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Abstract. In this paper we propose a new hash-and-sign digital sig-
nature scheme whose security against existential forgery under adaptive
chosen message attack is based on the hardness of full-distance syndrome
decoding. We propose parameter sets for three security levels (128-bits,
192-bits, and 256-bits) based on concrete estimations for hardness of the
syndrome decoding problem and estimate the corresponding sizes of the
keys and the signature for each level. The scheme has large public and
private keys but very small signatures.
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1 Introduction

It is important to design new public-key cryptographic algorithms that are
quantum-resistant given the current e�orts towards standardization of post-
quantum public key algorithms 1, especially digital signature algorithms.

In this paper we introduce a new hash-and-sign signature scheme that is
based on a well-known problem of the syndrome decoding which has been stud-
ied for long time and believed to be hard for both classic and quantum com-
puters [1,8]. There have been many attempts to build a hash-and-sign signature
schemes that inherit hardness of the syndrome decoding problem. Typically these
schemes try to hash the message into a syndrome that is decodable using some
secret error-correction code and then decode that syndrome using the secret
decoding algorithm and use the corresponding error pattern to de�ne the sig-
nature [6, 13]. However, as indicated by [2], the di�culties of transforming the
hash to a decodable syndrome have led to either security concerns or unpractical
parameters, if not both. The proposed scheme in this paper is devised such that
the veri�cation of the validity of the signature corresponds to syndrome decod-
ing instance whose solution is the valid signature. However, instead of trying to
�nd a syndrome that is decodable using some secret code we use the hash value
to generate, via matrix-vector multiplication with public random matrix, a ran-
dom vector that acts as a random syndrome whose corresponding error vector

1 https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-
cryptography-standardization



de�nes the signature, which is also obtained via matrix-vector multiplication. No
error correction code is used at all. But nevertheless the public key consists of a
random matrix that plays the same role of the parity-check matrix of a random
binary linear code with block length n and dimension k.

The scheme is developed in two phases. First we start with a basic digital sig-
nature scheme, which is a complete digital signature scheme on its own with keys
generation, signing and verifying algorithms. Thence we develop the basic scheme
further into an advanced one by modifying the keys and adding a restriction on
the veri�cation of the new signature to make it match a full-distance syndrome
decoding instance.

In what follows we give a high-level description of the scheme and its security
in order to give the reader the big picture before we delve into the details in
Sections 3 and 4. So, for simplicity of the presentation the details are neglected;
particularly the relation between the keys.

1.1 Digital Signature Scheme: High Level Description

The Keys The formal de�nition of the keys is a bit complicated. For the purpose
of introduction and in order to give an intuitive perception of security of the
scheme we present the keys of scheme as follows. The public key is

pk⋆ = (H⋆,H, R, d, θ),

where H⋆ ∈ F(n−k)×n
2 , R ∈ F(n−k)×L

2 , H : {0, 1}∗ −→ {0, 1}L is a secure hash
function, d = nH−1(1 − k

n ), where H(x) = −x log(x) − (1 − x) log(1 − x) is the
binary entropy function, and θ is a positive integer. The private key sk⋆ consists
of sk = U where U ∈ Fn×L

2 which is the private key of the basic scheme, in
addition to the tuples Si = (si1, . . . , siϵ), where sik ∈ [n] and 1 ≤ i ≤ θ, and the
matrices G ∈ Fn×l

2 and T ∈ Fθ×l
2 , where l = θ2ϵ.

The keys are devised in Sections 3 and 4.

Signing and Verifying Unlike the generation of the keys, signing operation is
simple and the veri�cation is even more simple. Consequently, the scheme has
e�cient signing and verifying algorithms.
The signature of a message m ∈ {0, 1}∗ is a pair of vectors

(σ = (σ1, . . . , σn), ς = (ς1, . . . , ςθ)) ∈ Fn
2 × Fθ

2.

We denote by wt(σ) the Hamming weight of the vector σ, and by Gc and Tc we
denote the cth columns of the matrices G and T , respectively, and similarly Rk

is the kth column of the matrix R. The signing and verifying operations are as
follows.

2



Sign(m, sk⋆)
h← H(m)
e = (e1, . . . , en)← Uh
J ← {c | c = (i− 1)2ϵ +

∑ϵ
k=1 esik2

k−1, 1 ≤ i ≤ θ}
σ ←

∑
c∈J Gc + e

ς ←
∑

c∈J Tc

return (m,σ, ς)

Verify(pk⋆,m, (σ, ς))
h← H(m), s← Rh

s⋆ ← s+
∑θ

k=1 Rkςk
if wt(σ) = d and H⋆σ = s⋆

then Accept
otherwise Reject

That is all. We see sizes of the keys and the the signatures in Table 1 below.

Table 1. Security Levels, and Sizes of the Keys and the Signatures of the Scheme.

Security Level 128-bits 192-bits 256-bits

Public Key (KB) 252.69 583.80 1051.58
Private Key (KB) 54.02 101.41 161.99
Signature (Bytes) 204 309 415

KB = 1024 Bytes.

1.2 Security of the Scheme

We use the notion of existential unforgeability under adaptive chosen message
attacks EUF-CMA. In particular, as we see from Algorithm Verify above, we
let the veri�cation of the signature corresponds to a solution of an instance of
the syndrome decoding problem. Hence, if the instance is hard, then EUF-CMA
security of the scheme is guaranteed. We show this as follows.
The matrix R is uniform random matrix. Thus, it is easy to see that for every
message m with hash vector h, the vector s = Rh is random and out of the
adversary's control. To forge a signature for an arbitrary messagem one needs to
�nd a pair of vectors (σ, ς) which satisfy the identity H⋆σ = s⋆ with wt(σ) = d,

where s⋆ = s+
∑θ

k=1 Rkςk. That is, the legitimate signature represents a solution
of an instance of a syndrome decoding problem. Thus, forging a signature in this
way actually implies solving an instance syndrome decoding problem in which
the matrixH⋆ plays the role of a parity check matrix for some random linear code
and the vector s⋆ represents the syndrome. Therefore, if it is computationally
hard to solve the syndrome decoding instance de�ned by H⋆, s⋆, and wt(σ), then
for a random message m, it is computationally hard to forge a valid signature
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using syndrome decoding problem solving algorithms, which, as we assume, is
the only feasible way to forge a signature.

Parameters Sets and Security Levels We choose the parameters n and k
such that complexity of the syndrome decoding instance (n, k, d) satis�es the
required level of security. To this end, we use estimation of Andre Esser and
Emanuele Bellini [8] for hardness of the syndrome decoding problem, which is
based on the performance of the best known Information Set Decoding algo-
rithms for solving this problem. We determine the parameter sets and their
corresponding security level using Esser-Bellini estimations as reference. The
parameters sets are shown in Table 2.

Table 2. Parameters Sets for k-bit security (k = 128, 192, 256).

Parameters set 128-bits 192-bits 256-bits

n 1600 2432 3264
k 400 608 816
L 125 190 255
ϵ 5 5 5
θ 25 38 51

τi (≈) 13 13 13

Paper Organization In Section 2 we de�ne two basic operators for expanding
and shrinking matrices and state their properties which we are going to use in
devising the basic signature scheme. Next, we design the basic signature scheme
in and prove its correctness Section 3. Then, we develop the basic signature
scheme into an advanced one in Section 4 by modifying the keys, randomizing
the signature, and adding restriction to veri�cation of the basic signature. We
de�ne and discuss security of the �nal scheme in Section 4. And, in Section 5
we provide the security parameters according to an indicative estimations for
hardness of our underlying problem. Based on these parameters sets we give
estimations for the sizes of the keys and the signatures for the three security
levels as shown in Table 1. We conclude in Section 5.
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2 Preliminaries

Table 3. Notation

[n] the set of numbers {1, . . . , n}
s

R←− S an element s is uniformly at random selected from S
T Ri

←− S i elements are uniformly at random selected from S
s

RR←− S an element s is uniformly at random removed from S
T RRi

←−− S i elements are uniformly at random removed from S and put into T
|S| the cardinality of the set S

wt(v), v = (v1, . . . , vn) ∈ Fn
2 |{i | vi = 1}|, the Hamming weight of v

In the context of this paper, matrix always refers to a matrix over F2. Addition
and multiplication of matrices are ordinary matrix addition and multiplication
in which the arithmetic is carried over F2. Let A and B be two square matrices,
we denote by A ⊕ B the direct sum of A and B which is de�ned by the block

diagonal matrix

[
A

B

]
.

2.1 Syndrome Decoding Problem

A random binary linear [n, k, d]-code C, with block length n, dimension k, and
distance d, is a k-dimensional subspace of Fn

2 that can be de�ned as

C = {c ∈ Fn
2 | Hc = 0},

where H ∈ F(n−k)×n
2 is random matrix which is known as a parity check matrix

for the code C. Elements of the code are called codewords. The distance of the
code d is the minimum weight over C that is

d = min
c∈C
{wt(c) | c ̸= 0}.

The distance d is computed as d = nH−1(1− k
n ), where H(x) = −x log(x)− (1−

x) log(1− x) is the binary entropy function.

De�nition 1 (Syndrome Decoding Problem). Let C be a binary linear code

whose parity check matrix is H ∈ F(n−k)×n
2 , and let s ∈ Fn−k

2 be some given
vector.
The syndrome decoding problem asks for a vector e ∈ Fn

2 with weight ω such that

He = s.

We refer to syndrome decoding instance with parameters n, k and ω as (n, k, ω)
syndrome decoding instance.
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2.2 Auxiliary Operators

We de�ne two operations of matrices: matrix (or vector) expansion and matrix
(or vector) shrinking.

Expanding Operator Let x = (x1 . . . , xm) ∈ Fm
2 and let I be a subset of [n]

such that n > m and |I| = m. The vector x is said to be expanded into the
vector y = (y1, . . . , yn) ∈ Fn

2 using the set I if each entry xi of x is moved to
a jth position in y for j ∈ I while maintaining the order of the indices i and
j ascendantly. Formally, we de�ne the expansion operation using an operator
EI , and we denote by y = EIx the operation of expanding x into y. Thus, the
operator EI is weight preserving transformation

EI : Fm
2 → Fn

2 , n > m

which maps its its input to a higher dimensional vector with the same weight.

Shrinking Operators Conversely, for a vector x ∈ Fn
2 and a set I ⊂ [n],

we de�ne row shrinking operator Sr,I which acts on x by removing from it the
entries indicated by the set I. We write x = Sr,Iy to denote shrinking y into
x using the set I. For a matrix A, the operator Sr,I shrinks A by removing
the rows indicted by the set I while preserving the order of the remaining rows.
Similarly, we de�ne the column shrinking operator Sc,I which acts on the matrix
A by removing the columns indicated by the set I.
For example, when the input is a vector a = (a1, . . . , an) ∈ Fn

2 , the operator

Sr,I : Fn
2 → Fm

2 , n > m

shrinks it by removing the entries {aj | j ∈ I} while preserving the order of the
remaining entries. Likewise, when the input is a matrix A = [a1, . . . ,an] ∈ Fm×n

2 ,
the operator Sc,I removes the columns {aj | j ∈ I} while preserving the order
of the remaining columns.

It easy to see that
Sr,IA = Sc,IA

T

for every matrix, where AT is the transpose matrix of A.
The shrinking operators when combined with matrix multiplication have

some useful properties which we are going to utilize.
The two operators are described in the following two algorithms.

Proposition 1. Let x ∈ Fm
2 . Let I ⊂ [n] with the complement set Ic = [n] \ I.

Then
Sr,Ic(EIx) = x. (1)

Proof. The proof follows directly from the de�nitions of the two operators Sr,Ic

and EI . ⊓⊔

From de�nition of the operators Sc,I and Sr,I and rules of the matrices
multiplication the following properties hold.
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Algorithm 1 EI Expand

Require: a ∈ Fm
2 and I ⊂ [n], m < n such that |I| = m.

Ensure: y ∈ Fn
2 such that wt(y) = wt(a). ▷ Let a = (a1, · · · , am) and

y = (y1, · · · , yn).
1: j ← 1
2:
3: for 1 ≤ i ≤ n do

4: if i ∈ I then
5: yi ← aj

6: j ← j + 1
7: else

8: yi ← 0
9: end if

10: end for

11: return y

Algorithm 2 Sc,I Shrink

Require: A ∈ Fm×n
2 and a set I with |I| = N .

Ensure: A ∈ Fm×(n−N)
2 . ▷ Let A =

[
a1 · · ·an

]
, where a1 · · ·an represent columns of

A.
1: j ← 1, i← 1
2:
3: while j ≤ n do

4: if j /∈ I then
5: ãi ← aj

6: i← i+ 1
7: end if

8: j ← j + 1
9: end while

10: return Ã =
[
ã1 · · · ãn−N

]

Matrix Shrinking Properties (MSPs). LetA = [A1 · · ·An] andB = [B1 · · ·Bp]
be two m× n and n× p, respectively, and let I,J ⊂ [n]. Then

(i) Sc,I(AB) = A(Sc,IB).

(ii) Sr,J (AB) = (Sr,JA)B.

(iii) Sc,I(Sr,J (AB)) = Sc,I((Sr,JA)B) = (Sr,JA)(Sc,IB).

(iv) Sr,J (Sc,I(AB)) = Sr,J (A(Sc,IB)) = (Sr,JA)(Sc,IB).

The �rst two properties are intuitive. The property (iii) follows from applying the
operator Sc,I on both sides of property (ii). Similarly, the property (iv) follows
from applying the operator Sr,J on both sides of property (i).
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3 The Basic Scheme: Signing with Errors

De�nition 2 (Digital Signature). A Digital Signature Scheme is a scheme
speci�ed by three polynomial-time algorithms KeyGen(1λ), Sign(pk,m) and,
Verf(sk, (m,σ)), where

� KeyGen is a randomized algorithm that on input 1λ, where λ is security
parameter, returns the pair (pk, sk) of public and secret keys.

� Sign(sk,m) is a randomized algorithm that takes the private key sk and a
message m as input and returns the pair (m,σ) of the message m and its
corresponding signature σ.

� Verf(pk, (m,σ′)) is a deterministic algorithm that takes as input the public
key pk and the pair (m,σ′) and response by "Accept" if σ′ is valid signature
for the message m, or "Reject" otherwise.

In this section we introduce our basic digital signature algorithm. Then in the
next section we develop the basic scheme into an advanced one whose security
is based on the hardness of the syndrome decoding problem.

3.1 Generation of the Keys

Algorithm KeyGen 4 is a probabilistic polynomial-time algorithm that on input
(n, k, L) returns a pair of (public, private) keys

(pk, sk) = ((H,R,H, d), (K, r)) ,

where

� H ∈ F(n−k)×n
2 ,

� R ∈ F(n−k)×L
2 ,

� H : {0, 1}∗ −→ {0, 1}L is a secure hash function,
� d = nH−1(1− k

n ), where H(x) = −x log(x)− (1− x) log(1− x),

� K ∈ Fn×n
2 is nonsingular matrix, and

� r ∈ Fn
2 is random vector whose Hamming weight is wt(r)=L.

But before presenting the keys generation algorithm KeyGen we �rst introduce
the auxiliary algorithm Init.

Algorithm Init Consider Algorithm Init 3. Steps (9) to (12) in this algorithm
generate random n-bits vector t = (t1, . . . , tn) which has L consecutive 1s within
the positions staring from m0 + 1 to m0 + m1. That is, the vector t has the
following structure

ti =

0, 1 ≤ i ≤ m0

1, m0 < i ≤ m0 +m1

0, m0 +m1 < i ≤ n
(2)

In step (12), since the matrix F is random permutation matrix, the vector

r = (r1, . . . , rn) = F t
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Algorithm 3 Init

Require: n, d, L.
Ensure: (B,M, r).
1: Generate random n × n permutation

matrix F
2: m1 ← L

3: m2 ←
⌈

n−m1
2

⌉
4: m0 ← n− (m1 +m2)
5: Generate random nonsingular matri-

ces Ci ∈ Fmi×mi
2 , i ∈ {0, 1, 2}

6: C ← C0 ⊕ C1 ⊕ C2

7: M ← FCF−1

8: t = (t0, . . . , tn)← (0, . . . , 0) ∈ Fn
2

9: for m0 + 1 ≤ i ≤ m0 +m1 do

10: ti ← 1
11: end for

12: r = (r1, . . . , rn)← F t
13: Generate random (n − k) × n matrix

B
14: return (B,M, r)

is random vector with randomly distributed weight wt(r) = L.

Let Tr denote the set {i | ri = 1}. Thus, |Tr| = L.

Denote by T c
r the set [n] \ Tr.

Algorithm KeyGen Algorithm KeyGen 4 generates the pair of the public and
private keys (sk, pk).

Algorithm 4 KeyGen The Basic keys Generator

Require: n, k, and L.
Ensure: (pk, sk) = ((H,R,H, d), (K, r)).
1: d← nH−1(1− k

n
) ▷ H−1 is inverse of the binary entropy function.

2: (B,M, r)← Init(n, d, L)
3: Generate random n× n permutation matrix P
4: K ← (PM)−1

5: H ← BK
6: R← Sc,T c

r
B

7: Specify hash function H : {0, 1}∗ −→ FL
2

8: return (pk, sk) = ((H,R,H, d), (K, r))

3.2 The Basic Signature Algorithm

Let H(·) be a secure hash function such that H(·) : {0, 1}∗ → {0, 1}L. Through-
out this work we view the L-bits string {0, 1}L as a vector in FL

2 . Precisely, for
a message m ∈ {0, 1}∗, we write h = H(m) where h ∈ FL

2 to mean h is the hash
vector (i.e., string) of the message m obtained from the hash function H(·).
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Algorithm 5 BasicSig The Basic Signature

Require: (m, sk), the message m and the private key sk.
Ensure: e, the basic signature.
1: h← H(m)
2: z = (z1, . . . , zn)← ETrh
3: e← K−1z
4: return e

Consider BasicSig algorithm 5. Suppose that h = (h1, . . . , hL) and z =
(z1, . . . , zn). Observe that z = ETrh. Hence, by Proposition 1,

h = Sr,T c
r
z. (3)

Recall that Tr = {i | ri = 1}. Note also from step (2) that zi = 0 for i /∈ Tr.
Thus, we may write Step (3) in Algorithm BasicSig as

e = K−1z =
∑
j∈Tr

zjK
−1
j

=
∑
j∈Tr

zjK
−1
j

= (Sc,T c
r
K−1)(Sr,T c

r
z)

= Uh,

where

U = Sc,T c
r
K−1 and h = Sr,T c

r
z. (4)

Thus, Algorithm BasicSig simpli�es to

BasicSig(m, sk)h← H(m)
e← Uh
return e

(5)

This game notation of the signing operation may be used in the security analysis,
since it is concise and neat. For proving correctness of the algorithm, however,
it is easier to deal with the original basic algorithm.

Verifying the Basic Signature Simply, a valid signature e for a message m
with hash vector h must satisfy

He = s,

where s = Rh.
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Correctness of the Basic Signature We show that the legitimate signature
e satis�es the identity

He = s, (6)

where, H = BK, e = K−1z, z = ETrh, and s = Rh.
We have He = BKK−1z = Bz. We also have zj = 0 for j /∈ Tr, which means

Bz =
∑

j∈Tr
Bjzj . That is,

Bz =
∑
j∈Tr

Bjzj

= (Sc,T c
r
B)(Sr,T c

r
z)

= Rh = s,

since R = Sc,T c
r
B by de�nition and Sr,T c

r
z = h by Equation (3). Hence, the

identity He = s holds.

3.3 The Weight of the Basic Signature

Consider Algorithm BasicSig (5). Recall that M = FCF−1, where F is n× n

permutation matrix, and C =

C0

C1

C2

, where Ci is mi ×mi random non-

singular matrix, for i ∈ {0, 1, 2}. We have

e = K−1z = PMz = PFCF−1z.

Let v = CF−1z. Thus e = (PF )v. Note that multiplication by the permutation
matrix (PF ) does not a�ect the weight. Hence, the wight of the vector e is equal
to the weight of the vector v. In other words, wt(e) = wt(v).
Next, we write F−1z as

F−1z = (z′0, z
′
1, z

′
2) ∈ Fm0

2 × Fm1
2 × Fm2

2 .

Recall from Equation (2) that the structure of the vector t = F−1r, where
t = (t1, . . . , tn) is as follows

ti =

0, 1 ≤ i ≤ m0

1, m0 < i ≤ m0 +m1

0, m0 +m1 < i ≤ n
.

It is not hard to observe that the matrix-vector multiplication F−1r maps (per-
mutes) all of the nonzero entries of the vector r to the positions starting from
m0 + 1 up to m0 +m1. That is, the matrix F−1 acts on r as a con�ning oper-
ator which con�nes the nonzero entries of r within the locations from m0 + 1
to m0 + m1. Since {i | zi = 1} ⊆ {i | ri = 1}, the permutation matrix F−1

acts on the vector z in the same way in which it acts on the vector r. That is,
F−1 con�nes the nonzero entries of z within the positions from m0 + 1 to the
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position m0 +m1. Therefore, the vector F
−1z has similar structure as F−1r. In

particular, the structure of F−1z = (z′1, . . . , z
′
n) will be as follows

z′i =

 0, for 1 ≤ i ≤ m0

b ∈ {0, 1}, for m0 < i ≤ m0 +m1

0, for m0 +m1 < i ≤ n
.

Hence, z′0 = 0m0 and z′2 = 0m2 , and

v =

C0

C1

C2

F−1z =

C0

C1

C2

z′0z′1
z′2

 =

 0m0

C1z
′
1

0m2

 . (7)

Since C1 is m1 ×m1 random matrix, we estimate the weight of the vector v as

wt(v) ≈ m1

2
.

Remark 1. Observe that C1 is full-rank random matrix and z′1 is random vector.
Therefore, entries of the vector C1z

′
1 are random where each entry is 1 or 0 with

probability 1
2 .

Since e = (PF )v and each of F and P is a permutation matrix and hence it
preserves the weight, the weight of the vector e is equal to weight of v. That is,

wt(e) ≈ m1

2
≈ L

2
,

since m1 = L. However, the multiplication of v by F and then by P redistributes
its weight uniformly, since both of F and P are uniform random. Therefore, un-
like the weight of the vector v, the weight of the vector e is uniformly distributed
over its n coordinates.

3.4 Structure of the Basic Signature

It is not hard to observe that the basic signature e has a speci�c structure. We
show this as follows. Let

e⋆ = (e⋆1, . . . , e
⋆
n) = PF t,

where t = (t1, . . . , tn) with ti = 0 for i /∈ {m0 + 1, . . . ,m0 +m1} and ti = 1 for
i ∈ {m0 + 1, . . . ,m0 +m1}. Then consider structure of the vector v = CF−1z
as shown in Equation (7) where v = (v1, . . . , vn) with vi = 0 for i /∈ {m0 +
1, . . . ,m0 +m1} and (unlike t) vi ∈ {0, 1} for i ∈ {m0 + 1, . . . ,m0 +m1}. Since

e = (e1, . . . , en) = PFv,

it follows that, for every e,

{i | ei = 1} ⊆ {i | e⋆i = 1}.
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Next, let Te⋆ = {i | e⋆i = 1}. Observe that |Te⋆ | = m1 = L. Thus, for every
signature e = (e1, . . . , en),

ei = 0 for i /∈ Te⋆ .

The possible nonzero entries of e have the same probability. That is,

Pr[ej = 1 | j ∈ Te⋆ ] =
1

2
, (8)

because the sub-matrix C1 is full-rank random matrix and the hash vector h is
random (see Remark 1).

So, when checking if He = s holds, the columns of the matrix H that corre-
spond to the zero entries in e (i.e., the columns {Hj | j /∈ Te⋆}) are not involved
in the veri�cation. Consequently, we may rewrite the veri�cation equation of the
basic signature (6) as follows

He =
∑

j∈Te⋆

Hjej = s. (9)

In the advanced scheme the basic signature e is hidden as well as the set Te⋆

by adding e to a secret vector c and the resulting sum gives us the advanced
signature. Luckily, the veri�cation equation remain as before except for a slight
modi�cation by adding a restriction on the weight of the signature. Precisely,
the new signature is (σ, ς) ∈ Fn

2 × Fθ
2 with wt(σ) = d such that

Pr[σi = 1] > 0 for all i ∈ [n].

The set Te⋆ which has size L will be included within a larger set such that it is
statistically hard to distinguish it.

4 An Advanced Scheme

In this section we develop the basic signature scheme further into an advanced
one by randomizing the signature. To this end, we modify the keys of the basic
scheme and de�ne an advanced signing algorithm that uses the basic signing
algorithm as a subroutine. More precisely, we modify the keys by modifying
some columns of the matrix H to make it act like a parity check matrix for a
random binary linear code. Then we modify the private key accordingly. The
veri�cation remain almost unchanged but we put a restriction on the weight of
the new signature.

Modifying the Keys Consider the public key of the basic scheme pk =

(H,H, R, d). Recall that H ∈ F(n−k)×n
2 and R ∈ F(n−k)×L

2 . Let T ∈ Fθ×l
2 be

uniformly random matrix. We simultaneously modify H into a new matrix H⋆

and generate a random matrix G ∈ Fn×l
2 such that for every column Gc of the

matrix G, H⋆Gc = bc, where bc = ai+
∑θ

k=1 RkTk,c for a random secret vector
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ai ∈ {a1, . . . ,aθ} with
∑θ

k ai = 0. However, the columns {Hj | j ∈ Te⋆} remain
unchanged. The modi�cations occur only among the columns {Hj | j /∈ Te⋆}.
We set the public key for the advanced scheme as pk⋆ = (H⋆,H, R, d, θ). That
is, H is replaced with H⋆ in the new public key. We update the private key sk
to sk⋆ accordingly by combining the matrices G and T with the basic private
key sk.

The keys of the advanced scheme are generated by Algorithm KeyGen⋆ 6.

The Advanced Signature To sign a message m using the advanced signa-
ture scheme, we �rst obtain the basic signature e of m using the basic sign-
ing algorithm BasicSig 5, then a random set J generated according to the set
{i ∈ Te⋆ | ei = 1}. The new signature (σ, ς) ∈ Fn

2 × Fθ
2 is obtained as

σ =
∑
c∈J

Gc + e and ς =
∑
c∈J

RkTk,c

such that the Hamming weight of the vector σ is exactly d. The detailed de-
scription of the signing operation is given in Algorithm Sign 7.

The Veri�cation of the Signature The veri�cation of a valid signature σ for
a message m is performed as follows.
Accept the signature (σ = (σ1, . . . , σn), ς = (ς1, . . . , ςθ)) if and only if

H⋆σ = s⋆ and wt(σ) = d,

where s⋆ = s +
∑θ

k=1 Rkςk, s = Rh, and h = H(m) is the hash vector (i.e.,
string) of the message m.

Thus, for a particular message m with hash vector h, forging a signature
(σ, ς) ∈ Fn

2 × Fθ
2 is equivalent to �nding a vector σ that solves the syndrome

decoding instance (n, k, d) using H⋆ as a parity-check matrix.

Now it is time to delve into the algorithms KeyGen⋆ and Sign in full details.

Algorithm KeyGen⋆ The algorithm KeyGen⋆(pk, sk, Te⋆ , d, L, ϵ) takes as input
the public and the private keys of the basic signature scheme (pk, sk) along with
the set Te⋆ and the parameters d, L and ϵ and generates the pair (pk⋆, sk⋆) of
the public and private keys of the advanced signature scheme, where

pk⋆ = (H⋆,H, R, d, θ) and sk⋆ = (sk, S1, . . . , Sθ, G, T ),

whereH⋆ ∈ F(n−k)×k
2 withH⋆

j = Hj for j ∈ Te⋆ . And, Si is sorted random subset
of Te⋆ with |Si| = ϵ, for 1 ≤ i ≤ θ, Si∩Si′ = ∅ for i ̸= i′, and ∪

1≤i≤θ
Si = Te⋆ . The

matrix G ∈ Fn×l
2 is generated in accordance with the matrix H⋆, and T ∈ Fθ×l

2
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is random independent matrix, where l = θ2ϵ and θ = L
ϵ .

Algorithm 6 KeyGen⋆ Advanced Keys Generation

Require: pk, sk, Te⋆ , d, L, ϵ.
Ensure: (pk⋆, sk⋆).
1: H⋆ ← H
2: θ ← L

ϵ
, l← θ2ϵ

3: N RRθ2ϵ

←−−−− [n] \ Te⋆
4: N ⋆ ← [n] \ N
5: T

R←−− Fθ×l
2

6:
7: for 1 ≤ k ≤ θ do

8: Nk
RR2ϵ

←−−− N
9: N ⋆

k
RR2ϵ

←−−− N ⋆

10: end for

11: {a1, . . . ,aθ−1}
Rθ−1

←−−− F(n−k)
2

12: aθ ←
∑(θ−1)

k=1 ak

13: Choose random numbers τ1, . . . , τθ
such that

∑θ
i=1 τi = d ▷ We choose

τi ≈ d
θ
.

14:
15: for 1 ≤ i ≤ θ do

16: Ti = {si1, . . . , siϵ}
RRϵ

←−− Te⋆
17: Si ← (si1, . . . , siϵ) ▷ with

sik < si(k+1), 1 ≤ k < ϵ.
18:
19: for 0 ≤ j ≤ 2ϵ − 1 do ▷ where

j = (j1, . . . , jϵ)2

20: c← (i− 1)2ϵ + j, αc
RR←−− Ni

21: bc ← ai +
∑θ

k=1 RkTk,c

22: Oc ← {sik | jk = 1}
23:
24: if j > 0 then

25: Pc
Rτi−2

←−−−− N ⋆
i \ Oc

26: α′
c

R←−− {αc−1, . . . , αc−j}
27: Qc ← {αc, α

′
c}

28: else

29: Pc
Rτi−1

←−−−− N ⋆
i \ Oc

30: Qc ← {αc}
31: end if

32: Ic ← {Oc ∪ Pc ∪Qc}
33: H⋆

αc
← bc +

∑
k∈{Ic\αc} H

⋆
k

34:
35: for r ∈ Ic do
36: Gr,c ← 1
37: end for

38: end for

39: end for

40: pk⋆ ← (H⋆,H, R, d, θ)
41: sk⋆ ← (sk, S1, . . . , Sθ, G, T )
42: return (pk⋆, sk⋆)

Now, observe that in step (33) of Algorithm KeyGen⋆ 6 the only columns that
get changed are columns H⋆

αc
where αc /∈ Te⋆ , since αc ∈ N and N ∩ Te⋆ = ∅.

Thus,

H⋆
j = Hj for j ∈ Te⋆ , (10)

since the columns {H⋆
j | j ∈ Te⋆} do not change. Observe also from the step (33)

that ∑
k∈Ic

H⋆
k = bc.

Next, note from the loop in steps (35) to (37) that

Gr,c =

{
1, for r ∈ Ic
0, otherwise

,
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for every cth column of G, 1 ≤ c ≤ l. Hence

H⋆Gc = bc, (11)

where Gc denotes the cth column of the matrix G, c = (i − 1)2ϵ + j. And,
consequently,

H⋆Gc = ai +

θ∑
k=1

RkTk,c, (12)

for every c = (i−1)2ϵ+j, as bc = ai+
∑θ

k=1 RkTk,c, where Rk is the k
th column

of the matrix R.

4.1 Algorithm Sign

To sign the message m using the private key sk⋆ the Algorithm Sign works as
follows. It obtains the basic signature e = BasicSig(m, sk). Then an empty set J
is created, and for every Si = (si1, . . . , siϵ), 1 ≤ i ≤ θ, the algorithm computes
c = (i−1)2ϵ+j where j =

∑ϵ
k=1 esik2

k−1; that is j has the binary representation
j = (esi1 , ..., esiϵ)2. Every time the number c is added to the set J . Next, the
algorithm computes c =

∑
c∈J Gc and �nally the advanced signature (σ, ς) is

obtained as σ = c+ e and ς =
∑

c∈J Tc.

Algorithm 7 Sign The Advanced Signing Algorithm

Require: (m, sk⋆)�the message m and
the private key sk.

Ensure: (m,σ, ς)� the message m and
the signature (σ, ς).

1: e← BasicSig(m, sk)
2: J ← ∅
3:
4: for 1 ≤ i ≤ θ do
5: Fetch Si = (si1, . . . , siϵ)

6: j ←
∑ϵ

k=1 esik2
k−1 ▷

j = (esi1 , ..., esiϵ)2
7: c← (i− 1)2ϵ + j
8: J ← J ∪ c
9: end for

10: c←
∑

c∈J Gc

11: σ ← c+ e
12: ς ←

∑
c∈J Tc

13: return (m,σ, ς)

From Algorithm Sign 7 and Equation (12) it is easy to see that

H⋆c = H⋆
∑
c∈J

Gc =
∑
c∈J

H⋆Gc

=
∑
c∈J

bc

=
∑
c∈J

ai +
∑
c∈J

θ∑
k=1

RkTk,c.
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Note that
∑θ

k=1 ai = 0 from Algorithm 6 step (11). Note also that

∑
c∈J

θ∑
k=1

RkTk,c =

θ∑
k=1

Rk

∑
c∈J

Tk,c.

Thus,

H⋆c =

θ∑
k=1

Rk

∑
c∈J

Tk,c. (13)

Also, from Algorithm Sign 7 step (12) we have ς = (ς1, . . . , ςθ) =
∑

c∈J Tc. Thus

ςk =
∑
c∈J

Tk,c, for 1 ≤ k ≤ θ. (14)

(From the context, it is obvious for the reader that ς = (ς1, . . . , ςθ) is a column
(not row) vector although it written as a row vector.)
Substituting

∑
c∈J Tk,c = ςk in Equation (13) we get

H⋆c =

θ∑
k=1

Rkςk. (15)

Proposition 2. Let e = (e1, . . . , en) be a particular basic signature. Consider
the set J which is generated by Algorithm Sign 7 according to e. Then

{s | es = 1} = ∪
c∈J
Oc.

Proof. It is obvious that

{s | es = 1} = {s ∈ Te⋆ | es = 1}

since es = 0 for s /∈ Te⋆ .
Next, consider Algorithm Sign 7. Note that |J | = θ. For every c ∈ J where

c = (i− 1)2ϵ + j, we have j = (esi1 , . . . , esiϵ)2 where ≤ i ≤ θ. Now, we going to
show that for every c ∈ J ,

Oc = {sik | esik = 1, 1 ≤ k ≤ ϵ}

and therefore, by taking the union ∪
c∈J
Oc the proposition follows.

To see this observe that (from steps (17), (20), and (22) of Algorithm 6) for
every tuple Si = (si1, . . . , siϵ) and every c = (i−1)2ϵ+ j, where j has the binary
representation j = (j1, . . . , jϵ)2, Oc = {sik | jk = 1}. Since Oc = {sik | jk = 1}
and in step (6) of Sign 7, j = (j1, . . . , jϵ)2 = (esi1 , . . . , esiϵ)2, it follows that
Oc = {sik | esik = 1}, for every c ∈ J . Thus

∪
c∈J
Oc = ∪

1≤i≤θ
{sik | esik = 1, 1 ≤ k ≤ ϵ}.
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Note that (from step (16) of Algorithm KeyGen⋆ 6) ∪
1≤i≤θ

{sik, 1 ≤ k ≤ ϵ} = Te⋆ .

Therefore,
∪

c∈J
Oc = {s ∈ Te⋆ | es = 1} = {s | es = 1}. (16)

and the proof completes. ⊓⊔

The Weight of the Vector σ Here we show that wt(σ) = d.
Consider the matrix G = [G1 · · ·Gl], where Gc, 1 ≤ c ≤ l is the cth column

of G. More precisely, the matrix G is de�ned by Algorithm KeyGen⋆ 6 as follows

Gr,c =

{
1, for r ∈ Ic
0, for r /∈ Ic

,

where Ic = {Oc ∪Pc ∪Qc} is a random set drawn from [n] in steps (22) to (30).
Suppose that a vector σ is generated by Algorithm Sign 7 as

σ = c+ e =
∑
c∈J

Gc + e,

where c = (c1, . . . , cn) and e = (e1, . . . , en).
The weight of the vector σ =

∑
c∈J Gc+e is determined by the number and the

distribution of the nonzero entries {Gr,c, c ∈ J | Gr,c = 1} and {er | er = 1}.
Now, the number of the nonzero entries in the positions Gr,c, c ∈ J is

|{Gr,c, c ∈ J | Gr,c = 1}| =
∑
c∈J

(|Ic| = |{Oc ∪ Pc ∪Qc}|).

Note thatOc∩Pc = ∅ and {Oc∪Pc}∩Qc = ∅ for every c. Note also thatOc∩Oc′ =
∅ for every c ̸= c′. Moreover, it is not hard to see that {Pc∪Qc}∩{Pc′∪Qc′} = ∅
for every {c, c′} ⊂ J , c ̸= c′. Therefore,

|{Gr,c, c ∈ J | Gr,c = 1}| = |{Gr,c = 1 | r ∈ ∪
c∈J
Oc}|

+|{Gr,c = 1 | r ∈ ∪
c∈J
{Pc ∪Qc}|

(17)

which means

|{Gr,c, c ∈ J | Gr,c = 1}| =
∑
c∈J
|Oc|+

∑
c∈J
|{Pc ∪Qc}|. (18)

Let δ =
∑

c∈J |Oc|. We have, from Algorithm 6 steps (24) to (31), |{Pc ∪Qc}| = τi

for every c. And, also from Algorithm 6 step (13) we see that
∑θ

i=1 τi = d. Hence,
by substituting in Equation (18) we �nd

|{Gr,c, c ∈ J | Gr,c = 1}| = δ + d.

Next, we have ∪
c∈J
Oc = {s | es = 1} by Proposition 2. Hence, Gr,c = 1 for

r ∈ ∪
c∈J
Oc implies

Gr,c = 1 for r ∈ {s | es = 1}, c ∈ J .
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Therefore, for every r where er = 1 there exists c ∈ J such that Gr,c = 1.
Further,

| ∪
c∈J
Oc| =

∑
c∈J
|Oc| = δ, and hence |{s | es = 1}| = δ.

That is, wt(e) = δ.
Now, when performing the sum

σ = (σ1, . . . , σn) = c+ e =
∑
c∈J

Gc + e

every nonzero entry of the vector e ( i.e., every entry in {er | er = 1}) sums to
zero with the corresponding nonzero entry in the set {Gr,c = 1 | r ∈ ∪

c∈J
Oc}.

As result, exactly δ nonzero entries from the matrix G vanish by adding the
vector c =

∑
c∈J Gc to the vector e, and the corresponding δ nonzero entries of

e vanish as well, because

|{Gr,c = 1 | r ∈ ∪
c∈J
Oc}| = |{er | er = 1}| = δ.

Therefore, when �nding the weight of the vector σ =
∑

c∈J Gc + e in terms
of the nonzero entries {Gr,c, c ∈ J | Gr,c = 1} and {er | er = 1} the term
|{Gr,c = 1 | r ∈ ∪

c∈J
Oc}| of Equation (17) which equals δ cancels out with

|{er | er = 1}|.
We have {Pc ∪Qc} ∩ {Pc′ ∪Qc′} = ∅ for every {c, c′} ⊂ J , c ̸= c′. Therefore,

wt(σ) = |{r | σr = 1}| = |{Gr,c = 1 | r ∈ ∪
c∈J
{Pc ∪Qc}|.

That is,

wt(σ) =
∑
c∈J
|{Pc ∪Qc}| = d. (19)

Algorithm 8 Verf Verifying Algorithm

Require: (m,σ, ς, pk⋆).
Ensure: Accept or reject the the signature (σ, ς).
1: h← H(m), s← Rh
2: s⋆ ← s+

∑θ
k=1 Rkςk

3: if wt(σ) = d and H⋆σ = s⋆ then
4: Accept
5: else
6: Reject
7: end if
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4.2 Correctness of the Advanced Scheme

Suppose that we have the pair of the message and its signature (m, (σ, ς)). We
have already seen from Equation (19) that for every message m the algorithm
Sign will generate a vector σ that satis�es wt(σ) = d. In what follows we show

that H⋆σ = s⋆, where s⋆ = s+
∑θ

k=1 Rkςk.
We know that the basic signature satis�es He = s and we also know that ej = 0
for j /∈ Te⋆ . Hence, He =

∑
j∈Te⋆

Hjej = s. Consequently,

H⋆e =
∑

j∈Te⋆

H⋆
j ej =

∑
j∈Te⋆

Hjej = s,

where H⋆
j = Hj for i ∈ Te⋆ from Equation (10).

Next, let us recall Equation (15)

H⋆c =

θ∑
k=1

Rkςk.

Now, since σ = c+ e = e+ c,

H⋆σ = H⋆e+H⋆c

= s+

θ∑
k=1

Rkςk

= s⋆.

Thus, the identity H⋆σ = s⋆ holds.

4.3 Indistinguishability of the Set Te⋆

In the basic signature e the random set Te⋆ is noticeable since for every basic
signature e = (e1, . . . , en),

Pr[ei = 1 | i ∈ Te⋆ ] =
1

2
whereas Pr[ei = 1 | i /∈ Te⋆ ] = 0.

As we see, this problem has been resolved in the advanced scheme by adding a
vector c to the basic signature and hence the new signature is randomized such
that Pr[σi = 1] > 0 for all i ∈ [n]. Moreover, it is statistically hard to distinguish
the set of positions Te⋆ .
To see this, consider the two sets N and N ⋆ from Algorithm 6. It is easy to see
from the steps (3) and (4) that

N ∩N ⋆ = ∅ and N ∪N ⋆ = [n].

Note that Te⋆ ⊂ N ⋆.
Now, for every vector σ = (σ1, . . . , σn) with wt(σ) = d, we have from Equation
(19)

wt(σ) =
∑
c∈J
|{Pc ∪Qc}| =

∑
c∈J
|Pc|+

∑
c∈J
|Qc| = d
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Since |Pc| = τi − a, a ∈ {1, 2} for every c,

|{r ∈ ∪
c∈J
Pc | σr = 1}| =

∑
c∈J
|Pc| = d− ϑ such that θ ≤ ϑ ≤ 2θ.

We have ∪
c∈J
Pc ⊂ N ⋆. Hence, |{r ∈ N ⋆ | σr = 1}| = d− ϑ. And,

|{r ∈ ∪
c∈J
Qc | σr = 1}| =

∑
c∈J
|Qc| = ϑ

where ∪
c∈J
Qc ⊂ N and hence |{r ∈ N ⋆ | σr = 1}| = ϑ.

Note that |N | = |N ⋆| = θ2ϵ. Therefore,

Pr[σr = 1] =

{
p⋆, r ∈ N ⋆

p, r ∈ N , (20)

where d−2θ
θ2ϵ ≤ p⋆ ≤ d−θ

θ2ϵ and θ
θ2ϵ ≤ p ≤ 2θ

θ2ϵ For the selected security parameters
d, ϵ and θ the concrete values of these probabilities are within the ranges

0.36650 ≤ p⋆ ≤ 0.39775 and 0.0625 ≤ p ≤ 0.03125.

for all the three levels of security.
Of course the sets N and N ⋆ are easily distinguishable from each other given
sample of signatures with su�cient size since each set has di�erent probability.
However, the set Te⋆ , which is subset of N ⋆, is statistically indistinguishable
from N ⋆.

4.4 Algorithm Sign in Game Notation

Algorithm Sign may be expressed more elegantly in game notation

Sign(m, sk⋆)
h← H(m)
e = (e1, . . . , en)← Uh
J ← {c | c = (i− 1)2ϵ +

∑ϵ
k=1 esik2

k−1, 1 ≤ i ≤ θ}
σ ←

∑
c∈J Gc + e

ς ←
∑

c∈J Tc

return (m,σ, ς)

(21)

5 Security of the Scheme

5.1 Security notion

Attack Model We use the model of Existential Unforgeability Under Chosen
Message Attacks to de�ne security of the scheme. In this model [9], the adversary
is given an oracle access to the signing algorithm, so that he can interact adap-
tively with it, issuing and receiving polynomially bounded number q of signing
queries, and eventually coming up with a new message m that has not been
signed before and trying to forge a valid signature for it.
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Adversarial Model Let A be probabilistic polynomial-time adversary. The
security de�nition is given by experiment EF�CMA as follows.

Expriment : EF�CMA(A) (sk⋆, pk⋆)← KeyGen⋆(n, k, d, L, ϵ)
(m,σ, ς)← ASign(·,sk⋆)(pk⋆)
return (m,σ, ς)

Sign(m, sk⋆)
h← H(m)
e = (e1, . . . , en)← Uh
J ← {c | c = (i− 1)2ϵ +

∑ϵ
k=1 esik2

k−1, 1 ≤ i ≤ θ}
σ ←

∑
c∈J Gc + e

ς ←
∑

c∈J Tc

return (m,σ, ς)

De�nition 3. We de�ne an advantage function of the adversary A as

AdvEF−CMA(A) = Pr
[
H⋆σ = s⋆ and wt(σ) = d

]
,

where s⋆ = s+
∑θ

k=1 Rkςk, s = Rh and h = H(m), and the message m is a new
message that has not been signed by the Algorithm Sign(·, sk).

It is obvious that in spite of the fact the adversary is issuing signing queries
the for the messages m1, . . . ,mq adaptively, yet the corresponding hash values

H(m1), . . . ,H(mq),

where H(mi) ∈ {0, 1}L, are produced randomly (out of the adversary's con-
trol). Consequently, for every arbitrary message mi, the vector si = Rhi, where
hi = H(mi), is random vector out of the adversary's control. Thus, the adap-
tive interaction of the adversary A, which consists of the signing queries from
A and the corresponding signatures generated by the algorithm Sign(·, sk⋆), can
be captured by the distribution of the random triplets

Πs,σ,ς,q = {(s1,σ1, ς1), . . . , (sq,σq, ςq)}. (22)

5.2 Existential Unforgeability Under Chosen Message Attacks

The existential forgery can be de�ned with following problem.

Problem 1 (EF− CMA Problem). Given the public key pk⋆ = (H⋆, R,H, d) with
H⋆ ∈ F(n−k)×n

n , R ∈ F(n−k)×L
2 along with the distribution

Πs,σ,ς,q = {(s1,σ1, ς1), . . . , (sq,σq, ςq)},

where (si,σi, ςi) ∈ Col R × Fn
2 × Fθ

2, where Col R is the column span of the
matrix R, such that

H⋆σi = si +

θ∑
k=1

Rkςik and wt(σi) = d, for 1 ≤ i ≤ q.
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Then given a random vector s ∈ Col R, �nd a pair of vectors (σ, ς) ∈ Fn
2 × Fθ

2

satisfying
H⋆σ = s⋆ and wt(σ) = d, (23)

where s⋆ = s+
∑θ

k=1 Rkςk.

Coding Theory Let C denote an [n, k, d] random binary linear code with bock
length n, dimension k, and distance d, where d = nH−1(1− k

n ) and H−1 is inverse
of the binary entropy function H(x) = −x log(x)− (1− x) log(1− x).

Conjecture 1. We assume that it is computationally hard to distinguish the ma-
trix H⋆ from a parity check matrix of an [n, k, d] random binary linear code.

Justi�cation. As we see from Algorithm KeyGen⋆ 6, the matrix H⋆ is derived
from the secret random matrix H by replacing random l columns from H with
linear combinations of random columns from the matrices H and R and one
column from the secret set {a1, . . . ,aθ} (see Equation (12)). In particular, for
every c = (i− 1)2ϵ + j, for 1 ≤ i ≤ θ, 0 ≤ j ≤ 2ϵ − 1, we have

∑
k∈Ic

H⋆
k +

θ∑
k=0

RkTk,c = ai,

where Ic is random secret set with size |Ic| such that τi ≤ |Ic| ≤ τi+ϵ, T ∈ Fθ×l
2

is an independent random secret matrix and the set {a1, . . . ,aθ} is a secret set

of random vectors satisfying
∑θ

i=1 ai = 0. So, the only di�erence between the
matrix H⋆ and the random is that H⋆ contains these linear dependencies be-
tween some of its columns, the �rst θ columns of the matrix R, and secret set of
vectors {a1, . . . ,aθ}. Precisely,

∑
k∈Ic

H⋆
k +

∑θ
k=0 RkTk,c = ai. Since the set Ic,

its size |Ic|, the matrix T and (most importantly) the vector ai are all secret,
we assume that it is hard to �nd these linear combinations of columns that add
up to the unknown vector ai and hence it is computationally hard to distinguish
H⋆ from the random.

Next, suppose that our security parameters n and k are chosen such that the
syndrome decoding instance (n, k, d) is computationally hard for any random

matrix H ∈ F(n−k)×n
2 , random vector (i.e., syndrome) s⋆ ∈ Fn−k

2 . Then, it is
computationally hard to solve the EF− CMA problem by assuming that H⋆ is
random (n − k) × n matrix, because doing so would imply solving a syndrome
decoding instance (n, k, d), which is computationally hard for the selected n, k,
and d. In other words, it is computationally hard to solve the EF− CMA problem
by regarding the matrix H⋆ as a parity-check matrix for a random linear code
C.
We conjecture that no e�cient way to solve Equation (23) for the pair of vectors
(σ,ς) other than using the syndrome decoding algorithms which deal with H⋆ as
a random parity check matrix for a random linear code and with s⋆ as a syndrome
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for some erroneous codeword. Therefore, if it is hard to solve Equation (23) as
a syndrome decoding instance, then the scheme is secure against existential
forgery. That is, it is computationally hard to a forge valid signature by solving
the equation H⋆σ = s⋆ for the unknown σ such that wt(σ) = d.

6 Security Parameters

The syndrome decoding instance (n, k, d) can be made arbitrarily hard by in-
creasing n and k to the required level of complexity. So, we chose our security
parameters such that the time complexity of the instance satis�es the required
level of security. Note that we are not interested in an error correction in this con-
text; we only use the parameters n, k and d to estimate hardness of the relevant
decoding problem. To this end, we use a Syndrome Decoding Estimator devel-
oped by Andre Esser and Emanuele Bellini which provides us with with concrete
estimations for time and memory complexities for the best known algorithms for
syndrome decoding. Then we choose our security parameters accordingly. The
parameters sets are shown in Table 2.

6.1 Syndrome Decoding Estimator

In [8] Andre Esser and Emanuele Bellini give concrete hardness estimations for
complexities of the best known solving algorithms for the syndrome decoding
problem. In their paper, which was initially motivated by the need for deter-
mining the secure parameter sets for the code-based schemes in NIST's stan-
dardization process for post-quantum cryptography, Esser and Bellini developed
a framework that allows them to obtain several of the major Information Set
Decoding algorithms. Then, these algorithms are analyzed to drive formulas that
give the concrete complexity of solving the syndrome decoding problem for each
algorithm. Furthermore, they have implemented their framework into a software
called Syndrome Decoding Estimator which is made available online 2.
We use Esser-Bellini's syndrome decoding estimator to estimate hardness of the
syndrome decoding instance (n, k, d) for the [n, k, d]-code C. Table 4 shows bit
complexity estimation of several Information Set Decoding algorithms for solving
the syndrome decoding instance with Parameters (n, k, d).

Following caution of Esser and Bellini we should mention that these estima-
tions serve mainly as indicative benchmarks for ranges of parameter values and
the corresponding sizes of the keys and signatures for the required level of se-
curity. For more details about the syndrome decoding estimator see the paper [8].

7 Conclusion and Further Research

We proposed a simple self-contained digital signature scheme that is easy to
investigate and analyze. We also proposed concrete security parameters sets for

2 https://github.com/Crypto-TII/syndrome_decoding_estimator
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Table 4. Bit Complexity Estimation of Several Information Set Decoding Algorithms
for Solving the Syndrome Decoding Instance with Parameters (n, k, d) using Esser-
Bellini's Estimator.

(n, k, d) (1600, 400, 343)

Algorithm Time Memory

Prange [12] 192.5 21.2
Stern [14] 172.9 42.9
Dumer [7] 172.6 48.7

Ball Collision [4] 172.9 42.9
BJMM (MMT) [10] 167.5 94.3
BJMM-pdw [3] 169.3 72.8
May-Ozerov [11] 167.0 106.5
Both-May [5] 170.7 66.0

(2432, 608, 521)

Time Memory

279.1 22.3
256.4 62.8
256.1 58.3
256.4 62.8
245.0 159.5
248.7 107.6
246.4 112.6
251.5 77.7

(3264, 816, 700)

Time Memory

365.7 23.2
340.3 82.6
341.5 49.4
340.2 87.8
323.5 186.5
329.1 115.4
327.8 115.0
333.8 78.6

k-bit security (k = 128, 192, 256) with justi�cation based on known attacks. The
scheme has neat and e�cient signing and verifying algorithms and very small
signatures sizes.
Although the scheme has large public key, in practice this problem may be
addressed. Note that the veri�cation equation has the form H⋆σ = s⋆. The
verifying party may choose random rows from the matrix H⋆ and their corre-
sponding rows of the matrix R to perform the veri�cation. Thus, the verifying
party can secretly choose and store a small random part of the public key and
use it for the veri�cation instead of the whole public key. Hence the verifying
party needs to store only very small part of the key, a small secret veri�cation
key chosen randomly from the public key. In this way we can drastically reduce
the size of the veri�cation key which stored on the verifying party side. However,
this part must be kept secretly. This mode of operation improves performance
of the veri�cation in terms of both memory and run-time without a�ecting the
security, since the adversary does not know which part of the public key will be
used for the veri�cation..
Another possible improvements are structures of the matrices H⋆ and G. We
have seen that randomness of the matrix H⋆ is crucial for security of the scheme.
There are many other possible ways for modifying the matrix H of the basic
scheme into H⋆ and simultaneously creating the corresponding matrix G. The
goal here is to make H⋆ as indistinguishable from the random as possible while
keeping the correspondence between the veri�cation and the syndrome decoding
instance unchanged.
However, better randomization may require some slight modi�cations in the ver-
i�cation algorithm. For a better randomization of the matrix H⋆ we may weaken
the restriction on the weight of the vector σ to make the weigh lie within certain
range within which the underlying problem is guaranteed to remain computa-
tionally hard; that is we restrict wt(σ) such that d− δ ≤ wt(σ) ≤ d+ δ instead
of wt(σ) = d and hence we gain more freedom in randomizing the matrices
H⋆ and G as well as the signature. Also, another possible randomization may
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be achieved by changing the equality H⋆σ = s⋆ to a proximity, for example
H⋆σ ≈δ s⋆ or d(H⋆σ, s⋆) ≤ δ.
Any of these modi�cations come at cost of more complexity and require careful
investigation and analysis.
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