
Protection Against Subversion Corruptions
via Reverse Firewalls in the

plain Universal Composability Framework

Paula Arnold1, Sebastian Berndt1, Jörn Müller-Quade2,3, and Astrid
Ottenhues2,3

1 University of Lübeck
{p.arnold, s.berndt}@uni-luebeck.de

2 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
3 KASTEL Security Research Labs, Karlsruhe, Germany

{mueller-quade, ottenhues}@kit.edu

Abstract. While many modern cryptographic primitives have stood the
test of time, attacker have already begun to expand their attacks beyond
classical cryptanalysis by specifically targeting implementations. One
of the most well-documented classes of such attacks are subversion (or
substitution) attacks, where the attacker replaces the implementation
of the cryptographic primitive in an undetectable way such that the
subverted implementation leaks sensitive information of the user during
a protocol execution. The revelations of Snowden have shown that this
is not only a dangerous theoretical attack, but an attack deployed by
intelligence services. Several possible solutions for protection against these
attacks are proposed in current literature. Among the most widely studied
ones are cryptographic reverse firewalls that aim to actively remove the
covert channel leaking the secret. While different protocols supporting
such firewalls have been proposed, they do no guarantee security in the
presence of concurrent runs. This situation was resolved by a recent
work of Chakraborty et al. (EUROCRYPT 2022) that presented the first
UC-model of such firewalls. Their model allows to provide security if a
subverted party uses an honest firewall. However, using such a firewall
also provides a possible new target for the attacker and in the case that
an honest party uses a corrupted firewall, they were not able to prove
any security guarantees. Furthermore, their model is quite complex and
does not fit into the plain UC model. Hence, the authors needed to
reprove fundamental theorems such as the composition theorem. Finally,
the high complexity of their model also makes designing corresponding
protocols a challenging task, as one also needs to reprove the security of
the underlying protocol.
In this paper, we present a simpler model capturing cryptographic reverse
firewalls in the plain UC model. The simplicity of our model allows to
also reason about corrupted firewalls and still maintain strong security
guarantees. Furthermore, we resolve the open question by Chakraborty
et al. (EUROCRYPT 2022) and by Chakraborty et al. (EUROCRYPT
2023) and present the first direct UC-secure oblivious transfer protocol
along with a cryptographic reverse firewall.



2 Arnold et al.

1 Introduction

Nowadays, many cryptographic primitives such as AES or ECDH have stood the
test of time and have been in use for decades without any major security loss
due to improved attacks via cryptanalysis. However, already in the late seventies,
Simmons noticed the danger of cryptographic implementations embedding a
covert channel that can leak sensitive information only visible to the attacker [1].
Such attacks were later studied more formally under the name of kleptography
by Young and Yung [2, 3]. While the existence of such attacks was thus clearly
demonstrated on a theoretical level, no real-world attack was known so far.
This drastically changed when the issues surrounding the Dual Elliptic Curve
Deterministic Random Bit Generator (Dual_EC_DRBG) came to light that
incorporated a backdoor provided by the NSA [4]. Furthermore, later revelations
due to Snowden exposed the existence of NSA’s Project Bullrun. Some goals of
these project were to “Insert vulnerabilities into commercial encryption systems,
IT systems, networks, and endpoint communications devices used by targets”
and to “Influence policies, standards and specification for commercial public key
technologies”[5]. These revelations led to an increased alertness by cryptographic
researchers that quickly started to develop possible countermeasures against such
subversion attacks [6, 7]. While these countermeasures have not yet found their
way into real-world systems, the danger of subversion attacks is actively discussed
in real-world scenarios. For example, a specific countermeasure4 was proposed
in the standardisation process of post-quantum cryptography to prevent such
attacks [8], but was ultimately rejected.

Unfortunately, there are subversion attacks that are completely undetectable in
a black-box setting [9] and all countermeasures thus need to use a non-black-box
approach. One of the most widely studied countermeasures are the so-called
reverse firewalls that aim to actively remove the covert channel from a subverted
implementation, often via means of rerandomisation. In general, such firewalls are
devices placed between the different parties of a protocol, e.g., by being directly
incorporated into routers. A cautious user wanting to protect their data against
subverted implementations thus might decide to install such a firewall. While
the use of a suitably chosen firewall can prevent subversion attacks, they can
also enlarge the attack surface, as the firewall itself is now a new corruption
target. Clearly, a cautious user would only use such a firewall if the additional
attack surface is limited, i.e., if the firewall cannot lower the security guarantees
significantly.

While different protocols and corresponding reverse firewalls have been pre-
sented in the literature, Chakraborty et al. [10] noticed that their use of game-
based security notions could lead to problems when considering the security of
concurrent runs of the underlying protocol. Hence, realistic attackers could still
leak sensitive information via the covert channel by starting multiple concurrent
sessions with the subverted protocol, even in the presence of these sophisticated
countermeasures. To remedy this situation, they proposed an extension of the
4 called the hash of shame



Protection Against Subversions via RFs 3

universal composability (UC) model by Canetti [11, 12] to capture subversion
attacks and countermeasures build on reverse firewalls. Based on this, they con-
structed a secure protocol for commitments and a reverse firewall for this protocol
as well as a completeness theorem for maliciously secure MPC in their model by
instantiating the GMW compiler [13]. While these results are the first results
guaranteeing security against subversion attacks in the context of concurrent
runs, they come with a drawback. The original reverse firewalls guaranteed a
high degree of transparency, i.e., neither the sender nor the receiver needed to be
aware of the existence of the reverse firewall [14, 15]. In contrast, in the model
presented by Chakraborty et al., the sender is actively communicating with the
reverse firewall via a feedback channel and thus needs to be aware of the existence
of the firewall. At first glance, this looks like a minor annoyance without much
effect. However, this has far-reaching consequences for the guarantees achievable
by their model, as a corrupted firewall can now drastically reduce the security
guarantees. Consider as an example that an honest, non-subverted implemen-
tation is used. In the model of Chakraborty et al., albeit giving this corruption
case a different name, a maliciously corrupted firewall leads to the effect that the
complete combined party (i.e. the party together with the firewall) will be treated
as maliciously corrupted. But, as the implementation is honest, the firewall should
not be able to extract any sensitive information from interacting with an honest
party. Hence, there is a clear gap between the security guarantees provided by
the model of Chakraborty et al. and the guarantees achieved in the real world.
Similar, Chakraborty et al. model a subverted implementation together with
a semi-honestly corrupted firewall as a maliciously corrupted combined party.
Here, the attacker might actually learn about sensitive information due to the
subversion, but should not be able to deviate from the protocol run. Again,
the model of Chakraborty et al. needs to over-approximate the abilities of an
attacker. Furthermore, due to the complex generalisation of the already complex
UC model, the authors need to reprove several fundamental results such as the
composition theorem and leave more advanced functionalities such as oblivious
transfer (OT) as future work. Finally, as the authors use a generalization of the
UC model, to convert known UC-secure protocols to their model they need to
essentially reprove the security of the protocol.

1.1 Contributions

In this paper, we present an alternative model to the one of Chakraborty et
al. that is in plain UC which allows us to capture and minimise the attack vectors
available to a corrupted firewall precisely. In more detail, our contributions are:

– We present the first subversion corruption model in plain UC which allows
us to use all of the existing tools such as the composition theorem and to
also use existing UC-secure primitives.

– To simplify the steps necessary when proving the UC-security of a protocol
in the presence of subversion, we formalise the natural properties of a reverse
firewall. This allows us equip existing protocols with reverse firewalls and



4 Arnold et al.

simplifies the security analysis significantly. We prove that one only needs
to show that the firewalls guarantee correctness, transparency, and anti-
signalling to obtain s subversion-resilient protocol. Hence, we do not need
to reprove the UC-security of the underlying protocol and can use existing,
efficient protocols.

– We present an easy-to-follow guide on how to use our model. We show
how this leads to a quite simple analysis by considering the case study of
commitments.

– We present the first direct UC-secure subversion-resilient OT and thus an-
swer the open questions raised by Chakraborty, Magri, Nielsen, and Ven-
turi [10] and by Chakraborty, Ganesh, and Sarkar [16]. Concurrently, and
independently from this work, a subversion-resilient OT was also provided
by Chakraborty et al. [17], but in the model of [10].

– We precisely describe the attack possibilities of a corrupted firewall as im-
personating the party. This allows us to give a more fine-granular security
analysis avoiding the over-approximations used in existing approaches, where
the combined party always was treated as maliciously corrupted.

– We present several approaches to circumvent the impersonate attack vector
of a corrupted firewall. Some of these are tailored to the specific protocol and
thus highly efficient as adding unique signatures to the commitment scheme.
Some are more expensive, but also general, as adding zero-knowledge proofs,
e.g., to the OT scheme.

1.2 Technical Overview

In this section, we give a technical overview of the results of this paper: Our model
for subversion in plain UC; Our model for reverse firewalls in plain UC; How to
handle malicious firewalls; How to prove security in the presence of subversion;
Subversion-resilient commitments and oblivious transfer. Along the way, we also
compare our model with the model of Chakraborty et al. [10].

Modeling Subversion (Section 3) Our first contribution is to model subversion
attacks in the plain UC model, allowing to reuse a wide range of established
results such as the composition theorem. Informally, to subvert a party P that
runs some code π, the attacker A, called subverter, replaces π by a subverted
code π̄ by issuing a corresponding subversion command that allows for temporal
access to P . After the replacement of the code, this access is disabled making the
party strictly follow the (new) code during the remaining run of the protocol.

Throughout this paper, we will use the running example of submitting a
commitment scheme.

In general, the party will employ some software implementation of Com. A
subverted implementation ¯Com will now be provided by the subverter. After the
implementation was obtained by the party, it will run ¯Com(v, r) on its input v
and a uniformly sampled randomness r and output the result c.



Protection Against Subversions via RFs 5

Due to running π̄, the party might behave differently than when running
π. As the goal of the attacker is to avoid detection, this deviation needs to be
somewhat limited. For example, since detecting this changed behaviour can lead
to an abortion of the protocol by the honest parties or other countermeasures,
it (and thus the subversion) should not be detectable by these honest parties.
Hence, to avoid detection, we assume the attacker to use a specious subversion,
i.e., the behaviour of P running π should be indistinguishable from the behaviour
of P running π̄ for other honest parties in the protocol.

Usually, a subverter is described as wanting to break some security guarantees
of the underlying protocol, but we aim for a more general setting. We thus
assume that P contains some secret that the subverter wants to obtain. While
this can be, for example, cryptographic key material used to break the security
guarantees, it can also be other sensitive information which was stored by other
protocols on the device used by the party. To formalise this notion, we say that
the subverted code π̄ is signalling when the subverted code can send (or signal)
some information to the attacker. In other words, A must be able to distinguish
between the behaviour of P running π and P running π̄.

The goal of the subverter is to obtain information about the secret sec, which
might be a cryptographic key used in the protocol or confidential data not directly
related to the cryptographic protocol.

Speciousness (Section 3.2) While the above informal definition of specious sub-
version captures the intuitive idea behind subversion attacks nicely, it leaves open
what kind of behaviour is suspicious and what kind of behaviour is indistinguish-
able from a run of the non-subverted code. In general, there are two natural ways
to leak sensitive information via subverted implementations. In the first kind of
attack, the attacker restricts the attack to only change the randomness used by
the scheme.

One of the strongest attacks uses rejection sampling. In such an attack, the
subverted implementation samples randomness r1, r2, . . . until ci = ¯Com(v, ri)
reveals some important information about s, e.g., PRFk(ci) = s[0] for some
PRF-key k known only to the attacker.

The advantage of this kind of attack is that the attacks often work in a
somewhat black-box manner, as the subverted code will not care about the other
inputs to the functionality. We note here that nearly all known subversion attacks
do fit into this category and only change the randomness, e.g., [9, 18, 19, 6, 7,
20, 21, 22, 23, 24, 25, 2, 26].

In contrast to the above attack, attackers could also only change the actual
inputs of the functionality, e.g., by replacing one input by the secret sec.



6 Arnold et al.

To leak information about the secret sec, the attacker could simply commit
to sec, i.e., produce a commitment c = Com(sec, r) for a truly random r. Now,
whenever the commitment c is opened, the receiver (as well as an eavesdropping
attacker) will learn the secret sec.

Now, whether such an attack is unsuspicious highly depends on the situation.
Depending on the protocol, the secret sec might be a perfectly valid input,
uncommon enough to raise suspicion, or it might be invalid and thus not maintain
the underlying functionality.

If the value v is a completely random value (such as those used in the GMW
compiler [13]), the subverted code could produce a commitment c = Com(sec⊕k, r),
where k is a key known only to the attacker.

However, if v is a highly structured value (such as those in the MPC-in-the-
Head zero knowledge proofs [27]), one would require a more advanced technique
to embed the secret s in such values.

Chakraborty et al. [10] decided to treat this behaviour of changing the inputs
as being non-suspicious and thus declare such an attack as being specious. They
thus needed a way to also rerandomise the inputs (even in the ideal world) and
allowing such modifications restricts to using functionalities that have random
inputs (such as the GMW compiler [13]). In contrast, we treat such an behaviour
as suspicious behaviour. To formalise the notion that we treat such attacks as
non-specious, we only allow the subverted code to modify the used randomness,
i.e., a specious code must at all times produce valid output. Due to this separation
between the inputs and the randomness, we do not need to model subversions in
the ideal world. Hence, while this modification weakens the attacker model of
Chakraborty et al. [10], it allows us to work with the well-established classical
ideal functionalities instead of providing an explicit subversion interface.

Protection Mechanisms (Section 4) In order to protect against subversion attacks,
several different countermeasures have been proposed in the literature. The
two most studied are cryptographic reverse firewalls, introduced by Mironov
and Stephens-Davidowitz [14], and watchdogs, introduced by Bellare, Paterson,
and Rogaway [6] (although the name was coined later by Russell et al. [28]).
Our second contribution is to model reverse firewalls introduced by Mironov
and Stephens-Davidowitz [14] in plain UC, which aim to actively remove the
covert channel established by the subverted implementation that leaks the secret.
Intuitively, such a firewall is a device used by a cautious user that wants to
protect their sensitive secret from exposure due to a subversion attack. The user
thus installs the devices close to their computer (e.g., by incorporating it into
the router) in such a way that the traffic observable by the attacker is available
only after the data sent from the computer was passed to the firewall. The goal
of the cryptographic reverse firewall is to remove the covert channel from the



Protection Against Subversions via RFs 7

output of the user’s computer. Most typically, this is done via the means of
rerandomisation.

Suppose that the above commitment scheme Com is additively homomorphic,
i.e., Com(v, r)⊕ Com(v′, r′) = Com(v ⊕ v′, r ⊕ r′). If the user sends a commitment
via its subverted implementation c = ¯Com(v, r), this commitment is first given to
the firewall before it becomes visible to the attacker. The firewall now samples a
random string r′ and computes c′ = c⊕ Com(0, r′). As r′ is sampled uniformly, c′
cannot leak sensitive information via the used randomness.

In our model, such firewalls exist as separate parties in the real world, i.e.,
a party and their firewall each have their own inputs, outputs and their own
corruption handling.

The commitment functionality FCom used in our work is simply the standard
functionality, where the committing party sends a value v to commit to the
functionality. Later on, it can also open this value to another party.

This is a contrast to the model of Chakraborty et al. [10], where the firewall
is a direct part of the party to be protected. As described above, we do not need
to model subversion in the ideal world, hence these firewalls do not need to exist
in the ideal world which allows us to consider standard ideal functionalities in
our setting. This is again, contrary to the model of Chakraborty et al. [10], where
the ideal functionalities need to have an explicit interface for the firewalls, called
the sanitization interface.

The commitment functionality FCom of Chakraborty et al. [10] works in three
steps. First, the committing party sends value v to commit to the functionality.
Then, the reverse firewall is informed that some values was sent and can send a
blinding string r via the sanitization interface of the functionality. The function-
ality now changes the stored value from v to v ⊕ r and informs the committing
party about this by sending r. Finally, when the commitment is opened, the
updated value v ⊕ r is revealed to the receiving party.

The firewalls have a number of important natural properties such as function-
ality maintenance—the firewall should not break the functionality of the protocol
run by unsubverted parties; security preservation—a subverted party should
not be able to break the security guarantees of the protocol; and exfiltration
resistance—a subverted party should not be able to leak the secret. A stronger
version of the latter property is called anti-signalling and, intuitively, guarantees
that even the attacker providing the subverted code can not distinguish whether
the party running behind the firewall uses the original code or the subverted code.
Another very important property concerns the transparency of the firewall, i.e.,



8 Arnold et al.

whether the parties need to be aware of the existence of the firewall. Depending
on the party, this transparency might be quite different. For a party P using
a firewall RF , we want a form of inner transparency that guarantees that the
party does not need to be aware of the existence of (possibly multiple) firewalls.
A weaker form of this was introduced by Mironov and Stephens-Davidowitz as
stackability, which guaranteed that a single party could have arbitrarily many
firewalls. Similar to the inner transparency, a party P ′ interacting with party P
that has firewall RF installed should not need to be aware of the existence of RF .
We call this outer transparency. Due to the existence of the sanitization interface
in the model of Chakraborty et al., the party P needs to be aware of the firewall
and the notion of inner transparency is thus not achievable in their model.

Malicious Firewalls (Section 8) On the first glance, transparency might look
like a feature that is clearly nice to have, but not of particularly importance for
obtaining security guarantees. However, as we show in this paper, transparent
firewalls are very useful to guarantee the security in the case that the party
P is honest, but the firewall RF is (maliciously) corrupted. In the model of
Chakraborty et al. [10], the firewall and the party are treated as a single party
and hence, this single party needs to be treated as corrupted. Using a more fine-
granular analysis, the authors note some security guarantees might be preserved
in this setting and thus establish a new corruption model called isolation, but
treat this as malicious corruption throughout their work. Hence, the installation
of a firewall might actually weaken the security of the complete system.

In our model, the party and the firewall are two separate parties and we
can thus analyse this important scenario in more detail. Suppose that an honest
party P using a corrupted firewall RF interacts with another party P ′ that can
either be honest or corrupted. We first consider the security guarantees of P ′.
Due to the outer transparency of the firewall, the party P ′ does not need to be
aware of the existence of RF . We can thus treat the combination of P and RF
as a single corrupted party RF ◦ P and the active security of the underlying
protocol thus gives the security guarantees of P ′. A similar argument is also used
by Chakraborty et al.

Now, consider the security guarantees of P. Due to the inner transparency
of the firewall, the party P does not need to be aware of the existence of RF .
We can thus treat the combination of RF and P ′ as a single corrupted party
P ′ ◦RF and the active security of the underlying protocol thus gives the security
guarantees of P. As described above, this argument does not work in the model
of Chakraborty et al., as P needs to be aware of the existence of RF . Hence, the
installation of a firewall can not weaken the security of the complete system in
our model.

However, when taking a closer look at the definition of transparency, there
is one problem left: While the corrupted firewall can not extract sensitive in-
formation from P, it can impersonate P due to the outer transparency. Hence,
as RF is allowed to send messages in the name of P, a corrupted firewall can
perform impersonation attacks. This problem is somewhat unavoidable due to the
requirement of outer transparency and thus also already applies to the original



Protection Against Subversions via RFs 9

model of cryptographic firewalls due to Mironov and Stephens-Davidowitz [14] as
well as Chakraborty et al. [10]. For protocols not relying on authentication, this
is not a problem (and only such protocols were studied previously such as com-
mitments or key exchange). However, when considering more general protocols,
such behaviour might actually weaken the security guarantees. To handle this
issue explicitly, we introduce a new ideal functionality, called FchAUTH which
explicitly covers the possibilities of impersonation that such a corrupted firewall
can have. We also show two realisations of this functionality: A very efficient one
for our commitment protocol based on signatures and a more general version
using zero-knowledge proofs for our oblivious transfer protocol.

Proving Security (Section 5) After we established our models for subversion
and cryptographic firewalls, we also develop subversion-resistant protocols. To
do so, we assume that we are given a classical protocol Π ′, which does not
use cryptographic firewalls and is thus (potentially) vulnerable to subversion
attacks. This protocol securely UC-realises some ideal functionality F . To protect
Π ′ against subversion attacks, we now equip every party Pi with a firewall
RF i. This gives us a protocol Π. Now, to prove that Π UC-realises F under
subversion-corruption with specious codes, we give a very useful theorem. This
theorem allows us to show that it is sufficient to show that all firewalls are
transparent and anti-signalling and that they keep the correctness of Π ′ to obtain
this strong subversion-resilience. This implies that Π securely UC-realises Π ′

and the transitivity of UC-emulation [29] thus implies that Π also UC-realises F .
Hence, to prove security in our model, we can directly take and adapt existing

secure protocols and only need to consider the properties of transparency, anti-
signalling, and correctness. In contrast, Chakraborty et al. [10] needed to “reprove”
the security guarantees of Π ′ when arguing about the security of Π.

Commitments and OT (Section 6 and Section 7) To show the flexibility of our
approach, we consider two important functionalities, commitment schemes and
oblivious transfer. First, we consider a commitment scheme due to Canetti, Sarkar,
and Wang [30], which is also the basis of the subversion-resilient commitment
scheme of Chakraborty et al. [10]. As explained above, we only need to show
correctness, transparency, and anti-signalling and do not need to re-establish
the UC-security of the protocol. Hence, our complete security proof for the
commitment scheme is only a single page long.

We also consider an oblivious transfer protocol due to Canetti, Sarkar, and
Wang [30] and, again, only need to consider correctness, transparency, and anti-
signalling. Our complete security proof is thus shorter than two pages. The
existence of such an concretely efficient subversion-resilient oblivious transfer
protocol thus answer open questions raised by Chakraborty et al. [10].

1.3 Related Work

As mentioned above, several protocols and corresponding cryptographic reverse
firewalls have been proposed. The primitives secured by such firewalls range



10 Arnold et al.

from oblivious transfer [14], garbled circuits [14], generic constructions against
passive attacker [14], CPA-secure encryption [15], key agreement [15], CCA-secure
encryption [15], interactive proof systems [31], secure channels [32], and actively
secure MPC [33, 34] to oblivious transfer extensions [16]. A similar approach to
reverse firewalls was presented by Alwen, shelat, and Visconti [35]. They make
use of a so called mediator, who is also allowed to rerandomize messages, to
obtain so called collusion-free protocols, as introduced by Lepinski, Micali, and
shelat [36]. However, in contrast to the reverse firewalls, such a mediator is able
to intercept the messages of all parties (and not only those that deployed the
firewall) and, furthermore, it can actively exchange messages with all parties in
arbitrary order. Hence, such a mediator is a much stronger concept than reverse
firewalls. We refer the reader to Mironov and Stephens-Davidowitz [14] for a
more detailed comparison.

Li et al. [37] were the first to consider reverse firewalls in a UC-context.
However, their definition strongly differs from the original definition due to
Mironov and Stephens-Davidowitz, as they also incorporate the possibility that
the firewall detects a subversion. In this case, the firewall “alarms”, which directly
halts the complete protocol. In some sense, their model thus uses a mix of
reverse firewalls and watchdogs (discussed below). Furthermore, they consider
their firewalls to be uncorruptable and make use of random oracles to make the
firewalls somewhat deterministic.

The model of Chakraborty et al. [10] does not allow for such an “alarm”
and is thus somewhat closer to the original definition of Mironov and Stephens-
Davidowitz. The technical overview already compares our model to this model.
Concurrently and independently from this work, Chakraborty et al. [17] presented
a subversion-resilient oblivious transfer and password-authenticated key exchange
in the model of Chakraborty et al. [10].

While cryptographic reverse firewalls have many advantages, other approaches
to prevent subversion attacks exist.

Watchdogs: The notion of a watchdog was introduced by Bellare, Paterson, and
Rogaway [6]. A watchdog can either be offline or online. An offline watchdog is
given the (possibly subverted) implementation along with an honest reference
implementation and before the user uses the (possibly subverted) implementation,
the watchdog can perform certain black-box tests to find differences between the
two implementations. If it can’t find any difference, the user is free to use the
implementation. An online watchdog can additionally also observe the complete
communication while the implementation is in use in order to detect deviant
behaviour. Watchdogs have also been used to secure different primitives such as
one-way-permutations [28], pseudorandom generators [28], randomness genera-
tors [38, 28], public-key encryption schemes [38, 39], authenticated encryption [40],
random oracles [41], and signature schemes [42, 28, 43].

Alternative Countermeasures: Both Fischlin and Mazaheri [44] and Abdolmaleki
et al. [45] assume the existence of a non-compromised first phase where the
parties can freely exchange information. Fischlin and Mazaheri use this phase to



Protection Against Subversions via RFs 11

exchange an honestly signed message which then is used to create subversion-
resilient signatures. Abdolmaleki et al. use this first secure phase to exchange
initial randomness from which they can derive non-subverted randomness for the
remaining zero-knowledge protocol. Finally, Badertscher et al. [46] also consider
a kind of subversion attacks in a UC-setting, but, in contrast to nearly all of the
other mentioned papers, their implementation do not try to be undetectable. They
show how to perform updates in such a scenario that return the implementation
to a non-subverted state and consider digital signatures and zero-knowledge
proofs.

2 Preliminaries

In this section, we described the needed preliminaries and notations used through-
out this work.

Notation We denote component-wise multiplication with ×, e.g. (a, b)× (c, d) =
(a · c, b · d). The term PPT will be used for Probabilistic Polynomial Time, i.e.,
efficient randomised algorithms. Computational indistinguishability is denoted
by ≈.

Glossary Throughout this paper, we use the following notations unless stated
otherwise:

P a party
P ′ a second party
RF a firewall which is itself also a party
RF ◦ P a composed party consisting of a party P and a firewall RF
P̂ an incorruptible party P
P̄ a subverted party P
π a code
Π a protocol

2.1 Cryptographic Primitives

In this work, we will consider multiple cryptographic primitives. Here, we only give
an informal overview and will present the needed technical definitions throughout
the paper.

Commitment: A commitment scheme consists of a single PPT algorithm Com

that is given some value v ∈ {0, 1}∗ and produces a commitment c. The com-
mitment is called hiding if no attacker can distinguish between commitments
of v and commitments of another value v′, even if v and v′ are provided
by the attacker. The commitment is called binding if it is infeasible to find
two random strings r and r′ and two different values v and v′ such that
Com(v, r) = Com(v′, r′).



12 Arnold et al.

Oblivious Transfer: An oblivious transfer (OT) consists of two PPT algorithms
(S ,R). The sender S knows two messages m0 and m1 and the receiver R
knows a bit b. After interaction between S and R, the receiver should obtain
the message mb without learning anything about the other messages m1−b.
Furthermore, S should not learn anything about the bit b.

Signature Schemes: A signature scheme consists of three PPT algorithms
Kgen, Sign, and Vfy. The key generation algorithm Kgen is given a security
parameter 1κ and produces the verification key vk and the signing key
sk . The signing algorithm Sign is given the signing key sk and a message
msg ∈ {0, 1}∗ and produces a signature σ. Finally, the verification algorithm
Vfy is given the verification key vk , a message msg , and a signature σ and
outputs a bit b ∈ {0, 1}. For all outputs σ of Sign(sk ,msg), we need that
Vfy(vk ,msg , σ) = 1. A signature scheme is called universal unforgeable if all
attackers with oracle access to Sign(sk , ·) are not able to produce a valid
pair (m,σ) (except for those provided by the oracle).

Zero-Knowledge proofs: A zero-knowledge proof for a language L ⊆ {0, 1}∗
consists of a pair of PPT algorithms (P,V). Both parties know some instance
x ∈ {0, 1}∗ and the prover P knows a witness proving that x ∈ L and
wants to convince the verifier V that x ∈ L. A pair (P,V) is called complete,
if an honest prover can (nearly) always convince a verifier and sound if a
dishonest prover can (nearly) never convince a verifier. Finally, the system is
said to have the ZK property if even a dishonest verifier does not learn any
information about the witness held by the honest prover.

2.2 Universal Composability

The traditionally employed game-based security notions have the disadvantage
that they usually cannot capture compositions. To still guarantee security in such
quite involved situation, Canetti [11, 12] introduced the universal composability
(UC) model. To formalise security in the UC model, one defines an ideal function-
ality F that captures the ideal behaviour of the primitive. To implement such
an ideal functionality, one formalises a protocol Π and then shows through a
simulation that a real world execution of this protocol is indistinguishable from
a run of the ideal functionality. In that case we will say the protocol securely
UC-realises the ideal functionality. A more detailed description of the model is
given below:

We are given n parties P1, . . . ,Pn which are interactive Turing machines
(ITMs) with codes π1, . . . , πn. These parties can be corrupted by the attacker
A that sends certain corruption messages to the parties to corrupt them, e.g.,
maliciously. The corrupted parties are now somehow controlled by A, although
their behaviour might be restricted by their corruption type.

To achieve security under general composition, the framework introduces a
distinguisher Z, called the environment which can interact with the executions
by, e.g., providing inputs and interacting with the attacker A. We denote a real-
world execution of the protocol Π with the adversary A and the environment Z
using the security parameter κ and the randomness r by EXECΠ,A,Z(κ, r). This



Protection Against Subversions via RFs 13

execution is compared with a run of the ideal functionality F where all parties
are dummy parties controlled by the environment Z. The goal is now to construct
a simulator Sim that can interact with the ideal functionality such that the real
execution is indistinguishable from the ideal execution EXECF,Sim,Z(κ, r).

Formally, this is defined as:

Definition 1. UC-security. A protocol Π UC-realises an ideal functionality F
(in symbols Π ≥UC F) if for all PPT attackers A, there exists a PPT simulator
Sim such that for all PPT environments Z, we have that EXECΠ,A,Z(κ, r) is
computationally indistinguishable from EXECF,Sim,Z(κ, r) (with respect to the
security parameter κ). Here, r is drawn randomly.

Note that if both executions are real world protocols, a simulator showing
the indistinguishability lets the one protocol UC-emulate the other one.

Furthermore, all parties can also communicate with other ideal functionalities
F ′. Such a situation is called the F ′-hybrid model. The composition theorem now
allows to replace this ideal functionality F ′ by any protocol Π ′ UC-realising F ′
while keeping all of the security guarantees preserved. In the following we will
explain some hybrid functionalities that we will utilize.

The ideal functionality FCRS models a common reference string that is
accessible by all parties.

Definition 2 (The Ideal Functionality FCRS, adapted from [47]). FCRS
proceeds as follows, when parametrised with a distribution D.

1. When activated for the first time on input (value, sid) by a party P, choose
a value d ← D and generate a public delayed output (value, sid , d) for P.
Answer subsequent value inputs from parties P ′ by generating a public delayed
output (value, sid , d) for P ′.

The ideal functionality FAUTH models an authenticated channel between a
sender S and a receiver R.

Definition 3 (The Ideal Functionality FAUTH, adapted from [48]).

1. Upon invocation, with input (send, sid ,S ,m) from ITI S , send backdoor
message (sent, sid ,S ,R,m) to the adversary.

2. Upon receiving backdoor message (OK, sid): If not yet generated output, then
output (sent, sid ,S ,R,m) to R.

3. Upon receiving backdoor message (corrupt, sid ,m′,R′), record being cor-
rupted. Next, if not yet generated output then output (sent, sid ,S ,R′,m′) to
R′.

4. On input (reportcorrupted, sid) from S : If corrupted, output yes to S , else
output no.

5. Ignore all other inputs and backdoor messages.



14 Arnold et al.

3 Modelling Subversion Attacks in UC

After giving an introduction to subversion attacks, we will formally model them
in UC. Then, motivated by an adversary that wants such an attack not to be
noticed by the subvertee, specious subversions will be defined, while showing the
damage such an attack can still achieve. Lastly, a summary of the specific type
of subversion attacks is provided that we will consider in the rest of the paper.

3.1 Introduction to Subversion Corruption

The main objective of our paper is to study the subversion of a party: A subversion
corruption allows an adversary—which is hence called a subverter —to change
the code π to a subverted one π̄ of a then subverted, i.e., subversion corrupted,
party. Apart from this code-exchange, the adversary has no access to the party.
Other information of the party including a specific sec is, hence, not inferable
from the party directly, but might be extractable through the subverted code.
Again, this secret may or may not contain information which, when learned by
the adversary, could break the functionality of the protocols and, e.g., could be a
seed allowing to derive a used key.

In a general setting, we can model this, informally, by the following situation
where the subversion of a single party is being depicted in Figure 1: The parties

1) replace code

party

π
A1

π̄

2) generate secret

party

π̄

sec

3) run protocol

party

A2
π̄

sec

Fig. 1: The adversary can replace the code π of a party with a speciously subverted
one π̄ which can then leak information about the secret to the adversary. Step 1)
and 2) might be switched depending on the type of subversion discussed below.

P1,P2, . . . ,Pn interact via a set of functionalities (resp. protocols). Each party Pi

has some additional sensitive information called seci. Depending on the considered
scenario, as discussed below, this secret is generated before or after a corruption
has taken place.

Now, each Pi runs part of the implemented protocol Π in its body, namely
πi. The adversary A = (A1,A2) has the goal of gaining information about the
secrets of the parties. Therefore, A1 chooses a set of parties C ⊆ {1, . . . , n} that
it wants to subvert. To do so, it replaces the code πi of each party Pi with i ∈ C
by a subverted version π̄i. Remark that the code πi, or π̄i respectively, has access
to seci if this exists within the party.



Protection Against Subversions via RFs 15

The adversary A2 chooses another set of parties C ′ with C∩C ′ = ∅ to corrupt
maliciously or semi-honestly. Now, the parties interact and the adversary tries to
gain information about all secrets seci with i ∈ C.
Remark 1 (Comparison subversion and semi-honest corruption.). In a subversion
corruption, the adversary can choose the behaviour of the party in the beginning
with knowledge about neither the input values nor the future states of the
computation. This includes the activation status implying that the subverter
cannot halt the party from the outside. In contrast, a semi-honest corruption
allows learning all these information but gives no power to change the behaviour.
In theory, it might thus be possible to combine the two corruption models to
achieve semi-honest subversion corruptions. However, this would give an adversary
direct access to the secret, making the whole goal of leaking the secret obsolete.

3.2 Subversion Corruption Model in UC
The corruption interfaces are expanded to the handling of subversion corruption
as described in Section 3.2.

While Chakraborty et al. [10] have already presented a corruption model
extension that allows modelling subversion attacks and its protections in the UC
framework, they resorted to only quantifying over specious environments and
adversaries. In contrast, we quantify over all PPT environments and introduce a
corruption model extending the existing corruption models in the plain framework
of Universal Composability by Canetti [48]. This allows us to reuse well-known
important results such as the composition theorem [49] without the need to prove
them anew as was necessary for [10]. An additional advantage of this model is
that because the model is only extended but not restricted in any way, one can
analyse subversion corruption conjointly with other corruption settings.

Subversion Corruption Handling in the Real World The real-world
handling of a subversion corruption can be seen in Figure 2.

Z

Alice Bob

A

se
cr

et
se
c A

se
cr

et
se
c B

channel

su
bv

er
t,π̄

subvert,π̄

Fig. 2: Sketch of a subversion corruption in the real world. Leaked information
about the secrets transmitted over the channel can be learned by the adversary
(represented by ).

For a general understanding of the corruption modelling in the UC-setting,
we refer to Section 2.2 and Section 7.1.1 in [48]. A subversion corruptions allows



16 Arnold et al.

an adversary to exchange the code run by the body of a party: The adversary A
sends a subversion corruption message subvert combined with a—presumably
subverted—code π̄ to a party P. Upon receiving (corrupt, sid , subversion, π̄)
from A, the shell of party P checks if π̄ is a valid subversion code, else the
message is ignored. The shell then inserts the validated code at the requested
place in the body and sets a “subversion corruption” flag. While in general, the
whole code of the body could be replaced, this code must be efficiently checkable
of its subversion properties. This will later be explained in more detail. Further
corruption messages are ignored by the shell of the party. Apart from exchanging
the code in the body, a subversion corrupted party behaves as an honest—not
corrupted—party. Note that the provided code might be subverted but does not
have to be. Hence, even if π̄ = π, we will talk about a subversion taking place.

To model the attack goal, every party is initialised with an empty secret tape,
which is part of the state, similar to the randomness tape. This tape is used
to store a secret sec that is inserted by the environment via the insertSecret-
interface at any time during the protocol run. This tape can also be updated
again via the secret interface; this entails that the whole state can be moved to
the secret.

Static subversion corruption. If we are in the static corruption model, the party
sends upon invocation a notification message to the adversary. The subversion
corruption message subvert has to be received by the party from the adversary
in the very next activation. Only then can a secret be generated, hence, the case
illustrated in Figure 1 fits the static subversion corruption case.

Extracting the sec. As the adversary has no access to the subverted party during
the protocol run, it needs access to the communication generated by the party.
This could either be by eavesdropping on the communication channel, which can
then be maximally authenticated, or by maliciously corrupting the communication
partner of the subverted party.

Subversion Corruption Handling in the Ideal World As subversion attacks
are attacks against implementations, they should only exist in the real world.
A subversion corruption thus only invokes the following in the ideal world: On
receiving the subversion corruption message subvert and a code π̄ for a party P ,
the simulator informs the ideal functionality that P is subversion corrupted.
Noteworthy, neither the presumably subverted code nor the secP is received
by the ideal functionality, and the behaviour of all parties, e.g. protocol and
backdoor messages are unchanged.

The general handling of a subversion corruption in the ideal world can be
seen in Figure 3. When handling semi-honest corruptions, the ideal functionality
additionally receives the secrets secA and secB .

Specious Subversion In general, there are two natural ways to leak sensitive
information via subverted implementations. In the first type of attack, the



Protection Against Subversions via RFs 17

Z

Alice BobF

Sim
se

cr
et

se
c A

se
cr

et
se
c B

su
bv

er
t,π̄

Fig. 3: Sketch of a subversion corruption in the ideal world.

attacker restricts the attack to only change the randomness used by the scheme,
which guarantees that the output of the subverted implementation is always
correct. Hence, to detect such a subversion, a mere check for correctness of the
implementation is not sufficient. Nearly all known subversion attacks do fit into
this category, e.g., [9, 18, 19, 6, 7, 20, 21, 22, 23, 24, 25, 2, 26].

In the second type of attack, the actual inputs of the functionality could
be changed, e.g., by replacing one input by the secret s. Depending on the
protocol, this might be highly suspicious, as the secret s might be a perfectly
valid input, uncommon enough to raise suspicion, or it might be invalid and thus
not maintain the underlying functionality. As noted above, Chakraborty et al. [10]
decided to treat this behaviour of changing the inputs as being non-suspicious
and thus declare such an attack as being specious. They thus needed a way
to also rerandomise the inputs (even in the ideal world) and are restricted to
functionalities that use random inputs (such as the GMW compiler [13]). In
contrast, we treat such an behaviour as suspicious behaviour. To formalise the
notion that we treat such attacks as non-specious, we only allow the subverted
code to modify the used randomness, i.e., a specious code must at all times produce
valid output. Due to this separation between the inputs and the randomness, we
do not need to model subversions in the ideal world. Hence, while this modification
weakens the attacker model of Chakraborty et al. [10], it allows us to work with
the well-established classical ideal functionalities instead of providing an explicit
subversion interface.

A speciously subverted code π̄ of a protocol between two parties (which we will
call Alice and Bob) can informally be described by looking at a protocol, where
one party (Alice) might run the speciously subverted code while her partner (Bob)
is incorruptible which means that the shell ignores all types of corruption. An
environment Z, seen as a decoder, distinguisher, and tester, shall not be able to
distinguish between two protocols Π and Π ′, except with negligible probability.
Here, the protocol Π encompasses of the communication between Bob and an
incorruptible Alice which runs π following the specification. The other protocol



18 Arnold et al.

Π ′ specifies the same protocol as Π except that Alice is corruptible and runs the
speciously subverted code π̄. Usually, there is some knowledge shared between
the attacker providing the subverted code and the subverted code that is not
accessible to the distinguisher, such as cryptographic keys embedded into the
subverted code. To model this, we thus assume that that the subverted code π̄ is
equipped with additional information i uniformly drawn from some set I. We
assume in the following that there is a PPT algorithm that can sample uniformly
from I. The subverted code equipped with this information is denoted by π̄i and
the runs of the protocol by Πi or Π ′i. For the sake of simplicity, we will often
also write π̄ instead of π̄i, when the current information is not important to the
discussion.

Definition 4 (Speciously subverted code π̄). We say, π̄ is a speciously
subverted code, if and only if, for all PPT environments Z it holds that

1− Pr
i←$I

[EXECΠi,A,Z(κ, r) ≈ EXECΠ′
i,A,Z(κ, r)]

is negligible, where A is the dummy adversary and, for sampled information i,
Πi and Π ′i are the protocols as described before.

Note that the environment here does not have access to the information i, as
it only represents the distinguisher here that aims to detect the subversion and
not the attacker (that already knows about the subversion).

Valid specious codes. Following this definition, in the corruption model, the shell
should only accept valid specious subversion codes. Clearly, we cannot enforce
arbitrary rules that the subverted code should follow, as no shell might be able to
check these rules since many of these rules would lead to undecidable problems.
As explained above, in this paper, we only consider attacks that change the
randomness, so the shell only accepts subversion codes π which exchange at
most the randomness function for an adversarially-chosen function. This function
has read-only access to the randomness tape and the whole state of the party
including its sec. This function will then be inserted by the shell into the body
such that each call to a so-called getRandomness-function is replaced by a call
to this getRandomness-function of π̄. Note that this randomness function can
even take the sec as in- and output. However, no other change of the code run
by the body is allowed. It is easy to see that when restricting the attack to only
changing the randomness function, the subverted code fulfils the definition of
speciousness. Practically, it makes no difference if the shell only accepts this
new randomness function upon invocation or later on. In the latter case, the
function is inserted in the body such that all prior access to the randomness tape
is replaced by this adversarially-chosen randomness function.

More Details on Corruptions Considered in This Paper We will consider
the plain UC model and allow static specious corruptions. Because of the static
property, the secret can only be inserted after the corruption step, though it



Protection Against Subversions via RFs 19

can be updated throughout the protocol run. In general, a party can only be
corrupted in one way. This is controlled via a corruption flag that is set if a
corruption is valid in place, and subsequent corruption commands are ignored.
We omit writing the flags explicitly for better readability.

In this paper, we focus on two-party computation. This allows an easier
explanation of our model as, here, the interaction between one party using the
firewall and “the outside” can be represented by only communicating with one
partner. However, the model is also expandable to multi-party computations as
we only consider the plain UC model here.

Finally, we only consider attacks captured by the classical UC model. Different
attacks using, e.g., the timing behaviour or other physical properties of an
implementation are thus out of scope. However, we expect that our model could
easily be integrated into different UC extensions capturing such properties such
as the model of Canetti et al. [50].

4 Achieving Subversion Resilience with the Help of
Reverse Firewalls

In this section, we will formalise how to protect implementations against subver-
sion attacks. Due to the immense strength of general subversion attacks, it is fairly
easy to see that certain subversion attacks are completely undetectable and thus
avoid all detection mechanisms [9]. Hence, the main idea of the countermeasure
studied here is to forgo detection and concentrate on actively removing the covert
channel that the subverted implementation aims to open.

4.1 Introduction to Reverse Firewalls

After formalising the subversion corruption model and the specious attacks
considered in this paper in the previous Section 3, we will now discuss one
approach of protecting protocols against such attacks. While different techniques
exist in the literature, we will focus on the seminal standard of reverse firewalls
introduced by Mironov and Stephens-Davidowitz [14]. Informally, such a reverse
firewall RF (in short only called firewall or RF) is a device additionally installed
by a party P to protect the output of their subverted implementation from
signalling. The firewall obtains all outgoing communication from P and all
ingoing communication to it. Note that while they are two separate parties, we
will call P a (main) party of a protocol Π and RF the sub-party of P for easier
distinguishability. In this work, we will analyse the security of party P gained
by its RF in the case of subversion corruption. Therefore, we have always the
composed party of P and RF in mind which we denote by RF ◦ P where all
communication is routed via RF . Hence, whenever P sends out a message m to
another party Pj , the message is first given via an immediate channel to RF ,
which then delivers a (possibly modified) message m′ to Pj , and vice-versa.



20 Arnold et al.

4.2 Fundamental Properties of Reverse Firewalls

The firewall itself does not have any secrets, in particular it is not part of the
party it is used with and should also not gain information about any secret.
It, therefore, can speak about the “correctness” of a message no more than an
eavesdropper. However, the firewall can easily do a syntactical check and only
let through messages that have the correct syntax. For example, it can ignore
messages consisting of two group elements, if the protocol only expects one group
element to be send.

In [14, 15], the authors not only introduced firewalls as a concept, but also
defined different properties that are desirable for such a firewall to have. Informally,
we require our firewalls to have the following properties:

Functionality Maintenance: If the implementation is not subverted, the hon-
est firewall should not break the functionality of the underlying protocol.

Security Preservation: If a subverted party is used with an honest firewall,
all security guarantees of the underlying protocol should be preserved.

Exfiltration Resistance: The subverted implementation should not be able
to leak sensitive information trough an honest firewall. This is measured by
comparing a subverted party together with an honest firewall against an
honest party together with an honest firewall.

The authors of [14, 15] further divide the last two definitions into a strong and
a weak version depending on whether this holds against any PPT adversary or
only against all PPT adversaries that maintain functionality. Such “functionality-
maintaining adversaries” correspond to only considering specious subversions,
hence, the firewalls considered in this paper must only fulfil the ’weak’ properties.

In [14, 15], their firewalls also guarantee the following additional properties:

Stackability: A party should be allowed to have arbitrarily many firewalls. A
single correct firewall should already guarantee security.

Transparency: The other parties do not need to be aware of the existence of
the firewall(s). This is measured by comparing an honest party together with
an honest firewall against an honest party without firewall.

In this work, we will call their notion of transparency outer transparency, as
it only concerns the other parties, i.e., the view from the outside. Furthermore,
we will strengthen the notion of stackability to the notion of inner transparency,
where we require that an honest implementation needs to behave the same whether
a firewall is present or not. We will show that a firewall having both outer and
inner transparency (which we call strong transparency) allows to keep (nearly)
all security guarantees of the underlying protocol. In the model of Chakraborty
et al. [10], the parties using the firewalls need to be aware of their existence, as
they might, e.g., obtain additional information from these firewalls. The notion of
stackability is never discussed by Chakraborty et al., but one could, e.g., expect
that the party needs to obtain these additional information from every firewall.
However, this would only provide stackability, but not inner transparency.



Protection Against Subversions via RFs 21

4.3 Handling of Reverse Firewalls in UC

As described above, in contrast to Chakraborty et al. [10], we consider subver-
sions that change an input of the underlying algorithm to be suspicious. Hence,
subversion attacks do not change the functionality of the underlying protocol
and are simply implementation attacks. This allows our ideal world to have
neither subverted implementations nor firewalls and lets us realise standard
known functionalities that guarantee security without asking for firewalls. That
the ideal world does not model any firewalls is possible as the environment cannot
communicate with RF in the real world either.

A firewall RF is modelled as a sub-party of main party P in the real world as
visualised in Figure 4. Every main party might have one (or more) firewalls but is
not required to have one. Firewalls communicate via an immediate channel with
the respective main parties and, for the communication onward to the network
channel, pass on the message after modifying part of the content of the message
without modifying the header.

In the case of an authenticated channel, Alice would send
(send, sid , Alice,Bob,msg) via the immediate channel to its firewall, which
adapts the message to msg ′ and sends (send, sid , Alice,Bob,msg ′) to the
ideal authenticated channel functionality FAUTH, where msg ′ is a version
of the message m where the possible covert channel is removed (often via
rerandomisation).

This gives a good model of how messages are routed in a real-life network
that passes messages/packets along a sequence of routers. Here, each device in a
network only needs to know the address of its own router. Remark that RF sends
messages in the name of P which could be used for an impersonation attack by a
malicious RF , which is discussed further in Section 8. Apart from the interfaces
for the input from its main party and the network channel, no further inputs
from the outside are modelled/accepted, i.e., the environment Z cannot give
further input to the firewall. Z can only make use of the corruption interfaces of
RF . Note that RF does not provide a secret interface, as RF should and would
not know a secret.

This model additionally differs from the one presented in [10] in that, there,
F has an explicit interface for the firewall RF , as F will be adapted to be
“sanitisable”. This means that F has a set of interfaces to handle the in- and
output from a party and a set of interfaces to handle the changes made by RF .
Consequently, a party and its firewall cannot directly talk to each other as they
have to communicate through the ideal functionality resulting in the requirement
that all parties must use a firewall. On the modelling side, this change requires
that every F must be adapted if it is used in a hybrid model; the authors of [10]
propose a wrapper for their functionalities. Here, one can directly see that F
learns the secret of the party as it has transferred the plain message from party
to firewall.



22 Arnold et al.

Z

Alice BobRFAlice

A

se
cr

et
se
c A

se
cr

et
se
c B

channel

subvert,π̄

su
bv

er
t,π̄

Fig. 4: Informal visualisation of firewalls in the UC model. Information about the
secret might be leaked to the firewall (represented by ), however, it is the
goal of the firewall to output messages to the channel that no longer contain this
leakage. The leakage of Bob through the channel is omitted for simplicity.

The benefit of firewalls is using them to protect already existing protocols
against subversion attacks. Hence, it is intuitive to only consider functionality-
maintaining firewalls as these does not change the underlying functionality. As
already discussed above, in [10], the firewalls are allowed to modify the main
party’s inputs. This heavily impacts the definition of a functionality. Consider
a commitment scheme as an example. Employing such a firewall that might
change the committed element would lead to the commitment of a random value.
While this is sufficient for functionalities using random inputs, more general
functionalities might require that a specific value is committed. One could argue
that in this case, a firewall could simply be provided with inputs that do not
change the value. However, this would give the firewalls—more specifically the
inputs of the firewalls—the power to decide on the obtainable functionality.

Note that there is also an ambivalence present regarding informing the party
of the value that was actually committed to. As can be seen in [10], a protocol
implementing such an ideal functionality can be designed in such a way that no
update is passed back to the party. While this means that no feedback channel
is needed, the party can also no longer use the committed value later on in the
protocol, as it is unknown to the party. If instead an update should always be
returned to the party to allow this kind of functionality, a feedback channel
is necessary. Since this channel is not needed in the underlying protocol, this
requires a corresponding modification. Furthermore, using multiple firewalls with
a feedback channel together requires additional management: All firewalls have
to forward all received randomnesses to the party which in the end has to sum all
of them up. Alternatively, the firewalls have to be adapted to wait for their outer
firewall to answer with a randomness before updating their own randomness
accordingly and passing it to next firewall such that the party will receive only
one updated randomness.



Protection Against Subversions via RFs 23

4.4 Modelling of Properties of Reverse Firewalls in UC

While the properties functionality maintaining, security preserving, and exfil-
tration resistance explained above are clearly needed for the reverse firewalls
to work at all, there are a number of other useful properties worth to con-
sider. In the following, we will formally define the notions of transparency and
anti-signalling that capture (or extend) the original properties of Mironov and
Stephens-Davidowitz [14] in the UC-setting. Furthermore, as we will see, they
also allow to simplify the security analysis significantly, as we do not need to to
“reprove” the UC-simulatability.

Transparency Firstly, there is the notion of transparency. While partially already
mentioned by [14], we extend on this and coin the terms strong transparency
and outer transparency. Roughly speaking, the latter is given if an honest party
without a firewall is indistinguishable from an honest party together with the
firewall behaving honestly, while strong transparency is given if, additionally, the
party itself does not have to change its behaviour when using such a firewall.

Definition 5. (Transparency) Let P be a party and RF its firewall and the
other party in the protocol be incorruptible. Let Π be the protocol run by P̂
while a (modified) protocol Π ′ is run by the composed party R̂F ◦ P̂ where P̂
and R̂F are the incorruptible versions of P and RF , respectively. If for all PPT
environments Z it holds that EXECΠ,A,Z(κ, r) ≈ EXECΠ′,A,Z(κ, r) where A is
the dummy adversary, then RF provides outer transparency for Π ′ with regard
to Π. If, additionally, the protocols Π and Π ′ contain the same code π for their
respective party P̂, then RF provides strong transparency.

Strong transparency means that the behaviour does not change regardless
of whether P̂ or R̂F ◦ P̂ is used. This includes that there is no additional
communication to/from the party, so a party does not need to “know” how
many firewalls are used or provide different interfaces for different firewalls. Note
that this also extends to the behaviour of the firewall, as the behaviour of a
composed party R̂F ◦ P̂ should not change when employing it together with an
additional firewall as R̂F ◦ (R̂F ◦ P̂). Illustrated in Figure 5, neither P̂1 nor P̂2

can distinguish, whether P̂1 uses a firewall. This directly implies functionality
maintenance.

To allow an extra communication feedback channel between the firewall and
its party, we can weaken this definition to only “outer transparency”. Here, Π ′ can
be slightly changed to accommodate the extra information given by its firewall(s).
However, as discussed above, this channel can negatively impact the security
guarantees and we only construct firewalls with strong transparency.

Outer transparency implies that based on the messages alone other parties
cannot infer whether a firewall is used. Note that outer transparency requires
the firewall to not change the functionality. However, this is not true for the
other way around as a functionality-maintaining firewall could, for example, add
a bit as a prefix to every message which would not break functionality but outer
transparency.



24 Arnold et al.

P̂1 P̂2

R̂F 1

R̂F 2

P̂1 P̂2

Fig. 5: If both firewalls R̂F 1 and R̂F 2 are strongly transparent, these two inter-
actions cannot be distinguished.

In [10], the firewalls are modelled to have an additional input through which
the content of its party’s message can be changed. However, there are also firewalls
without this input, for which a definition of transparency is given. Informally,
such a firewall is transparent if it cannot be distinguished from a firewall that
does not modify the communication and directly passes the message along. This
indistinguishability is similar to our definition of outer transparency. However,
strong transparency does not follow from their definition since, as discussed
above, that would disallow the usage of feedback channels.

Non-Signalling Composed Party Another property to model is the notion
that the firewall counteracts the leakage (signal) of a subverted party by making
the combination of party and firewall non-signalling. The goal is that not even
the adversary can distinguish the behaviour of RF ◦ P̄ from RF ◦ P. We call
such a firewall anti-signalling (it was previously called exfiltration-resistant by
Mironov and Stephens-Davidowitz [14] and strong sanitation by Chakraborty et
al. [10]). The main difference to the definition of a specious subversion is that the
adversary A here learns the shared information i ∈ I contained in the subverted
code π̄i. We denote that A is given these information by A(i).

Definition 6. (Anti-Signalling) Let P be a party and RF its firewall. Let Π
be the protocol run by the composed party R̂F ◦ P̄ and Π ′ be the exact same
protocol except that it is run by party R̂F ◦ P̂ where P̂, R̂F are the incorruptible
versions of P and RF . Recall that the subverted party P̄ also includes the case
that P̄ = P. The firewall RF is anti-signalling if for all PPT environments Z it
holds that

1− Pr
i←$I

[EXECΠ,A(i),Z(κ, r) ≈ EXECΠ′,A(i),Z(κ, r)],

is negligible, where Ai is the dummy adversary having access to information i.

In most applications, the firewalls even guarantee perfect anti-signalling,
where EXECΠ,Ai,Z(κ, r) and EXECΠ′,Ai,Z(κ, r) are distributed identically. The
definition of anti-signalling is visualised in Figure 6.

Note that a party that is subverted due to a specious subversion might very
well be signalling, since the environments are given different levels of knowledge:



Protection Against Subversions via RFs 25

party

anti-si
gn

all
in

g
fir

ew
all signal

π̄

sec
A2

Fig. 6: Informal visualisation of an anti-signalling firewall, which can make the
composed party non-signalling even though the party itself is signalling.

In the definition of speciousness, the adversary (and therefore the environment)
is not provided with the used information i. In contrast, non-signalling requires
indistinguishability even when the adversary learns such an information.

Now, if we are able to construct an anti-signalling firewall providing strong
transparency, the interaction of a subverted party using an honest firewall with
another party is (nearly) indistinguishable from the interaction of two honest
parties. First, the notion of anti-signalling allows to replace the subverted party
using the honest firewall by an honest party using the honest firewall and the
strong transparency allows to replace the honest party using the honest firewall
by an honest party.

5 Security Analysis of Subversion Corrupted Protocols
with Reverse Firewalls

In this section, we want to show how one analyses the security of a protocol
susceptible to specious subversion corruptions that is at the same time protected
by firewalls. Therefore, we combine the modelling results of Section 3 to expand
a standard protocol to subversion corruption with the results of Section 4 to
analyse which additional cases the standard protocol can be protected against. As
before in this work, we will use the running example of a commitment protocol
between Alice with its firewall and Bob. Detailed information of the commitment
protocol is given in Section 6.

We want to prove that a protocol Π ≥UC F under subversion corruption with
specious codes. To do so we perform the following steps.

1. We assume, that in the literature, there is a protocol Π ′ ((b) in Figure 7)
given which UC-realises the desired ideal functionality F ((c) in Figure 7).
This will be our base protocol Π ′.

2. On the one hand, we adapt the base protocol to allow subversion corruption
by expanding the corruption model as described in Section 3. On the other
hand, we add firewalls to the protocol as described in Section 4. The latter
models a protection strategy against subversion corruption. These protocol
adaptions yields the protocol Π ((a) in Figure 7).



26 Arnold et al.

3. We show that Π ≥UC Π ′ under party-wise subversion, semi-honest, and
malicious corruption following the corruption behaviour transition given
in Table 2.

4. From the transitivity of UC-emulation [29, Sec. 4.3] follows that if Π ≥UC Π ′

and Π ′ ≥UC F , then Π ≥UC F .

Proceeding this way reduces the overhead of proving that Π ≥UC F under
party-wise subversion, semi-honest, and malicious corruption by hand in one
step.

Z

Alice Bob

A

RFA

Π

subv.

subv.

(a) Adapted Protocol

Z

Alice Bob

A

Π ′

(b) Base Protocol

Z

Alice Bob

Sim

F

(c) Ideal World

Fig. 7: The adapted protocol (a) of the base protocol (b) provides modelling of
subversion corruption and reverse firewalls. The base protocol (b) UC-realises
the ideal functionality in (c).

First. We assume that there exists a classic protocol Π ′ which is the base protocol
of Π, meaning that there are no firewalls yet included as one does not analyse
the resistance against subversion corruptions. This protocol fulfils a certain set of
security properties in the way that Π ′ ≥UC F under (semi-honest and) malicious
corruption.

Second. We adapt Π ′ such that we can analyse its security under subversion
corruption. All adaptions follow the model of Section 3. To begin with, we give
every party an interface to get a secret sec from the environment. Note that the
secret could also already be in the state of the party. However, this visualises
the goal of a subversion corruption to leak any information of some inner secret
of that party. By giving the adversary the power to set the secret we model the
adversary even more powerful.

Given a Π ′COM ≥UC FCOM in the {FCRS,FAUTH}-hybrid model under mali-
cious corruption. We model ΠCOM where Alice and Bob receive a symbolic secret
and a firewall which rerandomises the communication. Note that since this is
a non-interactive commitment, only Alice needs a firewall which rerandomises
the commitment c′ = c · COM(0, r

$← Zp) and later opens to the message with
the rerandomised decommitment. The environment gets the additional option



Protection Against Subversions via RFs 27

to subversion-corrupt Alice with a specious code, i.e., an adversarially-chosen
randomness function.

Third. As a protection against subversion corruptions, we will analyse firewalls
and, therefore, give every main party P which could leak something about its
secret via subversion during the protocol run a firewall RF following the modelling
of Section 4.3. A firewall RF is a party on its own and thereby the sub-party to
its main party P.

Fourth. To show the security after these changes, we will make use of the
transitivity of UC-emulation [29, Sec. 4.3], meaning that if A ≥UC B and
B ≥UC C, then A ≥UC C.
Theorem 1 (informal). Given a protocol Π ′. Expanding the corruption be-
haviour to allow specious subversion and add reverse firewalls as protection layer
to the protocol. We show that the adapted protocol Π UC emulates the protocol
Π ′. Therefore, the protocol Π is party-wise secure under the corruptions of Π ′
and specious subversion.

To prove Theorem 1, we provide an overview of the corruption behaviour in
Table 2 for the corruption transition of a main party P and its sub-party RF in
Π to its composed classic corruption behaviour in Π ′. We want to arrive at the
classic corruptions of semi-honest and malicious corruption to be able to make use
of the transitivity of UC-emulation. This table gives also a good understanding of
how a firewall RF affects a protocol and how it derives subversion-resilience. We
require that the used RF fulfils the definition of transparency and anti-signalling
as defined in Section 4.4. To analyse the security of a protocol with firewalls, one
can observe the influence of the sub-party RF of the respective main party P.

Party Firewall composed classical behaviour

honest honest honest
honest semi-honest honest
honest malicious malicious/honest, see Section 8

malicious honest/semi-honest/malicious malicious

subversion honest honest
subversion semi-honest semi-honest
subversion malicious malicious

Table 2: Different corruption combinations and their composed classical corruption
behaviour. The lines in grey differ from the table given in [10].

In some transition cases, one could see the composed classical behaviour as
over-approximation of the actual behaviour, i.e., some security guarantees which



28 Arnold et al.

are expected in Π are not given in Π ′, e.g. a honest or subverted P would not
loose the binding property of its commitment in Π but the composed corruption
behaviour in Π ′ would give the content of the commitment to the adversary.
We show what is achievable with the notions of UC-simulation, that not all
securities guarantees are captured will be discussed further in Section 8.4. The
notable achievable double state of “honest/malicious” for an honest P and a
malicious RF is the result of an important insight: If we do not want to adapt
given protocols in a complex way, we can only hope for the composed classical
behaviour of a malicious party. But the main aspect why it behaves maliciously in
the natural understanding is that RF can impersonate P . This is naturally given
in the composed behaviour, where A can impersonate P . In Section 8, we present
several ways to circumvent the impersonate attack vector of RF . If we add one
of the solutions to the protocol, we can achieve and prove via UC-simulation that
the composed party behaves honest.

Since we only consider static corruption, we can provide a simulator consist-
ing of a concatenation of all case-wise simulators. Note that Sim informs the
corruption aggregation ITI in the way of the transition table, meaning that it
reports the corruption state of the whole composed party together. That this is
equivalent to the report in the real world is given by the modelling described
in Section 3.

E.g., if a party P is subverted and its firewall is malicious, the corruption
aggregation ITI only reports that P is malicious. Otherwise Z would be able to
tell the worlds apart by noticing e.g. that there exists RF .

Theorem 2. Given protocol Π with main parties Pi under party-wise specious
subversion, semi-honest, and malicious corruption, and the (sub-)parties RF i

under party-wise semi-honest and malicious corruption in the {FCRS,FAUTH}-
hybrid model. Given protocol Π ′ with main parties P ′i under party-wise semi-
honest and malicious corruption in the {FCRS,FAUTH}-hybrid model. Let the
corruption behaviour of the parties RF i ◦ Pi transition from their individual
party-wise corruption to their composed classical corruption behaviour follow-
ing the corruption transition table Table 2. Let RF i be strongly transparent
and anti-signalling. Let r be the randomness and κ be the security parameter.
There exists a simulator SimΠ′ such that for all PPT environments Z, we have
EXECΠ,A,Z(κ, r) ≈ EXECΠ′,SimΠ′ ,Z(κ, r) where A is the dummy adversary.

For the most interesting cases of a subversion corrupted parties, we will
provide a simulator.

We only analyse the behaviour of the composed party, therefore the simulator
does only provide simulation until the network, which starts with FAUTH and
goes on with communication to further parties. This is no limitation since the
simulator can simulate the network as in the base protocol Π ′.

SimΠ′



Protection Against Subversions via RFs 29

SimΠ′ simulates for a protocol Π ′ with main party PΠ′ under static semi-
honest and malicious corruption the protocol Π with main party P under
static subversion, semi-honest, or malicious corruption, and its sub-party
RF under static semi-honest or malicious corruption. A “network” is used
to represent the in- and output interface of the (composed) P, i.e. FAUTH
and all further protocol part.
Behaviour:

\\ Case: Subverted party P and honest firewall RF :
– Upon receiving (corrupt, sid ,P, (subversion, π̄)) from Z,

store (sid ,P, subversion, π̄).
and ignore further corrupt messages.

– On all other backdoor messages, forward them to the respective recipient.
\\ Since firewall honest, there are no backdoor messages between firewall
and Z.
\\ Case: Subverted party P and semi-honest firewall RF :

– Upon receiving (corrupt, sid ,P, (subversion, π̄)) and
(corrupt, sid ,RF , semi-honest) as the first two messages from
Z,
store (sid ,P, subversion, π̄),
send backdoor message (corrupt, sid ,PΠ′ , semi-honest) to PΠ′ ,
Ignore further corrupt messages.

– Upon receiving backdoor messages (semi-honest, sid ,mid , state) from
PΠ′ , simulate the subversion corruption with π̄ and the firewall on state
in-the-head, and output the updated state (semi-honest, sid ,mid , state′)
in the name of RF to Z.

– On "continue" from Z to RF , send "continue" to PΠ′ .
– On all other backdoor messages, forward them to the respective recipient.

\\ Case: Subverted party P and malicious firewall RF :
– Upon receiving (corrupt, sid ,P, (subversion, π̄) and
(corrupt, sid ,RF , malicious) as the first two messages from Z,
store (sid ,P, subversion, π̄),
send backdoor message (corrupt, sid ,P, malicious) to P,
and receive all in-/output messages from/to Z to/from P.
Ignore further corrupt messages.

– On input from Z to P,
run in-the-head P’s π̄ and send the output in the name of RF to Z.

– On input in name of RF to the network, forward it to the network as if
P would be malicious.

– On output from the network to P, forward it as input of RF to Z.
– On output in the name of RF to P , run in-the-head P ’s π̄ and send the

output π̄ would send in the name of P.



30 Arnold et al.

Proof Sketch of Theorem 2. To prove that Π UC-emulates Π ′, we have to show
that it is indistinguishable for Z which protocol is executed. SimΠ′ simulates
the (corruption) behaviour of the main party P and its sub-party RF in Π to
be indistinguishable from the (corruption) behaviour given by Table 2 of the
main party P in Π ′. The simulator only captures the communication flow till
and from the network as after that, it works like the dummy adversary in Π ′.
We assume that the network starts with FAUTH as we analyse protocols in the
{FCRS,FAUTH}-hybrid model. Remark that it does not matter how the other
party (or parties) are corrupted in the protocol and whether they have firewalls
installed, because the simulator can be used party-wise and combined modularly.
Hence, we can focus on the two-party case with the view on one main party P
and its sub-party RF which can be extended modularly to more parties. We
make use of SimΠ′ for all cases considering a subverted party. The other cases
are directly discussed in the following proof sketch, such that we provide an
argumentation for every line, i.e., all possible cases given the static corruption
combinations, in Table 2.

Honest P and honest RF behave indistinguishable from honest PΠ′ . If RF is
strongly transparent, EXECΠ,A,Z(κ, r) ≈ EXECΠ′,Sim,Z(κ, r), where both the
main party in Π and its RF is honest, and the main party in Π ′ is honest as well.
Hence, it has no influence on the simulation. The distributions are identically
and independently distributed on both sides. Therefore, the simulator can just
ignore the firewall as no secret will be leaked. This is a special case of the variant
where P is subverted.

Honest P and semi-honest RF behave indistinguishable from honest PΠ′ . From
the analysis above, we know that an honest party together with an honest,
strongly-transparent firewall is indistinguishable from honest PΠ′ . When now
replacing the firewall with the semi-honestly corrupted RF , the composed party
behaves the same as with the honest firewall. The only difference between the
composed parties is that now, the adversary additionally learns about its state.
However, since the party is honest, no secret will be leaked to the firewall (and
therefore through its state). Consequently, we can see the composed party as
honest. The simulator has to generate the state and output of RF by running
the code on the output of P which the simulator simulates during the network
communication part.

Honest P and malicious RF behave indistinguishable from honest/malicious PΠ′ .
This case is an interesting edge-case as the firewall is maliciously corrupted
but the party itself is honest. Because of the latter, no secret will be leaked,
which in turn means that the firewall can leak nothing. However, the firewall
communicates in the name of P and, therefore, can impersonate it by generating
its own messages. There are different approaches to handle this situation: The
worst-case consideration would be viewing the composed party as maliciously
corrupted. In this case, the simulator could simulate the behaviour of honest P
and malicious RF . Remark that Canetti models malicious corruption in a way



Protection Against Subversions via RFs 31

that “in an activation due to an incoming input or subroutine-output, the shell
sends the entire local state to the adversary” [29, §7.1.1 Byzantine corruption,
line 6f]

This modelling also captures what one would expect by maliciously corrupting
a party —the input to this party goes to the adversary. Therefore, Sim receives
the input from Z, which gives Sim the power to run P ’s code in the head on this
input to simulate an honest output for the RF . Running RF ’s code in-the-head on
output to P from Z completes the simulation and both sides are indistinguishable.
However, malicious corruption behaviour would imply that none of the security
properties is guaranteed any more, even though this is generally not the case. To
get the composed party to behave like an honest party, one has to circumvent
impersonation attacks of RF . This is captured with modelling and more practical
solutions discussed below in Section 8.

Malicious P and honest/semi-honest/malicious RF behave indistinguishable from
malicious PΠ′ . The two executions are indistinguishable as Sim gets all in-
/output to/from the malicious P and can run RF ’s code in-the-head before
sending it to Z or network, respectively. In the case where RF is semi-honest,
output the produced state of RF to Z and continue on "ok" from Z. In the case
where RF is malicious, simulate communication between P and RF as between
two malicious parties, i.e., send each in-/output to Z.

Remark 2. Following Section 2.3.3 in [51], we know that the UC-simulation under
malicious corruption implies the UC-simulation under augmented semi-honest
corruption. This means that if we can show that the base protocol is secure if
PΠ′ is malicious, it is also secure if PΠ′ is augmented semi-honest. Again, if
the base protocol Π ′ is also secure against semi-honest corruptions, this type of
corruption can also be considered for the composed parties.

Subverted P and honest RF behave indistinguishable from honest PΠ′ . If RF is
anti-signalling, EXECΠ,A,Z(κ, r) ≈ EXECΠ′,SimΠ′ ,Z(κ, r), where the main party
in Π is subversion corrupted and its RF honest, and the main party in Π is
honest. In the case of the party P being subverted and its firewall RF being
honest, since the firewall is anti-signalling, the composed party is non-signalling
and, hence, subversion resilient. This means that the party cannot leak the secret
speciously via the protocol.

Subverted P and semi-honest RF behave indistinguishable from semi-honest PΠ′ .
The two executions are indistinguishable as Sim can produce the state of the
semi-honestly corrupted RF as by running its code in the head after applying
π̄ to PΠ′ ’s state. Since a semi-honest firewall still follows its code, any leakage
output through the subverted P will be removed, but the secret sec would be
leaked via the state. Note that while the executions are indistinguishable, we can
simulate this case, though the protocol is not subversion resilient any more.



32 Arnold et al.

Subverted P and malicious RF behave indistinguishable from malicious PΠ′ .
This case works similar to the case of an honest P and a malicious RF . In this
case, Sim also receives the secret as an input to P and can, therefore, simulate
as well that the secret is leaked. As SimΠ′ knows the in-/output of P and RF ,
it can easily simulate running π̄ and RF in-the-head if needed. Hence, both
sides are indistinguishable. One cannot hope to achieve an honest behaviour
for the composed party as the secret is leaked by the malicious firewall, but
one can reduce the attack vector by impersonation attacks of RF , as discussed
in Section 8.

Remark 3. If the party is subverted, we can view the composed party of a
subverted party and its corrupted firewall as a corrupted party. This might seem
like an over-approximation, however, in the worst case, a subversion could leak the
seed of the whole state of P which would then be equal to the direct semi-honest
corruption of P. Hence, the composed party of a subverted P with a corrupted
RF behaves, in the worst case, the same as a corrupted P. However, we can
show that a base protocol to which firewalls have been added still simulates the
ideal functionality of the base protocol. Even though in the case of an honest
party and a malicious firewall, one needs to take care of impersonation attacks
by the firewall (see Section 8), if we add protection against such impersonation
attacks of the firewall, we can simulate the behaviour of a subverted party and
its malicious firewall to a semi-honest party.

Corollary 1. Given Theorem 2, it follows that Π ≥UC F .

From the transitivity of UC-emulation [29] and Theorem 2 it follows directly
that Π ≥UC F because Π ≥UC Π ′ and Π ′ ≥UC F .

Applying Our Model After having proved that we can collapse a party and
its firewall into a composed classical party, we can provide a short checklist how
to prove the security of the overall protocol when using firewalls.

Given a base protocol Π ′ UC-realising an ideal functionality F and secure
and semi-honest and malicious corruption. To analyse the resilience against
specious subversions via cryptographic reverse firewalls, one only has to proceed
the following steps:

1. Adapt the protocol according to Section 3 to expand the corruption factor
by specious subversion,

2. add reverse firewalls to the protocol as described in Section 4,
3. show that the new protocol Π is correct,
4. and that the firewalls are both strongly transparent and anti-signalling.

Following Theorem 2, the new protocol Π UC emulates the base protocol Π ′ which
UC-realises the ideal functionality in the {FCRS,FAUTH}-hybrid model, where
the main parties are malicious, subversion and possibly semi-honest corrupted



Protection Against Subversions via RFs 33

with a specious code π̄, and the respective sub-parties RF are honest, semi-honest
or malicious. From transitivity of UC emulation follows that Π also UC-realises
the ideal functionality F in the {FCRS,FAUTH}-hybrid model.

Remark 4. Even though Theorem 2 is also applicable for maliciously corrupted
firewalls, as discussed in Section 8, additional measures have to be taken to
protect against impersonation attacks.

6 Commitments

The considered commitment scheme based on the one in [30] is a transformation
of the oblivious transfer scheme presented below in Section 7 by the same authors.
Additionally, it is also equal to the bit commitment version of one discussed in
[10] if there, one would set the input of the firewall to zero. However, in contrast
to [10], we can directly reuse the security analysis of [30] and do not need to
“reprove” the UC-security of the protocol.

Since the commitment scheme has already been widely discussed throughout
this paper, we only give a short description by illustrating the considered protocol
in Figure 8. This protocol can be shown to fulfil the following:

Theorem 3. The protocol ΠsrCOM UC-realises the functionality FCOM in the
{FCRS,FAUTH}-hybrid model, where the main parties are malicious, semi-honest
or subversion corrupted with a specious code π̄, and the respective sub-parties RF
are honest, semi-honest or malicious.

Z

1. π = π̄
2. state = state‖sec
3. c = COM(v, d) =

(gdT v
1 , h

dT v
2 )

C

1. r ← $Zq

2. ĉ = COM(0, r) · c =
(gr, hr) · c =
(gd+rT v

1 , h
d+rT v

2 )
3. d̂ = d+ r

RFC

A

FAUTH

ĉ
?
=

COM(v, d̂) =

(gd̂T v
1 , h

d̂T v
2 )

V

se
cr

et
se
c

c
o
m
m
i
t
,v

o
p
e
n

send (committed, c)

sent (open, (v, d))

subvert, π̄

su
bv

er
t,

C
,π̄

se
nd

se
nd

O
K

se
nd

se
nd

O
K

send, (committed, ĉ)
send, (send, (v, d̂))

c
o
m
m
i
t
t
e
d

o
p
e
n
,v

sent, committed, ĉ

sent, open, (v, d̂)

Fig. 8: Real run of the commitment scheme (pictured without FCRS).



34 Arnold et al.

6.1 Ideal Functionality: Commitment

FCOM

Two-party ideal bit commitment protocol between a committer C and a verifier V.

– Upon receiving an input (commit, sid , v) from C, where v ∈ {0, 1}, record
the tuple (sid , v) and generate a public delayed output (committed, sid) to V.
Ignore subsequent commands of the form (commit, sid , ·).

– Upon receiving an input (open, sid) from C, generate a public delayed output
(open, sid , v) to V. Ignore subsequent commands of the form (open, sid , ·).
\\ Corruption Handling:

– On input (secret, sid ,P, sec), store (secret, sid ,P, sec).
If RF is corrupted send (secret, sid ,P, sec) to Sim.

– Ignore all further inputs.

The ideal run of the commitment scheme is illustrated in Figure 9.

Z

C FCOM Sim V

se
cr

et
se
c

c
o
m
m
i
t
,v

o
p
e
n

secret sec

commit, v
open

ignore

record v committed

open, v

ge
tC

R
S

go
tC

R
S

(g
,T

1
,h

,T
2
)

su
bv

er
t,

C
,π̄

subvert, π̄

se
nd

,
c
,
v

,
(c

om
m

it
ed

,
c
)

se
nt

O
K

se
nd

,
c
,
v

,
(o
p
e
n
,
(v

,
d
))

se
nt

O
K

committed

open, v

c
o
m
m
i
t
t
e
d

o
p
e
n
,v

Fig. 9: Ideal run of the commitment scheme

6.2 Real Protocol: Subversion-resilient Commitment based on DLog
[30]

As was done in [10], who base their commitment on the same scheme by [30], the
protocol is in a modified common reference string (CRS) model where the first
three elements are assumed to be random. The group G with generator g and
the field Zq are public inputs.

The base commitment scheme in [30] proves security under malicious corrup-
tion. Again, this implies security under augmented semi-honest corruption. Plain



Protection Against Subversions via RFs 35

semi-honest security, however, has not been shown yet. If one cares or doubt
about this, we leave this as an open problem to the reader, as this would have
to be proven first for the case above in Theorem 2 where the subverted party
and plain semi-honest corrupted firewall behave indistinguishable from a plain
semi-honest party.

ΠFCRS,FAUTH
srCOM

Realises:
Subversion-resilient two-party bit commitment between a main party committer C,
its sub-party firewall RFC , a main party receiver R, and an adversary A.
Parameters:

– Functionality FAUTH.
– Functionality FCRS:
– Only static subversion corruption is pictured, others omitted.
– Every main-party has an empty initialised secret tape.

Behaviour of Party C:
\\ Subversion Corruption Handling:

– Upon receiving (corrupt, sid , (subversion, π̄)) as first message after invocation
from A,
shell checks if π̄ is a valid specious code by the criteria given in Section 3.2,
that is that π̄ only consists of a randomness function.
If π̄ is valid specious, shell replaces all randomness function in the body with
the one from π̄, and sets a subversion corruption flag.
Else ignore.
Ignore subsequent corruption commands (corrupt, sid , ·).

– Upon receiving (secret, sid , s) from Z, write s on the secret tape.
\\ Commitment Handling:

– Upon receiving (commit, sid , v) from Z, where v ∈ {0, 1}, send (value, sid) to
FCRS.

– Upon receiving (crs, sid , (g, T1, h, T2)) from FCRS:
get d from the randomness function, \\ presumably subverted
and set c := (c0, c1) = Com(v, d) = (gd · T v

1 , h
d · T v

2 ).
Send (send, sid , C,V, (commit, c)) to RFC via an immediate channel.

– Upon receiving (open, sid) from Z, output (send, sid , C,V, (opened, (v, d)) to
RFC .

Behaviour of Sub-party RFC:
– Upon receiving (send, sid , C,V, (commit, c)) from C, send (value, sid) to FCRS.
– Upon receiving (crs, sid , (g, T1, h, T2)) from FCRS, sample r

$← Zq, and set
c′ := (c′0, c

′
1) = c · Com(0, r) = (c0 · gr, c1 · hr).

Send (send, sid , C,V, (committed, c′)) in the name of C to FAUTH.
– Upon receiving (send, sid , C,V, (opened, (v, d))) from C, set d′ := d+ r,

and send (send, sid , C,V, (opened, (v, d′))) to FAUTH.

Behaviour of Party V:
\\ Subversion Corruption Handling:

– Upon receiving (corrupt, sid , (subversion, π̄)) as first message after invocation
from A,



36 Arnold et al.

shell checks if π̄ is a valid specious code by the criteria given in Section 3.2,
that is that π̄ only consists of a randomness function.
If π̄ is valid specious, shell replaces all randomness function in the body with
the one from π̄, and sets a subversion corruption flag.
Else ignore.
Ignore subsequent corruption commands (corrupt, sid , ·).

– Upon receiving (sent, sid , C,V, c′) from FAUTH, output (committed, sid) to Z.
– Upon receiving (sent, sid , C,V, (v, d′)) from FAUTH, output (opened, sid , v) to
Z.

Behaviour of Party A:
\\ Subversion Corruption Handling:

– Upon receiving input (corrupt, sid , C, (subversion, π̄)) from Z, send
(corrupt, sid , (subversion, π̄)) to backdoor tape of C.
\\ CRS Handling:

– Upon receiving input (value, sid) from Z, forward (value, sid) to FCRS.
– Upon receiving input (crs, sid , (g, T1, h, T2)) from FCRS, output

(crs, sid , (g, T1, h, T2)) to Z.
\\ AUTH Handling:

– Upon receiving input (send, sid , C,V,msg) from FAUTH, output
(send, sid , C,V,msg) to Z.

– Upon receiving input (sendok, sid) from Z, forward (sendok, sid) to FAUTH.

The real run of the commitment scheme is illustrated in Figure 8.

6.3 Security Proof of Theorem 3

Proof. Since the firewall only rerandomises the used randomness, one can easily
see that ΠsrCOM is correct as is shown in Lemma 1.

Lemma 1. ΠsrCOM is correct.

Proof. ΠsrCOM is correct if the verifier V opens the received commitment c′ under
the received decommitment information d′ to committed-to value v of the sender
S , therefore V checks that c′ = COM(v, d′), with d′ = r+d set from RF . It holds
that

c′ = COM(0, r) · c
= COM(0, r) · COM(v, d)

= (gr · T 0
1 , h

r · T 0
2 ) · (gd · T v

1 , h
d · T v

2 )

= (gr · (gd · T v
1 ), h

r · (hd · T v
2 ))

= (gr+d · T v
1 , h

r+d · T v
2 )

= (gd
′
· T v

1 , h
d′
· T v

2 )

= COM(v, d′).



Protection Against Subversions via RFs 37

Following Section 5, if ΠsrCOM UC-emulates ΠCOM and ΠCOM UC-realises
FCOM, then ΠsrCOM UC-realises FCOM. As it was proved in [30] that ΠCOM UC-
realises FCOM, only the former part has to be considered here. It was also shown
in Section 5 that if RF in ΠsrCOM is strongly transparent and anti-signalling,
then ΠsrCOM UC-emulates ΠCOM in the {FCRS,FAUTH}-hybrid model, where the
main parties are malicious, semi-honest or subversion corrupted with a specious
code π̄, and the respective sub-parties RF are honest, semi-honest or malicious.
It remains to show the transparency and anti-signalling properties.

Lemma 2. RF in ΠsrCOM is strongly transparent and anti-signalling.

Proof. Since the firewall of the verifier only passes through the message, only the
firewall of the sender has to be analysed.

The firewall of the sender solely changes the outgoing commitment c to
c′ = COM(0, r) · c = (gr · T 0

1 , h
r · T 0

2 ) · (gd · T v
1 , h

d · T v
2 ) = (gr+d · T v

1 , h
r+d · T v

2 ).
As one can see, this changes the used randomness from d to r + d. Considering
the transparency definition, d is independent and uniformly random, thus adding
an independent uniform random elements r to it does not change this property.
Additionally, even if d was output by the random function of the adversary, the
sum r + d would still be independent uniform random because of the added
randomness by the incorruptible firewall, which is therefore anti-signalling.

The theorem follows.

7 OT

Oblivious transfer is one of the open problems stated by [10]. The sender S who
knows two messages m0,m1 communicates with the receiver R who has a choice
bit b and wants to learn mb. The goal of the interaction is to allow the receiver to
learn this message, and this message only, without the sender learning anything
about b.

While the previously considered commitment scheme was non-interactive and
only needed a firewall for the committer, the OT protocol consist of two rounds
with each party sending one message to each other. As both of the messages are
generated using randomness, this requires two different firewalls. Note, that also
the subversion code inserted into a sender and a receiver can differ.

7.1 Ideal Functionality: Oblivious Transfer

FOT

Two-party ideal oblivious transfer protocol between a sender S and a receiver R.



38 Arnold et al.

– Upon receiving an input (OT-send,R, sid , (m0,m1)) from S , where mi ∈
G, record the tuple (sid ,m0,m1) and generate a public delayed out-
put (OT-sent,S ,R, sid) to S . Ignore subsequent commands of the form
(OT-send,R, sid , ·).

– Upon receiving an input (OT-receive,S , sid , b) from R, where b ∈ {0, 1},
ignore the message if (sid ,m0,m1) is not recorded. Otherwise, record the tuple
(sid , b) and generate a public delayed output(OT-received,S , sid ,mb) to R.
Ignore subsequent commands of the form (OT-receive,S , sid , ·).
\\ Corruption Handling:

– On input (secret, sid ,P, sec), store (secret, sid ,P, sec).
If RF is corrupted send (secret, sid ,P, sec) to Sim.

– Ignore all further inputs.

7.2 Real Protocol: Subversion-resilient Oblivious Transfer based on
DLog [30]

We base our protocol on the UC-secure 1-out-of-2 OT protocol given by [30]
where one of the messages m0,m1 ∈ G from the sender S can be obtained by
the receiver R. Like the commitment protocol above, it relies on the CRS and in
particular, starts very similarly to the commitment. Consequently, as was done
for the commitment, the protocol also has to be adapted by making the field
element T2 ∈ G part of the CRS. The group G with generator g and the field Zq

are public inputs.
The base OT scheme in [30] proves security under malicious corruption. Again,

this implies security under augmented semi-honest corruption. Plain semi-honest
security, however, has not been shown yet. If one cares or doubt about this, we
leave this as an open problem to the reader, as this would have to be proven first
for the case above in Theorem 2 where the subverted party and plain semi-honest
corrupted firewall behave indistinguishable from a plain semi-honest party.

ΠFCRS,FAUTH
srOT

Realises:
Subversion-resilient two-party oblivious transfer protocol between a main party
sender S , its sub-party firewall RFS , a main party receiver R, its sub-party firewall
RFR, and an adversary A.
Parameters:

– Functionality FAUTH.
– Functionality FCRS:

Every party receives on (value, sid) to FCRS (crs, sid , (g, T1, h, T2).
– Only static subversion corruption is pictured, others omitted.
– Every main-party has an empty initialised secret tape.

Behaviour of Party R
\\ Subversion Corruption Handling:



Protection Against Subversions via RFs 39

– Upon receiving (corrupt, sid , (subversion, π̄)) as first message after invocation
from A, shell checks if π̄ is a valid specious code by the criteria given in
Section 3.2, that is that π̄ only consists of a randomness function.
If π̄ is valid specious, shell replaces all randomness function in the body with
the one from π̄, and sets a subversion corruption flag. Else ignore.
Ignore subsequent corruption commands (corrupt, sid , ·).

– Upon receiving (secret, sid , s) from Z, write s on the secret tape.
\\ Oblivious Transfer Handling:

– Upon receiving input (OT-receive,S , sid , b) from Z, where b ∈ {0, 1},
get α from the randomness function, \\ presumably subverted
and set (B,H) := Choose(g, h, T1, T2, b, α) = (gα · T b

1 , h
α · T b

2 ).
Send (OT-receive,S , sid , (B,H)) to RFR via an immediate channel.

– Upon receiving (sent,S , sid ,mid , (z̃, c̃0, c̃1)) from RFR, set mb := c̃b · z̃−α.
Output (OT-received,S , sid ,mb) to Z.

Behaviour of Sub-Party RFR

– Upon receiving (OT-receive,S , sid , (B,H)) from R, sample β
$← Zq, set

(B′, H ′) := (B · gβ , H · hβ), and send (send,S , sid ,mid , (B′, H ′)) in the name
of R to FAUTH.

– Upon receiving (sent,S , sid ,mid , (z′, c′0, c
′
1)) from FAUTH, set (z̃, c̃0, c̃0) :=

(z′, c′0 ·z′−β , c′1 ·z′−β), and send (sent,S , sid ,mid , (z̃, c̃0, c̃1)) via and immediate
channel to R.

Behaviour of Party S
\\ Subversion Corruption Handling same es for Party R.
\\ Oblivious Transfer Handling:

– Upon receiving (sent,R, sid , (B′, H ′)) from RFS , output (OT-sent,R, sid) to
Z.

– Upon receiving (OT-send,R, sid , (m0,m1)) from Z, where m0,m1 ∈ G, sample
r, s

$← Zq, set (z, c0, c1) := Transfer(g, h, T1, T2, B
′, H ′,m0,m1) = (gr ·hs, B′r ·

H ′s ·m0, (B
′/T1)

r · (H ′/T2)
s ·m1), and send (OT-send,R, sid , (z, c0, c1)) via

an immediate channel to RFS .

Behaviour of Sub-Party RFS

– Upon receiving (sent,R, sid , (B′, H ′)) from FAUTH, send
(sent,R, sid , (B′, H ′)) via an immediate channel to S .

– Upon receiving (OT-send,R, sid , (z, c0, c1)) from S , sample r′, s′
$← Zq, set

(z′, c′0, c
′
1) := (z · gr

′
· hs′ , c0 · B′r′ ·H ′s′ , c1 · (B′/T1)

r′ · (H ′/T2)
s′). and send

(send,R, sid ,mid , (z′, c′0, c
′
1)) in the name of S to FAUTH.

Behaviour of Party A:
\\ Subversion Corruption Handling:

– Upon receiving input (corrupt, sid ,P, (subversion, π̄)) from Z, send
(corrupt, sid , (subversion, π̄)) to backdoor tape of P.
\\ AUTH Handling:

– Upon receiving input (send, sid ,P1,P2,msg) from FAUTH, output
(send, sid ,P1,P2,msg) to Z.

– Upon receiving input (sendok, sid) from Z, forward (sendok, sid) to FAUTH.



40 Arnold et al.

7.3 Security Proof

Theorem 4. The protocol ΠsrOT UC-realises the ideal functionality FOT in the
{FCRS,FAUTH}-hybrid model, where the main parties are malicious, semi-honest
or subversion corrupted with a specious code π̄, and the respective sub-parties RF
are honest, semi-honest or malicious.

Proof. Since the firewall only rerandomises the used randomness, one can easily
see that ΠsrOT is correct;

Lemma 3. ΠsrOT is correct.

Proof. ΠsrOT is correct if the receiver R can open the chosen message mb, that
is mb = c̃b · z̃−α.

We consider the cases separately:

– Case b = 0:

c̃0 · z̃−α = c′0 · z′−β · z′−α

= B′r+r′ ·H ′s+s′ ·m0 · g−(α+β)(r+r′) · h−(α+β)(s+s′)

= g(α+β)·(r+r′) · h(α+β)·(s+s′) ·m0 · g−(α+β)(r+r′) · h−(α+β)(s+s′)

= m0.

– Case b = 1:

c̃1 · z̃−α = c′1 · z′−β · z′−α

= (B′/T1)
r+r′ · (H ′/T2)

s+s′ ·m1 · g−(α+β)(r+r′) · h−(α+β)(s+s′)

= g(α+β)·(r+r′) · h(α+β)·(s+s′) ·m1 · g−(α+β)(r+r′) · h−(α+β)(s+s′)

= m1.

Following Section 5, if ΠsrOT UC-emulates ΠOT and ΠOT UC-realises FOT,
then ΠsrOT UC-realises FOT. As it was proved in [30] that ΠOT UC-realises FOT,
only the former part has to be considered here. It was also shown in Section 5
that if RF in ΠsrOT is strongly transparent and anti-signalling, then ΠsrOT
UC-emulates ΠOT in the {FCRS,FAUTH}-hybrid model, where the main parties
are malicious, semi-honest or subversion corrupted with a specious code π̄, and
the respective sub-parties RF are honest, semi-honest or malicious. It remains to
show the transparency and anti-signalling properties.

Lemma 4. RF in ΠsrOT is strongly transparent and anti-signalling.

Proof. We consider the firewalls for the sender and the receiver separately.

Sender The firewall of the sender only changes the outgoing tuple (z, c0, c1) to

(z′, c′0, c
′
1) = (z · gr

′
· hs′ , c0 ·B′r

′
·H ′s

′
, c1 · (B′/T1)

r′ · (H ′/T2)
s′)

= (gr+r′ · hs+s′ , B′r+r′ ·H ′s+s′ ·m0, (B
′/T1)

r+r′ · (H ′/T2)
s+s′ ·m1).



Protection Against Subversions via RFs 41

As one can see, this changes the used randomness from r and s to r + r′ and
s+ s′. Considering the transparency definition, r and s are independent and
uniformly random, thus adding independent uniform random elements r′, s′

to it does not change this property. Additionally, even if r, s were output by
the random function of the adversary, the sums r + r′ and s+ s′ would still
be independent uniform random because of the added randomness by the
incorruptible firewall, which is therefore anti-signalling.

Receiver This firewall changes both the tuple (B,H) output by the receiver to
(B′,H ′) = (B · gβ ,H · hβ) = (gα+β · T b

1 , h
α+β · T b

2 ) and (z′, c′0, c
′
0) to

(z̃, c̃0, c̃0) = (z′, c′0 · z′−β , c′1 · z′−β)

= (gr+r′ · hs+s′ , Br+r′ ·Hs+s′ ·m0, (B/T1)
r+r′ · (H/T2)

s+s′ ·m1).

Again, one can see that this only changes the used randomness from α to
α+ β, which is reverted back before the message from the sender is passed
to the receiver. As this implies that the second has the same distribution as
in the underlying protocol, only the first message has to further be analysed.
Considering the transparency definition, α is independent and uniformly
random as is β, hence their sum is as well. Additionally, even if α was
output by the random function of the adversary, the sum α+ β would still
be independent uniform random because of the added randomness by the
incorruptible firewall, which is therefore anti-signalling.

The theorem follows.

8 Circumvention of impersonation attack

In the previous sections, we showed that an honest firewall can indeed remove
the leakage given by a subverted implementation completely. Hence, the security
level of the system is improved in this case. While our analysis shows that
all corruption cases are simulatable, a malicious firewall can now impersonate
the combined party, even if Alice is honest herself. This is consistent with the
handling due to Chakraborty et al. [10]. The attentive reader might now ask
why they should use such a firewall as the security in one scenario improves,
while the security in another scenario declines drastically. In this section, we
will first present a careful analysis that will show that the only damage which
could be caused by such a corrupted firewall lies in the danger of impersonation
attacks. Then, we will discuss different approaches to handle this situation. In
the first approach, we will add an ideal functionality FchAUTH, similar to the
sanitised authenticated channels used by Chakraborty et al. This functionality
will exactly cover the possibilities given to a corrupted firewall. We describe how
to add such a functionality to our commitment protocol to protect against all
impersonation attacks. Afterwards, we show two realisations of these functionality:
A very efficient one for our commitment protocol based on signatures and a more
general version using zero-knowledge proofs for our oblivious transfer protocol.



42 Arnold et al.

The general version is also applicable to a wide range of other protocols. We
note that in [10], the employment of a three-tier model is discussed where a
third component is added to the party and firewall. This could also be used
in our model. Finally, we discuss that many security guarantees might still be
guaranteed even in the presence of an attacker with impersonation capabilities.
We note here that all adaptions or extensions to the base protocols presented
here mean that we lose the transitivity of the UC emulation. Hence, we either
need to directly show the simulation in the ideal world or need to take a two-step
approach.

8.1 Impersonation Attacks

In this section, we first want to understand the capabilities of a corrupted firewall.
The importance of this was already mentioned explicitly by Dodis et al.

[15] Second, and more importantly, this definitional choice provides an
elegant solution to a natural concern about reverse firewalls: What hap-
pens when the firewall itself is corrupted? Of course, if both Alices own
machine and her firewall are compromised, then we cannot possibly hope
for security. But, if Alices own implementation is correct and the fire-
wall has been corrupted, then we can view the firewall as “part of” the
adversary in the firewall-free protocol between Alice and Bob. Since this
underlying protocol must itself be secure, it trivially remains secure in the
presence of a corrupted firewall.

As indicated by the above quote, the problem could very easily be handled
in papers using game-based approaches by treating the corrupted firewall as
part of the other party. Our notion of transparency also allows us to treat the
combination of the firewall and the outside parties as a maliciously corrupted
party and the usual security guarantees against such parties thus imply security.
Hence, even if using a maliciously corrupted firewall which could isolate the party
from the other one, no security would be lost. Note that this argument heavily
requires transparency of the firewall. In contrast, Chakraborty et al. who also
introduce the corruption case of isolation, are not able to make use of the security
guarantees of the underlying protocol in a black-box manner, as their solution
has a feedback channel and the party thus needs to communicate explicitly with
the firewall. Hence, as shown in the following quote, they are not able to provide
any security guarantee in this scenario.

[10] The Isolated case corresponds to the situation where the core is honest
and the firewall is corrupted, and thus the firewall is isolating the core
from the network. This will typically correspond to a corrupted party.
However, in some cases, some partial security might be obtainable, like
the inputs of the core being kept secret.

As described above, the notion of strong transparency intuitively allows to
guarantee that Alice’s secret is not leaked even if the firewall is maliciously



Protection Against Subversions via RFs 43

corrupted by treating the firewall as part of a maliciously corrupted Bob. While
this argument is true in the context of the protocols studied by Mironov and
Stephens-Davidowitz [14] and Dodic, Mironov and Stephens-Davidowitz [15], it
does not hold in general. Careful consideration shows that the protocols studied
in the previous works did not require any form of authentication. However, as
the complete communication between the parties needs to be modeled in the UC
framework, questions about authentication need to be dealt with (typically by
using the ideal functionality FAUTH). Hence, when studying the capabilities of a
corrupted firewall in the UC model, we need to consider the following four points:

1. One can easily see that we cannot guarantee that the system is non-signalling
as the firewall can just pass the output of the party through (in case of a
subverted party).

2. Additionally, the firewall can either isolate the party from the protocol or
send messages in their name.

3. Hence, when running a priorly given protocol, the firewall could impersonate
its party.

4. But can we still provide some guarantees of the security of the underlying
protocol?

To make this discussion more explicit, let us take a look at the example of a
commitment scheme:

In the case of the commitment scheme (presented in Section 6), from the
viewpoint of the other parties, a maliciously corrupted RF ...

1. ... could pass through the output from Alice, thus revealing the leakage if
subverted.

2. ... could rerandomise the output from Alice.
3. ... could isolate Alice from the protocol by not sending anything, though this

would probably soon be detected by Bob or a higher protocol.
4. ... could impersonate Alice by sending a new commitment to a new chosen

message.

In the following discussion, we will ignore the third case, as a lack of commu-
nication will usually not invalid any security guarantees. We will now discuss the
different interesting scenarios and their implications with regard to the corruption
status of the combined party.

If Alice is honest, then the first case would guarantee a completely honest
combined party. Similarly, the combined party would also behave honestly in
the second case, as the malicious firewall could only rerandomise the uniformly
generated randomness, which would still lead to uniformly generated randomness.
However, in the fourth case, the corrupted firewall (and thus the attacker) can
send messages in the name of Alice, which is clearly a non-honest behaviour and
the combined party thus needs be treated as corrupted.



44 Arnold et al.

If Alice is subverted, the first two cases would lead to a semi-honest combined
party, as the attacker would learn the secret which could potentially contain the
complete state of Alice. Furthermore, in the fourth case, we again encounter the
situation that the combined party needs to be treated as maliciously corrupted.

Hence, in order to prevent the security problems due to a corrupted firewall,
it is sufficient to solve the before mentioned impersonation problem. We note
here that a dedicated lower corruption setting of impersonation could also be of
help here instead of the over-approximation of a maliciously corrupted combined
party.

8.2 Adding FchAUTH to ΠsrCOM

In this section we show how to handle the impersonation problem by considering
a new ideal functionality FchAUTH. The main idea behind this functionality is to
handle the fourth case described above where the maliciously corrupted firewall
does not perform a rerandomisation (even with bad randomness), but sends a
completely different message. Hence, FchAUTH will guarantee that the output of
the firewall is a rerandomised version of the output of Alice. More generally, we
assume that if Alice outputs x, then an honest firewall would output a value y
such that (x, y) ∈ R for some NP-relation R. We denote a witness proving that
(x, y) ∈ R by w and assume that the honest firewall produces such a witness when
generating y. For the sake of simplicity, we directly combine this functionality
with our authenticated channels but only explain the changes due to the check
here. After the functionality sends the backdoor message (send, sid ,P1,P2, y) to
A, it continues as in FAUTH.

FchAUTHR

Provides:
Authenticated channel between P1 and P2 that checks whether the output y of
the firewall of P1 and the output x of P1 fulfil (x, y) ∈ R.
Behaviour:

– Interface IO
• Upon invocation with input (check, sid , x) from P1, record the tuple
(sid , x) and return (checked, sid , OK) to P1. Ignore subsequent commands
of the form (check, sid , x).

• On input (send, sid , (y, w)) from RF , ignore the message if (check, sid , x)
is not recorded. If (x, y) 6∈ R (using w), ignore the message. If (x, y) ∈
R (using w), send backdoor message (send, sid ,P1,P2, y) to A. Ignore
subsequent commands of the form (send, sid , (y, w)).

In the concrete case of our commitment protocol, x would correspond to a
commitment c and the relation R corresponds to all y that are rerandomisations
of c, i.e.,

R = {(c, c′) | ∃r′ ∈ {0, 1}∗ : c′ = COM(0, r) · c}.



Protection Against Subversions via RFs 45

Finally, the witness w is simply the random string r′ used by the firewall to
rererandomise c.

In the following, we show how to construct a simulator handling the case that
the party Alice is honest and the firewall is maliciously corrupted in the presence
of FchAUTH. This simulator shows that we can treat this case as though as Alice
is honest and the firewall is not present.

Execution in the Real World: To commit a value, the execution in the real world
is as follows: First, the environment Z sends some value v to Alice who then
computes a corresponding commitment c using randomness r. This commitment
c is then given to FchAUTH that returns OK to Alice. Now, Alice send c to
the maliciously corrupted firewall who forwards it to the environment Z. The
environment now sends some commitment c′ and the randomness r′ to FchAUTH
(in the name of the dummy attacker). The ideal functionality FchAUTH now checks
whether c = COM(0, r′) · c and returns c′ to the attacker (resp. the environment).
Now, if Z, sends OK, FchAUTH sends c′ to the second party Bob.

To open a value, the execution in the real world is as follows: First, the
environment Z sends open to Alice who then sends the pair (v, r) to FchAUTH
and is given OK. Now, Alice sends (v, r) to the maliciously corrupted firewall, who
forwards this pair to the environment (via the dummy attacker). The environment
Z now sends a pair (v̄, r̄) to FchAUTH who returns it directly to the environment.
After Z sends OK, the functionality FchAUTH sends (v̄, r̄) to Bob.

Simulation in the Ideal World: To handle the commitment, our simulator Sim
works as follows: First, Z sends v to Alice, who then calculates the corresponding
commitment c using randomness r. This commitment c is then given to FchAUTH
that returns OK to Alice. Now, Alice send c to the adversary, which is the simulator
Sim. The simulator now sends c in the name of the malicious firewall to the
dummy attack which outputs it to Z. The environment now sends a commitment
c′ and the randomness r′ in the name of the firewall to Sim. The simulator now
checks whether c′ = COM(0, r′) · c and sends c′ to the dummy attacker, who
forwards it to Z. If c′ 6= COM(0, r′) · c, the simulator ignores the message. If the
environment Z sends OK, the simulator forwards c′ to Bob.

To handle the opening, our simulator Sim works as follows: First, Z sends
open to Alice who then sends (v, r) to FchAUTH. The pair (v, r) is then forwarded
to the attacker, which is Sim. The simulator sends (v, r) to the environment
(using the dummy attacker controlling the corrupted firewall). The environment
then sends (v̄, r̄) to the simulator, which forwards it to the dummy attacker and
then to the environment. If the environment Z sends OK, the simulator forwards
(v̄, r̄) to Bob.

8.3 Circumventing Impersonation on Protocol Side

As shown above, the ideal functionality FchAUTH can be used to prevent imper-
sonation attacks. In this section, we will show two possible ways how to concretely
realise these ideal functionality exemplarily for both commitments (Section 6)



46 Arnold et al.

and oblivious transfer (Section 7). Our solution for commitments will be very
efficient, but specifically tailored to commitments. In contrast, our solution for
oblivious transfer is not as efficient, but very general and should work for all
protocols.

Protecting commitments through signatures While we constructed bit commit-
ments in Section 6, we will now consider string commitments. We note that the
composition theorem simply allows us to build string commitments out of bit
commitments by combining the single bit commitments. In the following, we will
now make use of unique signatures, i.e., a signature scheme where each message
has exactly one valid signature. See, e.g., [52, 53] for more information and
constructions of such signatures. We assume that Alice hold some signing key sk
and Bob holds the verification key vk which was distributed, e.g., via a PKI. Now,
if Alice wants to commit to a value v, we first compute such unique signature,
denoted as σ(v). Since the signatures are unique, they contain no randomness
and, therefore, cannot any leak information about the secret. Then, we compute
the string commitment c′ of the value v′ = v‖σ(v). Once the commitment is
opened, Bob will perform an additional verification step using Vfy to check
whether the signature σ(v) contained in the commitment c′ = COM(v‖σ(v)) is a
valid signature of the value v. Now, if the adversary sends a commitment which
passes the verification check of Bob, we know that it is a rerandomisation of c′.
Otherwise, c′ would contain a forgery which would contradict the security of the
signature scheme.

Protecting oblivious transfer through zero-knowledge proofs Oblivious transfer is a
slightly more difficult protocol than commitments, as here neither the information
of which message was chosen b nor the message not chosen m1−b will be revealed
which makes our above solution not directly transferable. Nevertheless, we will
also make use of signature schemes, which here do not need to be unique. We again
assume that that Alice hold some signing key sk and Bob holds the verification
key vk which was distributed, e.g., via a PKI. Now, whenever a party sends the
value x, it will also send a signature σ of x along with it. When the firewall
is given x and σ, it first produces the output y along with the witness w for
(x, y) ∈ R along with a zero-knowledge proof ρ of the language

L = {(x, σ, w) | (x, y) ∈ R via w ∧ Vfy(vk , x, σ) = 1}.

The firewall now sends y along with ρ. When obtaining y and ρ, the receiving
party can verify that y is a valid rerandomisation by checking ρ. Due to the
zero-knowledge property of ρ, the receiving party does not learn anything about
the (possibly leaking) values x and σ. The soundness property of ρ guarantees
that ρ contains a valid proof, and thus in turn a valid value-signature pair (x, σ).
To produce a valid proof for y, the firewall can thus only rerandomise x.

8.4 Remaining Security Guarantees in the presence of Impersonation
As shown above, there are solutions to avoid the impersonation problems and
thus we can avoid to treat the combined party as maliciously corrupted. However,



Protection Against Subversions via RFs 47

it comes with a cost as we need to modify the underlying protocol when realising
this functionality. Without any changes to the protocol, it seems unlikely that
we can handle the impersonation problem. However, some security guarantees
might still be maintained, hence providing a graceful degradation. This can, for
example, be of interest to Alice if she primarily wants to secure her committed
message.

Let’s again consider the situation of a commitment here: Since the rerandomi-
sation check was not added to FAUTH itself, a simulation is no longer possible:
The simulator does not know whether the output c′ of a firewall is a rerandomi-
sation of the original commitment c or a completely new commitment due to
the hiding property of the commitment scheme. Nevertheless, a careful analysis
shows that both the hiding and binding of Alice’s commitment still hold in this
case, as the malicious firewall is neither able to look into the original commitment
c nor to open it to a different value. The only possible attack is that the value
given to Bob is either wrong or that Bob does not receive any message. This also
extends to other functionalities like the coin toss which is still efficiently possible.

It is interesting to see that we cannot capture all security guarantees by
UC-simulation. The impersonation corruption might be interesting for further
research. But the loss of Alice of hiding of the commitment if we treat the
composed party as malicious is not expected in the case where Alice is honest
but her firewall is malicious. We could also circumvent the impersonation by
giving the simulator more power, i.e. that it can impersonate still in the opening
phase. But this would imply that the ideal commitment is equivocable.

If the composed party behaviour shall exactly represent the natural security
guaranties of the non-composed setting, one has to adapt the UC-model in
extreme ways and possible still not all security guaranties are simulated, which
implies limits of the (UC)-simulation as gold standard for security analysis.

References

1. Simmons, G.J.: The history of subliminal channels. IEEE J. Sel. Areas Commun.
16(4), 452–462 (1998)

2. Young, A., Yung, M.: Kleptography: Using Cryptography Against Cryptography.
In: Fumy, W. (ed.) Advances in Cryptology – EUROCRYPT’97. Lecture Notes in
Computer Science, pp. 62–74. Springer, Heidelberg, Germany, Konstanz, Germany
(1997). https://doi.org/10.1007/3-540-69053-0_6

3. Young, A., Yung, M.: The Dark Side of “Black-Box” Cryptography, or: Should
We Trust Capstone? In: Koblitz, N. (ed.) Advances in Cryptology – CRYPTO’96.
Lecture Notes in Computer Science, pp. 89–103. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (1996). https://doi.org/10.1007/3-540-68697-5_8

4. Checkoway, S., Niederhagen, R., Everspaugh, A., Green, M., Lange, T., Ristenpart,
T., Bernstein, D.J., Maskiewicz, J., Shacham, H., Fredrikson, M.: On the Practical
Exploitability of Dual EC in TLS Implementations. In: Fu, K., Jung, J. (eds.)
USENIX Security 2014: 23rd USENIX Security Symposium, pp. 319–335. USENIX
Association, San Diego, CA, USA (2014)

5. Ball, J., Borger, J., Greenwald, G., et al.: Revealed: how US and UK spy agencies
defeat internet privacy and security, The Guardian (6 September 2013).



48 Arnold et al.

6. Bellare, M., Paterson, K.G., Rogaway, P.: Security of Symmetric Encryption against
Mass Surveillance. In: Garay, J.A., Gennaro, R. (eds.) Advances in Cryptology –
CRYPTO 2014, Part I. Lecture Notes in Computer Science, pp. 1–19. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (2014). https://doi.org/10.1007/978-
3-662-44371-2_1

7. Bellare, M., Jaeger, J., Kane, D.: Mass-surveillance without the State: Strongly
Undetectable Algorithm-Substitution Attacks. In: Ray, I., Li, N., Kruegel, C. (eds.)
ACM CCS 2015: 22nd Conference on Computer and Communications Security,
pp. 1431–1440. ACM Press, Denver, CO, USA (2015). https://doi.org/10.1145/
2810103.2813681

8. Discussion about Kyber’s tweaked FO transform, (2023). https://groups.google.
com/a/list.nist.gov/g/pqc-forum/c/WFRDl8DqYQ4. Discussion Thread on the
PQC mailing list.

9. Berndt, S., Liskiewicz, M.: Algorithm Substitution Attacks from a Steganographic
Perspective. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM
CCS 2017: 24th Conference on Computer and Communications Security, pp. 1649–
1660. ACM Press, Dallas, TX, USA (2017). https://doi.org/10.1145/3133956.
3133981

10. Chakraborty, S., Magri, B., Nielsen, J.B., Venturi, D.: Universally Composable
Subversion-Resilient Cryptography. In: Dunkelman, O., Dziembowski, S. (eds.)
Advances in Cryptology – EUROCRYPT 2022, Part I. Lecture Notes in Computer
Science, pp. 272–302. Springer, Heidelberg, Germany, Trondheim, Norway (2022).
https://doi.org/10.1007/978-3-031-06944-4_10

11. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings 42nd IEEE Symposium on Foundations of Computer
Science, pp. 136–145 (2001). https://doi.org/10.1109/SFCS.2001.959888

12. Canetti, R.: Universally Composable Security. J. ACM 67(5), 28:1–28:94 (2020)
13. Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game or A

Completeness Theorem for Protocols with Honest Majority. In: Aho, A. (ed.) 19th
Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM Press, New
York City, NY, USA (1987). https://doi.org/10.1145/28395.28420

14. Mironov, I., Stephens-Davidowitz, N.: Cryptographic Reverse Firewalls. In: Oswald,
E., Fischlin, M. (eds.) Advances in Cryptology – EUROCRYPT 2015, Part II.
Lecture Notes in Computer Science, pp. 657–686. Springer, Heidelberg, Germany,
Sofia, Bulgaria (2015). https://doi.org/10.1007/978-3-662-46803-6_22

15. Dodis, Y., Mironov, I., Stephens-Davidowitz, N.: Message Transmission with Reverse
Firewalls—Secure Communication on Corrupted Machines. In: Robshaw, M., Katz,
J. (eds.) Advances in Cryptology – CRYPTO 2016, Part I. Lecture Notes in
Computer Science, pp. 341–372. Springer, Heidelberg, Germany, Santa Barbara,
CA, USA (2016). https://doi.org/10.1007/978-3-662-53018-4_13

16. Chakraborty, S., Ganesh, C., Sarkar, P.: Reverse Firewalls for Oblivious Transfer
Extension and Applications to Zero-Knowledge. In: Hazay, C., Stam, M. (eds.)
Advances in Cryptology – EUROCRYPT 2023, Part I. Lecture Notes in Computer
Science, pp. 239–270. Springer, Heidelberg, Germany, Lyon, France (2023). https:
//doi.org/10.1007/978-3-031-30545-0_9

17. Chakraborty, S., Magliocco, L., Magri, B., Venturi, D.: Key Exchange in the Post-
Snowden Era: UC Secure Subversion-Resilient PAKE. IACR Cryptol. ePrint Arch.
(2023)

18. Chen, R., Huang, X., Yung, M.: Subvert KEM to Break DEM: Practical Algorithm-
Substitution Attacks on Public-Key Encryption. In: Moriai, S., Wang, H. (eds.)



Protection Against Subversions via RFs 49

Advances in Cryptology – ASIACRYPT 2020, Part II. Lecture Notes in Computer
Science, pp. 98–128. Springer, Heidelberg, Germany, Daejeon, South Korea (2020).
https://doi.org/10.1007/978-3-030-64834-3_4

19. Berndt, S., Wichelmann, J., Pott, C., Traving, T.-H., Eisenbarth, T.: ASAP: Al-
gorithm Substitution Attacks on Cryptographic Protocols. In: Suga, Y., Sakurai,
K., Ding, X., Sako, K. (eds.) ASIACCS 22: 17th ACM Symposium on Information,
Computer and Communications Security, pp. 712–726. ACM Press, Nagasaki, Japan
(2022). https://doi.org/10.1145/3488932.3517387

20. Lin, Y., Chen, R., Wang, Y., Wang, B., Liu, L.: Substitution Attacks Against Sigma
Protocols. In: CSS. Lecture Notes in Computer Science, pp. 192–208. Springer
(2022)

21. Degabriele, J.P., Farshim, P., Poettering, B.: A More Cautious Approach to Secu-
rity Against Mass Surveillance. In: Leander, G. (ed.) Fast Software Encryption –
FSE 2015. Lecture Notes in Computer Science, pp. 579–598. Springer, Heidelberg,
Germany, Istanbul, Turkey (2015). https://doi.org/10.1007/978-3-662-48116-5_28

22. Ateniese, G., Magri, B., Venturi, D.: Subversion-Resilient Signature Schemes. In:
Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015: 22nd Conference on Computer
and Communications Security, pp. 364–375. ACM Press, Denver, CO, USA (2015).
https://doi.org/10.1145/2810103.2813635

23. Armour, M., Poettering, B.: Algorithm substitution attacks against receivers. Int.
J. Inf. Sec. 21(5), 1027–1050 (2022)

24. Teseleanu, G.: Unifying Kleptographic Attacks. In: NordSec. Lecture Notes in
Computer Science, pp. 73–87. Springer (2018)

25. Marchiori, D., Giron, A.A., do Nascimento, J.P.A., Custódio, R.: Timing analysis of
algorithm substitution attacks in a post-quantum TLS protocol. In: Anais do XXI
Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais,
pp. 127–140 (2021)

26. Young, A., Yung, M.: The Prevalence of Kleptographic Attacks on Discrete-
Log Based Cryptosystems. In: Kaliski Jr., B.S. (ed.) Advances in Cryptology –
CRYPTO’97. Lecture Notes in Computer Science, pp. 264–276. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (1997). https://doi.org/10.1007/BFb0052241

27. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th Annual ACM
Symposium on Theory of Computing, pp. 21–30. ACM Press, San Diego, CA, USA
(2007). https://doi.org/10.1145/1250790.1250794

28. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: Clipping the Power of
Kleptographic Attacks. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology –
ASIACRYPT 2016, Part II. Lecture Notes in Computer Science, pp. 34–64. Springer,
Heidelberg, Germany, Hanoi, Vietnam (2016). https://doi.org/10.1007/978-3-662-
53890-6_2

29. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. IACR Cryptol. ePrint Arch. (2000)

30. Canetti, R., Sarkar, P., Wang, X.: Efficient and Round-Optimal Oblivious Transfer
and Commitment with Adaptive Security. In: Moriai, S., Wang, H. (eds.) Advances
in Cryptology – ASIACRYPT 2020, Part III. Lecture Notes in Computer Science,
pp. 277–308. Springer, Heidelberg, Germany, Daejeon, South Korea (2020). https:
//doi.org/10.1007/978-3-030-64840-4_10

31. Ganesh, C., Magri, B., Venturi, D.: Cryptographic Reverse Firewalls for Interactive
Proof Systems. In: Czumaj, A., Dawar, A., Merelli, E. (eds.) ICALP 2020: 47th
International Colloquium on Automata, Languages and Programming. LIPIcs, 55:1–



50 Arnold et al.

55:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Saarbrücken, Germany
(2020). https://doi.org/10.4230/LIPIcs.ICALP.2020.55

32. Bossuat, A., Bultel, X., Fouque, P.-A., Onete, C., van der Merwe, T.: Designing
Reverse Firewalls for the Real World. In: Chen, L., Li, N., Liang, K., Schneider, S.A.
(eds.) ESORICS 2020: 25th European Symposium on Research in Computer Security,
Part I. Lecture Notes in Computer Science, pp. 193–213. Springer, Heidelberg,
Germany, Guildford, UK (2020). https://doi.org/10.1007/978-3-030-58951-6_10

33. Chakraborty, S., Dziembowski, S., Nielsen, J.B.: Reverse Firewalls for Actively
Secure MPCs. In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptology –
CRYPTO 2020, Part II. Lecture Notes in Computer Science, pp. 732–762. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (2020). https://doi.org/10.1007/978-
3-030-56880-1_26

34. Chakraborty, S., Ganesh, C., Pancholi, M., Sarkar, P.: Reverse Firewalls for Adap-
tively Secure MPC Without Setup. In: Tibouchi, M., Wang, H. (eds.) Advances
in Cryptology – ASIACRYPT 2021, Part II. Lecture Notes in Computer Science,
pp. 335–364. Springer, Heidelberg, Germany, Singapore (2021). https://doi.org/10.
1007/978-3-030-92075-3_12

35. Alwen, J., shelat, a., Visconti, I.: Collusion-Free Protocols in the Mediated Model.
In: Wagner, D. (ed.) Advances in Cryptology – CRYPTO 2008. Lecture Notes in
Computer Science, pp. 497–514. Springer, Heidelberg, Germany, Santa Barbara,
CA, USA (2008). https://doi.org/10.1007/978-3-540-85174-5_28

36. Lepinski, M., Micali, S., shelat, a.: Collusion-free protocols. In: Gabow, H.N., Fagin,
R. (eds.) 37th Annual ACM Symposium on Theory of Computing, pp. 543–552.
ACM Press, Baltimore, MA, USA (2005). https://doi.org/10.1145/1060590.1060671

37. Li, G., Liu, J., Zhang, Z., Zhang, Y.: UC-Secure Cryptographic Reverse Firewall-
Guarding Corrupted Systems with the Minimum Trusted Module. In: Inscrypt.
Lecture Notes in Computer Science, pp. 85–110. Springer (2021)

38. Bemmann, P., Chen, R., Jager, T.: Subversion-Resilient Public Key Encryption with
Practical Watchdogs. In: Garay, J. (ed.) PKC 2021: 24th International Conference
on Theory and Practice of Public Key Cryptography, Part I. Lecture Notes in
Computer Science, pp. 627–658. Springer, Heidelberg, Germany, Virtual Event
(2021). https://doi.org/10.1007/978-3-030-75245-3_23

39. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Generic Semantic Security against
a Kleptographic Adversary. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu,
D. (eds.) ACM CCS 2017: 24th Conference on Computer and Communications
Security, pp. 907–922. ACM Press, Dallas, TX, USA (2017). https://doi.org/10.
1145/3133956.3133993

40. Bemmann, P., Berndt, S., Diemert, D., Eisenbarth, T., Jager, T.: Subversion-
Resilient Authenticated Encryption Without Random Oracles. In: ACNS. Lecture
Notes in Computer Science, pp. 460–483. Springer (2023)

41. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Correcting Subverted Random Oracles.
In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO 2018,
Part II. Lecture Notes in Computer Science, pp. 241–271. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (2018). https://doi.org/10.1007/978-3-319-
96881-0_9

42. Chow, S.S.M., Russell, A., Tang, Q., Yung, M., Zhao, Y., Zhou, H.-S.: Let a
Non-barking Watchdog Bite: Cliptographic Signatures with an Offline Watchdog.
In: Lin, D., Sako, K. (eds.) PKC 2019: 22nd International Conference on Theory
and Practice of Public Key Cryptography, Part I. Lecture Notes in Computer



Protection Against Subversions via RFs 51

Science, pp. 221–251. Springer, Heidelberg, Germany, Beijing, China (2019). https:
//doi.org/10.1007/978-3-030-17253-4_8

43. Bemmann, P., Berndt, S., Chen, R.: Subversion-Resilient Signatures Without
Random Oracles. In: ACNS. Lecture Notes in Computer Science, (in print). Springer
(2024)

44. Fischlin, M., Mazaheri, S.: Self-Guarding Cryptographic Protocols against Algorithm
Substitution Attacks. In: Chong, S., Delaune, S. (eds.) CSF 2018: IEEE 31st
Computer Security Foundations Symposium, pp. 76–90. IEEE Computer Society
Press, Oxford, UK (2018). https://doi.org/10.1109/CSF.2018.00013

45. Abdolmaleki, B., Fleischhacker, N., Goyal, V., Jain, A., Malavolta, G.: Steganography-
Free Zero-Knowledge. In: TCC (1). Lecture Notes in Computer Science, pp. 143–172.
Springer (2022)

46. Badertscher, C., Ciampi, M., Kiayias, A.: Agile Cryptography: A Universally
Composable Approach. In: TCC. Lecture Notes in Computer Science, (in print).
Springer (2023)

47. Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J. (ed.)
Advances in Cryptology – CRYPTO 2001. Lecture Notes in Computer Science,
pp. 19–40. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (2001). https:
//doi.org/10.1007/3-540-44647-8_2

48. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols, Cryptology ePrint Archive, Paper 2000/067 (2000). https://eprint.iacr.
org/2000/067. https://eprint.iacr.org/2000/067.

49. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
pp. 136–145. IEEE Computer Society Press, Las Vegas, NV, USA (2001). https:
//doi.org/10.1109/SFCS.2001.959888

50. Canetti, R., Hogan, K., Malhotra, A., Varia, M.: A Universally Composable Treat-
ment of Network Time. In: Köpf, B., Chong, S. (eds.) CSF 2017: IEEE 30th
Computer Security Foundations Symposium, pp. 360–375. IEEE Computer Society
Press, Santa Barbara, CA, USA (2017). https://doi.org/10.1109/CSF.2017.38

51. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols - Techniques and
Constructions. Springer (2010)

52. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable Random Functions. In: 40th Annual
Symposium on Foundations of Computer Science, pp. 120–130. IEEE Computer
Society Press, New York, NY, USA (1999). https://doi.org/10.1109/SFFCS.1999.
814584

53. Hofheinz, D., Jager, T.: Verifiable Random Functions from Standard Assumptions,
Cryptology ePrint Archive, Report 2015/1048 (2015). https://eprint.iacr.org/2015/
1048.


