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Abstract. Predicate encryption (PE) is a type of public-key encryption that captures
many useful primitives such as attribute-based encryption (ABE). Although much
progress has been made to generically achieve security against chosen-plaintext attacks
(CPA) efficiently, in practice, we also require security against chosen-ciphertext attacks
(CCA). Because achieving CCA-security on a case-by-case basis is a complicated
task, several generic conversion methods have been proposed, which typically target
different subclasses of PE such as ciphertext-policy ABE. As is common, such
conversion methods may sacrifice some efficiency. Notably, for ciphertext-policy
ABE, all proposed generic transformations incur a significant decryption overhead.
Furthermore, depending on the setting in which PE is used, we may also want to
require that messages are signed. To do this, predicate signature schemes can be
used. However, such schemes provide a strong notion of privacy for the signer, which
may be stronger than necessary for some practical settings at the cost of efficiency.
In this work, we propose the notion of predicate extension, which transforms the
predicate used in a PE scheme to include one additional attribute, in both the keys and
the ciphertexts. Using predicate extension, we can generically obtain CCA-security
and signatures from a CPA-secure PE scheme. For the CCA-security transform,
we observe that predicate extension implies a two-step approach to achieving CCA-
security. This insight broadens the applicability of existing transforms for specific
subclasses of PE to cover all PE. We also propose a new transform that incurs
slightly less overhead than existing transforms. Furthermore, we show that predicate
extension allows us to create a new type of signatures, which we call PE-based
signatures. PE-based signatures are weaker than typical predicate signatures in the
sense that they do not provide privacy for the signer. Nevertheless, such signatures
may be more suitable for some practical settings owing to their efficiency or reduced
interactivity. Lastly, to show that predicate extensions may facilitate a more efficient
way to achieve CCA-security generically than existing methods, we propose a novel
predicate-extension transformation for a large class of pairing-based PE, covered by
the pair and predicate encodings frameworks. In particular, this yields the most
efficient generic CCA-conversion for ciphertext-policy ABE.
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1 Introduction
Predicate encryption (PE) [KSW08] is a paradigm that generalizes multiple powerful
cryptographic primitives1, such as identity-based encryption (IBE) [Sha84, BF01] and
attribute-based encryption (ABE) [SW05]. In contrast to traditional public-key encryption,
PE allows for the fine-grained access control on data [GPSW06a, BSW07]. In PE, the
ciphertexts and secret keys are associated with “entities” x and y, respectively, for which a
predicate P determines the ability of the secret key to decrypt the ciphertext. In particular,
a secret key for y can decrypt a ciphertext for x if and only if P (x, y) = 1 (i.e., “the
predicate is true”). For example, in ciphertext-policy ABE [BSW07], x constitutes an
access policy and y a set of attributes, and P (x, y) = 1 holds if the set of attributes satisfies
the policy2.

Over the years, many works have systematized and improved the techniques to generi-
cally and efficiently achieve security for pairing-based PE against chosen-plaintext attacks
(CPA) [Wee14, Att14, CGW15, Att16, AC16, AC17, ABGW17, Ven23]. By formalizing
the notions of pair encodings [Att14] and predicate encodings [Wee14], a PE scheme can
be abstracted to analyze only “what happens in the exponent”. This simplifies the effort of
proving security to information-theoretic and computational notions of security for vectors
of polynomials. These frameworks are incredibly powerful: many PE schemes can be
captured in them, and hence, these schemes are provably CPA-secure.

While these frameworks support CPA-security, in practice, it is often recommended or
required that the scheme also provides security against chosen-ciphertext attacks (CCA)
[NY90, Sho98]. To this end, many works have proposed CCA-secure PE schemes, e.g.,
[BF01, KG06, Gen06, KV08, TKN21]. Moreover, to achieve CCA-security generically, any
of the proposed transformations can be used, e.g.,

• using non-interactive zero-knowledge (NIZK) proofs of well-formedness [BFM88];

• Fujisaki-Okamoto (FO) [FO99, HHK17];

• Canetti-Halevi-Katz (CHK) [CHK04];

• Boneh-Katz (BK) [BK05];

• Abe et al. (ACIK) [ACIK10];

• Yamada et al. (YA(SS)HK) [YAHK11, YAS+12], which consists of two transforma-
tions: one for delegatable ABE and one for verifiable ABE;

• Blömer-Liske (BL) [BL16];

• Koppula-Waters (KW) [KW19].

However, each of these generic transformations has a drawback. First, the trans-
formation may be restricted to e.g., hierarchical IBE (HIBE) [CHK04, BK05, ACIK10]
or ABE [YAHK11, YAS+12]. Second, the FO-transform, the NIZK approach, and the
transformations for verifiable schemes [YAHK11, YAS+12, BL16] incur an additional cost
during decryption that is linear in the sizes of x and y, which is a significant cost for many
ABE or inner-product encryption [KSW08] schemes. Alternatively, these additional costs

1Our definition of predicate encryption is in line with [AC17], which is more general than in some
other works [KW19, Att19]. In those works, predicate encryption requires x to be hidden. We will use the
notion of attribute hiding (e.g., in Appendix F) to refer to this additional property.

2In this example, x could be called a predicate. However, in its dual variant, key-policy ABE, the keys
are associated with policies and the ciphertexts with sets of attributes, and thus, the predicate is then
associated with the keys, and not the ciphertexts. Similarly, dual-policy ABE [AI09] may specify policies
for the keys and ciphertexts. Hence, we refer to both x and y as predicates (or attributes) throughout this
work.
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may be linear in the security parameter3, such as in KW [KW19] and the transformations
for delegatable CP-ABE [YAHK11]. Notably, for CP-ABE, no CCA-transformations yield
a small and constant overhead.

Furthermore, we may require for some practical settings that not only the recipients of
some data are authenticated using predicates, but also the sender. Currently, this can be
done by using predicate signatures [AHY15], which also covers identity-based [Sha84, BF01]
and attribute-based signatures [MPR11, OT11]. Predicate signatures associate signing
keys with y and signatures with x, such that the predicate P (x, y) is true. Upon verifying
a signature, the verifier learns only that the signer satisfies x, but not which specific y the
signer possesses. This is beneficial for the signer in terms of privacy, but the property may
also be stronger than needed in some practical settings. It may even be too strong for some
settings, as it gives the signer a form of plausible deniability. For example, if x is a set of
identities and y is one specific identity, then the signer can deny having signed a certain
message and claim that another signer with an identity in the set x has signed it. To avoid
such situations, it could be desirable to sign messages directly with a specific y that the
signer possesses, and verify signatures for any x such that P (x, y) holds. Furthermore, not
requiring such privacy properties may be more efficient, e.g., because the description of y
is much shorter than x. Another example of why this may be more efficient is that the
signer can sign a message with y without knowing beforehand which x the verifier requires
the signer to satisfy. They can therefore already sign messages before any communication
has transpired before the first message.

1.1 Our contributions

In this work, we focus on generically achieving CCA-security and signatures from secure
PE by introducing the notion of predicate extension. Specifically, predicate extension
allows us to extend the predicate P of a PE scheme by adding extra attributes x′ and y′ to
x and y (associated with the ciphertexts and secret keys, respectively). The new predicate
then holds for inputs (x, x′) and (y, y′) if both P (x, y) and x′ = y′ hold. Via the extended-
predicate variant of a scheme, we achieve CCA-security and signatures generically with
several novel constructions. Notably, our constructions aim to be as efficient as possible,
building on previous works that are shown to be more efficient than others.

CCA-security. We strive to generically achieve CCA-security as efficiently as possible,
by splitting any such transformations for CCA-security in two explicit steps. In the first
step, the predicate of the scheme is extended using predicate extension. In the second step,
the predicate-extended scheme is used to achieve CCA-security for the original scheme.
Although several existing transformations take these steps implicitly, explicitly considering
them as two steps may lead to more efficient (yet generic) constructions than previous
methods allowed. To illustrate that, we propose several novel transformations that perform
these two steps efficiently. Furthermore, our approach may provide practitioners with more
flexibility in choosing a suitable transformation based on the available implementations of
primitives, because it is possible to mix and match approaches for the two steps. Another
advantage of explicitly separating the process of extending the predicate from the CCA-
security proof is that it may simplify the process of achieving CCA-security in primitives
that cannot be captured with existing techniques yet. For example, for post-quantum
solutions, it may be possible to design more efficient predicate extensions without having
to do an entire CCA-security proof for the new design.

3Typically, the security parameter is fixed, e.g., equal to 128. Nevertheless, the additional costs are
large.
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PE-based signatures. We also put forth the new notion of PE-based signatures, and
provide a generic approach to constructing such signatures from PE schemes via predicate
extensions. In contrast to existing predicate signatures, our definition of PE-based signa-
tures associates both the signing key and signature with y, and verification can be done
for any x such that the predicate P (x, y) is true4. Although this definition is weaker than
predicate signatures in the sense that the specific y used by the signer is not private, it may
be sufficiently strong or even desirable for practice. Furthermore, because our definition
of PE-based signatures is weaker, we can directly construct them from PE schemes via
predicate extensions. To the best of our knowledge, no (semi-)generic constructions exist
yet for predicate signatures, which considerably simplify the design of such schemes.

A new predicate-extension transformation. To optimize the efficiency of concrete con-
structions, we also give a new predicate-extension transformation in the pair and predicate
encodings frameworks. In this way, we can support efficient predicate extension generically
for a large class of pairing-based PE. Our transformation yields more efficient constructions
than the implicitly-defined predicate-extension methods proposed by previous generic
conversion methods. In particular, rather than extending the predicate explicitly by
applying a transformation to a PE scheme, these methods exploit the structures of the
predicates themselves to embed the predicate extension. For example, for (hierarchical) IBE
[CHK04, BK05, ACIK10], this predicate extension is embedded in the (additional “layer” of
the) identity, and for delegatable ciphertext-policy ABE (CP-ABE), the bit-representation
of the predicate extension is encoded as an AND-policy (and is taken in conjunction with
the original policy). Because these transformations exploit the specific structures of the
predicates, they are therefore only applicable to those predicates. Furthermore, especially
in the case of CP-ABE, this adds a considerable efficiency overhead, as the bit size of a
predicate extension is typically 128 or 256 bits.

Mix-and-matching steps. As part of our contributions, we have surveyed various CCA-
security conversion methods and studied if and how they extend the predicates, and how
they prove CCA-security using the extended-predicate variant of the scheme. For some of
the transformations, e.g., CHK and BK, the second step of the proof is so generic that it
can be applied to any predicate-extended scheme, while the first step only applies to a
smaller class of PE (e.g., because they exploit the structure of the predicates). Hence, the
second step can be applied to any predicate-extended PE, effectively widening the class of
applicability for the transform. Table 1 lists those transformations that implicitly use a
two-step approach and their applicability. For the predicate-extension techniques, we also
list whether they yield a constant overhead or not.

1.2 Technical details
We discuss the technical details of our work on a high level. We first explain how existing
transformations for CCA-security work and how our work generalizes these methods. As
part of the generalization, we explicitly define the notion of predicate extension. We then
show that predicate extensions can also be used to generically construct PE-based signatures
in a similar way as we can generically construct regular signatures from identity-based
encryption [BF01].

Warm-up: existing CCA-security transformations. Apart from the NIZK, FO and KW
transformations, all aforementioned generic transformations for CCA-security exploit the
structure of the predicate to efficiently achieve CCA-security. Roughly, they all follow a
similar approach: during encryption, the encrypting user commits to some value, which

4Note that, in the particular case of identity-based signatures, our definition is equivalent.
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Table 1: Comparison of the properties of the several CCA-transformations and our new
transformations. For our CCA-transformations, we also consider alternative pathways
based on the existing transformations to perform the two steps.

Step Variant Primitives Class Requirements Small overhead

Step 1
CHK/BK - (H)IBE - ✓

YA(SS)HK - ABE delegatable ABE ✗
Ours - All PE pair/predicate encodings ✓

Step 2

CHK OTS All PE -
BK encapsulation, MAC, PRG All PE -

ACIK RPC (H)IBE partitioned KEM
Ours RPC All PE decomposable ciphertexts

Note: RPC = random-prefix collision-resistant hash function,
OTS = one-time signature, PRG = pseudo-random generator,

MAC = message authentication code

is then embedded in the predicate in addition to the original predicate. Depending on
the technique, the value to which is commited is either generated independently of the
ciphertext [CHK04, BK05, YAHK11] or by applying a hash with a specific property to
the ciphertext [ACIK10, BL16]. Although the latter requires that the ciphertext is of a
specific structure (which many pairing-based schemes satisfy), it relies on fewer primitives
and yields less storage overhead on the ciphertext.

Our CCA-transformation. On a high level, our approach to achieving CCA-security
consists of two steps (which is shown in an overview in Figure 1). First, we transform a
CPA-secure PE ΓPE,IND-CPA,P for predicate P into a CPA-secure PE ΓPE,IND-CPA,P ′ for
extended predicate P ′. For this step, we propose novel generic constructions in the pair and
predicate encodings frameworks. (We also show that our predicate-encoding transformation
preserves the attribute-hiding property in [CGW15].) As a result, many pairing-based PE
schemes can be transformed using this construction. Second, we transform any CPA-secure
PE ΓPE,IND-CPA,P ′ for extended predicate P ′ into a CCA-secure PE ΓPE,IND-CCA,P for the
original predicate P . This step can be done by using similar approaches as CHK and BK.
We also give a new transformation based on the ACIK-approach, which is more efficient
than CHK and BK. While ACIK only applies to IBE, our new transformation applies to
any PE scheme for which the ciphertexts are “decomposable” (which is a similar notion to
that of partitioned in [ACIK10]).

Step one: securely extending the predicate. We first extend the predicate P to some
predicate P ′ = PredEx[P ]. The idea behind this is similar to the approach for hierarchical
IBE [CHK04, BK05, BCHK07] and delegatable KP-ABE by Yamada et al. (YAHK)
[YAHK11], and is later also applied using wildcards by Tomida et al. [TKN21]. Roughly,
the secret key predicate y is extended to y∧y′, where y′ is either an attribute or a wildcard
∗, and the ciphertext predicate x is extended to (x, x′), where x′ is an attribute. The
predicate is satisfied if P (x, y) and either y′ = ∗ or y′ = x′ holds. We provide a new
transformation in the pair and predicate encodings framework that extends the predicate
in this way. The computational overhead incurred by our transformation is a low constant,
and unlike YAHK, we do not require the PE scheme to be a delegatable KP-ABE for the
transformation to work. Because we generically transform any PE into a scheme with this
specific extended predicate, we can also efficiently support CCA-security in e.g., CP-ABE.
Roughly, we take an AND-composition over the original PE and an “all-or-one-identity”
IBE, by using the ideas from Ambrona et al. [ABS17] and Attrapadung [Att19]. For the
“all-or-one-identity” IBE, we use the first scheme of Kiltz and Vahlis [KV08] as inspiration,
which is essentially implied by a composition of the Boneh-Boyen (BB) IBE [BB04] with a
wildcard variant of the same scheme.



6 Using Predicate Extension for PE

PE
IND-CPA

P

PE
IND-CPA
PredEx[P ]

PE
IND-CCA

P

PEBS
EUF-CMA

P

Section 5

[BCHK07, YAHK11, KW19]

Defin
itio

n 9

Theo
rem

1

[CHK04,
BK05]

Definition 13

Theorem
2

[BF01]

Figure 1: A high-level overview of the transformations and our associated definitions
and theorems that prove security of the given transformations. The double-edged arrows
indicate that we give a novel provably secure generic transformation in this work, while
the normal-edged arrows provide transformations that have been given in other works.

Step two: achieving CCA-security. We first consider on a high level what the CCA-
transformation looks like. Let Γ = (Setup, KeyGen, Encaps, Decaps) be a predicate key-
encapsulation scheme (possibly derived from a PE) for the extended predicate, such that
that ciphertext is of the form

Encaps(MPK, (x, x′)) = (K, CT1, CT2,(x,x′)),

where MPK is the master public key generated in the Setup, K is the encapsulated key
to be used to symmetrically encrypt, CT1 is some randomized part of the ciphertext
that is independent of extended predicate (x, x′), and CT2,(x,x′) denotes the rest of the
ciphertext. Following the approach by Kiltz and Vahlis [KV08] and Abe et al. (ACIK)
[ACIK10], we first split the key-encapsulation algorithm in two parts, and then introduce
an authenticated encryption scheme SE = (EncK, DecK) and a random-prefix collision-
resistant hash function RPC (which takes as input a random prefix k and another input
to be hashed), i.e.,

Encaps(MPK, (x, x′)) = (K, CT1︸ ︷︷ ︸
Encaps1

, CT2,(x,x′)︸ ︷︷ ︸
Encaps2

).

Then, we obtain the CCA-transformed encryption as follows

Encrypt′(MPK, x , M) = ( CTsym = EncK(M∥CT2,(x,x′)) , CT1, CT2,(x,x′), k),

where (K, CT1)← Encaps1(MPK), k ∈R {0, 1}λ, x′ ← RPC(k, CT1), and then CT2,(x,x′) ←
Encaps2(MPK, (x, x′)).
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Proving CCA-security. We prove CCA-security of the proposed generic construction
similarly as other transformations [CHK04, BK05, KV08, ACIK10, YAHK11]. Specifically,
the decryption queries are answered as follows. Suppose that CTx = (CTsym, CT1,
CT2,(x,x′)) is some ciphertext and y is some predicate such that P (x, y) = 1, queried
by the attacker. Then, the challenger can generate a secret key for (y, y′ = x′), and
decrypt the ciphertext. The challenger rejects a decryption query if it is similar to the
challenge ciphertext CT∗

x∗ = (CT∗
sym, CT∗

1, CT2,(x∗,x′∗)), i.e., if CT1 ̸= CT∗
1 and x′ = x′∗,

or if K = K∗ and CTsym ̸= CT∗
sym or CT2,(x,x′) ≠ CT∗

2,(x∗,x′∗). Intuitively, the probability
that a valid ciphertext is rejected—i.e., the probability that a valid ciphertext satisfies any
of these conditions—is negligible due to the random-prefix collision resistance of the hash
RPC and the authenticity of the symmetric encryption scheme SE = (EncK, DecK).

Alternative pathways to achieving CCA-security. Although the proposed transformations
for the two steps are applicable to large classes of existing PE schemes, they do not apply to
all PE schemes. For example, post-quantum schemes [AFV11, ABV+12, Boy13, GVW13]
are not covered by our predicate-extension transformation, and not all schemes may be
decomposable and therefore qualify for our second-step transformation. To make our second
step more generic, one could also use the BK-approach [BK05], which does not require the
extended-predicate scheme to have ciphertexts with a certain structure5. However, it does
provide more storage overhead and relies on more primitives (i.e., two independent hash
functions, a message authentication code and a pseudo-random generator). The latter may
be undesirable in practice, e.g., because no suitable implementations are available of all
these primitives. In this regard, our second-step transformation could provide an effective
solution, as it requires only one hash function. Regardless, because the second step can be
done entirely generically (i.e., via the BK approach), the effort of achieving CCA-security
is reduced to finding an efficient predicate extension, instead of performing a full-fledged
CCA-security conversion.

Step two: PE-based signatures. Via predicate extension, we can also achieve PE-based
signatures (PEBS). In particular, we transform any CPA-secure PE ΓPE,IND-CPA,P ′ for
extended predicate P ′ into a PE-based signature scheme ΓPEBS,CCA,P for the original
predicate P (see the overview in Figure 1). We prove the resulting PEBS to be existentially
unforgeable under chosen-message attacks (EUF-CMA). The approach can be seen as a
generalization of the BF approach to convert an IBE scheme to a signature scheme [BF01].
In the BF approach, the signer signs a message by embedding it in the identity (using
a collision-resistant hash function) and generating a key for that identity. A signature
can be verified by first encrypting a random message under the identity that embeds the
message (using a hash) and then decrypting the resulting ciphertext, which should yield
the same random message.

Generalizing the BF approach to sign with PE keys. We give a high-level explanation
of our generalization of the BF approach. In our generic construction, the message is
embedded in the predicate extension of the secret keys in a similar way, i.e., (y, y′). Then,
a random message is encrypted under (x, x′) (where x′ is the hashed message), and the
resulting ciphertext is decrypted to verify that the key works and therefore constitutes
a valid signature. Compared to the BF approach, the main challenge that we have to
overcome is that we do not want the users to generate secret keys for the entire key
“attribute” (y, y′) (where y′ corresponds to the hash of the message). Instead, we want the
key-generation authority to generate a secret key for a user with “attribute” y, and that
the user is then able to delegate the key to the attribute (y, y′) when signing a message.

5The security proof of the generalized variant of the BK-transformation is analogous to that of the
BK-transformation itself.
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To do this, we use a similar approach as in our CCA-security transformation. We generate
keys for (y, ∗), where ∗ denotes a wildcard. However, unlike in our CCA-transformation,
we do not want the holder of the key to decrypt for (y, y′). Instead, we want the key holder
(i.e., the signer) to delegate the key from (y, ∗) to (y, y′), so that the verifier can use it
to decrypt a randomly generated ciphertext. To facilitate this, we define a delegation
function for PE with predicate extension that allows a key for (y, ∗) to be delegated to a
key for (y, y′). We show that our predicate-extension transformation for pair and predicate
encodings supports such a delegation function.

Proving EUF-CMA security. We prove that the signature scheme is EUF-CMA-secure if
the PE scheme is CPA-secure. To do this, we use a similar approach as in the security
proof for our generic CCA-secure construction. In the security reduction for the signature
scheme, the EUF-CMA attacker can request signing keys for y, which correspond to key
queries for (y, ∗) to the CPA attacker. The EUF-CMA attacker can also request signatures
on messages for y, which correspond to key queries for (y, y′), where y′ is the embedded
message. Ultimately, the EUF-CMA attacker outputs a forgery on message M∗ and
“attribute” y∗. This forgery is a secret key of the PE scheme for (y∗, (y′)∗), where (y′)∗

is the hashed message. Because we consider existential unforgeability (and not strong
unforgeability), M∗ cannot be queried before. Additionally, the hash is collision resistant,
so this is the first occurrence of any key with predicate extension (y′)∗. So, any (x, x′)
with x′ = (y′)∗ and P (x, y) = 0 for all y that are used in the signing-key queries can now
be queried by the CPA attacker, as well as any two arbitrary messages. The challenge
ciphertext can then be decrypted using the secret key for (y∗, (y′)∗).

1.3 Organization
This paper is structured as follows. We first provide some notations and definitions in
Section 2. Then, in Section 3, we give the generic transformations from any CPA-secure
PE ΓPE,IND-CPA,P ′ for extended predicate P ′ into a CCA-secure PE ΓPE,IND-CCA,P for
original predicate P , i.e., step 2. After this, we show how we can use predicate extensions
to generically construct PE-based signatures. In Section 4, we show how to construct
PE-based signatures from predicate-extended PE. In Section 5, we propose novel generic
predicate-extension transformations that transform any CPA-secure PE ΓPE,IND-CPA,P

for predicate P into a CPA-secure PE ΓPE,IND-CPA,P ′ for extended predicate P ′, i.e., step
1. We first give the more general steps of the transformation and then the less generic
step, mainly due to the “level of genericness”. Finally, we compare the performance of our
CCA-transformation in Section 6, and conclude the paper in Sections 7 and 8 by discussing
future directions.

2 Preliminaries
2.1 Notation
We use λ to denote the security parameter. We denote a negligible function parametrized
by λ by negl(λ). If an element is chosen uniformly at random from a finite set S, then
we denote this as x ∈R S. For integers a < b, we denote [a, b] = {a, a + 1, ..., b − 1, b},
[b] = [1, b] and [b] = [0, b]. We use boldfaced variables A and v for matrices and vectors,
respectively. We use a∥b to indicate that two strings a and b are concatenated.

2.2 Pairings (or bilinear maps)
We define a pairing to be an efficiently computable map e on three groups G,H and GT

of prime order p, so that e : G×H→ GT , with generators g ∈ G, h ∈ H is such that for
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all a, b ∈ Zp, it holds that e(ga, hb) = e(g, h)ab (bilinearity), and for ga ̸= 1G, hb ̸= 1H, it
holds that e(ga, hb) ̸= 1GT

, where 1G′ denotes the unique identity element of the associated
group G′ (non-degeneracy). We refer to G and H as the two source groups, and GT as the
target group.

2.3 Predicate encryption
Predicate family. A predicate family [Att14] is a set P = {Pκ}κ∈Nc for some constant
c, where Pκ : Xκ × Yκ → {0, 1}. For κ, it holds that κ = (p, par), where p is a natural
number and par denote the rest of the entries.

Definition 1 (Predicate encryption (PE) [AC17]). A predicate encryption scheme for
a predicate family P = {Pκ}κ∈Nc over a message space M = {Mλ}λ∈N consists of four
algorithms:

• Setup(λ, par): On input the security parameter λ and parameters par, this proba-
bilistic algorithm generates the domain parameters, the master public key MPK and
the master secret key MSK. In addition, κ is set to κ = (p, par), where p denotes a
natural number.

• KeyGen(MSK, y): On input the master secret key MSK and some y ∈ Yκ, this
probabilistic algorithm generates a secret key SKy.

• Encrypt(MPK, x, M): On input the master public key MPK, some x ∈ Xκ and
message M , this probabilistic algorithm generates a ciphertext CTx.

• Decrypt(MPK, SKy, CTx): On input the master public key MPK, the secret key
SKy, and the ciphertext CTx, if Pκ(x, y) = 1, then it returns M . Otherwise, it
returns an error message ⊥.

Correctness. For all par, M ∈Mλ, x ∈ Xκ, and y ∈ Yκ such that Pκ(x, y) = 1,

Pr[(MPK, MSK)← Setup(1λ);
Decrypt(MPK, KeyGen(MSK, y), Encrypt(MPK, x, M)) ̸= M ] ≤ negl(λ).

Key-encapsulation mechanism (KEM). In the key-encapsulation variant (Appendix A),
which we call predicate KEM (P-KEM), we replace Encrypt by Encaps and Decrypt by
Decaps, where Encaps also outputs a symmetric key, and Decaps outputs a symmetric key
instead of a plaintext message.

2.4 Full security against chosen-plaintext attacks
Definition 2 (Full security against chosen-plaintext attacks (CPA) [AC17]). We define
the security game IND-CPA(λ, par) between challenger and attacker as follows:

• Setup phase: The challenger runs Setup(λ) to obtain MPK and MSK, and sends
the master public key MPK to the attacker.

• First query phase: The attacker queries secret keys for y ∈ Yκ, and obtains
SKy ← KeyGen(MSK, y) in response.

• Challenge phase: The attacker specifies some x∗ ∈ Xκ such that for all y in the
first key query phase, we have Pκ(x∗, y) = 0, and generates two messages M0 and
M1 of equal length in Mλ, and sends these to the challenger. The challenger flips a
coin, i.e., β ∈R {0, 1}, encrypts Mβ under x∗, i.e., CTx∗ ← Encrypt(MPK, x∗, Mβ),
and sends the resulting ciphertext CTx∗ to the attacker.
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• Second query phase: This phase is identical to the first query phase, with the
additional restriction that the attacker can only query y ∈ Yκ such that Pκ(x∗, y) = 0.

• Decision phase: The attacker outputs a guess β′ for β.

The advantage of the attacker is defined as AdvPE,IND-CPA = |Pr[β′ = β] − 1
2 |. A

scheme is fully secure if all polynomial-time attackers have at most a negligible advantage
in this security game, i.e., AdvPE,IND-CPA ≤ negl(λ).

In the selective security model, the attacker commits to the predicate x∗ ∈ Xκ before
the Setup phase.

2.5 Full security against chosen-ciphertext attacks
Definition 3 (Full security against chosen-ciphertext attacks (CCA)). We define the
security game IND-CCA(λ, par) between challenger and attacker as follows:

• Setup phase: The challenger runs Setup(λ) to obtain MPK and MSK, and sends
the master public key MPK to the attacker.

• First query phase: The attacker can make two types of queries:

– Key query: the attacker queries secret keys for y ∈ Yκ, and obtains SKy ←
KeyGen(MSK, y) in response.

– Decryption query: the attacker sends a ciphertext CTx for x ∈ Xκ and
y ∈ Yκ, with Pκ(x, y) = 1, to the challenger, who returns the message M ←
Decrypt(MPK, SKy, CTx), where SKy ← KeyGen(MSK, y).

• Challenge phase: The attacker specifies some x∗ ∈ Xκ such that for all y in the
first key query phase, we have Pκ(x∗, y) = 0, and generates two messages M0 and
M1 of equal length in Mλ, and sends these to the challenger. The challenger flips a
coin, i.e., β ∈R {0, 1}, encrypts Mβ under x∗, i.e., CT∗

x∗ ← Encrypt(MPK, x∗, Mβ),
and sends the resulting ciphertext CT∗

x∗ to the attacker.

• Second query phase: This phase is identical to the first query phase, with the
additional restriction that the attacker can only query keys for y ∈ Yκ such that
Pκ(x∗, y) = 0, and it cannot make a decryption query for CT∗

x∗.

• Decision phase: The attacker outputs a guess β′ for β.

The advantage of the attacker is defined as AdvPE,IND-CCA = |Pr[β′ = β] − 1
2 |. A

scheme is fully secure if all polynomial-time attackers have at most a negligible advantage
in this security game, i.e., AdvPE,IND-CCA ≤ negl(λ).

2.6 Authenticated symmetric encryption
Definition 4 (Symmetric encryption). Let λ be the security parameter. A symmetric
encryption scheme SE = (EncK, DecK), with symmetric key K ∈ K(λ), where K(λ) is some
key space of size λ, is defined by

• EncK(M): On input message M ∈ {0, 1}∗, encryption returns a ciphertext CTsym.

• DecK(CTsym): On input ciphertext CTsym, decryption returns a message M or an
error message ⊥.

The scheme is correct if for all keys K ∈ K(λ) and all messages M ∈ {0, 1}∗, we have
DecK(EncK(M)) = M .
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For symmetric encryption, we use the same security notions as in [KV08], i.e., ciphertext
indistinguishability and ciphertext authenticity.

Definition 5 (Ciphertext indistinguishability of symmetric encryption). Let λ be a security
parameter and let SE = (EncK, DecK) be an (authenticated) symmetric encryption scheme.
Consider the following game between challenger C and attacker A. The challenger first picks
a key K ∈ K(λ). Then, the attacker specifies two messages M0, M1 and gives these to the
challenger, who flips a coin β ∈R {0, 1} and returns CTsym ← EncK(Mβ) to the attacker.
The attacker A outputs a guess β′ for β. Then, SE = (EncK, DecK) has indistinguishable
ciphertexts if for all polynomial-time attackers A in the game above holds:

AdvSE,CIND =
∣∣∣∣Pr[β′ = β]− 1

2

∣∣∣∣ ≤ negl(λ).

In this work, we will often assume that K(λ) is the target group GT . Because most
encryption schemes take a key that is a bit string of λ or 2λ bits as input, we use a
secure key derivation function KDF: K(λ)→ {0, 1}λ (or {0, 1}2λ) to map the target group
elements to strings [CS03].

Definition 6 (Ciphertext authenticity of authenticated encryption). Let λ be a security
parameter and let SE = (EncK, DecK) be an (authenticated) symmetric encryption scheme.
Consider the following game between challenger C and attacker A. The challenger first
picks a key K ∈ K(λ). Then, the attacker specifies one message M and gives it to the
challenger, who returns CTsym ← EncK(M) to the attacker. The attacker outputs a
ciphertext CT′

sym. Then, the encryption scheme has ciphertext authenticity if for all such
attackers holds that AdvSE,CAUT = Pr[DecK(CT′

sym) ̸= ⊥ ∧ CT′
sym ̸= CTsym] ≤ negl(λ).

We define a random-prefix collision-resistant hash function (RPC) as follows.

Definition 7 (Random-prefix collision-resistant hash function (RPC) [ACIK10]). Let λ
be a security parameter, and let RPC: {0, 1}λ ×G → Z be a hash function that takes two
inputs, one in {0, 1}λ and one in G, and maps it to an element in Z. Consider the following
game between challenger C and attacker A. The attacker gives the challenger some g ∈ G.
The challenger then picks k ∈ {0, 1}λ, and gives k and RPC(k, g) to the attacker. Then, the
RPC is random-prefix collision resistant if for all such attackers, it holds that the advantage
AdvRPC = Pr[(k′, g′) ∈ {0, 1}λ ×G ∧ (k′, g′) ̸= (k, g)∧RPC(k′, g′) = RPC(k, g)] ≤ negl(λ).

In this work, we use the concrete instantiation given by Abe et al. [ACIK10]. In
particular, their instantiation of the RPC hash is a second pre-image resistant hash that
takes as input a 128-bit string k and the element in G.

3 Our generic CCA-transformation
We introduce our generic transformation for CCA-secure PE.

3.1 Step one: extending the predicate
Let ΓPE,IND-CPA,P be a predicate encryption scheme for the predicate family P = {Pκ}κ

with Pκ : Xκ×Yκ → {0, 1}. In the first step of our approach, we transform it into a scheme
ΓPE,IND-CPA,P ′ for predicate P ′ = PredEx[P ], where PredEx[P ] denotes the predicate
extension required by the CCA-transformation on predicate P , i.e., P ′

κ : X ′
κ ×Y ′

κ → {0, 1},
where

• X ′
κ = (Xκ,Z) and Y ′

κ = (Yκ,Z ∪ {∗}), where |Z| ≥ 22λ;

• P ′
κ((x, x′), (y, y′)) = 1 if and only if
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– Pκ(x, y) = 1 and y′ = ∗;
– or Pκ(x, y) = 1 and x′ = y′.

In Section 5, we give several predicate-extension transformations that generically
transform a CPA-secure PE scheme for the predicate P in a CPA-secure PE scheme
for predicate PredEx[P ]. Conceptually, we do this by making an AND-composition of
the original PE scheme for predicate P with an “all-or-one-identity” IBE. In an “all-or-
one-identity” IBE, a user is given either a key for one particular identity y′ ∈ Z or all
identities y′ = ∗. These transformations are not fully generic, because they only apply to
pairing-based ABE. In particular, they are given in the pair encodings [Att14, AC17] and
predicate encodings [Wee14, CGW15] frameworks, since it is relatively simple to generically
prove security of such transformations [ABS17], and many PE schemes can be instantiated
in these frameworks [AC17, Att19, Amb21].

We note that a scheme with an extended predicate can also be obtained in other
ways. For instance, the approaches used for (H)IBE [CHK04, BK05, BCHK07] also apply.
Additionally, the generic transformations using delegation by Yamada et al. [YAHK11]
yield suitable candidates as well, but only for KP-ABE and CP-ABE. Furthermore, the
transformation by Tomida et al. [TKN21] using delegation is similar to our proposed
constructions in Section 5, but these only work for their specific KP-ABE and CP-ABE
schemes, and are not generic in the sense that they can be applied to any PE. While our
transformations in Section 5 are specific to pairing-based PE, a similar approach may also
work for PE based on other cryptographic assumptions, for instance, by creating an “all-or-
one-identity” IBE from a suitable IBE from post-quantum assumptions [GPV08], and taking
an AND-composition with any post-quantum PE [AFV11, ABV+12, Boy13, GVW13].

3.2 Step two: generic CCA-secure construction
Much like in [KV08] and [ACIK10], the predicate extension is generated from part of the
ciphertext. To this end, we introduce the notion of “decomposable extended-predicate
encryption (EPE)”, which we use as input to the CCA-security transformation. In
decomposable EPE, we decompose the ciphertext in three parts, such that one of the parts
is used to generate the predicate extension with the hash.

Definition 8 (Decomposable EPE). An EPE scheme with encryption algorithm Encrypt
is called decomposable if the ciphertexts are decomposable. The ciphertexts CT(x,x′) ←
Encrypt(MPK, (x, x′), M) are decomposable if they can be decomposed:

CT(x,x′) = (CTM, CT1, CT2,(x,x′)), such that

• only CT2,(x,x′) depends on (x, x′);

• only CTM contains the message;

• M is uniquely determined by CTM, MPK and CT1, and conversely, CT1 is uniquely
determined by M , MPK and CTM;

• CT1 ∈ G is generated independently of CT2,(x,x′);

• for any (x̂, x̂′) ∈ X ′
κ with x̂′ ≠ x′, we have that any CT2,(x̂,x̂′) that is valid for CT1

is such that CT2,(x̂,x̂′) ̸= CT2,(x,x′);

• CT1 is generated uniformly at random over G, such that Pr[CT1 = CT′
1 | CT′

1 ∈R

G] ≤ negl(λ).

In this case, we also define two algorithms for encryption, i.e.,
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• Encrypt1(MPK, M)→ (CTM, CT1);

• Encrypt2(MPK, (x, x′))→ CT2,(x,x′),

such that

Encrypt(MPK, (x, x′), M) = (Encrypt1(MPK, M), Encrypt2(MPK, (x, x′))).

Decomposable EP-KEM. This definition naturally extends to the key-encapsulation
variants of EPE, i.e., by replacing CTM by the encapsulated symmetric key K. In this case,
K is required to be uniquely determined by MPK and CT1. We can generically obtain a
EP-KEM from an EPE by encrypting a randomly-generated symmetric key K. For PE
schemes with a certain algebraic structure, we can also generically obtain a more efficient
KEM (Appendix B).

Generic construction. We use a CPA-secure decomposable EP-KEM with an extended
predicate to generically construct a CCA-secure hybrid PE for the original predicate.

Definition 9 (Generic CCA-secure construction). Let ΓPE = (Setup, KeyGen,
Encaps, Decaps) be a predicate key-encapsulation mechanism for the predicate fam-
ily P = {Pκ}κ with Pκ : Xκ × Yκ → {0, 1}, and suppose ΓEP-KEM = (SetupEP-KEM,
KeyGenEP-KEM, EncapsEP-KEM, DecapsEP-KEM) is a decomposable extended-predicate
KEM for predicate P ′ = PredEx[P ] (e.g., obtained with a predicate-extension trans-
formation (Section 5)). Let SE = (EncK, DecK) be an authenticated symmetric encryption
scheme with key space Kλ equal to the space in which CTM lives, and RPC: {0, 1}λ×G → Z
be a random-prefix collision-resistant hash function. Then, we define Γ′

PE = (Setup′,
KeyGen′, Encrypt′, Decrypt′) to be the CCA-secure hybrid encryption version of scheme
ΓPE for predicate P as follows.

• Setup′
PE(λ, par): On input λ and par, the setup generates (MPK, MSK) ←

SetupEP-KEM(λ, par), and sets MPK′ = MPK and MSK′ = MSK.

• KeyGen′
PE(MSK′, y): On input the master secret key MSK′ and some y ∈ Yκ, it

returns SK′
y ← KeyGenEP-KEM(MSK, (y, ∗)).

• Encrypt′
PE(MPK′, x, M): On input the master public key MPK′, x ∈ Xκ and mes-

sage M ∈ {0, 1}∗, the encrypting user computes (K, CT1)← Encaps1,EP-KEM(MPK),
picks k ∈R {0, 1}λ and sets x′ = RPC(k, CT1), then generates CT2,(x,x′) ←
Encaps2,EP-KEM(MPK, (x, x′)), and computes6 CTsym ← EncK(M∥CT2,(x,x′)), and
returns

CT′
x = (CTsym, CT1, CT2,(x,x′), k).

• Decrypt′
PE(MPK′, SK′

y, CT′
x): On input the master public key MPK′, the secret key

SK′
y, and the ciphertext CT′

x = (CTsym, CT1, CT2,(x,x′), k), if Pκ(x, y) = 1, then the
decrypting user computes x′ = RPC(k, CT1) and

K′ ← DecapsEP-KEM(MPK, SK(y,∗), (CT1, CT2,(x,x′))).

The user computes (M ′∥CT′
2,(x,x′))← DecK′(CTsym), and if CT′

2,(x,x′) = CT2,(x,x′),
returns M ′.

Correctness. The scheme is correct, i.e., if Pκ(x, y) = 1, then M ′ = M , because the cor-
rectness of the P-KEM ensures that K = K′, and thus, (M ′∥CT′

2,(x,x′)) = DecK′(CTsym) =
DecK(CTsym) = DecK(EncK(M∥CT2,(x,x′))) = (M∥CT2,(x,x′)).

6If one uses an authenticated encryption scheme with associated data [Rog02], one can also treat
CT2,(x,x′) as associated data, as it does not need to be secret.
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Security. We prove the following theorem.

Theorem 1. In Definition 9, if ΓEP-KEM is a decomposable CPA-secure P-KEM for the
extended predicate PredEx[P ], RPC is a random-prefix collision-resistant hash function
and SE = (EncK, DecK) is an authenticated encryption scheme, such that the RPC is
independent of ΓEP-KEM and SE, then Γ′

PE is CCA-secure.

Proof. We prove this theorem in a series of games in which we start with the real CCA-
security game: Game 0. Let CT∗

x∗ = (CT∗
sym, CT∗

1, CT∗
2,(x∗,x′∗), k∗) denote the challenge

ciphertext (with K∗ being the decryption key) for the challenge predicate x∗ and message
Mβ . Let q be the number of decryption queries, and let Xi denote the event that attacker
ACCA is successful in Game i.

Game 1: In this game, everything is the same as in Game 0, except that, in the first query
phase, all decryption queries with CT1 = CT∗

1 are rejected. Additionally, in both query
phases, the decryption queries with (CT1, k) ̸= (CT∗

1, k∗) and x′ = x′∗ are rejected. The
probability that CT1 = CT∗

1 holds for any honestly generated ciphertext is 1
G . Furthermore,

the probability that any x′ for (CT1, k) ̸= (CT∗
1, k∗) is such that RPC(k, CT1) = x′ = x′∗ =

RPC(k∗, CT∗
1) is equal to Pr[(CT1, k) ̸= (CT∗

1, k∗) ∧ RPC(k, CT1) = RPC(k∗, CT∗
1)] =

AdvRPC. Hence, we have

|Pr[X0]− Pr[X1]| ≤ q

G
+ AdvRPC.

Game 2: In this game, everything is the same as in Game 1, except that, in the second
query phase, all decryption queries are rejected where CTsym ̸= CT∗

sym holds, and the key
K← DecapsEP-KEM(MPK, SK(y,∗), CTx) is such that K = K∗. Because this property can
only hold if the ciphertext authenticity of the SE is broken, we have

|Pr[X1]− Pr[X2]| ≤ AdvSE,CAUT.

Game 3: In this game, everything is the same as in Game 2, except that, in the second
query phase, all valid decryption queries are rejected where CT2,(x,x′) ≠ CT∗

2,(x∗,x′∗) holds,
and K = K∗ (and thus, CT1 = CT∗

1). Note that this can happen only if the ciphertext
authenticity of SE is broken, because the attacker has to generate a valid ciphertext for
the same key K∗ and another message. Hence, we have

|Pr[X2]− Pr[X3]| ≤ AdvSE,CAUT.

Game 4: At this point, all ciphertexts that are queried in the second phase and that are
not rejected are such that, for the keys, it holds that K ̸= K∗. This follows from the fact
that K is uniquely determined by MPK and CT1 (and vice versa), and thus, if K = K∗,
then CT1 = CT∗

1. By extension, we have (CTsym, CT2,(x,x′), k) ̸= (CT∗
sym, CT∗

2,(x∗,x′∗), k∗).
(Note that, if k ̸= k∗, we also have CT2,(x,x′) ≠ CT∗

2,(x∗,x′∗), which follows from rejecting
all ciphertexts with x′ = x′∗ in Game 1. From the fact that the EP-KEM is decomposable,
it follows that x′ ̸= x′∗ implies CT2,(x,x′) ≠ CT∗

2,(x∗,x′∗).) For these cases, we had rejected
the decryption queries (in Games 2 and 3). Because this game is the same as Game 3, we
have

|Pr[X3]− Pr[X4]| = 0.

Game 5: In this game, everything is the same as in Game 4, except that we generate the
challenge ciphertext as follows. Let ORPC denote the oracle that finds k ∈ {0, 1}λ such
that RPC(k, g) = z for any given (g, z) ∈ G × Z. Because RPC is independent of the
P-KEM and symmetric encryption scheme, this does not give the attacker any advantage.
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Then, the challenger generates (K∗, CT1, CT2,(x∗,x′∗))← EncapsEP-KEM(MPK, (x∗, x′∗))
for the challenge predicate x∗ and randomly chosen x′∗, and queries the oracle ORPC with
(CT1, x′∗), which returns k∗ if it exists. (Otherwise, it repeats the process of generating
new ciphertexts until the oracle provides some output k∗. This likely succeeds because
of the random-prefix collision resistance of the RPC. Intuitively, if many such inputs
exist for which the oracle does not return a output, we can also find many g such that
there exist at least two k, k′ with RPC(k, g) = RPC(k′, g), which breaks the random-prefix
collision resistance of the RPC.) The challenger then outputs the challenge ciphertext as
(K̂∗, CT1, CT2,(x∗,x′∗), k∗), where K̂∗ is a randomly chosen key that replaces K∗. Because
the attacker cannot make decryption queries for K∗, it can only distinguish this game from
Game 4 by breaking the CPA-security of the EP-KEM. Therefore, we have

|Pr[X4]− Pr[X5]| ≤ AdvEP-KEM,IND-CPA.

Game 6: In this game, everything is the same as in Game 5, except we replace the challenge
message by a randomly generated message of the same length as Mβ . By the ciphertext
indistinguishability of the symmetric encryption scheme, no attacker can distinguish Game
5 from Game 6, i.e.,

|Pr[X5]− Pr[X6]| ≤ AdvSE,CIND.

Summary: In this final game, because the ciphertext is for a random message, the success
probability of the attacker is 1

2 , i.e., Pr[X6] = 1
2 . This gives us the following upper bound

on the advantage of the attacker in the real security game:

AdvPE,IND-CCA =
∣∣∣∣Pr[X0]− 1

2

∣∣∣∣
≤ q

G
+ AdvRPC + 2AdvSE,CAUT

+ AdvEP-KEM,IND-CPA + AdvSE,CIND.

Since all advantages on the right-hand side are negligible in λ, it holds that AdvPE,IND-CCA
is negligible in λ.

Remark 1. The predicate extension x′∗ associated with the ciphertext is determined
during encryption by the challenger, and not by the attacker. Possibly, to obtain a fully
CCA-secure hybrid PE scheme, one can make an AND-composition of a selectively secure
“all-or-one-identity” IB-KEM and a fully secure P-KEM. In this case, a selectively secure
IB-KEM is sufficient, because the challenger can generate the predicate extension x′∗

before generating the challenge ciphertext. Formalizing such a composition is however
not trivial, for instance, because the master public keys of fully secure and selectively
secure schemes have a different structure and are thus difficult to split (to build the AND-
composition). We therefore believe that such a generic transformation is not as simple
to prove generically secure as the proposed transformations in this work. Additionally, it
may require a combination of various (complex) proof techniques.
Remark 2. Our proof techniques are similar to but also slightly different from the ACIK
techniques. In fact, by feeding CT2,(x,x′) through the authenticated symmetric encryption
scheme, a part of the proof is more similar to the BK-approach. However, unlike BK,
we use the same key K to encrypt and authenticate the message M , and to authenticate
CT2,(x,x′). To ensure that this can be done securely, we require MPK, M , CTM and
CT1 to be highly dependent on one another. This property is arguably easier to verify
than ACIK’s rejection property. Furthermore, we explicitly require CT1 to be sufficiently
random (which is a requirement that is inspired by the KV scheme [KV08]). Lastly, note
that our property that, for any (x̂, x̂′) ∈ X ′

κ with x̂′ ̸= x′, we have that any CT2,(x̂,x̂′)
that is valid for CT1 is such that CT2,(x̂,x̂′) ≠ CT2,(x,x′), is similar to ACIK’s unique-split
property.



16 Using Predicate Extension for PE

3.3 Variation on the construction: special decomposable EP-KEM

One of the differences between our transformation and the transformation by Abe et al.
[ACIK10] is that we do not require the CT2,(x,x′) part to be uniquely defined from CT1.
Instead, we require the encapsulated key K to be uniquely determined by CT1. We do
this, because many PE schemes do not uniquely determine CT2,(x,x′) and do uniquely
determine K from CT1, e.g., the unbounded ABE schemes in [RW13, AC17]. Furthermore,
such a deterministic property should also assume that the second ciphertext part CT2,(x,x′)
is not delegatable in some way. For example, in many ABE schemes, one can simply drop
certain ciphertext components such that this yields a valid ciphertext for a smaller set (in
KP-ABE) or a more restricted policy (in CP-ABE).

In many cases, however, we can decompose the ciphertext in such a way that one part
is dedicated to the predicate extension x′ only. In this case, the ciphertext is of the form

CT(x,x′) = (K, CT1, CT2,x, CT3,x′),

such that only CT3,x′ depends on x′ and it is uniquely determined by x′, CT1 and MPK.
Furthermore, decryption with a different CT′

3,x′ should yield a uniformly distributed output.
In this case, we can make two different variants of the generic CCA-secure construction.
Instead of including CT2,(x,x′) in the payload of the symmetric encryption scheme, include
only CT2,x. Alternatively, we can include CT2,x in the input to the RPC hash, such that
the indistinguishability between Game 2 and 3 follows from the target-collision resistance of
the RPC hash. Furthermore, because CT3,x′ is uniquely determined by x′, CT1, and MPK,
CT3,x′ cannot differ from the challenge ciphertext if x′ and CT1 are equal to the challenge
ciphertext. If decryption is done with a different CT′

3,x′′ ̸= CT3,x′ , then the output key is
uniformly distributed. With this latter approach (Appendix C), the key-encapsulation and
data-encapsulation mechanisms are also strictly separated, which can be advantageous in
the implementation of the schemes.

3.4 Variation on the construction: non-decomposable EP-KEM

To convert extended-predicate schemes that do not have decomposable ciphertexts, we can
also base our second step of the transformation on a more generic conversion technique
than ACIK [ACIK10], such as CHK [CHK04] or BK [BK05]. To apply those techniques, we
can treat the extended predicate (x′, y′) similarly as the identity in those transformations.
For example, as in the CHK-transformation, we can embed the verification key in the
ciphertext’s extended predicate x′, and sign the resulting ciphertext with the associated
signing key of the one-time signature scheme. Recall, however, that both these methods
provide trade-offs in various practical aspects. That is, OTSs provide a significant efficiency
trade-off, and the BK-approach induces a higher storage overhead and relies on more
primitives.

3.5 Variation on the construction: CCA-secure PE or P-KEM only

Instead of directly combining a key-encapsulation mechanism with an authenticated
encryption scheme, we can also create a CCA-secure PE or P-KEM first (which could be
used as-is or combined later with an authenticated encryption scheme). Instead of feeding
the CT2,(x,x′)-part of the ciphertext through the authenticated encryption scheme, it can
be plugged into a one-time secure message authentication code. CCA-security of the PE
or P-KEM follows then from the same arguments as in the hybrid case.
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4 PE-based signatures: signing with secret keys
In this section, we introduce the new notion of predicate-encryption-based signatures
(PEBS). This notion is somewhat related to predicate signatures [AHY15], which also covers
identity-based [Sha84, BF01] and attribute-based signatures [MPR11, OT11]. However,
our new notion differs in two aspects. In the first place, the definition is different. In our
definition, the signing keys and signatures are associated with y, and the verification is
done by taking as input x such that Pκ(x, y). In contrast, predicate signatures associate
the keys with y and the signatures with x, and they verify correctly if Pκ(x, y). Note
that verification uses always x and not anything else. In the second place, the security
assumptions are different. In predicate signatures, the signer has a level of privacy, in
that the verifier only learns that the signer satisfies a specific policy but not how. More
specifically, the verifier learns that the signer has some y such that Pκ(x, y) = 1, but y
itself remains hidden. In PEBS, we allow y to be visible to the verifier. This has one
advantage: the signer may not be able to hide as easily in a group of other signers (provided
that y uniquely identifies a user). Furthermore, it may also be more efficient. Where a
predicate-signature signer has to sign a message for the whole predicate x (which could be
a set of identities, for example), the PEBS signer needs to sign only for y (which could
be an identity in the set) such that Pκ(x, y) = 1. Similarly, a predicate-signature verifier
has to verify the signature for the whole predicate x, while a PEBS verifier has to verify
the signature for only the y. Another subtle difference is that a PEBS signer can sign
a message without knowing the specific x for which the verifier wants to see a signature
from the sender.

4.1 Definitions
Definition 10 (Predicate-encryption-based signature (PEBS) scheme). A predicate-
encryption-based signature (PEBS) scheme for a predicate family P = {Pκ}κ∈Nc over a
message space M = {Mλ}λ∈N consists of four algorithms:

• PEBS.Setup(λ, par): On input the security parameter λ and parameters par, this
probabilistic algorithm generates the domain parameters, the master public key
MPK and the master secret key MSK. In addition, κ is set to κ = (p, par), where p
denotes a natural number.

• PEBS.KeyGen(MSK, y): On input the master secret key MSK and some y ∈ Yκ,
this probabilistic algorithm generates a secret signing key PEBS.SignSKy.

• PEBS.Sign(MPK, PEBS.SignSKy, M): On input the master public key MPK, a
secret signing key PEBS.SignSKy for some y ∈ Yκ and message M , this probabilistic
algorithm generates a signature σy on message M .

• PEBS.Verify(MPK, (σy, M), x): On input the master public key MPK, the signature
σy on message M , and some x ∈ Xκ, if Pκ(x, y) = 1, then it returns 1 (accept) or 0
(reject).

Correctness. For all par, M ∈Mλ, x ∈ Xκ, and y ∈ Yκ such that Pκ(x, y) = 1,

Pr[(MPK, MSK)← PEBS.Setup(1λ);
(σy, M)← PEBS.Sign(MPK, PEBS.KeyGen(MSK, y), M);

PEBS.Verify(MPK, (σy, M), x) ̸= 1] ≤ negl(λ).

Definition 11 (Existential unforgeability under chosen-message attacks (EUF-CMA) for
PEBS). We define the security game EUF-CMA(λ) between challenger and attacker as
follows:
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• Setup phase: The challenger runs PEBS.Setup(λ) to obtain MPK and MSK, and
sends the master public key MPK to the attacker;

• Query phase: The attacker can make two types of queries:

– Key query: The attacker queries secret signing keys for y ∈ Yκ and obtains
PEBS.SignSKy ← PEBS.KeyGen(MSK, y) in response.

– Signing query: The attacker sends some y ∈ Yκ and a message M to the chal-
lenger, and receives a signature on the message (σy, M)← PEBS.Sign(MPK,
PEBS.KeyGen(MSK, y), M) in response.

• Output phase: The attacker outputs a signature (σ∗
y∗ , M) for y∗ ∈ Yκ on message

M , such that y∗ was not queried in key query phase and M that was not signed
before in the signing query phase. The attacker also sends some x∗ ∈ Xκ such that
Pκ(x∗, y∗) = 1. If the signature verifies correctly, the attacker wins.

A PEBS scheme is existentially unforgeable under chosen-message attacks (EUF-CMA)
if all polynomial-time attackers have at most a negligible success probability to win this
security game.

4.2 Generic construction for PEBS
We give a generic construction for PEBS using a PE scheme with predicate extension as
input. The additional property that we require for the PE with predicate extension is that
a key for (y, ∗) can be delegated to a key for (y, y′) with y′ ∈ Z.

Definition 12 (EPE with delegatable extensions). An EPE scheme has delegatable
extensions if there exists an algorithm Delegate such that

• Delegate(SK(y,∗), y′) : On input a secret key SK(y,∗) for (y, ∗) ∈ Y ′
κ and some y′ ∈ Z,

it generates a secret key SK(y,y′) for (y, y′) ∈ Y ′
κ.

We now use EPE with delegateable extensions to generically construct a PE-based
signature scheme.

Definition 13 (Generic PE-based signature construction). Let ΓPE = (Setup, KeyGen,
Encrypt, Decrypt) be an extended-predicate encryption scheme for predicate P ′ = PredEx[P ]
(e.g., obtained with a predicate-extension transformation (Section 5)), where P = {Pκ}κ is
the predicate family with Pκ : Xκ×Yκ → {0, 1}. LetH : {0, 1}∗ → Z be a collision-resistant
hash function. Then, we define the PEBS scheme ΓPEBS = (PEBS.Setup, PEBS.KeyGen,
PEBS.Sign, PEBS.Verify) for predicate P as follows.

• PEBS.Setup(λ, par): This algorithm outputs Setup(λ, par).

• PEBS.KeyGen(MSK, y): This algorithm outputs a signing key PEBS.SignSKy ←
KeyGen(MSK, (y, ∗)).

• PEBS.Sign(MPK, PEBS.SignSKy, M): This algorithm outputs a signature σy ←
Delegate(PEBS.SignSKy,H(y, M))) on message M .

• PEBS.Verify(MPK, (σy, M), x): On input the master public key MPK, the signature
σy on message M , and some x ∈ Xκ, the algorithm first computes a ciphertext
CT(x,H(y,M)) ← Encrypt(MPK, (x,H(y, M)), M ′) for random message M ′, and then
outputs M ′ ?= Decrypt(MPK, σy, CT(x,H(y,M))) holds.
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Note that, instead of using an EPE, we can also use an EP-KEM. In that case, the
signature verification first encapsulates a key and then checks whether the decapsulated
key obtained by using the decryption key yields the same key. The proofs of correctness
and security are the same for this particular construction.

Lemma 1. The PEBS in Definition 13 is correct if the PE scheme is correct.

Proof. We have that PEBS.Verify(MPK, (σy, M), x) checks whether

M ′ = Decrypt(MPK, σy, CT(x,H(y,M))
= Decrypt(MPK, Delegate(PEBS.SignSKy,H(y, M)), Encrypt(MPK, (x,H(y, M)), M ′))

= Decrypt(MPK, SK(y,H(y,M)), Encrypt(MPK, (x,H(y, M)), M ′)) = M ′,

which is indeed the case.

Theorem 2. The PEBS in Definition 13 is EUF-CMA secure if the PE scheme is
IND-CPA secure and the hash H is collision resistant.

Proof. Suppose that there exists an attacker APEBS that can break the EUF-CMA security
of the PEBS. Then, we show that we can also construct an attacker APE on the IND-CPA
security of the PE scheme.

• Setup phase: The challenger for the PE scheme runs the setup and sends the
resulting master public key MPK to the attacker, which it relays to the attacker on
the PEBS scheme.

• Query phase: The attacker on the PEBS scheme makes two types of queries:

– Key query: When the PEBS attacker requests a key for y ∈ Yκ, the PE attacker
relays the request for (y, ∗) to the PE challenger, and sends the resulting key to
the PEBS attacker.

– Signing query: When the PEBS attacker sends y ∈ Yκ and a message M to
the challenger, the PE attacker requests a key for (y,H(y, M)) from the PE
challenger, and sends the resulting key as the signature on M to the PEBS
attacker.

• Output phase: Ultimately, the PEBS attacker sends a signature (σ∗
y∗ , M) and some

x∗ ∈ X ∗ to the PEBS challenger.

The PE attacker then sends (x∗,H(y∗, M)) ∈ X ′
κ, and two arbitrary messages M0 and M1

to the challenger, who flips a coin and encrypts one of the two. The PE attacker can then
decrypt the ciphertext using the key σ∗

y∗ = SK(y∗,H(y∗,M)), because Pκ(x∗, y∗) = 1. Note
that, because of the restriction that y∗ cannot be queried in the key query phase, message
M cannot have been signed before in the signing phase and H is collision resistant, that
none of the requirements for the CPA-security game are violated. Hence, the PE attacker
is successful if the PEBS attacker is successful.

Remark 3. To guarantee unforgeability of the signature scheme, it is important that a fresh
ciphertext is generated for the verification of each signature. To minimize the computational
costs of verification, we can use PE schemes with an online/offline encryption algorithm
[GMC08, HW14, VA23]. In online/offline PE, it is possible to generate an intermediate
ciphertext before the ciphertext attribute x is known. Upon actual encryption under x, we
require minimal additional computational costs. Similarly, we can precompute ciphertexts
for verification, minimizing the online verification costs.
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5 New predicate-extension transformations
We give a high-level description of a concrete predicate-extension transformation (for which
we provide a formal description in the appendix) for pairing-based ABE. Its security proofs
apply to the security notions for pair and predicate encodings in [Wee14, Att14, AC17,
Ven23, dlPVA23]. Roughly, they follow a similar approach as Attrapadung [Att19]. In
particular, we take as input a secure PE scheme (satisfying some properties) and perform
a predicate transformation on it, i.e., an AND-composition (on the key) of the original
scheme and an “all-or-one-identity” IBE scheme. To this end, we adapt the key-policy
augmentation transformation of Attrapadung [Att19]. Our adaptation differs from the
original in two ways. First, we ensure that, for the extended key predicate (y, ∗), we can
generate a key for all identities (y, y′). Second, we re-use the randomness used in the
keys of the original scheme to randomize the partial “all-or-one-identity” key. In this way,
we minimize the amount of randomness, and ultimately, the computational costs. For
schemes with an admissible pair encoding7, we use the key randomness r that is used in
the polynomial that masks the master-key α, i.e., α + rb.

5.1 “All-or-one-identity” IBE
For the predicate extension, we use an “all-or-one-identity” IBE scheme. On a high level,
we define the “all-or-one-identity” IBE scheme with identities x′, y′ ∈ Zp = Z as follows:

MPK′ = (g, h, e(g, h)αs, gb′
0 , gb′

1),
SK′

y′ = (hα+r(b′
0+y′b′

1), hr), SK′
∗ = (hα+rb′

0 , hrb′
1 , hr),

CT′
x′ = (M · e(g, h)αs, gs(b′

0+x′b′
1), gs).

With SK′
∗, we can generate SK′

y′ for any y′ ∈ Zp, by computing:

hα+rb′
0 ·
(

hrb′
1

)y′

= hα+r(b′
0+y′b′

1).

Note that this scheme is similar to the Boneh-Boyen IBE1 scheme [BB04], which is
selectively secure, with the modification that it allows for the generation of a secret key
that can be used for all identities.

5.2 AND-composition with a PE
The transformation of a PE for predicate P to the PE with extended predicate PredEx[P ]
consists of an AND-composition with the “all-or-one-identity” IBE. For example, consider
the following scheme:

MPK = (g, h, e(g, h)αs, gb),
SKy = (hr, hk(α,r,b,y)),
CTx = (M · e(g, h)αs, gs, gc(s,b,x)),

where r, k, s, and c denote the vectors that describe the secret key and ciphertext,
respectively. Then, the transformed scheme is of the form:

MPK = (g, h, e(g, h)αs, gb, gb′
0 , gb′

1),
7This is a pair encoding with some additional properties, used in [Att19]. Note that any secure pair

encoding can be converted into an admissible pair encoding by applying the Layer-Trans transformation
in [Att19].
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SK(y,y′) =
{

(hr, hk(α1,r,b,y), hα−α1+rb′
0 , hrb′

1) if y′ = ∗,
(hr, hk(α1,r,b,y), hα−α1+r(b′

0+y′b′
1)) if y′ ∈ Zp

CT(x,x′) = (M · e(g, h)αs, gs, gc(s,b,x), gs(b′
0+x′b′

1)),

where α1 ∈R Zp. We formulate this transformation in the pair encodings and the predicate
encodings frameworks in Appendices D and E. We prove security of the transformation in
several ways. We show that the transformation for pair encodings preserves the symbolic
security8 and perfectly master-key hiding properties. Because we re-use the randomness
of the key and ciphertext encodings of the original scheme, the transformation can also
be formulated in the predicate encodings framework [Wee14, CGW15], and its security
follows from the similarity between the perfectly master-key hiding and α-privacy—the
security notion for predicate encodings [ABS17].

5.3 Decomposability of the ciphertexts
The resulting extended-predicate encryption scheme is decomposable (and even special
decomposable):

CT(x,x′) = (M · e(g, h)αs︸ ︷︷ ︸
CTM

, gs︸︷︷︸
CT1

, gc(s,b,x)︸ ︷︷ ︸
CT2,x

, gs(b′
0+x′b′

1)︸ ︷︷ ︸
CT3,x′

),

and can be easily transformed in a KEM by removing CTM and setting K = e(g, h)αs. For a
fixed master public key MPK, the key K is then uniquely defined by CT1 and vice versa, and
CT1 is generated uniformly at random. For x̂′ ̸= x′, we have that gs(b′

0+x̂′b′
1) ̸= gs(b′

0+x′b′
1).

We can also define a different split, e.g., CT1 = gs and push the rest of gs in CT2,x.
Note that, if one chooses to encapsulate some randomly generated symmetric key K, then
K · e(g, h)αs should be included in CT1 to ensure that K is uniquely defined by CT1 and
MPK.

6 Performance analysis of CCA-secure constructions
To illustrate the benefits of our transformation with respect to the efficiency compared to
other generic transformation techniques, we first analyze the storage and computational
costs from a theoretical standpoint, and then of two concrete constructions. On a high
level, the efficiency of the transformation depends on the P-KEM part that encapsulates
the symmetric key, and the other primitives used. For simplicity, we assume that all trans-
formations considered in the introduction can support KEM variants, which encapsulate a
symmetric key in the P-KEM part and use this key to symmetrically encrypt the plaintext.

6.1 Theoretical performance analysis
We first compare the efficiency of our CCA-transformation with the others from a theoretical
standpoint. Ours incurs only a small constant overhead in all algorithms and the key and
ciphertext sizes in the first step, regardless of the size of the predicate. For the other
transformations, this is not the case. Especially for schemes with linear-sized predicates,
such as ABE, our construction provides a significant efficiency improvement. In contrast,
the other approaches applicable to ABE incur the following efficiency trade-offs:

• FO [FO99, HHK17]: in general, this approach incurs little to no overhead to most
algorithms, except for the decryption algorithm, which requires an invocation of the
encryption algorithm, whose costs are often linear;

8Due to the strong relationship between the selective symbolic property and selective security [Att14,
Att19], it may follow from the selective symbolic property that the AND-composition of a selectively
secure PE and the selectively secure “all-or-one-identity” IBE is selectively secure.
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Table 2: Comparison of the storage and computational costs of the P-KEM part of several
CCA-secure variants of CGW-IBE and the fully secure variant of RW13. The storage
costs are expressed in bytes and the timings are expressed in milliseconds. The lowest
costs are typeset in bold, and for 100 attributes, we also include the increase in costs
compared to the CPA-secure P-KEM version. For RWAC, we consider inputs of 1, 10 and
100 attributes. (Note that we use compressed point representation to minimize the storage
costs.)

Variant |MPK| |SKS | |CTA| KeyGen Encrypt Decrypt
CPA 576 448 192 4.10 4.50 1.56
FO 576 1024 480 4.10 4.50 6.06

Ours 672 576 208 6.13 4.50 4.46

(a) CGW-IBE [CGW15], the fully secure and anonymous variant of BB-IBE1 [BB04]

Variant |MPK| |SKS | |CTA|
1 10 100 Increase 1 10 100 Increase

CPA 768 768 4,224 38,784 - 384 2,976 28,896 -
FO 768 1,536 4,992 39,552 2% 672 3,264 29,184 1%
Del. 768 99,072 102,528 137,088 253% 37,248 39,840 65,760 128%
Ver. 768 768 4,224 38,784 0% 672 3,264 29,184 1%
Ours 960 1,152 4,608 39,168 1% 480 3,072 29,008 0.4%

(b) RWAC, the fully secure variant of RW13 [RW13] in AC17 [AC17, Att19] (storage costs)

Variant KeyGen Encrypt Decrypt
1 10 100 Increase 1 10 100 Increase 1 10 100 Increase

CPA 8.40 46.2 424 - 6.73 46.6 445 - 3.84 16.6 145 -
FO 8.40 46.2 424 0.4% 6.73 46.6 445 0% 10.6 63.1 590 307%
Del. 1082 1121 1499 255% 573 614 1013 127% 186 200 329 127%
Ver. 8.37 46.0 422 0% 11.1 51.0 449 0.9% 10.5 35.8 292 101%
Ours 12.5 50.1 427 1% 8.21 48.2 448 0.7% 6.0 18.7 148 2%

(c) RWAC, the fully secure variant of RW13 [RW13] in AC17 [AC17, Att19] (computational costs)

• YAKK-del [YAHK11]: depending on the type of ABE, this transformation for
delegatable schemes might either be very efficient or very costly. For KP-ABE, the
transformation incurs only a small constant overhead in all algorithms and the key
and ciphertext sizes. For CP-ABE, the transformation incurs an additional overhead
that is linear in the security parameter in the encryption and decryption algorithms;

• YAHK-ver [YAHK11], BL [BL16]: these transformations for verifiable schemes incur
little to no overhead in most of the algorithms and the key and ciphertext sizes,
except for the decryption algorithm, which also verifies whether the ciphertexts are
well-formed. The costs incurred by the verification step are similar to the decryption
costs of the CPA-secure PE scheme, and therefore roughly double the decryption
costs of the CCA-secure PE scheme (which are often linear in the predicate size);

• KW [KW19]: this fully-generic transformation is very costly and incurs an overhead
in all algorithms and sizes that is linear in the security parameter.

6.2 Benchmarks
We also analyze the efficiency of the P-KEM part by implementing and benchmarking
the available CCA-transformed versions of two schemes. (We leave out the KW [KW19]
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transformation due to its evident blowup in costs as argued earlier this section.) The
first scheme is CGW-IBE, the anonymous IBE scheme by Chen, Gay and Wee [CGW15].
The second scheme is RWAC, the fully secure variant [AC17, Att19] of the CP-ABE
scheme by Rouselakis and Waters [RW13]. We provide full descriptions of the schemes
and their CCA-secure variants in Appendices G and H. For CGW-IBE, we provide a
more optimized variant implied by our CCA-secure variant, which, interestingly, resembles
the first Kiltz-Vahlis scheme [KV08]. For RWAC, we approximate the efficiency of the
FO, delegation and verifiability-based transformations. For FO, we add the encryption
costs to the decryption costs (for same-length inputs). Note that this also includes the
public-key storage cost in the secret key size as this is required for re-encryption. For
verifiability-based transformations, we add one attribute in the ciphertext-policy input,
and multiply the decryption costs by a factor 2. For delegation-based transformations, we
assume that the length of the verification key of the used OTS is at least 128 bits (at the
128-bit security level), and thus, that the key set is extended with 2 · 128 = 256 attributes,
and the ciphertext policy with 128 attributes. We have implemented the schemes in Rust9

using the BLS12-381 crate provided by the zkCrypto group [ZkC20].
Table 2 summarizes the benchmarks obtained by running the code on an AMD Ryzen

7 3700X CPU, with a frequency of 4.1 GHz. For CGW-IBE, our keys and ciphertexts are
both the smallest. For RWAC, we observe that our ciphertexts are generally the smallest,
while the keys are only a little larger than the smallest. For CGW-IBE, we observe that FO
key generation is significantly faster than ours, while our decryption is in turn faster than
FO. For RWAC, we observe that our decryption is by far the most efficient, i.e., at least a
factor 2 than all other variants. Furthermore, the key generation and encryption costs are
only milliseconds slower than the most efficient variants. In conclusion, all transformations
except for ours incur a significant trade-off: either attaining a large overhead in the key
or ciphertext sizes, or incurring a very large overhead in at least one of the algorithms.
In contrast, with respect to the decryption algorithm, our transformation outperforms
all other transformations, with incredibly little sacrifice in key generation and encryption
efficiency.

7 Future work
Throughout this work, we have mentioned several directions for future work. First, because
the second step of the CCA-transformation can be done fully generically, it may be used
to convert (decomposable) post-quantum PE as well, e.g., by making an AND-composition
of a post-quantum PE and “all-or-one-identity” IBE. Second, we might be able to obtain
even more efficient CCA-transformations by using a selectively secure “all-or-one-identity”
IBE (Remark 1). Third, it would be interesting to consider whether typical use cases for
predicate encryption might also benefit from a signing functionality as proposed in this
work. Fourth, although we have considered separate constructions for CCA-security and
PE-based signatures, we have not considered how they can be combined securely, e.g., in
the spirit of signcryption [Zhe97] or identity-based signcryption [Boy03]. Finally, while
this work focuses on predicate encryption, it might be applicable to an even larger class of
encryption schemes, e.g., functional encryption [BSW11], which contains PE.

8 Conclusion
We have presented the new notion of predicate extension for predicate encryption schemes.
This new notion allows us to achieve CCA-security and PE-based signatures generically.
PE-based signatures are, in a sense, a weaker variant of predicate signatures that do

9The code is available at https://github.com/leonbotros/pe_cca.

https://github.com/leonbotros/pe_cca
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not provide privacy of the signer. This could, however, be considered a feature, because
the signer could then not deny having signed some specific message. Furthermore, by
considering a two-step approach to achieving CCA-security generically in PE schemes, we
aim to convert PE schemes as efficiently as possible. To show this, for each of these steps,
we have proposed a new transformation. For the second-step transformation, we have
generalized the ACIK-transform [ACIK10], which can now be applied to any PE scheme
that is decomposable and for which the predicate can be securely extended. Compared
to the more generic CHK- and BK-approaches, ACIK provides less storage overhead and
relies on fewer primitives. For the first-step transformation, we have proposed a new
predicate-extension transformation that can be applied to any pairing-based schemes that
can be captured in the pair and predicate encodings frameworks. Compared to existing
(implicitly-described) predicate-extension techniques, ours is more efficient. Notably,
for CP-ABE, existing such techniques are very inefficient. To show that our predicate-
extension transformation indeed yields interesting improvements on existing ones, we have
implemented two schemes. The results show that, especially for linear-sized predicates,
our transformations provide a significant improvement in efficiency.
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A Predicate key encapsulation
In the key-encapsulation variant of predicate encryption (Definition 33), which we call
predicate KEM (P-KEM), we replace Encrypt by Encaps and Decrypt by Decaps, where
Encaps also outputs a symmetric key, and Decaps outputs a symmetric key instead of a
plaintext message. This symmetric key is used to symmetrically encrypt the data.

Definition 14 (Predicate key-encapsulation mechanism (P-KEM)). A predicate key-
encapsulation mechanism for a predicate family P = {Pκ}κ∈Nc over a message space
M = {Mλ}λ∈N consists of four algorithms:

• Setup(λ, par)→ (MPK, MSK): On input the security parameter λ and parameters
par, this probabilistic algorithm generates the domain parameters, the master public
key MPK and the master secret key MSK. In addition, κ is set to κ = (p, par),
where p denotes a natural number.

• KeyGen(MSK, y) → SKy: On input the master secret key MSK and some y ∈ Yκ,
this probabilistic algorithm generates a secret key SKy.

• Encaps(MPK, x) → (K, CTx): On input the master public key MPK and some
x ∈ Xκ, this probabilistic algorithm generates an encapsulated symmetric key K and
a ciphertext CTx.

• Decaps(MPK, SKy, CTx) → K: On input the master public key MPK, the secret
key SKy, and the ciphertext CTx, if Pκ(x, y) = 1, then it returns the encapsulated
symmetric key K. Otherwise, it returns an error message ⊥.

Correctness. For all par, M ∈Mλ, x ∈ Xκ, and y ∈ Yκ such that Pκ(x, y) = 1,

Pr[(MPK, MSK)← Setup(1λ); (K, CTx)← Encaps(MPK, x);
Decaps(MPK, KeyGen(MSK, y)), CTx) ̸= K] ≤ negl(λ).

Full security against chosen-plaintext attacks. The full security model for P-KEM
is defined similarly as that for PE (Definition 2). The crucial difference between the
two is that the goal of the attacker is to distinguish a symmetric key produced by the
encapsulation algorithm from a randomly generated key.

Definition 15 (CPA-security for P-KEM). We define the security game IND-CPA(λ)
between challenger and attacker as follows:

• Setup phase: The challenger runs Setup(λ) to obtain MPK and MSK, and sends
the master public key MPK to the attacker.

• First query phase: The attacker queries secret keys for y ∈ Y, and obtains
SKy ← KeyGen(MSK, y) in response.

• Challenge phase: The attacker specifies some x∗ ∈ X such that for all y in the
first key query phase, we have P (x∗, y) = 0, and sends these to the challenger. The
challenger first encapsulates a key under x∗, i.e., (K∗, CTx∗)← Encaps(MPK, x∗),
and then flips a coin β ∈R {0, 1}. If β = 0, the key K∗ is replaced by a value that
is selected uniformly at random from the key space. The challenger then sends the
resulting encapsulation key K∗ and ciphertext CTx∗ to the attacker.

• Second query phase: This phase is identical to the first query phase, with the
additional restriction that the attacker can only query y ∈ Y such that P (x∗, y) = 0.

• Decision phase: The attacker outputs a guess β′ for β.
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The advantage of the attacker is defined as AdvP-KEM,IND-CPA = |Pr[β′ = β]− 1
2 |. A

scheme is fully secure if all polynomial-time attackers have at most a negligible advantage
in this security game, i.e., AdvP-KEM,IND-CPA ≤ negl(λ).

In the selective security model, the attacker commits to the predicate x∗ ∈ X before
the Setup phase.

B More efficient transformation from PE to P-KEM
Let ΓPE = (Setup, KeyGen, Encaps, Decaps) be a decomposable predicate encryption
scheme for the predicate family P = {Pκ}κ with Pκ : Xκ × Yκ → {0, 1}. Suppose that the
operation on the group in which CTM lives is multiplicative10 and its operator is ·, and
in particular, that CTM = M · rand, where rand is some random element in the group in
which CTM lives. Let id denote the identity in this group. Then, we can generically define
Encaps and Decaps from Encrypt and Decrypt as follows.

• Encaps(MPK, x): Let (CTM, CT1, CT2,x)← Encrypt(MPK, x, id). Then, this algo-
rithm outputs K = CTM as the symmetric key and (CT1, CT2,x) as the rest of the
ciphertext.

• Decaps(MPK, SKy, CTx): This algorithm outputs the decapsulated symmetric key
as K′ ← Decrypt(MPK, SKy, (id, CT1, CT2,x))−1.

The correctness of the P-KEM follows from the correctness of the PE:

Decaps(MPK, SKy, CTx) = Decrypt(MPK, SKy, (id, CT1, CT2,x))−1

= K ·Decrypt(MPK, SKy, (id ·K, CT1, CT2,x))−1

= K ·Decrypt(MPK, SKy, Encrypt(MPK, x, id))−1

= K · id−1 = K.

The CPA-security of the P-KEM also follows readily from the PE. Let AP-KEM be an
attacker on the P-KEM, i.e., which can distinguish for a given (K, CT1, CT2,x) whether K is
a symmetric key or K is random. Then, it can be used to construct an attacker APE for the
PE scheme. Suppose (CTM, CT1, CT2,x) is the challenge ciphertext for M0 or M1. Then,
pick β ∈R {0, 1} and send (K = CTM/Mβ , CT1, CT2,x) to attacker AP-KEM. If it outputs
that K is a symmetric key, then attacker APE outputs β as the guess, and otherwise, it
outputs 1− β as the guess. The advantage of AP-KEM is equal to the advantage of APE.

C CCA-secure PE from special decomposable EPE
We show that we can build a CCA-secure PE from special decomposable EPE. A special
decomposable EPE is a decomposable EPE (Definition 8) with the additional property
that the ciphertext CT2,(x,x′) can be split in two parts CT2,(x,x′) = (CT′

2,x, CT′
3,x′), such

that CT3,x′ is uniquely determined by x′, CT1 and MPK. We also generate CT2,x in the
first encryption algorithm. Another property that we require is that decryption with a
different CT′

3,x′ yields an output that is statistically close to uniformly distributed. To
show that the security proof is the same for P-KEMs implied by PE schemes, we define
the construction below using a PE as input.

Definition 16 (Special decomposable EPE). An EPE scheme with encryption algorithm
Encrypt is called special decomposable if the ciphertexts are special decomposable. The

10Something similar works for other algebraic groups such as additive groups as well.
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ciphertexts CT(x,x′) ← Encrypt(MPK, (x, x′), M) are special decomposable if they can be
decomposed:

CT(x,x′) = (CTM, CT1, CT2,x, CT3,x′), such that

• only CT2,x depends on x, and only CT3,x′ depends on x′;

• only CTM contains the message;

• M is uniquely determined by CTM, MPK and CT1, and conversely, CT1 is uniquely
determined by M , MPK and CTM;

• CT3,x′ is uniquely determined by MPK, CT1 and x′, and conversely, x′ is uniquely
determined by MPK, CT1 and CT3,x′ ;

• CT1 is generated independently of CT2,x and CT3,x′ ;

• (CTM, CT1, CT2,x) is generated in such a way that CT1 is generated uniformly at
random in some space G′, such that Pr[CT1 = CT′

1 | CT′
1 ∈R G′] ≤ negl(λ);

• For all CT′
3,x′′ ̸= CT3,x′ , it holds that Decrypt(MPK, KeyGen(MSK, (y, x′)), (CTM,

CT1, CT2,x, CT′
3,x′′)) is statistically close to uniformly distributed.

In this case, we also define two algorithms for encryption, i.e.,

• Encrypt1(MPK, M, x)→ (CTM, CT1, CT2,x);

• Encrypt2(MPK, x′)→ CT3,x′ ,

such that

Encrypt(MPK, (x, x′), M) = (Encrypt1(MPK, M), Encrypt2(MPK, (x, x′))).

Remark 4. The extended-predicate encryption schemes in Section 5 are special decompos-
able. In particular, if CT′

3,x′′ ̸= CT3,x′ (but the rest of the ciphertext is the same), then
decryption yields an output that is uniformly distributed. In particular, instead of obtaining
e(g, h)αs (and then recovering M from M ·e(g, h)αs), decryption yields e(g, h)αs ·e(g, h)−rz,
where z ∈ Zp is such that CT3,x′ · gz = CT′

3,x′′ . Because r is generated at random in the
key generation.

Construction for CCA-secure PE. We define the construction for generic CCA-secure
PE as follows.

Definition 17 (Generic CCA-secure PE from special decomposable EPE). Let ΓPE =
(Setup, KeyGen, Encrypt, Decrypt) be a PE for the message space Mλ and the predi-
cate family P = {Pκ}κ with Pκ : Xκ × Yκ → {0, 1}, and suppose ΓSEPE = (SetupSEPE,
KeyGenSEPE, EncryptSEPE, DecryptSEPE) is a special decomposable extended-predicate
encryption scheme for predicate P ′ = PredEx[P ] (e.g., obtained with a predicate-extension
transformation (Section 5)). Let SE = (EncK, DecK) be an authenticated symmetric
encryption scheme with key space Kλ equal to the space in which CTM lives, and
RPC: {0, 1}λ × G → Z be a random-prefix collision-resistant hash function. Then, we de-
fine Γ′

PE = (Setup′, KeyGen′, Encrypt′, Decrypt′) to be the CCA-secure hybrid encryption
version of scheme ΓPE for predicate P as

• Setup′
PE(λ, par): On input λ and par, the setup generates the key pair (MPK, MSK)←

SetupSEPE(λ, par), and sets MPK′ = MPK and MSK′ = MSK.

• KeyGen′
PE(MSK′, y): On input the master secret key MSK′ and some y ∈ Yκ, it

returns SK′
y ← KeyGenSEPE(MSK, (y, ∗)).
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• Encrypt′
PE(MPK′, x, M): On input the master public key MPK′, x ∈ Xκ and

message M ∈ {0, 1}∗, the user first picks a random message M ′ ∈ Mλ, and
computes (CTM, CT1, CT2,x) ← Encrypt1,SEPE(MPK, M ′, x), picks k ∈R {0, 1}λ,
sets x′ = RPC(k, CTM, CT1, CT2,x), and generates the last partial ciphertext
CT3,x′ ← Encrypt2,EP-KEM(MPK, x′). The user then computes CTsym ← EncM ′(M)
and returns

CT′
x = (CTsym, CTM, CT1, CT2,x, CT3,x′ , k).

• Decrypt′
PE(MPK′, SK′

y, CT′
x): On input the master public key MPK′, the secret key

SK′
y, and the ciphertext CT′

x = (CTsym, CTM, CT1, CT2,x, CT3,x′ , k), if Pκ(x, y) = 1,
then the decrypting user computes x′ = RPC(k, CTM, CT1, CT2,x) and decrypts

K ← DecryptSEPE(MPK, SK(y,∗), CT′
x),

and then outputs
M ′ ← DecK(CTsym).

Correctness. Correctness follows readily from the correctness of the used PE.

Security. We prove security in a similar fashion as that of the construction in Definition
9.

Theorem 3. In Definition 17, if ΓSEPE is a special decomposable CPA-secure PE for
the extended predicate PredEx[P ], and RPC is a random-prefix collision-resistant hash
function, such that the RPC is independent of ΓSEPE, then Γ′

PE is CCA-secure.

Proof. We prove this theorem in a series of games in which we start with the real CCA-
security game: Game 0. Let CT∗

x∗ = (CT∗
sym, CT∗

M, CT∗
1, CT∗

2,x∗ , CT∗
3,x′∗ , k∗) denote the

challenge ciphertext for the challenge predicate x∗ and message Mβ . Let q be the number
of decryption queries, and let Xi denote the event that attacker ACCA is successful in
Game i.

Game 1: In this game, everything is the same as in Game 0, except that, in the first query
phase, all decryption queries with CT1 = CT∗

1 are rejected. In both query phases, the
decryption queries with (CTsym, CTM, CT1, CT2,x, k) ̸= (CT∗

sym, CT∗
M, CT∗

1, CT∗
2,x∗ , k∗)

and x′ = x′∗ are rejected. The probability that CT1 = CT∗
1 holds for any honestly gener-

ated ciphertext is 1
|G′| . Furthermore, the probability that any x′ for (CTM, CT1, CT2,x, k) ̸=

(CT∗
M, CT∗

1, CT∗
2,x∗ , k∗) is such that RPC(k, CTM, CT1, CT2,x) = x′ = x′∗ = RPC(k∗, CT∗

M,
CT∗

1, CT∗
2,x∗) is equal to

Pr[(k, CTM, CT1, CT2,x) ̸= (CT∗
M, CT∗

1, CT∗
2,x∗ , k∗)

∧RPC(k, CTM, CT1, CT2,x) = RPC(k∗, CT∗
M, CT∗

1, CT∗
2,x∗)] = AdvRPC.

Hence, we have
|Pr[X0]− Pr[X1]| ≤ q

|G′|
+ AdvRPC.

Game 2: In this game, everything is the same as in Game 1, except that, in the second
query phase, all decryption queries are rejected where CTsym ̸= CT∗

sym holds, and the key
K ← DecryptSEPE(MPK, SK(y,∗), CTx) is such that K = K∗. Because this property can
only hold if the ciphertext authenticity of the SE is broken, we have

|Pr[X1]− Pr[X2]| ≤ AdvSE,CAUT.
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Game 3: At this point, all ciphertexts that are queried in the second phase and that are not
rejected are such that, for the keys, it holds that K ̸= K∗. This also follows from the fact that
CT3,x′ is uniquely determined by MPK, CT1 and x′ (and vice versa). Furthermore, K′ ←
DecryptSEPE(MPK, SK(y,∗), (CT∗

M, CT∗
1, CT∗

2,x∗ , CT′
3,x′′ , k∗)) is uniformly distributed over

the key space. Because this game is the same as Game 3, we have

|Pr[X3]− Pr[X4]| = 0.

Game 5: In this game, everything is the same as in Game 4, except that we generate
the challenge ciphertext as follows. Let ORPC denote the oracle that finds k ∈ {0, 1}λ

such that RPC(k, g) = z for any given (g, z) ∈ G × Z. Because RPC is independent of
the PE and symmetric encryption scheme, this does not give the attacker any advantage.
Then, the challenger generates (K∗, CT1, CT2,(x∗,x′∗))← EncapsEP-KEM(MPK, (x∗, x′∗))
for the challenge predicate x∗ and randomly chosen x′∗, and queries the oracle ORPC with
(CT1, x′∗), which returns k∗ if it exists. (Otherwise, it repeats the process of generating
new ciphertexts until the oracle provides some output k∗. This likely succeeds because
of the random-prefix collision resistance of the RPC. Intuitively, if many such inputs
exist for which the oracle does not return a output, we can also find many g such that
there exist at least two k, k′ with RPC(k, g) = RPC(k′, g), which breaks the random-prefix
collision resistance of the RPC.) The challenger then outputs the challenge ciphertext as
(K̂∗, CT1, CT2,(x∗,x′∗), k∗), where K̂∗ is a randomly chosen key that replaces K∗. Because
the attacker cannot make decryption queries for K∗, it can only distinguish this game from
Game 4 by breaking the CPA-security of the EPE. Therefore, we have

|Pr[X4]− Pr[X5]| ≤ AdvEP-KEM,IND-CPA.

Game 6: In this game, everything is the same as in Game 5, except we replace the challenge
message by a randomly generated message of the same length as Mβ . By the ciphertext
indistinguishability of the symmetric encryption scheme, no attacker can distinguish Game
5 from Game 6, i.e.,

|Pr[X5]− Pr[X6]| ≤ AdvSE,CIND.

Summary: In this final game, because the ciphertext is for a random message, the success
probability of the attacker is 1

2 , i.e., Pr[X6] = 1
2 . This gives us the following upper bound

on the advantage of the attacker in the real security game:

AdvPE,IND-CCA =
∣∣∣∣Pr[X0]− 1

2

∣∣∣∣
≤ q

G
+ AdvRPC + 2AdvSE,CAUT

+ AdvEP-KEM,IND-CPA + AdvSE,CIND.

Since all advantages on the right-hand side are negligible in λ, it holds that AdvPE,IND-CCA
is negligible in λ.

D Pair encodings
Notation. We denote a : A to substitute variable a by a matrix or vector A. We define
1i,j ∈ Zd1×d2

p as the matrix with 1 in the i-th row and j-th column, and 0 everywhere
else, and similarly 1i and 1⊺

i as the row and column vectors with 1 in the i-th entry and 0
everywhere else.
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D.1 Pair encoding schemes
We give the definitions of pair encoding schemes, and their associated security notions:
selective and co-selective symbolic properties.

Definition 18 (Pair encoding schemes (PES) [AC17]). A pair encoding scheme for a
predicate family Pκ : Xκ × Yκ → {0, 1}, indexed by κ = (p, par), where par specifies some
parameters, is given by four deterministic polynomial-time algorithms as described below.

• Param(par) → n: On input par, the algorithm outputs n ∈ N that specifies the
number of common variables, which are denoted as b = (b1, ..., bn).

• EncKey(y, p) → (m1, m2, k(r, r̂, b)): On input p ∈ N and y ∈ Yκ, this algorithm
outputs a vector of polynomials k = (k1, ..., km3) defined over non-lone variables
r = (r1, ..., rm1) and lone variables r̂ = (r̂1, ..., r̂m2). Specifically, the polynomial ki

is expressed as

ki = δiα +
∑

j∈[m2]

δi,j r̂j +
∑

j∈[m1],k∈[n]

δi,j,krjbk,

for all i ∈ [m3], where δi, δi,j , δi,j,k ∈ Zp.

• EncCt(x, p) → (w1, w2, c(s, ŝ, b)): On input p ∈ N and x ∈ Xκ, this algorithm
outputs a vector of polynomials c = (c1, ..., cw3) defined over non-lone variables
s = (s, s2, ..., sw1) and lone variables ŝ = (ŝ1, ..., ŝw2). Specifically, the polynomial ci

is expressed as
ci =

∑
j∈[w2]

ηi,j ŝj +
∑

j∈[w1],k∈[n]

ηi,j,ksjbk,

for all i ∈ [w3], where ηi,j , ηi,j,k ∈ Zp.

• Pair(x, y, p)→ (E, E): On input p, x, and y, this algorithm outputs two matrices E
and E of sizes (w1 + 1)×m3 and w3 ×m1, respectively.

A PES is correct for every κ = (p, par), x ∈ Xκ and y ∈ Yκ such that Pκ(x, y) = 1, it
holds that

sEk⊺ + cEr⊺ = αs.

The symbolic property is a powerful security notion for PESs that applies to a large
class of predicate encryption schemes.

Definition 19 (Symbolic property (Sym-Prop+) [AC17, Att19]). A pair encoding scheme
Γ = (Param, EncKey, EncCt, Pair) for a predicate family Pκ : Xκ×Yκ → {0, 1} satisfies the
(d1, d2)-selective symbolic property for positive integers d1 and d2 if there exist deterministic
polynomial-time algorithms EncB, EncS, and EncR such that for all κ = (p, par), x ∈ Xκ

and y ∈ Yκ with Pκ(x, y) = 0, we have

• EncB(x)→ B1, ..., Bn ∈ Zd1×d2
p ;

• EncR(x, y)→ r1, ..., rm1 ∈ Zd1
p , a, r̂1, ..., r̂m2 ∈ Zd2

p ;

• EncS(x)→ s0, ..., sw1 ∈ Zd2
p , ŝ1, ..., ŝw2 ∈ Zd1

p ;

such that ⟨s0, a⟩ ≠ 0 and a = (1, 0d2−1), and if we substitute

ŝi′ : ŝ⊺i′ sibj : Bjs⊺i α : a r̂k′ : r̂k′ rkbj : rkBj ,

for i ∈ [w1], i′ ∈ [w2], j ∈ [n], k ∈ [m1], k′ ∈ [m2] in all the polynomials of k and c (output
by EncKey and EncCt, respectively), they evaluate to 0.



Marloes Venema, Leon Botros 35

Similarly, a pair encoding scheme satisfies the (d1, d2)-co-selective symbolic security
property if there exist EncB, EncR, EncS that satisfy the above properties but where EncB
and EncR only take y as input, and EncS takes x and y as input.

A scheme satisfies the (d1, d2)-symbolic property if it satisfies the (d′
1, d′

2)-selective and
(d′′

1 , d′′
2)-co-selective properties for d′

1, d′′
1 ≤ d1 and d′

2, d′′
2 ≤ d2.

Agrawal and Chase [AC17] prove that any PES satisfying the (d1, d2)-symbolic property
can be transformed in a fully secure predicate encryption scheme. The resulting schemes
are proven secure under a q-type assumption, which is a security assumption that becomes
stronger as some parameter q grows.

In some works [Att14, Att16], the information-theoretic security notion of perfectly
master-key hiding is used to achieve security under non-parametrized assumptions such as
the symmetric external Diffie-Hellman (SXDH).

Definition 20 (Perfectly master-key hiding (PMH) [Att16]). A pair encoding scheme
Γ = (Param, EncKey, EncCt, Pair) for a predicate family Pκ : Xκ×Yκ → {0, 1} is perfectly
master-key hiding if, for all κ = (p, par), x ∈ Xκ and y ∈ Yκ with Pκ(x, y) = 0, we have
that the following distributions are identical:

{k(α, r, r̂, b, y), c(s, ŝ, b, x)} and {k(0, r, r̂, b, y), c(s, ŝ, b, x)},

where all variables α, r, r̂, s, ŝ, b are taken uniformly at random from Zp.

Attrapadung [Att16] proves that any pair encoding scheme that is perfectly master-key
hiding can be converted to a fully secure predicate encryption scheme. The resulting
scheme is then secure under a static assumption such as SXDH.

D.2 Transformation for pair encodings
We define the transformation in Section 5 for pair encodings as follows.

Definition 21 (PredEx-Trans for PES). Let Γ be a PES for predicate P . Then, we
construct a PES for PredEx[P ] as follows:

• Param′(par) = Param(par) + 2. The common variables are b′ = (b, b′
0, b′

1), where b
are the common variables of Γ.

• EncKey′((y, y′), p). Let y ∈ Yκ and y′ ∈ Zp ∪ {∗}, and generate α1 ∈R Zp, and set
α2 = α − α1. Then, compute k(1)(α, r(1), r̂(1), b, y) ← EncKey(y, p), and replace
each occurrence of α by α1, yielding k(2)(α1, r(1), r̂(1), b, y). Additionally, compute

k(3)(α2, r(1), r̂(1), b′, y′) =
{

(α2 + r1(b′
0 + y′b′

1)), for y′ ∈ Zp

(α2 + r1b′
0, r1b′

1)), for y′ = ∗.

Output k(α, r, r̂, b′, (y, y′)) = (k(2), k(3)), where r = r(1), and r̂ = (α1, r̂(1)).

• EncCt′((x, x′), p). Let x ∈ Xκ and x′ ∈ Zp. Compute c′ = c′(s, ŝ, b, x) ←
EncCt(x, p). Output c(s, ŝ, b′, (x, x′))← (c′, s(b′

0 + x′b′
1)).

Pair/Correctness. Let (x, x′) ∈ X ′
κ and (y, y′) ∈ Y ′

κ be such that P ′((x, x′), (y, y′)) = 1.
In particular, we have P (x, y) = 1 and either y′ = ∗ or x′ = y′. Let (E′, Ē′)← Pair(x, y, p),
such that sE′(k′

1)⊺ + c′Ē′r⊺ = α1s. If y′ = ∗, we recover

α2s = s
(

1 x′

0⊺ 0⊺

)
k⊺

2 + (s(b′
0 + x′b′

1))
(
1 0

)
r⊺.
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If y′ ∈ Zp, we recover

α2s = s
(

1
0⊺

)
k⊺

2 + (s(b′
0 + x′b′

1))
(
1 0

)
r⊺.

Finally, we recover αs = α1s + α2s. Note that the output of Pair′((x, x′), (y, y′)) is (E, Ē),
where

E =


(

E′,

(
1 x′

0⊺ 0⊺

))
for y′ = ∗,(

E′,

(
1

0⊺

))
for y′ ∈ Zp,

Ē =
(

Ē′(
1 0

)) .

D.3 The PES-transformation preserves symbolic security
Theorem 4. Suppose that Γ satisfies (d1, d2)-Sym-Prop+. Then, Γ′ = PredEx-Trans(Γ)
for CCA[P ] satisfies (d1 + 1, 2d2)-Sym-Prop+.

Proof. We show that the PES satisfies both the selective and co-selective symbolic prop-
erties. We define the partial predicate P̄κ such that P̄κ(x′, y′) = 1 if and only if x′ = y′

or y′ = ∗. Suppose that (x, x′) ∈ X ′
κ and (y, y′) ∈ Y ′

κ are such that P ′
κ((x, x′), (y, y′)) = 0.

This means that Pκ(x, y) = 0 or x′ ̸= y′ (with y′ ∈ Zp) holds (or both). (Note that, if
y′ = ∗, then we necessarily have Pκ(x, y) = 0.) In particular, EncB, EncR, and EncS
output matrix/vector substitutions for the variables α, b, r, r̂, s = (s, s1, ...) and ŝ, i.e.,
a, B(1), r(1), r̂(1), s(1), and ŝ(1) (which are vectors of matrices/vectors). For these substi-
tutions, it holds that, if Pκ(x, y) = 0, then the polynomials in the encodings evaluate to
0.

• The selective symbolic property: First, we show that the selective symbolic
property holds. We use the substitutions of Γ for the selective symbolic property to
substitute the variables and polynomials of Γ′ as follows:

bi :
(

B(1)
i

0

)
, b′

0 : − x′1d1+1,1, b′
1 : 1d1+1,1,

r1 :
(

βr(1)
1 ,

β′(1− β)
x′ − y′

)
if y′ ∈ Zp, r1 :

(
βr(1)

1 , 0
)

if y = ∗,

ri′ : (βr(1)
i′ , 0), r̂i(2) : βr̂(1)

i(2) ,

α : a, α1 : (β, 0)

s : s(1)
0 , sj : s(1)

j , ŝj′ : (s(1)
j′ , 0),

for all i ∈ [n], i′ ∈ [2, m1], i(2) ∈ [m2], j ∈ [0, w1], j′ ∈ [w2], where β = 1 − Pκ(x, y)
and β′ = 1− P̄κ(x′, y′). Note that β′(1−β)

x′−y′ is well-defined, because if y′ = x′, then
β′ = 0. Note that we indeed have a · s0

(1) ̸= 0, because Γ satisfies Sym-Prop+.
We show that, for these substitutions, the polynomials evaluate to 0. We have
k = (k(2), k(3)) and c = (c′, s(b′

0 + x′b′
1)), where the polynomials in c′ and k(2) in

which α1 does not occur evaluate to 0 due to the selective symbolic property of Γ.
The polynomials k′ in which α1 does occur can be written as k′(α1) = δ′α1 + k′′,
where δ′ ∈ Zp and k′′ is a polynomial in which α1 does not occur. If Pκ(x, y) = 1,
then β = 0 and P̄κ(x′, y′) = 0, and thus, r and r̂ are all-zero, except possibly the
last entry of r1, which may be 1

x′−y′ . Since the only common variables that occur
in k′′ are bi, which are substituted by matrices in which the last rows are all-zero,
all combinations ribj evaluate to 0. Furthermore, α1 = 0, and therefore k′(α1) = 0.
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On the other hand, if Pκ(x, y) = 0, then β = 1, and all combinations of ribj are

substituted as in Γ itself: ribj = (r(1)
i , rd1+1)

(
B(1)

j

0

)
= r(1)

i B(1)
j . And, because in

this case, the substitutions for α and α1 are equal, we have k′(α1) = k′(α) = 0.
For the “new” polynomials in k(3) and s(b′

0 + x′b′
1), we may need to consider whether

y′ ∈ Zp or y′ = ∗. In general, we have s(b′
0+x′b′

1) = s(1)
1 (−x′1d1+1,1+x′E1d1+1,1) = 0.

For k(3), and y′ ∈ Zp, we have:

α2 + r1(b′
0 + y′b′

1)

= (a, 0)− (β, 0) +
(

βr(1)
1 ,

β′(1− β)
x′ − y′

)
((−x′1d1+1,1 + y′1d1+1,1))

= (1− β, 0) + β′(1− β)
x′ − y′ (−x′ + y′, 0).

If P̄κ(x′, y′) = 1, then Pκ(x, y) = 0, and thus β = 1. Also, β′ = 0, and therefore
we have α2 + r1(b′

0 + y′b′
1) = 0. Otherwise, P̄κ(x′, y′) = 0, and thus β′ = 1. Then,

we have α2 + r1(b′
0 + y′b′

1) = (1 − β, 0) − (1 − β, 0) = 0. For k(3) and y = ∗, we
necessarily have Pκ(x, y) = 0 and thus, β = 1. Then,

α2 + r1b′
0 = (a, 0)− (β, 0) +

(
βr(1)

1 , 0
)
− x′1d1+1,1 = 0,

and r1b′
1 =

(
βr(1)

1 , 0
)

1d1+1,1 = 0.

• The co-selective property: We also show that the co-selective property holds.
We use the substitutions of Γ for the co-selective symbolic property to substitute the
variables and polynomials of Γ′ as follows:

bi :
(

0d1×d2 B(1)
i

01×d2 01×d2

)
,

b′
0 :

(
0 0 0d2−1 0 0 0d2−1

−1 −y′ 0d2−2 1 y′ 0d2−2

)
, b′

1 :
(

0 0 0d2 0 0d2−1

0 1 0d2−1 −1 0d2−2

)
, if y′ ∈ Zp

b′
0 : 1(d1+1)×2d2

d1+1,d2+1 − 1(d1+1)×2d2
d1+1,1 , and b′

1 : 0(d1+1)×2d2 , if y′ = ∗

r1 : (r(1)
1 , 1), ri′ : (r(1)

i′ , 0), r̂i(2) :
(

0d2×1

r̂(1)
i(2)

)
,

α : a⊺, α1 : 12d2
d2+1

s : β

(
s(1)

0
s(1)

0

)
+ β′

 1
1

x′−y′

02d2−2

 sj :
(

s(1)
j

0d2

)
, ŝj′ : (s(1)

j′ , 0),

for all i ∈ [n], i′ ∈ [2, m1], i(2) ∈ [m2], j ∈ [0, w1], j′ ∈ [w2], where β = 1 − Pκ(x, y),
and β′ = 1− P̄κ(x′, y′). Here, we assume that d2 ≥ 2. Note that αs ̸= 0, because the
first entry of s is non-zero, which holds because not both β and β′ can be 0 (which
would hold only if P ′

κ((x, x′), (y′, y′)) = 1).
We show that, for these substitutions, the polynomials evaluate to 0. Like in the
selective case, for the polynomials in c′ and k(2), in which α1 does not occur, it
follows readily that the polynomials evaluate to 0. Similarly, for the polynomials k′

in k(2) in which α1 does occur, we can write these polynomials as k′(α1) = δ′α1 + k′′,
where k′′ =

∑
j∈[m2] δi,j r̂j +

∑
j∈[m1],k∈[n] δi,j,krjbk. For the original substitutions in
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Γ, we have

k′′ = δ′a +
∑

j∈[m2]

δ′′
j r̂(1)

j +
∑

j∈[m1],k∈[n]

δ′′
j,kr(1)

j B(1)
k = 0

For the “new” substitutions, we have

k′′ = δ′12d2
d2+1 +

∑
j∈[m2]

δi,j

(
0d2×1

r̂(1)
i(2)

)

+
∑

j∈[m1],k∈[n]

(
δi,j,k(r(1)

j , (r1)1)
(

0d1×d2 B(1)
i

01×d2 01×d2

))⊺

= (0d2 , δ′, 0d2−1)⊺ +
∑

j∈[m2]

δi,j

(
0d2×1

r̂(1)
i(2)

)
+

∑
j∈[m1],k∈[n]

δi,j,k(0d2 , r(1)
j B(1)

k )⊺

=

0d2 ,

δ′a +
∑

j∈[m2]

δi,j r̂(1)
j +

∑
j∈[m1],k∈[n]

δi,j,kr(1)
j B(1)

k

 = 0.

Now, we show for the “new” polynomials k(3) and s(b′
0 + x′b′

1) evaluate to 0. If
y′ ∈ Zp, then we have

s(b′
0 + x′b′

1) =

β

(
s(1)

0
s(1)

0

)
+ β′

 1
1

x′−y′

02d2−2

 (b′
0 + x′b1)

=
(

0d1 , β(s(1)
0 )1(−1 + 1) + (−y′ + y′ + x′ − x′)(s(1)

0 )2

)
+ (0d1 , β′(−1− y′

x′ − y′ + x′

x′ − y′ ))

= 0d1+1 + (0d1 , β′(−1 + x′ − y′

x′ − y′ )) = 0d1+1,

because either we have x′ = y′ and then, β′ = 0, or we have (−1 + x′−y′

x′−y′ ) = 0. If
y′ = ∗, then we have P̄κ(x′, y′) = 1 and thus, β′ = 0, and

s(b′
0 + x′b′

1) = β

(
s(1)

0
s(1)

0

)
(1(d1+1)×2d2

d1+1,d2+1 − 1(d1+1)×2d2
d1+1,1 + x′0(d1+1)×2d2)

= (0d1 , β(s(1)
0 )1 − β(s(1)

0 )1) = 0d1+1.

For k(3) and y′ ∈ Zp, we have

α2 + r1(b′
0 + y′b′

1) = 12d2
1 − 12d2

d2+1 + (r(1)
1 , 1)(b′

0 + y′b′
1)

= 12d2
1 − 12d2

d2+1 + (−1,−y′ + y′, 0d2−2, 1, y′ − y′, 0d2−2)
= 12d2

1 − 12d2
d2+1 − 12d2

1 + 12d2
d2+1 = 02d2 .

For k(3) and y′ = ∗, we have

α2 + r1b′
0 = 12d2

1 − 12d2
d2+1 + (r(1)

1 , 1)
(

1(d1+1)×2d2
d1+1,d2+1 − 1(d1+1)×2d2

d1+1,1

)
= 12d2

1 − 12d2
d2+1 + 12d2

d2+1 − 12d2
1 = 02d2 ,

and r1b′
1 = 02d2 .

Thus, Sym-Prop+ holds for Γ′.
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D.4 The transformation preserves perfectly master-key hiding
Theorem 5. Suppose Γ is perfectly master-key hiding. Then, Γ′ = PredEx-Trans(Γ) for
CCA[P ] is also perfectly master-key hiding.

Proof. Let (x, x′) ∈ X ′
κ and (y, y′) ∈ Y ′

κ be such that P ′
κ((x, x′), (y, y′)) = 0. First, we

show that, if x′ ̸= y′ and y′ ≠ ∗, we have that α2 is perfectly hidden, i.e., the distributions

{α2 + r1(b′
0 + y′b′

1), r̂(1), s(b′
0 + x′b′

1)} and {r1(b′
0 + y′b′

1), s(b′
0 + x′b′

1)}

are equal. This follows from the fact that, if x′ ̸= y′, then b′
0 + y′b′

1 and b′
0 + x′b′

1 are
pairwise independent [CGW15]. Furthermore, if P (x, y) = 0, then α1 is perfectly hidden
by the assumption that Γ is perfectly master-key hidden.

Suppose that x′ = y′ or y′ = ∗. Then, α2 = α− α1 is not hidden. To ensure that α is
hidden, we sample some random ᾱ ∈R Zp, which we subtract from α and α1, i.e., replace
α with α′ ← α− ᾱ and α1 with α′

1 ← α1 − ᾱ. Note that we still have α2 = α′ − α′
1, and

thus, this does not change the encodings for x′ and y′. Because P (x, y) = 0, we can switch
out α1 for α′

1 in k(2), because α1 is hidden. Therefore, α is hidden.
Suppose now that P (x, y) = 1. In this case, α1 is not hidden. Then, we similarly hide

α by subtracting randomly generated ᾱ ∈R Zp, i.e., replace α by α′ ← α − ᾱ. Because
x′ ≠ y′ and y′ ̸= ∗, we have that α′

2 = α′ − α1 = α− ᾱ− α1 ̸= α2 is hidden. Thus, α is
hidden.

D.5 Transformation for predicate encodings
Because our transformation for pair encodings re-uses the randomness r and s in the
extension, it can also be applied to predicate encodings [Wee14, CGW15]. In particular,
if r and s are of length 1, then our transformation does not increase the number of key
and ciphertext variables, and thus, the transformation yields a (new) predicate encoding.
By Theorem 5, the predicate encoding satisfies the α-privacy property, which is similar to
the perfectly master-key hiding property [ABS17]. In fact, the encoding for equality given
in [CGW15] is the same as our “all-or-one-identity” IBE for y′ ∈ Zp. It can be simply
adjusted to also include the encodings for y′ = ∗. We give a proof in Appendix E.2.

E Predicate encodings
E.1 Definition of predicate encodings
Definition 22 (Predicate encodings [Wee14, CGW15]). A Zp-bilinear predicate encoding
scheme for a predicate family Pκ : Xκ × Yκ → {0, 1}, indexed by κ = (p, par), where
par specifies some parameters, is given by five deterministic polynomial-time algorithms
(sE, rE, kE, sD, rD), such that, for all κ, the following properties are satisfied:

• Linearity: For all s(x, y) ∈ Xκ × Yκ, the functions sE(x, ·), rE(y, ·), kE(y, ·),
sD(x, y, ·) and rD(x, y, ·) are Zp-linear.

• Restricted α-reconstruction: For all (x, y) ∈ Xκ × Yκ such that Pκ(x, y) = 1,
and for all w ∈ Zn

p :

sD(x, y, sE(x, w)) = rD(x, y, rE(y, w)) and rD(x, y, kE(y, α)) = α.

• α-privacy: For all (x, y) ∈ Xκ × Yκ such that Pκ(x, y) = 0, and for all α ∈ Zp, the
following distributions are identically distributed:

{x, y, α, sE(x, w), kE(y, α) + rE(y, w)} and {x, y, α, sE(x, w), rE(y, w)},

where w ∈R Zn
p .
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E.2 Transformation for predicate encodings
We define the transformation in Section 5 for predicate encodings as follows.

Definition 23 (PredEx-Trans for predicate encodings). Let Γ = (sE, rE, kE, sD, rD) be
a predicate encoding for predicate P . Then, we construct a predicate encoding for the
extended predicate CCA[P ] as follows:

• The length of w′ is increased by three compared to w of Γ: w′ = (w, w′
0, w′

1, u).

• sE′((x, x′), w′) = (c = sE(x, w), c′ = w′
0 + x′w′

1).

• sD′((x, x′), (y, y′), (c, c′)) = sD(x, y, c) + c′.

• rE′((y, y′), w′) = (k = rE(y, w) + kE(y, u), k′ = rE′′(y′, w′)), where

rE′′(y′, w′) =
{

(−u + w′
0 + y′w′

1), for y′ ∈ Zp

(−u + w′
0, w′

1), for y′ = ∗.

• kE′((y, y′), α) = (0|kE(y,α)|, kE′′(y′, α)), where

kE′′(y′, α)) =
{

(α), for y′ ∈ Zp

(α, 0), for y′ = ∗.

• rD′((x, x′), (y, y′), (k, k′)) = rD(x, y, k) + rD′′(x′, y′, k′), where

rD′′(x′, y′, k′) =
{

1, for y′ ∈ Zp

k′
1 + x′k′

2, for y′ = ∗.

• Restricted α-reconstruction: We have

sD′((x, x′), (y, y), sE′((x, x′), w′)) = sD′((x, x′), (y, y), (sE(x, w)), w′
0 + x′w′

1))
= sD(x, y, sE(x, w))) + w′

0 + x′w′
1,

which is equal to

rD′((x, x′), (y, y), rE′((y, y′), w′)) = rD′((x, x′), (y, y′), (rE(y, w) + kE(y, u), k′))
= rD(x, y, rE(y, w) + kE(y, u)) + rD′′(x′, y′, k′)
= rD(x, y, rE(y, w)) + rD(x, y, kE(y, u))

+
{
−u + w′

0 + y′w′
1, for y′ ∈ Zp

−u + w′
0 + x′w′

1, for y′ = ∗.
= sD(x, y, sE(y, w)) + u− u + w′

0 + x′w′
1.

• α-privacy: The argument is similar as in the case of information-theoretic pair
encoding (Section 5).

F The transformations preserve attribute-hiding
We show that our transformations preserve the attribute-hiding property [BW07, KSW08]
(which includes anonymous IBE [BW06] as a special case). In anonymous/attribute-hiding
PE, the attribute x of the ciphertext is hidden, and cannot be inferred from the ciphertext
either. Intuitively, the reasoning behind why our transformations preserve this property
is simple. Because the extended-predicate functionality is independent of the original
predicate functionality and does not reveal any additional information about the original
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predicate, the transformed scheme is also anonymous or attribute-hiding. More formally,
we prove this by reducing the anonymity/attribute-hiding security of the resulting scheme
to the original scheme. To this end, we first give a definition of weakly attribute-hiding PE.
Then, we show how a scheme is created from a predicate encoding, and what the original
and resulting scheme looks like.

F.1 Attribute-hiding PE
Definition 24 (Attribute-hiding and fully CPA-secure PE [CGW15]). Let Γ = (Setup,
KeyGen, Encrypt, Decrypt) be a PE scheme for predicate P . We define the security game
IND-CPA-AH(λ, par) between challenger and attacker as follows:

• Setup phase: The challenger runs Setup(λ) to obtain MPK and MSK, and sends
the master public key MPK to the attacker.

• First query phase: The attacker queries secret keys for y ∈ Yκ, and obtains
SKy ← KeyGen(MSK, y) in response.

• Challenge phase: The attacker specifies some x∗
0, x∗

1 ∈ Xκ such that for all y
in the first key query phase, we have P (x∗

0, y) = P (x∗
1, y) = 0, and generates two

messages M0 and M1 of equal length in Mλ, and sends these to the challenger.
The challenger flips a coin, i.e., β ∈R {0, 1}, encrypts Mβ under x∗

β , i.e., CTx∗
β
←

Encrypt(MPK, x∗
β , Mβ), and sends the resulting ciphertext CTx∗

β
to the attacker.

• Second query phase: This phase is identical to the first query phase, with the
additional restriction that the attacker can only query y ∈ Yκ such that P (x∗

0, y) =
P (x∗

1, y) = 0.

• Decision phase: The attacker outputs a guess β′ for β.

The advantage of the attacker is defined as AdvPE,IND-CPA-AH = |Pr[β′ = β]− 1
2 |. A

scheme is fully secure and attribute-hiding if all polynomial-time attackers have at most a
negligible advantage in this security game, i.e., we have AdvPE,IND-CPA-AH ≤ negl(λ).

In the selective security model, the attacker commits to the predicate x∗ ∈ Xκ before
the Setup phase.

F.2 Generic compiler from dual system groups
Chen, Gay and Wee [CGW15] devised a generic compiler that transforms any predicate
encoding into a fully secure PE using dual system groups (DSG) [CW14] from k-Lin. We
will consider their specific instantiation for k = 1, i.e., SXDH, which is the most efficient.

Notation. Given a ∈ Zp, we use [a]1 to denote ga, [a]2 to denote ha and [a]T to denote
e(g, h)a. This extends to vectors and matrices in an obvious way, e.g., [(a1, a2, ...)]1 denotes
(ga1 , ga2 , ...). We define e([A]1, [B]2) = [A⊺B]T . Let D1 denote the distribution over

matrices A =
(

a1
1

)
, where a1 ∈R Zp.

Definition 25 (Generic compiler for DSGs from SXDH [CGW15]). Let Γ = (sE, rE, kE,
sD, rD) be a predicate encoding as in Definition 22.

• Setup(λ): On input the security parameter λ, the PKG first generates domain
parameters (p,G,H,GT , g, h, e). Then, it generates k1, k2 ∈ Zp, A, B ∈ D1, and for
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each entry wi in vector w ∈ Zn
p , it generates W ∈R Z2×2

p . It sets MSK = (k =(
k1
k2

)
, A, B, W), and outputs the master public key

MPK = (A = e(g, h)k1a1+k2 , [A]1, [B]2, {[W⊺
i A]1, [WiB]2}i∈[n]).

• KeyGen(MSK, y): On input the master secret key MSK and some y ∈ Yκ, the PKG
generates r ∈R Zp, and output

SKy = (K = [Br]2, K′ = kE(y, [k]2) · rE(y, [W1Br, ..., WnBr]2))

• Encrypt(MPK, x, M): On input the master public key MPK, some x ∈ Xκ and
message M , it generates s ∈R Zp, and outputs

CTx = (C = M ·As, C′ = [As]1, C′′ = sE(x, [W⊺
1As, ..., W⊺

nAs]1))

• Decrypt(MPK, SKy, CTx): On input the master public key MPK, the secret key
SKy, and the ciphertext CTx, if P (x, y) = 1, then the message can be obtained as

M ′ = C/ (e(C′, rD(x, y, K′))/e(sD(x, y, C′′), K)) .

F.3 The security proof
Proposition 1. Let Γ = (sE, rE, kE, sD, rD) be a predicate encoding such that the associ-
ated PE scheme Ψ = (Setup, KeyGen, Encrypt, Decrypt) is attribute-hiding. Then, the PE
scheme Ψ′ associated with the predicate encoding Γ′ = (sE′, rE′, kE′, sD′, rD′) that follows
with the transformations in Definitions 23 and 9 is also attribute-hiding.
Proof. Let AΨ′ denote the attacker that can break the attribute-hiding property of scheme
Ψ′ with advantage Adv′

PE,IND-CPA-AH. We use it to construct an attacker AΨ that can
break the attribute-hiding property of scheme Ψ. Let CΨ′ and CΨ denote the respective
challengers of attackers AΨ′ and AΨ.

• Setup phase: Challenger CΨ runs the setup algorithm, returning

MPK = (A = e(g, h)k1a1+k2 , [A]1, [B]2, {[W⊺
i A]1, [WiB]2}i∈[n])

to attacker AΨ. Challenger then selects target-collision resistant hash TCR and
authenticated encryption scheme SE = (EncK, DecK), generates Wn+1, Wn+2,
Wn+3 ∈R Z2×2

p , computes [W⊺
i A]1 and [WiB]2 from [A]1 and [B]2, i.e.

[W⊺
i A]1 =

(
[a1]w11

1 · [1]w21
1

[a1]w12
1 · [1]w22

1

)
and [WiB]2 =

(
[b1]w11

2 · [1]w12
2

[b1]w21
2 · [1]w22

2

)
,

and returns to attacker AΨ′ :

MPK′ = (A, [A]1, [B]2, {[W⊺
i A]1, [WiB]2}i∈[n+3]).

• First query phase: For each y ∈ Yκ for which attacker AΨ′ queries a secret key,
attacker AΨ queries challenger CΨ for a secret key:

SKy = (K = [Br]2, K′ = kE(y, [k]2) · rE(y, [W1Br, ..., WnBr]2)),

which is used to construct

SK′
y = (K = [Br]2, K′′ = kE′((y, ∗), [k]2) · rE′((y, ∗), [W1Br, ..., Wn+3Br]2)).

In particular, note that kE′′(∗, [k]2) can be computed trivially from SKy, and
rE′′(∗, [W1Br, ..., Wn+3Br]2) can be computed by using that

[WiBr] =
(

[b1r]w11
2 · [r]w12

2
[b1r]w21

2 · [r]w22
2

)
.
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• Challenge phase: At some point, attacker AΨ′ sends a message M ∈ {0, 1}∗ and
two predicates x∗

0, x∗
1 ∈ Xκ. Attacker AΨ sends x∗

0, x∗
1 and M ′ ∈R GT to CΨ, who

flips a coin β ∈R {0, 1} and returns

CT∗
x∗

β
= (C = M ′ ·As, C′ = [As]1, C′′ = sE(x, [W⊺

1As, ..., W⊺
nAs]1)).

This is used to construct

C̄T∗
x∗

β
= (CT∗

sym, C′, C̄′′ = sE′((x∗
β , x′), [W⊺

1As, ..., W⊺
nAs]1),

where CT∗
sym ← EncC/M ′(M), x′ ← TCR([a1s]1), and sE′′(x′, [W⊺

1As, ..., W⊺
nAs]1)

is generated from CT∗
x∗

β
in a similar way as in the key generation:

[W⊺
i As]1 =

(
[a1s]w11

1 · [s]w21
1

[a1s]w12
1 · [s]w22

1 .

)

• Second query phase: This phase is identical to the first query phase.

• Decision phase: Attacker AΨ′ outputs a guess β′ for β, which attacker AΨ also
outputs as its guess.

The advantage AdvPE,IND-CPA-AH of attacker AΨ is equal to the advantage of attacker
AΨ′ : AdvPE,IND-CPA-AH = Adv′

PE,IND-CPA-AH.

G An anonymous IBE scheme
G.1 Identity-based encryption
A special case of predicate encryption is identity-based encryption.

Definition 26 (Identity-based encryption (IBE) [Sha84, BF01]). An identity-based en-
cryption scheme consists of four algorithms:

• Setup(λ): On input the security parameter λ, this probabilistic algorithm, performed
by the Private Key Generator (PKG), generates the domain parameters, the master
public key MPK and the master secret key MSK. The master public key and domain
parameters are published, while the master secret key is kept secret by the PKG.

• KeyGen(MSK, ID): On input the master secret key and some identifier ID ∈ {0, 1}∗,
this probabilistic algorithm, performed by the PKG, generates a secret key SKID for
identifier ID.

• Encrypt(MPK, ID, M): On input the master public key, identifier ID ∈ {0, 1}∗ and
message M , this probabilistic algorithm generates a ciphertext CTID.

• Decrypt(MPK, CTID, SKID′): On input the ciphertext CTID for identifier ID and
secret key SKID′ for identifier ID′, if ID = ID′, then it returns M . Otherwise, it
returns an error message ⊥.

G.2 The CGW anonymous IBE scheme
Definition 27 (CGW-IBE [CGW15]). The anonymous identity-based encryption scheme
proposed by Chen, Gay and Wee is defined as follows.
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• Setup(λ): On input the security parameter λ, the algorithm generates three groups
G,H,GT of prime order p with generators g ∈ G and h ∈ H, and chooses a pairing
e : G×H→ GT . It also specifies a collision-resistant hash function H : {0, 1}∗ → Zp.
It then generates random ki, ai, bi, w0ij , w1ij ∈R Zp for all i, j ∈ {1, 2}. It outputs
MSK = ({ki, ai, bi, w0ij , w1ij}i,j∈{1,2}) as the master secret key and publishes the
domain parameters (p,G,H,GT ,H) and the master public key as

MPK = (g, h, A = e(g, h)a1k1+a2k2 ,

A1 = ga1 , A2 = ga2 , {Wl,j = ga1wl1j+a2wl2j}j∈{1,2},l∈{0,1}).

• KeyGen(MSK, ID): On input identifier ID ∈ {0, 1}∗, the PKG first hashes x = H(ID),
and then generates random integer r ∈R Zp and computes the secret key as

SKID = ({Ki = hrbi , K ′
i = h−ki−r(b1w0i1+b2w0i2+x(b1w1i1+b2w1i2))}i∈{1,2}).

• Encrypt(MPK, ID, M): Message M ∈ GT is encrypted under identifier ID by first
hashing x = H(ID), then picking random integer s ∈R Zp, and computing the
ciphertext as

CTID =
(
C = M ·As, {Ci = As

i , C ′
i = (W0iW

x
1i)s}i∈{1,2}

)
.

• Decrypt(MPK, SKID′ , CTID): Suppose that ID = ID′, then the ciphertext can de-
crypted by computing

M ′ = C · e(C1, K ′
1) · e(C2, K ′

2) · e(C ′
1, K1) · e(C ′

2, K2).

The scheme is correct, i.e., we have

e(C1, K ′
1) · e(C2, K ′

2) =
∏

i∈{1,2}

e(As
i , h−ki−r(b1w0i1+b2w0i2+x(b1w1i1+b2w1i2)))

= e(g, h)−s(a1k1+a2k2) · e(g, h)−sr(a1b1w011+a1b2w012+x(a1b1w111+a1b2w112)

·e(g, h)−sr(a2b1w021+a2b2w022+x(a2b1w121+a2b2w122))

= A−s · e(g, h)−srb1(a1w011+a2w021+x(a1w111+a2w121)

·e(g, h)−srb2(a1w012+xa1w112+a2w022+xa2w122)

= A−s · e(C ′
1, K1)−1 · e(C ′

2, K2)−1.

Hence, computing

C · e(C1, K ′
1) · e(C2, K ′

2) · e(C ′
1, K1) · e(C ′

2, K2)
= M ·A−s ·A−s · e(C ′

1, K1)−1 · e(C ′
2, K2)−1 · e(C ′

1, K1) · e(C ′
2, K2) = M

yields the original plaintext message.

They prove the following:

Proposition 2. The identity-based encryption scheme in Definition 27 is fully CPA-secure
and anonymous.
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G.3 Our CCA-transformation for predicate encodings
Definition 28 (CCA-secure CGW15-IBE). The CCA-secure version of the anonymous
identity-based encryption scheme proposed by Chen, Gay and Wee, obtained by applying
our CCA-transformations in Sections 3 and 5 is defined as follows. (Note that, because the
KEM in Definition 27 is special decomposable and both CT2,x and CT3,x′ are uniquely
determined by CT1, we use the variation in Section 3.3. In this way, we obtain a strict
separation between the KEM and DEM.)

• Setup(λ): On input the security parameter λ, the algorithm generates three groups
G,H,GT of prime order p with generators g ∈ G and h ∈ H, and chooses a pairing
e : G×H→ GT . It also specifies a collision-resistant hash function H : {0, 1}∗ → Zp,
an authenticated symmetric encryption scheme SE = (EncK, DecK) with K(λ) = GT ,
and a random-prefix collision-resistant hash function RPC: {0, 1}λ × G → Zp. It
then generates random ki, ai, bi, w0ij , w1ij , w′

0ij , w′
1ij , uij ∈R Zp for all i, j ∈ {1, 2}.

It outputs MSK = ({ki, ai, bi, w0ij , w1ij , w′
0ij , w′

1ij , uij}i,j∈{1,2}) as the master secret
key and publishes the domain parameters (p,G,H,GT ,H) and the master public key
as

MPK = (g, h, A = e(g, h)a1k1+a2k2 , A1 = ga1 , A2 = ga2 ,

{Wl,j = ga1wl1j+a2wl2j}j∈{1,2},l∈{0,1}, {W ′
l,j = ga1w′

l1j+a2w′
l2j}j∈{1,2},l∈{0,1}).

• KeyGen(MSK, ID): On input identifier ID ∈ {0, 1}∗, the PKG first hashes x = H(ID),
and then generates random integers r ∈R Zp, sets ki,1 ← b1ui1 + b2ui2 and ki,2 ←
ki − b1ui1 − b2ui2, and computes the secret key as

SKID = ({Ki = hrbi , K ′
i,1 = hki,1−r(b1w0i1+b2w0i2+x(b1w1i1+b2w1i2)),

K ′
i,2 = hki,2−r(b1w′

0i1+b2w′
0i2), K ′′

i,2 = h−r(b1w′
1i1+b2w′

1i2)}i∈{1,2}).

• Encrypt(MPK, ID, M): Message M ∈ {0, 1}∗ is encrypted under identifier ID by
first hashing x = H(ID), then picking random integer s ∈R Zp, and computing the
ciphertext as

CTID =
(
CTsym = EncK(M), {Ci = As

i ,

C ′
i,1 = (W0iW

x
1i)s, C ′

i,2 = (W ′
0iW

′x′

1i )s}i∈{1,2}, k
)
,

where k ∈R {0, 1}λ, x′ ← RPC(k, C1∥C2), and K← As.

• Decrypt(MPK, SKID′ , CTID): Suppose that ID = ID′, then the ciphertext can de-
crypted by computing y′ ← RPC(k, C1∥C2),

K′ = e(C1, K ′
1,1K ′

1,2K ′′y′

1,2 ) · e(C2, K ′
2,1K ′

2,2K ′′y′

2,2 ) · e(C ′
1,1C ′

1,2, K1) · e(C ′
2,1C ′

2,2, K2),

and retrieving M ′ ← DecK′(CTsym).

Corollary 1. The scheme in Definition 28 is CCA-secure and anonymous.

Proof. This follows directly from Theorem 1 and Proposition 1. Note that we use that
the ciphertext part {C ′

i,1 = (W0iW
x
1i)s, C ′

i,2 = (W ′
0iW

′x′

1i )s}i∈{1,2} is uniquely defined by
C1 and C2.

This scheme can be further optimized. In particular, for its correctness, we do not
require that Ki,1 and Ki,2, and C ′

i,1 and C ′
i,2 (for i ∈ {1, 2}) are given separately during

key generation and encryption, respectively, for decryption to work. We also show that
we do not need these to be separate for its security either. First, we define the optimized
version of this scheme:
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Definition 29 (Optimized CCA-secure CGW-IBE). The optimized CCA-secure version
of the anonymous identity-based encryption scheme proposed by Chen, Gay and Wee,
obtained by applying our CCA-transformations in Sections 3 and 5 is defined as follows.

• Setup(λ): On input the security parameter λ, the algorithm generates three groups
G,H,GT of prime order p with generators g ∈ G and h ∈ H, and chooses a pairing
e : G×H→ GT . It also specifies a collision-resistant hash function H : {0, 1}∗ → Zp,
an authenticated symmetric encryption scheme SE = (EncK, DecK) with K(λ) = GT ,
and a random-prefix collision-resistant hash function RPC: {0, 1}λ × G → Zp. It
then generates random ki, ai, bi, w0ij , w1ij , w′

ij ∈R Zp for all i, j ∈ {1, 2}. It outputs
MSK = ({ki, ai, bi, w0ij , w1ij , w′

ij}i,j∈{1,2}) as the master secret key and publishes
the domain parameters (p,G,H,GT ,H) and the master public key as

MPK = (g, h, A = e(g, h)a1k1+a2k2 , A1 = ga1 , A2 = ga2 ,

{Wl,j = ga1wl1j+a2wl2j}j∈{1,2},l∈{0,1}, {W ′
j = ga1w′

1j+a2w′
2j}j∈{1,2}).

• KeyGen(MSK, ID): On input identifier ID ∈ {0, 1}∗, the PKG first hashes x = H(ID),
and then generates random integers r ∈R Zp, and computes the secret key as

SKID = ({Ki = hrbi , K ′
i,1 = hki−r(b1w0i1+b2w0i2+x(b1w1i1+b2w1i2)),

K ′
i,2 = h−r(b1w′

i1+b2w′
i2)}i∈{1,2}).

• Encrypt(MPK, ID, M): Message M ∈ {0, 1}∗ is encrypted under identifier ID by
first hashing x = H(ID), then picking random integer s ∈R Zp, and computing the
ciphertext as

CTID =
(
CTsym = EncK(M), {Ci = As

i , C ′
i = (W0iW

x
1iW

′x′

i )s}i∈{1,2}, k
)
,

where k ∈R {0, 1}λ, x′ ← RPC(k, C1∥C2), and K← As.

• Decrypt(MPK, SKID′ , CTID): Suppose that ID = ID′, then the ciphertext can de-
crypted by computing y′ ← RPC(k, C1∥C2),

K′ = e(C1, K ′
1,1K ′y′

1,2) · e(C2, K ′
2,1K ′y′

2,2) · e(C ′
1, K1) · e(C ′

2, K2),

and retrieving M ′ ← DecK′(CTsym).

Proposition 3. The scheme in Definition 29 is fully CCA-secure.

Proof. We show this by reducing the CPA-security of the associated EPE variant of the
optimized scheme to the CPA-security of the associated EPE variant of the basic scheme
(which essentially remove the symmetric encryption scheme from the CCA-secure variants
of these schemes).

Let A1 be an attacker that can break the SEPE scheme associated with the scheme in
Definition 29. We construct an attacker A2 that can break the EPE scheme associated
with the scheme in Definition 28. Let C1 and C2 be the challengers in the games with A1
and A2, respectively.

• Setup phase: In the setup, challenger C2 generates a master public key as

MPK← (g, h, A = e(g, h)a1k1+a2k2 , A1 = ga1 , A2 = ga2 ,

{Wl,j = ga1wl1j+a2wl2j}j∈{1,2},l∈{0,1}, {W ′
l,j = ga1w′

l1j+a2w′
l2j}j∈{1,2},l∈{0,1}),

and sends it to attacker A2. Challenger C1 sets

MPK← (g, h, A, A1, A2, {W̄0,j = W0,j ·W ′
0,j , W̄1,j = W1,j , W̄ ′

j = W ′
1,j}j∈{1,2}),

and sends it to attacker A1.
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• First query phase: For each identity ID for which attacker A1 requests a secret
key, we relay the request to challenger C2, who generates

SKID = ({Ki = hrbi , K ′
i,1 = h−ki,1−r(b1w0i1+b2w0i2+x(b1w1i1+b2w1i2)),

K ′
i,2 = h−ki,2−r(b1w′

0i1+b2w′
0i2), K ′′

i,2 = h−r(b1w′
1i1+b2w′

1i2)}i∈{1,2}).

Challenger C1 then sets

SKID = ({Ki, K̄ ′
i,1 = K ′

i,1 ·K ′
i,2, K̄ ′

i,2 = K ′′
i,2}i∈{1,2}).

• Challenge phase: Attacker A1 sends a challenge identity ID∗ and two messages
M0, M1 to challenger C1, who relays these to challenger C2. The challenger flips a
coin β ∈R {0, 1} and sends back ciphertext

CT∗
ID∗ =

(
C = Mβ ·As, {Ci = As

i ,

C ′
i,1 = (W0iW

x
1i)s, C ′

i,2 = (W ′
0iW

′x′

1i )s}i∈{1,2}
)
.

Challenger C1 then sends the ciphertext

CT∗
ID∗ =

(
C, {Ci, C̄ ′

i = C ′
i,1 · C ′

i,2}i∈{1,2}
)

to attacker A1.

• Second query phase: This phase is identical to the first query phase.

• Guessing phase: Attacker A1 outputs a guess β′ for β, which attacker A2 also
outputs as its guess.

It also follows quickly (by slightly adjusting the proof of Proposition 1) that the scheme
is anonymous.

Corollary 2. The scheme in Definition 29 is anonymous.

G.4 CCA-security with the FO-transformation
We compare our CCA-transformed variants of CGW-IBE with a CCA-variant obtained
by applying the Fujisaki-Okamoto transform [FO99, HHK17]. In particular, we apply the
transformation yielding an explicit rejection during the decapsulation that does not take
the ciphertext of the KEM as input to the hash that is used to derive a symmetric key.

Definition 30 (CCA-secure CGW-IBE with FO (CCA-CGW-IBE-FO)). The CCA-secure
variant of the anonymous identity-based encryption scheme proposed by Chen, Gay and
Wee obtained from the FO-transform [HHK17] is defined as follows.

• Setup(λ): On input the security parameter λ, the algorithm generates three groups
G,H,GT of prime order p with generators g ∈ G and h ∈ H, and chooses a pairing
e : G×H→ GT . It also specifies a collision-resistant hash function H : {0, 1}∗ → Zp,
a cryptographic hash function G : GT → Zp, a key derivation function KDF: GT →
{0, 1}2λ, and an authenticated encryption scheme SE = (EncK, DecK) with K(λ) =
{0, 1}2λ. It then generates random ki, ai, bi, w0ij , w1ij ∈R Zp for all i, j ∈ {1, 2}. It
outputs MSK = ({ki, ai, bi, w0ij , w1ij}i,j∈{1,2}) as the master secret key and publishes
the domain parameters (p,G,H,GT ,H) and the master public key as

MPK = (g, h, A = e(g, h)a1k1+a2k2 ,

A1 = ga1 , A2 = ga2 , {Wl,j = ga1wl1j+a2wl2j}j∈{1,2},l∈{0,1}).
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• KeyGen(MSK, ID): On input identifier ID ∈ {0, 1}∗, the PKG first hashes x = H(ID),
and then generates random integer r ∈R Zp and computes the secret key as

SKID = ({Ki = hrbi , K ′
i = h−ki−r(b1w0i1+b2w0i2+x(b1w1i1+b2w1i2))}i∈{1,2}).

• Encrypt(MPK, ID, M): Message M ∈ {0, 1}∗ is encrypted under identifier ID by
first hashing x = H(ID), then picking random M ′ ∈R GT , setting s← G(M ′), and
computing the ciphertext as

CTID ← (CTsym = EncK(M), Encrypt′(MPK, ID, M ′; s)),

where K← KDF(M ′), and

Encrypt′(MPK, ID, M ′; s) =
(
C = M ′ ·As, {Ci = As

i , C ′
i = (W0iW

x
1i)s}i∈{1,2}

)
.

• Decrypt(MPK, SKID′ , CTID): Suppose that ID = ID′, then the ciphertext can de-
crypted by computing

M ′′ = C · e(C1, K ′
1) · e(C2, K ′

2) · e(C ′
1, K1) · e(C ′

2, K2),

then verifying whether

(C, C1, C2, C ′
1, C ′

2) ?= Encrypt′(MPK, ID, M ′′;G(M ′′))

holds and, if so, return M ← DecKDF(M ′′)(CTsym).

H A large-universe CP-ABE scheme
H.1 Access structures
Definition 31 (Monotone access structures [Bei96]). Let {a1, ..., an} be a set of attributes.
An access structure is a collection A of non-empty subsets of {a1, ..., an}. The sets in A
are called the authorized sets, and the sets that are not in A are called the unauthorized
sets. An access structure A ⊆ 2{a1,...,an} is monotone if for all B, C holds: B ∈ A and
B ⊆ C, then also C ∈ A.

We represent access policies A by linear secret sharing scheme (LSSS) matrices, which
support monotone span programs [Bei96, GPSW06b].

Definition 32 (Access structures represented by LSSS matrices [GPSW06b]). An access
structure can be represented as a pair A = (A, ρ) such that A ∈ Zn1×n2

p is an LSSS matrix,
where n1, n2 ∈ N, and ρ is a function that maps its rows to attributes in the universe.
Then, for some vector with randomly generated entries v = (s, v2, ..., vn2) ∈ Zn2

p , the i-th
secret generated by this matrix is λi = Aiv⊺, where Ai denotes the i-th row of A. In
particular, if S satisfies A, then there exist a set of rows Υ = {i ∈ [n1] | ρ(i) ∈ S} and
coefficients εi ∈ Zp for all i ∈ Υ such that

∑
i∈Υ εiAi = (1, 0, ..., 0), and by extension∑

i∈Υ εiλi = s, holds.

In [LW10], Lewko and Waters devise a way to convert Boolean formulas into LSSS
matrices. For our implementations, we use strictly ANDs in our policies, which ensures
that the matrix A is a square matrix in which the number of rows and columns is equal to
the length n of the policy, the first row consists of 1s in the first two entries (and the rest
is 0), the last row has −1 in the last column and the rest all-zero, and the rest of the rows
i ∈ [2, n− 1] is of the form 1n

i+1 − 1n
i :

A1 = 1n
1 + 1n

2 Ai = 1n
i+1 − 1n

i An = −1n
n,

for all i ∈ [2, n− 1].
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H.2 Ciphertext-policy ABE
Definition 33 (Ciphertext-policy ABE [BSW07]). A ciphertext-policy ABE (CP-ABE)
scheme consists of four algorithms:

• Setup(λ) → (MPK, MSK): The setup takes as input a security parameter λ, it
outputs the master public-secret key pair (MPK, MSK).

• KeyGen(S, MSK)→ SKS : The key generation takes as input a set of attributes S
and the master secret key MSK, and outputs a secret key SKS .

• Encrypt(M,A, MPK) → CTA: The encryption takes as input a plaintext message
M , an access policy A and the master public keys MPK. It outputs a ciphertext
CTA.

• Decrypt(CTA, SKS)→M ′: The decryption takes as input the ciphertext CTA that
was encrypted under an access policy A, and a secret key SKS associated with a set
of attributes S. It succeeds and outputs the plaintext message M ′ if S satisfies A.
Otherwise, it aborts.

A scheme is called correct if decryption of a ciphertext with secret key yields the original
plaintext message. We consider a scheme to be large-universe if it does not impose bounds
on the size of the universe.

H.3 The selectively secure variant of RW13
Definition 34 (The RW13 CP-ABE scheme [RW13]). The ciphertext-policy attribute-
based encryption scheme by Rouselakis and Waters (RW13) [RW13] is defined as follows.

• Setup(λ): Taking as input the security parameter λ, the setup generates three groups
G,H,GT of prime order p with generators g ∈ G, h ∈ H, and chooses a pairing
e : G × H → GT . The setup also defines the universe of attributes U = Zp. It
then generates random α, b, b0, b1, b′ ∈R Zp. It outputs MSK = (α, b, b0, b1, b′) as its
master secret key and publishes the master public key as

MPK = (g, h, A = e(g, h)α, B = gb, B0 = gb0 , B1 = gb1 , B′ = gb′
).

• KeyGen(MSK,S): On input a set of attributes S, the algorithm generates random
integers r, ratt ∈R Zp for each att ∈ S, letting xatt ∈ Zp denote the representation of
att in Zp and computes the secret key as

SKS = (K = hα−rb, K ′ = hr, {K1,att = h−ratt(b1xatt+b0)−rb′
, K2,att = hratt}att∈S).

• Encrypt(M, MPK,A): A message M ∈ GT is encrypted under A = (A, ρ) with
A ∈ Zn1×n2

p and ρ : [n1] → U by generating random integers s,si,vj ∈R Zp for all
i ∈ [n1] and j ∈ [2, n2], and computes the ciphertext as

CTA = (C = M ·As, C ′ = gs, {C1,j = Bλj (B′)sj ,

C2,j =
(

B
ρ(j)
1 B0

)sj

, C3,j = gsj}j∈[1,n1]),

such that λi denotes the i-th entry of A · (s, v2, ..., vn2)⊺.
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• Decrypt(SKS , CTA): Suppose that S satisfies A, and suppose Υ = {j ∈ [1, n1] |
ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0). Then the

plaintext M is retrieved by computing

C/

e(C ′, K) · e(
∏
j∈Υ

C
εj

1,j , K ′)
∏
j∈Υ

(
e(Cεj

2,j , K2,ρ(j)) · e(Cεj

3,j , K1,ρ(j))
) .

Note that, in the case of AND-gates, εj ∈ {0, 1}.

H.4 A fully secure variant of RW13
We present a fully secure variant of this scheme, given in the Agrawal-Chase framework
(AC17) [AC17].

Definition 35 (The fully secure RW13 CP-ABE scheme (RWAC) [AC17]). The ciphertext-
policy attribute-based encryption scheme by Rouselakis and Waters (RW13) [RW13] is
defined in the Agrawal-Chase framework, using the prime-order dual system groups for
SXDH in [CW14], as follows.

• Setup(λ): Taking as input the security parameter λ, the setup generates three groups
G,H,GT of prime order p with generators g ∈ G, h ∈ H, and chooses a pairing
e : G×H→ GT . The setup also defines the universe of attributes U = Zp. It then
generates random α1, α2, d1, d2, d3, d4, d5, bi, b0,i, b1,i, b′

i ∈R Zp for all i ∈ {1, 2, 3},
such that d1d4 ̸= d2d3. It outputs MSK = (α1, α2, d1, d2, d3, d4, d5, bi, b0,i, b1,i, b′

i) as
its master secret key and publishes the master public key as

MPK = (g, h, A = e(g, h)α1d1+α2d2 , {gi = gdi , Bi = gb1di+b3di+2 ,

{Bl,i = gbl,1di+bl,3di+2}l∈{0,1}, B′
i = gb′

1di+b′
3di+2}i∈{1,2}).

• KeyGen(MSK,S): On input a set of attributes S, the algorithm generates random
integers r, ratt ∈R Zp for each att ∈ S, letting xatt ∈ Zp denote the representation of
att in Zp and computes the secret key as

SKS = ({Ki = hαi−rb̄i , K ′
1 = hrd4d6 , K ′

2 = h−rd3d6 ,

K1,att,i = h−ratt(b̄1,ixatt+b̄0,i)−rb̄′
i ,

K2,att,1 = hrattd4d6 , K2,att,2 = h−rattd3d6}i∈{1,2},att∈S),

where for l ∈ {0, 1}, we have

d6 = d5

d1d4 − d2d3

b̄1 = d6(b1d4 − b2d2), b̄2 = d6(−b1d3 + b2d1),
b̄l,1 = d6(bl,1d4 − bl,2d2), b̄l,2 = d6(−bl,1d3 + bl,2d1),

b̄′
1 = d6(b′

1d4 − b′
2d2), b̄′

2 = d6(−b′
1d3 + b′

2d1).

• Encrypt(M, MPK,A): A message M ∈ GT is encrypted under A = (A, ρ) with
A ∈ Zn1×n2

p and ρ : [n1] → U by generating random integers s,si,vj ∈R Zp for all
i ∈ [n1] and j ∈ [2, n2], and computes the ciphertext as

CTA = (C = M ·As, {C ′
i = gs

i , C1,i,j = B
Aj,1s
i g

λj

i (B′
i)sj ,

C2,i,j =
(

B
ρ(j)
1,i B0,i

)sj

, C3,i,j = g
sj

i }i∈{1,2},j∈[1,n1]),

such that λj denotes the j-th entry of A · (0, v2, ..., vn2)⊺.
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• Decrypt(SKS , CTA): Suppose that S satisfies A, and suppose Υ = {j ∈ [1, n1] |
ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0). Then the

plaintext M is retrieved by computing

C/
∏

i∈{1,2}

(
e(C ′

i, Ki) · e(
∏

j∈Υ C
εj

1,i,j , K ′
i)
∏

j∈Υ
(
e(Cεj

2,i,j , K2,ρ(j),i) · e(Cεj

3,i,j , K1,ρ(j),i)
))

.

H.5 Our CCA-transformation for PES
We transform the fully CPA-secure scheme in Definition 35 to a fully CCA-secure scheme
with the transformation for PES in Section 5. Like for the CGW-IBE, because RWAC
is special decomposable, we use the variation in Section 3.3, which hashes the partial
ciphertext CT2,x with the RPC hash.

Definition 36 (The fully CCA-secure RWAC scheme). The CCA-secure version obtained
with our transformation in Section 5 of RWAC [RW13, AC17, Att19] is defined as follows.

• Setup(λ): Taking as input the security parameter λ, the setup generates three groups
G,H,GT of prime order p with generators g ∈ G, h ∈ H, and chooses a pairing
e : G×H→ GT . It also specifies a collision-resistant hash function H : {0, 1}∗ → Zp,
an authenticated symmetric encryption scheme SE = (EncK, DecK) with K(λ) = GT ,
and a random-prefix collision-resistant hash function RPC: {0, 1}λ ×G→ Zp. The
setup also defines the universe of attributes U = Zp. It then generates random
α1, α2, d1, d2, d3, d4, d5, bi, b0,i, b1,i, b′

0,i, b′
1,i, b′

i ∈R Zp for all i ∈ {1, 2, 3}, such that
d1d4 ̸= d2d3. It outputs MSK = (α1, α2, d1, d2, d3, d4, d5, bi, b0,i, b1,i, b′

1,i, b′
i) as its

master secret key and publishes the master public key as

MPK = (g, h, A = e(g, h)α1d1+α2d2 , {gi = gdi , Bi = gb1di+b3di+2 ,

{Bl,i = gbl,1di+bl,3di+2 , B′
l,i = gb′

l,1di+b′
l,3di+2}l∈{0,1}, B′

i = gb′
1di+b′

3di+2}i∈{1,2}).

• KeyGen(MSK,S): On input a set of attributes S, the algorithm generates random
integers r, α1,1, α2,1, ratt ∈R Zp for each att ∈ S, sets α1,2 ← α1 − α1,1 and α2,2 ←
α2−α2,1, letting xatt = H(att) denote the representation of att in Zp, and computes
the secret key as

SKS = ({Ki = hαi,1−rb̄i , K ′
1 = hrd4d6 , K ′

2 = h−rd3d6 ,

K
(2)
i = hαi,2−rb̄′

0,i , K
(3)
i = h−rb̄′

1,i , K1,att,i = h−ratt(b̄1,ixatt+b̄0,i)−rb̄′
i ,

K2,att,1 = hrattd4d6 , K2,att,2 = h−rattd3d6}i∈{1,2},att∈S),

where for l ∈ {0, 1}, we have

d6 = d5

d1d4 − d2d3

b̄1 = d6(b1d4 − b2d2), b̄2 = d6(−b1d3 + b2d1),
b̄l,1 = d6(bl,1d4 − bl,2d2), b̄l,2 = d6(−bl,1d3 + bl,2d1),
b̄′

l,1 = d6(b′
l,1d4 − b′

l,2d2), b̄′
l,2 = d6(−b′

l,1d3 + b′
l,2d1),

b̄′
1 = d6(b′

1d4 − b′
2d2), b̄′

2 = d6(−b′
1d3 + b′

2d1).

• Encrypt(M, MPK,A): A message M ∈ {0, 1}∗ is encrypted under A = (A, ρ) with
A ∈ Zn1×n2

p and ρ : [n1] → U by generating random integers s,sj ,vj′ ∈R Zp for all
j ∈ [n1] and j′ ∈ [2, n2], and computes the ciphertext as

CTA = (CTsym = EncK(M), {C ′
i = gs

i , C1,i,j = B
Aj,1s
i g

λj

i (B′
i)sj ,
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C2,i,j =
(

B
ρ(j)
1,i B0,i

)sj

, C3,i,j = g
sj

i , C4,i =
(

B′x′

1,i B′
0,i

)s

}i∈{1,2},j∈[1,n1], k),

such that k ∈ {0, 1}λ,

x′ ← RPC(k, {C ′
i, C1,i,j , C2,i,j , C3,i,j}i∈{1,2},j∈[1,n1]),

K← As, and λj denotes the j-th entry of A · (0, v2, ..., vn2)⊺. Note that, although
we use set notation in the input to the hash, the ciphertext components should be
concatenated deterministically (in a domain-separated fashion), such that encryption
and decryption yield the same output.

• Decrypt(SKS , CTA): Suppose that S satisfies A, and suppose Υ = {j ∈ [1, n1] |
ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0). Then the

plaintext M is retrieved by computing

K′ ←
∏

i∈{1,2}

e(C ′
i, KiK

(2)
i (K(3)

i )y′
) · e

∏
j∈Υ

C
εj

1,i,j

 · C4,i, K ′
i


·
∏
j∈Υ

(
e(Cεj

2,i,j , K2,ρ(j),i) · e(Cεj

3,i,j , K1,ρ(j),i)
) ,

where
y′ ← RPC(k, {C ′

i, C1,i,j , C2,i,j , C3,i,j}i∈{1,2},j∈[1,n1]),

and then obtaining M ′ ← DecK′(CTsym).

H.6 CCA-security with other transformations
We compare the efficiency of the CCA-secure scheme using our transformations with several
other CCA-secure variants of RWAC. In particular, we consider the

• FO-transformation [FO99] using the techniques in [HHK17];

• YAHK-transformation [YAHK11] using the delegatability property;

• YAHK-transformation [YAHK11] using the verifiability property.

More generic transformations exist, as mentioned in the introduction, but these incur
similar computational trade-offs. Rather than implementing fully functional variants of
these schemes, we estimate the storage and computational costs based on the operations
required in the algorithms of the transformed variants. For instance, the FO-transformed
variant calls the encryption algorithm during decryption, and the efficiency of the variants
using the YAHK-transformations depends on the efficiency of the chosen OTS. Table 3
estimates the overhead of all variants, and shows that our transformation yields the fastest
decryption algorithm. In particular, the additional costs are a small constant.
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Table 3: Comparison of the additional storage and computational costs incurred by the
CCA-transformation among several CCA-secure variants of RWAC. We do not list the
symmetric operations, such as hashes, encryptions and MACs.

Variant |MPK| |SKS | |CTA| KeyGen Encrypt Decrypt
FO - sGT

+ 10sG - - - 10|Υ|cexp,G
Delegatability - 8|vk|sH 6|vk|sG 8|vk|cexp,H 6|vk|cexp,G 2|vk|p
Verifiability - - 6sG - 10cexp,G 2|Υ|p

Ours 4sG 4sH 2sG 4cexp,H 4cexp,G 2cexp,H
Note: cexp,G′ = costs of an exponentiation in G′, sG′ = the size of an element in G′,

p = the costs of a pairing operation, vk = verification key used in YAHK
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