
Revisiting Pairing-friendly Curves with
Embedding Degrees 10 and 14

Yu Dai1, Debiao He2B, Cong Peng2, Zhijian Yang1, and Chang-an Zhao3B

1 School of Mathematics and statistics, Wuhan University, Wuhan, China.
eccdaiy39@gmail.com, zjyang.math@whu.edu.cn

2 School of Cyber Science and Engineering, Wuhan University, Wuhan, China.
hedebiao@163.com, cpeng@whu.edu.cn

3 School of Mathematics, Sun Yat-sen University, Guangzhou, China.
zhaochan3@mail.sysu.edu.cn

Abstract. Since 2015, there has been a significant decrease in the asymp-
totic complexity of computing discrete logarithms in finite fields. As a
result, the key sizes of many mainstream pairing-friendly curves have to
be updated to maintain the desired security level. In PKC’20, Guille-
vic conducted a comprehensive assessment of the security of a series of
pairing-friendly curves with embedding degrees ranging from 9 to 17. In
this paper, we focus on pairing-friendly curves with embedding degrees
of 10 and 14. First, we extend the optimized formula of the optimal pair-
ing on BW13-310, a 128-bit secure curve with a prime p in 310 bits and
embedding degree 13, to our target curves. This generalization allows
us to compute the optimal pairing in approximately log r/2ϕ(k) Miller
iterations, where r and k are the order of pairing groups and the embed-
ding degree respectively. Second, we develop optimized algorithms for
cofactor multiplication for G1 and G2, as well as subgroup membership
testing for G2 on these curves. Based on these theoretical results a new
128-bit secure curve emerges: BW14-351. Finally, we provide detailed
performance comparisons between BW14-351 and other popular curves
on a 64-bit platform in terms of pairing computation, hashing to G1

and G2, group exponentiations and subgroup membership testings. Our
results demonstrate that BW14-351 is a strong candidate for building
pairing-based cryptographic protocols.

Keywords: Pairing-friendly curves · BW14-351 · the 128-bit security
level

1 Introduction

The past two decades have witnessed the application of elliptic curve pairings
in public-key cryptosystems, such as Direct Anonymous Attestation (DAA) [13,
47], Succinct Non-interactive Arguments of Knowledge (SNARKs) [3,20,21,30],
and Verifiable Delay Function(VDF) [19]. A cryptographic pairing is a non-
degenerate bilinear map defined as e : G1 × G2 → GT , where the three pairing
groups G1, G2, and GT have the same large prime order r. Specifically, G1 and

G2 are two independent subgroups of an elliptic curve E over a finite field Fpk ,
while GT is a subgroup of the multiplicative group F∗

pk . The value of k is the
smallest positive integer such that r | pk − 1.

The security of pairing-based cryptographic protocols relies on the hard-
ness of the discrete logarithm problem (DLP) in the three pairing groups. The
best-known attack algorithm for solving the DLP on an elliptic curve (ECDLP)
in the two input pairing groups G1 and G2 is the Pollard rho algorithm [39],
which requires around

√
r group operations. Thus, the size of the prime r is at

least 256 bits for reaching the 128-bit security level. As for the DLP on a finite
field (FFDLP) Fpk in GT whose characteristic p is not small, the best-known
algorithm is the number field sieve (NFS) [40]. In 2013, ENISA [1] recommended
that a 3072-bit finite field is 128-bit secure. Since then, a series of variants of
NFS have been proposed [8, 34, 35], resulting in a drastic decrease for the se-
curity level of mainstream pairing-friendly curves. In particular, Kim and Bar-
bulescu [35] proposed the special extended tower number field sieve (SexTNFS),
which is applied to a composite extension field whose characteristic p can be pa-
rameterized by a tiny-coefficients polynomial of moderate degree. This variant
is almost tailored to mainstream pairing-friendly curves, such as the Barreto-
Naehrig(BN) [10] and Barreto-Lynn-Scott(BLS) [10] families. For example, the
recent estimates [7, 32] suggest that the updated security level of the previous
128-bit secure BN curve has dropped down to 100 ∼ 103 bits.

In PKC’20, Guillevic [31] analyzed the consequence of the improvement of
NFS in detail and recommended a list of pairing-friendly curves with embedding
degrees 10 to 16. In particular, Guillevic pointed out that the size of the prime p
on both BN and BLS12 curves has to increase to 446 bits to match the updated
128-bit security level, and the BLS12-446 curve is the most efficient choice for
pairing computation at this security level across different pairing-friendly curves.
However, due to the increase of the size of p, both BLS12-446 and BN446 in-
cur a performance penalty in terms of the operations in G1. Therefore, two
new curves derived from [24, Construction 6.6] have emerged for fast group ex-
ponentiation in G1: BW13-310 and BW19-286 [14]. Recently, Dai, Zhang and
Zhao [17] proposed a new formula for computing pairing on BW13-310. More
specifically, the number of iterations in Miller’s algorithm on the curve is only
around log r/(2ϕ(k)). However, due to the lack of twists, the trick of denomina-
tor elimination is no longer applicable. In other words, even though the length
of the Miller loop on BW13-310 is extremely short, the computational cost for
each Miller doubling/addition step is expensive. In addition, due to the group
G2 on BW13-310 is defined over the full extension field Fp13 , the operations in-
volved in G2 are costly, such as hashing to G2 and group exponentiation in G2.
It motivates us to search for new pairing-friendly curves such that the Miller
loop can be performed in log r/(2ϕ(k)) iterations, and the trick of denominator
elimination applies as well.

2

1.1 Our Contribution

In this work, we revisit the cyclotomic pairing-friendly curves presented in [24]
with embedding degrees 10 and 14. A comprehensive research is presented that
aims to facilitate the implementation of pairing-based cryptographic protocols
using these curves. Our contributions are summarized as follows.

• We generalize the optimized formula of the optimal pairing on BW13-310
to our target curves. Specifically, the automorphism action can be extracted
from the Miller function evaluation, so that the number of Miller iterations
can bed reduced to approximately log r/(2ϕ(k)). We also refine the best-
known algorithm for the final exponentiation to save several field multipli-
cations.

• We develop new algorithms for some key building blocks involved in im-
plementing pairing-based protocols on our target curves, including cofactor
multiplication for G1 and G2, and subgroup membership testings for G2.

• Utilizing the RELIC toolkit [2], we provide high-speed software implementa-
tions of pairing computation, hashing to G1 and G2, group exponentiations,
and subgroup membership testings over a target curve named BW14-351 on
a 64-bit platform. On this basis, we present detailed performance compar-
isons between BW14-351 and other popular curves at the updated 128-bit
security level, including BNLS12-446, BN446 and BW13-310. The results of
our implementation show that

- the performance of pairing computation on BW14-351 is even slightly
faster than BN-446 and BW13-310, while about 18.4% slower than BLS12-
446;

- in terms of group exponentiation in G1 and GT , BW14-351 is about
49.2% and 15.1% faster than BLS12-446, 119.6% and 73.8% faster than
BN-446, while 34.4% and 5.5% slower than BW13-310;

- compared to BW13-310, BW14-351 incurs a lighter penalty in terms of
hashing to G2 and group exponentiation in G2, although is still slower
than BN-446 and BLS12-446.

2 Preliminaries

In this section, we recall some basic properties of ordinary elliptic curves, pairings
and endomorphisms.

2.1 Ordinary elliptic curves over finite fields

Let Fp be a prime field with characteristic p > 3. Let E be an ordinary el-
liptic curve over Fp of the form y2 = x3 + ax + b, where a, b ∈ Fp such that
4a3 + 27b2 6= 0. The j-invariant of E is defined as j(E) = −1728 4a3

4a3+27b2 . We
denote by E(Fp) the group of Fp rational points of E. Then the order of E(Fp) is
given by #E(Fp) = p+1−t, where t is the trace of the Frobenius endomorphism

3

π : (x, y) → (xp, yp). If t 6= 0, then the curve E is said to be ordinary, and su-
persingular otherwise. Let r be a large prime divisor of #E(Fp). The embedding
degree k with respect to r and p is the smallest integer such that r | pk − 1. If
k > 1 then E[r] ⊆ E(Fpk), where E[r] = {P ∈ E(F̄p) | [r]P = OE} and F̄p is
the algebraic closure of Fp. Let Aut(E) be the automorphism group of E, and
let d = gcd(k,#Aut(E)). If d > 1, then there exists a unique degree-d twist E′

such that r | #E′(Fpk/d), with an untwisting isomorphism φ: E′ → E.
An endomorphism α of E over F̄p is a non-constant rational map from E to

itself over F̄p. The set of all endomorphisms of E over F̄p together with the zero
map given by 0(P) = OE forms a ring, which is denoted as End(E). We denote
by K the imaginary quadratic field Q(

√
−D), where D is the square-free part

of 4p− t2. Let OK be the largest subring of K. Since E is ordinary, End(E) is a
order in OK , i.e., Z[π] ⊆ End(E) ⊆ OK . For any α ∈ End(E), the characteristic
equation of α can be represented as x2 + mx + n = 0 for two integers m and
n, where n is the degree of α, i.e., deg(α) = n. In particular, the characteristic
equation of π is given as π2 − tπ + p = 0. For each endomorphism α, there is a
unique endomorphism α̂ such that α ◦ α̂ = deg(α), which is called the dual of α.

In elliptic curve cryptography, ordinary elliptic curves with j-invariant 0 or
1728 are particularly interesting as they are equipped with an efficiently com-
putable endomorphism. More precisely,

• if j(E) = 0, then we have a = 0 and p ≡ 1 mod 3 [45, Proposition 4.33].
There exists an endomorphism E → E given as τ : (x, y) → (ω · x, y), where
ω is a primitive cube root of unity in F∗

p. The characteristic equation of τ is
τ2 + τ + 1 = 0 and the dual of τ is τ̂ : (x, y) → (ω2 · x, y);

• if j(E) = 1728, then we have b = 0 and p ≡ 1 mod 4 [45, Theorem 4.23].
There exists an endomorphism E → E given as τ : (x, y) → (−x, i ·y), where
i is a primitive fourth root of unity in F∗

p. The characteristic equation of τ
is φ2 + 1 = 0 and the dual of τ is τ̂ : (x, y) → (−x,−i · y).

The endomorphism τ is called the GLV endomorphism as it was first used by
Gallant, Lambert and Vanstone [27] to accelerate elliptic curve point multipli-
cation. In the above two cases, End(E) = Z[τ] = OK .

2.2 Optimal pairing

Given a random point Q ∈ E(Fpk) and an integer m, a Miller function fm,Q is
a normalized rational function in Fpk(E) with divisor

div(fm,Q) = m(Q)− ([m]Q)− (m− 1)(OE). (1)

Let G1 and G2 be respectively 1- and p-eigenspaces of π acting on E[r], i.e.,
G1 = E(Fp)[r] and G2 = E[r]∩Ker(π− [p]). Le GT be the subgroup of F∗

pk with
order r. Let λ =

∑l
i=0 cip

i be a multiple of the prime r with ci ∈ Z for each i.

4

Then, the general expression of the optimal pairing [44] on E is given as:

e :G2 ×G1 → GT ,

(Q,P)→

(
l∏

i=0

fp
i

ci,Q
(P)·

l−1∏
i=0

`[si+1]Q,[cipi]Q(P)

ν[si]Q(P)

)(pk−1)
r

,

(2)

where si =
∑l

j=i cjp
j , `[i]R,[j]R is the straight line passing through [i]R and [j]R,

and ν[i+j]R is the vertical line passing through [i+ j]R. The computation of the
optimal pairing consists of two phases: the Miller loop and the final exponentia-
tion. As shown in Eq. (2), the most costly part in the Miller loop is to compute∏l

i=0 f
pi

ci,Q
(P). The Miller function fci,Q evaluated at the point P for each i

can be obtained by executing the Miller’s algorithm [38], which is described in
Alg. 1. When the embedding degree k is even, the vertical line evaluations can

Algorithm 1: Miller’s Algorithm

Input: P ∈ G1, Q ∈ G2, m =
l∑

i=0

mi2
i with mi ∈ {−1, 0, 1}

Output: fm,Q(P)
1: T ← Q, f ← 1
2: for i = l − 1 down to 0 do
3: f ← f2 · `T,T (P)

ν[2T](P)
, T ←− [2]T

4: if mi = 1 then
5: f ← f · `T,Q(P)

νT+Q(P)
, T ← T +Q

6: elif mi = −1then
7: f ← f · `T,−Q(P)

νT−Q(P)
, T ← T −Q

8: end if
9: end for

10: return f

be ignored because these values lie in the subfield Fpk/2 and can be “killed” by
the final exponentiation.

3 Elliptic curves with embedding degrees 10 and 14

The construction of pairing-friendly curves necessitates special methods to en-
sure a small embedding degree k, which is crucial for efficient pairing compu-
tation. In their 2010 work, Freeman, Scott, and Teske [24] classified pairing-
friendly curves with embedding degrees 1 ≤ k ≤ 50. In particular, the authors
constructed a list of cyclotomic pairing-friendly curves with embedding degrees
10 and 14 that make use of the Brezing-Weng method [12]. The prime r, the
charaterictic p and the trace t of these curves can be parameterized by polyno-
mials. In practice, pairing-friendly curves with j-invariant 0 or 1728 are favored

5

due to they are equipped with efficiently computable endomorphisms and rapid
formulas of point operation. Tabs. 1 and 2 summarize the important parameters
of these curves and the corresponding formulas of optimal pairings, respectively.
It is straightforward to see that the number of iterations in Miller’s algorithm
on these curves is approximately log r/ϕ(k).

Table 1. Important parameters for cyclotomic pairing-friendly curves with embedding
degrees 10 and 14.

family [24] k p r t

Cyclo(6.3) 10 1
4
(z14 − 2z12 + z10 + z4 + 2z2 + 1) Φ20(z) z2 + 1

Cyclo(6.5) 10 1
4
(z12−z10+z8−5z6+5z4−4z2+4) Φ20(z) −z6+z4−z2+1

Cyclo(6.6) 10 1
3
(z3 − 1)2(z10 − z5 + 1) + z3 Φ30(z) z3 + 1

Cyclo(6.3) 14 1
4
(z18 − 2z16 + z14 + z4 + 2z2 + 1) Φ28(z) z2 + 1

Cyclo(6.6) 14 1
3
(z − 1)2(z14 − z7 + 1) + z15 Φ42(z) z8 − z + 1

3.1 New formulas of optimal pairings on target curves

Recently, Dai, Zhang and Zhao [17] proposed a faster formula for pairing com-
putation on the BW13-310 curve such that the length of Miller loop can be
reduced to around log r/(2ϕ(k)). In this subsection, we show how to general-
ize this technique to our target curves. On this basis, we further propose an
improved algorithm to reduce the performance penalty introduced by this new
technique.

By the fact that the endomorphism ring of ordinary elliptic curves is com-
mutative, we find that τ(Q) ∈ G2 for any Q ∈ G2 as

π ◦ τ(Q) = τ ◦ π(Q) = τ([p]Q) = [p]τ(Q) and [r]τ(Q) = τ([r]Q) = OE .

Furthermore, since G2 is cyclic with prime order, the endomorphism τ acting on
G2 as a scalar, which is denoted as λ2. In detail, we can fix the form of τ such
that

λ2 =

− zk/2, in the Cyclo(6.3)-10, 14 and Cyclo(6.5)-10 families;
zk, in the Cyclo(6.6)-10 family;
−zk − 1, in the Cyclo(6.6)-14 family.

(3)

6

Table 2. Original formulas of the optimal pairing on cyclotomic pairing-friendly curves
with embedding degrees 10 and 14.

family-k short vector optimal pairing

Cyclo(6.3)-10 [z2,−1, 0, 0]
(
fz2,Q(P)

)(p10−1)/r

Cyclo(6.5)-10 [−1, z2, 0, 0]
(
fz2,Q(P)

)(p10−1)/r

Cyclo(6.6)-10 [z, 0,−1, z2]
(
fz,Q(P) · fp3

z2,Q
(P) · `π7(Q),π3([z2]Q)(P)

)(p10−1)/r

Cyclo(6.3)-14 [z2,−1, 0, 0, 0, 0]
(
fz2,Q(P)

)(p14−1)/r

Cyclo(6.6)-14 [z2, z, 1, 0, 0, 0]
(
fz2,Q(P) · fp

z,Q(P) · `π2(Q),π([z]Q)(P)
)(p14−1)/r

By combining the Frobenius endomorphism and the GLV endomorphism, we
fortunately find that πm ◦ τ(Q) = [z]Q for any Q ∈ G2, where

m =

(k + 2)/4, in the Cyclo(6.3)-10 and Cyclo(6.3)-14 families;
7, in the Cyclo(6.5)-10 and Cyclo(6.6)-10 families;
1, in the Cyclo(6.6)-14 family.

This observation enables us to rewrite the formulas of optimal pairings on our
target curves such that the number of Miller iterations can be reduced to around
log r/(2ϕ(k)), which is summarized in Lemma 1 below.

Lemma 1. Let notation as above. Then fz2,Q = fzz,Q · fp
m

z,Q ◦ τ̂ , where τ̂ is the
dual of τ .

Proof. It can obtained from [23, Lemma 3.5] that

fz2,Q = fzz,Q · fz,[z]Q. (4)

Since πm ◦ τ(Q) = [z]Q, it follows from [49, Theorem 1] and [16, Theorem 1]
that

fz,[z]Q = fz,πm◦τ(Q) = fp
m

z,τ(Q) = fp
m

z,Q ◦ τ̂p
m

= fp
m

z,Q ◦ τ̂ . (5)

Inserting Eq. (5) into Eq. (4), we have

fz2,Q = fzz,Q · fp
m

z,Q ◦ τ̂ ,

which completes the proof.

Based on Lemma 1, we can derive new formulas of optimal pairings on our target
curves by executing the following two steps:

-Step 1. We first replace fz2,Q(P) by fzz,Q ·fp
m

z,Q◦τ̂(P) in the original formulas
of optimal pairings. In particular, we can also replace the point [z]Q by πm◦τ(Q)
at the final line in the Cyclo(6.6)-10 and Cyclo(6.6)-14 families.

7

-Step 2. Utilizing the property that a non-degenerate power of a pairing
remains a pairing, we then can raise the output of the Miller loop to a pk−m-
power such that the exponent of the second Miller function is equal to 1.

The new formulas of optimal pairings for our selected curves are summa-
rized in Tab. 3. Clearly, the most costly part of the Miller loop is to compute
fz·p

m

z,Q (P) · fz,Q(τ̂(P)), enabling the execution of Miller’s algorithm in log|z| it-
erations within the same loop, albeit with slightly increased computational cost
per iteration. However, in comparison to the original formulas, the new ones
entail an additional exponentiation by z. Fortunately, the cost of squarings for
the exponentiation can be circumvented. Specifically, we first calculate fz,Q(P)
and store all line function evaluations necessary for computing fz,Q(τ̂(P)) at
the first loop. Subsequently, given the initial value fp

m

z,Q(P), we then compute
fz·p

m

z,Q (P)·fz,Q(τ̂(P)) at the second loop. The optimized procedure for computing
this value is presented in Alg. 2.

Table 3. Optimized formulas of the optimal pairing on cyclotomic pairing-friendly
curves with embedding degrees 10 and 14.

family-k optimal pairing

Cyclo(6.3)-10
(
fz·p7
z,Q (P) · fz,Q(τ̂(P))

)(p10−1)/r

Cyclo(6.5)-10
(
fz·p3
z,Q (P) · fz,Q(τ̂(P))

)(p10−1)/r

Cyclo(6.6)-10
(
f1+zp3

z,Q (P) · fz,Q(τ̂(P)) · (yP − yQ)
p7
)(p10−1)/r

Cyclo(6.3)-14
(
fz·p10
z,Q (P) · fz,Q(τ̂(P))

)(p14−1)/r

Cyclo(6.6)-14
(
f1+z·p13
z,Q (P) · fz,Q(τ̂(P)) · (yP − yQ)

p
)(p14−1)/r

Table 4. Parameters of the cyclotomic pairing-friendly curves with embedding degrees
10 and 14 at the updated 128-bit security level.

curve family-k seed z dlog2 re dlog2 pe dlog2 pke

BW10-480 Cyclo(6.5)-10 25 + 214 + 215 + 218 + 236 + 240 321 480 4791

BW10-511 Cyclo(6.6)-10 27 + 213 + 226 − 232 256 511 5101

BW10-512 Cyclo(6.3)-10 1 + 23 + 217 + 232 + 235 + 236 294 512 5111

BW14-351 Cyclo(6.6)-14 26 − 212 − 214 − 222 265 351 4908

BW14-382 Cyclo(6.3)-14 1 + 210 + 213 − 216 + 219 + 221 256 382 5338

8

Algorithm 2: Computing fz·p
m

z,Q (P) · fz,Q(τ̂(P))

Input: P ∈ G1, Q ∈ G2, z =
l∑

i=0

zi2
i with zi ∈ {−1, 0, 1}

Output: fz·pm
z,Q (P) · fz,Q(τ̂(P))

1: T ← Q, f ← 1, tab← [], j ← 0
2: for i = l − 1 down to 0 do
3: f ← f2 · `T,T (P), tab[j]← `T,T (τ̂(P)), T ←− 2T , j ← j + 1 // SDBL
4: if zi = 1 then
5: f ← f · `T,Q(P), tab[j]← `T,Q(τ̂(P)), T ← T +Q, j ← j + 1 // SADD
6: elif zi = −1 then
7: f ← f ·`T,−Q(P), tab[j]←`T,−Q(τ̂(P)), T ← T−Q, j ←j+1 // SADD
8: end if
9: end for

10: g ← fpm , h← g, j ← 0
11: for i = l − 1 down to 0 do
12: h← h2 · tab[j], j ← j + 1
13: if zi = 1 then
14: h← h · g · tab[j], j ← j + 1
15: elif zi = −1 then
16: h← h · ḡ · tab[j], j ← j + 1
17: end if
18: end for
19: return h

3.2 Choice of parameters at the 128-bit security level

The choice of parameters of pairing-friendly curves should be careful for achiev-
ing high performance implementation at the desired security level. In this paper,
we focus on the performance of pairing computation at the 128-bit security level.
To this end, the size of the prime p should not be smaller than that recommended
by Guillevic 6 [31, Table 5] to ensure that the field side can withstand attacks
from the variants of NFS. On this basis, to maximize the efficiency of pairing
computation, we also expect

(a) the selected prime p should satisfy that p ≡ 1 mod k;
(b) the sum of bit length and hamming weight (in non-adjacent form) of the

selected seed z is as small as possible.

In more detail, the condition (a) ensures that the full extension field Fpk can be
represented as Fp[v]/(v

k − α) for some α ∈ F∗
p [36, Theorem 3.75], which induces

fast multiplication and squaring arithmetic operations in Fpk ; the condition (b)
amis to minimize the number of Miller iterations in Alg. 2. In fact, the com-
putation of the final exponentiation also benefits from condition (b) since this
step consists of a large number of exponentiations by z (see Section 4.3). Tab. 4
summarizes our chosen seeds z under the above conditions, together with the
corresponding sizes of the curve parameters. Notably, while Guillevic [31, Table

9

6] selected the seed for the Cyclo(6.6)-14 family, this seed fails to meet condition
(a). Instead, we select a new seed meeting this condition. For our selected pa-
rameters, the full extension field Fpk can be constructed as a tower of quadratic
and k/2-th extensions:

Fp
ξk/2−α−−−−−→ Fpk/2

v2−ξ−−−→ Fpk .

Curve name: For convenience, all the candidate curves listed in Tab. 4 are
collectively called as BW curves since they are essentially generated using the
Brezing-Weng method. Moreover, we distinguish each curve by its embedding
degree and the size of the characteristic p. For instance, the BW14-351 curve is
referred to as the curve constructed from the Cyclo(6.6)-14 family defined over
a 351-bit prime field.

4 Pairing Computation

In this section, we first describe explicit formulas for Miller doubling and addition
steps. In particular, the technique of lazy reduction [5] has been fully exploited to
reduce the number of modular reductions required in Miller’s algorithm. Then,
we show how to perform the final exponentiation efficiently. Finally, we present
detailed operation counts for pairing computation on different curves.

Notations. The cyclotomic group GΦk(p) is defined by GΦk(p) = {a ∈ Fpk |
aΦk(p) = 1}. The notation × is used to denote field multiplication without re-
duction. We use the following notation to denote the cost of operations:(i) a,
m, mu, s, su, i and r denote the cost of addition, multiplication, multiplication
without reduction, squaring, squaring without reduction, inversion and modular
reduction in Fp, respectively; (ii) ã, m̃, m̃u, s̃, s̃u, ĩ and r̃ represent the cost
of addition, multiplication, multiplication without reduction, squaring, squar-
ing without reduction, inversion and modular reduction in Fpk/2 , respectively;
(iii) M, S, Sc, f and I represent the cost of multiplication, squaring, cyclotomic
squaring, Frobenius map and inversion in Fpk , respectively.

4.1 Miller loop on curves of form y2 = x3 + b

Let E : y2 = x3 + b be a curve over Fp with embedding degree 10 or 14. Then
E admits a quadratic twist E′ : y2 = x3 + b/ξ3 over Fpk/2 . The associated
untwisting isomorphism from E′ to E is given by

φ : (x, y) → (xξ, yξv).

To avoid field inversions when performing point operations, points can be repre-
sented in projective coordinates. For this curve shape, it is convenient to use Jaco-
bian coordinates, that is, an affine point (x, y) corresponds to a triplet (X,Y, Z)
with x = X/Z2 and y = Y/Z3.

10

Shared doubling step (SDBL) Let T = (X,Y, Z) ∈ E′(Fpk/2)[r] be in
Jacobian coordinates. The fastest formulas for computing the doubling point
[2]T = (X3, Y3, Z3) are derived from [6, Section 4.3], where

X3 = X(
9

4
X3 − 2Y 2), Y3 =

9

4
X3(2Y 2 − 3

2
X3)− Y 4, Z3 = Y Z.

By the form of the untwisting map φ, the image point φ(T) ∈ G2 can be rep-
resented as (Xξ, Y ξv, Z). Thanks to the technique of denominator elimination,
the line function lφ(T),φ(T) evaluated at P = (xP , yP) and τ̂(P) = (x̃P , yP) can
be simplified as

lφ(T),φ(T)(P) = 2Z3Z
2yP +

(
(3X3 − 2Y 2) · ξ − 3X2Z2xP

)
v,

lφ(T),φ(T)(τ̂(P)) = 2Z3Z
2yP +

(
(3X3 − 2Y 2) · ξ − 3X2Z2x̃P

)
v.

It is evident that the two line evaluations share a large amount of variables. In
addition, the technique of lazy reduction can be employed when computing Y3.
Thus, we can obtain the above two line evaluations using the following sequence
of operations:

A = 3X2, B = A ·X,C =
B

2
, D = C +

C

2
, E = Y 2, F = 2E,U0 = D × (F − C),

U1 = E × E, Y3 = (U0 − U1) mod p,X3 = X · (D − F), Z3 = Y · Z,G = Z2,

I = G · Z3 · (2yP), J = A ·G,K = (B − F) · ξ, L = J · xP ,M = J · x̃P ,
lφ(T),φ(T)(P) = I + (K − L)v, lφ(T),φ(T)(τ̂(P)) = I + (K −M)v.

The total operation count for point doubling together with two line evaluations
is 5m̃+ m̃u+ s̃u+ m̃ξ +3s̃+ 3k

2 m+ r̃+13ã+a, assuming that the computation
of division by 2 and U0 − U1 requires one and two additions, respectively.

Shared addition step (SADD) Let T = (X,Y, Z), Q = (X2, Y2, Z2) ∈
E′(Fpk/2)[r] be in Jacobian coordinates with Z 6= 0, Z2 = 1 and T 6= Q. Then
one can compute the point T + Q = (X3, Y3, Z3) using the mixed addition for-
mulas [6, Section 4.3], which is given as

α=Y2Z
3−Y, β=X2Z

2−X,X3=α
2−2Xβ2−β3, Y3=α(Xβ

2−X3)−Yβ3, Z3=Zβ.

Subsequently, the line function lφ(T),φ(Q) evaluated at P and τ̂(P) can be ex-
pressed as

lφ(T),φ(Q)(P) = Z3yp +
(
(αX2 − Y2Z3) · ξ − αxP

)
v,

lφ(T),φ(Q)(τ̂(P)) = Z3yp +
(
(αX2 − Y2Z3) · ξ − αx̃P

)
v.

Again, by taking advantage of the technique of lazy reduction, we perform the
following sequence of operations to compute the above two line evaluations,

11

which costs 6m̃ + 4m̃u + m̃ξ + 3s̃ + 3k
2 m + 2r̃ + 12ã:

A = Z2, B = Y2 ·A · Z − Y,C = X2 ·A−X,D = C2, E = C ·D,F = X ·D,
X3 = B2 − 2F − E,U0 = B × (F −X3), U1 = Y × E, Y3 = (U0 − U1) mod p,

Z3 = Z · C,G = Z3 · yP ,H = B · xP , I = B · x̃P , U2 = B ×X2, U3 = Y2 × Z3,

J = (U2 − U3) mod p,K = J · ξ, lφ(T),φ(Q)(P) = G− (K −H)v,

lφ(T),φ(Q)(τ̂(P)) = G+ (K − I)v.

4.2 Miller loop on curves of form y2 = x3 + ax

Let E : y2 = x3 + ax be a curve over Fp with embedding degree 10 or 14. Then
E admits a quadratic twist E′ : y2 = x3 + a′ over Fpk/2 , where a′ = a · ξ2.
As a consequence, the associated untwisting isomorphism from E′ to E can be
expressed as

φ : (x, y) → (x, y) → (x/ξ, y/(ξv)).

For this curve shape, we represent an affine point (x, y) in the weight-(1, 2)
coordinates (X,Y, Z) satisfying that x = X/Z and y = Y/Z2. This type of
projecitve coordinates was first proposed in [15, Section 4] and provides fastest
formulas for point operations in this case.

Shared doubling step (SDBL) Let T = (X,Y, Z) ∈ E′(Fpk/2)[r] be in
weight-(1, 2) coordinates. For this curve shape, the point doubling formulas for
computing [2]T = (X3, Y3, Z3) are derived from [15, section 4], which are ex-
pressed as

X3 = (X2 − a′Z2)2, Y3 = 2Y (X2 − a′Z2)
(
2(X2 + a′Z2)2 −X3

)
, Z3 = 4Y 2.

In this case, it is more convenient to perform line evaluations on the twisted
curve. In other words, we compute the line function lT,T evaluated at φ−1(P) =
(xP ξ, yP ξv) and φ−1 ◦ τ̂(P) = (−xP ξ, ỹP ξv). The explicit formulas are given by

lT,T (φ
−1(P)) = (X3 − a′XZ2)− (3X2Z + a′Z3)xP ξ + 2Y ZyP ξv,

lT,T (φ
−1 ◦ τ̂(P)) = (X3 − a′XZ2) + (3X2Z + a′Z3)xP ξ + 2Y ZỹP ξv.

Accordingly, point doubling and two line evaluations can be accomplished by
performing the following sequences of operations at a cost of 5m̃ + 5s̃ + 3k

2 m +
2m̃ξ + m̃a′ + 9ã:

A =X2, B =2Y,C =a′ ·Z2, D =A− C,E =A+ C,X3 =D2, Z3 =B2, F =B · Z,
Y3= B ·D · (2E2 −X3), G= F · ξ, I= X ·D,H= (2A+ E) · Z · xP , J = yP ·G,
J̃= ỹP ·G,K=H · ξ, lT,T (φ

−1(P))=I −K + Jv, lT,T (φ
−1 ◦ τ̂(P))=I +K + J̃v.

12

Shared addition step (SADD) Let T = (X,Y, Z), Q = (X2, Y2, Z2) ∈
E′(Fpk/2)[r] be in weight-(1, 2) coordinates with Z 6= 0, Z2 = 1 and T 6= Q.
We adopt the mixed addition formulas [15, section 4] for computing the point
T +Q = (X3, Y3, Z3), which are given by

U = X −X2Z, S = U2Z,X3 = (Y − Y2Z
2)2 − (X +X2Z)S,

Y3 =
(
(Y − Y2Z

2)(XS −X3)− Y SU
)
UZ,Z3 = (UZ)2.

Subsequently, the line function lT,Q evaluated at φ−1(P) and φ−1 ◦ τ̂(P) are
given by

lT,Q)(φ
−1(P)) =

(
(Y − Y2Z

2)X2 − UZY2
)
− (Y − Y2Z

2)ξxP + yPUZξv,

lT,Q(φ
−1 ◦ τ̂(P)) =

(
(Y − Y2Z

2)X2 − UZY2
)
+ (Y − Y2Z

2)ξxP + ỹPUZξv.

The following sequence of operations can be used for computing mixed point
addition and two line evaluations at a cost of 6m̃ + 6m̃u + 2m̃ξ + 3s̃ + 3k

2 m +
3r̃ + 10ã:

A = Z2, B = X2 · Z,C = Y2 ·A,D = X −B,E = Y − C,F = Z ·D,G = F ·D,
X3 =

(
E × E − (X +B)×G

)
mod p,H = X ·G−X3, I = E · F, J = G2,

Y3=(I×H−Y × J) mod p, Z3 =F 2,K =(E×X2−F × Y2) mod p, L =E · xP · ξ,
M = F · ξ,N =M · yP , Ñ =M · ỹP , lT,Q(φ

−1(P)) = (K − L) +Nv,

lT,Q(φ
−1 ◦ τ̂(P)) = (K + L) + Ñv.

4.3 The final exponentiation

The final exponentiation is the other time-consuming stage of the pairing com-
putation. The goal of this step is to raise the output of the Miller loop to the
power of (pk−1)/r. Generally speaking, the large exponent on our target curves
can be split into two parts:

(pk−1)/r = (p+ 1)(pk/2 − 1)︸ ︷︷ ︸
easy part

·Φk(p)/r︸ ︷︷ ︸
hard part

·

The exponentiation to the power of the easy part yields an element f ∈ GΦk(p),
requiring only I + 3M + 2f. The major bottleneck during the final exponenti-
ation arises from the exponentiation to the power of the hard part. Observing
that a non-degenerate power of a pairing remains a pairing, Fuentes-Castañeda
et al. [25] proved that it suffices to raise f to the power of a multiple h of Φk(p)/r,
where h can be written in the base p as

h = h0 + h1 · p+ · · ·+ hϕ(k)−1 · pϕ(k)−1.

As a consecuence, the LLL algorithm is applied to obtain small coefficients hi.
In essence, this method aims to minimize the number of iterations required for

13

the final exponentiation. Nevertheless, it may still be challenging to devise an
optimized routine of the ϕ(k) small exponentiations fhi . For example, when
applying this method to the BW14-351 curve, the six coefficients hi are given as
follows:

h0 = z13 + z12 + z11 − z6 + 3z5 + z3,

h1 =− z13 − z12 − 2z11 − z10 − z9 + z6 − 2z5 + z4 − 3z3,

h2 =(1 + z3)(z10 + z9 + z8)− z6 + 2z5 − z4 − z3 + 2z2 − z,

h3 =− z13 − z12 − z11 + z6 − 2z5 + z4 + z2 + z + 1,

h4 = z13 + z12 + z11 − z8 − z7 − 2z6 + 2z5 − z4 − 3,

h5 =z14 − z11 + 4z6 − 2z5 + z4.

Thus, the cost of computing fhi consists of 14 exponentiations by z and a large
amount of full extension field multiplications.

Based on the fact that fΦk(p) = 1, we can further substitute the exponent h
with λ = h+δΦk(p) for some integer δ. In particular, since Φk(p) =

∑ϕ(k)
i=0 (−1)ipi

in our case, the new exponent λ can be written in base of p as

λ = λ0 + λ1 · p+ · · ·+ λϕ(k) · pϕ(k),

where λi = hi+(−1)iδ for i ∈ {0, 1, · · · , ϕ(k)− 1} and λϕ(k) = δ. Therefore, the
careful selection of the parameter δ may facilitate faster final exponentiation.
We now go back to the BW14-351 curve to illustrate this method in detail. By
setting λ6 = −(z13 + z12 + z11 + 3z5) + (z6 + z5 + z4), we now have

λ0 = h0 + λ6 = z5 + z4 + z3, λ1 = h1− λ6 =−z11− z10 − z9 − 3z3,

λ2=h2 +λ6=z
10+z9+z8− z3 +2z2 − z, λ3 = h3 − λ6 = z2 + z + 1,

λ4 = h4 + λ6 = −z8 − z7 − z6 − 3, λ5 = h5− λ6 = z14 + z13 + z12 + 3z6.

It is straightforward to see that the six coefficients λi satisfy the following rela-
tions:

λ3 = z2 + z + 1, λ0 = z3λ3, λ4 = −(z3λ0 + 3), λ2 = −(z2λ4 + zλ3),

λ1 = z3λ4, λ6 = z2λ1 + zλ0, λ5 = −z3λ1.

In conclusion, the hard part exponentiation on the BW14-351 curve benefits
from the easy relation between λi. In Tab. 5, we list our selected coefficients
λ0, λ1, · · · , λϕ(k) and the corresponding sequence of operations on the five can-
didate curves.

4.4 Computational Cost

The construction of tower fields and the curve equations for the five candidate
pairing-friendly curves are presented in Tab. 6. We now discuss the operation

14

Table 5. The exponentiation of the hard part on cyclotomic pairing-friendly curves
with embedding degrees 10 and 14. We assume the computation of f3 costs one mul-
tiplication, and the computation of f4 is free.

BW10-480 λ0 = z8−4z2, λ1 = z10−z8−4z4+4z2, λ2 = z6−z4−4, λ3 = −z6+4.
Input:f ∈ GΦ14(p), Output:h ∈ GT , Cost:10e + 6M + 3f
f1 ← fz4 , f2 ← fz2

1 · f̄4, f3 ← fz2

2 , f4 ← fz2

3 , f5 ← f2 · f̄1, f6 ← f4 · f̄3,
h← f3 · fp

6 · f
p2

5 · f̄
p
2 .

BW10-511
λ0 = −z13 + 2z10 − z7 − 3, λ1 = −z10 + 2z7 − z4, λ2 = −z7 + 2z4 − z,
λ3=(z

14−2z11+z8+3z)−(z9−2z6+z3), λ4=(z
11−2z8+z5)−(z6−2z3+1)

Input:f ∈ GΦ10(p), Output:h ∈ GT , Cost:14e + 9M + Sc + 4f
f1 ← fz6−2z3+1, f2 ← fz

1 , f3 ← fz2

2 , f4 ← fz
3 , f5 ← fz

4 , f6 ← fz2

5 · f3,

f7 ← fz
6 · f̄3, f8 ← f5 · f̄1, h← f̄6 · f̄4p · f̄2p

2

· f7p
3

· f8p
4

BW10-512
λ0 = z6 − 2z4 + z2, λ1 = z4 − 2z2 + 1, λ2 = −z12 + 2z10 − z8 − 4,
λ3 = −z10 + 2z8 − z6, λ4 = −z8 + 2z6 − z4.
Input:f ∈ GΦ10(p), Output:h ∈ GT , Cost:12e + 7M + Sc + 4f
f1 ← fz4−2z2+1, f2 ← fz2

1 , f3 ← fz2

2 , f4 ← fz2

3 , f5 ← fz2

4 · f4,
h← f2 · fp

1 · f̄5
p2 · f̄4p

3

· f̄3p
4

BW14-351

Input:f ∈ GΦ14(p), Output:h ∈ GT , Cost:14e + 12M + 6f
f1←fz2+z+1, f2←fz

1 , f3 ←fz2

2 , f4 ← fz
3 , f5 ← fz2

4 ·f3f5 ← f̄5, f6 ←fz2

5 ,

f7 ← f2 · f6, f8 ← fz
6 , f9 ← fz2

8 , f10 ← f4 · f9, f11 ← fz
9 ,

h← f3 · f̄8p · f̄7p
2

· f1p
3

· f5p
4

· ¯f11
p5 · f10p

6

BW14-382
λ0= z10− 2z8 + z6, λ1=z8−2z6+z4, λ2=z6 − 2z4+ z2, λ3=z4−2z2+1,
λ4 = −z16 + 2z14 − z12 − 4, λ5=−z14+2z12−z10, λ6=−z12+2z10−z8.
Input:f ∈ GΦ14(p), Output:h ∈ GT , Cost:16e + 7M + Sc + 4f
f1 ← fz4−2z2+1, f2 ← fz2

1 , f3 ← fz2

2 , f4 ← fz2

3 , f5 ← f4 · fp
3 · f

p2

2 ,
f6 ← (fz6

5 · f4)p
4

, h← fp3

1 · f5 · f̄6.

counts of pairing computation on these curves. To this aim, we first count the
number of finite field arithmetic operations. For the Frobenius map and inversion
arithmetic, we adopt the formulas described in [32, Section.5]. For multiplica-
tion and squaring arithmetic, we combine the lazy reduction technique [5] and
the Karatsuba algorithm [46]. In particular, cyclotomic squaring arithmetic can
be accelerated using the formula described in [29, Section 3]. The exact opera-
tion counts for finite field arithmetic across different pairing-friendly curves are
presented in Tabs. 7.

Recall from Section 3.1 that the optimized formulas of Miller function on our
target curves can be expressed as{

fz·p
m

z,Q (P)fz,Q(τ̂(P)) · fz,Q(P) · (yP − yQ)
pn

, if j(E) = 1728;

fz·p
m

z,Q (P)fz,Q(τ̂(P)), if j(E) = 0.

The computation of fz·p
m

z,Q (P)fz,Q(τ̂(P)) can be performed using Alg.2, and it
requires additional 2M+f+ã to complete the final step of the Miller iteration on

15

curves with j-invariant 1728. In conclusion, the total operation count of Miller
Loop is

ML = 2M + f + ã︸ ︷︷ ︸
if j(E) = 1728

+(nbits(z)− 1) · SDBL +
(
(hw(z)− 1

)
· SADD︸ ︷︷ ︸

Lines 1-9 in Alg.2

+

(
(nbits(z)− 1) + 2hw(z)− 2

)
· M + (nbits(z)− 1) · S + f︸ ︷︷ ︸

Lines 10-16 in Alg.2

(6)

where nbits(z) and hw(z) represent the bit length and the hamming weight in
2-non-adjacent form of the seed z, respectively. We use n1, n2, n3 and n4 to
denote the number of e, M, Sc and f required for the exponentiation to the
power of the hard part, respectively. Then the total operation counts of the final
exponentiation is

FE = I + 3M + 2f︸ ︷︷ ︸
easy part

+n1 ·
(
(nbits(z)− 1)Sc + (hw(z)− 1)M

)
+ n2M + n3Sc + n4f︸ ︷︷ ︸

hard part

=I +
(
n1 · (hw(z)− 1) + n2 + 3

)
M +

(
n1 · (nbits(z)− 1) + n3

)
Sc + (n4 + 2)f.

(7)
In the example below, we analysis the detailed operation counts of pairing com-
putation on BW14-351.

Table 6. Parameters of full extension fields and curve equations for the five candidate
pairing-friendly curves.

curve full extension field original curve E twisted curve E′

BW10-480 Fp
ξ5+11−−−−→ Fp5

v2−ξ−−−→ Fp10 y2 = x3 + x y2 = x3 + ξ2x

BW10-511 Fp
ξ5+4−−−→ Fp5

v2−ξ−−−→ Fp10 y2 = x3 − 2 y2 = x3 − 2/ξ3

BW10-512 Fp
ξ5+17−−−−→ Fp5

v2−ξ−−−→ Fp10 y2 = x3 + x y2 = x3 + ξ2x

BW14-351 Fp
ξ7−2−−−→ Fp7

v2−ξ−−−→ Fp14 y2 = x3 + 3 y2 = x3 + 3/ξ3

BW14-382 Fp
ξ7−17−−−−→ Fp7

v2−ξ−−−→ Fp14 y2 = x3 + x y2 = x3 + ξ2x

Example 1. By the form of the selected seed z on BW14-351, we have nbits(z) =
23 and hw(z) = 4. Then it follows from Eq. (6) that the cost of the Miller

16

Table 7. Costs of arithmetic operations in a tower extension field Fpk on the five
candidate curves.

curve m̃ = m̃u + r̃ s̃ = s̃u + r̃ ĩ m̃ξ, m̃a′

BW10-480 15mu+122a + 5r 7mu+8su+83a+5r ≈ i + 2m̃ + 22m 5a, 10a

BW10-511 15mu + 98a + 5r 7mu+8su+59a + 5r ≈ i + 2m̃ + 22m 2a, -

BW10-512 15mu+122a + 5r 7mu+8su+83a+5r ≈ i + 2m̃ + 22m 5a, 10a

BW14-351 24mu+162a + 7r 9mu+ 15su+109a + 7r ≈ i + 3m̃ + 38m a, -

BW14-382 24mu+210a + 7r 9mu+ 15su+157a + 7r ≈ i + 3m̃ + 38m 5a, 10a

Sc S M I f

m̃ + s̃ + 2ã 2m̃ + 5ã + 2m̃ξ 3m̃u+8ã+2m̃ξ+2r̃ ĩ+2m̃+m̃ξ+2s̃+ã (k−2)m

Loop (ML)is:

ML =22(M+ S + 5m̃+m̃u + s̃u +m̃ξ +3s̃+ 21m+ r̃+ 13ã+ a)+
3(M + 6m̃ + 4m̃u + m̃ξ + 3s̃ + 21m + 2r̃ + 12ã) + (28M + 22S + f)

=53M+44S+128m̃+34m̃u+75s̃+22s̃u+25m̃ξ+ 525m+28r̃+f+322ã+22a
=216m̃+193m̃u+219m̃ξ+75s̃+22s̃u+134r̃ + f+ 525m+966ã+22a
=537m + 10689mu + 1455su + 83834a + 2975r
=11226mu + 1445su + 83834a + 3512r.

Furthermore, it can be obtained from Tab. 5 that the parameters n1, n2, n3 and
n4 are equal to 14, 12, 0 and 6, respectively. By Eq. (7), the cost of the final
exponentiation is:

FE = (I + 3M + 2f) + (14e + 12M + 6f) = I + 57M + 308Sc + 8f
= ĩ + 310m̃ + 171m̃u + 115m̃ξ + 310s̃ + 114r̃ + 96m + 1073ã
= i + 14406mu + 134m + 4650su + 5159r + 131294a
= i + 14540mu + 4650su + 119824a + 5293r.

In total, the cost of pairing computation on BW14-351 is

ML+ FE = i + 25766mu + 6105su + 203658a + 8805r.

In Tab. 8, we summarize the cost of pairing computation for the five can-
didate curves. It should be noted that all the selected primes p for BW10-
480, BW10-511 and BW10-512 can be represented by 8 computer words in
a 64-bit processor, while for BW14-351 and BW14-382 only requires 6 com-
puter words. As illustrated in [4, Section 8], it is reasonable to estimate that
m8 ≈ (136/78)m6 ≈ 1.74m6 and a8 ≈ (8/6)a6 ≈ 1.33a6, where mi and ai

17

Table 8. Comparsion of operations of pairing computation for the five candidate
pairing-friendly curves.

curve ML FE ML+ FE

BW10-480 12861mu + 1720su+
115142a + 4761r

i + 11591mu + 3216su+
111208a + 4682r

i + 24452mu + 4936su+
226350a + 9443r

BW10-511 10027mu + 1096su+
71275a + 3508r

i + 12452mu + 3608su+
93752a + 5130r

i + 22479mu + 4704su+
165027a + 8638r

BW10-512 11761mu + 1560su+
104010a + 4341r

i + 12820mu + 3480su+
122456a + 5130r

i + 24581mu + 5040su+
226466a + 9471r

BW14-351 11226mu + 1455su+
83834a + 3512r

i + 14540mu + 4650su+
119824a + 5293r

i + 25766mu + 6105su+
203658a + 8805r

BW14-382 11874mu + 1800su+
116234a + 3874r

i + 17849mu + 5085su+
192413a + 6137r

i +29723mu+ 6885su+
308647a + 10011r

denote the cost of multiplication and addition in Fp, with p a i computer word
size prime in a 64-bit processor. Following the estimates, together with Tab. 8,
we predict that BW14-351 is the most efficient choice among the five candidate
curves in terms of pairing computation.

5 Subgroup membership testings

In pairing-based cryptographic protocols, subgroup membership testings play
a critical role in defending against small subgroup attacks [9, 37]. Recent re-
search [16,43] has demonstrated that efficiently computable endomorphisms are
powerful tools for accelerating these testings in various pairing groups. In this
section, we describe the application of the the state-of-the-art technique [16]
to our specific pairing-friendly curves. Furthermore, we also introduce a faster
method for G2 membership testing.

Notations. We denote by η, ψ and Ψ the enodmorphisms φ−1◦τ ◦φ, φ−1◦π◦φ
and φ−1 ◦ π ◦ τ ◦ φ, respectively. We write Res(f, g) for the resultant of two
polynomials f and g.

5.1 G1 membership testing

Given a candidate point P , the process of verifying whether P ∈ G1 can be
divided into two phases. Concretely, one can first check whether P ∈ E(Fp),
followed by verifying that the order of P is exactly r. It is clear that the compu-
tational cost largely comes from the second phase. Let the GLV endomorphism
τ on G1 act as scalar multiplication by λ1, and Lτ be a two dimensional lattice
as

Lτ = {(a0, a1) ∈ Z2|a0 + a1 · λ1 ≡ 0 mod r}.

18

By [44, Theorem 2], the norm of the shortest vector in Lτ is about log r/2. Let
(a0, a1) be a vector in Lτ with gcd(h1, h

′
1) = 1, where

h′1 =

{(
a20 − a0 · a1 + a21

)
/r, if j(E) = 0;(

a20 + a21)/r, if j(E) = 1728.
(8)

Dai et al. [16] prove that the short vector (a0, a1) can be used to accelerate G1

membership testing, i.e.,

P ∈ G1 ⇔ P ∈ E(Fp) and [a0]P + [a1]τ(P) = OE .

In general, the constraint gcd(h1, h
′
1) = 1 is mild and thus one can find a valid

short vector “closed” to the shortest one on many pairing-friendly curves. It
means that the process of G1 membership testing requires about log r/2 itera-
tions.

5.2 GT membership testing

In the case of GT membership testing, the Forbenius endomorphism is critical in
finding valid short vectors. To illustrate it, we first use Lπ to denote the following
ϕ(k) dimensional lattice:

Lπ = {(a0, · · · , aϕ(k)−1) ∈ Zϕ(k)|a0 + a1 · p+ · · ·+ aϕ(k)−1 · pϕ(k)−1 ≡ 0 mod r}.

The norm of the shortest vector in Lπ is about log r/ϕ(k). For a given short
vector c = (c0, c1, · · · , cϕ(k)−1) ∈ Lπ with gcd(hT , h

′
T) = 1 where hT = Φk(p)/r

and h′T =
∑ϕ(k)−1

i=0 ci · pi, Dai et al. found that:

α ∈ GT ⇔ αΦk(p) = 1 and
ϕ(k)−1∏
i=0

αci·pi

= 1.

Likewise, the condition gcd(hT , h
′
T) = 1 is mild, and thus the process of GT

membership testing requires about log r/ϕ(k) iterations.
Modified short vector: The previous idea for optimizing the final exponen-
tiation still applies to GT membership testing such that several full extension
field multiplications can be saved. Specifically, once the candidate element α
proved to be a member of GΦk(p), one can replace the original valid vector c by
c′ = (c0 + δ, c1 − δ, · · · , cϕ(k)−1 − δ, δ) for some integer δ on our target curves as

ϕ(k)−1∏
i=0

αci·pi

= 1 ⇔ αδ·Φk(p) ·
ϕ(k)−1∏
i=0

αci·pi

= 1.

In particular, if the first i tuples of c′ are 0, we then can obtain a new vector
as (ci+1 + (−1)i+1δ, · · · , cϕ(k)−1 − δ, δ, 0, · · · , 0). For instance, using the Magma
code provided in [16, Section 5], a valid vector for GT membership testing on

19

BW14-351 is given by c = (1,−1, 1, z2 − 1,−z2 + z + 1,−z). Taking δ = −1, we
have

(c0 − 1, c1 + 1, · · · , c6 − 1, 1) = (0, 0, 0, z2,−z2 + z,−z + 1,−1).

Left-shifting the above vector, one can obtain a modified short vector as (z2,−z2+
z,−z + 1,−1, 0, 0, 0). In conclusion, it is equivalent to checking that

α · α(p+p3+p5)·p = αp+p3+p5

, αp3

= αz2

· α(z−z2)·p · α(1−z)·p2

.

5.3 G2 membership testing

Let (c0, c1, · · · , cϕ(k)−1) be a short vector in Lπ with gcd(h2, h
′
2) = 1, where h2 =

#E′(Fpk/2)/r and h′2 =
∑ϕ(k)−1

i=0 ci · pi. Dai et al. method for G2 membership
testing is summarized as follows:

Q ∈ G2 ⇔ Q ∈ E′(Fpk/2) and
ϕ(k)−1∑
i=0

[ci]ψ
i(Q) = OE′ .

Again, the above computation requires about log r/ϕ(k) iterations. In the fol-
lowing, we develop a faster method for G2 membership testing, which is tailored
to our target curves. To this aim, we first determine the characteristic equation
of the endomorphism Ψ .

Lemma 2. Let E be an ordinary curve over Fp with #E(Fp) = p + 1 − t,
admitting a twist E′. If j(E′) = 0 or 1728, then the characteristic equation of Ψ
is given as follows:

(1) j(E′) = 0 : Ψ2 + t±3f
2 Ψ + p = 0 with t2 − 4p = −3f2;

(2) j(E′) = 1728 : Ψ2 ± fΨ + p = 0 with t2 − 4p = −f2.

Proof. We only give the proof for the case j(E′) = 0 (The proof of the remaining
case is similar). As mentioned in Section 2.1, the characteristic equation of Ψ
can be expressed as

Ψ2 +mΨ + n = 0 (9)

for some integers m and n. Since deg(ψ) = p and deg(η) = 1, we have

n = deg(Ψ) = deg(ψ) · deg(η) = p.

Furthermore, since the characteristic equation of π and η are given as follows

ψ2 − tψ + p = 0, η2 + η + 1 = 0,

it is easy to deduce that

ψ =
t±

√
−3 · f
2

and η =
−1±

√
−3

2
.

20

By the fact that Ψ = ψ ◦ η, we have

Ψ =
t±

√
−3 · f
2

· −1±
√
−3

2
=

−(t± 3f)±
√
−3 · (t− f)

4
(10)

On the other hand, it can be obtained from Eq. (9) that

Ψ =
−m+

√
m2 − 4n

2
. (11)

By comparing Eqs.(10) and (11), we conclude that m = (t± 3f)/2, which com-
pletes the proof.

Recall that the endomorphism η acts on G2 (the group is on E′) as scalar
multiplication by λ2 that is defined in Eq. (3). By combining the actions of ψ and
η on G2 together, we have Ψ(Q) = [`]Q for any Q ∈ G2, where ` = p · λ2 mod r.
Since the order of Ψ restricting on the Fpk/2 rational endomorphism ring is equal
to 2k or 3k on our target curves, we have r | Φ2k(`) or r | Φ3k(`). The degree
of each of the two cyclotomic polynomials is equal to 2ϕ(k). For this reason, we
can construct the following 2ϕ(k) dimensional lattice:

LΨ = {(a0, · · · , a2ϕ(k)−1) ∈ Z2ϕ(k)|a0+a1 ·`+· · ·+a2ϕ(k)−1 ·`2ϕ(k)−1 ≡ 0 mod r}.

By taking full advantage of the endomorphism Ψ , a new method for G2 mem-
bership testing is proposed, which is tailored to our target curves.

Theorem 1. Let E be an ordinary curve over Fp with j-invariant 0 or 1728.
Let r be a large prime such that r | #E(Fp). Let E admit a twist E′ of degree 2
such that r | #E′(Fpk/2), where k is the embedding degree of E with respect to r
and p. Assume c = (c0, c1, · · · , c2ϕ(k)−1) ∈ LΨ such that

gcd(Res
(
h(Ψ), g(Ψ)), h2 · r

)
= r, (12)

where h(Ψ) =
∑2ϕ(k)−1

i=0 ciΨ
i and g(Ψ) is the characteristic polynomial of Ψ .

Then for any non-identity point Q of E′(Fpk/2), the point Q ∈ G2 = E′(Fpk/2)[r]
if and only if ∑2ϕ(k)−1

i=0
[ci]Ψ

i(Q) = OE′ . (13)

Proof. If Q ∈ G2, then we have Ψ(Q) = [`]Q. As a result, we can easily check
that ∑2ϕ(k)−1

i=0
[ci]Ψ

i(Q) =
∑2ϕ(k)−1

i=0
[ci`

i]Q = OE′ .

Conversely, we let b0 and b1 be two integers satisfying that b0+b1Ψ = h(Ψ) mod
g(Ψ). By the property of resultant, we have

Res(f(Ψ), g(Ψ)) = Res(b0 + b1Ψ, g(Ψ)) = b20 + b0b1tΨ + b21p,

21

where tΨ is the trace of Ψ that is given in Lemma 2. Furthermore, by the fact
that h(Ψ)(Q) = g(Ψ)(Q) = OE′ , we have

[b20 + b0b1tΨ + b21p]Q = (b0 + b1Ψ̂)(b0 + b1Ψ)(Q) = OE′ ,

Therefore, the order of Q divides gcd(Res(h(Ψ), g(Ψ)), h2 · r). Since the selected
vector c is restricted by Eq. (12), we conclude that Q ∈ E′(Fpk/2)[r] = G2, which
completes the proof.

Likewise, the new approach requires about log r/(2ϕ(k)) bits operations, which
is about 2× as fast as the previous leading work [16]. In Tab. 9, we list the short
vectors that can be used for G1, G2 and GT membership membership testings
on the five candidate pairing-friendly curves. It is straightforward to see that the
computational cost of G2 membership testing on the five candiate curves comes
largely from a scalar multiplication by z.

Table 9. Short vectors for subgroup membership testings on five candidate pairing-
friendly curves.

curve G1 (a0, a1) G2 GT

BW10-480 (z3 − z,−1 − a0 · z) (1, 0, 0,−z, 0, 0, 0, 0) (z2, 0, 0, 0, 1)

BW10-511 (a1 · z − 1, z3 + z2 − 1) (1, 0,−z − 1,−1, 0, 0, 1, 1) (1,−z2, 0, z, 0)

BW10-512 (z3−z,−a0 · z−1) (0, 1, 0, z − 1, 0, 1,−z + 1,−1) (1, z2 − 1, 0, z2 − 1)

BW14-351 (z5+z4−z2−z,(1−z)·a0−1) (1, 1, 0,−1,−1, 0, 1, 0,−1,−1, 0, z+1) (z2, z−z2, 1−z,−1)

BW14-382 (z5 − z3 + z,−1 + a0 · z) (0, 1, z,−1, 0, 1, 0,−1, 1, 1, 0, z − 1) (z2,−1, z2,−1)

6 Cofactor Multiplication

Hashing a string into G1 or G2 is an important building block in pairing-based
cryptographic protocols. This operation consists of two phases: first mapping
a string into a curve point, followed by a cofactor multiplication so that the
resulting point falls into the target subgroup. In this section, we present efficient
algorithms for cofactor multiplication for G1 and G2 on our chosen target curves.

6.1 Cofactor multiplication for G1

Given a random point P ∈ E(Fp), cofactor multiplication for G1 is to map the
point P into G1. The naive way is to perform the scalar multiplication [h1]P ,
where the cofactor h1 = #E(Fp)/r. Housni, Guillevic and Piellard [22] observe
that the cofactor h1 can be replaced by a smaller cofactor h̃1 on a large class of
cyclotomic pairing-friendly curves, where h̃1 is determined by the group structure
of E(Fp):

E(Fp) ∼= Zm1
⊕ Zh̃1·r with m1 | h̃1 and m1 · h̃1 = h1.

22

It can be deduced from [41, Proposition 3.7] that m1 is the largest integer such
that m2

1 | #E(Fp) and m1 | (p − 1) on curves with j-invariant 0 or 1728. Thus,
it is not difficult to determine the value m1 on the five candidate curves. In the
optimal case, we have m1 ≈ h̃1 and thus the new method would be twice as fast
as the naive one, such as on the BW10-480 and BW10-511 curves.
Faster cofactor multiplication for G1: The algorithm of Housni-Guillevic-
Piellard can be further optimized in the case that m1 � h̃1, such as on the
BW10-512, BW14-351 and BW14-382 curves. In fact, a random point P ∈ E(Fp)
can be mapped into G1 as follows:

E(Fp)
m1−−→ E(Fp)[n1 · r]

a0+a1τ−−−−−→ E(Fp)[r] = G1.

In detail, the first step is to map the point P into the cyclic group E(Fp)[n1 · r]
by performing a scalar multiplication by m1 where, n1 = h̃1/m1; the next step is
to clear the cofactor n1 using the endomorphism a0+a1 · τ , where a0 and a1 are
integers satisfying a0 + a1 · s1 ≡ 0 mod n1 and s1 denotes the scalar of the GLV
endomorphism τ acting on E(Fp)[n1 ·r]. More specifically, the LLL algorithm can
be exploited to look for two integers a0 and a1 such that max{log|a0|, log|a1|} ≈
log n1/2. In conclusion, cofactor multiplication for G1 can always be performed
in around logm1 + log n1/2 ≈ log h1/2 iterations, which does not depend on the
group structure of E(Fp). In Tab.10, we summarize the parameters h1, m1 and
h̃1, and short vectors (a0, a1) across different pairing-friendly curves.

Table 10. Important parameters for cofactor multiplication for G1 on the five candi-
date pairing-friendly curves.

curve h1 m1 h̃1 n1 (a0, a1)

BW10-480 z4

4
z2

2
z2

2
1 −

BW10-511 (z3−1)2

3
(z3−1)

3
z3 − 1 3 −

BW10-512 (z2−1)2(z2+1)
4

(z2−1)
2

(z2−1)(z2+1)
2

z2 + 1 (z,−1)

BW14-351 (z2−z+1)(z2+z+1)
3

1 (z2−z+1)(z2+z+1)
3

(z2−z+1)(z2+z+1)
3

(2z, z2+z−1)

BW14-382 (z2−1)2(z2+1)
4

(z2−1)
2

(z2−1)(z2+1)
2

z2 + 1 (z, 1)

6.2 Cofactor multiplication for G2

Cofactor multiplication for G2 aims to map a random point Q of E′(Fpk/2) into
G2. The naive way is to compute [h2]Q directely, where h2 = #E′(Fpk/2)/r. Since
the cofactor h2 is much larger than the cofactor h1 and G2 is defined over Fpk/2 ,
the computational cost of the cofactor multiplication for G2 is more expensive
than that for G1. To date, the fastest known algorithm [25] requires log h2/ϕ(k)

23

iterations to clear the cofactor. Recently, Dai et al. [18] proposed a fast method
for this operation on curves with the lack of twists. In this subsection, we show
that Dai et al. method can be generalized to our target curves such that the
number of iterations can be further reduced to log h2/(2ϕ(k)).

Lemma 3. Let G′
0 = {Q ∈ E′(Fpk/2)|Φk(ψ)(Q) = OE′}. Then the order of G′

0

is precisely equal to
#E′(F

pk/2)·#E(Fp)

#E(Fp2)
.

Proof. Let G0 = {Q ∈ E(Fpk)|Φk(π)(Q) = OE}. It is easy to see that G0
∼= G′

0

and thus #G0 = #G′
0. By [18, Proposition 2], we have

#G0 =
#E(Fpk) ·#E(Fp)

#E(Fpk/2) ·#E(Fp2)
. (14)

On the other hand, it can be obtained from [33, Theorem 3] that

#E(Fpk) = #E(Fpk/2) ·#E′(Fpk/2). (15)

Inserting Eq.(14) into Eq.(15), it yields that

#G′
0 = #G0 =

#E′(Fpk/2) ·#E(Fp)

#E(Fp2)
, (16)

which completes the proof of this lemma.

Since G2 is a subgroup of G′
0, we define that G′

0
∼= Zm2

⊕ Zm2·n2·r for some
integers m2 and n2. As a consequence, the process of mapping a random point
of E′(Fpk/2) into G2 can be divided into three steps as follows:

E′(Fpk/2) → G′
0 → E′(Fpk/2)[n2 · r] → G2.

Given a random point Q ∈ E′(Fpk/2), it can be mapped into the group G′
0 under

the endomorphism ψ + 1. It is clear that the computational cost of operations
largely comes from the last step. In the following, we show how to map a random
point of E′(Fpk/2)[n2 · r] into G2. To illustrate it, we first introduce the two
lemmas.

Lemma 4. Let t′ be the trace of the pk/2 power Frobenius endomorphism of E′.
Let f, f ′ ∈ Z be such that t2 − 4p = −Df2 and t′2 − 4pk/2 = −Df ′2, where −D
is the square-free part of t2 − 4p. Let H be a cyclic subgroup of G′

0 with order
n2 · r. Then ψ(P) = [a]Q for any Q ∈ H, where a = t±f(t′−2)

2f ′ mod n2 · r.

Proof. The proof is given in [25, Lemma 2].

As illustrated in [25], Lemma 4 induces a fast approach for cofactor multiplica-
tion for G2 in log n2/ϕ(k) iterations on a large class of pairing-friendly curves.

24

Lemma 5. Let H be a cyclic subgroup of G′
0 with order n2 ·r. Then η(Q) = [b]Q

for any Q ∈ H, where

b =

−f ± (2a− t)

2f
mod n2 · r, if j(E) = 0,

±(2a− t)

f
mod n2 · r, if j(E) = 1728.

Proof. The proof is derived from [18, Lemma 2].

In the following, we propose a more efficient approach for cofactor multiplication
for G2 suitable for curves listed in Tab. 1. Our main idea is summarized in the
theorem below.

Theorem 2. Let E be an ordinary elliptic curve admitting a degree-2 twist E′

over an extension field Fpk/2 , where k is the even embedding degree. Let H be
a cyclic subgroup of G′

0. If the curve E satisfies the following two conditions:
(i)j(E) ∈ {0, 1728}, (ii)3 - k and 4 - k, then there exists a polynomial

h(x) = h0 + h1x+ · · ·+ hs−1x
s−1 ∈ Z[x]

such that h(Ψ)(Q) ∈ G2 for any Q ∈ H, where s = 2ϕ(k) and |hi| < |n2|1/s for
i = 0, · · · , s− 1.

Proof. Since Ψ = ψ ◦ η, it can be deduced from Lemmas 4 and 5 that Ψ(Q) =
[λ2]Q, where λ2 = a · b mod n2 · r. Under the condition that 3 - k and 4 - k, we
can deduce that the order of Ψ acting on the group G′

0 is 2k or 3k, which means
that {

Φ3k(λ2) ≡ 0 mod n2 · r, if j(E) = 0;
Φ2k(λ2) ≡ 0 mod n2 · r, if j(E) = 1728.

In both cases, the degree of the cyclotomic polynomial is 2ϕ(k). Analogous to [25,
Theorem 1], there exists a polynomial

h(x) = h0 + h1x+ · · ·+ hϕ(k)−1x
2ϕ(k)−1 ∈ Z[x]

such that h(λ2) is a multiple of n2, where |hi| < |n|1/2ϕ(k). Therefore, we have
h(Ψ)Q ∈ G2 for any Q ∈ H, which completes the proof of this theorem.

By Theorem 2, the number of iterations for G2 cofactor multiplication can be
reduced to logn2

2ϕ(k) ≈ log h2

2ϕ(k) on the curves listed in Tab. 1, which is approximately
2× as fast as the previous leading work [25]. In Alg. 3, we present Magma [11]
code for searching for the target short vector h = (h0, h1, · · · , h2ϕ(k)−1). In the
following, we take the BW14-351 curve as an example to describe the main
mechanics of the new algorithm.

Example 2 (Cofactor multiplication for G2 on BW14-315). We first can check
that gcd(#G′

0, p
7 − 1) = 1 on BW14-351, where #G′

0 can be obtained from

25

Algorithm 3: Computing the vector h used for cofactor multiplication
for G2 on pairing-friendly curves listed in Tab. 1

Input: the prime p, the scalars a and b, the order r, the embedding degree k, and
the large cofactor n

Output: the coefficient vector h

1 s:=2*EulerPhi(k);
2 lambda:=a*b bmod nr;
3 B:=RMatrixSpace(Integers(),s-1,s-1)!0;
4 B[1][1]:=n;
5 for i:= 2 to s-1 do
6 B[i][1]:=-lambda^(i-1);B[i][i]:=1;
7 end for
8 L:= LatticeWithBasis(B);
9 h:=ShortestVector(L);

10 return h

Lemma 3. It follows from [18, Proposition 1] that G′
0 is cyclic. Applying Alg. 3,

we can obtain a vector (h0, h1, · · · , h11), where

hi =

0, if 9 ≤ i ≤ 11;
2, if i = 8;
z2 + z + 1, if i = 6;
zhi+1, if 2 ≤ i ≤ 5;
zh2 − 1, if i = 1;
h1 + h4 − h3 − h6 + z + 2, if i = 0;
− h1 − h4 + h2 + h5 + 1. if i = 7.

Given a random point Q ∈ E′(Fp7), we fist obtain the point P = (ψ + 1)(Q).
Then, we have h(Ψ)P =

∑8
i=0 Ψ

i(Ri) ∈ G2, where Ri is given as follows:

R8 = [2]P,

R6 = [z2 + z + 1]P,

Ri = [z]Ri+1, 2 ≤ i ≤ 5,

R1 = [z]R2 − P,

R7 = −(R1 +R4) + (R2 +R5)− P,

R0 = (R1 +R4)− (R3 +R6) + [z]P +R8.

In total, cofactor multiplication for G2 on BW14-351 costs seven scalar multi-
plications by z, nineteen point additions, one ψ map, and eight Ψ maps.

26

7 Implementation Results

We first present Magma scripts to validate the correctness of our proposed algo-
rithms and formulas. Moreover, we also provide high-speed software implemen-
tation for several important pairing group operations on BW14-351, which has
been identified as the winner for pairing computation among the five candidate
curves. Our implementation is based on RELIC, which a well-known crypto-
graphic library for building pairing-based cryptographic protocols on popular
curves at the updated 128 security level, such as BN-446 and BLS12-446. In
addition, we have observed that the implementation of pairing group opera-
tions on BW13-310 presented in [17] also relies on this library. Therefore, we
have integrated our code into RELIC to enable fair performance comparisons
between BW14-351 and these popular curves. Besides our proposed algorithms,
we exploit state-of-the-art techniques to implement the following operations.

• We employ the GLV method [27] and GLS method [26] to perform group
exponentiations in G1 and GT on BW14-351, respectively.

• For group exponentiation in G2 on BW14-351, we fortunately find that
Dai et al. method [17, Section 5] can be exploited to achieve a 2ϕ(k)-
dimensional decomposition.

• In terms of the computation of pairings products, we adopt the strategies
proposed [28,42,48] such that the final exponentiation step and the squaring
computations at the Lines 3 and 12 of Alg. 2 can be shared.

Table 11. Benchmarking results of pairing group operations across different pairing-
friendly curves reported in 103 cycles in a 64-bit processor averaged over 104 executions.

Operation\Curve BLS12-446 BN-446 BW13-310 BW14-351

hashing to G1 697 427 274 422
hashing to G2 1630 1361 16699 7402

exp in G1 541 791 268 362
exp in G2 918 1394 7247 3548
exp in GT 1322 2243 1062 1122
test in G1 389 8 269 345
test in G2 333 487 1176 938
test in GT 372 540 223 391

ML 1554 2480 1719 1621
FE 1835 1589 2579 2390

Single pairing 3389 4069 4298 4011
2-pairings 4439 5717 5640 5294
5-pairings 7614 1053 9621 9476
8-pairings 10790 15349 13603 13035

27

It should be noted that RELIC supports the GLV decomposition once the asso-
ciated curve parameters are given.

Our code is available at https://github.com/eccdaiy39/BW10-14. The im-
plementations are compiled with GCC 11.4.0 and flags -O3 -funroll-loops
-march=native -mtune=native. The benchmarks are executed an Intel Core
i9-12900K processor running at @3.2GHz with TurboBoost and hyper-threading
features disabled. Tab. 11 reports detailed performance comparisons for each
building block across different curves. The results reveal that the performance
of single pairing computation on BW14-351 is even slightly faster than BN-446
and BW13-310, while about 18.4% slower than BLS12-446. In terms of group
exponentiation in G1 and GT , BW14-351 is about 49.2% and 15.1% faster than
BLS12-446, 119.6% and 73.8% faster than BN-446, while 34.4% and 5.5% slower
than BW13-310. Moreover, compared to BW13-310, BW14-351 benefits from a
lighter performance penalty for hashing to G2 and group exponentiation in G2,
even though is still slower than BN-446 and BLS12-446.

These results show that each curve has its own strengths and no one can
be said to be perfect. The selection of a curve should be based on a careful
analysis of the protocol requirements and a thorough evaluation of the perfor-
mance tradeoffs. For instance, BW14-351 may be an appropriate choice in the
case that a protocol aims to pursue fast group exponentiations in G1 and GT ,
while minimizing the performance penalty for group exponentiations in G2.

8 Conclusion

In this paper, we provided a comprehensive research for a list of pairing-friendly
curves with embedding degrees 10 and 14. We generalized Dai-Zhang-Zhao al-
gorithm for pairing computation on BW13-310 to our target curves, so that the
number of Miller iterations can be reduced to approximately log r/(2ϕ(k)), while
the denominator elimination trick still can be applied. We also proposed opti-
mized algorithms for cofactor multiplication for G1 and G2, and subgroup mem-
bership testing for G2 on these curves. After the correctness of our proposed al-
gorithms via Magma scripts, we presented high-speed software implementations
on the BW14-351 curve inside the RELIC library, and compared performance
tradeoffs with other popular curves at the same security level, including BN-
446, BLS12-446 and BW13-310. Our results showed that the BW14-351 curve is
competitive for building pairing-based cryptographic protocols at the updated
128-bit security level.

References

1. European union agency of network and information security (ENISA): Algorithms,
key sizes and parameters report (2013)

2. Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography.
https://github.com/relic-toolkit/relic

28

https://github.com/eccdaiy39/BW10-14

3. Aranha, D.F., El Housni, Y., Guillevic, A.: A survey of elliptic curves
for proof systems. Designs, Codes and Cryptography (Dec 2022).
https://doi.org/10.1007/s10623-022-01135-y

4. Aranha, D.F., Fuentes-Castañeda, L., Knapp, E., Menezes, A., Rodríguez-
Henríquez, F.: Implementing pairings at the 192-bit security level. In: Abdalla,
M., Lange, T. (eds.) Pairing-Based Cryptography – Pairing 2012. pp. 177–195.
Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

5. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster explicit
formulas for computing pairings over ordinary curves. In: Paterson, K.G. (ed.) Ad-
vances in Cryptology – EUROCRYPT 2011. pp. 48–68. Springer Berlin Heidelberg,
Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_5

6. Azarderakhsh, R., Fishbein, D., Grewal, G., Hu, S., Jao, D., Longa,
P., Verma, R.: Fast software implementations of bilinear pairings. IEEE
Transactions on Dependable and Secure Computing 14(6), 605–619 (2017).
https://doi.org/10.1109/TDSC.2015.2507120

7. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. Journal of
Cryptology 32(4), 1298–1336 (2019). https://doi.org/10.1007/s00145-018-9280-5

8. Barbulescu, R., Gaudry, P., Kleinjung, T.: The tower number field sieve.
In: Iwata, T., Cheon, J.H. (eds.) Advances in Cryptology – ASIACRYPT
2015. pp. 31–55. Springer Berlin Heidelberg, Berlin, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48800-3_2

9. Barreto, P.S.L.M., Costello, C., Misoczki, R., Naehrig, M., Pereira, G.C.C.F.,
Zanon, G.: Subgroup security in pairing-based cryptography. In: Lauter,
K., Rodríguez-Henríquez, F. (eds.) Progress in Cryptology – LATIN-
CRYPT 2015. pp. 245–265. Springer International Publishing, Cham (2015).
https://doi.org/10.1007/978-3-319-22174-8_14

10. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime or-
der. In: Preneel, B., Tavares, S. (eds.) Selected Areas in Cryptography –
SAC 2005. pp. 319–331. Springer Berlin Heidelberg, Berlin, Heidelberg (2006).
https://doi.org/10.1007/11693383_22

11. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symbolic Comput. 24(3-4), 235–265 (1997), computational algebra
and number theory (London, 1993)

12. Brezing, F., Weng, A.: Elliptic curves suitable for pairing based cryptography.
Designs, Codes and Cryptography 37(1), 133–141 (Oct 2005), https://doi.org/
10.1007/s10623-004-3808-4

13. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceed-
ings of the 11th ACM Conference on Computer and Communications Security.
pp. 132–145. Association for Computing Machinery, New York, NY, USA (2004).
https://doi.org/10.1145/1030083.1030103

14. Clarisse, R., Duquesne, S., Sanders, O.: Curves with fast computations in the
first pairing group. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.) Cryptology
and Network Security – CNS2020. pp. 280–298. Springer International Publishing,
Cham (2020). https://doi.org/10.1007/978-3-030-65411-5_14

15. Costello, C., Lange, T., Naehrig, M.: Faster pairing computations on curves with
high-degree twists. In: Nguyen, P.Q., Pointcheval, D. (eds.) Public Key Cryptog-
raphy – PKC 2010. pp. 224–242. Springer Berlin Heidelberg, Berlin, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13013-7_14

16. Dai, Y., Lin, K., Zhao, C.A., Zhou, Z.: Fast subgroup membership testings for G1,
G2 and GT on pairing-friendly curves. Designs, Codes and Cryptography (May
2023). https://doi.org/10.1007/s10623-023-01223-7

29

https://doi.org/10.1007/s10623-022-01135-y
https://doi.org/10.1007/978-3-642-20465-4$_$5
https://doi.org/10.1109/TDSC.2015.2507120
https://doi.org/10.1007/s00145-018-9280-5
https://doi.org/10.1007/978-3-662-48800-3$_$2
https://doi.org/10.1007/978-3-319-22174-8$_$14
https://doi.org/10.1007/11693383$_$22
https://doi.org/10.1007/s10623-004-3808-4
https://doi.org/10.1007/s10623-004-3808-4
https://doi.org/10.1145/1030083.1030103
https://doi.org/10.1007/978-3-030-65411-5$_$14
https://doi.org/10.1007/978-3-642-13013-7$_$14
https://doi.org/10.1007/s10623-023-01223-7

17. Dai, Y., Zhang, F., Zhao, C.A.: Don’t forget pairing-friendly curves
with odd prime embedding degrees. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems 2023(4), 393–419 (Aug 2023).
https://doi.org/10.46586/tches.v2023.i4.393-419

18. Dai, Y., Zhang, F., Zhao, C.A.: Fast hashing to G2 on pairing-friendly curves
with the lack of twists. Finite Fields and Their Applications 91, 102263 (2023).
https://doi.org/https://doi.org/10.1016/j.ffa.2023.102263

19. De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions from super-
singular isogenies and pairings. In: Galbraith, S.D., Moriai, S. (eds.) Advances in
Cryptology – ASIACRYPT 2019. pp. 248–277. Springer International Publishing,
Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_10

20. El Housni, Y., Guillevic, A.: Optimized and secure pairing-friendly elliptic curves
suitable for one layer proof composition. In: Krenn, S., Shulman, H., Vaudenay,
S. (eds.) Cryptology and Network Security – CANS 2020. pp. 259–279. Springer
International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-65411-
5_13

21. El Housni, Y., Guillevic, A.: Families of SNARK-friendly 2-chains of elliptic
curves. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology – EU-
ROCRYPT 2022. pp. 367–396. Springer International Publishing, Cham (2022).
https://doi.org/10.1007/978-3-031-07085-3_13

22. El Housni, Y., Guillevic, A., Piellard, T.: Co-factor clearing and subgroup member-
ship testing on pairing-friendly curves. In: Batina, L., Daemen, J. (eds.) Progress
in Cryptology – AFRICACRYPT 2022. pp. 518–536. Springer Nature Switzerland,
Cham (2022). https://doi.org/10.1007/978-3-031-17433-9_22

23. El Mrabet, N., Joye, M.: Guide to pairing-based cryptography (2016)
24. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.

Journal of Cryptology 23(2), 224–280 (2010). https://doi.org/10.1007/s00145-009-
9048-z

25. Fuentes-Castañeda, L., Knapp, E., Rodríguez-Henríquez, F.: Faster hashing
to G2. In: Miri, A., Vaudenay, S. (eds.) Selected Areas in Cryptography –
SAC 2011. pp. 412–430. Springer Berlin Heidelberg, Berlin, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28496-0_25

26. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-
tography on a large class of curves. In: Joux, A. (ed.) Advances in Cryptology -
EUROCRYPT 2009. pp. 518–535. Springer Berlin Heidelberg, Berlin, Heidelberg
(2009)

27. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: Kilian, J. (ed.) Advances in Cryptology
— CRYPTO 2001. pp. 190–200. Springer Berlin Heidelberg, Berlin, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8_11

28. Granger, R., Smart, N.P.: On computing products of pairings. Cryptology ePrint
Archive, Paper 2006/172 (2006), https://eprint.iacr.org/2006/172, https://
eprint.iacr.org/2006/172

29. Granger, R., Scott, M.: Faster squaring in the cyclotomic subgroup of sixth degree
extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) Public Key Cryptography –
PKC 2010. pp. 209–223. Springer Berlin Heidelberg, Berlin, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13013-7_13

30. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fis-
chlin, M., Coron, J.S. (eds.) Advances in Cryptology – EUROCRYPT
2016. pp. 305–326. Springer Berlin Heidelberg, Berlin, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49896-5_11

30

https://doi.org/10.46586/tches.v2023.i4.393-419
https://doi.org/https://doi.org/10.1016/j.ffa.2023.102263
https://doi.org/10.1007/978-3-030-34578-5$_$10
https://doi.org/10.1007/978-3-030-65411-5$_$13
https://doi.org/10.1007/978-3-030-65411-5$_$13
https://doi.org/10.1007/978-3-031-07085-3$_$13
https://doi.org/10.1007/978-3-031-17433-9$_$22
https://doi.org/10.1007/s00145-009-9048-z
https://doi.org/10.1007/s00145-009-9048-z
https://doi.org/10.1007/978-3-642-28496-0$_$25
https://doi.org/10.1007/3-540-44647-8$_$11
https://eprint.iacr.org/2006/172
https://eprint.iacr.org/2006/172
https://eprint.iacr.org/2006/172
https://doi.org/10.1007/978-3-642-13013-7$_$13
https://doi.org/10.1007/978-3-662-49896-5$_$11

31. Guillevic, A.: A short-list of pairing-friendly curves resistant to special tnfs at
the 128-bit security level. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V.
(eds.) Public-Key Cryptography – PKC 2020. pp. 535–564. Springer International
Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6_19

32. Guillevic, A., Masson, S., Thomé, E.: Cocks-pinch curves of embedding degrees five
to eight and optimal ate pairing computation. Designs, Codes and Cryptography
88(6), 1047–1081 (2020). https://doi.org/10.1007/s10623-020-00727-w

33. Hess, F., Smart, N.P., Vercauteren, F.: The Eta pairing revisited.
IEEE Transactions on Information Theory 52(10), 4595–4602 (2006).
https://doi.org/10.1109/TIT.2006.881709

34. Joux, A., Pierrot, C.: The special number field sieve in Fpn . In: Cao, Z., Zhang,
F. (eds.) Pairing-Based Cryptography – Pairing 2013. pp. 45–61. Springer Inter-
national Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-04873-4_3

35. Kim, T., Barbulescu, R.: Extended tower number field sieve: A new complexity for
the medium prime case. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology –
CRYPTO 2016. pp. 543–571. Springer Berlin Heidelberg, Berlin, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53018-4_20

36. Lidl, R., Niederreiter, H.: Introduction to finite fields and their applications. Cam-
bridge university press (1994)

37. Lim, C.H., Lee, P.J.: A key recovery attack on discrete log-based schemes us-
ing a prime order subgroup. In: Kaliski, B.S. (ed.) Advances in Cryptology —
CRYPTO 1997. pp. 249–263. Springer Berlin Heidelberg, Berlin, Heidelberg (1997).
https://doi.org/10.1007/BFb0052240

38. Miller, V.S.: The Weil pairing, and its efficient calculation. Journal of Cryptology
17(4), 235–261 (2004). https://doi.org/10.1007/s00145-004-0315-8

39. Pollard, J.M.: A monte carlo method for factorization. Bit Numerical Mathematics
15(3), 331–334 (1975). https://doi.org/10.1007/BF01933667

40. Schirokauer, O.: Discrete logarithms and local units. Philosophical Trans-
actions: Physical Sciences and Engineering 345(1676), 409–423 (1993).
https://doi.org/10.1098/rsta.1993.0139

41. Schoof, R.: Nonsingular plane cubic curves over finite fields. Journal of combina-
torial theory, Series A 46(2), 183–211 (1987)

42. Scott, M.: On the efficient implementation of pairing-based protocols. In: Chen, L.
(ed.) Cryptography and Coding. pp. 296–308. Springer Berlin Heidelberg, Berlin,
Heidelberg (2011)

43. Scott, M.: A note on group membership tests for G1, G2 and GT on BLS pairing-
friendly curves. Cryptology ePrint Archive, Report 2021/1130 (2021), https://
ia.cr/2021/1130

44. Vercauteren, F.: Optimal pairings. IEEE Transactions on Information Theory
56(1), 455–461 (2009). https://doi.org/10.1109/TIT.2009.2034881

45. Washington, L.C.: Elliptic curves: number theory and cryptography. Chapman and
Hall/CRC (2008)

46. Weimerskirch, A., Paar, C.: Generalizations of the karatsuba algorithm for efficient
implementations. Cryptology ePrint Archive, Paper 2006/224 (2006), https://
eprint.iacr.org/2006/224

47. Yang, K., Chen, L., Zhang, Z., Newton, C.J., Yang, B., Xi, L.: Di-
rect anonymous attestation with optimal TPM signing efficiency. IEEE
Transactions on Information Forensics and Security 16, 2260–2275 (2021).
https://doi.org/10.1109/TIFS.2021.3051801

31

https://doi.org/10.1007/978-3-030-45388-6$_$19
https://doi.org/10.1007/s10623-020-00727-w
https://doi.org/10.1109/TIT.2006.881709
https://doi.org/10.1007/978-3-319-04873-4$_$3
https://doi.org/10.1007/978-3-662-53018-4$_$20
https://doi.org/10.1007/BFb0052240
https://doi.org/10.1007/s00145-004-0315-8
https://doi.org/10.1007/BF01933667
https://doi.org/10.1098/rsta.1993.0139
https://ia.cr/2021/1130
https://ia.cr/2021/1130
https://doi.org/10.1109/TIT.2009.2034881
https://eprint.iacr.org/2006/224
https://eprint.iacr.org/2006/224
https://doi.org/10.1109/TIFS.2021.3051801

48. Zhang, X., Lin, D.: Analysis of optimum pairing products at high security levels.
In: Galbraith, S., Nandi, M. (eds.) Progress in Cryptology - INDOCRYPT 2012.
pp. 412–430. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

49. Zhao, C.A., Zhang, F., Huang, J.: A note on the ate pairing. International Journal
of Information Security 7(6), 379–382 (Nov 2008). https://doi.org/10.1007/s10207-
008-0054-1

32

https://doi.org/10.1007/s10207-008-0054-1
https://doi.org/10.1007/s10207-008-0054-1

	Revisiting Pairing-friendly Curves with Embedding Degrees 10 and 14

