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Abstract—Anonymous Zether, proposed by Bünz et al. (FC,
2020) and subsequently improved by Diamond (IEEE S&P,
2021) is an account-based confidential payment mechanism
that works by using a smart contract to achieve privacy (i.e.
identity of receivers to transactions and payloads are hidden).
In this work, we look at simplifying the existing protocol while
also achieving batching of transactions for multiple receivers,
while ensuring consensus and forward secrecy. To the best
of our knowledge, this work is the first to formally study
the notion of forward secrecy in the setting of blockchain,
borrowing a very popular and useful idea from the world of
secure messaging. Specifically, we introduce:

• FUL-Zether, a forward-secure version of Zether (Bünz et
al. , FC, 2020).

• PRIvate DEcentralized Confidential Transactions (PriDe
CT), a much-simplified version of Anonymous Zether that
achieves competitive performance and enables batching of
transactions for multiple receivers.

• PRIvate DEcentralized Forward-secure Until Last update
Confidential Transactions (PriDeFUL CT), a forward-
secure version of PriDe CT.

We also present an open-source, Ethereum-based imple-
mentation of our system. PriDe CT uses linear homomor-
phic encryption as Anonymous Zether but with simpler zero-
knowledge proofs. PriDeFUL CT uses an updatable public key
encryption scheme to achieve forward secrecy by introducing
a new DDH-based construction in the standard model.

In terms of transaction sizes, Quisquis (Asiacrypt, 2019),
which is the only cryptocurrency that supports batchability
(albeit in the UTXO model), has 15 times more group ele-
ments than PriDe CT. Meanwhile, for a ring of N receivers,
Anonymous Zether requires 6 logN more terms even without
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accounting for the ability to batch in PriDe CT. Further, our
implementation indicates that, for N = 32, even if there were 7
intended receivers, PriDe CT outperforms Anonymous Zether
in proving time and gas consumption.

1. Introduction

Blockchain systems are stateful primitives used to
achieve consensus among mutually distrusted parties. For
cryptocurrencies, this state can consist of information about
each user’s balance and the transactions affecting these
balances. They store the state ”in the clear,” allowing any
user to verify the consensus. There are two approaches to
encoding the state of a blockchain: the Unspent Transaction
Output (UTXO) model and the account-based model. Both
models have been subjects of research to provide privacy-
preserving alternatives.

In the UTXO model, several privacy-preserving alterna-
tives have been proposed, including ZCash [1], Monero [2],
SwapCT [3], Confidential Assets [4], and Quisquis [5].On
the other hand, in the account-based model, which supports
smart contracts, the approach is to use the smart contract
itself as a ”cryptocurrency” [6], [7]. This results in an
efficient wallet, as users only need to know their secret key
and account to transact. In contrast, cryptocurrencies in the
UTXO model require scanning the entire payment history or
relying on a third-party ”filter” to determine available coins
for spending. UTXO-based privacy solutions often face chal-
lenges in maintaining a monotonically increasing state, as
spent tokens cannot be easily purged without identification.
Furthermore, it has been shown by empirical analysis that
privacy-preserving cryptocurrencies in the UTXO model
often fail to provide privacy to participants [8], [9]. This
inspired another approach to privacy - “mixing” the inputs
and the outputs, thereby severing any links between the input
and the output coins but some require active participation
of users.

In secure messaging [10], [11], forward secrecy [12], is
a crucial security goal, that ensures past communications
remain secure even if a user’s security is compromised.
This attack involves an adversary storing messages for future
decryption. However, in the context of blockchain, the chal-
lenge is more significant due to its public transaction history.
It is even more pertinent, especially with the possibility of



“harvest now, decrypt later” attacks [13], leveraging that the
blockchains already have the data harvested. Most papers
aiming to tackle this issue of forward secrecy advocate for
the naive approach of constantly generating new key pairs,
redirecting funds to the new account and then deleting the
old keys. This leads to the proliferation of accounts that are
needlessly receiving funds or participating in decoy trans-
actions, which can lead to loss of privacy as one can easily
identify such dormant accounts. To ensure provable secu-
rity guarantees on old transactions, it is crucial to explore
key evolving primitives in the blockchain context, whereby
confidentiality of past transactions is guaranteed even in
the event of a current compromise. Moreover, interest is
growing in the vulnerability of historical blockchain data to
future attacks. Some blockchain technologies, like Algorand,
are pursuing an orthogonal line of research to protect their
state from potential quantum threats by integrating post-
quantum secure state-proofs into their infrastructure. This
motivates further research to establish forward secrecy in
the blockchain.

1.1. Problem Statement

Our motivation for this line of research is two-fold.
On the one hand, the academic research initiated by
Zether [6] and improved upon by Anonymous Zether [7]
which desired to transfer assets, while preserving consensus
and ensuring that the transaction is confidential (i.e., the
payload is hidden), private (i.e., the identity of the par-
ties to the transaction remain private), and at the same
time leverage the blockchain as an immutable ledger to
achieve a decentralized transaction platform. Meanwhile, it
is also driven by business needs of the blockchain launched
by J.P.Morgan [14]. At its core, Onyx blockchain is an
Ethereum-based blockchain, operating in the account based
model. The current architecture is built on top of Quo-
rum [15] which has attractive features of public consensus.
However, this public consensus is sacrificed at the altar of
privacy as the current proposal for privacy involves using
Tessera [16] which is a “privacy transaction manager”. The
idea behind this solution is for two parties who wish to
transact confidentially to insert a transaction record in the
public blockchain, while the actual transaction correspond-
ing to that record is solely existing on the encrypted storage
of the clients. Therefore, while everyone can observe a
transaction was inserted but can never agree to a public
state as the transaction details are hidden from everyone
but the participating clients. Meanwhile, this solution also
requires some off-chain communication to ensure that the
details of the transaction are finalized between the two
parties. Our work is primarily motivated by this practical
business needs on achieving public consensus while offering
privacy-preserving transactions. More specifically, we aim to
build a provably secure protocol that achieves the following
properties:

• It is set in the account-based model, where we employ
the smart contract as a cryptocurrency in an effort to
have an efficient wallet.

• It is interoperable with other smart contracts, a key
facet of Ethereum smart contracts, and building atop the
Ethereum blockchain, thereby enhancing functionality.

• It allows for the passive participation of users, i.e., a
party need not be present online to ensure a transaction
has to succeed.

• It offers a payment mechanism where transactions are
confidential with receiver privacy.

• It supports batching of multiple transactions in one
big message, i.e., allowing multiple receivers to receive
funds in one posted message.

• It can support the concurrency of transactions with-
out an expensive locking mechanism, i.e., where a
receiver’s account has to be locked by a sender, thereby
ensuring that only that sender can transact with the
receiver.

• It offers support for forward secrecy, without requiring
active receiver participation, a mechanism that can be
implemented with little to no friction.

1.2. Our Contribution

1.2.1. PriDe CT In this work, we present PriDe CT which
stands for Private, Decentralized, Confidential Transactions.
This is a paradigm that builds on the work of Zether [6]
and Anonymous Zether [7] which focuses on the property
where a client - with access to the blockchain - can, in
constant time, determine its own state (and independent of
the state of the blockchain). As remarked earlier, this is a
feature that is a departure from existing cryptocurrencies
that offer privacy-preserving alternatives mentioned before.
We improve on the earlier works of Zether and Anonymous
Zether. by also offering the perk of batchability, i.e., where a
single transaction message can be used to send payloads to
multiple receivers, all while simplifying the code base and
the zero-knowledge proofs required. The resulting solution
offers competitive performance, as we will see in Section 7.
Finally, our scheme supports a subset of concurrent trans-
actions without requiring an expensive locking mechanism
outlined in earlier works. Specifically, multiple senders can
send to a particular receiver and all honest transactions will
succeed without needing any locking mechanism. Note that
both Zether and Anonymous Zether heavily relied upon a
locking mechanism, whereby a sender locks the account of
its receiver(s) and then unlocks the account after transacting.
This is an expensive process that can lead to delays.

Let us pause to review the approach undertaken. As
done in both Zether and Anonymous Zether, the state of the
system is a global table of “accounts” that employs ElGamal
encryption [17]. Specifically, the table is a mapping from a
public key pk to encryption of the user’s balance balance
under that public key, i.e., pk 7→ (gr, pkr ·gbalance) for some
randomness r and g which is a generator of a cyclic group G
of prime order p where DDH problem is hard. To send funds,
the sender chooses a ring of receivers. However, unlike in
Anonymous Zether where (a) the sender and the receiver
were hidden among the ring of decoys and (b) only one of
the ring members can actually receive money, PriDe CT



fixes the index of the sender and allows for any of the
remaining ring members to be a recipient. Then, to transact,
the sender encrypts the payload for each ring member, under
their respective public key and also encrypts the debited bal-
ance with its own public key. The environment, say a smart
contract, updates the balances homomorphically. Since the
entire transaction happens under the hood of encryption,
the sender attaches proof to demonstrate that it has behaved
correctly. While sender anonymity is not offered, as argued
later both Zether and Anonymous Zether do not offer the
same because the identity of who invokes a smart contract is
always revealed in Ethereum. Meanwhile, heaving dummy
senders periodically post messages, even when not intending
to transact, can support weak sender anonymity. Finally,
PriDe CT can interoperate with existing smart contracts,
in a manner similar to the use-cases defined in Zether [6].
More specifically, our protocol prioritizes interoperation
with Ethereum, much like Zether and Anonymous Zether. It
can interoperate with some ERC-20-compliant token con-
tracts. Much like Zether, we can exhibit a functionality
to tie accounts in PriDe CT to arbitrary smart contracts.
Meanwhile, any ZK-proofs can only be constructed by the
owner of the account as it requires a secret state that is
unavailable to the arbitrary (and possibly malicious) smart
contract. This functionality would help unlock applications
such as sealed-bid auctions where the confidentiality of the
payloads during the bidding process is paramount. We refer
the reader to Zether [6, §8] for a detailed discussion on how
to similarly use PriDe CT to interoperate with other smart
contracts to unlock more functionalities.

1.2.2. FUL-security and PriDeFUL CT Note that in
Forward-Secure Public Key Encryption (FS-PKE) [12], time
is divided into epochs with the sender evolving the public
key and the receiver evolving the secret key consistent with
the epoch. Implicit in the security definition is that the
sender and the receiver’s epochs are the same, and thus
when the compromise occurs it is of the most recent key.
However, a more natural setting is one which allows the
sender’s epoch to run ahead of the receiver’s epoch and
the compromised key could belong to an epoch older than
the sender’s epoch. In such a setting, a receiver can remain
offline and only periodically come online at which time it
evolves the key and gets caught up with all the updates
locally. Therefore, we model “Foward-secure Until Last
update” which leaks the receiver’s epoch’s key, where this
epoch could be older than the sender’s current epoch. Our
security definition models a weakening of FS-PKE whereby
the sender(s) aids the evolution of the receiver’s key. We
show how to effectively bootstrap Zether [6] to achieve
a FUL-secure version. Finally, we present PriDeFUL CT
which is the FUL-secure version of PRIvate DEcentralized
Confidential Transactions.

Our technical tool in this setting is Updatable Public
Key Encryption [10], [11], [18], [19], [20] where the sender
aids the evolution of the receiver’s key, a relaxation of FS-
PKE where both the sender and the receiver evolves key
independently but consistently. We begin by showing that

ElGamal Encryption [17] is a secure UPKE at the basic
security level. We then present efficient zero-knowledge
proof to satisfy stronger security definition and finally prove
that using this UPKE we can bootstrap Zether to build FUL-
secure Zether. Along the way, we also show that ElGamal
Encryption also satisfies the property of fast-forwarding [19]
whereby a receiver who is in epoch i can jump to current
epoch i by decrypting locally no more than O(log(j − i))
ciphertexts. It is to be stated that the resulting construction
is the most efficient construction of UPKE with the Fast-
Forwarding feature outperforming both of the constructions
proposed by Dodis et al. [19].

In summary, our results are as follows:
• We show that ElGamal Encryption is a secure UPKE

under the DDH Assumption. We also show that it
inherits the property of fast-forwarding [19].

• We formalize the security definition of sender-aided
forward secrecy until the last update (FUL), which was
never considered before.

• We show that using the ElGamal-based UPKE and
appropriate Σ-protocol, we achieve FUL security of
Zether under the DDH Assumption.

• We introduce PriDe CT which simplifies the Anony-
mous Zether protocol while allowing for batched trans-
actions and receiver anonymity. We prove the security
of our interactive proof protocol under the DDH As-
sumption.

• We show how to use ElGamal Encryption-based UPKE
to bootstrap PriDe CT to build PriDeFUL CT that is
FUL Secure, by using a similar approach as FUL-
Zether.

• We present an open-sourced implementation of our
protocol implemented with Javascript, Node.js, and
Solidity.

• Finally, our experiments reveal that PriDe CT offers
competitive performance when compared with the run-
ning time of Anonymous Zether by leveraging batcha-
bility.

Technical Challenges. Zether [6] used one-out-of-many
proofs [21] to achieve anonymity. It was later refined by
Anonymous Zether [7] using many-out-of-many proofs. De-
spite elegance, Anonymous Zether faced sender anonymity
issues, an artifact of Ethereum where invocation to smart
contract trivially reveals the identity of the invoking party.
In our work, we simplify, prioritizing receiver anonymity
with fixed sender location, supporting multiple receivers and
concurrent transactions efficiently [7].

Forward Security. Traditional constructions of FS-PKE,
built from HIBE [22], [23], are inefficient and lack inter-
operability with existing homomorphic encryption schemes.
Therefore, we have to rely on achieving a weakening of
forward security where the sender(s) help the receiver evolve
the secret key. UPKE allows the sender to help evolve the
secret key of the receiver by encrypting an update offset
δ with the receiver’s public key, enabling the receiver to
update their secret key with the recovered δ. The sender



can also update the public key with the knowledge of δ,
allowing the receiver to stay offline for epochs. Unfortu-
nately, while the hashed ElGamal construction was a secure
UPKE [10], [11], it lacks efficient zero-knowledge proofs
for the sender to prove it has behaved honestly because of
the hash function used in the encryption process. Therefore,
we require a standard model construction. Existing standard
model constructions of UPKE [18], [20], [24] unfortunately
have inefficient parameter sizes or are un-interoperable with
the current ElGamal-scheme-based approach. Our approach
focuses on achieving forward secrecy in the account-based
model, which can be easily implemented on Solidity. There-
fore, we refocus our efforts on ElGamal encryption and
prove various properties of it.

2. Preliminaries

Let G denote a cyclic group of prime order q, with a
generator g. Additional generators are denoted by h, v, u ∈
G. Further, we denote by Zq or Fq the ring of integers
modulo the prime q and F∗

q = Fq \ {0}. Now, let Gn,Fn
q be

vector spaces of dimension n for G and Fq respectively.
We use ←$ to denote the uniform sampling of an

element. For example, y←$ Fq denotes the uniform sam-
pling of y from Fq. We will use the bold font, in lower
case, to denote vectors and bold font, in upper case, to
denote matrices. For example a ∈ Fn

q denotes a vector with
elements a1, . . . , an ∈ Fq and A ∈ Fn×m

q denotes a matrix
with n rows and m columns such that each elements is in
Fq.

With these notations in place, we can define the follow-
ing set of operations involving vectors and scalars:

• For a scalar c ∈ Fq and a vector a ∈ Fn
q , we denote by

b = c·a ∈ Fn
q the scalar multiplication where bi = c·ai.

• For vectors a,b ∈ Fn
q , we denote its inner product by

⟨a,b⟩ =
∑n

i=1 ai · bi ∈ Fq.
• For vectors a,b ∈ Fn

q , we define the concatenation of
two vectors by a ∥ b.

• For 0 ≤ ℓ ≤ n, we define the slice of a vector a as
follows: a[:ℓ] = (a1, . . . , aℓ), a[ℓ:] = (aℓ+1, . . . , an)
Therefore, a[:ℓ] ∥ a[ℓ:] = a.

• For a scalar k ∈ F∗
q , we use kn to denote the vec-

tor containing the first n powers of k, i.e., kn =
(1, k, . . . , kn−1) ∈ F∗

q
n Specifically, 0n (resp. 1n) are

vectors of length n where each element is 0 (resp. 1)
and 2n = (1, 2, 4, . . . , 2n−1).

We can define vector polynomials as p(X) =
∑d

i=0 pi·Xi ∈
Fn
q [X] where the coefficient pi is a vector in Fn

q . Then,
the inner product between two such vector polynomials
l(X), r(X) is defined as:

⟨l(X), r(X)⟩ =
d∑

i=0

i∑
j=0

⟨li, rj⟩ ·Xi+j ∈ Fq[X]

An important feature of the inner product of vector polyno-
mials is that evaluating a polynomial at a point x ∈ Fq and
then taking the inner product is the same as evaluating the

inner product polynomial t(X) = ⟨l(X), r(x)⟩ on this point
x.

3. Syntax and Security

3.1. Syntax

The payment system is supposed to offer support for
the following operations: (a) account creation, (b) account
funding, (c) transfer of assets, and (d) burning of the ac-
count. However, for simplicity, we only focus on the version
of a payment that only offers the transfer of assets. This
is similar to the syntax of the work by Diamond [7] and
is simpler to analyze. Further, as remarked earlier, sender
anonymity trivially breaks as the identity of the invocation
of the smart contract is always revealed. Therefore we only
focus on receiver anonymity. Further, Anonymous Zether
allows for a transaction to have exactly one sender and
one receiver. In PriDe CT, we streamline the cryptography
involved by allowing multiple non-zero payloads, thereby
utilizing Bulletproofs to provide range proofs on multiple
payloads, which may include zero values.

Definition 1 (Decentralized Payment System). A
payment system Π = (Setup,KeyGen,Encrypt
Read,Transact,Verify, Insert) consists of a tuple of
PPT algorithms with the following syntax:

• pp, state←$ Setup(1κ): On input of security parameter
κ in unary, Setup produces the public parameters pp.
It also initializes the state state of the payment system.

• pk, sk←$ KeyGen(pp): On input of public parameters
pp, KeyGen outputs a public key/secret key pair.

• acc←$ Encrypt(pk, b): On input of balance b and pub-
lic key of a party pk, Encrypt outputs a ciphertext acc
which encrypts b under pk.

• b← Read(acc, sk): On input of the encrypted balance
acc and the secret key sk, Read returns the balance b.

• tx←$ Transact(state, ski,B): On input of valid sender
secret key ski corresponding to some pki, a set of valid
payload information B = {(pkj , plj)}

tR
j=1, and state

state, Transact produces a transaction message tx.
• {0, 1} ← Verify(tx, state): On input of a transaction

message tx and state state, Verify checks the consis-
tency of the message and outputs 1 if consistent, and
0 otherwise.

3.2. Security Definitions

Our security definitions will follow the game-based
paradigm. We first look at the various oracles that the
adversary has access to:

• OCorrupt(·): On input of index i, it returns ski. Further,
it adds i to a list C of corrupted users.

• OTransact(state, ·, ·): It requires as input an
index i, and a set of balances and public
keys as indicated by B. In response, the oracle
computes tx←$ Transact(state, ski,B), and invokes



OInsert(state, tx). This models an honest creation and
insertion of a transaction. Note that the receivers in
B may involve parties that were generated by the
adversary, and not by the challenger.

• OInsert(state, ·): On input of a transaction tx, the system
runs Verify(tx, state) and upon successful verification,
updates the state to get the updated state new-state.
This models an adversarial transaction created and
which is successfully inserted into the blockchain.

3.2.1. Overdraft-Safety Experiment Note that the
Transact algorithm takes as input some secret key sk of
the sender. Therefore, it requires that no non-corrupted
user’s (i.e., secret key unknown to the adversary) balance
is reduced at the end of the experiment. It also follows that
there is no non-corrupted party Pj in any transaction such
that plj < 0. Further, it also requires that the corrupted
user’s combined balance does not increase at the end
of the experiment. We omit the formal definition due to
space constraints and refer the readers to the work of
Diamond [7]

3.2.2. Ledger-Indistingusishability Experiment As re-
marked earlier, we only define receiver anonymity in
this experiment. The ledger-indistinguishability experiment
L-INDA,Π(κ) is modeled by a game where the adversary has
to distinguish between two adversarially chosen transaction
payloads, even with access to OTransact,OInsert. We omit
the formal definition due to space constraints and refer the
reader to the work of Diamond [7]

3.2.3. FUL Security Formally, we model in this game the
semantic security of old transactions even if the receiver’s
current secret key is revealed. Note that again we allow the
sender’s epoch to be ahead of the receiver’s epoch when
the compromise occurs. In the FUL model, the adversary
is allowed to update the key pairs for any receiver and
provide two sets of payloads for adversarially chosen honest
receivers. One of these payloads is randomly chosen, and
an honest transaction is generated and inserted to update
the keys of the receivers and their balances. The adversary
receives encryptions corresponding to epoch i and also the
keys at epoch i + 1. The security experiment FULA,Π(κ)
strengthens the OInsert oracle to update the keys of the
receiver when the transaction is inserted into the blockchain.
The state state is a dictionary that maps each user i to their
current public key and encryption of their current balance
under their current public key. This game implicitly models
the stronger setting where every receiver’s key is updated
for every transaction.

1) Run pp, state, txpool, btotal,MAX←$ Setup(1κ).
2) Now, the game does the following:

for i = 1 to n do
Sample a random balance bi
(sk

(0)
i , pk

(0)
i )←$ KeyGen(pp)

acci←$ Encrypt(pk
(0)
i , bi)

Set state[i] = pk
(0)
i , acci

3) (i,B∗
0,B∗

1,R)←$AOTransact,OInsert(state, pk
(0)
1 , . . . , pk(0)n ).

Here B∗
0,B∗

1 are two arrays which correspond to the
payload for each receiver in adversarially chosen R
and pki ̸∈ R. As before, we will require that the
payload corresponding to corrupted users j ∈ R are
the same in both sets of payloads.

4) Sample β←$ {0, 1}. Run
tx∗←$ Transact(state, ski,Bβ) and OInsert(state, tx

∗).
5) β′←$A(tx∗,SK) where SK contains the updated se-

cret key (after tx∗ was inserted) of every user in R.
6) The game outputs 1 iff β = β′.

Definition 2. A payment system Π is Forward-secure Until
Last update if, for all PPT adversary A, there exists a
negligible function negl such that

Pr[FULA,Π(κ) = 1] ≤ 1

2
+ negl(κ)

4. Construction of FUL Zether

4.1. Zether, a Recap

As remarked before, Zether uses ElGamal encryp-
tion [17] as the underlying encryption scheme. Due to space
constraints, we omit a detailed exposition on the syntax,
security, and homomorphic properties of the encryption
scheme. Let Alice (with key pair (skA, pkA)) and Bob
(with key pair (skB , pkB)) be two users in the system with
respective balances bA, bB . In other words, the state of the
table looked similar to the following:

pkA 7→
(
oCA = gx, oDA = pkxA · gbA

)
pkB 7→

(
oCB = gx

′
, oDB = pkx

′

B · gbB
)

Say, Alice wishes to send Bob a payload of pl. Alice
begins by encrypting g−pl under its public key pkA and
then encrypts gpl under Bob’s public key pkB . Formally,
we have:(
C = gr, D0 = (pkA, pk

r
A · g−pl), D1 = (pkB , pk

r
B · gpl)

)
.

Note that multiplying C with oCA along with mul-
tiplying D0 with oDA yields a ciphertext pair: (nCA =
gr+x, nDA = pkr+x

A · gbA−pl). Therefore, (nCA, nDA) is a
valid ElGamal ciphertext encrypting the balance of Alice
after the transaction. Let bal′ := bA−pl be this residual bal-
ance. However, a cheating user can try to do the following:
spend tokens of others, create inconsistent ciphertext pairs,
spend tokens it does not have, or try to steal tokens from
others. This requires a zero-knowledge proof of honesty
whereby Alice needs to prove:

• the knowledge of secret key skA for which gskA = pkA.
• the knowledge of randomness r such that gr = C

(knowledge of randomness)
• the net-zero conservation of balance (pkA · pkB)r =
(D0 ·D1)

• the well-formedness of sender-related ciphertext: D0 =
g−pl · CskA and nDA = gbal

′ · nCskA
A



• the protection against overflow and overdraft: pl, bal′ ∈
[0,MAX]

RZ :


(pkA, D0, pkB , D1, C) : pl gsk0 = pk0 ∧ CskA · g−pl = D0

(nCA, nDA) bal′ nCsk0 · gbal′ = nD0

skA C = gr∧, (pkA · pkB)r = (D0 ·D1)
r pl, bal′ ∈ {0, . . . ,MAX}


Their proof of zero knowledge involved the usage of Σ-

Bullets to prove the statement - a combination of Σ protocol
and bulletproofs. We refer the readers to the original work
for a detailed construction of the zero-knowledge protocol.

Note that we do not focus on gases and fees that are to
be paid by the sender to process the transaction sent to the
smart contract. Prior works have shown that it is simple to
augment the code to also support these functionalities.

4.2. Our Technical Tool: Updatable Public Key
Encryption

As covered in the earlier sections, forward security is
a desired feature. However, the existing constructions of
FS-PKE are not compatible with the framework of using
ElGamal Encryption. Therefore, we focus on sender-aided
forward secrecy which is dubbed UPKE.

Definition 3. An updatable public key encryption (UPKE)
scheme is a set of six polynomial-time algorithms UPKE =
(U-PKEG,U-Enc,U-Dec,Upd-Pk,Upd-Sk) with the follow-
ing syntax:

- Key generation: U-PKEG takes as parameter 1κ where
κ is the security parameter and outputs a fresh secret
key sk0 and a fresh initial public key pk0.

- Encryption: U-Enc receives a public key pk and a
message m to produce a ciphertext c.

- Decryption: U-Dec receives a secret key sk and a
ciphertext c to produce message m.

- Update Public Key: Upd-Pk receives a public key pk
to produce an update ciphertext up and a new public
key pk′.

- Update Secret Key: Upd-Sk receives an update cipher-
text up and secret key sk to produce a new secret key
sk′.

4.2.1. UPKE IND-CR-CPA Security Game We present a
simplified version of INDistinguishable under Chosen Ran-
domness, Chosen Plaintext Attack (IND-CR-CPA) security
game, adapted from the earlier definition of Dodis et al.
[18].

Definition 4. An updatable public key encryption scheme
UPKE = (U-PKEG,U-Enc,U-Dec,Upd-Pk,Upd-Sk) is
said to be IND-CR-CPA Secure if:

Pr


b′ = b

(pk0, sk0)←$ U-PKEG(1λ); b←$ {0, 1}
(m0,m1, state, r0, r1, . . . , rq−1)←$A(pk0)

(pkq, skq)← UpdateAll(pk0, sk0, r0, . . . , rq−1)
C←$ U-Enc(pkq,mb); r

∗←$R
(up∗, pk∗)← Upd-Pk(pkq; r

∗)
sk∗ ← Upd-Sk(skq, up

∗) .
b′←$A(C, pk∗, sk∗, up∗, state)


≤ 1

2
+ negl(λ)

where UpdateAll is as defined below:

UpdateAll(pk0, sk0, r0, . . . , rq−1)
for i = 0 to q − 1 do

(upi+1, pki+1)← Upd-Pk(pki; ri)
ski+1 ← Upd-Sk(ski, upi+1)

Construction 1 (UPKE Scheme UPKE). For a group G of
prime order q, with generator g, we define the following
scheme:

• U-PKEG: Outputs, sk←$ Fq, pk = gsk

• U-Enc(pk,m ∈ Fq; r ∈ Fq): Outputs (C = gr, D =
pkr · gm)

• U-Dec(sk, c = (C,D)): Outputs m such that gm =
D · C−sk

• Upd-Pk(pk; r, δ ∈ Fq): Outputs pk′ = pk · gδ, up =
U-Enc(pk, gδ; r)

• Upd-Sk(sk, up): Outputs sk′ = sk + δ where δ =
U-Dec(sk, up)

4.2.2. Circular Secure + Leakage Resilience (CS+LR)
Security Game

Definition 5. A public key encryption scheme E with mes-
sage space M, ciphertext space C is said to be CS+LR
secure) if:

Pr


b′ = b

(pk, sk)←$ U-PKEG(1λ);
b←$ {0, 1}

(m0,m1)←$A(pk)
C←$ U-Enc(pk,mb)
C ′←$ U-Enc(pk, sk)
δ∗←$M; ℓ← sk+ δ∗

b′←$A(C,C ′, ℓ)


≤ 1

2
+negl(λ)

Theorem 1. Construction 1 is CS+LR secure, under the
DDH assumption.

Proof. Let us look at the distribution D0 that A receives
when playing the original CS+LR Security game.

pk, C = (gr, pkr · gmb), C ′ = (gr
′
, pkr

′
· gsk),

ℓ = sk+ δ∗; r, δ∗, r′←$ Fq

The proof proceeds through a sequence of hybrids which
is summarized below.

Hybrid Hybrid Definition Security
D0 The Original CS+LR Security Game Identical
D1 D0 except C′ = (gr

′
, pkr

′+1)
Identical

D2 D1 except except C = gr, gr·sk · gmb

Identical
D3 D2 except each ℓ = δ∗ + sk is replaced by δ←$ Fq

DDH
D4 D3 except gr·sk · gmb replaced by U ←$ G

Theorem 2. Under the DDH Assumption, UPKE (presented
as Construction 1) is IND-CR-CPA Secure.

Proof. We will prove that if UPKE was a secure CS+LR
construction, then it is also IND-CR-CPA secure. In other
words, let there be an adversary A that breaks the IND-
CR-CPA security of UPKE, then we will use it to construct



an adversary B that breaks CS+LR security. Due to space
constraints, we briefly summarize how the reduction pro-
ceeds. The challenger of the CS+LR game first samples
a key pair pk0, sk0, and pk0 is given to B. B runs A on
pk0. A responds with challenge messages m0,m1, {δi}q−1

i=0 .
B simply buffers and records every choice of δi and uses
A’s choice of m0,m1 as its own challenge message. In
return, B receives first an encryption of mb under pk0. Call
this (c1, c2). Meanwhile A expects an encryption of mb

under pkq. However, ElGamal has the key-homomorphism
feature whereby B computes ∆ =

∑q−1
i=0 δi and can gener-

ate the correct encryption under pkq by simply outputting
(c1, c2 · c∆1 ) which is an encryption of mb under pkq.

It now sets sk∗ = ℓ + ∆ where ℓ = sk0 + δ∗ that B
receives from CS+LR challenger. It can now compute pk∗ =
gsk

∗
. The only thing remaining to be computed is for B to

generate an encryption of δ∗ under pkq, without knowledge
of δ∗. For this, B use the encryption of sk0 under pk0 that
the challenger sends (call it c′1, c

′
2) and knowledge of ℓ =

sk0 + δ∗, to can generate an encryption of δ∗ under pk0 by
doing the following:

• First (c′−1
1 , c′−1

2 ) is a valid encryption of −sk0 under
pk0. Call this c′∗1 , c

′∗
2 )

• Then multiplying c′∗2 by gℓ we get a valid encryption
of ℓ− sk0 = δ∗ under pk0

Then, it can use the key homomorphism property defined
before to generate an encryption under pkq. It is easy to
verify that B produces the correct distribution for A and
therefore B’s advantage is the same as A’s.

4.2.3. UPKE IND-CU-CPA Security Game We present
a simplified version of INDistinguishable under Chosen
Update, Chosen Plaintext Attack (IND-CU-CPA) security
game, adapted from the earlier definition of Dodis et al.
[18].

Definition 6. An updatable public key encryption scheme
UPKE = (U-PKEG,U-Enc,U-Dec,Verify,Upd-Pk,
Upd-Sk) is said to be IND-CU-CPA Secure if for all
PPT-adversaries A:

Pr


b′ = b

(pk0, sk0)←$ U-PKEG(1λ); b←$ {0, 1}
(m0,m1, state, {(pki, upi)}

q
i=1)←$A(pk0)

(pkq, skq)← UpdateAll(pk0, sk0, {(pki, upi)}
q
i=1)

C←$ U-Enc(pkq,mb); r
∗←$R

(up∗, pk∗)← Upd-Pk(pkq; r
∗)

sk∗ ← Upd-Sk(skq, up
∗) .

b′←$A(C, pk∗, sk∗, up∗, state)


≤ 1

2
+ negl(λ)

where UpdateAll is as defined below:

UpdateAll(pk0, sk0, {(pki, upi)}
q
i=1)

for i = 1 to q do
if Verify-Upd(pki−1, upi, pki) == 1 then

(upi+1, pki+1)← Upd-Pk(pki; ri)
ski ← Upd-Sk(ski−1, upi)

else ABORT

Remark 1. For succinct notating, our definitions of IND-
CU-CPA and IND-CR-CPA is written out as non-adaptive
adversary. It is easy to extend the same to allow for adaptive
queries. The work by Dodis et al. [18] presents the more

general adaptive security. Further, we will use the adaptive
definition in our proofs.

We first begin by presenting a NIZK which will be
employed in our UPKE scheme. This can be done with the
help of a simple Σ-protocol.

Construction 2 (NIZK for RElG). The fol-
lowing Non-Interactive Proof of Knowledge
nizkElg = SetupElg,ProveElg,VerifyElG is defined
for the following relation:

RElG =

{
pk, pk′, up; δ, r′

∣∣∣∣pk′ = pk · gδ ∧ up = (gr
′
, pkr

′
· gδ)

}
• SetupElG(1

κ): Chooses an appropriate cyclic group G
of prime order q with generators g, h and sets pp =
(G, q, g). It also sets hash function H : {0, 1}∗ → Zq

• ProveElG(pp, (pk, pk
′, up), (δ, r′)): Outputs the follow-

ing:
– Sample kδ, kr
– Compute: Ar = pkkr , Aδ = gkδ

– Compute: c = H(Ar, Aδ)
– Compute sδ = kδ + c · δ, sr = kr + c · r′
– Output π = (Ar, Aδ, sδ, sr)

• VerifyElG(pp, π = (Ar, Aδ, sδ, sr), (pk, pk
′, up))

– Parse up = (c1, c2)
– Compute: c = H(Ar, Aδ)

– Check if: gsr ?
= Ar · cc1

– Check if: Aδ ·Ar · g−sδ · pk−sr ?
= (c2)

−c

– Check if: Aδ · g−sδ ?
= (pk′/pk)−c

Theorem 3. The above satisfies perfect completeness, per-
fect honest verifier zero-knowledge, and statistical witness-
extended emulation for extracting a valid witness x. This
extractor EElG runs the prover with four different values
of the hash function to generate four different challenges c
where H is modeled as a random oracle.

We omit the proof due to space constraints.

Construction 3 (UPKE Scheme UPKE′). For a group G
of prime order q, with generator g, we define the following
scheme:

• U-PKEG: Outputs, sk←$ Fq, pk = gsk

• U-Enc(pk,m ∈ Fq; r ∈ Fq): Outputs (C = gr, D =
pkr · gm)

• U-Dec(sk, c = (C,D)): Outputs m such that gm =
D · C−sk

• Upd-Pk(pk; r, δ ∈ Fq): Outputs
• Upd-Sk(sk, up′):

– Parse up′ = (up, π)
– if VerifyElG(π, (pk, pk

′, up)) = 1, then outputs
sk′ = sk+ δ where δ = U-Dec(sk, up)

Theorem 4. If UPKE is IND-CR-CPA secure, then UPKE′

is IND-CU-CPA secure.



4.3. Achieving FUL Zether

We require that Alice (a sender) does the following
additional steps:

• Sample a random δ ∈ Fq.
• Then compute an update ciphertext that would encrypt

this δ. Looking ahead, this δ would be updating the
secret key of Bob (receiver) from skB to skB+δ. up =
(gr

′
, pkr

′

B · gδ)
• Update the public key of Bob to pk′B = pkB · gδ . We

will use Σ-proof to prove that this update is correct,
corresponding to secret δ.

• Also provide the offset of E = nCδ
B where nCB = C ·

oCB , with knowledge of the secret δ, relying again on
Σ-proof to prove that this offset is correct. The purpose
of this offset is to evolve the updated balance of Bob to
the new epoch, corresponding to the public key pk′B .

The posted message looks as follows:(
C = gr, D0, D1, up, pk

′
B , E

)
.

The additional zero-knowledge proof involves:
• knowledge of r′ and δ such that up = (gr

′
, pkr

′

B · gδ)
• knowledge of δ such that E = (nCB)

δ

• knowledge of δ such that pk′B = pkB · gδ

RFUL-Z :



(pkA, D0, pkB , D1, C) : pl gsk0 = pk0 ∧ CskA · g−pl = D0

(nCA, nDA) bal′ nCsk0 · gbal′ = nD0

(nCB , up, pk
′
B , E) skA C = gr∧, (pkA · pkB)r = (D0 ·D1)

r pl, bal′ ∈ {0, . . . ,MAX}
r′ up = (gr

′
, pkr

′

B · gδ)
δ pk′B = pkB · gδ ∧ E = nCδ

B


We present the prover-verifier interaction to prove the rela-
tion RFUL-Z in Figure 1. Due to space constraints, we only
discuss the additional proving and verification steps needed.
We refer the readers to the Σ-protocol for the original Zether
in their paper [6, §G]. Specifically, Figure 1 only contains
the Σ-protocol for the new terms of the update ciphertext up,
the updated public key pk′B , and the offset E. This is to be
interleaved with the steps from the original proof protocol
from [6] which proves the well-formedness of C,D0, D1

with the knowledge of skA and the necessary range proofs.

Theorem 5 (Forward-secure Until Last update). Under
DDH Assumption, the construction of FUL-Zether (as de-
scribed in Section 4.3) is FUL-secure.

We refer the readers to the full version of this paper [25].

Remark 2. The above construction fundamentally employs
the UPKE Construction based on ElGamal Encryption. This
scheme can thus leverage the graph-based fast-forwarding
paradigm of Dodis et al. [19] that helps a receiver who
is stuck in epoch i to evolve the key to epoch j in time
log(j − i). This is faster than the naive approach of evolv-
ing key sequentially. They build this primitive from any
homomorphic UPKE and it can be shown that indeed the
ElGamal construction is homomorphic UPKE. Furthermore,
the ElGamal encryption scheme is the most efficient con-
struction of UPKE with a Fast-Forwarding feature, besting

Prover P Verifier V

kδ, krp, k
′
δ ←$ Fq

Compute Arp = pk
krp

B

Compute Arpp = gkrp

Compute Aδ = gkδ

Compute A′
δ = nC

k′
δ

B

Arp, Arpp, Aδ, A
′
δ

// begin Σ-protocol
c←$ Fq

c

srp = krp + cr′

sδ = kδ + cδ

s′δ = k′
δ + cδ

srp, sδ, s
′
δ Parse up = (c1, c2)

gsrp
?
= Arpp · cc1

Aδ ·Arp · g−sδ · pk−srp ?
= (c2)

−c

Aδ · g−sδ ?
= (pk′B/pkB)

−c

A′
δ · nC

−s′δ
B = E−c

// end Σ-protocol

Figure 1. Additional Steps in Interactive Proof Protocol for RFUL-Z .

even the constructions laid out in [19]. Despite the benefits,
it is important to note that a recipient must take a discrete
log to retrieve the δ; however, if they only wish to check
their balance infrequently, this step is omitted and only
undertaken when necessary.

To avoid the discrete log, one can potentially use the
hashed ElGamal encryption which is also proven to be IND-
CR-CPA secure by Jost et al. [10]. However, there is a criti-
cal issue for our purposes where all posted transactions need
to have proof of well-formedness. Unfortunately, encrypting
the offset δ as (gr, H(pkr) ⊕ δ) does not have an efficient
proof of well-formedness. The closest one can achieve is
to use ZKBoo [26] to prove the well-formedness of the
ciphertext, which is computationally expensive.

5. PRIvate DEcentralized Confidential Trans-
actions

5.1. Anonymous Zether

We begin by first taking a brief look at Anonymous
Zether [7]. This will serve as a useful launchpad for our
construction of PriDe CT. At its core, Anonymous Zether
uses the idea of anonymity sets whereby the sender chooses
a set of public keys pki from i = 0 to t−1, which included
the sender at index sen and the receiver at index rec. These
indices were secret. Every receiver at index i ̸= rec, sen
would receive a zero payload, i.e., their encryptions would
merely serve as decoys. If the underlying encryption was
secure, then an adversary, without decrypting, would be
unable to determine whether the payload was 0, the positive
payload pl (corresponding to rec), or the negative payload
−pl (corresponding to sen) by observing the ciphertexts. The
sender then had to prove:

• the correctness of the indices: sen, rec ∈ {0, . . . , t−1}



• the knowledge of the secret key sk such that: gsk =
pksen

• the knowledge of randomness r such that: gr = C
• the conservation of balances: (pksen · pkrec)r = Dsen ·
Drec

• the well-formedness of the remaining ciphertexts: ∀i ∈
{0, . . . , t− 1} \ {sen, rec} pkri = Di

• the well-formedness of the sender-related ciphertexts:
Dsen = Csk · g−pl, nDsen = nCsk

sen · gbal
′

• the protection against overflow and overdraft:
bal′ ∈ [0,MAX] ∧ pl ∈ [0,MAX]

In addition, there were additional requirements of the values
of sen and rec being of opposite parity along with the notion
of epoch key. For simplicity, we do not discuss these aspects
in our brief survey of this work. We refer the reader to the
work of Diamond [7] for a detailed discussion.

Asymptotic Performance of Anonymous Zether. Despite
the asymptotic behavior of many-out-of-many proofs, care-
ful observations and optimizations (such as the observation
that only 2 out of the N ciphertexts encrypt non-zero while
the remaining encrypted zero) allowed Anonymous Zether to
achieve O(N logN) proving time and O(N logN) verifica-
tion time with the proof size being O(logN) and transaction
size being O(N) where N is the size of the receiver set.
The proving time O(N logN) is achieved through a careful
optimization technique discussed in detail in the original
work. This corresponds to one sender sending a single
transaction to a receiver. To achieve t such transactions,
we incur a multiplicative factor of t using Anonymous
Zether [7] where we run the protocol t different times as
Anonymous Zether does not support batching natively.

5.2. Construction of PriDe CT

Sender Si with secret key (sk0, pk0) is sending
pl1, . . . , plt to receivers R1, . . . , Rt with public keys
pk1, . . . , pkt. It also means that pl0 =

∑t
j=1 plj is debited

from the account of the sender S. We need to ensure that
pl0, pl1, . . . , plt are all positive. Further, let bal′ be the
balance left in the sender’s account, after this transaction.
We will also need bal′ ≥ 0. The transaction is posted as a
set of ciphertexts defined as: C = gr, Dj = pkrj · gplj for
j = 1, . . . , t, and D0 = pkr0 ·g−pl0 . Further, let nC0 and nD0

be the result of the homomorphic addition of the account
balance of sender Si, as a result of this transaction. The
statement that the sender needs to prove is the following:

• Validity of Sender: The sender needs to establish its
validity by proving knowledge of some secret, i.e.,
it proves the knowledge of its secret key sk0 that
corresponds with the public key pk0 for sender Si.

• Validity of Encryptions: The sender needs to prove that
(a) it is the party that has generated the ciphertext
by proving the knowledge of the randomness which
is being used in the ciphertext, and (b) that there is
a conservation of payloads, i.e., the sum total of all
payload is 0.In other words, it proves the knowledge of
r such that: 1) C = gr, and 2) balance of Transactions

TABLE 1. GLOSSARY OF VARIABLES. THE VARIABLES THAT REMAIN
SECRET ARE INDICATED BY THE SYMBOL ♣.

sk Secret key of the sender ♣
pk0 Public Key of the sender

pk1, . . . , pkt Public Keys of the receivers
pl0 Total money sent by the sender ♣
bal′ Residual balance of sender. We set plt+1 = bal′ ♣

pl1, . . . , plt Amount sent to receivers with public keys pk1, . . . , pkt ♣
r randomness used for ElGamal encryption ♣
C The gr term of the ElGamal Ciphertext
D0 Encryption of −pl0 under public key pk0

D1, . . . , Dt Encryption of plj under public key pkj for j = 1, . . . , t
(nC0, nD0) Valid ElGamal encryption of plt+1

Obtained by homomorphic multiplication.

Holds, i.e., money debited is also money credited:∏t
j=0 Dj =

(
pki ·

∏t
j=1 pkj

)r
.

• Validity of Payload: The sender needs to prove that
it has not spent more than it has in its account and
also specifically prove that it has not maliciously tried
to receive money. These are the proof statements:
bal′, pl0, pl1, . . . , plt ∈ {0, . . . ,MAX}.

• Well-formedness of ciphertext: 1) D0 = Csk0 ·g−pl0 , 2)
for nC0, nD0 being the result of homomorphic addition
of Si’s balance we have: nD0 = nCsk0

0 · gbal′ ,1 and
3) the ciphertext is correctly formed, i.e., that Dj =
(pkj)

r · gplj for j = 1, . . . , t. This is similar to the
validity of the encryptions step.

Formally, we can combine the conditions, for each sender
Si, to the following relation:

RPriDe CT :



(pkj , Dj)
t
j=0 (plj)

t
j=0 gsk0 = pk0 ∧ Cski · g−pl0 = D0∧

C, (nC0, nD0) bal′, sk0, r nCsk0
0 · gbal

′
= nD0(

Dj = (pkj)
r · gplj

)t
j=1
∧ C = gr∧∏t

j=0 Dj =
(∏t

j=0 pkj

)r
pl0, . . . plt, bal

′ ∈ {0, . . . ,MAX}


5.2.1. Interactive Proof Protocol We present a zero-
knowledge proof protocol for the relation RPriDe CT, which
is a modification of the protocol proposed by Diamond [7].
This protocol is based on the Σ-bullets proof protocol, which
combines Bulletproofs and Σ-protocols. Our protocol is
simpler and more concise compared to Diamond’s protocol,
thanks to the clear distinction between sender and receiver
indices and our support for batching of transactions.

The protocol relies on the proof techniques introduced
by Bünz et al. [27] to adapt bulletproofs for range proofs.
Before diving into the proof protocol, we establish the public
parameters, which are summarized in Table1 for reference.
The proof protocol begins as presented in Figure 2.

1This check helps in ensuring that there is no overdraft as bal′ needs
to necessarily be greater than or equal to 0 and it also needs to know what
bal′ is.



Prover Input:
(
C, nC0, D

′
0, {pkj , Dj}tj=0; {plj}tj=0, plt+1 = bal′, sk, r

)
Verifier Input:

(
C, nC0, D

′
0{pkj , Dj}tj=0

)
P:
1: α, ρ←$ Fq

2: Compute aL ∈ {0, 1}t
′n such that:

3: for j = 1, . . . , t′

4:
〈
2n, aL[(j−1)·n:jn−1]

〉
= plj−1

5: aR = aL − 1t′n ∈ Ft′n
q

6: A = hα · gaLhaR ∈ G
7: sL, sR ←$ Ft′n

q

8: S = hρ · gsL · hsR ∈ G
P → V: A,S

V:
9: y, z ←$ Fq

V → P: y, z

P:

10: l(X) = (aL − z · 1t′n) + sL ·X ∈ Ft′n
q [X]

11: r(X) = (yt′·n ◦ (aR + z · 1t′n + sR ·X)

+
∑t′

j=1 z
1+j · (0(j−1)·n||2n||0(t′−j)·n) ∈ Ft′n

q [X]

12: t(X) = ⟨l(X), r(X)⟩ = t0 + t1X + t2 ·X2 ∈ Fq[X]

13: τ1, τ2 ←$ Fq

14: Ti = gti · hτi ∈ G for i = 1, 2

P → V: T1, T2

V:
15: x←$ Fq

V → P: x
P:

16: l = l(x) = (aL − z · 1t′n) + sL · x ∈ Ft′n
q

17: r = r(x) = (yt′·n ◦ (aR + z · 1t′n + sR · x)
+
∑t′

j=1 z
1+j · (0(j−1)·n||2n||0(t′−j)·n) ∈ Ft′n

q

18: t̂ = ⟨l, r⟩ ∈ Fq

19: τx = τ1 · x+ τ2 · x2

20: µ = α+ ρ · x ∈ Fq

21: ksk, kr, kτ , kb ←$ Fq

22: AC = gkr

23: Ay = gksk

24: Ab = gkb · (C−z2 · nCzt
′+1

0 )ksk ·
∏t

j=1(pkj)
kr·z2+j

25: AX =
(∏t

j=0 pkj

)kr

26: Aτ = g−kb · hkτ

P → V: t̂, µ, Ay, Ac, Ab, AX , At

// begin Σ-protocol

V:
27: c←$ Fq

V → P: c
P:
28: ssk = ksk + csk

29: sr = kr + cr

30: sb = kb + c
∑t′

j=1 z
1+jplj−1

31: sτ = kτ + cτx

P → V: ssk, sr, sb, sτ
// end Σ-protocol

Figure 2. Interactive Proof Protocol for the relation RPriDe CT

Then, the verifier verifies the Σ-proofs of knowledge:

32 : Ay
?
= g

ssk · pk−c

33 : AC
?
= g

sr · C−c

34 :
Ab

gsb

?
=

(
C−z2 · nCzt

′+1

0

)ssk

(
D−z2

0 · D′zt′+1
0

)c ·
t∏

j=1

(
pksrj

Dc
j

)zj+2

35 : AX
?
=

 t∏
j=0

pkj

sr

·

 t∏
j=0

Dj

−c

36 : δ(y, z) = (z − z
2
)
〈
1
t′·n

, yt
′·n
〉
−

t′∑
j=1

z
j+2 〈

1
n
, 2

n〉
37 : g

c·t̂ · hsτ ?
= g

c·δ(y,z) · gsb · Aτ · (Tx
1 · Tx2

2 )
c

Then, P and V engage in protocol 1 of [27] on
inputs (g,h′, Ph−µ, t̂; l, r) in which h′ = hy−t′n

=(
h0, h

y−1

1 , hy−2

2 , . . . , hy−t′n+1

t′·n−1

)
and P = A · Sx · g−z ·

h′z·yt′n
·
∏t′

j=1 h′zj+1·2n

[(j−1)·n:j·n−1].

Theorem 6. The argument of knowledge, as defined in
Section 5.2.1, is a secure argument of zero-knowledge
which has perfect completeness, perfect honest verifier zero-
knowledge, and computational witness extended emulation.
The extractor EANON runs the prover with t′ · n different
values of y, t′ + 2 different values of z, 3 different val-
ues of x, and 2 different values of the challenge c (in
addition to the extractor EIP) to extract valid witnesses
sk,b = (pl0, . . . , plt, bal

′), r or a non-trivial discrete log
relation between independently chosen generators.

We omit the proof due to space constraints.

Theorem 7. If the discrete logarithm problem is hard with
respect to group G, then PriDe CT is overdraft-safe.

Theorem 8. Under the DDH Assumption, PriDe CT is
ledger-indistinguishable.

We refer the readers to the full version of this paper [25].

6. Towards FUL-secure PriDe CT

In this section, we will present our construction of
PriDeFUL CT. The approach we take is similar to the
approach of “bootstrapping” Zether with an updatable public
key encryption scheme to achieve Forward-secure Until
the Last update construction. As discussed in the introduc-
tion, there exist some inherent concurrency-related issues
about PriDeFUL CT that are not necessarily pertinent to
PriDe CT. Specifically, how one handles the setting where
multiple senders are transacting with a receiver in that
epoch. While they are capable of proving consistency with
respect to a particular state of the receiver and the contract
can multiply all of them together to create the new state,
combining the evolution of keys with transacting concur-
rently is challenging. Our solution for PriDeFUL CT is to



simply apply the solution for FUL-Zether to PriDe CT. In
FUL-Zether, the sender chose the update for the receiver and
provided the necessary information to (a) help the receiver
update the secret key, and (b) the contract to evolve the
ciphertext to be consistent with the updated public key. For
PriDeFUL CT we provide two options: (1) either concurrent
transactions are performed with the update ignored, or (2)
a transaction and a corresponding update to that receiver
is performed, ignoring other concurrent transactions to that
receiver.

Our construction of PriDeFUL CT achieves FUL-
security, allowing the sender to post a single message (either
for one or all of the receivers) by including some additional
messages (similar to the one for FUL-Zether from Section 4)
in their standard communication. The result is mathemati-
cally correct and enjoys the same benefits of forward secu-
rity as obtained from FUL-Zether. Unfortunately, this comes
with an inherent limitation of concurrent transactions not
being supported any more.

7. Experimental Results for PriDe CT

We implement PriDe CT as an Ethereum smart contract
based on the open-source code of Anonymous Zether [7]
at https://github.com/benediamond/anonymous-zether. Same
as Anonymous Zether, the client-end wallet is implemented
with JavaScript and Node.js module and the verifier smart
contract is implemented with Solidity. Our implementa-
tion interoperates with ERC-20-compliant token contracts,
can be deployed on any blockchain platform supporting
Ethereum-style smart contracts, and can interact with other
smart contracts to provide anonymity to a variety of services.
With the “register” method, a user can open a new escrow
account in the contract. Then with “deposit” and “withdraw”
methods, PriDe CT allows users to transfer ERC-20 tokens
into and out of the escrow account. With the account funded,
a user can perform transactions with multiple registered
recipients with the “transfer” method which generates the
statement and the proof, sends them to the contract, and
updates the local status on receiving confirmation of the
transaction succeeding.

We use the Ganache/Truffle suite which is widely used
in smart contract development and testing to measure the
performance of our scheme and compare it with Anonymous
Zether. The smart contracts are compiled and deployed with
Truffle on a local Ethereum chain simulated with Ganache.
We measure the performance of PriDe CT and Anonymous
Zether in the same environment, for the same security level,
and report the performance of both protocols for N = 4 to
N = 64 as reported in [7]. We compare the proving time
(i.e., the total computation time of the prover, including time
taken to generate the statement) on the client side and the
gas consumption of verification on the smart contract side
in a transfer transaction in Table 2. Our experiments, much
like those reported in Anonymous Zether [7], assumes that
a posted transaction is updated instantaneously, in an effort
to abstract away the consensus layer. The proving time is
measured on a standard MacBook Pro with a 10-core Apple

M1 Pro chip and 16GB memory. The gas consumption
reveals the computation cost of the verification process in
smart contracts and also how expensive a transaction is. We
omit the real-world time measurement of the verification
time as Solidity language does not provide a functionality
to measure the real-world execution time due to the on-chain
nature of the computation and gas consumption is a better
measurement of the computation cost.

In Table 2, we compare the running time of PriDe CT
and Anonymous Zether. The performance is parametrized by
N and we let N be a power of two for ease of implementing
the inner product verifier of Bulletproofs. Here, N is the ring
of public keys posted as a part of the transaction message. In
the case of Anonymous Zether, this consists of N−1 public
keys distinct from the sender’s public key. Meanwhile, in
PriDe CT, there are N − 2 public keys distinct from the
sender’s public key. Further, let t be the number of intended
recipients. In Anonymous Zether, t = 1 always and in
PriDe CT t ≤ N − 2. Further, in Table 2, we compute
a ratio of proving times as follows:

Proving Time for PriDe CT

Proving Time for Anonymous Zether
.

Similarly, we compute the ratio for the gas consumption.
The table shows us that for a ring size of N = 32 if t ≥ 7
then PriDe CT performs much better than naively running
Anonymous Zether t-times.

While Anonymous Zether is the only construction in
the account-based model, we also present comparisons of
the transaction size in the UTXO-based payment system
known as Quisquis [5]. Much like Anonymous Zether, we
are unable to offer an implementation-based comparison
with Quisquis due to the vast differences in programming
languages and the underlying infrastructure. We instead
offer comparisons with Quisquis, based on the sizes of the
transaction, expressed as a function of N , in terms of the
number of Group Field Elements. We also compare with
Anonymous Zether on the same parameters and note that we
are smaller than even a single Anonymous Zether transaction
(even ignoring our benefits from batching) for the same N .
This is presented in Table 4.

Performance of PriDeFUL CT. For completeness, we
study the performance of PriDeFUL CT by identifying the
overhead of a sender in order to evolve the key per receiver
to achieve FUL security. Our experiments show that a
sender needs to spend an additional 166ms to generate the
additional terms and prove that the key evolution is correct
(i.e., that the update ciphertext and the new public key is
evolved consistently with the same offset - Prover steps in
Figure 1) and the verifier consumes an additional 82,147
units of gas (Verifier steps in Figure 1), for a sender to
evolve the key of a single receiver. These numbers are per
receiver and thus independent of the size of the anonymity
set. For the case where a sender updates X keys for X
receivers at the same time then the cost and the gas incurs
a multiplicative factor of X .

In Table 5, we compare the various existing solutions,
with our work, along an assortment of properties.

https://github.com/benediamond/anonymous-zether


TABLE 2. PERFORMANCE COMPARISON BETWEEN PRIDE CT AND PRIDEFUL CT. GAS COSTS OF VERIFICATION ARE COMPUTED USING THE
LATEST STANDARD PRICES OF GAS AT THE TIME OF WRITING, WHICH WAS 41 GWEI, SOURCED FROM [28] AT UTC 04:25 PM 6 NOVEMBER 2023.

NOTE THAT THE PRICES ARE SUBJECT TO MARKET FLUCTUATIONS, BUT THE GAS COSTS TEND TO BE STABLE AND MORE MEANINGFUL.

Proving Time Gas Consumption

Anonymous Zether PriDe CT Ratio Anonymous Zether PriDe CT RatioGas Cost Ether Gas Cost Ether
Transfer(4) 1,897 3,543 1.87 3,453,438 0.142 3,812,298 0.156 1.10
Transfer(8) 2,066 6,757 3.27 4,332,444 0.178 8,106,123 0.332 1.87
Transfer(16) 2,699 12,910 4.78 6,325,889 0.259 16,877,598 0.692 2.67
Transfer(32) 3,672 25,263 6.88 10,919,626 0.448 35,758,365 1.466 3.27
Transfer(64) 6,266 51,445 8.21 22,022,114 0.903 77,024,171 3.158 3.50
Transfer(N) O(N logN) O(N logN) O(N logN) O(N logN)

TABLE 3. PERFORMANCE COMPARISON BETWEEN PRIDE CT AND PRIDEFUL CT. GAS COSTS OF VERIFICATION ARE COMPUTED USING THE
LATEST STANDARD PRICES OF GAS AT THE TIME OF WRITING, WHICH WAS 41 GWEI, SOURCED FROM [28] AT UTC 04:25 PM 6 NOVEMBER 2023.

NOTE THAT THE PRICES ARE SUBJECT TO MARKET FLUCTUATIONS, BUT THE GAS COSTS TEND TO BE STABLE AND MORE MEANINGFUL.

Proving Time Gas Consumption

PriDeCT PriDeFULCT Ratio PriDeCT PriDeFULCT RatioGas Cost Ether Gas Cost Ether
N=16 12,910 13,076 1.012 16,877,598 0.692 16,959,745 0.695 1.005
N=32 25,263 25,429 1.007 35,758,365 1.466 35,840,512 1.469 1.002

TABLE 4. TRANSACTION SIZES AS A FUNCTION OF N AND t.

# Group Elements # Field Elements Model
Quisquis 30N + 22

√
N + 52 + 2 log(t) 6N + 10

√
N + 39 UTXO

Anon. Zether 2N + 8 log(N) + 20 2 log(N) + 10 A/C
PriDe CT 2N + 2 log(N) + 16 9 A/C

8. Conclusion

In this work, we present PriDe CT that can function
as a “cryptocurrency” using a smart contract and which
is interoperable with other smart contracts, akin to the
examples proposed in Zether [6]. It offers, in addition to the
features of Anonymous Zether, that of batchability (where
multiple receivers can be supported without additional over-
head), concurrency (multiple senders can send payload to
a particular receiver, without additional mechanism), and
support for forward secrecy. The resulting protocol offers
competitive performance with Anonymous Zether. We iden-
tify the following lines of future research that mitigate some
of the inherent limitations:

• Identifying a mechanism to incentivize decoy senders
to post transactions where each payload is zero to
achieve sender anonymity.

• Currently, recovering the update offset from the cipher-
text requires one to perform a discrete logarithm. Even
though these are infrequent, one can leverage class
groups [24] to avoid discrete logarithm computation.
Furthermore, whether one can leverage HIBE-based
FS-PKE constructions to achieve full forward secrecy
(avoiding sender-aided forward secrecy) remains an
interesting area of research.
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for transaction privacy,” Proc. Priv. Enhancing Technol., vol.
2018, no. 2, pp. 105–121, 2018. [Online]. Available: https:
//doi.org/10.1515/popets-2018-0015

[30] A. Rondelet and M. Zajac, “ZETH: on integrating zerocash on
ethereum,” CoRR, vol. abs/1904.00905, 2019. [Online]. Available:
http://arxiv.org/abs/1904.00905

[31] D. V. Le and A. Gervais, “AMR: autonomous coin mixer with
privacy preserving reward distribution,” CoRR, vol. abs/2010.01056,
2020. [Online]. Available: https://arxiv.org/abs/2010.01056

[32] O. Goldreich, S. Micali, and A. Wigderson, “Proofs that yield nothing
but their validity, or all languages in np have zero-knowledge proof
systems,” Journal of the ACM, vol. 38, 1 1991.

[33] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit, “Efficient
zero-knowledge arguments for arithmetic circuits in the discrete log
setting,” in Advances in Cryptology – EUROCRYPT 2016, Part II, ser.
Lecture Notes in Computer Science, M. Fischlin and J.-S. Coron,
Eds., vol. 9666. Vienna, Austria: Springer, Heidelberg, Germany,
May 8–12, 2016, pp. 327–357.

[34] J. Groth and Y. Ishai, “Sub-linear zero-knowledge argument for
correctness of a shuffle,” in Advances in Cryptology – EURO-
CRYPT 2008, ser. Lecture Notes in Computer Science, N. P. Smart,
Ed., vol. 4965. Istanbul, Turkey: Springer, Heidelberg, Germany,
Apr. 13–17, 2008, pp. 379–396.

[35] Y. Lindell, “Parallel coin-tossing and constant-round secure two-party
computation,” Journal of Cryptology, vol. 16, no. 3, pp. 143–184, Jun.
2003.

[36] J. Groth, “Honest verifier zero-knowledge arguments applied,” in
Dissertation Series DS-04-3. BRICS, 2004, phD thesis.

[37] C.-P. Schnorr, “Efficient identification and signatures for smart cards,”
in Advances in Cryptology – CRYPTO’89, ser. Lecture Notes in
Computer Science, G. Brassard, Ed., vol. 435. Santa Barbara, CA,
USA: Springer, Heidelberg, Germany, Aug. 20–24, 1990, pp. 239–
252.

https://en.wikipedia.org/wiki/Harvest_now,_decrypt_later#:~:text=Harvest%20now%2C%20decrypt%20later%2C%20also,it%20readable%20in%20the%20future.
https://en.wikipedia.org/wiki/Harvest_now,_decrypt_later#:~:text=Harvest%20now%2C%20decrypt%20later%2C%20also,it%20readable%20in%20the%20future.
https://en.wikipedia.org/wiki/Harvest_now,_decrypt_later#:~:text=Harvest%20now%2C%20decrypt%20later%2C%20also,it%20readable%20in%20the%20future.
https://www.jpmorgan.com/onyx/index
https://www.jpmorgan.com/onyx/index
https://consensys.net/quorum/
https://consensys.net/quorum/
https://docs.tessera.consensys.net
https://docs.tessera.consensys.net
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/giacomelli
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/giacomelli
https://etherscan.io/gasTracker
https://etherscan.io/gasTracker
https://doi.org/10.1515/popets-2018-0015
https://doi.org/10.1515/popets-2018-0015
http://arxiv.org/abs/1904.00905
https://arxiv.org/abs/2010.01056


[38] M. Bellare, A. Boldyreva, and J. Staddon, “Randomness re-use in
multi-recipient encryption schemeas,” in PKC 2003: 6th International
Workshop on Theory and Practice in Public Key Cryptography, ser.
Lecture Notes in Computer Science, Y. Desmedt, Ed., vol. 2567.
Miami, FL, USA: Springer, Heidelberg, Germany, Jan. 6–8, 2003,
pp. 85–99.

[39] T. P. Pedersen, “Non-interactive and information-theoretic secure
verifiable secret sharing,” in Advances in Cryptology – CRYPTO’91,
ser. Lecture Notes in Computer Science, J. Feigenbaum, Ed., vol. 576.
Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 11–
15, 1992, pp. 129–140.

Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary

This paper proposes a private, anonymous, and decen-
tralized payment mechanism while offering forward secrecy.
It introduces many new constructions FUL-Zether, PriDe
CT, and PriDeFUL CT.

A.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field

A.3. Reasons for Acceptance

1) The paper advances the prior studies in the literature
and introduces new constructions like forward secrecy
until the last update (FUL) and shows that ElGamal
Encryption is a secure UPKE.

2) Experimental construction of PriDe-CT shows feasibil-
ity as a cryptocurrency on top of Ethereum.

3) Clear advantage in extension in the removal of the
reliance on locking, and the optimization of transaction
size when compared to Zether

4) Comprehensive coverage of construction of Zether, and
extensions into PriDe.

Appendix B.
Smart Contract as a Mixer.

Mobiüs [29] facilitated fund transfers between Alice
and Bob with provable security guarantees. It achieves low
off-chain communication compared to existing centralized
and decentralized mixers. To ensure privacy, Alice and Bob
need to share Bob’s master public key, a shared secret,
and a nonce to derive new ”decoy public keys” that sever
linkability between addresses. A smart contract is used to
gather sufficient user deposits before Bob can withdraw.
Alice can notify Bob off-chain about the contract address
(or Bob can find it independently if one were to assume all
contracts are registered). Bob then withdraws by creating
a linkable ring signature using the available decoy public
keys, by proving that it has a secret corresponding to one
of these public keys and also ensuring that this proof can
only be used once. Unfortunately, Mobiüs has fixed denom-
inations for transactions, requires waiting for participants,
mandates withdrawal after each mixing, and requires active
user participation though it supports auditability.

ZETH [30] is a smart contract-based implementation of
the Zerocash [1] protocol on Ethereum blockchain. It allows



users to exchange funds for zethNotes which can be reused
repeatedly within the contract. Rather than actually trans-
ferring these notes from one user to another, the contract
works by having the sender consume a set of input notes and
produce a set of output notes. Those input notes cannot be
used again. ZETH uses zero-knowledge proofs to ensure the
correctness of all required operations and to prove that every
input note was destroyed while producing output notes.
However, ZETH suffers from information leakage, which
compromises sender privacy. It also inherits some draw-
backs of Zerocash such as trusted setup and monotonically
increasing size of coins/commitments. ZETH avoids off-
chain communication by using the smart contract to notify,
and supports arbitrary denominations for transactions with
minimal-to-no latency. Nevertheless, it requires the active
participation of users as the receiver needs to monitor events
emitted by the sender’s invocation of contracts, retrieve all
output notes, and verify the sender was honest in providing
output commitments.

AMR [31] is a contract-based coin mixer that employs
a zk-SNARK-based approach similar to ZETH. It allows
deposited funds to accrue interest and enables privacy-
preserving reward payment. Clients deposit coins and obtain
a note, which is used to withdraw the funds later. The
zk-SNARK-based Merkle Tree is used to generate proof
that the note corresponds to a transaction and has not been
withdrawn already. The note and proof are used to withdraw
funds to a new address, severing the linkability between
the source and destination addresses. AMR achieves a more
efficient zk-SNARK than ZETH but suffers from several
drawbacks, such as natively not supporting the transfer of
coins between two users, requiring fixed denomination of
coins, and the depositor having to withdraw into a new
account address, which is an overhead for the client. Fur-
thermore, this does not admit efficient wallet as the state
corresponding to the user might require scanning the entire
blockchain which can cause issues for auditing.

Appendix C.
Cryptographic Primitives

In this section, we describe and formally introduce some
of our cryptographic primitives that we used in this paper.

C.1. Zero-Knowledge Proofs

A zero-knowledge proof, informally, is a proof that
reveals no information beyond the validity of the statement,
especially any and all secret information used in the gen-
eration of the proof. It is known that a ZK proof can be
generated for any NP statement [32].

Definition 7 (Argument of Knowledge). Let R be any
polynomial-time decidable relation. Then, an argument of
knowledge consists of a triple of algorithms: (SetupR,P,V)
where:

• crs←$ SetupR(1λ) which generates the common refer-
ence string crs with λ as the security parameter. This
defines the following NP Language:

Lcrs = {stmt|∃wit : (crs, stmt,wit) ∈ R}

• P(crs, stmt,wit) is the randomized prover prover algo-
rithm which is run on inputs crs, stmt and the secret wit
which helps prove that stmt ∈ R. This input wit is not
provided to the verifier. Instead, V(crs, stmt) represents
the randomized verifier algorithm which is executed on
inputs crs and stmt.

• Then, tr←$ ⟨P(crs, stmt,wit),V(crs, stmt)⟩
represents the transcript generated by one
such interaction between P and V . Often time,
we simplify the notation to simply write as
b←$ ⟨P(crs, stmt,wit),V(crs, stmt)⟩ where b is
a single bit representing the validity of the transcript.

Definition 8 (Security of Arguments of Knowledge). The
triple (SetupR,P,V) is called a secure argument of knowl-
edge for relation R if it satisfies the following two defini-
tions:

• Perfect Completeness: for all non-uniform polynomial
time adversaries A, we have:

Pr

[
(crs, stmt,wit) ̸∈ R∨

⟨P(crs, stmt,wit),V(crs, stmt)⟩ = 1
(crs)←$ SetupR(1λ)
(stmt,wit)←$A(crs)

]
= 1

• Computational Witness-Extended Emulation: for all de-
terministic polynomial time P∗ there exists an expected
polynomial time emulator E such that for all pairs of
interactive adversaries A1,A2, there exists a negligible
function negl(λ) such that:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

 A1(tr) = 1
(crs)←$ SetupR(1λ)
(stmt,wit)←$A2(crs)

tr←$ ⟨P∗(crs, stmt,wit),V(crs, stmt)⟩

−

Pr

 A1(tr) = 1∧
(accept(tr) =⇒ (crs, stmt,wit′) ∈ R)

(crs)←$ SetupR(1λ)
(stmt,wit)←$A2(crs)

(tr,wit′)←$ EO(crs, stmt)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ)

where O = ⟨P∗(crs, stmt,wit),V(crs, stmt)⟩, and per-
mits rewinding to a point and then proceeding with
fresh randomness for the verifier from this point on-
wards and accept(tr) is a predicate that returns true
iff the transcript tr is accepting.

In the definition of witness-extended emulation, one can
interpret wit to be the state of P∗, including any randomness.
Therefore, whenever P∗ convinces the verifier when in state
wit, E is able to extract a witness. In particular, if the
adversary is capable of producing a satisfying argument
with some probability, then the emulator E can produce
an identically distributed argument and a witness with the
same probability. Here, witness-extended emulation is used
to define knowledge soundness which was used by prior
work including [27], [33] and defined in [34], [35], [36].
However, for our purposes, we will also define a special
soundness security property. Recall that a move is defined
as a message sent from P to V or vice versa.

Definition 9 (Special Soundness). A 2µ + 1-move, public-
coin argument of knowledge is (n1, . . . , nµ)-special sound



if, there exists a PPT extractor E for which, for all PPT
adversaries A, there exists a negligible function negl(λ)
such that:

Pr

(crs, stmt,wit) ̸∈ R
(crs)←$ SetupR(1λ)

(stmt,wit, tree)←$A(crs)
wit←$ E(crs, stmt, tree)

 ≤ negl(λ)

where tree is a (n1, . . . , nµ)-tree of accepting transcripts
whose challenges are distinct.

Definition 10 (Public Coin). An argument of knowledge is
called public coin if all messages sent from the verifier to the
prover are chosen uniformly at random and independently
of any messages from the prover.

Definition 11 (Computationally Special Honest-Verifier
Zero Knowledge). A public coin argument of knowledge
is a special honest verifier zero-knowledge argument for
R if there exists a PPT simulator Sim such that for all
non-uniform PPT adversaries A, there exists a negligible
function negl(λ) such that:

Pr

 b = b′

(crs)←$ SetupR(1λ); b←$ {0, 1}
(stmt,wit, ρ)←$A(SetupR)

tr0 = ⟨P(crs, stmt,wit),V(crs, stmt; ρ)⟩
tr1 = Sim(crs, stmt, ρ)

b′←$A(trb)

 ≤ 1

2
+ negl(λ)

where ρ is the public coin randomness used by the verifier.
When negl(λ) = 0, we get perfect special honest-verifier
zero-knowledge.

Definition 12 (Σ-protocols). Σ-protocols are honest-verifier
public-coin zero-knowledge interactive proofs which consist
of three moves:

• crs←$ SetupR(1λ)
• a←$ P(crs, stmt,wit): Given (crs, stmt,wit) ∈ R, it

generates an initial message a
• c←$ {0, 1}λ: A public coin challenge c is chosen uni-

formly at random by the verifier.
• z ← P(c): z is the response from P on the challenge
c

• b←$ V(crs, stmt, a, c, z): Outputs 1 if accepts, or else
0.

A commonly used proof of knowledge which satisfies
the three move definition of Σ protocol is due to Schnorr
[37]. We define that next and this proof system is used in our
proof protocol. This protocol is used to prove knowledge of
x such that y = gx where stmt = y,wit = x

Construction 4 (Schnorr Protocol). The protocol is defined
for a cyclic group G of prime order q with generator g.

• SetupR(1λ) chooses a cyclic group G of prime order
q with generator g and sets crs = (G, q, g)

• P(crs, y, x): Given crs, y, x such that y = gx, P
samples r at random and outputs t = gr as the first
message.

• V replies with a challenge c chosen a random.
• Then, P responds with s = r + c · x
• V(crs, y) checks if: gs = t · yc

Remark 3. It is easy to see that this is an argument of
knowledge because it has witness-extended emulation where
an extractor can use two different challenges c1, c2, and use
s1 = r+c1x and s2 = r+c2x to output (s1−s2)(c1−c2)−1

as witness x.
It is also trivial to see that the Schnorr protocol satisfies

Definition 11 where Sim, with knowledge of the verifier ran-
domness c, can simulate an identically generated transcript
where s = r and t = gr · y−c and this correctly verifies.

Theorem 9. The Schnorr Protocol satisfies perfect com-
pleteness, perfect honest verifier zero-knowledge, and sta-
tistical witness-extended emulation for extracting a valid
witness x. This extractor EΣ runs the prover with two
different values of the challenge c.

C.2. Bulletproofs

The work of Bünz et al. [27] successfully introduced
the powerful abstraction known as Bulletproofs that helped
achieve improved efficiency for zero-knowledge proof of
inner-product argument. This work improved on prior work
of Bootle et al. [33] and achieved a communication com-
plexity of 2 log2 n where n is the dimension of the vectors.
More formally, they showed that:

Theorem 10 ( [27, Theorem 1]). Let g,h ∈ Gn be indepen-
dent generators of the group G, c ∈ Fq, and P ∈ G. Then,
there exists an efficient proof system (IPProve, IPVerify) for
the following relation:

RIP = {(g,h ∈ Gn, P ∈ G, c ∈ Fq; a,b ∈ Fn
q |P = ga · hb ∧ c = ⟨a,b⟩}

This proof system has perfect completeness and statisti-
cal witness-extended-emulation for either extracting a non-
trivial discrete logarithm relation between g,h or extracting
a valid witness a,b. This extractor EIP requires O(n2)
transcripts.

Theorem 11 ( [27, Theorem 3]). Let g, h ∈ G be indepen-
dent generators of the group G. Then, there exists a proof
system (RPProve,RPVerify) for the following relation:

RRP = {(g, h ∈ G,V ∈ Gt′ ;b, γγγ ∈ Ft′

q |Vj = hγj · gbj ∧ bj ∈ [0, 2n − 1]}

which has perfect completeness, perfect honest veri-
fier zero-knowledge, and computational witness-extended
emulation. Further, this aggregated range proof uses 2 ·
⌈log2(t′ · n)⌉+ 4 group elements and 5 elements in Fq.

Corollary 12. There exists an efficient extractor ERP
which satisfies the computational witness-extended emula-
tion property, producing either a valid witness b, γγγ or a non-
trivial discrete logarithm relation between independently
chosen generators. ERP runs the prover with t′ · n different
values of y 2, (t′ + 2) different values of z, and 3 different
values of the challenge x (in addition to the extractor EIP),
i.e., rewinding the prover 3·(t′+2)·t′·n·O(n2) = O(n3·m2).

2y, z, x are elements in Fq which are randomness provided by the
verifier in this interactive protocol.



Corollary 13. There exists a simulator SimRP running
in time O(RPVerify + IPProve) which satisfies the honest
verifier zero-knowledge property.

We discuss a more expansive discussion of this result,
in the context of our proof requirements.

C.3. Public Key Encryption

Let us recall the definition of a public-key encryption
scheme.

Definition 13. An encryption scheme is a set of three
polynomial-time algorithms E = (Gen,Enc,Dec) with the
following syntax:

- Key generation: Gen receives 1λ where λ is the secu-
rity parameter and outputs a fresh secret sk and outputs
a fresh public key pk.

- Encryption: Enc receives a public key pk and a mes-
sage m to produce a ciphertext c.

- Decryption: Dec receives a secret key sk and a cipher-
text c to produce message m.

Definition 14 (Correctness of PKE). For all messages m ∈
M, we require the following to hold:

Pr

 m′ = m
(pk, sk)← Gen(1λ)
c←$ Enc(pk,m)
m′ = Dec(sk, c)

 = 1

Definition 15 (IND-CPA Security). For all PPT adversaries
A, there exists a negligible function negl(λ) such that:

Pr

 b′ = b

(pk, sk)← Gen(1λ); b←$ {0, 1}
(m0,m1)←$A(pk)
c←$ Enc(pk,mb)

b′←$A(c)

 ≤ 1

2
+negl(λ)

Construction 5 (ElGamal Encryption [17]). For a group G
of prime order q, with generator g, we define the following
scheme:

• Gen: Outputs, sk←$ Fq, pk = gsk

• Enc(pk,m ∈ Fq; r ∈ Fq): Outputs (C = gr, D = pkr ·
gm)

• Dec(sk, c = (C,D)): Outputs m such that gm = D ·
C−sk

The above construction is IND-CPA secure under the
DDH Assumption. The important point here is that ElGamal
Encryption is actually a homomorphic encryption scheme.
Specifically, given c1 = (C1, D1) as an encryption of
m under pk and an encryption of c2 = (C2, D2) as an
encryption of m′, also under pk we have that c′ = (nC =
C1 · C2, nD = D1 ·D2) is an encryption of m +m′ under
pk.

Definition 16 (MR-RR-INDCPA Security of ElGamal [38]).
For all PPT adversaries A, there exists a negligible function
negl(λ) such that:

Pr

 b′ = b

N ←$A(G, q, g)
for i = 1 to N : (pki, ski)←$ Gen(1κ)

{mb,i}b=1,i=N
b=0,i=1 ←$A(pk1, . . . , pkN )

b←$ {0, 1}; r←$ Fq;C = gr

for i = 1 to N : Di = pkri ·mb,i

b′←$A(C,D1, . . . , DN )

 ≤
1

2
+ negl(λ)

Remark 4. A useful technique that we will use in this
paper is to alternatively view (pk, D) as an encryption
under the “public key” C = gr. Consequently, given a
set of encryptions, under the same randomness, but dif-
ferent public keys, we can view them as encryptions un-
der the same public key, but different randomness. In
other words, let m0, . . . ,mt be t + 1 messages to be
encrypted under public keys pk0, . . . , pkt with the same
randomness r. Let (C,Di) ← Enc(pki,mi; r) for i =
0, . . . , t. Then, (pk0, D0), . . . , (pkt, Dt) are valid encryp-
tions of m0, . . . ,mt under “public key” C with randomness
sk0, . . . , skt.

C.4. Commitments

Definition 17 (Non-Interactive Commitments). A non-
interactive commitment scheme com consists of a pair of
probabilistic algorithms (Setup,Commitpp) where:

• pp ← Setup(1λ) generates public parameters pp for
the scheme, where λ is the security parameter.

• com ← Commitpp(x;α) where com ∈ C is the com-
mitment to message x ∈M, with randomness α←$R
where M is the message space, C is the commitment
space, and R is the randomness space.

Such a commitment scheme is defined to be additively
homomorphic if for abelian groups M,R, C and for all
x1, x2 ∈M, r1, r2 ∈ R we have:

Commitpp(x1;α1) + Commitpp(x2;α2) = Commitpp(x1 + x2;α1 + α2)

Definition 18 (Security of Commitment Scheme). A non-
interactive commitment scheme com is secure if:

• Hiding Property: for all PPT adversaries A,

Pr

 b = b′

(pp)←$ Setup(1λ)
(x0, x1, st)←$A(pp)
b←$ {0, 1}, α←$R

com = Commitpp(xb;α)
b′←$A(com, st)

 ≤ 1

2
+negl(λ)

where the probability is over b, α, Setup,A.
• Binding Property: for all PPT adversaries A,

Pr

[
Commitpp(x0;α0) = Commitpp(x1;α1)∧

x0 ̸= x1

(pp)←$ Setup(1λ)
(x0, x1, α0, α1, st)←$A(pp)

]
≤ negl(λ)

where the probability is over Setup,A. If the proba-
bility is 0, then we say that the scheme is perfectly
binding.

We have the following commitment scheme from Ped-
ersen [39].



Construction 6 (Pedersen Commitment Schemes). Here,
M,R = Fq, C = G of order q.

• Setup: Outputs g, h←$ G
• Commitpp(x;α): Outputs gx · hα

This can be extended to the commit to a vector, with the
same randomness α, as follows:

• Setup: Outputs g = (g1, . . . , gn), h←$ G
• Commitpp(x = (x1, . . . , xn);α): Outputs gx · hα =
hα ·

∏n
i=1 g

xi
i

The above construction is perfectly hiding and compu-
tationally binding under the discrete logarithm assumption.

Remark 5. When α = 0, i.e., C = gx is binding (but not
hiding) commitment to the vector a. Given C, and another
vector y ∈ F∗

q , we can treat C as a new commitment to

x ◦ y. This follows by defining g′ such that g′i = g
y−1
i

i with
C =

∏n
i=1(g

′
i)

xi·yi .

Remark 6. The ElGamal ciphertext of (gr, gsk·r · gm) can
be seen as a commitment to m where h = gr and sk
is the blinding randomness. This is perfectly hiding and
computationally binding.

Appendix D.
Deferred Proofs

D.1. Proof for Theorem 6

Proof. We present a brief proof for each component of the
statement.

Proof of Perfect Completeness. The perfect completeness,
while straightforward and a consequence of the modular
components of the aggregate range proof and the deployed
Schnorr Protocol will be verified in this proof.

• Check for Ay. On the right-hand side, we have:

gssk · pk−c = gksk+c·skpk−c = gkskpkcpk−c = gksk = Ay

• Check for AC . On the right-hand side, we have:

gsr · C−c = gkr+c·r · C−c = gkr · Cc · C−c = gkr = AC

• Check for AX . First, observe that pl0 + pl1 + . . . +

plt = 0. Therefore,
(∏t

j=0 Dj

)
=
(∏t

j=0 pkj

)r
. On

the right-hand side, we have:(
t∏

j=0

pkj

)sr ( t∏
j=0

Dj

)−c

=

(
t∏

j=0

pkj

)kr+r( t∏
j=0

pkj

)−cr

=

(
t∏

j=0

pkj

)kr

= AX

• Check for Ab. We will prove this by comparing the
coefficients of each exponent of z on the LHS and RHS.

– Coefficient of z2. On the LHS we have: C−ksk ·
g−c·pl0 . Observe that Csk = D0 · gpl0 . On the RHS
we have:

C−ssk ·Dc
0 = C−ksk−c·sk ·Dc

0

= C−ksk ·D−c
0 · g−pl0·c ·Dc

0

= C−ksk · g−c·pl0

– Coefficient of zt
′+1. On the LHS we have: nCksk

0 ·
g−c·plt′−1 . Observe that nCsk

0 = D′
0 ·g−plt′−1 . On the

RHS we have:

nCssk
0 ·D

′−c
0 = nCksk+c·sk

0 ·D′−c
0

= nCksk
0 ·D′c

0 · g−plt′−1·c ·D′−c
0

= nCksk
0 · g−c·plt′−1

– Coefficient of z2+j for j = 1, . . . , t. On the LHS we
have: pkkr

j · g−c·plj . Observe that D−1
j · pk

r
j = g−plj .

On the RHS, we have:(
D−c

j · pk
sr
j

)
=
(
D−c

j · pk
kr+c·r
j

)
= pkkr

j · (D
−1
j · pk

r
j)

c = pkkr
j · g

−c·plj

• Check for Aτ . Now, observe that t0 = δ(y, z) +∑t′

j=1 z
1+j · plj−1 = δ(y, z) + z2 ·

〈
zt

′
,b
〉

. Now,

gsb = gkb · gc·z
2·
〈
zt′ ,b

〉
. Therefore, on the RHS we

have:

gc·δ(y,z) · gsb ·Aτ = gkb · gc·
(
δ(y,z)+z2·

〈
zt′ ,b

〉)
· g−kb · hkτ

= gc·t0 · hkτ

T x
1 · T x2

2 :=
(
gt1 · hτ1

)x · (gt2 · hτ2
)x2

= hτx · gt1·x+t2·x2

= hτx · gt̂−t0

Therefore, the RHS simplifies to:

gc·δ(y,z) · gsb ·Aτ · (T x
1 · T x2

2 )c = gc·t0 · hkτ · hc·τx · gc·t̂−c·t0

= gc·t̂ · hkτ+c·τx = gc·t̂ · hsτ

Proof of SHVZK The protocol is honest verifier zero-
knowledge because one can create a simulator that gener-
ates verifying transcripts without access to the witnesses.
The simulator merely samples a random challenge c, along
with the ssk, sr, sb, sτ . Then, it reconstructs the values of
Ay, AC , Ab, AX , Aτ based on the verification equations.
Then, if g, h,

∏t
j=0 pkj , C are group generators, each of

the values generated is a random group element in the
honest protocol and in the simulated transcript. Further, AX

and AC form a DDH tuple with basis g,
∏t

j=0 pkj making
AX , AC computationally indistinguishable in the honest and
simulated transcripts.



Proof of Computational Witness Extended Emulation
We have already seen how to extract witnesses from a
Σ protocol. Using two transcripts involving two differ-
ent values of c as c1 and c2 (and induced values of
ssk,1, ssk,2, sr1 , sr2 , sb1 , sb2 one can compute:

sk =
ssk,1 − ssk,2
c1 − c2

, r =
sr,1 − sr,2
c1 − c2

, b =
sb,1 − sb,2
c1 − c2

, τ =
sτ,1 − sτ,2
c1 − c2

Here, note that b corresponds to
∑t′

j=1 z
1+jplj−1. Now, we

need to rely on the ERP (relying on Corollary 12) to extract
the witness b.

D.2. Deferred Proofs of PriDe CT

Proof. In this proof, recall that n is such that MAX = 2n−1,
i.e., n is the maximum number of bits that is supported as
payload. Then, consider the following sequence of hybrids:
H0 Corresponds to OverdraftA,Π(κ);
H1 Same as H0, except that the interactive proof protocol

from Section 5.2 is used for all oracle queries (both to
OTransact and OInsert.)
Claim 14. For some polynomial q, there exists a neg-
ligible function negl(κ) such that:

AdvPriDe CT
Game-0 ≤ AdvPriDe CT

Game-1 · q(κ)4+log(t′·n) + negl(κ)

The proof for this claim is quite straightforward. It
boils down to inconsistencies being generated in the
honest transcript corresponding to H0 which uses the
random oracle to query, vs the actual value sent by the
verifier in the interactive protocol corresponding to H1.
In other words, there are 4 + log(N · n) places where
a challenge from the verifier is provided and these are
the spots where one can identify an inconsistency. The
latter term comes from the inner-product verification
protocol from Bulletproofs [27].

H2 Same as H1, except that the experimenter reruns A
with the same randomness but different challenges
y, z, x, c and obtains a (t′ · n, t′ + 2, 3, 2)-tree of ac-
cepting transcripts after obtaining the final transcript
(tx∗), and returns 0 if any of the challenges feature
collisions. In addition, we also run the extractor of EIP,
generating a 4-ary tree of depth log(t′ ·n). Finally, the
experimenter imposes the winning condition of H1 on
all leaves.
Claim 15. For some polynomial q, there exists a neg-
ligible function negl′(κ) such that:(

Adv
PriDe CT
Game-1

)(t′·n)·(t′+2)·3·2·4log(t
′·n)

≤

Adv
PriDe CT
Game-2 + negl

′
(κ)

The proof of this claim follows from applying Jensen’s
inequality to each level in the tree of transcripts.

H3 Same as H2 except that the experimenter runs the
extractor X to extract witnesses corresponding to the
statement.
Claim 16. There exists a negligible function negl(κ)
such that:(

AdvPriDe CT
Game-2

)
≤ AdvPriDe CT

Game-3 + negl(κ)

The proof of this claim follows from the Computational
Witness Extended Emulation property. Furthermore, it
is clear from these witnesses that the conditions 6.a and
6.b from OverdraftA,Π are met.

H4 Same as H3 except that the experimenter chooses a
random y∗ for the sender of the challenge transaction
tx∗.
Claim 17.

(
AdvPriDe CT

Game-3

)
≤ N ·AdvPriDe CT

Game-4 +negl(κ)

where N is the total number of honestly generated
users in the experiment.

Claim 18. Under the Discrete Logarithm Assumption, there
exists a negligible function negl(κ) such that:(

AdvPriDe CT
Game-4

)
= negl(κ)

The proof of this claim follows similarly to the proof of
Claim B.6 from the work of Anonymous Zether [7]. Let y∗
be the Discrete Logarithm Experiment challenge. During
the account creation process, the experimenter randomly
chooses an index i∗ ∈ {0, . . . , N − 1} and sets pki = y∗.
For every Transact query with i∗ as the sender, the exper-
imenter uses SHVZK property to simulate the transcript.
For any query to corrupt with i = i∗, abort or else answer
honestly. Then, after it receives the challenge transaction
tx∗, it rewinds to generate a tree of accepting transcripts as
defined in H2. If the sender in the transaction tx∗ is not i∗,
we abort as well. Otherwise, it uses the extractor to return
an element sk such that gsk = y∗ and returns this value of
sk.

Theorem 8. Under the DDH Assumption, PriDe CT is
ledger-indistinguishable.

Proof. The proof of this theorem follows the proof of The-
orem 6.5 from Anonymous Zether [7]. However, there are
some notable differences, owing to the simplification of our
scheme and the security game. To begin with, we will reduce
the security to the multi-recipient, randomness-reusing IND-
CPA security game proposed by Bellare et al. [38]
H0 Corresponds to L-INDA,Π(κ)
H1 Same as H0, except that all Σ-proofs are simulated.

We have already argued that there is no difference
advantage between H0 and H1 because of the SHVZK
property of the scheme. Therefore, under DDH, these
two Games are computationally indistinguishable.

H2 Same as H1, except that, in the challenge transaction
tx∗, the receivers’ payload is replaced with a random
value.
Claim 19. Under the MR-RR-INDCPA security of El-
Gamal Encryption, there exists a negligible function
negl such that:(

AdvPriDe CT
Game-2

)
≤ AdvPriDe CT

Game-1 + negl(κ)

Proof: We will use an adversary capable of distin-
guishing A between H1 and H2 to build an adversary
B capable of winning the MR-RR-INDCPA security



game (see Definition 16. Upon receiving the group
description from its challenger B does the following:
• It generates the necessary pp consistent with these

inputs from its challenger.
• It runs A(pp) and receives the balances b

,1, . . . , b,N

as inputs.
• B then returns N to its challenger receiving
pk1, . . . , pkN in response.

• B generates the initial state by computing
U-Enc(pki, b,i),

• B responds to the queries from A as follows:
– Any input to OInsert queries are merely handled

by verification followed by homomorphic multi-
plication.

– Any input to OTransact requires B to generate a
valid multi-recipient, randomness-reusing cipher-
text along with a simulated proof, as specified
earlier.

• B now receives the challenge payload as i,B∗
0,B∗

1,R
which is provided as input to its challenger, receiving
the encrypted challenge ciphertexts. Again, proofs
are simulated even though B does not know which
of the payloads were used

D.3. FUL Security of FUL-Zether

Theorem 5 (Forward-secure Until Last update). Under
DDH Assumption, the construction of FUL-Zether (as de-
scribed in Section 4.3) is FUL-secure.

Proof. Note that interactive proof protocol is a standard Σ
protocol which is honest verifier zero knowledge, as one
can simulate verifying transcripts without having access to
the witness. Specifically, the simulator samples its random
challenge c, and the randomness values srp, sδ, s

′
δ (in addi-

tion to the overall protocol’s randomness of ssk, sr, sb, sτ ).
Then, it can follow the verification steps to compute

Arp = gsrp · c−c
1 , Aδ = gsδ · (pk′/pk)−c, A′

δ = E−c · nCs′δ
B

If g, nCB are not equal to 1, i.e., they are group generators,
then under the DDH assumption, the honest values of A can-
not be distinguished from the simulated values. Therefore,
the simulated transcript is identically distributed.

We will prove the security of our construction by re-
ducing it to the IND-CU-CPA security (as defined in Def-
inition 6) of the UPKE scheme (defined in Definition 3)
Specifically, we will show that if there exists an adversary
AFUL that compromises its security in FULA,Π, then we
can build an adversary that breaks the A In FULA,Π, the
challenger simulates a set of random balances, generates
keys, and then encrypts the balance accordingly. To reduce
it to the IND-CR-CPA security, the challenger of the IND-
CR-CPA game maintains a secret key that is unknown to
the adversary.

For ease of notation let us assume that there exist the
following functions:

• Current-PK(A) returns the current public key of user
A

• Current-SK(A) returns the current secret key of user
A

Further, throughout this proof, we will refer to the sender of
the challenge transaction as Alice and the receiver as Bob.
H0 Corresponds to FULA,Π(κ)
H1 Same as H0, except that all Σ-proofs are simulated.

We have already argued that there is no difference
advantage between H0 and H1 because of the HVZK
property of the scheme. Therefore, under DDH, these
two Games are computationally indistinguishable.

H2 Same as H1, except that the challenge transaction is
generated as follows:

D1 = Current-PK(Bob)r · gpl

D0 =

(
Current-PK(Alice)

Current-PK(Bob)

)r

· g−pl

Ay = Current-PK(Alice)sr · (D0 ·D1)
c

where pl is either B∗
0 or B∗

1
It is easy to verify that this modification still yields an
accepting transcript. Further, under DDH, these two
distributions are indistinguishable.

H3 Same as H1, except that, in the challenge transaction
tx∗, the receiver’s payload is replaced with a random
value. Let us call this receiver as Bob.

Then, we can reduce the distinguishing between H2 and
H3 by to the security of the UPKE Scheme. Let B be the
adversary capable of distinguishing the two games. Then,
we will build A that can break the UPKE Scheme’s IND-
CU-CPA. A does the following: (a) use the challenger of
the IND-CU-CPA scheme to maintain Bob’s account and (b)
the rest is maintained locally. Therefore, it receives Bob’s
public key for time period 0, as pk

(0)
0 from the challenger.

Then, it samples the balance and encrypts it using pk
(0)
0 .

Query Phase. We now look at how A responds on receiving
queries from B. Recall that B can make oracle calls to either:

• OTransact with inputs sender’s index i, and B containing
the receiver’s public key and the payload pl.

• OInsert with input as a transaction tx.
• Any calls to OTransact with Bob as the sender will

require an honest generation of the transaction but
Bob’s secret key is unknown to A. However, as defined
in H2, this will anyway be simulated, as illustrated
earlier in the proof.

• Any calls to OTransact with Bob as the receiver will
simply require A to randomly sample the δ correspond-
ing to an update, update the balance, and provide the
correct input to its Challenger.

• Any calls toOInsert with Bob as the receiver will require
the evolution of Bob’s keys which is maintained by its
challenger. Recall that the IND-CU-CPA requires as
inputs the update ciphertext up and pk′, both of which
are provided by B. Further, it uses the input E from
B as a part of this transaction message to evolve the
balance of Bob correctly.



• Any calls to OInsert with Bob as the sender will be
locally maintained, and no interaction with the IND-
CU-CPA challenger is required.

• Clearly, any transactions received from B either as
input to OInsert or OTransact involving any party that is
not the receiver is handled easily by A. It can honestly
generate transaction messages and also issue them.

Challenge Phase. A receives from B the following inputs:
i, the index of the honest sender, payload choices pl∗0, pl

∗
1,

and the receiver’s identity/public key. A forwards to its
challenger its challenge messages: gpl

∗
0 and gpl

∗
1 . In response,

it receives:
• Challenge Ciphertext: C = gr, D1 =
(Current-PK(Bob))r · gplb for a randomly tossed
bit b.

• Update Ciphertext corresponding to some choice of δ∗

as follows: gr
′
,Current-PK(Bob)r

′ · gδ and proof π
about this values well-formedness.

• Updated Public Key of Bob as Current-PK(Bob) · gδ
and secret key sk∗B .

A ignores the proof π and instead simulates it (as defined
earlier). To compute D1, it does the following:

D0 := CCurrent-SK(Alice) ·D−1
1

A provides the correctly simulated transcript corresponding
to these generated statements as the challenge transaction.
In addition, A also provides the secret key of the receiver
received as sk∗B from its challenger. B’s guess is forwarded
asA’s own guess. It is easy to see that if the tossed bit was 0,
then A correctly simulates the distribution that corresponds
to the payload choice of pl∗0 and similarly if the tossed
bit was 1, the distribution will be the case when pl∗1. The
secret key is correctly distributed. Therefore, B’s advantage
in distinguishing Games H2 and H3 is the same as A’s
advantage in winning the IND-CU-CPA security game.
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