02242355
https://link.springer.com/article/10.1007/BF02242355
https://dl.acm.org/doi/10.1145/1464182.1464209

Vincent Hwang 61

[Too63] Andrei L. Toom. The Complexity of a Scheme of Functional Elements
Realizing the Multiplication of Integers. Soviet Mathematics Doklady,
3:714–716, 1963. http://toomandre.com/my-articles/engmat/MULT-E.
PDF. 16, 22

[TW13] Aleksandr Tuxanidy and Qiang Wang. Composed products and factors
of cyclotomic polynomials over finite fields. Designs, codes and cryptog-
raphy, 69(2):203–231, 2013. https://link.springer.com/article/10.
1007/s10623-012-9647-9. 15

[vdH04] Joris van der Hoeven. The truncated Fourier transform and applications. In
Proceedings of the 2004 international symposium on Symbolic and algebraic
computation, pages 290–296, 2004. https://dl.acm.org/doi/10.1145/
1005285.1005327. 24

[Wan23] William Wang, 2023. Personal communication. 8

[War12] Henry S. Warren. Hacker’s Delight. Addison-Wesley, 2012. 50

[Win78] Shmuel Winograd. On Computing the Discrete Fourier Trans-
form. Mathematics of computation, 32(141):175–199, 1978.
https://www.ams.org/journals/mcom/1978-32-141/S0025-5718-
1978-0468306-4/?active=current. 47

[Win80] Shmuel Winograd. Arithmetic Complexity of Computations, volume 33.
Society for Industrial and Applied Mathematics, 1980. https://epubs.
siam.org/doi/10.1137/1.9781611970364. 7, 16, 22, 23, 26, 50

[WP06] André Weimerskirch and Christof Paar. Generalizations of the Karatsuba
Algorithm for Efficient Implementations. 2006. https://eprint.iacr.
org/2006/224. 38

[WY21] Yansheng Wu and Qin Yue. Further factorization of xn − 1 over
a finite field (II). Discrete Mathematics, Algorithms and Applica-
tions, 13(06):2150070, 2021. https://www.worldscientific.com/doi/
10.1142/S1793830921500701. 15

[WYF18] Yansheng Wu, Qin Yue, and Shuqin Fan. Further factorization of
xn − 1 over a finite field. Finite Fields and Their Applications, 54:197–
215, 2018. https://www.sciencedirect.com/science/article/pii/
S1071579718300996. 15

[Yan22] Bo-Yin Yang, 2022. Personal communication. 33

[Yan23] Bo-Yin Yang, 2023. Personal communication. 49

[YJX24] Yanze Yang, Yiran Jia, and Guangwu Xu. On Modular Algorithms and
Butterfly Operations in Number Theoretic Transform. arXiv preprint
arXiv:2402.00675, 2024. https://arxiv.org/abs/2402.00675. 8

http://toomandre.com/my-articles/engmat/MULT-E.PDF
http://toomandre.com/my-articles/engmat/MULT-E.PDF
https://link.springer.com/article/10.1007/s10623-012-9647-9
https://link.springer.com/article/10.1007/s10623-012-9647-9
https://dl.acm.org/doi/10.1145/1005285.1005327
https://dl.acm.org/doi/10.1145/1005285.1005327
https://www.ams.org/journals/mcom/1978-32-141/S0025-5718-1978-0468306-4/?active=current
https://www.ams.org/journals/mcom/1978-32-141/S0025-5718-1978-0468306-4/?active=current
https://epubs.siam.org/doi/10.1137/1.9781611970364
https://epubs.siam.org/doi/10.1137/1.9781611970364
https://eprint.iacr.org/2006/224
https://eprint.iacr.org/2006/224
https://www.worldscientific.com/doi/10.1142/S1793830921500701
https://www.worldscientific.com/doi/10.1142/S1793830921500701
https://www.sciencedirect.com/science/article/pii/S1071579718300996
https://www.sciencedirect.com/science/article/pii/S1071579718300996
https://arxiv.org/abs/2402.00675

	Introduction
	Why This Paper
	Emphases
	Artifact
	Related Works
	Assumed Knowledge

	Modular Arithmetic
	Integer Approximations
	Montgomery Arithmetic
	Barrett Arithmetic
	Plantard Arithmetic
	Comparisons

	Basic Homomorphisms
	Notations
	Discrete Fourier Transform
	Cooley–Tukey Fast Fourier Transform
	Good–Thomas FFT
	Bruun-Like Fast Fourier Transforms
	Rader's Fast Fourier Transform
	Karatsuba and Toom–Cook
	Comparisons

	Coefficient Ring Injections
	Localization
	Schönhage's and Nussbaumer's Fast Fourier Transforms
	Coefficient Ring Switching
	Comparisons

	Polynomial Moduli
	Embedding (Polynomial Modulus) and Evaluation at
	Twisting and Composed Multiplication
	Truncation
	Incomplete Transformation and Striding
	Toeplitz Matrix-Vector Product

	Vectorization
	Vector Instruction Sets/Extensions
	Vectorization Friendliness
	Permutation Friendliness
	Guide of Vectorization

	Case Studies
	Dilithium : Barrett vs Montgomery Modular Arithmetic
	Kyber : Montgomery vs Plantard Modular Arithmetic
	Homomorphism Caching
	Saber : Homomorphism Caching
	NTRU : Toeplitz matrix-vector product
	NTRU Prime : Vectorized FFTs

	Overview of Advances
	Modular Arithmetic
	Algebraic Techniques

	Directions for Future Works
	Modular Arithmetic for Principal Ideal Domains
	Roots Defining Discrete Fourier Transforms
	Algebraic View of Good–Thomas FFT
	Vector-Radix Transform
	Generalization of Rader's FFT
	A Formal Treatment of Localization
	Generalizations of Schönhage and Nussbaumer
	Applications of Truncation
	 . R[x] / xr + 1 . from . R[x] / x2r - 1 . for r 2
	Nussbaumer from Schönhage

	Interprating Multiplications in . R[x] / xn - x - . as TMVPs
	A Formal Treatment of Bilinear Systems
	Implementing Transposition Matrices
	Constructing the Column Representation of a Toeplitz Matrix
	References

