
Batch Arguments to NIZKs from One-Way Functions

Eli Bradley

UT Austin

elibradley@utexas.edu

Brent Waters

UT Austin and NTT Research

bwaters@cs.utexas.edu

David J. Wu

UT Austin

dwu4@cs.utexas.edu

Abstract

Succinctness and zero-knowledge are two fundamental properties in the study of cryptographic proof systems.

Several recent works have formalized the connections between these two notions by showing how to realize non-

interactive zero-knowledge (NIZK) arguments from succinct non-interactive arguments. Specifically, Champion and

Wu (CRYPTO 2023) as well as Bitansky, Kamath, Paneth, Rothblum, and Vasudevan (ePrint 2023) recently showed

how to construct a NIZK argument for NP from a (somewhere-sound) non-interactive batch argument (BARG) and a

dual-mode commitment scheme (and in the case of the Champion-Wu construction, a local pseudorandom generator).

The main open question is whether a BARG suffices for a NIZK (just assuming one-way functions).

In this work, we first show that an adaptively-sound BARG for NP together with an one-way function imply a

computational NIZK argument for NP. We then show that the weaker notion of somewhere soundness achieved

by existing BARGs from standard algebraic assumptions are also adaptively sound if we assume sub-exponential
security. This transformation may also be of independent interest. Taken together, we obtain a NIZK argument for

NP from one-way functions and a sub-exponentially-secure somewhere-sound BARG for NP.
If we instead assume plain public-key encryption, we show that a standard polynomially-secure somewhere-sound

batch argument for NP suffices for the same implication. As a corollary, this means a somewhere-sound BARG

can be used to generically upgrade any semantically-secure public-key encryption scheme into one secure against

chosen-ciphertext attacks. More broadly, our results demonstrate that constructing non-interactive batch arguments

for NP is essentially no easier than constructing NIZK arguments for NP.

1 Introduction
A non-interactive argument system for an NP relation R allows a (computationally-bounded) prover to convince

a verifier that a statement 𝑥 ∈ {0, 1}∗ is true (i.e., that 𝑥 ∈ L) with a single message 𝜋 (which is referred to as a

“proof”). The argument system is succinct if the size of the proof 𝜋 is sublinear in the size of the circuit computing

R and is zero-knowledge [GMR85] if the proof 𝜋 reveals nothing more about 𝑥 other than the fact that 𝑥 is true.

Both succinctness and zero-knowledge are fundamental properties of proof systems, and their combination in

the form of zero-knowledge succinct non-interactive arguments (zkSNARGs) have found extensive applications

to verifiable computation, authentication schemes, and privacy-preserving digital currencies. A recent line of

works [KMY20, CW23, BKP
+
23a] have studied the formal relationship between succinctness and zero-knowledge.

Since a succinct argument is not long enough to encode a traditional NP witness, it intuitively must lose some

information about the witness associated with the statement. Thus, it is not surprising that succinct argument

systems give rise to zero-knowledge arguments. Such a connection was first formalized by Kitagawa, Matsuda, and

Yamakawa [KMY20], who showed that a succinct non-interactive argument for NP can be used in conjunction with

one-way functions to construct a non-interactive zero-knowledge (NIZK) argument.

Batch arguments. The construction in [KMY20] uses SNARGs for NP as its starting point. Unfortunately, con-

structing SNARGs for NP in the plain model is a challenging problem, and any construction must necessarily evade

known black-box separations [GW11]. The question then is whether argument systems satisfying weaker notions of
succinctness could still imply zero-knowledge. This was studied recently in two works [CW23, BKP

+
23a], which

established a similar implication starting from the weaker notion of a non-interactive batch argument (BARG). Batch

arguments allow a prover to amortize the communication cost of NP verification; namely, the prover can convince

1

mailto:elibradley@utexas.edu
mailto:bwaters@cs.utexas.edu
mailto:dwu4@cs.utexas.edu

the verifier of a collection of 𝑡 NP statements (𝑥1, . . . , 𝑥𝑡) with a proof of size poly(_, 𝑠) · 𝑜 (𝑡), where 𝑠 is the size of
the circuit computing the associated NP relation and _ is a security parameter. Unlike the case of SNARGs, a recent

line of works have shown how to construct batch arguments for NP from a broad range of standard number-theoretic

assumptions [KVZ21, CJJ21a, CJJ21b, HJKS22, WW22, DGKV22, GSWW22, CGJ
+
23, KLVW23, BBK

+
23]. The work of

Champion and Wu [CW23] showed how to obtain a computational NIZK argument from a somewhere-sound
1
BARG

for NP in conjunction with a dual-mode commitment scheme and a (sub-exponentially-secure) local pseudorandom

generator (PRG). The work of Bitansky, Kamath, Paneth, Rothblum, and Vasudevan [BKP
+
23a] showed how to obtain

a statistical NIZK argument from a somewhere-sound BARG for NP with a dual-mode commitment scheme.
2
In light

of these works, a natural question is whether we can construct NIZK arguments solely from BARGs (and one-way

functions).

This work. In this work, we first show how to construct a computational NIZK argument for NP from any one-way

function together with a (polynomially-secure) adaptively-sound BARG for NP. Adaptive soundness is the most

“natural” security notion for a BARG and can often be more convenient to use in constructions. However, most

BARG constructions based on standard algebraic assumptions (e.g., [CJJ21b, WW22, DGKV22, CGJ
+
23]) only satisfy a

weaker notion of “somewhere soundness” where the adversary has to pre-commit to the index of the false instance.

As an additional contribution (of independent interest), we show in Section 5 that using complexity leveraging,

any sub-exponentially-secure somewhere-sound BARG can also be used to obtain an adaptively-sound BARG. Thus,

existing somewhere-sound BARGs based on standard algebraic assumptions also satisfy adaptive soundness at the

expense of making a stronger sub-exponential hardness assumption. We believe this fact could also be useful in other

applications of BARGs. In combination, we obtain a NIZK argument for NP from one-way functions and either (1) an

adaptively-sound BARG for NP; or (2) a sub-exponentially-secure somewhere-sound BARG for NP (Corollary 3.5).

Compared with [CW23] and [BKP
+
23a], our construction only requires BARGs and one-way functions. The previous

works [CW23, BKP
+
23a] additionally relied on a dual-mode commitment scheme (and in the case of [CW23], also a

local pseudorandom generator).

If we additionally assume vanilla public-key encryption, then we can obtain a computational NIZK for NP from

a polynomially-secure somewhere-sound BARG for NP (Corollary 4.8). Namely, the use of public-key encryption

allows us to relax the adaptive soundness requirement on the BARG to somewhere soundness. Like previous works,

our constructions do not need extractability (although most existing BARGs support some type of extraction). We

summarize our main results in the following informal theorem:

Theorem 1.1 (Informal). There exists a NIZK for NP assuming the existence of either

• a one-way function and an adaptively-sound BARG for NP; or

• a public-key encryption scheme and a somewhere-sound BARG for NP.

Moreover, adaptively-sound BARGs for NP can be constructed from sub-exponentially-secure somewhere-sound BARGs
for NP.

Broadly speaking, our results demonstrate that constructing BARGs for NP is no easier than constructing

(computational) NIZK arguments. Indeed, existing algebraic constructions of BARGs [CJJ21b, WW22, DGKV22,

CGJ
+
23] are based on ideas and techniques that were previously used to build NIZK arguments.

An implication to CCA-security. Combined with classic results [NY90, SCO
+
01] on constructing public-key

encryption with security against chosen-ciphertext attacks (CCA-security) from semantically-secure public-key

encryption and (designated-verifier) NIZK arguments, our results show that BARGs for NP can be used to upgrade

any semantically-secure public-key encryption scheme into a CCA-secure one. In this setting of upgrading the

security of public-key encryption, we only require polynomial hardness of the BARG for NP (since we are given the

semantically-secure public-key encryption to start).

1
A BARG satisfies somewhere soundness if the common reference string (CRS) can be programmed at a specific index 𝑖 , and adaptive soundness is

guaranteed with respect to the 𝑖th
statements 𝑥𝑖 . Moreover, the CRS (computationally) hides the special index 𝑖 .

2
In an independent update that was concurrent to this work, the most recent revision of their work [BKP

+
23b] also show how to construct

computational NIZK arguments from batch arguments and one-way functions. We discuss the concurrent work at the end of this section.

2

Concurrent work. In a recent and concurrent update
3
to their original work (December 2023) [BKP

+
23b], Bitansky,

Kamath, Paneth, Rothblum, and Vasudevan independently showed how to construct a computational NIZK argument

for NP from a somewhere-sound non-interactive batch argument for NP and a one-way function. Notably, their

construction only relies on polynomial-hardness of the underlying batch argument. The techniques in the two

works are very different. We use a BARG to directly construct a hidden-bits generator (similar to [KMY20, CW23]),

which implies a NIZK via existing transformations [QRW19, KMY20]. On the other hand, [BKP
+
23b] starts with

a direct construction of a NIZK argument from a BARG which satisfies distributional zero-knowledge and has

inverse polynomial zero-knowledge error. To obtain a full-fledged NIZK for NP with negligible zero-knowledge error,

[BKP
+
23b] takes a gate-by-gate approach followed by a privacy-amplification step (using multiparty computation

techniques).

1.1 Technical Overview
Our construction follows the approach from [KMY20, CW23] of using an (adaptively-sound) SNARG [KMY20] or a

(somewhere-sound) BARG [CW23] to construct a hidden-bits generator [QRW19]. In conjunction with a NIZK in the

ideal hidden bits model [FLS90], this yields a NIZK in the common reference string (CRS) model. We start with a brief

description of the hidden-bits model and the [CW23] construction, which is the starting point of this work.

The hidden-bits model. The hidden-bits model [FLS90] is an idealized model for constructing unconditional NIZK
proofs. In this model, a trusted party samples a uniform random sequence of bits 𝑟1, . . . , 𝑟𝑚

r← {0, 1}. The trusted party
gives r = 𝑟1𝑟2 · · · 𝑟𝑚 to the prover. To construct a proof for the statement 𝑥 , the prover chooses a subset of indices

𝐼 ⊆ [𝑚] and a proof string 𝜋 . The trusted party then gives the bits r𝐼 := {𝑟𝑖 }𝑖∈𝐼 and the proof string 𝜋 to the verifier.

The work [FLS90] shows how to construct a NIZK for NP with statistical soundness and perfect zero-knowledge in

the hidden-bits model.

Hidden-bits generators. Many works have shown how to leverage cryptographic tools to transform a NIZK in

the hidden-bits model into a NIZK in the CRS model [FLS90, BY92, CHK03, GR13, CL18, QRW19, LPWW20, KMY20].

Similar to previous work [KMY20, CW23], we use the abstraction based on the hidden-bits generators introduced

by Quach, Rothblum, and Wichs [QRW19]. Our presentation here is adapted from that in [CW23]. A hidden-bits

generator allows a prover to generate a sequence of (pseudorandom) bits r = 𝑟1𝑟2 · · · 𝑟𝑚 and selectively reveal a

subset of the bits r𝐼 := {𝑟𝑖 }𝑖∈𝐼 for some 𝐼 ⊆ [𝑚] to the verifier. Specifically, a hidden-bits generator consists of four

algorithms (Setup,GenBits, Prove,Verify) with the following properties:

• The Setup algorithm takes the security parameter _ and the hidden-bits string length𝑚, and outputs a common

reference string crs for the hidden-bits generator.

• The GenBits algorithm takes the common reference string crs and outputs a hidden-bits string r ∈ {0, 1}𝑚 and

a generator state st.

• The Prove algorithm takes the generator state st, a subset of indices 𝐼 ⊆ [𝑚], and outputs a proof 𝜋 for the

subset of bits r𝐼 := {𝑥𝑖 }𝑖∈𝐼 .

• The Verify algorithm takes the common reference string crs, a subset of indices 𝐼 ⊆ [𝑚], a subset of bits

r𝐼 = {𝑥𝑖 }𝑖∈𝐼 , the opening 𝜋 , and decides whether to accept or reject.

The correctness and security properties for a hidden-bits generator are defined as follows:

• Correctness: Correctness says that the verification algorithm accepts the proof output by Prove. Namely, if

crs← Setup(1_, 1𝑚) and (r, st) ← Setup(crs), then for all subsets 𝐼 ⊆ [𝑚], Verify(crs, 𝐼 , r𝐼 , Prove(st, 𝐼)) = 1.

3
The original version of their work (May 2023) [BKP

+
23c] showed how to construct a statistical NIZK argument with a non-uniform prover from

somewhere-sound BARGs and lossy public-key encryption. In a subsequent revision (June 2023) [BKP
+
23a], they improved their result to obtain

a statistical NIZK argument with a uniform prover from somewhere-sound BARGs and lossy public-key encryption. In the most recent revision

(December 2023) [BKP
+
23b], they additionally showed how to obtain a computational NIZK argument from somewhere-sound BARGs. These

works also show additional implications between batch arguments and (statistical) witness indistinguishability.

3

• Binding: The binding property says that the set of valid hidden-bits strings (of length𝑚) constitutes a sparse
subset of the set of all𝑚-bit strings. Namely, for every common reference string crs in the support of Setup,
there exists a sparse subsetVcrs ⊂ {0, 1}𝑚 where |Vcrs | ≤ 2

𝑚𝛾 ·poly(_)
for some constant 𝛾 < 1. Moreover, an

efficient adversary can only come up with valid proofs 𝜋 for sequences r𝐼 ∈ {0, 1} |𝐼 | where r𝐼 = r′
𝐼
for some

r′ ∈ Vcrs
.

• Hiding: The hiding property says that the unrevealed bits are pseudorandom. Specifically, for any set 𝐼 ⊆ [𝑚]
and sampling r← GenBits(crs), the distribution of the unrevealed bits r𝐼 (where 𝐼 = [𝑚] \ 𝐼) is computationally

indistinguishable from uniform given the common reference string crs, the revealed bits r𝐼 , and the proof 𝜋 .

The Champion-Wu hidden-bits generator. Building on the work of [KMY20], Champion and Wu [CW23]

recently showed how to construct a hidden-bits generator from a batch argument for NP, a (leakage-resilient) local
PRG (i.e., a PRG where each output bit depends on a small number of bits of the seed), and a dual-mode commitment

scheme. In a dual-mode commitment [DN02], the CRS can be sampled in one of two computationally indistinguishable

modes. One mode yields equivocable (or statistically hiding) commitments while the other yields extractable (or

statistically binding) commitments. A dual-mode commitment can be built from a lossy public-key encryption

scheme [BHY09]. We provide a basic outline of the [CW23] construction below:

• The common reference string consists of a CRS for a dual-mode commitment scheme and a CRS for a somewhere-

sound BARG for NP.

• To sample a hidden-bits string, the prover samples a seed s ∈ {0, 1}𝑛 for the leakage-resilient local PRG.
4
The

hidden-bits string r ∈ {0, 1}𝑚 is the output of r := PRG(s). To open to a subset 𝐼 ⊆ [𝑚], the prover does the
following:

– Commit to the PRG seed s using the dual-mode commitment. Let 𝜎 be the resulting commitment.

– The prover constructs a BARG proof 𝜋 that for each output index 𝑖 ∈ 𝐼 , the output bit 𝑟𝑖 is consistent with
the 𝑖th bit of PRG(s), where s is the seed associated with the commitment 𝜎 .

The proof consists of the commitment 𝜎 together with the BARG proof 𝜋 .

• To check the opening, the verifier simply checks the BARG proof 𝜋 (with respect to the committed seed 𝜎).

To argue binding and hiding security, the analysis in [CW23] proceeds as follows:

• Binding: To argue binding, [CW23] programs the CRS for the dual-mode commitment to be extracting. If

the local PRG has super-linear stretch, then the image of the PRG is a sparse subset of {0, 1}𝑚 . Moreover,

(somewhere soundness) of the BARG ensures that the prover can only open to bit-strings that are consistent

with some seed (specifically, the seed s associated with the commitment 𝜎). In the security proof, this latter step

relies on the reduction being able efficiently extract the PRG seed s from the commitment 𝜎 . Namely, if there is

an index 𝑖 where 𝑟𝑖 does not match the 𝑖th bit of PRG(s), then the instance associated with the 𝑖th output bit 𝑟𝑖
in the BARG must be false. This is sufficient to setup a reduction to somewhere soundness of the BARG.

• Hiding: To argue that the scheme is hiding, [CW23] first switches the dual-mode commitments to be equivo-

cating (i.e., in this case, the commitment 𝜎 completely hides the seed s). Then, it treats the BARG proof 𝜋 as

“leakage” on the PRG seed s. As long as 𝜋 is much shorter than s, they can appeal to leakage-resilience of the

local PRG to argue that the unrevealed bits remain pseudorandom. Since the length of 𝜋 scales with the size

of the circuit that computes each bit of the PRG output, [CW23] requires that each output bit of the PRG be

computed by a circuit that is significantly shorter than the length of the PRG seed. This is why they require the

PRG to have small locality.

4
Technically, the construction in [CW23] composes an arbitrary (sub-exponentially-secure) local PRG with a randomness extractor. Using the

Gentry-Wichs leakage-simulation lemma [GW11] and assuming sub-exponential hardness of the local PRG, this yields a leakage-resilient local

PRG. For ease of exposition, we describe their blueprint assuming a leakage-resilient local PRG.

4

Our approach. In this work, we make two key modifications to the previous construction of [CW23] that eliminates

the need for both the dual-mode commitment as well as the local PRG. We describe these two techniques below:

• Removing locality by committing to internal wires. As noted above, the [CW23] approach assumed a local

PRG because they needed to ensure that the size of the circuit computing the PRG is much smaller than the

length of the PRG seed. They do this because each instance of the BARG is associated with one of the output

bits of the PRG. In this work, we take a different approach. Instead of just committing to the bits of the PRG

seed s (as in [CW23]), we instead commit to all of the wires in the circuit computing PRG(s). The BARG is then

used to check not only the validity of r𝐼 where r := PRG(s), but all of the internal gates in the computation of

PRG(s). In this setting, each statement in the BARG only needs to check correct computation of an individual

gate (with respect to the committed wire values). The size of the circuit depends only on the security parameter

for the commitment scheme (which can be set independently of the seed length of the PRG). As such, we

no longer need to assume locality of the PRG. In particular, we construct the leakage-resilient PRG from a

leakage-resilient weak pseudorandom function (PRF), which can in turn be based solely on (polynomial-hard)

one-way functions [HLWW13, QWW21].

• One-time dual-mode commitments. A closer examination of the [CW23] construction shows that one-time
equivocation suffices for the security analysis.

5
Specifically, one-time equivocation for a (bit) commitment

scheme means that it is possible to jointly sample a common reference string along with a single commitment 𝑐

and openings �̃�0, �̃�1 of 𝑐 to the bits 0 and 1, respectively. One-time equivocable (bit) commitments follow from

the classic bit-commitment scheme of Naor [Nao89], which is based on one-way functions.

Using these techniques, we now obtain the following two instantiations (which correspond to the twomain implications

in Theorem 1.1):

• A construction based on one-way functions. While Naor’s dual-mode bit-commitment scheme is either

statistically binding or one-time equivocable, it does not support an efficient extracting mode (i.e., we do not

have an efficient extraction algorithm that takes as input an extraction trapdoor and a commitment and outputs

the committed value). Note that lack of extraction is not surprising since an extractable commitment would

imply a public-key encryption scheme. In this work, we provide an alternative proof of binding that relies on

adaptive soundness of the BARG (as opposed to somewhere soundness). We then show that using complexity

leveraging, any sub-exponentially-secure somewhere-sound BARG is also adaptively sound. While simple,

this latter transformation may also be of independent interest; we describe this in Section 5. Taken together,

this yields a hidden-bits generator from any sub-exponentially-secure somewhere-sound BARG for NP, and
correspondingly, a NIZK for NP from the same assumption. We describe this construction in Section 3.

• A construction based on public-key encryption. By composing Naor’s bit commitment scheme with a

public-key encryption scheme, we also show how to construct a one-time dual-mode commitment with an

efficient (trapdoor) extraction algorithm as well as a one-time equivocation mode. Similar ideas were used in a

number of works studying CCA-secure encryption [KW19] and designated-verifier NIZKs [LQR
+
19]. Combined

with the blueprint above, we obtain a hidden-bits generator from any polynomially-secure somewhere-sound

BARG for NP and a semantically-secure public-key encryption scheme. This yields a NIZK for NP from the

same set of assumptions. We describe this construction in Section 4.

2 Preliminaries
We write _ to denote the security parameter. For a positive integer 𝑛 ∈ N, we write [𝑛] to denote the set {1, . . . , 𝑛}.
We write poly(_) to denote a fixed function that is 𝑂 (_𝑐) for some 𝑐 ∈ N and negl(_) to denote a function that is

𝑜 (_−𝑐) for all 𝑐 ∈ N. We say an event occurs with overwhelming probability if its complement occurs with negligible

probability. We say an algorithm is efficient if it runs in probabilistic polynomial time in the length of its input.

For a finite set 𝑆 , we write 𝑥
r← 𝑆 to denote a uniform random draw from 𝑆 . When D is a probability distribution,

5
As shown in [QRW19, KMY20], this suffices for single-theorem zero-knowledge, which can be boosted to multi-theorem zero-knowledge using

the classic transformation of [FLS90].

5

we write 𝑥 ← D to denote a sample from D. We say that two ensembles of distributions D1
:=

{
D1,_

}
_∈N and

D2
:=

{
D2,_

}
_∈N are computationally indistinguishable if no efficient adversary can distinguish them except with

negl(_) probability. We say they are statistically indistinguishable if their statistical distance is negligible.

Basic cryptographic primitives. We now recall the definitions of some standard cryptographic primitives.

Definition 2.1 (Public-Key Encryption). A public-key bit-encryption scheme with message spaceM = {M_}_∈N is

a triple of efficient algorithms ΠPKE = (Setup, Encrypt,Decrypt) with the following properties:

• Setup(1_) → (pk, sk): On input the security parameter _ ∈ N, the setup algorithm outputs a public key pk and

secret key sk.

• Encrypt(pk,𝑚) → ct: On input the public key pk and a message𝑚 ∈ M, the encryption algorithm outputs a

ciphertext ct.

• Decrypt(sk, ct) → 𝑚: On input the secret key sk and a ciphertext ct, the decryption algorithm outputs a

message𝑚 ∈ M.

We require ΠPKE to satisfy the following properties:

• Correctness: For all _ ∈ N and all messages𝑚 ∈ M,

Pr

[
Decrypt(sk, ct) =𝑚 :

(pk, sk) ← Setup(1_)
ct← Encrypt(pk,𝑚)

]
= 1.

• Semantic security: For a security parameter _ and a bit 𝛽 ∈ {0, 1}, we define the semantic security game

between an adversary A and a challenger as follows:

1. The challenger samples a key pair (pk, sk) ← Setup(1_) and gives (1_, pk) to A.

2. Algorithm A outputs two message𝑚0,𝑚1 ∈ M_ . The challenger replies with ct𝛽 ← Encrypt(pk,𝑚𝛽).
3. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

Then ΠPKE satisfies semantic security if for all efficient adversaries A, there exists a negligible function negl(·)
such that for all _ ∈ N,

|Pr [𝑏′ = 1 | 𝛽 = 0] − Pr [𝑏′ = 1 | 𝛽 = 1] | = negl(_).

Leakage-resilient weak PRF. We now introduce the definition of a leakage-resilient weak pseudorandom function

(PRF). First, recall that the weak PRF security game asserts that the PRF evaluations on random inputs are pseudoran-

dom. We say a weak PRF is leakage-resilient if this pseudorandomness property holds even if the adversary gets

arbitrary leakage on the PRF key. In this work, we consider a definition where the adversary is first allowed to request

(an arbitrary polynomial number of) random evaluations of the weak PRF before specifying its leakage function. We

give the formal definition below. Our definition is adapted from that of [HLWW13].

Definition 2.2 (Leakage-Resilient Weak Pseudorandom Function [HLWW13, adapted]). Let Y be a finite set. A

leakage-resilient weak pseudorandom function with output spaceY is a pair of efficient algorithms ΠLRwPRF = (Setup,
Eval) with the following syntax:

• Setup(1_, 1ℓ) → 𝑘 : On input the security parameter _ ∈ N and a leakage parameter ℓ ∈ N, the setup algorithm

outputs a key 𝑘 . We assume that 𝑘 implicitly contains the security parameter 1
_
, the leakage parameter 1

ℓ
, and

defines the domain X of the PRF. Let ^ = ^ (_, ℓ) be the bit-length of the key 𝑘 output by Setup(1_, 1ℓ).

• Eval(𝑘, 𝑥) → 𝑦: On input a key 𝑘 (which specifies the domain X of the PRF) and an input 𝑥 ∈ X, the evaluation
algorithm outputs a value 𝑦 ∈ Y. The evaluation algorithm is deterministic.

For a security parameter _ and bit 𝛽 ∈ {0, 1}, we define the leakage-resilient weak pseudorandomness game between

an adversary A and a challenger as follows:

6

1. Pre-challenge evaluation queries: On input the security parameter 1
_
, algorithm A starts by outputting the

leakage parameter 1
ℓ
and the number of pre-challenge queries 1

𝑠
it would like to make. The challenger samples

a key 𝑘 ← Setup(1_, 1ℓ). Let X be the domain of the PRF associated with 𝑘 . The challenger samples inputs

𝑥1, . . . , 𝑥𝑠
r← X and replies to A with {(𝑥𝑖 , Eval(𝑘, 𝑥𝑖))}𝑖∈[𝑠] .

2. Leakage query: Algorithm A now outputs a Boolean circuit leak : {0, 1}^ (_,ℓ) → {0, 1}ℓ . The challenger

responds with leak(𝑘) to A.

3. Challenge queries: Algorithm A then outputs the number of challenge queries 1
𝑡
it would like to make.

• If 𝛽 = 0, the challenger samples 𝑥 ′𝑖
r← X, 𝑦𝑖 ← Eval(𝑘, 𝑥 ′𝑖) for each 𝑖 ∈ [𝑡].

• If 𝛽 = 1, the challenger samples 𝑥 ′𝑖
r← X, 𝑦𝑖 r← Y for each 𝑖 ∈ [𝑡].

The challenger gives {(𝑥 ′𝑖 , 𝑦𝑖)}𝑖∈[𝑡] to A.

4. Output: Algorithm A outputs a bit 𝑏′ ∈ {0, 1}.

Finally, we say ΠLRwPRF satisfies leakage-resilient weak pseudorandomness if for all efficient adversaries A, there

exists a negligible function negl(·) such that for all _ ∈ N,

|Pr [𝑏′ = 1 | 𝛽 = 0] − Pr [𝑏′ = 1 | 𝛽 = 1] | = negl(_).

The work of [QWW21] show how to construct a leakage-resilient weak PRF from one-way functions where the size

of the key scales with ℓ · poly(_) and ℓ is the leakage parameter. Technically, [QWW21] show how to construct a

leakage-resilient symmetric encryption scheme, but their construction implicitly uses a leakage-resilient weak PRF.

For completeness, we provide the details and analysis of their construction (adapted to the setting of leakage-resilient

weak PRFs) in Appendix A. Below, we state the main conclusion (derived from Construction A.6).

Theorem 2.3 (Leakage-Resilient Weak PRF from One-Way Functions [QWW21, adapted]). Let _ be a security
parameter and ℓ be a leakage parameter. Suppose 𝜌 ≥ 𝑂 (_ + log ℓ). Assuming the existence of one-way functions, there
exists a leakage-resilient weak PRF with domain {0, 1}𝜌 , range {0, 1}, and key length (ℓ + _)_.

One-time dual-mode bit commitment. Next, we recall the notion of a one-time dual-mode bit commitment

scheme. This is a bit commitment scheme where the common reference string can be sampled in one of two

computationally indistinguishable modes: binding mode and equivocable mode. When the CRS is in binding mode,

the commitment scheme is statistically binding. When the CRS is sampled in equivocable mode, the CRS sampling

algorithm outputs an equivocable commitment 𝑐 together with two openings �̃�0, �̃�1 of 𝑐 to the bits 0 and 1, respectively.

In other words, the special commitment 𝑐 is an equivocable commitment that can be efficiently opened to a 0 and a 1.

We now give the formal definition. Naor’s classic bit commitment scheme [Nao89] based on one-way functions is a

one-time dual-mode bit commitment scheme.

Definition 2.4 (One-Time Dual-Mode Bit Commitment). A one-time dual-mode bit commitment is a tuple of

algorithms ΠBC = (SetupBind, SetupEquivocate,Commit,Verify) with the following syntax:

• SetupBind(1_) → crs: On input the security parameter _, the setup algorithm for the binding mode outputs a

common reference string crs.

• SetupEquivocate(1_) → (crs, 𝑐, �̃�0, �̃�1): On input the security parameter _, the setup algorithm for the equivo-

cating mode outputs a common reference string crs along with a commitment 𝑐 and openings �̃�0, �̃�1.

• Commit(crs, 𝑏) → (𝑐, 𝜎): On input the common reference string crs and a bit 𝑏 ∈ {0, 1}, the commit algorithm

outputs a commitment 𝑐 and an opening 𝜎 .

• Verify(crs, 𝑐, 𝑏, 𝜎) → {0, 1}: On input the common reference string crs, a commitment 𝑐 , a bit 𝑏 ∈ {0, 1}, and an

opening 𝜎 , the verification algorithm outputs a bit 𝑏′ ∈ {0, 1}.

7

We require ΠBC to satisfy the following properties:

• Correctness: For all security parameters _ ∈ N, all common reference strings crs in the support of either

SetupBind(1_) or SetupEquivocate(1_), and all bits 𝑏 ∈ {0, 1},

Pr [Verify(crs, 𝑐, 𝑏, 𝜎) = 1 : (𝑐, 𝜎) ← Commit(crs, 𝑏)] = 1.

• Mode indistinguishability: For a security parameter _ ∈ N and a bit 𝛽 ∈ {0, 1}, we define the mode

indistinguishability game between an adversary A and a challenger as follows:

1. If 𝛽 = 0, the challenger samples crs← SetupBind(1_). If 𝛽 = 1, the challenger samples (crs, 𝑐, �̃�0, �̃�1) ←
SetupEquivocate(1_). The challenger gives (1_, crs) to A.

2. AlgorithmA outputs a bit 𝑏 ∈ {0, 1}. The challenger gives 𝑐, 𝜎 toA, where (𝑐, 𝜎) are computed as follows:

– If 𝛽 = 0, (𝑐, 𝜎) ← Commit(crs, 𝑏).
– If 𝛽 = 1, (𝑐, 𝜎) ← (𝑐, �̃�𝑏).

3. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}.

The bit commitment scheme satisfies mode indistinguishability if for all efficient adversaries A, there exists a

negligible function negl(·) such that for all _ ∈ N,

|Pr [𝑏′ = 1 | 𝛽 = 0] − Pr [𝑏′ = 1 | 𝛽 = 1] | = negl(_).

• Statistical binding in binding mode: For all security parameters _ ∈ N and all (not necessarily efficient)

adversaries A,

Pr

[
Verify(crs, 𝑐, 0, 𝜎0) = 1 = Verify(crs, 𝑐, 1, 𝜎1) :

crs← SetupBind(1_)
(𝑐, 𝜎0, 𝜎1) ← A(1_, crs)

]
= negl(_).

Theorem 2.5 (Bit Commitment from One-Way Functions [Nao89, adapted]). Assuming the existence of one-way
functions, there exists a one-time dual-mode bit commitment scheme.

2.1 Cryptographic Proof Systems
In this section, we recall the definition of a non-interactive zero-knowledge (NIZK) argument for NP as well as that of

a non-interactive batch argument (BARG) for NP. We will often consider the language of Boolean circuit satisfiability,

which we recall below:

Definition 2.6 (Boolean Circuit Satisfiability). The language LSAT of Boolean circuit satisfiability consists of pairs

(𝐶, x) of circuits 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} and inputs x ∈ {0, 1}𝑛 such that there exists w ∈ {0, 1}ℎ where

𝐶 (x,w) = 1:

LSAT =

{
(𝐶, x) :

𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, x ∈ {0, 1}𝑛
∃w ∈ {0, 1}ℎ : 𝐶 (x,w) = 1

}
.

Non-interactive zero-knowledge. Wenow recall the notion of a non-interactive zero-knowledge argument [GMR85,

BFM88] for an arbitrary NP language.

Definition 2.7 (NIZK Argument for NP). A non-interactive zero-knowledge argument for an NP relation R (with

associated language L) is a tuple of efficient algorithms ΠNIZK = (Setup, Prove,Verify) with the following syntax:

• Setup(1_) → crs: On input the security parameter _ ∈ N, the setup algorithm outputs a common reference

string crs.

• Prove(crs, x,w) → 𝜋 : On input the common reference string crs, a statement x, and a witness w, the prove

algorithm outputs a proof 𝜋 .

8

• Verify(crs, x, 𝜋) → 𝑏: On input the common reference string crs, a statement x, and a proof 𝜋 , the verification

algorithm outputs a bit 𝑏 ∈ {0, 1}.

Moreover, ΠNIZK should satisfy the following properties:

• Completeness: For all _ ∈ N and all (x,w) ∈ R,

Pr

[
Verify(crs, x, 𝜋) = 1 :

crs← Setup(1_);
𝜋 ← Prove(crs, x,w)

]
= 1.

• Adaptive computational soundness: For all efficient adversariesA, there exists a negligible function negl(·)
such that for all _ ∈ N,

Pr

[
x ∉ L ∧ Verify(crs, x, 𝜋) = 1 :

crs← Setup(1_)
(x, 𝜋) ← A(1_, crs)

]
= negl(_).

• Adaptive multi-theorem computational zero-knowledge: For every efficient adversary A, there exists

an efficient simulator S = (S1,S2) and a negligible function negl(·) such that for all _ ∈ N and sampling

crs← Setup(1_) and (c̃rs, stS) ← S1 (1_), we have that���Pr

[
AO0 (crs,·,·) (1_, crs) = 1

]
− Pr

[
AO1 (stS ,·,·) (1_, c̃rs) = 1

] ��� = negl(_),

and where the oracles O0 and O1 are defined as follows:

– O0 (crs, x,w): On input the common reference string crs, a statement x, and a witnessw, the oracle outputs

⊥ if (x,w) ∉ R. If (x,w) ∈ R, it outputs Prove(crs, x,w).
– O1 (stS, x,w): On input the simulator state stS , a statement x and a witness w, the oracle outputs ⊥ if

(x,w) ∉ R. If (x,w) ∈ R, it outputs S2 (stS, x).

Non-interactive batch arguments. Next, we recall the definition of a non-interactive batch argument for the

language of Boolean circuit satisfiability. We start by defining the standard notion of adaptive (computational)

soundness, and then follow it with a relaxation called somewhere soundness [CJJ21b, KVZ21].

Definition 2.8 (Batch Argument for NP [CJJ21b, adapted]). A non-interactive batch argument (BARG) for Boolean

circuit satisfiability is a tuple of three efficient algorithms ΠBARG = (Setup, Prove,Verify) with the following syntax:

• Setup(1_, 1𝑇 , 1𝑠) → crs: On input the security parameter _ ∈ N, a bound on the number of instances 𝑇 ∈ N,
and a bound on the circuit size 𝑠 ∈ N, the setup algorithm outputs a common reference string crs.

• Prove(crs,𝐶, (x1, . . . , x𝑡), (w1, . . . ,w𝑡)) → 𝜋 : On input the common reference string crs, a Boolean circuit

𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, statements x1, . . . , x𝑡 ∈ {0, 1}𝑛 , and witnesses w1, . . . ,w𝑡 ∈ {0, 1}ℎ , the prove
algorithm outputs a proof 𝜋 .

• Verify(crs,𝐶, (x1, . . . , x𝑡), 𝜋) → 𝑏: On input the common reference string crs, the Boolean circuit 𝐶 : {0, 1}𝑛 ×
{0, 1}ℎ → {0, 1}, statements x1, . . . , x𝑡 ∈ {0, 1}𝑛 and a proof 𝜋 , the verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

Moreover, ΠBARG should satisfy the following properties:

• Completeness: For all _,𝑇 , 𝑠 ∈ N, all Boolean circuits 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} of size at most 𝑠 , all 𝑡 ≤ 𝑇 ,
all statements x1, . . . , x𝑡 ∈ {0, 1}𝑛 , and all witnesses w1, . . . ,w𝑡 ∈ {0, 1}ℎ where 𝐶 (x𝑖 ,w𝑖) = 1 for all 𝑖 ∈ [𝑡],

Pr

[
Verify(crs,𝐶, (x1, . . . , x𝑡), 𝜋) = 1 :

crs← Setup(1_, 1𝑇 , 1𝑠);
𝜋 ← Prove(crs,𝐶, (x1, . . . , x𝑡), (w1, . . . ,w𝑡))

]
= 1.

9

• Succinct proof size: There exists a polynomial poly(·) such that for all _,𝑇 , 𝑠 ∈ N, all crs in the support

of Setup(1_, 1𝑇 , 1𝑠), and all Boolean circuits 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} of size at most 𝑠 , all 𝑡 ≤ 𝑇 , all

statements x1, . . . , x𝑡 ∈ {0, 1}𝑛 , and all witnesses w1, . . . ,w𝑡 ∈ {0, 1}ℎ , the size of the proof 𝜋 output by

Prove(crs,𝐶, (x1, . . . , x𝑡), (w1, . . . ,w𝑡)) satisfies |𝜋 | ≤ poly(_ + log 𝑡 + 𝑠).

• Adaptive soundness: For a security parameter _, we define the adaptive security game between an adversary

A and a challenger as follows:

1. On input the security parameter 1
_
, algorithm A starts by outputting the bound on the number of

instances 1
𝑇
and the bound on the circuit size 1

𝑠
.

2. The challenger samples a common reference string crs← Setup(1_, 1𝑇 , 1𝑠) and gives crs to A.

3. AlgorithmA outputs a Boolean circuit𝐶 : {0, 1}𝑛×{0, 1}ℎ → {0, 1} of size at most 𝑠 , statements (x1, . . . , x𝑡)
where x𝑖 ∈ {0, 1}𝑛 for all 𝑖 ∈ [𝑡] and where 𝑡 ≤ 𝑇 , and a proof 𝜋 .

4. The output of the experiment is 1 if Verify(crs,𝐶, (x1, . . . , x𝑡), 𝜋) = 1 and for some 𝑖 ∈ [𝑡], (𝐶, x𝑖) ∉ LSAT.

Otherwise, the output is 0.

Then ΠBARG satisfies adaptive security if for all efficient adversariesA, there exists a negligible function negl(·)
such that for all _ ∈ N, Pr[𝑏 = 1] = negl(_) in the adaptive security game.

Definition 2.9 (Somewhere-Sound Batch Argument for NP [CJJ21b, adapted]). A somewhere-sound non-interactive

batch argument (BARG) for Boolean circuit satisfiability is a tuple of three efficient algorithms ΠBARG = (Setup,
Prove,Verify). The Prove and Verify algorithms are defined exactly as in Definition 2.8, while the Setup algorithm

now takes an additional index parameter:

• Setup(1_, 1𝑇 , 1𝑠 , 𝑖) → crs: On input the security parameter _ ∈ N, a bound on the number of instances𝑇 ∈ N, a
bound on the circuit size 𝑠 ∈ N, and an index 𝑖 ∈ [𝑇], the setup algorithm outputs a common reference string

crs.

Moreover, the adaptive soundness property from Definition 2.8 is replaced by the following index hiding and

somewhere soundness properties:

• Index hiding: For a security parameter _ and a bit 𝛽 ∈ {0, 1}, we define the index-hiding game between an

adversary A and a challenger as follows:

1. On input the security parameter 1
_
, algorithm A starts by outputting the bound on the number of

instances 1
𝑇
, the bound on the circuit size 1

𝑠
, and a pair of indices 𝑖0, 𝑖1 ∈ [𝑇].

2. The challenger samples a common reference string crs← Setup(1_, 1𝑇 , 1𝑠 , 𝑖𝛽) and gives crs to A.

3. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}.

Then ΠBARG satisfies index hiding if for all efficient adversaries A, there exists a negligible function negl(·)
such that for all _ ∈ N,

|Pr [𝑏′ = 1 | 𝛽 = 0] − Pr [𝑏′ = 1 | 𝛽 = 1] | = negl(_).

We say ΠBARG satisfies sub-exponential index hiding security if there exists some constant 𝑐 > 1 such that

for all adversaries A running in time 2
1/𝑐 · poly(), there exists a negligible function negl(·) such that for all

_ ∈ N,
|Pr [𝑏′ = 1 | 𝛽 = 0] − Pr [𝑏′ = 1 | 𝛽 = 1] | = negl(_).

• Somewhere soundness: For a security parameter _, we define the somewhere-soundness game between an

adversary A and a challenger as follows:

1. On input the security parameter 1
_
, algorithm A starts by outputting the bound on the number of

instances 1
𝑇
, the bound on the circuit size 1

𝑠
, and the index 𝑖∗ ∈ [𝑇].

2. The challenger samples a common reference string crs← Setup(1_, 1𝑇 , 1𝑠 , 𝑖∗) and gives crs to A.

10

3. AlgorithmA outputs a Boolean circuit𝐶 : {0, 1}𝑛×{0, 1}ℎ → {0, 1} of size at most 𝑠 , statements (x1, . . . , x𝑡)
where x𝑖 ∈ {0, 1}𝑛 for all 𝑖 ∈ [𝑡] and 𝑡 ≤ 𝑇 , and a proof 𝜋 .

4. The output of the experiment is 𝑏 = 1 if 𝑖∗ ≤ 𝑡 , Verify(crs,𝐶, (x1, . . . , x𝑡), 𝜋) = 1, and (𝐶, x∗𝑖) ∉ LSAT.

Otherwise, the output is 𝑏 = 0.

Then ΠBARG satisfies somewhere-soundness if for all efficient adversaries A, Pr[𝑏 = 1] = negl(_) in the

somewhere-soundness game.

Constructions of BARGs. A number of recent works have established the existence of BARGs forNP from standard

number-theoretic assumptions including the learning with errors (LWE) assumption [CJJ21b, DGKV22], the 𝑘-Lin
assumption over groups with bilinear maps [WW22], and (sub-exponential) hardness of decisional Diffie-Hellman

(DDH) over pairing-free groups [CGJ
+
23].

Soundness definitions. Somewhere soundness is a relaxation of adaptive soundness where the adversary has the

ability to choose the statements based on the CRS, but it is required to pre-commit to the index of a false statement.

In Section 5 (Theorem 5.4), we show that using complexity leveraging, any somewhere-sound BARG which satisfies

sub-exponential index hiding implies an adaptively-sound BARG. Namely, if index hiding security of the somewhere-

sound BARG holds against an adversary that is able to decide the underlyingNP language, then somewhere soundness

implies adaptive soundness by a simple guessing argument. As a security notion, adaptive soundness is sometimes

more convenient to work with compared to somewhere soundness. As such, we use adaptive soundness in our

one-way function based construction in Section 3, which yields a construction based on sub-exponentially secure

somewhere-sound BARGs. For our construction based on public-key encryption (Section 4), somewhere soundness

suffices for our security analysis and we avoid the need for complexity leveraging. This yields a construction based

only on polynomial hardness, but additionally relies on public-key encryption.

2.2 Hidden-Bits Generator
In this section, we recall the notion of a hidden-bits generator with subset-dependent proofs from [QRW19, KMY20].

For a bitstring r ∈ {0, 1}𝑛 and a set of indices 𝐼 ⊆ [𝑛], we write r𝐼 ∈ {0, 1} |𝐼 | to denote the substring corresponding to

the bits of r indexed by 𝐼 . Our presentation here is adapted from the work of [CW23].

Definition 2.10 (Hidden-Bits Generator [KMY20, Definition 11]). A hidden-bits generator with subset-dependent

proofs is a tuple of efficient algorithms ΠHBG = (Setup,GenBits, Prove,Verify) with the following syntax:

• Setup(1_, 1𝑚) → crs: On input the security parameter _, and the output length𝑚, the setup algorithm outputs

a common reference string crs.

• GenBits(crs) → (r, st): On input the the common reference string crs, the generator algorithm outputs a string

r ∈ {0, 1}𝑚 and a state st.

• Prove(st, 𝐼) → 𝜋 : On input the state st and a subset 𝐼 ⊆ [𝑚], the prove algorithm outputs a proof 𝜋 .

• Verify(crs, 𝐼 , r𝐼 , 𝜋) → 𝑏: On input a common reference string crs, a subset 𝐼 ⊆ [𝑚], a string r𝐼 ∈ {0, 1} |𝐼 | , and a

proof 𝜋 , the verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

We require ΠHBG to satisfy the following properties:

• Correctness: For all _,𝑚 ∈ N and all subsets 𝐼 ⊆ [𝑚], we have

Pr

Verify(crs, 𝐼 , r𝐼 , 𝜋) = 1 :

crs← Setup(1_, 1𝑚);
(r, st) ← GenBits(crs);

𝜋 ← Prove(st, 𝐼)

 = 1.

• Somewhat computational binding: For every crs in the support of the algorithm Setup(1_, 1𝑚), there exists
a setVcrs

with the following properties:

11

(i) Output sparsity. There exists a universal constant 𝛾 < 1 and a fixed polynomial 𝑝 (·) such that for

every polynomial𝑚 =𝑚(_), there exists _𝑚 ∈ N such that for all _ ≥ _𝑚 and every crs in the support of

Setup(1_, 1𝑚), |Vcrs | ≤ 2
𝑚𝛾 ·𝑝 (_)

(ii) Computational binding. For a security parameter _, we define the computational binding game between

an adversary A and a challenger as follows:

(a) On input the security parameter 1
_
, algorithm A starts by outputting the output length 1

𝑚
.

(b) The challenger samples crs← Setup(1_, 1𝑚) and gives crs to A.

(c) Algorithm A outputs a tuple (𝐼 , r𝐼 , 𝜋).
(d) The output of the experiment is 𝑏 = 1 if r𝐼 ∉ Vcrs

𝐼
and Verify(crs, 𝐼 , r𝐼 , 𝜋) = 1, where Vcrs

𝐼
:=

{r𝐼 : r ∈ Vcrs}. Otherwise, the output is 𝑏 = 0.

We say the ΠHBG is computationally binding if for all efficient adversaries A, there exists a negligible

function negl(·) such that for all _ ∈ N, Pr[𝑏 = 1] = negl(_) in the computational binding security game.

• Computational hiding: For a security parameter _ and bit 𝛽 ∈ {0, 1}, we define the computational hiding

game between an adversary A and a challenger as follows:

1. On input the security parameter 1
_
, algorithm A starts by outputting the output length 1

𝑚
and a subset

𝐼 ⊆ [𝑚].
2. The challenger samples crs← Setup(1_, 1𝑚), (r, st) ← GenBits(crs), 𝜋 ← Prove(st, 𝐼) and r′ r← {0, 1}𝑚 .

– If 𝛽 = 0, the challenger gives (crs, 𝐼 , r𝐼 , 𝜋, r𝐼) to A, where 𝐼 = [𝑚] \ 𝐼 .
– If 𝛽 = 1, the challenger gives (crs, 𝐼 , r𝐼 , 𝜋, r′𝐼) to A where 𝐼 = [𝑚] \ 𝐼 .

3. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}.

We say the ΠHBG is computationally hiding if for all efficient adversaries A, there exists a negligible function

negl(·) such that for all _ ∈ N,

|Pr[𝑏′ = 1 | 𝛽 = 1] − Pr[𝑏′ = 1 | 𝛽 = 0] | = negl(_).

Theorem 2.11 (NIZK from Hidden-Bits Generator [KMY20]). If there exists a hidden-bits generator with subset-
dependent proofs, then there exists a computational NIZK argument for NP. The NIZK argument satisfies adaptive
computational soundness and adaptive multi-theorem zero knowledge.

3 Hidden-Bits Generator from Adaptively-Sound BARGs and OWFs
In this section, we show how to construct a hidden-bits generator with subset-dependent proofs using an adaptively-

sound batch argument for NP, a one-time dual-mode bit commitment scheme, and a leakage-resilient weak PRF. By

Theorems 2.3 and 2.5, the dual-mode bit commitment scheme and the leakage-resilient weak PRF can be constructed

from one-way functions. From Theorem 5.4, we can construct an adaptively-sound BARG for NP from any sub-

exponentially-secure somewhere-sound BARG for NP. Invoking Theorem 2.11 now yields a NIZK for NP from any

sub-exponentially-secure somewhere-sound BARG for NP (Corollary 3.5).

Boolean circuits. We start by describing the conventions we use for describing Boolean circuits. Let 𝐶 : {0, 1}𝑛 →
{0, 1} be a Boolean circuit where each gate is a fan-in-2 nand gate. Let 𝑠 be the size of 𝐶 , as measured by the number

of wires in 𝐶 . We associate an index 𝑖 ∈ [𝑠] with each wire:

• Input wires: We index the 𝑛 input wires with the values 1, . . . , 𝑛 and will refer to the wire at index 𝑖 ∈ [𝑛] as
the “𝑖th input wire” to 𝐶 .

• Internal wires: Each non-input wire is associated with an index 𝑖 ∈ {𝑛 + 1, . . . , 𝑠} with the property that the

value of wire 𝑖 is completely determined by the value of the wires indexed 𝑗𝑖,l, 𝑗𝑖,r ∈ {1, . . . , 𝑖 − 1}. Specifically,
the value of wire 𝑖 is the nand of the value of its left input wire (i.e., the wire indexed 𝑗𝑖,l) and the value of its

right input wire (i.e., the wire indexed 𝑗𝑖,r).

12

• Output wire: The output wire is associated with the index 𝑠 .

Construction 3.1 (Hidden-Bits Generator from Batch Arguments). Let _ ∈ N be a security parameter and𝑚 ∈ N be

an output length parameter. Our construction depends on the following primitives:

• Let ΠLRwPRF = (LRwPRF.Setup, LRwPRF.Eval) be a leakage-resilient weak PRF (Definition 2.2) with range {0, 1}.
Let ℓ = ℓ (_,𝑚) be a leakage parameter which will be set according to the requirements of the security analysis

(Theorems 3.3 and 3.4). Let ^ = ^ (_,𝑚) be the bit-length of the keys output by LRwPRF.Setup(1_, 1ℓ (_,𝑚)).
Let 𝑛 = 𝑛(_,𝑚) be the bit-length of the domain of LRwPRF (when instantiated with security parameter _ and

leakage parameter ℓ = ℓ (_,𝑚)).

• Let 𝐶 : {0, 1}^+𝑛 → {0, 1} be the Boolean circuit that evaluates ΠLRwPRF. Namely, 𝐶 (𝑘, z) := LRwPRF.Eval(𝑘, z).
Let 𝑠 be the size of 𝐶 (i.e., the number of wires in 𝐶). In the following, we will define the following sets to refer

to the wires in 𝐶:

– Let 𝑆key = {1, . . . , ^} be the indices of the wires corresponding to the PRF key.

– Let 𝑆eval = {^ + 1, . . . , ^ + 𝑛} be the indices of the wires corresponding to the evaluation point z.
– Let 𝑆int = {^ + 𝑛 + 1, . . . , 𝑠} be the indices of the non-input wires.

• Let ΠBC = (BC.SetupBind,BC.SetupEquivocate,BC.Commit,BC.Verify) be a one-time dual-mode bit commit-

ment scheme (Definition 2.4).

• Let ΠBARG = (BARG.Setup,BARG.Prove,BARG.Verify) be an (adaptively-sound) batch argument for NP. Let
ℓBARG = ℓBARG (_,𝑇 , 𝑠) denote a bound on the length of the proof output by ΠBARG as a function of the bound

on the number of instances 𝑇 and the size 𝑠 of the associated NP relation.

• Define the NP relation R as follows:

Statement: common reference string crs(l)BC , crs
(r)
BC , crs

(out)
BC and commitments 𝑐l, 𝑐r, 𝑐out

Witness: bits 𝑏l, 𝑏r, 𝑏out ∈ {0, 1} and openings 𝜎l, 𝜎r, 𝜎out

Output 1 if the following conditions hold:

– For each 𝑖 ∈ {l, r, out}, BC.Verify(crs(𝑖)BC, 𝑐𝑖 , 𝑏𝑖 , 𝜎𝑖) = 1.

– 𝑏out = nand(𝑏l, 𝑏r).

Otherwise, output 0.

Let 𝐶R be the circuit computing the NP relation R and L be the associated NP language.

We construct our hidden-bits generator ΠHBG = (Setup,GenBits, Prove,Verify) as follows:

• Setup(1_, 1𝑚): On input the security parameter _ and output length𝑚, the setup algorithm start by sampling

the following collection of common reference strings for the bit commitment scheme:

– CRS for the key: For 𝑗 ∈ 𝑆key, sample crs(key, 𝑗)BC ← BC.SetupBind(1_).

– CRS for the evaluation point: For 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆eval, sample crs(𝑖, 𝑗)BC ← BC.SetupBind(1_).

– CRS for the non-input wires: For 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆int, sample crs(𝑖, 𝑗)BC ← BC.SetupBind(1_).

Next, the setup algorithm samples z1, . . . , z𝑚
r← {0, 1}𝑛 . The setup algorithm commits to z1, . . . , z𝑚 as follows:

– For each 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆eval, compute (𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)) ← BC.Commit
(
crs(𝑖, 𝑗)BC , 𝑧𝑖, 𝑗−^

)
.

Let 𝑠int = |𝑆int | = 𝑠 − (^ + 𝑛) be the number of non-input wires in 𝐶 . Sample a CRS for the BARG: crsBARG ←
BARG.Setup(1_, 1𝑚𝑠int , 1 |𝐶R |). Output the common reference string

crs =
(
(z1, . . . , z𝑚),

{
crs(key, 𝑗)BC

}
𝑗∈𝑆key ,

{
crs(𝑖, 𝑗)BC

}
𝑖∈[𝑚], 𝑗∈𝑆eval∪𝑆int ,

{(
𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)

)}
𝑖∈[𝑚], 𝑗∈𝑆eval , crsBARG

)
. (3.1)

13

• GenBits(crs): On input the common reference string crs (parsed according to Eq. (3.1)), the generator algorithm
samples a weak PRF key 𝑘 ← LRwPRF.Setup(1_, 1ℓ) and computes 𝑟𝑖 ← LRwPRF.Eval(𝑘, z𝑖) for each 𝑖 ∈ [𝑚].
It outputs the hidden bits string r = 𝑟1∥ · · · ∥𝑟𝑚 and the state st = (crs, 𝑘).

• Prove(st, 𝐼): On input the state st = (crs, 𝑘) (where crs is parsed according to Eq. (3.1) and 𝑘 ∈ {0, 1}^) and a set
of indices 𝐼 ⊆ [𝑚], the prove algorithm proceeds as follows:

– Commit to the bits of 𝑘: For each 𝑗 ∈ 𝑆key, compute

(
𝑐 (key, 𝑗) , 𝜎 (key, 𝑗)

)
← BC.Commit

(
crs(key, 𝑗) , 𝑘 𝑗

)
.

– Commit to the non-input wires for 𝐶 (𝑘, z𝑖): For each 𝑖 ∈ [𝑚], let𝑤 (𝑖)
1
, . . . ,𝑤

(𝑖)
𝑠 be the wire values of

𝐶 (𝑘, z𝑖). For each 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆int, compute

(
𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)

)
← BC.Commit

(
crs(𝑖, 𝑗) ,𝑤 (𝑖)

𝑗

)
.

– Construct a BARG proof of validity: Recall that 𝑠int = |𝑆int | = 𝑠 − (^ + 𝑛) is the number of non-input

wires in the circuit 𝐶 . These indices associated with these wires are ^ + 𝑛 + 1, . . . , ^ + 𝑛 + 𝑠int. Now, for
each 𝑖 ∈ [𝑚], define the following:

∗ As before, let𝑤
(𝑖)
1
, . . . ,𝑤

(𝑖)
𝑠 ∈ {0, 1} be the wire values of 𝐶 (𝑘, z𝑖).

∗ For each 𝑗 ∈ [𝑠int], let 𝑗l, 𝑗r be the wire indices that determine the value of the 𝑗 th non-input wire

𝑗out = (^ + 𝑛) + 𝑗 . Define the statement 𝑥 (𝑖, 𝑗) and witness𝑤 (𝑖, 𝑗) as follows:

𝑥 (𝑖, 𝑗) =
(
crs(𝑖, 𝑗l)BC , crs(𝑖, 𝑗r)BC , crs(𝑖, 𝑗out)BC , 𝑐 (𝑖, 𝑗l) , 𝑐 (𝑖, 𝑗r) , 𝑐 (𝑖, 𝑗out)

)
(3.2)

𝑤 (𝑖, 𝑗) =
(
𝑤
(𝑖)
𝑗l
,𝑤
(𝑖)
𝑗r
,𝑤
(𝑖)
𝑗out

, 𝜎 (𝑖, 𝑗l) , 𝜎 (𝑖, 𝑗r) , 𝜎 (𝑖, 𝑗out)
)
. (3.3)

Here, for all 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆key, we adopt the convention that crs(𝑖, 𝑗)BC := crs(key, 𝑗)BC , 𝑐 (𝑖, 𝑗) := 𝑐 (key, 𝑗) ,

and 𝜎 (𝑖, 𝑗) := 𝜎 (key, 𝑗) .

Construct the proof

𝜋BARG ← BARG.Prove
(
crsBARG,𝐶R, (𝑥 (𝑖, 𝑗))𝑖∈𝐼 , 𝑗∈[𝑠int], (𝑤 (𝑖, 𝑗))𝑖∈𝐼 , 𝑗∈[𝑠int]

)
. (3.4)

Output

𝜋 =
(
𝜋BARG, {𝑐 (key, 𝑗) } 𝑗∈𝑆key , {𝑐 (𝑖, 𝑗) }𝑖∈𝐼 , 𝑗∈𝑆int , {𝜎 (𝑖,𝑠) }𝑖∈𝐼

)
. (3.5)

• Verify(crs, 𝐼 , r𝐼 , 𝜋): On input a common reference string crs (parsed according to Eq. (3.1)), a subset 𝐼 ⊆ [𝑚],
a string r𝐼 ∈ {0, 1} |𝐼 | , and a proof 𝜋 =

(
𝜋BARG, {𝑐 (key, 𝑗) } 𝑗∈𝑆key , {𝑐 (𝑖, 𝑗) }𝑖∈𝐼 , 𝑗∈𝑆int , {𝜎 (𝑖,𝑠) }𝑖∈𝐼

)
, the verification

algorithm checks the following conditions:

– Validity of output commitments: For all 𝑖 ∈ 𝐼 , check that BC.Verify
(
crs(𝑖,𝑠)BC , 𝑐 (𝑖,𝑠) , 𝑟𝑖 , 𝜎 (𝑖,𝑠)

)
= 1.

– Validity of BARG proof: For each 𝑖 ∈ 𝐼 and 𝑗 ∈ [𝑠int], compute 𝑥 (𝑖, 𝑗) from crs and 𝜋 according to

Eq. (3.2). Then, check that BARG.Verify(crsBARG,𝐶R, (𝑥 (𝑖, 𝑗))𝑖∈𝐼 , 𝑗∈[𝑠int], 𝜋BARG) = 1.

If both checks pass, output 1. Otherwise, output 0.

Theorem 3.2 (Correctness). If ΠBARG is complete and ΠBC is correct, then Construction 3.1 is correct.

Proof. Let _ be a security parameter,𝑚 be an output length, and 𝐼 ⊆ [𝑚] a set of indices. Let crs← Setup(1_, 1𝑚).
Then,

crs =
(
(z1, . . . , z𝑚),

{
crs(key, 𝑗)BC

}
𝑗∈𝑆key ,

{
crs(𝑖, 𝑗)BC

}
𝑖∈[𝑚], 𝑗∈𝑆eval∪𝑆int ,

{(
𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)

)}
𝑖∈[𝑚], 𝑗∈𝑆eval , crsBARG

)
.

Let (r, st) ← GenBits(crs) where st = (crs, 𝑘) and 𝜋 ← Prove(st, 𝐼). Then,

𝜋 =
(
𝜋BARG, {𝑐 (key, 𝑗) } 𝑗∈𝑆key , {𝑐 (𝑖, 𝑗) }𝑖∈𝐼 , 𝑗∈𝑆int , {𝜎 (𝑖,𝑠) }𝑖∈𝐼

)
.

For each 𝑖 ∈ 𝐼 , let𝑤 (𝑖)
1
, . . . ,𝑤

(𝑖)
𝑠 ∈ {0, 1} be the wire values of𝐶 (𝑘, z𝑖). Consider the output of Verify(crs, 𝐼 , r𝐼 , 𝜋). First,

we show that for every 𝑖 ∈ 𝐼 and 𝑗 ∈ [𝑠],

BC.Verify
(
crs(𝑖, 𝑗)BC , 𝑐 (𝑖, 𝑗) ,𝑤 (𝑖)

𝑗
, 𝜎 (𝑖, 𝑗)

)
= 1. (3.6)

We consider three cases:

14

• Suppose 𝑗 ∈ 𝑆key. By definition, this means crs(𝑖, 𝑗)BC = crs(key, 𝑗)BC , 𝑐 (𝑖, 𝑗) = 𝑐 (key, 𝑗) , 𝜎 (𝑖, 𝑗) = 𝜎 (key, 𝑗) and𝑤 (𝑖)
𝑗

= 𝑘 𝑗 . By

construction, the Prove algorithm computes (𝑐 (key, 𝑗) , 𝜎 (key, 𝑗)) ← BC.Commit(crs(key, 𝑗)BC , 𝑘 𝑗), where the Setup
algorithm sampled crs(key, 𝑗)BC ← BC.SetupBind(1_). By correctness of ΠBC,

BC.Verify
(
crs(𝑖, 𝑗)BC , 𝑐 (𝑖, 𝑗) ,𝑤 (𝑖)

𝑗
, 𝜎 (𝑖, 𝑗)

)
= BC.Verify

(
crs(key, 𝑗)BC , 𝑐 (key, 𝑗) , 𝑘 𝑗 , 𝜎

(key, 𝑗)) = 1.

• Suppose 𝑗 ∈ 𝑆eval. Then, 𝑤
(𝑖)
𝑗

= 𝑧𝑖, 𝑗−^ . By construction, the Setup algorithm samples (𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)) ←
BC.Commit(crs(𝑖, 𝑗)BC , 𝑧𝑖, 𝑗−^). Again, since crs(𝑖, 𝑗)BC ← BC.SetupBind(1_), it follows by correctness of ΠBC that

BC.Verify
(
crs(𝑖, 𝑗)BC , 𝑐 (𝑖, 𝑗) ,𝑤 (𝑖)

𝑗
, 𝜎 (𝑖, 𝑗)

)
= BC.Verify

(
crs(𝑖, 𝑗)BC , 𝑐 (𝑖, 𝑗) , 𝑧𝑖, 𝑗−^ , 𝜎

(𝑖, 𝑗)) = 1.

• Suppose 𝑗 ∈ 𝑆int. By construction, the Prove algorithm computes (𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)) ← BC.Commit(crs(𝑖, 𝑗) ,𝑤 (𝑖)
𝑗
).

Since crs(𝑖, 𝑗)BC ← BC.SetupBind(1_), by correctness of ΠBC,

BC.Verify
(
crs(𝑖, 𝑗)BC , 𝑐 (𝑖, 𝑗) ,𝑤 (𝑖)

𝑗
, 𝜎 (𝑖, 𝑗)

)
= 1.

We now consider the two checks performed by Verify:

• Validity of output commitments. Let 𝑖 ∈ 𝐼 . The value of the output wire is 𝑤
(𝑖)
𝑠 = 𝐶 (𝑘, z𝑖) = 𝑟𝑖 . From

Eq. (3.6),

BC.Verify
(
crs(𝑖,𝑠)BC , 𝑐 (𝑖,𝑠) , 𝑟𝑖 , 𝜎

(𝑖,𝑠)) = BC.Verify
(
crs(𝑖,𝑠)BC , 𝑐 (𝑖,𝑠) ,𝑤 (𝑖)𝑠 , 𝜎 (𝑖,𝑠)

)
= 1.

• Validity of BARG proof. Take any index 𝑖 ∈ 𝐼 and 𝑗 ∈ [𝑠int]. Let 𝑗l and 𝑗r be the wire indices that determine

the value of the 𝑗 th non-input wire 𝑗out = (^ + 𝑛) + 𝑗 . Let 𝑥 (𝑖, 𝑗) and 𝑤 (𝑖, 𝑗) be the statement and witness as

defined in Eqs. (3.2) and (3.3):

𝑥 (𝑖, 𝑗) =
(
crs(𝑖, 𝑗l)BC , crs(𝑖, 𝑗r)BC , crs(𝑖, 𝑗out)BC , 𝑐 (𝑖, 𝑗l) , 𝑐 (𝑖, 𝑗r) , 𝑐 (𝑖, 𝑗out)

)
𝑤 (𝑖, 𝑗) =

(
𝑤
(𝑖)
𝑗l
,𝑤
(𝑖)
𝑗r
,𝑤
(𝑖)
𝑗out

, 𝜎 (𝑖, 𝑗l) , 𝜎 (𝑖, 𝑗r) , 𝜎 (𝑖, 𝑗out)
)
.

Now, the following conditions hold:

– By Eq. (3.6), BC.Verify
(
crs
(𝑖, 𝑗pos)
BC , 𝑐 (𝑖, 𝑗pos) ,𝑤 (𝑖)

𝑗pos
, 𝜎 (𝑖, 𝑗pos)

)
= 1 for each pos ∈ {l, r, out}.

– Since the wire values𝑤
(𝑖)
1
, . . . ,𝑤

(𝑖)
𝑠 are associated with the wire values of 𝐶 (𝑘, z𝑖), it holds that𝑤 (𝑖)𝑗out =

nand(𝑤 (𝑖)
𝑗l
,𝑤
(𝑖)
𝑗r
).

By construction of R, this means (𝑥 (𝑖, 𝑗) ,𝑤 (𝑖, 𝑗)) ∈ R for each 𝑖 ∈ 𝐼 and 𝑗 ∈ [𝑠int]. By completeness of ΠBARG,

BARG.Verify(crsBARG,𝐶R, (𝑥 (𝑖, 𝑗))𝑖∈𝐼 , 𝑗∈[𝑠int], 𝜋BARG) = 1.

Since both checks pass, we conclude that Verify(crs, 𝐼 , r𝐼 , 𝜋) outputs 1, as required. □

Security. We now state the main security theorems for Construction 3.1 and defer their formal proofs to Sections 3.1

and 3.2.

Theorem 3.3 (Somewhat Computational Binding). Suppose ^ (_,𝑚) ≤ 𝑚𝛿 · 𝑝 (_) for some constant 𝛿 < 1 and a fixed
polynomial 𝑝 (·). Then, if ΠBC is statistically binding in binding mode and ΠBARG is adaptively sound, it follows that
Construction 3.1 satisfies somewhat computational binding.

Theorem 3.4 (Computational Hiding). Suppose ΠBC satisfies mode indistinguishability and ΠLRwPRF is a leakage-
resilient weak PRF. If ℓ (_,𝑚) ≥ ℓBARG (_,𝑚𝑠int, |𝐶R |), Construction 3.1 satisfies computational hiding.

15

Parameter instantiations. We now describe a possible instantiation of the underlying building blocks in Con-

struction 3.1 to obtain a NIZK argument from a sub-exponentially-secure somewhere-sound BARG. We summarize

our main result in Corollary 3.5.

• We instantiate the one-time dual-mode bit commitment schemeΠBC usingNaor’s bit commitment scheme [Nao89]

(Theorem 2.5) based on one-way functions. With this instantiation, the size of the circuit𝐶R in Construction 3.1

can be bounded by 𝑂 (_𝑐1) for some constant 𝑐1 ∈ N.

• We instantiate the leakage-resilient weak PRF ΠLRwPRF with the scheme based on one-way functions [HLWW13,

QWW21] (Theorem 2.3). Let ℓ be the leakage parameter for the leakage-resilient weak PRF. With this instan-

tiation, the keys have length at most ^ = ℓ ·𝑂 (_2) and the inputs have length 𝑛 = 𝑂 (_ + log ℓ). Let 𝑠 be the
size of the Boolean circuit that takes as input a key 𝑘 and an input z and outputs LRwPRF.Eval(𝑘, z). Since
the construction is efficient, the size of this circuit can be upper-bounded by 𝑠 = 𝑂 ((ℓ_)𝑐2) for some constant

𝑐2 ∈ N.

• We instantiate the batch argument ΠBARG with a scheme where the proof size satisfies

ℓBARG (_,𝑇 , 𝑠) < 𝑇 Y ·𝑂 ((_ + 𝑠)𝑐3),

where 0 < Y < 1/(1+𝑐2) and 𝑐3 ∈ N are fixed constants. Existing BARG constructions based on standard number-

theoretic assumptions [CJJ21b, WW22, DGKV22, KLVW23, CGJ
+
23] satisfy an even stronger succinctness

guarantee where ℓBARG (_,𝑇 , 𝑠) ≤ poly(_ + log𝑇 + 𝑠) where the proof size is polylogarithmic in the number of

instances 𝑇 ; this is the default definition from Definition 2.8. However, as we show here, our construction

applies even in settings where the BARG proof size scales with𝑇 Y
for sufficiently small constants Y < 1. Finally,

all of the aforementioned BARG constructions satisfy somewhere soundness, which can be bootstrapped to an

adaptively-sound construction using Theorem 5.4 (via complexity leveraging).

• With this choice of parameters, we choose constants 𝛿1 = Y/(1 − Y𝑐2) and 𝛿2 = (Y𝑐2 + 𝑐1𝑐3)/(1 − Y𝑐2). Finally,
we set ℓ (_,𝑚) =𝑚𝛿1 · Θ(_𝛿2).

It is easy to see that this setting of parameters satisfies the requirements in Theorems 3.3 and 3.4:

• Binding (Theorem 3.3): For this choice of parameters,

^ (_,𝑚) = ℓ (_,𝑚) ·𝑂 (_2) =𝑚𝛿1 · poly(_) =𝑚Y/(1−Y𝑐2) · poly(_) .

Moreover, since Y < 1/(1 + 𝑐2), this means Y + Y𝑐2 < 1 so Y < 1 − Y𝑐2. Correspondingly, this means that

0 < Y/(1 − Y𝑐2) < 1. Thus, the condition of Theorem 3.3 is satisfied.

• Hiding (Theorem 3.4): For this choice of parameters, we have

ℓBARG (_,𝑚𝑠int, |𝐶R |) < (𝑚𝑠)Y ·𝑂 ((_ + _𝑐1)𝑐3)
=𝑚Y (ℓ_)Y𝑐2 ·𝑂 (_𝑐1𝑐3)
=𝑚Y (1+𝛿1𝑐2) ·𝑂

(
_ (𝛿2+1) (Y𝑐2)+𝑐1𝑐3

)
.

Next, we can write

Y (1 + 𝛿1𝑐2) = Y

(
1 + Y𝑐2

1 − Y𝑐2

)
=

Y

1 − Y𝑐2

= 𝛿1

(𝛿2 + 1)Y𝑐2 + 𝑐1𝑐3 = 𝛿2Y𝑐2 + Y𝑐2 + 𝑐1𝑐3 = (Y𝑐2 + 𝑐1𝑐3)
(

Y𝑐2

1 − Y𝑐2

+ 1

)
=
Y𝑐2 + 𝑐1𝑐3

1 − Y𝑐2

= 𝛿2 .

Correspondingly, we see that for this choice of parameters,

ℓBARG (_,𝑚𝑠int, |𝐶R |) < 𝑚Y (1+𝛿1𝑐2) ·𝑂
(
_ (𝛿2+1) (Y𝑐2)+𝑐1𝑐3

)
=𝑚𝛿1 ·𝑂 (_𝛿2) = ℓ (_,𝑚),

which satisfies the requirement in Theorem 3.4.

16

We summarize this instantiation with the following corollary.

Corollary 3.5 (NIZKs from Sub-Exponentially Secure Somewhere-Sound BARGs). Assuming the existence of one-
way functions and either (1) an adaptively-sound BARG for NP (Definition 2.8); or (2) a sub-exponentially-secure
somewhere-sound BARG for NP (Definition 2.9), there exists a computational NIZK argument for NP.

3.1 Proof of Theorem 3.3 (Somewhat Computational Binding)
Let crs be a common reference string in the support of Setup(1_, 1𝑚) (parsed according to Eq. (3.1)). We define the set

Vcrs ⊆ {0, 1}𝑚 as follows:

Vcrs
:= {(𝐶 (𝑘, z1), . . . ,𝐶 (𝑘, z𝑚)) | 𝑘 ∈ {0, 1}^ } (3.7)

We now show that each of the requirements of Definition 2.10 is satisfied:

Output sparsity. By assumption ^ (_,𝑚) ≤ 𝑚𝛿 · 𝑝 (_) for a constant 𝛿 < 1 and a fixed polynomial 𝑝 (·). This means

|Vcrs | ≤ 2
^ (_,𝑚) ≤ 2

𝑚𝛿 ·𝑝 (_) ,

which satisfies the output sparsity requirement.

Computational binding. We define a function BC.Extract(crs, 𝑐) → {0, 1,⊥}. On input a common reference

string crs for ΠBC and a purported commitment 𝑐 , the function is defined as follows:

• If there exists 𝜎0, 𝜎1 such that BC.Verify(crs, 𝑐, 𝑏, 𝜎𝑏) = 1 for all 𝑏 ∈ {0, 1}, then output ⊥.

• Otherwise, if there exists (𝑏, 𝜎) for some 𝑏 ∈ {0, 1} where BC.Verify(crs, 𝑐, 𝑏, 𝜎) = 1, then output 𝑏.

• Otherwise, output 0.

Note that BC.Extractmay not be efficiently computable. LetA be an efficient adversary for the computational binding

security game for Construction 3.1. We now define a sequence of hybrid experiments between the challenger and A.

• Hyb
0
: This is the real computational binding game. Specifically, the game proceeds as follows:

– On input the security parameter 1
_
, algorithm A starts by outputting the output length 1

𝑚
.

– The challenger samples crs← Setup(1_, 1𝑚). Specifically,

crs =
(
(z1, . . . , z𝑚),

{
crs(key, 𝑗)BC

}
𝑗∈𝑆key ,

{
crs(𝑖, 𝑗)BC

}
𝑖∈[𝑚], 𝑗∈𝑆eval∪𝑆int ,

{(
𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)

)}
𝑖∈[𝑚], 𝑗∈𝑆eval , crsBARG

)
,

where the individual components are sampled according to the specification of Setup in Construction 3.1.

The challenger gives crs to algorithm A.

– Algorithm A outputs a tuple (𝐼 , r𝐼 , 𝜋), where

𝜋 =
(
𝜋BARG, {𝑐 (key, 𝑗) } 𝑗∈𝑆key , {𝑐 (𝑖, 𝑗) }𝑖∈𝐼 , 𝑗∈𝑆int , {𝜎 (𝑖,𝑠) }𝑖∈𝐼

)
.

– The output of the experiment is𝑏 = 1 if r𝐼 ∉ Vcrs
𝐼

andVerify(crs, 𝐼 , r𝐼 , 𝜋) = 1, whereVcrs
𝐼

:= {r𝐼 : r ∈ Vcrs}.
Otherwise, the output is 𝑏 = 0.

• Hyb
1
: This is Hyb

0
, except the challenger additionally checks that each of the bit commitments in the proof 𝜋

has at most one possible opening. Specifically, the game proceeds as follows:

– On input the security parameter 1
_
, algorithm A starts by outputting the output length 1

𝑚
.

17

– The challenger samples crs← Setup(1_, 1𝑚). Specifically,

crs =
(
(z1, . . . , z𝑚),

{
crs(key, 𝑗)BC

}
𝑗∈𝑆key ,

{
crs(𝑖, 𝑗)BC

}
𝑖∈[𝑚], 𝑗∈𝑆eval∪𝑆int ,

{(
𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)

)}
𝑖∈[𝑚], 𝑗∈𝑆eval , crsBARG

)
,

where the individual components are sampled according to the specification of Setup in Construction 3.1.

The challenger gives crs to algorithm A.

– Algorithm A outputs a tuple (𝐼 , r𝐼 , 𝜋), where

𝜋 =
(
𝜋BARG, {𝑐 (key, 𝑗) } 𝑗∈𝑆key , {𝑐 (𝑖, 𝑗) }𝑖∈𝐼 , 𝑗∈𝑆int , {𝜎 (𝑖,𝑠) }𝑖∈𝐼

)
.

– For each 𝑗 ∈ 𝑆key, the challenger computes 𝑦 (key, 𝑗) ← BC.Extract
(
crs(key, 𝑗)BC , 𝑐 (key, 𝑗)

)
. Then, for each 𝑖 ∈ 𝐼

and 𝑗 ∈ 𝑆eval ∪ 𝑆int, the challenger computes 𝑦 (𝑖, 𝑗) ← BC.Extract
(
crs(𝑖, 𝑗)BC , 𝑐 (𝑖, 𝑗)

)
.

– The output of the experiment is 𝑏 = 1 if the following conditions hold:

∗ r𝐼 ∉ Vcrs
𝐼

and Verify(crs, 𝐼 , r𝐼 , 𝜋) = 1, whereVcrs
𝐼

:= {r𝐼 : r ∈ Vcrs}.
∗ For all 𝑗 ∈ 𝑆key, 𝑦 (key, 𝑗) ≠ ⊥.
∗ For all 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝑆eval ∪ 𝑆int, 𝑦 (𝑖, 𝑗) ≠ ⊥.

Otherwise, the output is 𝑏 = 0.

• Hyb
2
: This isHyb

1
, except the challenger additionally checks that the extracted bits𝑦 (key, 𝑗) and𝑦 (𝑖, 𝑗) correspond

to consistent evaluations of the circuit 𝐶 . Specifically, the game proceeds as follows:

– On input the security parameter 1
_
, algorithm A starts by outputting the output length 1

𝑚
.

– The challenger samples crs← Setup(1_, 1𝑚). Specifically,

crs =
(
(z1, . . . , z𝑚),

{
crs(key, 𝑗)BC

}
𝑗∈𝑆key ,

{
crs(𝑖, 𝑗)BC

}
𝑖∈[𝑚], 𝑗∈𝑆eval∪𝑆int ,

{(
𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)

)}
𝑖∈[𝑚], 𝑗∈𝑆eval , crsBARG

)
,

where the individual components are sampled according to the specification of Setup in Construction 3.1.

The challenger gives crs to algorithm A.

– Algorithm A outputs a tuple (𝐼 , r𝐼 , 𝜋), where

𝜋 =
(
𝜋BARG, {𝑐 (key, 𝑗) } 𝑗∈𝑆key , {𝑐 (𝑖, 𝑗) }𝑖∈𝐼 , 𝑗∈𝑆int , {𝜎 (𝑖,𝑠) }𝑖∈𝐼

)
.

– For each 𝑗 ∈ 𝑆key, the challenger computes 𝑦 (key, 𝑗) ← BC.Extract
(
crs(key, 𝑗)BC , 𝑐 (key, 𝑗)

)
. Then, for each 𝑖 ∈ 𝐼

and 𝑗 ∈ 𝑆eval ∪ 𝑆int, the challenger computes 𝑦 (𝑖, 𝑗) ← BC.Extract
(
crs(𝑖, 𝑗)BC , 𝑐 (𝑖, 𝑗)

)
.

– The output of the experiment is 𝑏 = 1 if all of the following hold:

∗ r𝐼 ∉ Vcrs
𝐼

and Verify(crs, 𝐼 , r𝐼 , 𝜋) = 1, whereVcrs
𝐼

:= {r𝐼 : r ∈ Vcrs}.
∗ For all 𝑗 ∈ 𝑆key, 𝑦 (key, 𝑗) ≠ ⊥.
∗ For all 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝑆eval ∪ 𝑆int, 𝑦 (𝑖, 𝑗) ≠ ⊥.
∗ For each 𝑖 ∈ 𝐼 and 𝑗 ∈ [𝑠int], let 𝑗l and 𝑗r be the wire indices that determine the value of the 𝑗 th non-

input wire 𝑗out = (^ +𝑛) + 𝑗 in the circuit𝐶 . The challenger checks that𝑦 (𝑖, 𝑗out) = nand(𝑦 (𝑖, 𝑗l) , 𝑦 (𝑖, 𝑗r)).
Here, we use the convention that for all 𝑗 ∈ 𝑆key, 𝑦 (𝑖, 𝑗) := 𝑦 (key, 𝑗) .

Otherwise, the output is 𝑏 = 0.

We write Hyb𝑖 (A) to denote the output distribution of an execution of Hyb𝑖 with adversary A. We now analyze

each of the hybrid experiments.

Claim 3.6. If ΠBC is statistically binding in binding mode, then there exists a negligible function negl(·) such that for
all _ ∈ N, | Pr[Hyb

1
(A) = 1] − Pr[Hyb

0
(A) = 1] | = negl(_).

18

Proof. Suppose | Pr[Hyb
1
(A) = 1] − Pr[Hyb

0
(A) = 1] | ≥ Y for some non-negligible Y. Since the only differences

between Hyb
0
and Hyb

1
are the additional conditions that the challenger checks, it must be the case that in an

execution of Hyb
0
with A, one of the two events occurs with probability at least Y:

• Algorithm A outputs a commitment 𝑐 (key, 𝑗) such that BC.Extract
(
crs(key, 𝑗)BC , 𝑐 (key, 𝑗)

)
= ⊥.

• Algorithm A outputs a commitment 𝑐 (𝑖, 𝑗) such that BC.Extract
(
crs(𝑖, 𝑗)BC , 𝑐 (𝑖, 𝑗)

)
= ⊥.

Equivalently, with probability at least Y, the output ofA contains a commitment 𝑐 (𝑖, 𝑗) whereBC.Extract(crs(𝑖, 𝑗)BC , 𝑐 (𝑖, 𝑗)) =
⊥ for some 𝑖 ∈ [𝑚] ∪ {key} and 𝑗 ∈ [𝑠]. We show that this implies an (inefficient) algorithm B that breaks statistical

binding of ΠBC. We highlight key steps in green.

1. At the beginning of the game, algorithm B receives a common reference string crs∗BC.

2. Algorithm B samples 𝑖∗ r← [𝑚] ∪ {key} and 𝑗∗ r← [𝑠].

3. Algorithm B now samples a common reference string for the hidden-bits generator. It starts by sampling the

following collection of common reference strings for the bit commitment scheme:

• CRS for the key: For 𝑗 ∈ 𝑆key, sample crs(key, 𝑗)BC ← BC.SetupBind(1_).

• CRS for the evaluation point: For 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆eval, sample crs(𝑖, 𝑗)BC ← BC.SetupBind(1_).

• CRS for the non-input wires: For 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆int, sample crs(𝑖, 𝑗)BC ← BC.SetupBind(1_).

Algorithm B redefines crs(𝑖
∗, 𝑗∗)

BC := crs∗BC.

4. Algorithm B implements the remainder of the Setup algorithm exactly as described in Hyb
0
and Hyb

1
. Namely,

it samples z1, . . . , z𝑚
r← {0, 1}𝑛 and commits to z1, . . . , z𝑚 as follows:

• For each 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆eval, compute (𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)) ← BC.Commit
(
crs(𝑖, 𝑗)BC , 𝑧𝑖, 𝑗−^

)
.

Let 𝑠int = |𝑆int | = 𝑠 − (^ + 𝑛) be the number of non-input wires in 𝐶 . Algorithm B samples a CRS for the BARG

crsBARG ← BARG.Setup(1_, 1𝑚𝑠int , 1 |𝐶R |) and defines

crs =
(
(z1, . . . , z𝑚),

{
crs(key, 𝑗)BC

}
𝑗∈𝑆key ,

{
crs(𝑖, 𝑗)BC

}
𝑖∈[𝑚], 𝑗∈𝑆eval∪𝑆int ,

{(
𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)

)}
𝑖∈[𝑚], 𝑗∈𝑆eval , crsBARG

)
.

It gives crs to A.

5. Algorithm A then outputs a tuple (𝐼 , r𝐼 , 𝜋), where

𝜋 =
(
𝜋BARG, {𝑐 (key, 𝑗) } 𝑗∈𝑆key , {𝑐 (𝑖, 𝑗) }𝑖∈𝐼 , 𝑗∈𝑆int , {𝜎 (𝑖,𝑠) }𝑖∈𝐼

)
.

6. If 𝑖∗ = key and 𝑗∗ ∈ 𝑆key or 𝑖∗ ∈ 𝐼 and 𝑗∗ ∈ 𝑆eval ∪ 𝑆int, then algorithm B checks (by exhaustive search) whether

there exists 𝜎𝑏 such that

BC.Verify(crs∗BC, 𝑐 (𝑖
∗, 𝑗∗) , 𝑏, 𝜎𝑏) = 1,

for all 𝑏 ∈ {0, 1}. If so, algorithm B outputs 𝑐 (𝑖
∗, 𝑗∗) , 𝜎0, 𝜎1. In all other cases, algorithm B outputs ⊥.

By construction, the challenger samples crs∗BC ← BC.SetupBind(1_). Thus, algorithm B constructs the common

reference string crs exactly as required by Setup. By assumption, this means with probability Y, this means the

output of A contains a commitment 𝑐 (𝑖, 𝑗) where BC.Extract(crs(𝑖, 𝑗)BC , 𝑐 (𝑖, 𝑗)) = ⊥ for some 𝑖 ∈ [𝑚] ∪ {key} and
𝑗 ∈ [𝑠]. Now, algorithm B samples the indices 𝑖∗ and 𝑗∗ uniformly at random, and moreover, these indices are

information-theoretically hidden from the view of A. This means that with probability 1/((𝑚 + 1)𝑠), it will be
the case that (𝑖∗, 𝑗∗) = (𝑖, 𝑗). In this case, BC.Extract(crs(𝑖, 𝑗)BC , 𝑐 (𝑖, 𝑗)) = ⊥, which means there exists 𝜎𝑏 such that

BC.Verify(crs∗BC, 𝑐 (𝑖
∗, 𝑗∗) , 𝑏, 𝜎𝑏) = 1 for 𝑏 ∈ {0, 1}. Correspondingly, algorithm B successfully wins the statistical

binding game. The advantage of B is thus Y/((𝑚 + 1)𝑠), which is non-negligible as𝑚 and 𝑠 are both polynomially-

bounded. □

19

Claim 3.7. If ΠBARG is adaptively sound, then there exists a negligible function negl(·) such that for all _ ∈ N,
| Pr[Hyb

2
(A) = 1] − Pr[Hyb

1
(A) = 1] | = negl(_).

Proof. Suppose | Pr[Hyb
2
(A) = 1] − Pr[Hyb

1
(A) = 1] | ≥ Y for some non-negligible Y. Since the only difference

between Hyb
1
and Hyb

2
is the additional condition that the challenger checks, it must be the case that in an execution

of Hyb
1
with A, the following properties hold with probability at least Y:

• r𝐼 ∉ Vcrs
𝐼

and Verify(crs, 𝐼 , r𝐼 , 𝜋) = 1, whereVcrs
𝐼

:= {r𝐼 : r ∈ Vcrs}.

• For all 𝑗 ∈ 𝑆key, 𝑦 (key, 𝑗) ≠ ⊥.

• For all 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝑆eval ∪ 𝑆int, 𝑦 (𝑖, 𝑗) ≠ ⊥.

• There exists indices 𝑖∗ ∈ 𝐼 and 𝑗∗ ∈ [𝑠int] such that 𝑦 (𝑖
∗, 𝑗∗

out
) ≠ nand(𝑦 (𝑖∗, 𝑗∗l) , 𝑦 (𝑖∗, 𝑗∗r)), where 𝑗∗

l
and 𝑗∗

r
are the

wire indices that determine the value of the (𝑗∗)th non-input wire 𝑗∗
out

= (^ + 𝑛) + 𝑗∗.

Otherwise, the output in Hyb
1
and Hyb

2
is identical. We show that this means the following two properties also hold:

• BARG.Verify(crsBARG,𝐶R, (𝑥 (𝑖, 𝑗))𝑖∈𝐼 , 𝑗∈[𝑠int], 𝜋BARG) = 1, where 𝑥 (𝑖, 𝑗) are the statements derived from crs and 𝜋
according to Eq. (3.2). This follows by construction of the Verify algorithm. Namely, if Verify(crs, 𝐼 , r𝐼 , 𝜋) = 1,

then BARG.Verify(crsBARG,𝐶R, (𝑥 (𝑖, 𝑗))𝑖∈𝐼 , 𝑗∈[𝑠int], 𝜋BARG) = 1.

• The statement 𝑥 (𝑖
∗, 𝑗∗)

satisfies 𝑥 (𝑖
∗, 𝑗∗) ∉ L. To see this, let

𝑥 (𝑖
∗, 𝑗∗) =

(
crs(𝑖

∗, 𝑗∗
l
)

BC , crs(𝑖
∗, 𝑗∗

r
)

BC , crs(𝑖
∗, 𝑗∗

out
)

BC , 𝑐 (𝑖
∗, 𝑗∗

l
) , 𝑐 (𝑖

∗, 𝑗∗
r
) , 𝑐 (𝑖

∗, 𝑗∗
out
)
)

be the statement as defined in Eq. (3.2). Suppose there exists a witness

𝑤 = (𝑤 ′
l
,𝑤 ′

r
,𝑤 ′

out
, 𝜎l, 𝜎r, 𝜎out)

such that R(𝑥 (𝑖∗, 𝑗∗) ,𝑤) = 1. Then, by construction of𝑤 , the following properties hold:

– For each pos ∈ {l, r, out}, BC.Verify
(
crs
(𝑖∗, 𝑗∗pos)
BC , 𝑐 (𝑖

∗, 𝑗∗pos) ,𝑤 ′pos, 𝜎pos
)
= 1

– 𝑤 ′
out

= nand(𝑤 ′
l
,𝑤 ′

r
).

By assumption, 𝑦 (𝑖
∗, 𝑗∗pos) ≠ ⊥, so by construction of BC.Extract, there is at most one possible value to which

𝑐 (𝑖
∗, 𝑗∗pos)

can open. In particular, the first property now implies that 𝑤 ′pos = 𝑦 (𝑖
∗, 𝑗∗pos) ∈ {0, 1} for all pos ∈

{l, r, out}. Combining the above relations, we conclude that

𝑦 (𝑖
∗, 𝑗∗

out
) = 𝑤 ′

out
= nand(𝑤 ′

l
,𝑤 ′

r
) = nand

(
𝑦 (𝑖

∗, 𝑗∗
l
) , 𝑦 (𝑖

∗, 𝑗∗
r
)),

which contradicts the premise that 𝑦 (𝑖
∗, 𝑗∗

out
) ≠ nand(𝑦 (𝑖∗, 𝑗∗l) , 𝑦 (𝑖∗, 𝑗∗r)).

We now useA to construct an efficient adversary B that breaks adaptive soundness of ΠBARG as follows, highlighting

key steps in green:

1. On input the security parameter 1
_
, algorithm B starts running algorithm A on the same security parameter

1
_
. Algorithm A outputs an output length 1

𝑚
.

2. Algorithm B computes 𝑠int and |𝐶R | as in Construction 3.1. It outputs 1
𝑚𝑠int

as the bound on the number of

instances and 1
|𝐶R |

as the size of the circuit, and receives crsBARG from the challenger.

3. Algorithm B implements the remainder of the Setup algorithm exactly as described in Hyb
1
and Hyb

2
, except

it uses the common reference string crsBARG it received from the challenger instead. Specifically, it sets

crs =
(
(z1, . . . , z𝑚),

{
crs(key, 𝑗)BC

}
𝑗∈𝑆key ,

{
crs(𝑖, 𝑗)BC

}
𝑖∈[𝑚], 𝑗∈𝑆eval∪𝑆int ,

{(
𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)

)}
𝑖∈[𝑚], 𝑗∈𝑆eval , crsBARG

)
,

where the individual components z1, . . . , z𝑚 , crs
(key, 𝑗)
BC , crs(𝑖, 𝑗)BC , 𝑐 (𝑖, 𝑗) , and 𝜎 (𝑖, 𝑗) are sampled according to the

specification of Hyb
1
(and crsBARG is the CRS from the challenger). It gives crs to algorithm A.

20

4. Algorithm A outputs a tuple (𝐼 , r𝐼 , 𝜋), where

𝜋 =
(
𝜋BARG, {𝑐 (key, 𝑗) } 𝑗∈𝑆key , {𝑐 (𝑖, 𝑗) }𝑖∈𝐼 , 𝑗∈𝑆int , {𝜎 (𝑖,𝑠) }𝑖∈𝐼

)
.

5. Algorithm B forms the statements 𝑥 (𝑖, 𝑗) for 𝑖 ∈ 𝐼 and 𝑗 ∈ [𝑠int] according to Eq. (3.2) and outputs the circuit

𝐶R , the statements (𝑥 (𝑖, 𝑗))𝑖∈𝐼 , 𝑗∈[𝑠int] , and the proof 𝜋BARG.

We now compute the advantage ofB. In the adaptive soundness game, the challenger constructs crsBARG as crsBARG ←
BARG.Setup(1_, 1𝑚𝑠int , 1 |𝐶R |). Then, algorithm B perfectly simulates an execution of Hyb

1
and Hyb

2
for algorithm

A. By the analysis above, with probability at least Y, algorithm A outputs (𝐼 , r𝐼 , 𝜋) satisfying the following:

• BARG.Verify(crsBARG,𝐶R, (𝑥 (𝑖, 𝑗))𝑖∈𝐼 , 𝑗∈[𝑠int], 𝜋BARG) = 1.

• There exists some 𝑖∗ ∈ 𝐼 and 𝑗∗ ∈ [𝑠int] such that 𝑥 (𝑖
∗, 𝑗∗) ∉ L.

Correspondingly, algorithm B wins the adaptive security game with the same advantage Y which completes the

proof. □

Claim 3.8. It holds that Pr

[
Hyb

2
(A) = 1

]
= 0.

Proof. Consider an execution of Hyb
2
with adversary A. Suppose Hyb

2
(A) outputs 1. This means the following

properties hold:

• r𝐼 ∉ Vcrs
𝐼

and Verify(crs, 𝐼 , r𝐼 , 𝜋) = 1, whereVcrs
𝐼

:= {r𝐼 : r ∈ Vcrs}.

• For all 𝑗 ∈ 𝑆key, 𝑦 (key, 𝑗) ≠ ⊥. Recall that 𝑆key = [^].

• For all 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝑆eval ∪ 𝑆int, 𝑦 (𝑖, 𝑗) ≠ ⊥.

• For each 𝑖 ∈ 𝐼 and 𝑗 ∈ [𝑠int], let 𝑗l and 𝑗r be the wire indices that determine the value of the 𝑗 th non-input wire

𝑗out = (^ + 𝑛) + 𝑗 in the circuit 𝐶 . Then, 𝑦 (𝑖, 𝑗out) = nand(𝑦 (𝑖, 𝑗l) , 𝑦 (𝑖, 𝑗r)).

Let 𝑘 ∈ {0, 1}^ be the bitstring where 𝑘 𝑗 = 𝑦 (key, 𝑗) for all 𝑗 ∈ [^]. We now argue that for all 𝑖 ∈ 𝐼 , it holds that

𝑟𝑖 = 𝐶 (𝑘, z𝑖) = LRwPRF.Eval(𝑘, z𝑖):

• Commitments to input wires. First, by construction, for all 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝑆eval, 𝑐 (𝑖, 𝑗) is a commitment to 𝑧𝑖, 𝑗−^ .

This follows by construction of Setup since the challenger samples (𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)) ← BC.Commit(crs(𝑖, 𝑗)BC , 𝑧𝑖, 𝑗−^).
By correctness of ΠBC, we have that BC.Verify(crs(𝑖, 𝑗)BC , 𝑐 (𝑖, 𝑗) , 𝑧𝑖, 𝑗−^ , 𝜎 (𝑖, 𝑗)) = 1. Since 𝑦 (𝑖, 𝑗) ≠ ⊥ and by construc-

tion of BC.Extract, it must be the case that 𝑦 (𝑖, 𝑗) = 𝑧𝑖, 𝑗−^ .

• Commitments to output wires. Since Verify(crs, 𝐼 , r𝐼 , 𝜋) = 1, this means that for all indices 𝑖 ∈ 𝐼 , it holds
that BC.Verify(crs(𝑖,𝑠)BC , 𝑐 (𝑖,𝑠) , 𝑟𝑖 , 𝜎 (𝑖,𝑠)) = 1. Again since 𝑦 (𝑖,𝑠) ≠ ⊥ and by construction of BC.Extract, this means

𝑦 (𝑖,𝑠) = 𝑟𝑖 .

• Commitments to non-input wires. By assumption, for each 𝑖 ∈ 𝐼 and 𝑗 ∈ [𝑠int], if 𝑗l and 𝑗r are the wire

indices that determine the value of wire 𝑗out = (^ + 𝑛) + 𝑗 , then 𝑦 (𝑖, 𝑗out) = nand(𝑦 (𝑖, 𝑗l) , 𝑦 (𝑖, 𝑗r)). That is, 𝑦 (𝑖, 𝑗) is
computed for all internal wires 𝑗 ∈ 𝑆int according to circuit 𝐶 . Since this property holds for all internal wires

𝑗 ∈ 𝑆int, it follows that (𝑦 (key,1) , . . . , 𝑦 (key,^) , 𝑦 (𝑖,^+1) , . . . , 𝑦 (𝑖,𝑠)) corresponds to the wire values for 𝐶 (𝑘, z𝑖). In
particular, this means that 𝑦 (𝑖,𝑠) = 𝐶 (𝑘, z𝑖).

We conclude that for all 𝑖 ∈ 𝐼 , it holds that 𝑟𝑖 = 𝐶 (𝑘, z𝑖) = LRwPRF.Eval(𝑘, z𝑖). By definition ofVcrs
𝐼

, this means that

r𝐼 ∈ Vcrs
𝐼

, which contradicts the premise that r𝐼 ∉ Vcrs
𝐼

. Correspondingly, we conclude that Hyb
2
(A) could not have

output 1. □

Combining Claims 3.6 to 3.8, we conclude that Pr

[
Hyb

0
(A)

]
= negl(_), which proves Theorem 3.3. □

21

3.2 Proof of Theorem 3.4 (Computational Hiding)
LetA be an efficient adversary for the computational hiding security game for Construction 3.1. We define a sequence

of hybrid experiments between the challenger and A.

• Hyb
0
: This is the computational hiding game with 𝛽 = 0. Specifically, the game proceeds as follows:

– On input the security parameter 1
_
, algorithm A outputs the output length 1

𝑚
and a subset 𝐼 ⊆ [𝑚].

– The challenger samples crs← Setup(1_, 1𝑚). Specifically, it starts by sampling the common reference

strings for the bit commitment schemes:

∗ CRS for the key: For 𝑗 ∈ 𝑆key, sample crs(key, 𝑗)BC ← BC.SetupBind(1_).
∗ CRS for the evaluation point: For 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆eval, sample crs(𝑖, 𝑗)BC ← BC.SetupBind(1_).
∗ CRS for the non-input wires: For 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆int, sample crs(𝑖, 𝑗)BC ← BC.SetupBind(1_).

Next, the challenger samples z1, . . . , z𝑚
r← {0, 1}𝑛 . For each each 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆eval, it computes

(𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)) ← BC.Commit
(
crs(𝑖, 𝑗)BC , 𝑧𝑖, 𝑗−^

)
. Finally, it samples crsBARG ← BARG.Setup(1_, 1𝑚𝑠int , 1 |𝐶R |)

and defines

crs =
(
(z1, . . . , z𝑚),

{
crs(key, 𝑗)BC

}
𝑗∈𝑆key ,

{
crs(𝑖, 𝑗)BC

}
𝑖∈[𝑚], 𝑗∈𝑆eval∪𝑆int ,

{(
𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)

)}
𝑖∈[𝑚], 𝑗∈𝑆eval , crsBARG

)
.

– Next, the challenger computes (r, st) ← GenBits(crs) and 𝜋 ← Prove(st, 𝐼). First, the challenger samples

a weak PRF key𝑘 ← LRwPRF.Setup(1_, 1ℓ) and computes 𝑟𝑖 ← LRwPRF.Eval(𝑘, z𝑖). It sets r = 𝑟1∥ · · · ∥𝑟𝑚 .

To construct the proof 𝜋 , the challenger first sets𝑤
(𝑖)
1
, . . . ,𝑤

(𝑖)
𝑠 to be the wire values of 𝐶 (𝑘, z𝑖) for each

𝑖 ∈ [𝑚]. Then, it does the following:
∗ Commit to the bits of 𝑘 : For each 𝑗 ∈ 𝑆key, compute

(
𝑐 (key, 𝑗) , 𝜎 (key, 𝑗)

)
← BC.Commit

(
crs(key, 𝑗) , 𝑘 𝑗

)
.

∗ Commit to the non-inputwires for𝐶 (𝑘, z𝑖): For each 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆int, compute

(
𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)

)
←

BC.Commit
(
crs(𝑖, 𝑗) ,𝑤 (𝑖)

𝑗

)
.

∗ Construct a BARG proof of validity: For each 𝑗 ∈ [𝑠int], let 𝑗l, 𝑗r be the wire indices that determine

the value of the 𝑗 th non-input wire 𝑗out = (^ + 𝑛) + 𝑗 . Then, for each 𝑖 ∈ [𝑚], define the statement

𝑥 (𝑖, 𝑗) and witness𝑤 (𝑖, 𝑗) as follows:

𝑥 (𝑖, 𝑗) =
(
crs(𝑖, 𝑗l)BC , crs(𝑖, 𝑗r)BC , crs(𝑖, 𝑗out)BC , 𝑐 (𝑖, 𝑗l) , 𝑐 (𝑖, 𝑗r) , 𝑐 (𝑖, 𝑗out)

)
𝑤 (𝑖, 𝑗) =

(
𝑤
(𝑖)
𝑗l
,𝑤
(𝑖)
𝑗r
,𝑤
(𝑖)
𝑗out

, 𝜎 (𝑖, 𝑗l) , 𝜎 (𝑖, 𝑗r) , 𝜎 (𝑖, 𝑗out)
)
.

As in Construction 3.1, we adopt the convention that crs(𝑖, 𝑗)BC := crs(key, 𝑗)BC , 𝑐 (𝑖, 𝑗) := 𝑐 (key, 𝑗) , and

𝜎 (𝑖, 𝑗) := 𝜎 (key, 𝑗) . The challenger computes

𝜋BARG ← BARG.Prove
(
crsBARG,𝐶R, (𝑥 (𝑖, 𝑗))𝑖∈𝐼 , 𝑗∈[𝑠int], (𝑤 (𝑖, 𝑗))𝑖∈𝐼 , 𝑗∈[𝑠int]

)
.

Finally the challenger defines the proof 𝜋 to be

𝜋 =
(
𝜋BARG, {𝑐 (key, 𝑗) } 𝑗∈𝑆key , {𝑐 (𝑖, 𝑗) }𝑖∈𝐼 , 𝑗∈𝑆int , {𝜎 (𝑖,𝑠) }𝑖∈𝐼

)
.

– The challenger gives (crs, 𝐼 , r𝐼 , 𝜋, r𝐼) to A. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of

the experiment.

• Hyb
1
: Same as Hyb

0
, except the challenger switches the bit commitments for the key and the non-input wires

to be equivocating.

– On input the security parameter 1
_
, algorithm A outputs the output length 1

𝑚
and a subset 𝐼 ⊆ [𝑚].

– The challenger starts by sampling the common reference strings for the bit commitment schemes:

22

∗ CRS for the key: For 𝑗 ∈ 𝑆key, sample(
crs(key, 𝑗)BC , 𝑐 (key, 𝑗) , �̃�

(key, 𝑗)
0

, �̃�
(key, 𝑗)
1

)
← BC.SetupEquivocate(1_).

∗ CRS for the evaluation point: For 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆eval, sample crs(𝑖, 𝑗)BC ← BC.SetupBind(1_).
∗ CRS for the non-input wires: For 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆int, sample(

crs(𝑖, 𝑗)BC , 𝑐 (𝑖, 𝑗) , �̃� (𝑖, 𝑗)
0

, �̃�
(𝑖, 𝑗)
1

)
← BC.SetupEquivocate(1_).

The remaining components of the crs are computed exactly as described in Hyb
0
(same for all hybrids).

– The challenger samples 𝑘 ← LRwPRF.Setup(1_, 1ℓ) and computes 𝑟𝑖 ← LRwPRF.Eval(𝑘, z𝑖). It sets

r = 𝑟1∥ · · · ∥𝑟𝑚 . To construct the proof 𝜋 , the challenger first sets𝑤 (𝑖)
1
, . . . ,𝑤

(𝑖)
𝑠 to be the wire values of

𝐶 (𝑘, z𝑖) for each 𝑖 ∈ [𝑚]. Then, it does the following:
∗ Commit to the bits of 𝑘 : For each 𝑗 ∈ 𝑆key, let 𝑐 (key, 𝑗) := 𝑐 (key, 𝑗) and 𝜎 (key, 𝑗) := �̃�

(key, 𝑗)
𝑏

where 𝑏 = 𝑘 𝑗 .

∗ Commit to the non-input wires for 𝐶 (𝑘, z𝑖): For each 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆int, let 𝑐 (𝑖, 𝑗) := 𝑐 (𝑖, 𝑗) and

𝜎 (𝑖, 𝑗) := �̃�
(𝑖, 𝑗)
𝑏

where 𝑏 = 𝑤
(𝑖)
𝑗
.

∗ Construct a BARG proof of validity: The BARG proof 𝜋BARG is computed exactly as described in

Hyb
0
(same for all hybrids).

The challenger defines the proof 𝜋 as in Hyb
0
(same for all hybrids).

– The challenger gives (crs, 𝐼 , r𝐼 , 𝜋, r𝐼) to A. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of

the experiment.

• Hyb
2
: Same as Hyb

1
, except for all 𝑖 ∉ 𝐼 , the challenger samples 𝑟𝑖

r← {0, 1}. Specifically, the experiment

proceeds as follows:

– On input the security parameter 1
_
, algorithm A outputs the output length 1

𝑚
and a subset 𝐼 ⊆ [𝑚].

– The challenger starts by sampling the common reference strings for the bit commitment schemes:

∗ CRS for the key: For 𝑗 ∈ 𝑆key, sample(
crs(key, 𝑗)BC , 𝑐 (key, 𝑗) , 𝜎

(key, 𝑗)
0

, 𝜎
(key, 𝑗)
1

)
← BC.SetupEquivocate(1_).

∗ CRS for the evaluation point: For 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆eval, sample crs(𝑖, 𝑗)BC ← BC.SetupBind(1_).
∗ CRS for the non-input wires: For 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆int, sample(

crs(𝑖, 𝑗)BC , 𝑐 (𝑖, 𝑗) , �̃� (𝑖, 𝑗)
0

, �̃�
(𝑖, 𝑗)
1

)
← BC.SetupEquivocate(1_).

The remaining components of the crs are computed exactly as described in Hyb
0
(same for all hybrids).

– The challenger samples 𝑘 ← LRwPRF.Setup(1_, 1ℓ). For each 𝑖 ∈ 𝐼 , it computes 𝑟𝑖 ← LRwPRF.Eval(𝑘, z𝑖).
For each 𝑖 ∉ 𝐼 , it samples 𝑟𝑖

r← {0, 1}. It sets r = 𝑟1∥ · · · ∥𝑟𝑚 . To construct the proof 𝜋 , the challenger first

sets𝑤
(𝑖)
1
, . . . ,𝑤

(𝑖)
𝑠 to be the wire values of 𝐶 (𝑘, z𝑖) for each 𝑖 ∈ [𝑚]. Then, it does the following:

∗ Commit to the bits of 𝑘 : For each 𝑗 ∈ 𝑆key, let 𝑐 (key, 𝑗) := 𝑐 (key, 𝑗) and 𝜎 (key, 𝑗) := �̃�
(key, 𝑗)
𝑏

where 𝑏 = 𝑘 𝑗 .

∗ Commit to the non-input wires for 𝐶 (𝑘, z𝑖): For each 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆int, let 𝑐 (𝑖, 𝑗) := 𝑐 (𝑖, 𝑗) and

𝜎 (𝑖, 𝑗) := �̃�
(𝑖, 𝑗)
𝑏

where 𝑏 = 𝑤
(𝑖)
𝑗
.

∗ Construct a BARG proof of validity: The BARG proof 𝜋BARG is computed exactly as described in

Hyb
0
(same for all hybrids).

The challenger defines the proof 𝜋 as in Hyb
0
(same for all hybrids).

– The challenger gives (crs, 𝐼 , r𝐼 , 𝜋, r𝐼) to A. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of

the experiment.

23

• Hyb
3
: Same as Hyb

2
except the challenger switches the commitments back to binding mode. This is the

computational hiding game with 𝛽 = 1. Specifically, the game proceeds as follows:

– On input the security parameter 1
_
, algorithm A outputs the output length 1

𝑚
and a subset 𝐼 ⊆ [𝑚].

– The challenger starts by sampling the common reference strings for the bit commitment schemes:

∗ CRS for the key: For 𝑗 ∈ 𝑆key, sample crs(key, 𝑗)BC ← BC.SetupBind(1_).
∗ CRS for the evaluation point: For 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆eval, sample crs(𝑖, 𝑗)BC ← BC.SetupBind(1_).
∗ CRS for the non-input wires: For 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆int, sample crs(𝑖, 𝑗)BC ← BC.SetupBind(1_).

The remaining components of the crs are computed exactly as described in Hyb
0
(same for all hybrids).

– The challenger samples 𝑘 ← LRwPRF.Setup(1_, 1ℓ). For each 𝑖 ∈ 𝐼 , it computes 𝑟𝑖 ← LRwPRF.Eval(𝑘, z𝑖).
For each 𝑖 ∉ 𝐼 , it samples 𝑟𝑖

r← {0, 1}. It sets r = 𝑟1∥ · · · ∥𝑟𝑚 . To construct the proof 𝜋 , the challenger first

sets𝑤
(𝑖)
1
, . . . ,𝑤

(𝑖)
𝑠 to be the wire values of 𝐶 (𝑘, z𝑖) for each 𝑖 ∈ [𝑚]. Then, it does the following:

∗ Commit to the bits of 𝑘 : For each 𝑗 ∈ 𝑆key, compute

(
𝑐 (key, 𝑗) , 𝜎 (key, 𝑗)

)
← BC.Commit

(
crs(key, 𝑗) , 𝑘 𝑗

)
.

∗ Commit to the non-inputwires for𝐶 (𝑘, z𝑖): For each 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆int, compute

(
𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)

)
←

BC.Commit
(
crs(𝑖, 𝑗) ,𝑤 (𝑖)

𝑗

)
.

∗ Construct a BARG proof of validity: The BARG proof 𝜋BARG is computed exactly as described in

Hyb
0
(same for all hybrids).

The challenger defines the proof 𝜋 as in Hyb
0
(same for all hybrids).

– The challenger gives (crs, 𝐼 , r𝐼 , 𝜋, r𝐼) to A. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of

the experiment.

We write Hyb𝑖 (A) to denote the output distribution of an execution of Hyb𝑖 with adversary A. We now analyze

each of the hybrid experiments.

Claim 3.9. Suppose ΠBC satisfies mode indistinguishability. Then, there exists a negligible function negl(·) such that for
all _ ∈ N, | Pr[Hyb

1
(A) = 1] − Pr[Hyb

0
(A) = 1] | = negl(_).

Proof. Let 𝑇 = |𝑆key | +𝑚 · |𝑆int |. For each 𝑡 ∈ [𝑇 + 1], we define an intermediate hybrid Hyb
0,𝑡 as follows:

• On input the security parameter 1
_
, algorithm A outputs the output length 1

𝑚
and a subset 𝐼 ⊆ [𝑚].

• The challenger samples crs← Setup(1_, 1𝑚). Specifically, it starts by sampling the common reference strings

for the bit commitment schemes:

– CRS for the key: For 𝑗 ∈ 𝑆key:

∗ If 𝑗 ≥ 𝑡 , sample crs(key, 𝑗)BC ← BC.SetupBind(1_).
∗ If 𝑗 < 𝑡 , sample

(
crs(key, 𝑗)BC , 𝑐 (key, 𝑗) , �̃�

(key, 𝑗)
0

, �̃�
(key, 𝑗)
1

)
← BC.SetupEquivocate(1_).

– CRS for the evaluation point: For 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆eval, sample crs(𝑖, 𝑗)BC ← BC.SetupBind(1_).
– CRS for the non-input wires: For 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆int:

∗ If |𝑆key | + 𝑖 · |𝑆int | + (𝑗 − ^ − 𝑛) ≥ 𝑡 , sample crs(𝑖, 𝑗)BC ← BC.SetupBind(1_).
∗ If |𝑆key | + 𝑖 · |𝑆int | + (𝑗 − ^ − 𝑛) < 𝑡 , sample

(
crs(𝑖, 𝑗)BC , 𝑐 (𝑖, 𝑗) , �̃� (𝑖, 𝑗)

0
, �̃�
(𝑖, 𝑗)
1

)
← BC.SetupEquivocate(1_).

Next, the challenger samples z1, . . . , z𝑚
r← {0, 1}𝑛 . For each each 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆eval, it computes

(𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)) ← BC.Commit
(
crs(𝑖, 𝑗)BC , 𝑧𝑖, 𝑗−^

)
. Finally, it samples crsBARG ← BARG.Setup(1_, 1𝑚𝑠int , 1 |𝐶R |) and

defines

crs =
(
(z1, . . . , z𝑚),

{
crs(key, 𝑗)BC

}
𝑗∈𝑆key ,

{
crs(𝑖, 𝑗)BC

}
𝑖∈[𝑚], 𝑗∈𝑆eval∪𝑆int ,

{(
𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)

)}
𝑖∈[𝑚], 𝑗∈𝑆eval , crsBARG

)
.

24

• Next, the challenger computes (r, st) ← GenBits(crs) and 𝜋 ← Prove(st, 𝐼). First, the challenger samples a

weak PRF key 𝑘 ← LRwPRF.Setup(1_, 1ℓ) and computes 𝑟𝑖 ← LRwPRF.Eval(𝑘, z𝑖). It sets r = 𝑟1∥ · · · ∥𝑟𝑚 . To
construct the proof 𝜋 , the challenger first sets𝑤

(𝑖)
1
, . . . ,𝑤

(𝑖)
𝑠 to be the wire values of 𝐶 (𝑘, z𝑖) for each 𝑖 ∈ [𝑚].

Then, it does the following:

– Commit to the bits of 𝑘: For each 𝑗 ∈ 𝑆key:
∗ If 𝑗 ≥ 𝑡 , compute

(
𝑐 (key, 𝑗) , 𝜎 (key, 𝑗)

)
← BC.Commit

(
crs(key, 𝑗) , 𝑘 𝑗

)
.

∗ If 𝑗 < 𝑡 , let 𝑐 (key, 𝑗) := 𝑐 (key, 𝑗) and 𝜎 (key, 𝑗) := �̃�
(key, 𝑗)
𝑏

where 𝑏 = 𝑘 𝑗 .

– Commit to the non-input wires for 𝐶 (𝑘, z𝑖): For each 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆int:
∗ If |𝑆key | + 𝑖 · |𝑆int | + (𝑗 − ^ − 𝑛) ≥ 𝑡 , compute

(
𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)

)
← BC.Commit

(
crs(𝑖, 𝑗) ,𝑤 (𝑖)

𝑗

)
.

∗ If |𝑆key | + 𝑖 · |𝑆int | + (𝑗 − ^ − 𝑛) < 𝑡 and 𝜎 (𝑖, 𝑗) := �̃�
(𝑖, 𝑗)
𝑏

where 𝑏 = 𝑤
(𝑖)
𝑗
.

– Construct a BARG proof of validity: For each 𝑗 ∈ [𝑠int], let 𝑗l, 𝑗r be the wire indices that determine

the value of the 𝑗 th non-input wire 𝑗out = (^ + 𝑛) + 𝑗 . Then, for each 𝑖 ∈ [𝑚], define the statement 𝑥 (𝑖, 𝑗)

and witness𝑤 (𝑖, 𝑗) as follows:

𝑥 (𝑖, 𝑗) =
(
crs(𝑖, 𝑗l)BC , crs(𝑖, 𝑗r)BC , crs(𝑖, 𝑗out)BC , 𝑐 (𝑖, 𝑗l) , 𝑐 (𝑖, 𝑗r) , 𝑐 (𝑖, 𝑗out)

)
𝑤 (𝑖, 𝑗) =

(
𝑤
(𝑖)
𝑗l
,𝑤
(𝑖)
𝑗r
,𝑤
(𝑖)
𝑗out

, 𝜎 (𝑖, 𝑗l) , 𝜎 (𝑖, 𝑗r) , 𝜎 (𝑖, 𝑗out)
)
.

As in Construction 3.1, we adopt the convention that crs(𝑖, 𝑗)BC := crs(key, 𝑗)BC , 𝑐 (𝑖, 𝑗) := 𝑐 (key, 𝑗) , and 𝜎 (𝑖, 𝑗) :=

𝜎 (key, 𝑗) . The BARG proof 𝜋BARG is computed exactly as described in Hyb
0
(same for all hybrids).

The challenger defines the proof 𝜋 as in Hyb
0
(same for all hybrids).

• The challenger gives (crs, 𝐼 , r𝐼 , 𝜋, r𝐼) to A. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the

experiment.

We now show that for all 𝑡 ∈ [𝑇],

| Pr[Hyb
0,𝑡+1 (A) = 1] − Pr[Hyb

0,𝑡 (A) = 1] | = negl(_).

Suppose instead that | Pr[Hyb
0,𝑡+1 (A) = 1] − Pr[Hyb

0,𝑡 (A) = 1] | ≥ Y (_) for some non-negligible Y. We use A to

construct an efficient adversary B that breaks mode indistinguishability of ΠBC. We highlight the key steps in green.

1. At the beginning of the game, algorithm B receives a common reference string crs∗BC.

2. Algorithm B starts running algorithm A on input the security parameter 1
_
. Algorithm A outputs the output

length 1
𝑚
and a subset 𝐼 ⊆ [𝑚].

3. Algorithm B samples crs← Setup(1_, 1𝑚). Specifically, it starts by sampling the common reference strings for

the bit commitment schemes:

• CRS for the key: For 𝑗 ∈ 𝑆key,

– If 𝑗 > 𝑡 , sample crs(key, 𝑗)BC ← BC.SetupBind(1_).
– If 𝑗 = 𝑡 , set crs(key, 𝑗)BC ← crs∗BC.

– If 𝑗 < 𝑡 , sample

(
crs(key, 𝑗)BC , 𝑐 (key, 𝑗) , �̃�

(key, 𝑗)
0

, �̃�
(key, 𝑗)
1

)
← BC.SetupEquivocate(1_).

• CRS for the evaluation point: For 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆eval, sample crs(𝑖, 𝑗)BC ← BC.SetupBind(1_).
• CRS for the non-input wires: For 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆int:

– If |𝑆key | + 𝑖 · |𝑆int | + (𝑗 − ^ − 𝑛) > 𝑡 , sample crs(𝑖, 𝑗)BC ← BC.SetupBind(1_).

25

– If |𝑆key | + 𝑖 · |𝑆int | + (𝑗 − ^ − 𝑛) = 𝑡 , set crs(𝑖, 𝑗)BC ← crs∗BC.

– If |𝑆key | + 𝑖 · |𝑆int | + (𝑗 − ^ − 𝑛) < 𝑡 , sample

(
crs(𝑖, 𝑗)BC , 𝑐 (𝑖, 𝑗) , �̃� (𝑖, 𝑗)

0
, �̃�
(𝑖, 𝑗)
1

)
← BC.SetupEquivocate(1_).

Next, algorithmB samples z1, . . . , z𝑚
r← {0, 1}𝑛 . For each each 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆eval, it computes (𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)) ←

BC.Commit
(
crs(𝑖, 𝑗)BC , 𝑧𝑖, 𝑗−^

)
. Finally, it samples crsBARG ← BARG.Setup(1_, 1𝑚𝑠int , 1 |𝐶R |) and defines

crs =
(
(z1, . . . , z𝑚),

{
crs(key, 𝑗)BC

}
𝑗∈𝑆key ,

{
crs(𝑖, 𝑗)BC

}
𝑖∈[𝑚], 𝑗∈𝑆eval∪𝑆int ,

{(
𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)

)}
𝑖∈[𝑚], 𝑗∈𝑆eval , crsBARG

)
.

4. Next, algorithm B computes (r, st) ← GenBits(crs) and 𝜋 ← Prove(st, 𝐼). First, algorithm B samples a

weak PRF key 𝑘 ← LRwPRF.Setup(1_, 1ℓ) and computes 𝑟𝑖 ← LRwPRF.Eval(𝑘, z𝑖). It sets r = 𝑟1∥ · · · ∥𝑟𝑚 . To
construct the proof 𝜋 , algorithm B first sets 𝑤

(𝑖)
1
, . . . ,𝑤

(𝑖)
𝑠 to be the wire values of 𝐶 (𝑘, z𝑖) for each 𝑖 ∈ [𝑚].

Then, it does the following:

• Commit to the bits of 𝑘: For each 𝑗 ∈ 𝑆key:
– If 𝑗 > 𝑡 , compute

(
𝑐 (key, 𝑗) , 𝜎 (key, 𝑗)

)
← BC.Commit

(
crs(key, 𝑗) , 𝑘 𝑗

)
.

– If 𝑗 = 𝑡 , query the challenger on the message bit 𝑘 𝑗 ∈ {0, 1} to receive the commitment 𝑐 (key, 𝑗) and
the opening 𝜎 (key, 𝑗) .

– If 𝑗 < 𝑡 , let 𝑐 (key, 𝑗) := 𝑐 (key, 𝑗) and 𝜎 (key, 𝑗) := �̃�
(key, 𝑗)
𝑏

where 𝑏 = 𝑘 𝑗 .

• Commit to the non-input wires for 𝐶 (𝑘, z𝑖): For each 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆int:
– If |𝑆key | + 𝑖 · |𝑆int | + (𝑗 − ^ − 𝑛) > 𝑡 , compute

(
𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)

)
← BC.Commit

(
crs(𝑖, 𝑗) ,𝑤 (𝑖)

𝑗

)
.

– If |𝑆key | + 𝑖 · |𝑆int | + (𝑗 − ^ − 𝑛) = 𝑡 , query the challenger on the wire value 𝑤
(𝑖)
𝑗

to receive the

commitment 𝑐 (𝑖, 𝑗) and the opening 𝜎 (𝑖, 𝑗) .

– If |𝑆key | + 𝑖 · |𝑆int | + (𝑗 − ^ − 𝑛) < 𝑡 , let 𝑐 (𝑖, 𝑗) := 𝑐 (𝑖, 𝑗) and 𝜎 (𝑖, 𝑗) := �̃�
(𝑖, 𝑗)
𝑏

where 𝑏 = 𝑤
(𝑖)
𝑗
.

• Construct a BARG proof of validity: For each 𝑗 ∈ [𝑠int], let 𝑗l, 𝑗r be the wire indices that determine

the value of the 𝑗 th non-input wire 𝑗out = (^ + 𝑛) + 𝑗 . Then, for each 𝑖 ∈ [𝑚], define the statement 𝑥 (𝑖, 𝑗)

and witness𝑤 (𝑖, 𝑗) as follows:

𝑥 (𝑖, 𝑗) =
(
crs(𝑖, 𝑗l)BC , crs(𝑖, 𝑗r)BC , crs(𝑖, 𝑗out)BC , 𝑐 (𝑖, 𝑗l) , 𝑐 (𝑖, 𝑗r) , 𝑐 (𝑖, 𝑗out)

)
𝑤 (𝑖, 𝑗) =

(
𝑤
(𝑖)
𝑗l
,𝑤
(𝑖)
𝑗r
,𝑤
(𝑖)
𝑗out

, 𝜎 (𝑖, 𝑗l) , 𝜎 (𝑖, 𝑗r) , 𝜎 (𝑖, 𝑗out)
)
.

As in Construction 3.1, we adopt the convention that crs(𝑖, 𝑗)BC := crs(key, 𝑗)BC , 𝑐 (𝑖, 𝑗) := 𝑐 (key, 𝑗) , and 𝜎 (𝑖, 𝑗) :=

𝜎 (key, 𝑗) . Algorithm B computes

𝜋BARG ← BARG.Prove
(
crsBARG,𝐶R, (𝑥 (𝑖, 𝑗))𝑖∈𝐼 , 𝑗∈[𝑠int], (𝑤 (𝑖, 𝑗))𝑖∈𝐼 , 𝑗∈[𝑠int]

)
.

Finally algorithm B defines the proof 𝜋 to be

𝜋 =
(
𝜋BARG, {𝑐 (key, 𝑗) } 𝑗∈𝑆key , {𝑐 (𝑖, 𝑗) }𝑖∈𝐼 , 𝑗∈𝑆int , {𝜎 (𝑖,𝑠) }𝑖∈𝐼

)
.

5. Algorithm B gives (crs, 𝐼 , r𝐼 , 𝜋, r𝐼) toA. AlgorithmA outputs a bit 𝑏′ ∈ {0, 1}, which algorithm B also outputs.

Let 𝛽 be the bit in the mode indistinguishability game. We consider the two cases:

• Suppose 𝛽 = 0. If 𝑗 = 𝑡 for some 𝑗 ∈ 𝑆key, then algorithm B sets crs(key, 𝑗)BC ← BC.SetupBind(1_) and
(𝑐 (key, 𝑗) , 𝜎 (key, 𝑗)) ← BC.Commit(crsBC, 𝑘 𝑗). Alternatively, if |𝑆key | + 𝑖 · |𝑆int | + (𝑗 − ^ − 𝑛) = 𝑡 , then algorithm

B sets crs(𝑖, 𝑗)BC ← BC.SetupBind(1_) and (𝑐𝑖, 𝑗 , 𝜎𝑖, 𝑗) ← BC.Commit(crs(𝑖, 𝑗)BC ,𝑤
(𝑗)
𝑖
). In this case, algorithm B

perfectly simulates hybrid Hyb
0,𝑡 .

26

• Suppose 𝛽 = 1. If 𝑗 = 𝑡 for some 𝑗 ∈ 𝑆key, then algorithm B sets (crs(key, 𝑗)BC , 𝑐 (key, 𝑗) , �̃�
(key, 𝑗)
0

, �̃�
(key, 𝑗)
1

) ←
BC.SetupEquivocate(1_) and 𝑐 (key, 𝑗) ← 𝑐 (key, 𝑗) , 𝜎 (key, 𝑗) ← �̃�

(key, 𝑗)
𝑏

where 𝑏 = 𝑘 𝑗 . Alternatively, if |𝑆key | +
𝑖 · |𝑆int | + (𝑗 − ^ − 𝑛) = 𝑡 , then algorithm B sets (crs(𝑖, 𝑗)BC , 𝑐 (𝑖, 𝑗) , �̃� (𝑖, 𝑗)

0
, �̃�
(𝑖, 𝑗)
1
) ← BC.SetupEquivocate(1_) and

𝜎 (𝑖, 𝑗) ← �̃�
(𝑖, 𝑗)
𝑏

for 𝑏 = 𝑤
(𝑖)
𝑗
. In this case, algorithm B perfectly simulates hybrid Hyb

0,𝑡+1.

We conclude that algorithm B breaks mode indistinguishability with the same advantage Y. Thus, for all 𝑡 ∈ [𝑇],
we have that the output distribution of Hyb

0,𝑡 (A) is computationally indistinguishable from the output distribution

of Hyb
0,𝑡+1. By construction Hyb

0
(A) ≡ Hyb

0,1 (A) and Hyb
1
(A) ≡ Hyb

0,𝑇+1 (A). Since 𝑇 = |𝑆key | +𝑚 · |𝑆int | is
polynomially-bounded, the claim now follows by a hybrid argument. □

Claim 3.10. Suppose ΠLRwPRF is a leakage-resilient weak PRF. Then, there exists a negligible function negl(·) such that
for all _ ∈ N, | Pr[Hyb

2
(A) = 1] − Pr[Hyb

1
(A) = 1] | = negl(_).

Proof. We start by defining the Boolean circuit leak : {0, 1}^ → {0, 1}ℓBARG that takes a PRF key 𝑘 ∈ {0, 1}^ as input

and generates a BARG proof according to the specification of the Prove algorithm:

Hard-wired: PRF inputs z1, . . . , z𝑚 ∈ {0, 1}𝑛 , a common reference string crsBARG for the BARG, and the following

sets of commitment-opening tuples:

• Key: for each 𝑗 ∈ 𝑆key,
(
crs(key, 𝑗)BC , 𝑐 (key, 𝑗) , �̃�

(key, 𝑗)
0

, �̃�
(key, 𝑗)
1

)
;

• Evaluation point: for each 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆eval,
(
crs(𝑖, 𝑗)BC , 𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)

)
;

• Non-input wires: for each 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆int,
(
crs(𝑖, 𝑗)BC , 𝑐 (𝑖, 𝑗) , �̃� (𝑖, 𝑗)

0
, �̃�
(𝑖, 𝑗)
1

)
.

On input the PRF key 𝑘 ∈ {0, 1}^ :

• For each 𝑖 ∈ [𝑚], let𝑤 (𝑖)
1
, . . . ,𝑤

(𝑖)
𝑠 be the wire values of 𝐶 (𝑘, z𝑖) for each 𝑖 ∈ [𝑚].

• For each 𝑗 ∈ 𝑆key, let 𝜎 (key, 𝑗) := �̃�
(key, 𝑗)
𝑏

where 𝑏 = 𝑘 𝑗 .

• For each 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆int, let 𝜎 (𝑖, 𝑗) := �̃�
(𝑖, 𝑗)
𝑏

where 𝑏 = 𝑤
(𝑖)
𝑗
.

• For each 𝑗 ∈ [𝑠int], let 𝑗l, 𝑗r be the wire indices that determine the value of the 𝑗 th non-input wire

𝑗out = (^ + 𝑛) + 𝑗 . Then, for each 𝑖 ∈ [𝑚], define the statement 𝑥 (𝑖, 𝑗) and witness𝑤 (𝑖, 𝑗) as follows:

𝑥 (𝑖, 𝑗) =
(
crs(𝑖, 𝑗l)BC , crs(𝑖, 𝑗r)BC , crs(𝑖, 𝑗out)BC , 𝑐 (𝑖, 𝑗l) , 𝑐 (𝑖, 𝑗r) , 𝑐 (𝑖, 𝑗out)

)
𝑤 (𝑖, 𝑗) =

(
𝑤
(𝑖)
𝑗l
,𝑤
(𝑖)
𝑗r
,𝑤
(𝑖)
𝑗out

, 𝜎 (𝑖, 𝑗l) , 𝜎 (𝑖, 𝑗r) , 𝜎 (𝑖, 𝑗out)
)
.

As in Construction 3.1, we adopt the convention that crs(𝑖, 𝑗)BC := crs(key, 𝑗)BC , 𝑐 (𝑖, 𝑗) := 𝑐 (key, 𝑗) , and 𝜎 (𝑖, 𝑗) :=

𝜎 (key, 𝑗) . Compute and output

𝜋BARG ← BARG.Prove
(
crsBARG,𝐶R, (𝑥 (𝑖, 𝑗))𝑖∈𝐼 , 𝑗∈[𝑠int], (𝑤 (𝑖, 𝑗))𝑖∈𝐼 , 𝑗∈[𝑠int]

)
.

Figure 1: The leakage circuit leak : {0, 1}^ → {0, 1}ℓBARG .
Returning to the proof of Claim 3.10, suppose | Pr[Hyb

2
(A) = 1] −Pr[Hyb

1
(A) = 1] | ≥ Y (_) for some non-negligible

Y. We use A to construct an efficient adversary B for the leakage-resilient weak PRF security game for ΠLRwPRF. As

usual, we highlight key steps in green.

1. Algorithm B starts running algorithm A on input input the security parameter 1
_
. Algorithm A outputs the

output length 1
𝑚
and a subset 𝐼 ⊆ [𝑚].

27

2. Algorithm B starts by sampling the common reference strings for the bit commitment schemes:

• CRS for the key: For 𝑗 ∈ 𝑆key, it samples(
crs(key, 𝑗)BC , 𝑐 (key, 𝑗) , 𝜎

(key, 𝑗)
0

, 𝜎
(key, 𝑗)
1

)
← BC.SetupEquivocate(1_).

• CRS for the evaluation point: For 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆eval, it samples crs(𝑖, 𝑗)BC ← BC.SetupBind(1_).
• CRS for the non-input wires: For 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆int, it samples(

crs(𝑖, 𝑗)BC , 𝑐 (𝑖, 𝑗) , �̃� (𝑖, 𝑗)
0

, �̃�
(𝑖, 𝑗)
1

)
← BC.SetupEquivocate(1_).

3. Algorithm B outputs the leakage parameter 1
ℓ
and the number of pre-challenge evaluation queries 1

|𝐼 |
. The

challenger replies with a set of |𝐼 | input-output pairs (z𝑖 , 𝑟𝑖). Algorithm B associates each one with an index

𝑖 ∈ 𝐼 . Namely, let {(z𝑖 , 𝑟𝑖)}𝑖∈𝐼 be the challenger’s response.

4. For each each 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆eval, it computes (𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)) ← BC.Commit
(
crs(𝑖, 𝑗)BC , 𝑧𝑖, 𝑗−^

)
. Finally, it samples

crsBARG ← BARG.Setup(1_, 1𝑚𝑠int , 1 |𝐶R |) and defines

crs =
(
(z1, . . . , z𝑚),

{
crs(key, 𝑗)BC

}
𝑗∈𝑆key ,

{
crs(𝑖, 𝑗)BC

}
𝑖∈[𝑚], 𝑗∈𝑆eval∪𝑆int ,

{(
𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)

)}
𝑖∈[𝑚], 𝑗∈𝑆eval , crsBARG

)
.

Next, algorithm B sets the commitments to the key and the non-input wires as follows:

• Commit to the bits of 𝑘: For each 𝑗 ∈ 𝑆key, let 𝑐 (key, 𝑗) := 𝑐 (key, 𝑗) .

• Commit to the non-input wires for 𝐶 (𝑘, z𝑖): For each 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆int, let 𝑐 (𝑖, 𝑗) := 𝑐 (𝑖, 𝑗) .

5. Algorithm B makes a leakage query on the circuit leak defined in Fig. 1 (with z1, . . . , zℓ as the inputs, crsBARG
as the BARG common reference string, and the above-generated commitment/opening tuples for the key,

evaluation point, and non-input wires). The challenger replies with a proof 𝜋BARG.

6. Algorithm B outputs 1
𝑚−|𝐼 |

as the number of challenge queries. The challenger replies with a set of (𝑚 − |𝐼 |)
input-output pairs z𝑖 , 𝑟𝑖). Algorithm B associates each one with an index 𝑖 ∈ 𝐼 . Namely, let {(z𝑖 , 𝑟𝑖)}𝑖∈𝐼 be the
challenger’s response.

7. Algorithm B sets r = 𝑟1∥ · · · ∥𝑟𝑚 . Then, for each 𝑖 ∈ [𝑚], it sets 𝜎 (𝑖,𝑠) := �̃�
(𝑖,𝑠)
𝑏

where 𝑏 = 𝑟𝑖 .

Finally algorithm B defines the proof 𝜋 to be

𝜋 =
(
𝜋BARG, {𝑐 (key, 𝑗) } 𝑗∈𝑆key , {𝑐 (𝑖, 𝑗) }𝑖∈𝐼 , 𝑗∈𝑆int , {𝜎 (𝑖,𝑠) }𝑖∈𝐼

)
.

8. Algorithm B gives (crs, 𝐼 , r𝐼 , 𝜋, r𝐼) toA. AlgorithmA outputs a bit 𝑏′ ∈ {0, 1}, which algorithm B also outputs.

Since ℓ ≥ ℓBARG ≥ |𝜋BARG |, algorithm B is an admissible adversary. Next, in the leakage-resilient weak PRF security

game, in the pre-challenge phase, the challenger samples z𝑖
r← {0, 1}𝑛 and 𝑟𝑖 ← LRwPRF.Eval(𝑘, z𝑖) for all 𝑖 ∈ 𝐼 ,

which matches the distribution in Hyb
1
and Hyb

2
. Next, the challenger computes 𝜋BARG ← leak(𝑘), which precisely

coincides with the algorithm used inHyb
1
andHyb

2
to construct 𝜋BARG. We conclude that crs, r𝐼 , and 𝜋 are distributed

exactly as required in Hyb
1
and Hyb

2
. We consider the challenge queries. Let 𝛽 ∈ {0, 1} the bit in the leakage-resilient

weak PRF security game. We consider the two possibilities:

• Suppose 𝛽 = 0. Then, the challenger samples z𝑖
r← {0, 1}𝑛 and 𝑟𝑖 ← LRwPRF.Eval(𝑘, z𝑖) for each 𝑖 ∈ 𝐼 . In this

case, algorithm B perfectly simulates Hyb
1
for A.

• Suppose 𝛽 = 1. Then, the challenger samples z𝑖
r← {0, 1}𝑛 and 𝑟𝑖

r← {0, 1} for each 𝑖 ∈ 𝐼 . In this case, algorithm

B perfectly simulates Hyb
2
for A.

28

We conclude that algorithm B breaks leakage-resilient weak PRF security with the same advantage Y. □

Claim 3.11. Suppose ΠBC satisfies mode indistinguishability. Then, there exists a negligible function negl(·) such that
for all _ ∈ N, | Pr[Hyb

3
(A) = 1] − Pr[Hyb

2
(A) = 1] | = negl(_).

Proof. This follows by an analogous argument as the proof of Claim 3.9, except the reduction algorithm samples

𝑟𝑖
r← {0, 1} for all 𝑖 ∈ 𝐼 (as in the specification of Hyb

2
and Hyb

3
). □

Combining Claims 3.9 to 3.11, computational hiding follows by a hybrid argument. □

4 Hidden-Bits Generator from BARGs and Public-Key Encryption
In this section, we show how to construct a hidden-bits generator with subset-dependent proofs by combining a

polynomial-hard somewhere-sound BARG with a public-key encryption scheme. Compared to Corollary 3.5, this

construction only relies on polynomial hardness on the somewhere-sound BARG (as opposed to sub-exponential

hardness), but in exchange, it requires an additional assumption of public-key encryption. As described in Section 1.1,

this construction follows the same template as the previous construction (Section 3), but uses public-key encryption

to construct a one-time dual-mode bit commitment with efficient extraction.

4.1 One-Time Dual-Mode Bit Commitment with Extraction
The main building block we use in this section is a one-time dual-mode bit commitment scheme that supports efficient
extraction. Recall that in a standard one-time dual-mode bit commitment scheme (Definition 2.4), we only require the

bit commitment scheme to be statistically binding in binding mode. Here, we upgrade the statistical binding to a

strong extractability guarantee. This will allow us to base security of our hidden-bits generator somewhere soundness

rather than adaptive soundness.

Definition 4.1 (One-Time Dual-Mode Bit Commitment with Extraction). A one-time dual-mode bit commitment with

extraction is a tuple of algorithms ΠBC = (SetupBind, SetupEquivocate,Commit,Verify, Extract) with the following

syntax:

• SetupBind(1_) → (crs, td): On input the security parameter _, the setup algorithm for the binding mode

outputs a common reference string crs and trapdoor td.

• SetupEquivocate(1_) → (crs, 𝑐, �̃�0, �̃�1): On input the security parameter _, the setup algorithm for the equivo-

cating mode outputs a common reference string crs along with a commitment 𝑐 and openings �̃�0, �̃�1.

• Commit(crs, 𝑏) → (𝑐, 𝜎): On input the common reference string crs and a bit 𝑏 ∈ {0, 1}, the commit algorithm

outputs a commitment 𝑐 and an opening 𝜎 .

• Verify(crs, 𝑐, 𝑏, 𝜎) → {0, 1}: On input the common reference string crs, a commitment 𝑐 , a bit 𝑏 ∈ {0, 1}, and an

opening 𝜎 , the verification algorithm outputs a bit 𝑏′ ∈ {0, 1}.

• Extract(td, 𝑐) → {0, 1}: On input the trapdoor td and a commitment 𝑐 , the verification algorithm outputs a bit

𝑏 ∈ {0, 1}.

We require ΠBC satisfy the following properties:

• Correctness: Same as in Definition 2.4.

• Mode indistinguishability: Same as in Definition 2.4.

• Extractable in binding mode: For all adversaries A, there exists a negligible function negl(·) such that for

all _ ∈ N,

Pr

Verify(crs, 𝑐, 𝑏, 𝜎) = 1 ∧ 𝑏 ≠ 𝑏′ :

(crs, td) ← SetupBind(1_)
(𝑐, 𝜎, 𝑏) ← A(1_, crs)
𝑏′ ← Extract(td, 𝑐)

 = negl(_).

29

Constructing a one-time dual-mode bit commitment with extraction scheme. We can construct a one-time

dual-mode bit commitment with extraction scheme by composing a vanilla one-time dual-mode bit commitment

scheme (Definition 2.4) with a public-key encryption scheme. A similar approach was used implicitly in previous

works [KW19, LQR
+
19].

Construction 4.2 (One-Time Dual-Mode Bit Commitment with Extraction). Our construction relies on the following

primitives:

• Let Π′BC = (BC.SetupBind′,BC.SetupEquivocate′,BC.Commit′,BC.Verify′) be a one-time dual mode bit com-

mitment scheme. Let ℓBC = ℓBC (_) be a bound on the length of the openings output by BC.Commit′.

• Let ΠPKE = (PKE.Setup, PKE.Encrypt, PKE.Decrypt) be a public-key encryption scheme with message space

M_ = {0, 1}ℓBC (_)+1 ∪ {⊥}. Let 𝜌 = 𝜌 (_) be the randomness complexity of PKE.Encrypt (i.e., the number of bits

of randomness that PKE.Encrypt takes as input).

We construct a one-time dual mode bit commitment scheme with extraction ΠBC = (SetupBind, SetupEquivocate,
Commit,Verify, Extract):

• SetupBind(1_): On input the security parameter _, the binding mode setup algorithm samples crs′ ←
BC.SetupBind′ (1_) and (pk, sk) ← PKE.Setup(1_). It then outputs the common reference string crs = (crs′, pk)
and the extraction trapdoor td = (crs′, sk).

• SetupEquivocate(1_): On input the security parameter _, the equivocating mode setup algorithm samples

(crs′, 𝑐′, �̃� ′
0
, �̃� ′

1
) ← BC.SetupEquivocate′ (1_) and (pk, sk) ← PKE.Setup(1_). Next, for 𝑏 ∈ {0, 1}, it samples

𝑟𝑏
r← {0, 1}𝜌 and sets ct𝑏 ← PKE.Encrypt(pk, (𝑏, �̃� ′

𝑏
); 𝑟𝑏). It outputs the common reference string crs =

(crs′, pk), the commitment 𝑐 = (𝑐′, ct0, ct1), and the openings �̃�0 = (�̃� ′0, 𝑟0), �̃�1 = (�̃� ′1, 𝑟1).

• Commit(crs, 𝑏): On input the common reference string crs = (crs′, pk) and a bit 𝑏 ∈ {0, 1}, the commit

algorithm constructs a commitment (𝑐′, 𝜎 ′) ← BC.Commit′ (crs′, 𝑏). Then, it samples 𝑟𝑏
r← {0, 1}𝜌 and

computes ct𝑏 ← PKE.Encrypt(pk, (𝑏, 𝜎 ′); 𝑟𝑏). It also computes ct1−𝑏 ← PKE.Encrypt(pk,⊥). Finally, it outputs
the commitment 𝑐 = (𝑐′, ct0, ct1) and the opening 𝜎 = (𝜎 ′, 𝑟𝑏).

• Verify(crs, 𝑐, 𝑏, 𝜎): On input the common reference string crs = (crs′, pk), a commitment 𝑐 = (𝑐′, ct0, ct1), a bit
𝑏 ∈ {0, 1}, and an opening 𝜎 = (𝜎 ′, 𝑟𝑏), the verification algorithm outputs 1 if BC.Verify′ (crs′, 𝑐′, 𝑏, 𝜎 ′) = 1 and

ct𝑏 = PKE.Encrypt(pk, (𝑏, 𝜎 ′); 𝑟𝑏).

• Extract(td, 𝑐): On input an extraction trapdoor td = (crs′, sk) and a commitment 𝑐 = (𝑐′, ct0, ct1), the extraction
algorithm computes 𝑚0 ← PKE.Decrypt(sk, ct0). If 𝑚0 = (0, 𝜎 ′) and BC.Verify′ (crs′, 𝑐′, 0, 𝜎 ′) = 1, then it

outputs 0. Otherwise, it outputs 1.

Theorem 4.3 (Correctness). If Π′BC and ΠPKE are correct, then Construction 4.2 is correct.

Proof. Let _ ∈ N be a security parameter and take any common reference string crs = (crs′, pk) in the support of

SetupBind(1_) or SetupEquivocate(1_). By construction of SetupBind and SetupEquivocate, this means crs′ is in
the support of BC.SetupBind′ (1_) or BC.SetupEquivocate′ (1_). Let 𝑏 ∈ {0, 1} be a bit and take any commitment-

opening pair (𝑐, 𝜎) in the support of Commit(crs, 𝑏). Then, we can write 𝑐 = (𝑐′, ct0, ct1) and 𝜎 = (𝜎 ′, 𝑟𝑏), where
(𝑐′, 𝜎 ′) is in the support of BC.Commit′ (crs′, 𝑏) and ct𝑏 = PKE.Encrypt(pk, (𝑏, 𝜎 ′); 𝑟𝑏). By correctness of Π′BC,
BC.Verify′ (crs′, 𝑐′, 𝑏, 𝜎 ′) = 1. Then, Verify(crs, 𝑐, 𝑏, 𝜎) = 1, completing the proof of correctness. □

Theorem 4.4 (Mode Indistinguishability). Suppose Π′BC satisfies mode indistinguishability. Then Construction 4.2
satisfies mode indistinguishability.

Proof. Let A be an efficient adversary in the mode indistinguishability game for Construction 4.2. We define a

sequence of hybrid experiments between the challenger and A.

• Hyb
0
: This is the real mode indistinguishability game with bit 𝛽 = 0. Specifically, the game proceeds as follows:

30

1. The challenger starts by sampling crs′ ← BC.SetupBind′ (1_), a key-pair (pk, sk) ← PKE.Setup(1_) and
sets crs = (crs′, pk). The challenger gives the security parameter 1

_
and crs to A.

2. Algorithm A outputs a bit 𝑏 ∈ {0, 1}. The challenger computes (𝑐′, 𝜎 ′) ← BC.Commit′ (crs′, 𝑏) and
samples 𝑟𝑏

r← {0, 1}𝜌 . It sets ct𝑏 ← PKE.Encrypt(pk, (𝑏, 𝜎 ′); 𝑟𝑏) and ct1−𝑏 ← PKE.Encrypt(pk,⊥).
Finally, the challenger gives (𝑐, 𝜎) to the adversary where 𝑐 = (𝑐′, ct0, ct1) and 𝜎 = (𝜎 ′, 𝑟𝑏).

3. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

• Hyb
1
: Same as Hyb

0
, except the challenger switches the commitments to be equivocating.

1. The challenger starts by sampling (crs′, 𝑐′, �̃� ′
0
, �̃� ′

1
) ← BC.SetupEquivocate′ (1_), a key-pair (pk, sk) ←

PKE.Setup(1_) and sets crs = (crs′, pk). The challenger gives the security parameter 1
_
and crs to A.

2. Algorithm A outputs a bit 𝑏 ∈ {0, 1}. The challenger sets (𝑐′, 𝜎 ′) ← (𝑐, �̃� ′
𝑏
) and samples 𝑟𝑏

r← {0, 1}𝜌 . It
sets ct𝑏 ← PKE.Encrypt(pk, (𝑏, 𝜎 ′); 𝑟𝑏) and ct1−𝑏 ← PKE.Encrypt(pk,⊥). Finally, the challenger gives
(𝑐, 𝜎) to the adversary where 𝑐 = (𝑐′, ct0, ct1) and 𝜎 = (𝜎 ′, 𝑟𝑏).

3. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

• Hyb
2
: Same as Hyb

1
, except the challenger replaces ct1−𝑏 with an encryption of (1 − 𝑏, �̃� ′

1−𝑏). This is the mode

indistinguishability game with bit 𝛽 = 1.

1. The challenger starts by sampling (crs′, 𝑐′, �̃� ′
0
, �̃� ′

1
) ← BC.SetupEquivocate′ (1_), a key-pair (pk, sk) ←

PKE.Setup(1_) and sets crs = (crs′, pk). The challenger gives the security parameter 1
_
and crs to A.

2. Algorithm A outputs a bit 𝑏 ∈ {0, 1}. The challenger sets (𝑐′, 𝜎 ′) ← (𝑐, �̃� ′
𝑏
) and samples 𝑟𝑏

r← {0, 1}𝜌 .
It sets ct𝑏 ← PKE.Encrypt(pk, (𝑏, 𝜎 ′); 𝑟𝑏) and ct1−𝑏 ← PKE.Encrypt(pk, (1 − 𝑏, �̃� ′

1−𝑏)). Finally, the chal-
lenger gives (𝑐, 𝜎) to the adversary where 𝑐 = (𝑐′, ct0, ct1) and 𝜎 = (𝜎 ′, 𝑟𝑏).

3. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We write Hyb𝑖 (A) to denote the output distribution of an execution of Hyb𝑖 with adversary A. We now analyze

each of the hybrid experiments.

Claim 4.5. If Π′BC satisfies mode indistinguishability, then there exists a negligible function negl(·) such that for all
_ ∈ N, | Pr[Hyb

1
(A) = 1] − Pr[Hyb

0
(A) = 1] | = negl(_).

Proof. Suppose
��
Pr

[
Hyb

1
(A)

]
− Pr

[
Hyb

0
(A)

] �� ≥ Y (_) for some non-negligible Y. We useA to construct an efficient

adversary B that breaks mode indistinguishability for Π′BC:

1. Algorithm B receives security parameter 1
_
and common reference string crs′ from the challenger. Algorithm

B samples a key-pair (pk, sk) ← PKE.Setup(1_) and sets crs = (crs′, pk). Algorithm B starts running A on

input 1
_
and crs.

2. Algorithm A outputs a bit 𝑏 ∈ {0, 1}, which algorithm B forwards to its challenger. The challenger replies

with a challenge (𝑐′, 𝜎 ′). Algorithm B samples 𝑟𝑏
r← {0, 1}𝜌 and computes ct𝑏 ← PKE.Encrypt(pk, (𝑏, 𝜎 ′); 𝑟𝑏).

It constructs ct1−𝑏 ← PKE.Encrypt(pk,⊥) and sets 𝑐 = (𝑐′, ct0, ct1) and 𝜎 = (𝜎 ′, 𝑟𝑏). Algorithm B gives (𝑐, 𝜎)
to A.

3. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which algorithm B also outputs.

Let 𝛽 be the bit in the mode indistinguishability game for Π′BC. We consider the two possibilities:

• Suppose 𝛽 = 0. In this case, the challenger samples crs′ ← BC.SetupBind′ (1_) and (𝑐′, 𝜎 ′) ← BC.Commit′ (crs′, 𝑏),
so algorithm B perfectly simulates Hyb

0
for A.

• Suppose 𝛽 = 1. In this case, the challenger samples (crs′, 𝑐′, �̃� ′
0
, �̃� ′

1
) ← BC.SetupEquivocate′ (1_) and (𝑐′, 𝜎 ′) ←

BC.Commit′ (𝑐′, �̃� ′
𝑏
), so algorithm B perfectly simulates Hyb

1
for A.

We conclude that algorithm B wins the mode indistinguishability game with the same advantage Y. □

31

Claim 4.6. If ΠPKE is semantically secure, then there exists a negligible function negl(·) such that for all _ ∈ N,
| Pr[Hyb

2
(A) = 1] − Pr[Hyb

1
(A) = 1] | = negl(_).

Proof. Suppose | Pr[Hyb
2
(A) = 1] − Pr[Hyb

1
(A) = 1] | ≥ Y (_) for some non-negligible Y. We use A to construct an

efficient adversary B that breaks semantic security of ΠPKE as follows:

1. At the beginning of the game, algorithm B receives the security parameter 1
_
and public key pk from the

challenger.

2. Algorithm B samples (crs′, 𝑐′, �̃� ′
0
, �̃� ′

1
) ← BC.SetupEquivocate′ (1_) and sets crs = (crs′, pk). Algorithm B starts

running A on input 1
_
and crs.

3. Algorithm B outputs a bit 𝑏 ∈ {0, 1}. Algorithm B sets (𝑐′, 𝜎 ′) ← (𝑐, �̃� ′
𝑏
). It then samples 𝑟𝑏

r← {0, 1}𝜌 and

computes ct𝑏 ← PKE.Encrypt(pk, (𝑏, 𝜎 ′); 𝑟𝑏)

4. Next, algorithm B makes a challenge query on the pair of messages ⊥ and (1 − 𝑏, �̃� ′
1−𝑏). The challenger replies

with a ciphertext ct1−𝑏 . Algorithm B sets 𝑐 = (𝑐′, ct0, ct1) and 𝜎 ← (𝜎 ′, 𝑟𝑏). Algorithm B gives (𝑐, 𝜎) to A.

5. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which algorithm B also outputs.

First, the challenger samples (pk, sk) ← PKE.Setup(1_) so the distribution of the CRS is distributed exactly according

to the specification of Hyb
1
and Hyb

2
. It suffices to consider the distribution of the challenge ciphertext. Let 𝛽 be the

bit in the semantic security game for ΠPKE. We consider the two possibilities:

• Suppose 𝛽 = 0. In this case, the challenger computes ct1−𝑏 ← PKE.Encrypt(pk,⊥), so algorithm B perfectly

simulates an execution of Hyb
1
.

• Suppose 𝛽 = 1. In this case, the challenger computes ct1−𝑏 ← PKE.Encrypt(pk, (1 − 𝑏, �̃� ′
1−𝑏)), so algorithm B

perfectly simulates an execution of Hyb
2
.

We conclude that algorithm B breaks semantic security of ΠPKE with the same non-negligible advantage Y. □

Combining Claims 4.5 and 4.6, mode indistinguishability follows. □

Theorem 4.7 (Extractable in Binding Mode). If ΠPKE is perfectly correct and Π′BC is statistically binding, then Con-
struction 4.2 is extractable in binding mode.

Proof. Suppose there exists an adversaryA that breaks extractability in binding mode with non-negligible probability

Y = Y (_). We use A to construct an adversary B that breaks statistical binding of Π′BC:

1. At the beginning of the game, algorithm B receives the common reference string crs′ from the challenger.

Algorithm B then samples (pk, sk) ← PKE.Setup(1_). It sets crs = (crs′, pk) and gives crs to A.

2. Algorithm A outputs (𝑐, 𝜎, 𝑏) where 𝑐 = (𝑐′, ct0, ct1) and 𝜎 = (𝜎 ′, 𝑟𝑏).

3. If 𝑏 = 1, then algorithm B computes𝑚0 ← PKE.Decrypt(sk, ct0) and parses𝑚0 as (0, 𝜎 ′0). If𝑚0 does not have

this form or 𝑏 ≠ 1, then algorithm B aborts. Otherwise, algorithm B outputs (𝑐′, 𝜎 ′
0
, 𝜎 ′).

By construction, algorithm B perfectly simulates the statistical binding security game for A. Thus, with probability

at least Y, the following properties hold:

• BC.Verify′ (crs′, 𝑐′, 𝑏, 𝜎 ′) = 1 and ct𝑏 = PKE.Encrypt(pk, (𝑏, 𝜎 ′); 𝑟𝑏).

• Extract(td, 𝑐′) ≠ 𝑏.

We consider two possibilities:

• Suppose 𝑏 = 0. Since ct𝑏 = PKE.Encrypt(pk, (𝑏, 𝜎 ′); 𝑟𝑏), perfect correctness of ΠPKE means Decrypt(sk, ct0) =
(0, 𝜎 ′). Moreover, since BC.Verify′ (crs′, 𝑐′, 0, 𝜎 ′) = 1, it follows that Extract(td, 𝑐′) also outputs 0, which is a

contradiction. Thus, this case does not happen.

32

• Suppose 𝑏 = 1. If Extract(td, 𝑐′) outputs 0, then it must be the case that Decrypt(sk, ct0) outputs (0, 𝜎 ′0) where
BC.Verify′ (crs′, 𝑐′, 0, 𝜎 ′

0
) = 1. Moreover, we have that BC.Verify′ (crs′, 𝑐′, 1, 𝜎 ′) = 1. In this case, algorithm B

successfully breaks binding of the commitment scheme.

We conclude that algorithm B breaks statistical binding of Π′BC with the same advantage Y. □

Corollary 4.8 (One-Time Dual-Mode Bit Commitment with Extraction). Assuming the existence of public-key
encryption, there exists a one-time dual-mode bit commitment with extraction scheme.

4.2 Hidden-Bits Generator Construction
We now describe our hidden-bits generator based on public-key encryption. The construction replaces the one-time

dual-mode bit commitment scheme in Construction 3.1 with a scheme that supports extraction. This allows basing

security on polynomial somewhere soundness of the underlying BARG rather than adaptive soundness (which

necessitated sub-exponential hardness). The construction is identical to Construction 3.1, except we modify the

binding analysis to rely on somewhere soundness of the BARG (and extraction) rather than adaptive soundness.

Construction 4.9 (Hidden-Bits Generator from Polynomial-Hard Batch Arguments). The construction is identical to

Construction 3.1, except for the following two differences:

• We replace the one-time dual-mode bit commitment scheme with a one-time dual-mode bit commitment scheme

with extraction ΠBC = (SetupBind, SetupEquivocate,Commit,Verify, Extract). Note that the Extract algorithm
is only needed in the security analysis, so the scheme semantics are identical to Construction 3.1.

• We replace the adaptively-sound BARG with a somewhere sound BARG. Functionally-speaking, the only

difference in Setup is when sampling the CRS for the BARG, the scheme additionally provides a dummy index 1.

Namely, the Setup algorithm samples crsBARG as crsBARG ← BARG.Setup(1_, 1𝑚𝑠int , 1 |𝐶R | , 1).

Correctness and security analysis. We now state the correctness and security theorems for Construction 4.9.

The correctness and hiding proofs are identical to the respective proofs for Construction 3.1 (Theorem 3.2 and

Theorem 3.4). We defer the binding proof to Section 4.3.

Theorem 4.10 (Correctness). If ΠBARG is complete and ΠBC is correct, then Construction 4.9 is correct.

Proof. Follows by the same argument as in the proof of Theorem 3.2. □

Theorem 4.11 (Somewhat Computational Binding). Suppose ^ (_,𝑚) ≤ 𝑚𝛿 · 𝑝 (_) for some constant 𝛿 < 1 and a fixed
polynomial 𝑝 (·). If ΠBC is extractable in binding mode and ΠBARG is somewhere sound, then Construction 4.9 satisfies
somewhat computational binding.

Theorem 4.12 (Computational Hiding). Suppose ΠBC satisfies mode indistinguishability and ΠLRwPRF is a secure
leakage-resilient weak PRF. If ℓ (_,𝑚) ≥ ℓBARG (_,𝑚𝑠int, |𝐶R |), Construction 4.9 satisfies computational hiding.

Proof. Follows by the same argument as in the proof of Theorem 3.4 (see Section 3.2). □

Parameter instantiations. We can instantiate the underlying primitives following the same methodology as in

Section 3. This yields the following corollary:

Corollary 4.13 (NIZKs from Somewhere-Sound BARGs and PKE). Assuming the existence of public-key encryption
and somewhere-sound BARGs for NP (Definitions 2.8 and 2.9), there exists a computational NIZK argument for NP.

4.3 Proof of Theorem 4.11 (Somewhat Computational Binding)
Let crs be a common reference string in the support of Setup(1_, 1𝑚) (parsed according to Eq. (3.1)). We define the set

Vcrs ⊆ {0, 1}𝑚 exactly as in Eq. (3.7) in the proof of Theorem 3.3:

Vcrs
:= {(𝐶 (𝑘, z1), . . . ,𝐶 (𝑘, z𝑚)) | 𝑘 ∈ {0, 1}^ }

We now show that each of the requirements of Definition 2.10 is satisfied:

33

Output sparsity. Output sparsity of Construction 4.9 follows by the same argument as in the proof of Theorem 3.3

(see Section 3.1).

Computational binding. Let A be an efficient adversary for the computational binding security game for Con-

struction 4.9. Consider an execution of the computational binding game between a challenger and A:

• On input the security parameter 1
_
, algorithm A starts by outputting the output length 1

𝑚
.

• The challenger samples crs ← Setup(1_, 1𝑚). Specifically, the challenger starts by sampling the following

collection of common reference strings for the bit commitment scheme:

– CRS for the key: For 𝑗 ∈ 𝑆key, sample

(
crs(key, 𝑗)BC , td(key, 𝑗)

)
← BC.SetupBind(1_).

– CRS for the evaluation point: For 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆eval, sample

(
crs(𝑖, 𝑗)BC , td(𝑖, 𝑗)

)
← BC.SetupBind(1_).

– CRS for the non-input wires: For 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆int, sample

(
crs(𝑖, 𝑗)BC , td(𝑖, 𝑗)

)
← BC.SetupBind(1_).

Next, the challenger samples z1, . . . , z𝑚
r← {0, 1}𝑛 and for each 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆eval, it computes (𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)) ←

BC.Commit
(
crs(𝑖, 𝑗)BC , 𝑧𝑖, 𝑗−^

)
. Let 𝑠int = |𝑆int | = 𝑠 − (^ + 𝑛) be the number of non-input wires in 𝐶 . Finally, the

challenger samples crsBARG ← BARG.Setup(1_, 1𝑚𝑠int , 1 |𝐶R | , 1) and constructs the common reference string

crs =
(
(z1, . . . , z𝑚),

{
crs(key, 𝑗)BC

}
𝑗∈𝑆key ,

{
crs(𝑖, 𝑗)BC

}
𝑖∈[𝑚], 𝑗∈𝑆eval∪𝑆int ,

{(
𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)

)}
𝑖∈[𝑚], 𝑗∈𝑆eval , crsBARG

)
and gives crs to algorithm A.

• Algorithm A outputs a tuple (𝐼 , r𝐼 , 𝜋), where

𝜋 =
(
𝜋BARG, {𝑐 (key, 𝑗) } 𝑗∈𝑆key , {𝑐 (𝑖, 𝑗) }𝑖∈𝐼 , 𝑗∈𝑆int , {𝜎 (𝑖,𝑠) }𝑖∈𝐼

)
.

• The output of the experiment is 𝑏 = 1 if r𝐼 ∉ Vcrs
𝐼

and Verify(crs, 𝐼 , r𝐼 , 𝜋) = 1, where Vcrs
𝐼

:= {r𝐼 : r ∈ Vcrs}.
Otherwise, the output is 𝑏 = 0.

In an execution of the computational binding game, we define the following quantities:

• For each 𝑗 ∈ 𝑆key, let 𝑦 (key, 𝑗) ← BC.Extract
(
td(key, 𝑗) , 𝑐 (key, 𝑗)

)
. We will use the convention that for all 𝑗 ∈ 𝑆key,

𝑦 (𝑖, 𝑗) := 𝑦 (key, 𝑗) .

• For each 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝑆eval ∪ 𝑆int, let 𝑦 (𝑖, 𝑗) ← BC.Extract
(
td(𝑖, 𝑗) , 𝑐 (𝑖, 𝑗)

)
.

• For each 𝑖 ∈ 𝐼 and 𝑗 ∈ [𝑠int], let 𝑗l and 𝑗r be the wire indices that determine the value of the 𝑗 th non-input wire

𝑗out = (^ + 𝑛) + 𝑗 in the circuit 𝐶 .

Next, we define the event Bad as follows:

Bad occurs ⇐⇒ (Verify(crs, 𝐼 , r𝐼 , 𝜋) = 1) ∧
(
∃𝑖 ∈ 𝐼 , 𝑗 ∈ [𝑠int] : 𝑦 (𝑖, 𝑗out) ≠ nand(𝑦 (𝑖, 𝑗l) , 𝑦 (𝑖, 𝑗r))

)
. (4.1)

Observe that the event Bad is efficiently-checkable (with knowledge of the trapdoors td(key, 𝑗) and td(𝑖, 𝑗) for all 𝑖, 𝑗).
In the following, we start by showing that in the computational binding experiment, Pr[Bad] = negl(_). To do this,

we proceed via a hybrid argument:

• Hyb
0
: This is the real computational binding experiment, except the output is 1 only if event Bad occurs.

Specifically, the experiment proceeds as follows:

– On input the security parameter 1
_
, algorithm A starts by outputting the output length 1

𝑚
.

34

– The challenger samples crs← Setup(1_, 1𝑚). Specifically, let 𝑠int = |𝑆int | = 𝑠 − (^ + 𝑛) be the number of

non-input wires in𝐶 . The challenger starts by sampling crsBARG ← BARG.Setup(1_, 1𝑚𝑠int , 1 |𝐶R | , 1). Then,
the challenger samples the following collection of common reference strings for the bit commitment

scheme:

∗ CRS for the key: For 𝑗 ∈ 𝑆key, sample

(
crs(key, 𝑗)BC , td(key, 𝑗)

)
← BC.SetupBind(1_).

∗ CRS for the evaluation point: For 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆eval, sample

(
crs(𝑖, 𝑗)BC , td(𝑖, 𝑗)

)
← BC.SetupBind(1_).

∗ CRS for the non-inputwires: For 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆int, sample

(
crs(𝑖, 𝑗)BC , td(𝑖, 𝑗)

)
← BC.SetupBind(1_).

Next, the challenger samples z1, . . . , z𝑚
r← {0, 1}𝑛 and for each 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆eval, it computes

(𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)) ← BC.Commit
(
crs(𝑖, 𝑗)BC , 𝑧𝑖, 𝑗−^

)
. The challenger constructs the common reference string

crs =
(
(z1, . . . , z𝑚),

{
crs(key, 𝑗)BC

}
𝑗∈𝑆key ,

{
crs(𝑖, 𝑗)BC

}
𝑖∈[𝑚], 𝑗∈𝑆eval∪𝑆int ,

{(
𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)

)}
𝑖∈[𝑚], 𝑗∈𝑆eval , crsBARG

)
and gives crs to algorithm A.

– Algorithm A outputs a tuple (𝐼 , r𝐼 , 𝜋), where

𝜋 =
(
𝜋BARG, {𝑐 (key, 𝑗) } 𝑗∈𝑆key , {𝑐 (𝑖, 𝑗) }𝑖∈𝐼 , 𝑗∈𝑆int , {𝜎 (𝑖,𝑠) }𝑖∈𝐼

)
.

– For each 𝑗 ∈ 𝑆key, the challenger computes 𝑦 (key, 𝑗) ← BC.Extract
(
td(key, 𝑗) , 𝑐 (key, 𝑗)

)
. For each 𝑖 ∈ 𝐼 and

𝑗 ∈ 𝑆eval ∪ 𝑆int, the challenger computes 𝑦 (𝑖, 𝑗) ← BC.Extract
(
td(𝑖, 𝑗) , 𝑐 (𝑖, 𝑗)

)
.

– The output of the experiment is 1 if event Bad (Eq. (4.1)) occurs: namely, if Verify(crs, 𝐼 , r𝐼 , 𝜋) = 1 and

there exists 𝑖 ∈ 𝐼 and 𝑗 ∈ [𝑠int] such that 𝑦 (𝑖, 𝑗out) ≠ nand(𝑦 (𝑖, 𝑗l) , 𝑦 (𝑖, 𝑗r)).

• Hyb
1
: Same as Hyb

0
except the challenger now samples a random index 𝑡∗ r← [𝑚𝑠int], and only outputs 1 if the

(𝑡∗)th wire is incorrectly assigned. Specifically, the experiment proceeds as follows:

– On input the security parameter 1
_
, algorithm A starts by outputting the output length 1

𝑚
.

– The challenger samples crs ← Setup(1_, 1𝑚). The challenger samples 𝑡∗ r← [𝑚𝑠int] and crsBARG ←
BARG.Setup(1_, 1𝑚𝑠int , 1 |𝐶R | , 1). The remaining components of crs are sampled exactly as in Hyb

0
(same

for all hybrids). The challenger gives crs to algorithm A.

– Algorithm A outputs a tuple (𝐼 , r𝐼 , 𝜋), where

𝜋 =
(
𝜋BARG, {𝑐 (key, 𝑗) } 𝑗∈𝑆key , {𝑐 (𝑖, 𝑗) }𝑖∈𝐼 , 𝑗∈𝑆int , {𝜎 (𝑖,𝑠) }𝑖∈𝐼

)
.

– For each 𝑗 ∈ 𝑆key, the challenger computes 𝑦 (key, 𝑗) ← BC.Extract
(
td(key, 𝑗) , 𝑐 (key, 𝑗)

)
. For each 𝑖 ∈ 𝐼 and

𝑗 ∈ 𝑆eval ∪ 𝑆int, the challenger computes 𝑦 (𝑖, 𝑗) ← BC.Extract
(
td(𝑖, 𝑗) , 𝑐 (𝑖, 𝑗)

)
.

– The challenger parses 𝑡∗ = (𝑖∗ − 1) · 𝑠int + 𝑗∗ for some 𝑖∗ ∈ [𝑚] and 𝑗∗ ∈ [𝑠int]. If 𝑖∗ ∉ 𝐼 , the challenger

outputs 0. Let 𝑗∗
l
, 𝑗∗

r
be the wire indices that determine the value of the (𝑗∗)th non-input wire 𝑗∗

out
=

(^ + 𝑛) + 𝑗∗ of 𝐶 . The output is 1 if Verify(crs, 𝐼 , r𝐼 , 𝜋) = 1 and 𝑦 (𝑖
∗, 𝑗∗

out
) ≠ nand

(
𝑦 (𝑖

∗, 𝑗∗
l
) , 𝑦 (𝑖

∗, 𝑗∗
r
))
.

• Hyb
2
: Same as Hyb

1
except the challenger programs the BARG to be somewhere sound on index 𝑡∗. Specifically,

the experiment proceeds as follows:

– On input the security parameter 1
_
, algorithm A starts by outputting the output length 1

𝑚
.

– The challenger samples crs ← Setup(1_, 1𝑚). The challenger samples 𝑡∗ r← [𝑚𝑠int] and crsBARG ←
BARG.Setup(1_, 1𝑚𝑠int , 1 |𝐶R | , 𝑡∗). The remaining components of crs are sampled exactly as in Hyb

0
(same

for all hybrids). The challenger gives crs to algorithm A.

– Algorithm A outputs a tuple (𝐼 , r𝐼 , 𝜋), where

𝜋 =
(
𝜋BARG, {𝑐 (key, 𝑗) } 𝑗∈𝑆key , {𝑐 (𝑖, 𝑗) }𝑖∈𝐼 , 𝑗∈𝑆int , {𝜎 (𝑖,𝑠) }𝑖∈𝐼

)
.

35

– For each 𝑗 ∈ 𝑆key, the challenger computes 𝑦 (key, 𝑗) ← BC.Extract
(
td(key, 𝑗) , 𝑐 (key, 𝑗)

)
. For each 𝑖 ∈ 𝐼 and

𝑗 ∈ 𝑆eval ∪ 𝑆int, the challenger computes 𝑦 (𝑖, 𝑗) ← BC.Extract
(
td(𝑖, 𝑗) , 𝑐 (𝑖, 𝑗)

)
.

– The challenger parses 𝑡∗ = (𝑖∗ − 1) · 𝑠int + 𝑗∗ for some 𝑖∗ ∈ [𝑚] and 𝑗∗ ∈ [𝑠int]. If 𝑖∗ ∉ 𝐼 , the challenger

outputs 0. Let 𝑗∗
l
, 𝑗∗

r
be the wire indices that determine the value of the (𝑗∗)th non-input wire 𝑗∗

out
=

(^ + 𝑛) + 𝑗∗ of 𝐶 . The output is 1 if Verify(crs, 𝐼 , r𝐼 , 𝜋) = 1 and 𝑦 (𝑖
∗, 𝑗∗

out
) ≠ nand

(
𝑦 (𝑖

∗, 𝑗∗
l
) , 𝑦 (𝑖

∗, 𝑗∗
r
))
.

We write Hyb𝑖 (A) to denote the output distribution of an execution of Hyb𝑖 with adversary A. By construction,

observe that Pr[Bad] = Pr[Hyb
0
(A) = 1]. We now analyze each of the hybrid experiments.

Claim 4.14. It holds that Pr[Hyb
1
(A) = 1] ≥ 1/(𝑚𝑠int) · Pr[Hyb

0
(A) = 1].

Proof. By construction, the view of adversary A is identically distributed in Hyb
0
and Hyb

1
(since none of the

challenger’s messages depend on 𝑡∗). SupposeHyb
0
(A) = 1. Then, at the end of the experiment, Verify(crs, 𝐼 , r𝐼 , 𝜋) = 1

and there exists some 𝑖 ∈ 𝐼 ⊆ [𝑚] and 𝑗 ∈ [𝑠int] such that 𝑦 (𝑖, 𝑗out) ≠ nand

(
𝑦 (𝑖, 𝑗l) , 𝑦 (𝑖, 𝑗r)

)
. Since the challenger in Hyb

1

samples 𝑡∗ uniformly at random from [𝑚𝑠int], so with probability 1/(𝑚𝑠int), it will be the case that 𝑡∗ = 𝑖 (𝑠int − 1) + 𝑗 .
In this case, the output in Hyb

1
(A) is also 1, and the claim holds. □

Claim 4.15. Suppose ΠBARG satisfies index hiding. Then, there exists a negligible function negl(·) such that for all _ ∈ N,
| Pr[Hyb

2
(A) = 1] − Pr[Hyb

1
(A) = 1] | = negl(_).

Proof. Suppose | Pr[Hyb
1
(A) = 1] − Pr[Hyb

0
(A) = 1] | ≥ Y for some non-negligible Y. We use A to construct an

adversary B that breaks index hiding of the BARG:

1. On input the security parameter 1
_
, algorithm B starts running A on input 1

_
. Algorithm A chooses the

output length 1
𝑚
.

2. Define 𝑠int as in Hyb
1
and Hyb

2
. Algorithm B now samples a random index 𝑡∗ r← [𝑚𝑠int]. It outputs 1

𝑚𝑠int
as

the number of instances, 1
|𝐶R |

as the bound on the circuit size, and the indices 1 and 𝑡∗ as its challenge to the

index hiding challenger.

3. The challenger replies with crsBARG. Algorithm B now simulates the rest of the common reference string

according to the specification of Hyb
0
and Hyb

1
. Specifically, it starts by sampling the following collection of

common reference strings for the bit commitment scheme:

• CRS for the key: For 𝑗 ∈ 𝑆key, sample

(
crs(key, 𝑗)BC , td(key, 𝑗)

)
← BC.SetupBind(1_).

• CRS for the evaluation point: For 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆eval, sample

(
crs(𝑖, 𝑗)BC , td(𝑖, 𝑗)

)
← BC.SetupBind(1_).

• CRS for the non-input wires: For 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆int, sample

(
crs(𝑖, 𝑗)BC , td(𝑖, 𝑗)

)
← BC.SetupBind(1_).

Next, algorithm B samples z1, . . . , z𝑚
r← {0, 1}𝑛 and for each 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆eval, it computes (𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)) ←

BC.Commit
(
crs(𝑖, 𝑗)BC , 𝑧𝑖, 𝑗−^

)
. Finally, algorithm B constructs the common reference string

crs =
(
(z1, . . . , z𝑚),

{
crs(key, 𝑗)BC

}
𝑗∈𝑆key ,

{
crs(𝑖, 𝑗)BC

}
𝑖∈[𝑚], 𝑗∈𝑆eval∪𝑆int ,

{(
𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)

)}
𝑖∈[𝑚], 𝑗∈𝑆eval , crsBARG

)
and gives crs to algorithm A.

4. Algorithm A outputs a tuple (𝐼 , r𝐼 , 𝜋), where

𝜋 =
(
𝜋BARG, {𝑐 (key, 𝑗) } 𝑗∈𝑆key , {𝑐 (𝑖, 𝑗) }𝑖∈𝐼 , 𝑗∈𝑆int , {𝜎 (𝑖,𝑠) }𝑖∈𝐼

)
.

5. For each 𝑗 ∈ 𝑆key, algorithm B computes 𝑦 (key, 𝑗) ← BC.Extract
(
td(key, 𝑗) , 𝑐 (key, 𝑗)

)
. For each 𝑖 ∈ 𝐼 and 𝑗 ∈

𝑆eval ∪ 𝑆int, algorithm B computes 𝑦 (𝑖, 𝑗) ← BC.Extract
(
td(𝑖, 𝑗) , 𝑐 (𝑖, 𝑗)

)
.

6. Algorithm B parses 𝑡∗ = (𝑖∗ − 1) · 𝑠int + 𝑗∗ for some 𝑖∗ ∈ [𝑚] and 𝑗∗ ∈ [𝑠int]. If 𝑖∗ ∉ 𝐼 , algorithm B outputs 0.

Let 𝑗∗
l
, 𝑗∗

r
be the wire indices that determine the value of the (𝑗∗)th non-input wire 𝑗∗

out
= (^ + 𝑛) + 𝑗∗ of 𝐶 .

Algorithm B outputs 1 if Verify(crs, 𝐼 , r𝐼 , 𝜋) = 1 and 𝑦 (𝑖
∗, 𝑗∗

out
) ≠ nand

(
𝑦 (𝑖

∗, 𝑗∗
l
) , 𝑦 (𝑖

∗, 𝑗∗
r
))
and 0 otherwise.

36

Let 𝛽 ∈ {0, 1} be the bit in the index hiding game. We consider two possibilities:

• When 𝛽 = 0, the challenger constructs the CRS for the BARG as crsBARG ← BARG.Setup(1_, 1𝑚𝑠int , 1 |𝐶R | , 1). In
this case, the output of algorithm B is distributed according to Hyb

1
(A).

• When 𝛽 = 1, the challenger constructs the CRS for the BARG as crsBARG ← BARG.Setup(1_, 1𝑚𝑠int , 1 |𝐶R | , 𝑡∗). In
this case, the output of algorithm B is distributed according to Hyb

2
(A).

We conclude that algorithm B breaks index hiding of the BARG with the same advantage Y. □

Claim 4.16. Suppose ΠBC is extractable in binding mode and ΠBARG is somewhere sound. Then, there exists a negligible
function negl(·) such that for all _ ∈ N, it holds that Pr[Hyb

2
(A) = 1] = negl(_).

Proof. Suppose Pr[Hyb
2
(A) = 1] ≥ Y for some non-negligible Y. We use A to construct an efficient adversary that

breaks somewhere binding of the BARG (or extractability of the commitment scheme):

1. On input the security parameter 1
_
, algorithm B starts running algorithm A on the same security parameter

1
_
. Algorithm A starts by outputting the string length 1

𝑚
.

2. Algorithm B computes 𝑠int and |𝐶R | as in Construction 4.9. It also samples an index 𝑡∗ r← [𝑚𝑠int]. It outputs
1
𝑚𝑠int

as the bound on the number of instances and 1
|𝐶R |

as the size of the circuit.

3. The challenger replies with crsBARG. Algorithm B now simulates the rest of the common reference string

according to the specification of Hyb
0
and Hyb

1
. Specifically, it starts by sampling the following collection of

common reference strings for the bit commitment scheme:

• CRS for the key: For 𝑗 ∈ 𝑆key, sample

(
crs(key, 𝑗)BC , td(key, 𝑗)

)
← BC.SetupBind(1_).

• CRS for the evaluation point: For 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆eval, sample

(
crs(𝑖, 𝑗)BC , td(𝑖, 𝑗)

)
← BC.SetupBind(1_).

• CRS for the non-input wires: For 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆int, sample

(
crs(𝑖, 𝑗)BC , td(𝑖, 𝑗)

)
← BC.SetupBind(1_).

Next, algorithm B samples z1, . . . , z𝑚
r← {0, 1}𝑛 and for each 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆eval, it computes (𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)) ←

BC.Commit
(
crs(𝑖, 𝑗)BC , 𝑧𝑖, 𝑗−^

)
. Finally, algorithm B constructs the common reference string

crs =
(
(z1, . . . , z𝑚),

{
crs(key, 𝑗)BC

}
𝑗∈𝑆key ,

{
crs(𝑖, 𝑗)BC

}
𝑖∈[𝑚], 𝑗∈𝑆eval∪𝑆int ,

{(
𝑐 (𝑖, 𝑗) , 𝜎 (𝑖, 𝑗)

)}
𝑖∈[𝑚], 𝑗∈𝑆eval , crsBARG

)
and gives crs to algorithm A.

4. Algorithm A outputs a tuple (𝐼 , r𝐼 , 𝜋), where

𝜋 =
(
𝜋BARG, {𝑐 (key, 𝑗) } 𝑗∈𝑆key , {𝑐 (𝑖, 𝑗) }𝑖∈𝐼 , 𝑗∈𝑆int , {𝜎 (𝑖,𝑠) }𝑖∈𝐼

)
.

5. Algorithm B forms the statements 𝑥 (𝑖, 𝑗) for 𝑖 ∈ 𝐼 and 𝑗 ∈ [𝑠int] according to Eq. (3.2) and outputs the circuit

𝐶R , the statements (𝑥 (𝑖, 𝑗))𝑖∈𝐼 , 𝑗∈[𝑠int] , and the proof 𝜋BARG.

Before proceeding with the analysis, we also define the following quantities from Hyb
2
:

• For each 𝑗 ∈ 𝑆key, let 𝑦 (key, 𝑗) ← BC.Extract
(
td(key, 𝑗) , 𝑐 (key, 𝑗)

)
. For each 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝑆eval ∪ 𝑆int, let 𝑦 (𝑖, 𝑗) ←

BC.Extract
(
td(𝑖, 𝑗) , 𝑐 (𝑖, 𝑗)

)
.

• Let 𝑗∗
l
, 𝑗∗

r
be the wire indices that determine the value of the (𝑗∗)th non-input wire 𝑗∗

out
= (^ + 𝑛) + 𝑗∗ of 𝐶 .

• Let 𝑡∗ = (𝑖∗ − 1) · 𝑠int + 𝑗∗ for some 𝑖∗ ∈ [𝑚] and 𝑗∗ ∈ [𝑠int].

In the somewhere soundness game, the challenger samples the CRS as crsBARG ← BARG.Setup(1_, 1𝑚𝑠int , 1𝐶R , 𝑡∗).
Thus, algorithm B perfectly simulates an execution of Hyb

2
for A. By assumption, with probability Y, algorithm B

outputs a proof 𝜋 such that the following properties hold:

37

(i) 𝑖∗ ∈ 𝐼 and 𝑦 (𝑖∗, 𝑗∗out) ≠ nand

(
𝑦 (𝑖

∗, 𝑗∗
l
) , 𝑦 (𝑖

∗, 𝑗∗
r
))

(ii) BARG.Verify
(
crsBARG,𝐶R, (𝑥 (𝑖, 𝑗))𝑖∈𝐼 , 𝑗∈[𝑠int], 𝜋BARG

)
= 1.

Property (ii) follows by construction of the Verify algorithm. Consider now the (𝑡∗)th statement 𝑥 (𝑖
∗, 𝑗∗)

. From Eq. (3.2),

we have that

𝑥 (𝑖
∗, 𝑗∗) =

(
crs(𝑖

∗, 𝑗∗
l
)

BC , crs(𝑖
∗, 𝑗∗

r
)

BC , crs(𝑖
∗, 𝑗∗

out
)

BC , 𝑐 (𝑖
∗, 𝑗∗

l
) , 𝑐 (𝑖

∗, 𝑗∗
r
) , 𝑐 (𝑖

∗, 𝑗∗
out
)
)
.

Take any candidate witness𝑤 (𝑖
∗, 𝑗∗) =

(
𝑏l, 𝑏r, 𝑏out, 𝜎l, 𝜎r, 𝜎out

)
and consider R

(
𝑥 (𝑖

∗, 𝑗∗) , 𝑦 (𝑖
∗, 𝑗∗))

:

• Suppose for all pos ∈ {l, r, out}, it holds that BC.Verify
(
crs
(𝑖∗, 𝑗∗pos)
BC , 𝑐 (𝑖

∗, 𝑗∗pos) , 𝑏pos, 𝜎pos
)
= 1. Moreover, recall that

𝑦 (𝑖
∗, 𝑗∗pos) = BC.Extract

(
td(𝑖

∗, 𝑗∗pos) , 𝑐 (𝑖
∗, 𝑗∗pos)

)
. By extractability of the bit commitment scheme, with overwhelming

probability over the choice of crs(𝑖
∗, 𝑗∗)

BC , it holds that 𝑏pos = 𝑦 (𝑖
∗, 𝑗∗pos)

.

• By Property (i), if 𝑏pos = 𝑦 (𝑖
∗, 𝑗∗pos)

for all pos ∈ {l, r, out}, then 𝑏out ≠ nand(𝑏l, 𝑏r).

We conclude that either there exists pos ∈ {l, r, out} such that BC.Verify
(
crs
(𝑖∗, 𝑗∗pos)
BC , 𝑐 (𝑖

∗, 𝑗∗pos) , 𝑏pos, 𝜎pos
)
≠ 1 or

𝑏out ≠ nand(𝑏l, 𝑏r). In both cases, R
(
𝑥 (𝑖

∗, 𝑗∗) , 𝑦 (𝑖
∗, 𝑗∗)) = 0. We conclude that (𝐶R, 𝑥 (𝑖

∗, 𝑗∗)) ∉ LSAT. However,

by Property (ii), 𝜋BARG is a valid proof for the statements (𝑥 (𝑖, 𝑗))𝑖∈𝐼 , 𝑗∈[𝑠int] . Correspondingly, algorithm B breaks

somewhere soundness of the BARG whenever Hyb
2
(A) = 1 and the claim holds. □

Completing the proof of Theorem 4.11. Combining Claims 4.14 to 4.16, we conclude that Pr[Hyb
0
(A) = 1] =

negl(_). Correspondingly, this means that in the computational binding game, Pr[Bad] = negl(_). Consider now the

probability that the output in the computational binding game is 1 and the event Bad does not occur. This means that

the adversary outputs (𝐼 , r𝐼 , 𝜋) where the following conditions all occur:

(i) r𝐼 ∉ Vcrs
𝐼

;

(ii) Verify(crs, 𝐼 , r𝐼 , 𝜋) = 1; and

(iii) For all 𝑖 ∈ 𝐼 and 𝑗 ∈ [𝑠int], 𝑦 (𝑖, 𝑗out) = nand

(
𝑦 (𝑖, 𝑗l) , 𝑦 (𝑖, 𝑗r)

)
, where 𝑦 (𝑖, 𝑗) ← BC.Extract

(
td(𝑖, 𝑗) , 𝑐 (𝑖, 𝑗)

)
. As usual,

we adopt the convention that for 𝑗 ∈ 𝑆key, 𝑦 (𝑖, 𝑗) := 𝑦 (key, 𝑗) , td(𝑖, 𝑗) := td(key, 𝑗) , and 𝑐 (𝑖, 𝑗) := 𝑐 (key, 𝑗) .

Let 𝑘 = 𝑦 (key,1)𝑦 (key,2) · · ·𝑦 (key,^) . We appeal to extractability of the bit commitment scheme to complete the proof:

• In the computational binding game, the challenger samples

(
crs(𝑖, 𝑗)BC , td(𝑖, 𝑗)

)
← BC.SetupBind(1_) and 𝑐 (𝑖, 𝑗) ←

BC.Commit
(
crs(𝑖, 𝑗)BC , 𝑧𝑖, 𝑗−^

)
for all 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝑆eval. Correctness along with extractability of the commitment

scheme imply that with overwhelming probability, 𝑦 (𝑖, 𝑗) = BC.Extract
(
td(𝑖, 𝑗) , 𝑐 (𝑖, 𝑗)

)
= 𝑧𝑖, 𝑗−^ .

• Property (iii) now implies that for all 𝑖 ∈ 𝐼 , it holds that 𝑦 (𝑖,𝑠) = 𝐶 (𝑘, z𝑖). Since 𝑦 (𝑖,𝑠) = BC.Extract
(
td(𝑖,𝑠),𝑐

(𝑖,𝑠))
,

we appeal again to extractability of the commitment scheme to conclude that with overwhelming probability,

the only valid opening for each commitment 𝑐 (𝑖,𝑠) is to the value 𝑦 (𝑖,𝑠) = 𝐶 (𝑘, z𝑖).

• From Property (ii), Verify(crs, 𝐼 , r𝐼 , 𝜋) = 1, which means A produces valid openings 𝜎 (𝑖,𝑠) of the commitments

𝑐 (𝑖,𝑠) to the values 𝑟𝑖 . As argued before, the only valid opening for each 𝑐 (𝑖,𝑠) is to the value 𝑦 (𝑖,𝑠) = 𝐶 (𝑘, z𝑖).
Thus, it must be the case that 𝑟𝑖 = 𝐶 (𝑘, z𝑖) for all 𝑖 ∈ 𝐼 .

Thus, we have established that 𝑟𝑖 = 𝐶 (𝑘, z𝑖) for all 𝑖 ∈ 𝐼 . By definition ofVcrs
𝐼

(see Eq. (3.7)), this means r𝐼 ∈ Vcrs
𝐼

,

which contradicts Property (i). Hence, we conclude that with overwhelming probability over the randomness used to

sample the common reference strings crs(𝑖, 𝑗)BC , the probability that the output in the computational binding game is 1

is negl(_). The claim holds. □

38

5 BARGs with Adaptive Soundness via Sub-Exponential Hardness
In this section, we show that using complexity leveraging, any sub-exponentially-secure somewhere-sound BARG

(Definition 2.9) is also adaptively sound (Definition 2.8). Specifically, the analysis relies on sub-exponential index

hiding. We describe our construction and analysis below:

Construction 5.1 (Adaptively-Sound BARG from a Somewhere-Sound BARG). Let ΠSSBARG = (SSBARG.Setup,
SSBARG.Prove, SSBARG.Verify) be a somewhere-sound batch argument for Boolean circuit satisfiability. For a

security parameter _ and a circuit-size parameter 𝑠 , let _SSBARG = _SSBARG (_, 𝑠) be a polynomial which will be set in

the security proof (Theorem 5.4). We construct an adaptively-secure batch argument for Boolean circuit satisfiability

ΠBARG = (Setup, Prove,Verify) as follows:

• Setup(1_, 1𝑇 , 1𝑠): Output crs← SSBARG.Setup(1_SSBARG (_,𝑠) , 1𝑇 , 1𝑠 , 1).

• Prove(crs,𝐶, (x1, . . . , x𝑡), (w1, . . . ,w𝑡)): Output 𝜋 ← SSBARG.Prove(crs,𝐶, (x1, . . . , x𝑡), (w1, . . . ,w𝑡)).

• Verify(crs,𝐶, (x1, . . . , x𝑡), 𝜋): Output 𝑏 ← SSBARG.Verify(crs,𝐶, (x1, . . . , x𝑡), 𝜋).

Theorem 5.2 (Completeness). If ΠSSBARG is complete, then Construction 5.1 is complete.

Proof. Follows immediately from completeness of ΠSSBARG. □

Theorem 5.3 (Succinctness). If ΠSSBARG is succinct, then Construction 5.1 is succinct.

Proof. Take any crs in the support of Setup(1_, 1𝑇 , 1𝑠). Then, crs is in the support of SSBARG.Setup(1_SSBARG , 1𝑇 , 1𝑠 , 1).
Let 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} be a Boolean circuit of size at most 𝑠 . Take any sequence of statements x1, . . . , x𝑡 ∈
{0, 1}𝑛 and witnesses w1, . . . ,w𝑡 ∈ {0, 1}ℎ , where 𝑡 ≤ 𝑇 . Let 𝜋 ← Prove(crs,𝐶, (x1, . . . , x𝑡), (w1, . . . ,w𝑡)). By

succinctness of ΠSSBARG, |𝜋 | ≤ 𝑝 (_SSBARG + log 𝑡 + 𝑠) for some fixed polynomial 𝑝 (·). Next, _SSBARG = (_ + 𝑠)𝑐 for
some constant 𝑐 ∈ N. Thus, we conclude that |𝜋 | ≤ 𝑝 ((_ + 𝑠)𝑐 + log 𝑡 + 𝑠) ≤ 𝑞(_ + log 𝑡 + 𝑠), for a fixed polynomial 𝑞

that depends only on the polynomial 𝑝 and the constant 𝑐 . □

Theorem 5.4 (Adaptive Soundness). Suppose ΠSSBARG is a somewhere-sound BARG which satisfies sub-exponential
index hiding with parameter 𝑐 > 1 and somewhere soundness. Suppose moreover that _SSBARG (_, 𝑠) = (_ + 𝑠)𝑐 . Then,
Construction 5.1 is adaptively sound.

Proof. Let A be an efficient adversary for ΠBARG in the adaptive soundness game. Without loss of generality, we

assume adversary A always outputs a fixed value 1
𝑇 (_) , 1𝑠 (_) for each value of _.6 We now define a sequence of

games between a challenger and the adversary A:

• Hyb
0
: This is the real adaptive soundness game. Specifically, the game proceeds as follows:

– On input the security parameter 1
_
, the adversary A outputs the bound on the number of instances 1

𝑇

and the bound on the circuit size 1
𝑠
.

– The challenger sets _SSBARG = _SSBARG (_, 𝑠) = (_ + 𝑠)𝑐 and samples a common reference string crs ←
Setup(1_SSBARG , 1𝑇 , 1𝑠 , 1) and gives crs to A.

– AlgorithmA outputs a Boolean circuit𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} of size at most 𝑠 , a collection of 𝑡 ≤ 𝑇
statements x1, . . . , x𝑡 ∈ {0, 1}𝑛 , and a proof 𝜋 .

– The output of the game is 1 if Verify(crs,𝐶, (x1, . . . , x𝑡), 𝜋) = 1 and for some 𝑖 ∈ [𝑡], (𝐶, x𝑖) ∉ LSAT.

Otherwise, the output is 0.

• Hyb
1
: This is Hyb

0
, except the challenger guesses a specific index 𝑖∗ r← [𝑇] where the statement is false.

Specifically, the game proceeds as follows:

6
This is without loss of generality since an efficient adversary always outputs𝑇 and 𝑠 that is bounded by some polynomial𝑇max and 𝑠max in the

security parameter _. Any algorithm A that succeeds in the adaptive soundness game with advantage Y implies an adversary B that always
outputs a fixed value of𝑇 (_) ≤ 𝑇max (_) and 𝑠 (_) ≤ 𝑠max (_) and succeeds with advantage at least Y/(𝑇max𝑠max) . Strictly speaking, the values of

𝑇 (_) and 𝑠 (_) would be provided as “non-uniform” advice to the reduction algorithms arising in the security proof.

39

– On input the security parameter 1
_
, algorithm A outputs the bound on the number of instances 1

𝑇
and

the bound on the circuit size 1
𝑠
.

– The challenger sets _SSBARG = _SSBARG (_, 𝑠) = (_ + 𝑠)𝑐 and then samples 𝑖∗ r← [𝑇]. It constructs the
common reference string crs← Setup(1_SSBARG , 1𝑇 , 1𝑠 , 1) and gives crs to A.

– AlgorithmA outputs a Boolean circuit𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} of size at most 𝑠 , a collection of 𝑡 ≤ 𝑇
statements x1, . . . , x𝑡 ∈ {0, 1}𝑛 , and a proof 𝜋 .

– The output of the game is 1 if Verify(crs,𝐶, (x1, . . . , x𝑡), 𝜋) = 1, 𝑖∗ ≤ 𝑡 , and (𝐶, x𝑖∗) ∉ LSAT. Otherwise, the

output is 0.

• Hyb
2
: This is Hyb

1
, except the challenger samples the CRS to be somewhere sound on index 𝑖∗. Specifically,

the game proceeds as follows:

– On input the security parameter 1
_
, algorithm A outputs the bound on the number of instances 1

𝑇
and

the bound on the circuit size 1
𝑠
.

– The challenger sets _SSBARG = _SSBARG (_, 𝑠) = (_ + 𝑠)𝑐 and then samples 𝑖∗ r← [𝑇]. It constructs the
common reference string crs← Setup(1_SSBARG , 1𝑇 , 1𝑠 , 𝑖∗) and gives crs to A.

– AlgorithmA outputs a Boolean circuit𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} of size at most 𝑠 , a collection of 𝑡 ≤ 𝑇
statements x1, . . . , x𝑡 ∈ {0, 1}𝑛 , and a proof 𝜋 .

– The output of the game is 1 if Verify(crs,𝐶, (x1, . . . , x𝑡), 𝜋) = 1, 𝑖∗ ≤ 𝑡 , and (𝐶, x𝑖∗) ∉ LSAT. Otherwise, the

output is 0.

We write Hyb𝑖 (A) to denote the output distribution of an execution of Hyb𝑖 with adversary A. We now analyze

each of the hybrid experiments.

Lemma 5.5. It holds that Pr

[
Hyb

1
(A) = 1

]
≥ 1/𝑇 · Pr

[
Hyb

0
(A) = 1

]
.

Proof. By construction, the view of adversary A is identically distributed in Hyb
0
and Hyb

1
. Suppose Hyb

0
(A) = 1.

Then, the adversary A outputs a circuit 𝐶 , statements x1, . . . , x𝑡 ∈ {0, 1}𝑛 , and a proof 𝜋 such that there exists

𝑖 ∈ [𝑡] where (𝐶, x𝑖) ∉ LSAT, Verify(crs,𝐶, (x1, . . . , x𝑡), 𝜋) = 1, and 𝑡 ≤ 𝑇 . Consider the output in Hyb
1
. In Hyb

1
, the

challenger samples the index 𝑖∗ r← [𝑇], so with probability 1/𝑇 , it holds that 𝑖∗ = 𝑖 . In this case, the output in Hyb
1
is

also 1. Correspondingly, we conclude that

Pr

[
Hyb

1
(A) = 1

]
≥ 1/𝑇 · Pr

[
Hyb

0
(A) = 1

]
. □

Lemma 5.6. Suppose ΠSSBARG satisfies sub-exponential index hiding with parameter 𝑐 > 1 and _SSBARG (_, 𝑠) = (_ + 𝑠)𝑐 .
Then there exists a negligible function negl(·) such that for all _ ∈ N, | Pr[Hyb

2
(A) = 1] −Pr[Hyb

1
(A) = 1] | = negl(_).

Proof. Suppose there exists a polynomial 𝑞 = 𝑞(_), and an infinite set ΛA ⊆ N such that for all _ ∈ ΛA ,��
Pr

[
Hyb

2
(A) = 1

]
− Pr

[
Hyb

1
(A) = 1

] �� ≥ 1/𝑞(_).

Let _A ∈ N be the constant beyond which the polynomial 𝑞(_) is monotone (i.e., for all _, _′ ≥ _A , if holds that
𝑞(_) ≥ 𝑞(_′) if and only if _ ≥ _′). Define now the infinite set ΛB ⊆ N

ΛB = {_SSBARG (_, 𝑠 (_)) : _ ∈ ΛA ∧ _ ≥ _A}.

We useA to construct a sub-exponential-time (non-uniform) adversary B for the index hiding game for ΠSSBARG. The

advice string associated with _SSBARG ∈ ΛSSBARG is some parameter _ ∈ ΛA and _ ≥ _A where _SSBARG = (_ + 𝑠 (_))𝑐 :

1. On input the security parameter 1
_SSBARG

(and advice string 1
_
), algorithm B runs A on input 1

_
and receives

the bound on the number of instances 1
𝑇
and the bound on the circuit size 1

𝑠
.

2. Algorithm B samples 𝑖∗ r← [𝑇] and outputs 1
𝑇 , 1𝑠 along with the challenge indices 1 and 𝑖∗ to the challenger.

The challenger replies with crs. Algorithm B gives crs to A.

40

3. Algorithm A outputs a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} of size at most 𝑠 , statements x1, . . . , x𝑡 ∈
{0, 1}𝑛 , and a proof 𝜋 .

4. If 𝑖∗ > 𝑡 or Verify(crs,𝐶, (x1, . . . , x𝑡), 𝜋) = 0, then algorithm B halts with output 0.

5. Otherwise, algorithm B checks that for every w ∈ {0, 1}ℎ , 𝐶 (x𝑖∗ ,w) = 0. It outputs 1 if so and 0 otherwise.

Let 𝛽 ∈ {0, 1} be the bit in the index hiding game. We consider the two possibilities:

• When 𝛽 = 0, the challenger constructs the CRS as crs ← Setup(1_SSBARG , 1𝑇 , 1𝑠 , 1), which coincides with the

specification in Hyb
1
. In this case, algorithm B outputs 1 with probability Pr

[
Hyb

1
(A) = 1

]
.

• When 𝛽 = 1, the challenger constructs the CRS as crs ← Setup(1_SSBARG , 1𝑇 , 1𝑠 , 𝑖∗), which coincides with the

specification in Hyb
2
. In this case, algorithm B outputs 1 with probability Pr

[
Hyb

2
(A) = 1

]
.

Thus, for all _SSBARG ∈ ΛB , algorithm B succeeds with advantage��
Pr

[
Hyb

2
(A) = 1

]
− Pr

[
Hyb

1
(A) = 1

] �� ≥ 1/𝑞(_) ≥ 1/𝑞(_SSBARG),

since _SSBARG ≥ _ ≥ _A , so 𝑞(_SSBARG) ≥ 𝑞(_). Finally, the running time of B is 2
ℎ · poly(_ + 𝑠 (_)). By definition,

ℎ ≤ 𝑠 (_) ≤ _
1/𝑐
SSBARG, so the overall running time of B is bounded by 2

ℎ · poly(𝑠) ≤ 2
_

1/𝑐
SSBARG · poly(_SSBARG). □

Lemma 5.7. Suppose ΠSSBARG satisfies somewhere-soundness and _SSBARG (_, 𝑠) = (_ + 𝑠)𝑐 for a constant 𝑐 > 1. Then,
there exists a negligible function negl(·) such that for all _ ∈ N, Pr

[
Hyb

2
(A) = 1

]
= negl(_).

Proof. Suppose there exists a polynomial 𝑞 = 𝑞(_), and an infinite set ΛA ⊆ N such that for all _ ∈ ΛA , we have that
Pr[Hyb

2
(A) = 1] ≥ 1/𝑞(_). Let _A ∈ N be the constant beyond which the polynomial 𝑞(_) is monotone (i.e., for all

_, _′ ≥ _A , if holds that 𝑞(_) ≥ 𝑞(_′) if and only if _ ≥ _′). Define now the infinite set ΛB ⊆ N

ΛB = {_SSBARG (_, 𝑠 (_)) : _ ∈ ΛA ∧ _ ≥ _A}.

We use A to construct an efficient (non-uniform) adversary B for the somewhere-soundness game for ΠSSBARG. The

advice string associated with _SSBARG ∈ ΛB is some parameter _ ∈ ΛA and _ ≥ _A where _SSBARG = (_ + 𝑠 (_))𝑐 :

1. On input the security parameter 1
_SSBARG

(and advice string 1
_
), algorithm B starts running A on input 1

_
and

receives the bound on the number of instances 1
𝑇
and the bound on the circuit size 1

𝑠
.

2. Algorithm B samples 𝑖∗ r← [𝑇] and gives 1
𝑇 , 1𝑠 , 𝑖∗ to the challenger. The challenger replies with crs. Algorithm

B gives crs to A.

3. Algorithm A outputs a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} of size at most 𝑠 , statements x1, . . . , x𝑡 ∈
{0, 1}𝑛 , and a proof 𝜋 . Algorithm B then outputs 𝐶, (x1, . . . , x𝑡), 𝜋 .

The challenger constructs the CRS as crs← Setup(1_SSBARG , 1𝑇 , 1𝑠 , 𝑖∗), so the view of A is distributed exactly as in

Hyb
2
. The somewhere-soundness game outputs 1 if Verify(𝐶, (x1, . . . , x𝑡), 𝜋) = 1, 𝑖∗ ≤ 𝑡 , and (𝐶, x𝑖∗) ∉ LSAT, which

occurs with probability

Pr

[
Hyb

2
(A) = 1

]
≥ 1/𝑞(_) ≥ 1/𝑞(_SSBARG)

since _SSBARG ≥ _ ≥ _A so 𝑞(_SSBARG) ≥ 𝑞(_). Thus, algorithm B breaks somewhere-soundness with advantage at

least 1/𝑞(_SSBARG) for all _SSBARG ∈ ΛB , which completes the proof. □

Returning to the proof of Theorem 5.4, we conclude via Lemmas 5.5 and 5.6 that Pr[Hyb
2
(A) = 1] ≥ 1/𝑇 ·

Pr

[
Hyb

0
(A) = 1

]
− negl(_). By Lemma 5.7, this means Pr[Hyb

0
(A) = 1] ≤ 𝑇 · negl(_) = negl(_) since𝑇 = poly(_).

Since Hyb
0
corresponds to the real (adaptive) soundness experiment, the claim holds. □

41

Acknowledgments
Brent Waters is supported by NSF CNS-1908611, CNS-2318701, and a Simons Investigator award. David J. Wu is

supported by NSF CNS-2151131, CNS-2140975, CNS-2318701, a Microsoft Research Faculty Fellowship, and a Google

Research Scholar award.

References
[BBK

+
23] Zvika Brakerski, Maya Farber Brodsky, Yael Tauman Kalai, Alex Lombardi, and Omer Paneth. SNARGs

for monotone policy batch NP. In CRYPTO, 2023.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications

(extended abstract). In STOC, 1988.

[BHK11] Mark Braverman, Avinatan Hassidim, and Yael Tauman Kalai. Leaky pseudo-entropy functions. In ITCS,
pages 353–366, 2011.

[BHY09] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility results for encryption and

commitment secure under selective opening. In EUROCRYPT, 2009.

[BKP
+
23a] Nir Bitansky, Chethan Kamath, Omer Paneth, Ron Rothblum, and Prashant Nalini Vasudevan. Batch

proofs are statistically hiding. IACR Cryptol. ePrint Arch., 2023. https://eprint.iacr.org/archive/
2023/754/20230626:185215.

[BKP
+
23b] Nir Bitansky, Chethan Kamath, Omer Paneth, Ron Rothblum, and Prashant Nalini Vasudevan. Batch

proofs are statistically hiding. IACR Cryptol. ePrint Arch., 2023. https://eprint.iacr.org/archive/
2023/754/20231204:075616.

[BKP
+
23c] Nir Bitansky, Chethan Kamath, Omer Paneth, Ron Rothblum, and Prashant Nalini Vasudevan. Batch

proofs are statistically hiding. IACR Cryptol. ePrint Arch., 2023. https://eprint.iacr.org/archive/
2023/754/20230525:044715.

[BY92] Mihir Bellare and Moti Yung. Certifying cryptographic tools: The case of trapdoor permutations. In

CRYPTO, 1992.

[CGJ
+
23] Arka Rai Choudhuri, Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Jiaheng Zhang. Correlation

intractability and SNARGs from sub-exponential DDH. In CRYPTO, 2023.

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme. In

EUROCRYPT, 2003.

[CJJ21a] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch arguments for NP from

standard assumptions. In CRYPTO, 2021.

[CJJ21b] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for P from LWE. In FOCS, 2021.

[CL18] Ran Canetti and Amit Lichtenberg. Certifying trapdoor permutations, revisited. In TCC, 2018.

[CW23] Jeffrey Champion andDavid J.Wu. Non-interactive zero-knowledge from non-interactive batch arguments.

In CRYPTO, 2023.

[DGKV22] Lalita Devadas, Rishab Goyal, Yael Kalai, and Vinod Vaikuntanathan. Rate-1 non-interactive arguments

for batch-NP and applications. In FOCS, 2022.

[DN02] Ivan Damgård and Jesper Buus Nielsen. Perfect hiding and perfect binding universally composable

commitment schemes with constant expansion factor. In CRYPTO, 2002.

42

https://eprint.iacr.org/archive/2023/754/20230626:185215
https://eprint.iacr.org/archive/2023/754/20230626:185215
https://eprint.iacr.org/archive/2023/754/20231204:075616
https://eprint.iacr.org/archive/2023/754/20231204:075616
https://eprint.iacr.org/archive/2023/754/20230525:044715
https://eprint.iacr.org/archive/2023/754/20230525:044715

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam D. Smith. Fuzzy extractors: How to generate strong keys from

biometrics and other noisy data. In EUROCRYPT, 2004.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs based on a

single random string (extended abstract). In FOCS, 1990.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof-

systems (extended abstract). In STOC, 1985.

[GR13] Oded Goldreich and Ron D. Rothblum. Enhancements of trapdoor permutations. J. Cryptol., 26(3), 2013.

[GSWW22] Rachit Garg, Kristin Sheridan, Brent Waters, and David J. Wu. Fully succinct batch arguments for np

from indistinguishability obfuscation. In TCC, 2022.

[GUV07] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced expanders and randomness

extractors from parvaresh-vardy codes. In CCC, 2007.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable

assumptions. In STOC, 2011.

[HJKS22] James Hulett, Ruta Jawale, Dakshita Khurana, and Akshayaram Srinivasan. SNARGs for P from sub-

exponential DDH and QR. In EUROCRYPT, 2022.

[HLWW13] Carmit Hazay, Adriana López-Alt, Hoeteck Wee, and Daniel Wichs. Leakage-resilient cryptography

from minimal assumptions. In EUROCRYPT, 2013.

[KLVW23] Yael Tauman Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. Boosting batch arguments

and RAM delegation. In STOC, 2023.

[KMY20] Fuyuki Kitagawa, Takahiro Matsuda, and Takashi Yamakawa. NIZK from SNARG. In TCC, 2020.

[KVZ21] Yael Tauman Kalai, Vinod Vaikuntanathan, and Rachel Yun Zhang. Somewhere statistical soundness,

post-quantum security, and SNARGs. In TCC, 2021.

[KW19] Venkata Koppula and Brent Waters. Realizing chosen ciphertext security generically in attribute-based

encryption and predicate encryption. In CRYPTO, 2019.

[LPWW20] Benoît Libert, Alain Passelègue, Hoeteck Wee, and David J. Wu. New constructions of statistical NIZKs:

Dual-mode DV-NIZKs and more. In EUROCRYPT, 2020.

[LQR
+
19] Alex Lombardi, Willy Quach, Ron D. Rothblum, Daniel Wichs, and David J. Wu. New constructions of

reusable designated-verifier NIZKs. In CRYPTO, 2019.

[Nao89] Moni Naor. Bit commitment using pseudo-randomness. In CRYPTO, 1989.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks.

In STOC, 1990.

[QRW19] Willy Quach, Ron D. Rothblum, and Daniel Wichs. Reusable designated-verifier NIZKs for all NP from

CDH. In EUROCRYPT, 2019.

[QWW21] Willy Quach, Brent Waters, and Daniel Wichs. Targeted lossy functions and applications. In CRYPTO,
2021.

[SCO
+
01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and Amit Sahai. Robust

non-interactive zero knowledge. In CRYPTO, 2001.

[WW22] BrentWaters andDavid J.Wu. Batch arguments for NP andmore from standard bilinear group assumptions.

In CRYPTO, 2022.

43

A Leakage-Resilient Weak PRFs from OWFs
In this section, we describe the leakage-resilient weak pseudorandom function (Theorem 2.3) based on one-way

functions implicit in the leakage-resilient symmetric encryption scheme from [QWW21, §5.4]. We include the

construction and analysis here for completeness. We start by recalling a few standard notions on min-entropy,

pseudoentropy functions, and randomness extractors.

Min-entropy. We start with some basic definitions on min-entropy adapted from those in [DRS04]. For a discrete

random variable 𝑋 , we write H∞ (𝑋) = − log(max𝑥 Pr [𝑋 = 𝑥]) to denote its min-entropy. For two discrete random

variables 𝑋,𝑌 , we define the conditional min-entropy of 𝑋 given 𝑌 to be

H∞ (𝑋 | 𝑌) = − log(E𝑦←𝑌 [max

𝑥
Pr [𝑋 = 𝑥 | 𝑌 = 𝑦]]).

The following fact about conditional min-entropy will also be useful in our analysis:

Lemma A.1 (Conditional Min-Entropy [DRS04, Lemma 2.2]). Let 𝑋,𝑌 be random variables and suppose there are at
most 2

_ elements in the support of 𝑌 . Then H∞ (𝑋 | 𝑌) ≥ H∞ (𝑋,𝑌) − _ ≥ H∞ (𝑋) − _.

Pseudoentropy functions. Next, we recall the notion of a pseudoentropy function (PEF) [BHK11]. Our definition

is adapted from the definition in [QWW21]. We consider an adaptation where the lossiness is provided as a parameter

to the key-generation algorithm (as opposed to fixed as part of the scheme description).

Definition A.2 (Pseudoentropy Function [BHK11, QWW21, adapted]). A pseudoentropy function with input length

𝑛 = 𝑛(_) is a triple of efficient algorithms ΠPEF = (Gen, LossyGen, Eval) with the following properties:

• Gen(1_, 1ℓ) → 𝑘 : On input the security parameter _ and the lossiness parameter ℓ , the generation algorithm

outputs a key 𝑘 . The key (implicitly) determines the output length𝑚 of the pseudoentropy function.

• LossyGen(1_, 1ℓ , 𝑥∗) → 𝑘 : On input the security parameter _, the lossiness parameter ℓ , and the input 𝑥∗ ∈
{0, 1}𝑛 , the lossy-generation algorithm outputs a (lossy) key 𝑘 . The key (implicitly) determines the output

length𝑚 of the pseudoentropy function.

• Eval(𝑘, 𝑥) → 𝑦: On input a key 𝑘 and an input 𝑥 ∈ {0, 1}𝑛 , the evaluation algorithm deterministically outputs a

value 𝑦 ∈ {0, 1}𝑚 .
We require ΠPEF to satisfy the following properties:

• Lossy at 𝑥∗: For all 𝑥∗ ∈ {0, 1}𝑛 ,
H∞

(
Eval(𝑘, 𝑥∗) | {(𝑥, Eval(𝑘, 𝑥))}𝑥≠𝑥∗

)
≥ ℓ,

where the min-entropy is taken over the distribution of 𝑘 ← LossyGen(1_, 1ℓ , 𝑥∗).

• Mode indistinguishability: For a security parameter _ ∈ N and a bit 𝛽 ∈ {0, 1}, we define the mode

indistinguishability game between an adversary A and a challenger as follows:

1. The challenger gives 1
_
to algorithm A. Algorithm A outputs a lossiness parameter 1

ℓ
and a value

𝑥∗ ∈ {0, 1}𝑛 .
2. If 𝛽 = 0, the challenger samples𝑘 ← Gen(1_, 1ℓ). If 𝛽 = 1, the challenger samples𝑘 ← LossyGen(1_, 1ℓ , 𝑥∗).

The challenger gives 𝑘 to A.

3. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}.

The pseudoentropy function satisfies mode indistinguishability if for all efficient adversaries A, there exists a

negligible function negl(·) such that for all _ ∈ N,
|Pr [𝑏′ = 1 | 𝛽 = 0] − Pr [𝑏′ = 1 | 𝛽 = 1] | = negl(_).

Theorem A.3 (Pseudoentropy Functions [QWW21, Theorem 5.2]). Assuming the existence of one-way functions, for
every polynomial input length 𝑛 = 𝑛(_), there exists a secure pseudoentropy function ΠPEF = (Gen, LossyGen, Eval)
where Gen(1_, 1ℓ) outputs a key 𝑘 of length ℓ_ and Eval(𝑘, ·) outputs a value of length ℓ .

44

Randomness extractors. The leakage-resilient weak PRF construction from [QWW21] also requires a strong

seeded extractor, which we recall below.

Definition A.4 (Strong Seeded Extractor). We say that a random variable 𝑋 is an (𝑛, 𝑘)-source if 𝑋 takes on values

in {0, 1}𝑛 and H∞ (𝑋) ≥ 𝑘 . Then, an efficient algorithm Ext : {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑚 is a strong (𝑘, Y)-extractor if
for every (𝑛, 𝑘)-source 𝑋 , the statistical distance between the following distributions is at most Y:{

(𝑦, Ext(𝑥,𝑦)) : 𝑥 ← 𝑋,𝑦
r← {0, 1}𝑑

}
and

{
(𝑦, 𝑧) : 𝑦

r← {0, 1}𝑑 , 𝑧 r← {0, 1}𝑚
}
.

Theorem A.5 (Strong Seeded Extractor [GUV07, Theorem 1.5]). For every constant 𝛼 > 0, all positive integers 𝑛, 𝑘 > 0,
and all Y > 0, there is an explicit construction of a (𝑘, Y)-extractor with input length 𝑛, output length𝑚 ≥ (1 − 𝛼)𝑘 , and
seed length 𝑑 = 𝑂 (log𝑛 + log(1/Y)).

Leakage-resilient weak PRF. We now recall the construction and analysis of the leakage-resilient weak PRF

scheme obtained by composing a pseudoentropy function with a randomness extractor. This scheme is implicit in the

work of [QWW21].

Construction A.6 (Leakage-Resilient Weak PRF). Let _ be a security parameter and ℓ be a leakage parameter. Let

ΠPEF = (PEF.Gen, PEF.LossyGen, PEF.Eval) be a pseudoentropy function with input length 𝑛 = 𝑛(_) and output

length 𝑚 = 𝑚(_, ℓ). Let Ext_,ℓ be the explicit strong seeded (_, 2−_)-extractor with input length 𝑚, seed length

𝑑 = 𝑑 (_, ℓ), and output length 1 from Theorem A.5.
7
We construct a leakage-resilient weak pseudorandom function

ΠLRwPRF = (Setup, Eval) with domain {0, 1}𝑛+𝑑 and range {0, 1} as follows:

• Setup(1_, 1ℓ): On input the security parameter _ and the leakage parameter ℓ , let ℓPEF = ℓ + _. Then, sample

𝑘 ← PEF.Gen(1_, 1ℓPEF) and output the key 𝑘 . We assume that the parameters _ and ℓ are implicitly associated

with 𝑘 .

• Eval(𝑘, 𝑥): On input a key 𝑘 and an input 𝑥 = 𝑥1∥𝑥2 where 𝑥1 ∈ {0, 1}𝑛 and 𝑥2 ∈ {0, 1}𝑑 , where 𝑑 = 𝑑 (_, ℓ),
output Ext_,ℓ (PEF.Eval(𝑘, 𝑥1), 𝑥2).

Theorem A.7. If ΠPEF is a pseudoentropy function, then Construction A.6 is a secure leakage-resilient weak PRF.

Proof. LetA be an efficient adversary for the leakage-resilient weak PRF security game. As we show in Appendix A.1

(Theorem A.11), we can assume without loss of generality that algorithm A always makes a single challenge query.
We begin by defining a sequence of hybrid experiments between the challenger and A:

• Hyb
0
: This is the real leakage-resilient weak PRF security game with bit 𝛽 = 0. As noted previously, we assume

the adversary A makes exactly one challenge query. Specifically, the game proceeds as follows:

– Pre-challenge evaluation queries: On input the security parameter 1
_
, algorithmA starts by outputting

the leakage parameter 1
ℓ
and the number of pre-challenge queries 1

𝑠
. The challenger responds by sampling

𝑘 ← PEF.Gen(1_, 1ℓPEF) where ℓPEF = ℓ + _. It then samples inputs 𝑥1, . . . , 𝑥𝑠
r← {0, 1}𝑛+𝑑 . For each 𝑖 ∈ [𝑠],

the challenger parses 𝑥𝑖 = 𝑥𝑖,1∥𝑥𝑖,2 where 𝑥𝑖,1 ∈ {0, 1}𝑛 and 𝑥𝑖,2 ∈ {0, 1}𝑑 . The challenger replies to A
with the set of evaluations {(𝑥𝑖 , Ext_,ℓ (PEF.Eval(𝑘, 𝑥𝑖,1), 𝑥𝑖,2))}𝑖∈[𝑠] .

– Leakage query: Algorithm A now outputs a Boolean circuit leak : {0, 1}^ → {0, 1}ℓ , where ^ is the

length of the key 𝑘 . The challenger responds with leak(𝑘) to A.

– Challenge query: The challenger samples 𝑥∗ r← {0, 1}𝑛+𝑑 and parses 𝑥∗ = 𝑥∗
1
∥𝑥∗

2
where 𝑥∗

1
∈ {0, 1}𝑛 and

𝑥∗
2
∈ {0, 1}𝑑 . The challenger computes 𝑦∗ ← Ext_,ℓ (PEF.Eval(𝑘, 𝑥∗1), 𝑥∗2) and gives (𝑥∗, 𝑦∗) to A.

– Output: Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

• Hyb
1
: Same asHyb

0
, except the challenger samples the PEF key to be lossy at the challenge point 𝑥★. Specifically,

the game proceeds as follows:

7
Without loss of generality, we can always truncate the output to a single bit.

45

– Pre-challenge evaluation queries: On input the security parameter 1
_
, algorithmA starts by outputting

the leakage parameter 1
ℓ
and the number of pre-challenge queries 1

𝑠
. The challenger then samples

𝑥∗ r← {0, 1}𝑛+𝑑 and 𝑘 ← PEF.LossyGen(1_, 1ℓPEF , 𝑥∗). It then samples inputs 𝑥1, . . . , 𝑥𝑠
r← {0, 1}𝑛+𝑑 . For

each 𝑖 ∈ [𝑠], the challenger parses 𝑥𝑖 = 𝑥𝑖,1∥𝑥𝑖,2 where 𝑥𝑖,1 ∈ {0, 1}𝑛 and 𝑥𝑖,2 ∈ {0, 1}𝑑 . The challenger
replies to A with the set of evaluations {(𝑥𝑖 , Ext_,ℓ (PEF.Eval(𝑘, 𝑥𝑖,1), 𝑥𝑖,2))}𝑖∈[𝑠] .

– Leakage query: Algorithm A now outputs a Boolean circuit leak : {0, 1}^ → {0, 1}ℓ , where ^ is the

length of the key 𝑘 . The challenger responds with leak(𝑘) to A.

– Challenge query: The challenger parses 𝑥∗ = 𝑥∗
1
∥𝑥∗

2
where 𝑥∗

1
∈ {0, 1}𝑛 and 𝑥∗

2
∈ {0, 1}𝑑 . The challenger

computes 𝑦∗ ← Ext_,ℓ (PEF.Eval(𝑘, 𝑥∗1), 𝑥∗2) and gives (𝑥∗, 𝑦∗) to A.

– Output: Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

• Hyb
2
: Same as Hyb

1
, except the challenger samples 𝑦∗ r← {0, 1} when responding to the challenge query.

Specifically, the game proceeds as follows:

– Pre-challenge evaluation queries: On input the security parameter 1
_
, algorithmA starts by outputting

the leakage parameter 1
ℓ
and the number of pre-challenge queries 1

𝑠
. The challenger then samples

𝑥∗ r← {0, 1}𝑛+𝑑 and 𝑘 ← PEF.LossyGen(1_, 1ℓPEF , 𝑥∗). It then samples inputs 𝑥1, . . . , 𝑥𝑠
r← {0, 1}𝑛+𝑑 . For

each 𝑖 ∈ [𝑠], the challenger parses 𝑥𝑖 = 𝑥𝑖,1∥𝑥𝑖,2 where 𝑥𝑖,1 ∈ {0, 1}𝑛 and 𝑥𝑖,2 ∈ {0, 1}𝑑 . The challenger
replies to A with the set of evaluations {(𝑥𝑖 , Ext_,ℓ (PEF.Eval(𝑘, 𝑥𝑖,1), 𝑥𝑖,2))}𝑖∈[𝑠] .

– Leakage query: Algorithm A now outputs a Boolean circuit leak : {0, 1}^ → {0, 1}ℓ , where ^ is the

length of the key 𝑘 . The challenger responds with leak(𝑘) to A.

– Challenge query: The challenger samples 𝑦∗ r← {0, 1} and gives (𝑥∗, 𝑦∗) to A.

– Output: Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

• Hyb
3
: This is Hyb

2
, except the challenger samples the PEF key using Gen. This is the leakage-resilient weak

PRF security game with bit 𝛽 = 1. Specifically, the game proceeds as follows:

– Pre-challenge evaluation queries: On input the security parameter 1
_
, algorithmA starts by outputting

the leakage parameter 1
ℓ
and the number of pre-challenge queries 1

𝑠
. The challenger responds by sampling

𝑘 ← PEF.Gen(1_, 1ℓPEF) where ℓPEF = ℓ + _. It then samples inputs 𝑥1, . . . , 𝑥𝑠
r← {0, 1}𝑛+𝑑 . For each 𝑖 ∈ [𝑠],

the challenger parses 𝑥𝑖 = 𝑥𝑖,1∥𝑥𝑖,2 where 𝑥𝑖,1 ∈ {0, 1}𝑛 and 𝑥𝑖,2 ∈ {0, 1}𝑑 . The challenger replies to A
with the set of evaluations {(𝑥𝑖 , Ext_,ℓ (PEF.Eval(𝑘, 𝑥𝑖,1), 𝑥𝑖,2))}𝑖∈[𝑠] .

– Leakage query: Algorithm A now outputs a Boolean circuit leak : {0, 1}^ → {0, 1}ℓ , where ^ is the

length of the key 𝑘 . The challenger responds with leak(𝑘) to A.

– Challenge query: The challenger samples 𝑥∗ r← {0, 1}𝑛+𝑑 and 𝑦∗ r← {0, 1} and gives (𝑥∗, 𝑦∗) to A.

– Output: Algorithm A outputs a bit 𝑏′ ∈ {0, 1}.

We write Hyb𝑖 (A) to denote the output distribution of an execution of Hyb𝑖 with adversary A. We now analyze

each of the hybrid experiments.

Claim A.8. If ΠPEF satisfies mode indistinguishability, then there exists a negligible function negl(·) such that for all
_ ∈ N, | Pr[Hyb

1
(A) = 1] − Pr[Hyb

0
(A) = 1] | = negl(_).

Proof. Suppose that | Pr[Hyb
1
(A) = 1] −Pr[Hyb

0
(A) = 1] | ≥ Y (_) for some non-negligible Y. We useA to construct

an efficient adversary B that breaks mode indistinguishability of ΠPEF with the same advantage Y.

1. On input the security parameter 1
_
, algorithm B starts running A with the same security parameter 1

_
.

Algorithm A starts by outputting the leakage parameter 1
ℓ
and the number of pre-challenge queries 1

𝑠
.

2. Algorithm B sets ℓPEF = ℓ +_ and samples 𝑥∗ r← {0, 1}𝑛+𝑑 . It sends 1
ℓPEF

and 𝑥∗ to the challenger. The challenger
replies with a PEF key 𝑘 .

46

3. Algorithm B samples inputs 𝑥1, . . . , 𝑥𝑠
r← {0, 1}𝑛+𝑑 . For each 𝑖 ∈ [𝑠], algorithm B parses 𝑥𝑖 = 𝑥𝑖,1∥𝑥𝑖,2 where

𝑥𝑖,1 ∈ {0, 1}𝑛 and 𝑥𝑖,2 ∈ {0, 1}𝑑 . Algorithm B replies to A with {(𝑥𝑖 , Ext_,ℓ (PEF.Eval(𝑘, 𝑥𝑖,1), 𝑥𝑖,2))}𝑖∈[𝑠] .

4. Algorithm A outputs a Boolean circuit leak : {0, 1}^ → {0, 1}ℓ . Algorithm B responds with leak(𝑘) to A.

5. To simulate the challenge query, algorithm B parses 𝑥∗ = 𝑥∗
1
∥𝑥∗

2
where 𝑥∗

1
∈ {0, 1}𝑛 and 𝑥∗

2
∈ {0, 1}𝑑 . Algorithm

B computes 𝑦∗ ← Ext_,ℓ (PEF.Eval(𝑘, 𝑥∗1), 𝑥∗2) and gives (𝑥∗, 𝑦∗) to A.

6. At the end of the experiment, algorithmA outputs a bit 𝑏′ ∈ {0, 1}, which algorithm B outputs to the challenger.

Let 𝛽 be the bit in the mode indistinguishability game. We consider the two cases:

• Suppose 𝛽 = 0. In this case, the challenger samples 𝑘 ← PEF.Gen(1_, 1ℓPEF). In this case, algorithm B perfectly

simulates an execution of Hyb
0
for A.

• Suppose 𝛽 = 1. In this case, the challenger samples 𝑘 ← PEF.LossyGen(1_, 1ℓPEF , 𝑥∗). In this case, algorithm B
perfectly simulates an execution of Hyb

1
for A.

We conclude that algorithm B wins the mode indistinguishability game with the same advantage Y, as required. □

Claim A.9. Suppose 𝑛 ≥ _. If ΠPEF is lossy at 𝑥∗, then there exists a negligible function negl(·) such that for all _ ∈ N,
then | Pr[Hyb

2
(A) = 1] − Pr[Hyb

1
(A) = 1] | = negl(_).

Proof. Consider an execution of Hyb
1
and Hyb

2
. Let 𝑥1, . . . , 𝑥𝑠 ∈ {0, 1}𝑛+𝑑 be the values sampled by the challenger in

the pre-challenge phase. Let 𝑥∗ ∈ {0, 1}𝑛+𝑑 be the challenge point. Parse 𝑥𝑖 = 𝑥𝑖,1∥𝑥𝑖,2 and 𝑥∗ = 𝑥∗
1
∥𝑥∗

2
as described in

Hyb
1
and Hyb

2
. Since 𝑥∗ r← {0, 1}𝑛+𝑑 (and is sampled independently of 𝑥1, . . . , 𝑥𝑠), we have that

Pr[∃𝑖 ∈ [𝑠] : 𝑥∗
1
= 𝑥𝑖,1] ≤

𝑠

2
𝑛
≤ 𝑠

2
_
= negl(_),

since 𝑠 = poly(_). Note that 𝑠 = poly(_) since A is an efficient algorithm. Now, in the following, we will assume that

𝑥∗
1
≠ 𝑥𝑖,1 for all 𝑖 ∈ [𝑠]. Consider now the distribution of 𝑦∗ in Hyb

1
and Hyb

2
. We argue now that the distribution of

𝑦∗ in the two experiments is statistically indistinguishable (even given the other quantities):

• Since the PEF is lossy at 𝑥∗ and the PEF key is sampled as 𝑘 ← PEF.LossyGen(1_, 1ℓPEF , 𝑥∗) and 𝑥∗
1
≠ 𝑥𝑖,1 for all

𝑖 ∈ [𝑠], it follows that

H∞
(
PEF.Eval(𝑘, 𝑥∗

1
) |

{
(𝑥𝑖,1, PEF.Eval(𝑘, 𝑥𝑖,1))

}
𝑖∈[𝑠]

)
≥ ℓPEF.

• Next, the values of 𝑥𝑖,2 are sampled independently of 𝑘 and 𝑥∗ for all 𝑖 ∈ [𝑠]. This means we can write

H∞
(
PEF.Eval(𝑘, 𝑥∗

1
) |

{(
𝑥𝑖 , Ext_,ℓ

(
PEF.Eval(𝑘, 𝑥𝑖,1), 𝑥𝑖,2

))}
𝑖∈[𝑠]

)
≥ ℓPEF.

• Since leak(𝑘) ∈ {0, 1}ℓ , we can appeal to Lemma A.1 to conclude that

H∞
(
PEF.Eval(𝑘, 𝑥∗

1
) |

{(
𝑥𝑖 , Ext_,ℓ

(
PEF.Eval(𝑘, 𝑥𝑖,1), 𝑥𝑖,2

))}
𝑖∈[𝑠], leak(𝑘)

)
≥ ℓPEF − ℓ = _,

since ℓPEF = ℓ + _.

• Since Ext_,ℓ is a strong (_, 2−_)-extractor and 𝑥∗
2

r← {0, 1}𝑑 , it follows that the distribution of the chal-

lenge bit 𝑦∗ := Ext_,ℓ (PEF.Eval(𝑘, 𝑥∗1), 𝑥∗2) in Hyb
1
is 2

−_
-close to uniform over {0, 1} even conditioned on

𝑥∗
2
,

{(
𝑥𝑖 , Ext_,ℓ

(
PEF.Eval(𝑘, 𝑥𝑖,1), 𝑥𝑖,2

))}
𝑖∈[𝑠] and leak(𝑘). This precisely coincides with the distribution of 𝑦∗ in

Hyb
2
, and the claim follows. □

Claim A.10. If ΠPEF satisfies mode indistinguishability, then there exists a negligible function negl(·) such that for all
_ ∈ N, | Pr[Hyb

3
(A) = 1] − Pr[Hyb

2
(A) = 1] | = negl(_).

Proof. This follows by an analogous argument as the proof of Claim A.8, except the reduction algorithm samples

𝑦∗ r← {0, 1}. □

Combining Claims A.8 to A.10, the claim follows. □

47

Proof of Theorem 2.3. Combining Construction A.6 with Theorem A.3, we obtain Theorem 2.3. Specifically, we

instantiate the underlying building blocks as follows:

• Let ΠPEF = (PEF.Gen, PEF.LossyGen, PEF.Eval) be the PEF from Theorem A.3 with input length _.

• Consider an instantiation of Construction A.6 with ΠPEF. In this case, the setup algorithm Setup(1_, 1ℓ) samples

the PEF key 𝑘 by running 𝑘 ← PEF.Gen(1_, 1_+ℓ).

• From Theorem A.3, the length of the weak PRF key 𝑘 is then (_ + ℓ) · _ and the output length of the PEF is

ℓPEF = _ + ℓ . Then, the seed length of the extractor Ext_,ℓ from Construction A.6 (see also Theorem A.5) is

𝑑 (_, ℓ) = 𝑂 (_ + log ℓPEF) = 𝑂 (_ + log ℓ).

Thus, Construction A.6 can be instantiated with a domain of bit-length 𝜌 ≥ _ + 𝑂 (_ + log ℓ) = 𝑂 (_ + log ℓ), and
Theorem 2.3 follows. □

A.1 Single-Challenge Security to Multi-Challenge Security
In this section, we show via a simple hybrid argument that for a leakage-resilient weak PRF, security against a single

challenge query implies security against an arbitrary polynomial number of challenge queries (i.e., as defined in

Definition 2.2).

Theorem A.11. Suppose ΠLRwPRF = (Setup, Eval) is a leakage-resilient weak PRF. If ΠLRwPRF is secure against an
adversary that makes at most one evaluation query, then it is also secure under Definition 2.2 (where the adversary can
make any polynomial number of evaluation queries).

Proof. Let A be an efficient adversary for the single-challenge leakage-resilient weak PRF security game. Since A is

efficient, we can bound the number of challenge queries it makes by some polynomial𝑄 = 𝑄 (_). For each 𝑗 ∈ [𝑄 + 1],
we now define a hybrid experiment Hyb𝑗 between a challenger and A as follows:

1. Pre-challenge evaluation queries: On input the security parameter 1
_
, algorithm A starts by outputting the

leakage parameter 1
ℓ
and the number of pre-challenge queries 1

𝑠
it would like to make. The challenger samples

a key 𝑘 ← Setup(1_, 1ℓ). and inputs 𝑥1, . . . , 𝑥𝑠
r← X. The challenger replies to A with {(𝑥𝑖 , Eval(𝑘, 𝑥𝑖))}𝑖∈[𝑠] .

2. Leakage query: Algorithm A now outputs a Boolean circuit leak : K → {0, 1}ℓ , where K is the key-space of

ΠLRwPRF. The challenger responds with leak(𝑘) to A.

3. Challenge queries: AlgorithmA then outputs the number of challenge queries 1
𝑡
it would like to make. Then,

for each 𝑖 ∈ [𝑡], the challenger does the following:

• If 𝑖 ≥ 𝑗 , the challenger samples 𝑥 ′𝑖
r← X, 𝑦𝑖 ← Eval(𝑘, 𝑥 ′𝑖).

• If 𝑖 < 𝑗 , the challenger samples 𝑥 ′𝑖
r← X, 𝑦𝑖 r← Y.

The challenger gives {(𝑥 ′𝑖 , 𝑦𝑖)}𝑖∈[𝑡] to A.

4. Output: Algorithm A outputs a bit 𝑏′ ∈ {0, 1}.

Claim A.12. Suppose ΠLRwPRF is secure against efficient adversaries that makes at most one challenge query. Then, there
exists a negligible function negl(·) such that for all _ ∈ N and all 𝑗 ∈ [𝑄],

| Pr[Hyb(𝑗+1) (A) = 1] − Pr[Hyb(𝑗) (A) = 1] | = negl(_).

Proof. Suppose | Pr[Hyb(𝑗+1) (A) = 1] − Pr[Hyb(𝑗) (A) = 1] | ≥ Y for some non-negligible Y. We use A to construct

an adversary B that makes at most 1 challenge query in the leakage-resilient weak PRF security game.

1. On input the security parameter 1
_
, algorithm B starts running A with the same security parameter 1

_
.

AlgorithmA starts by outputting the leakage parameter 1
ℓ
and the number of pre-challenge queries 1

𝑠
it would

like to make. Algorithm B outputs 1
ℓ
and 1

𝑠+𝑄
to the challenger.

48

2. Algorithm B receives {(𝑥𝑖 , Eval(𝑘, 𝑥𝑖))}𝑖∈[𝑠+𝑄] and forwards {(𝑥𝑖 , Eval(𝑘, 𝑥𝑖))}𝑖∈[𝑠] to A.

3. Algorithm A now outputs a Boolean circuit leak : K → {0, 1}ℓ , which algorithm B forwards to its challenger.

The challenger responds with leak(𝑘) to B, which algorithm B gives A.

4. In the challenge phase, algorithm A outputs 1
𝑡
where 𝑡 ≤ 𝑄 is the number of challenge queries algorithm A

seeks to make. Algorithm B also receives a singleton challenge {(𝑥∗, 𝑦∗)} from its challenger. For each 𝑖 ∈ [𝑡],
algorithm B does the following:

• If 𝑖 > 𝑗 , algorithm B sets 𝑥 ′𝑖 ← 𝑥𝑠+𝑖 , 𝑦𝑖 ← Eval(𝑘, 𝑥𝑠+𝑖).
• If 𝑖 = 𝑗 , algorithm B sets 𝑥 ′𝑖

r← 𝑥∗, 𝑦𝑖 ← 𝑦∗.

• If 𝑖 < 𝑗 , algorithm B samples 𝑥 ′𝑖
r← X, 𝑦𝑖 r← Y.

The challenger gives {(𝑥 ′𝑖 , 𝑦𝑖)}𝑖∈[𝑡] to A.

5. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which algorithm B also outputs.

By construction, the pre-challenge evaluation queries seen by A are answered exactly according to the specification

of the real leakage-resilient weak PRF security game. Similarly, the leakage query leak(𝑘) is distributed identically as

in real security game. Finally, the values (𝑥 ′𝑖 , 𝑦𝑖) for 𝑖 ≠ 𝑗 are distributed exactly as in Hyb𝑗 and Hyb𝑗+1. Let 𝛽 be the

bit in the leakage-resilient weak PRF security game. We consider the two cases:

• Suppose 𝛽 = 0. In this case, the challenger samples 𝑥∗ r← X and 𝑦∗ ← Eval(𝑘, 𝑥∗). The distribution of (𝑥 ′𝑡 , 𝑦𝑡)
perfectly matches the distribution in Hyb𝑗 .

• Suppose 𝛽 = 1. For In this case, the challenger samples 𝑦∗ r← Y. This perfectly matches the distribution in

Hyb𝑗+1.

Thus, algorithm B wins the leakage-resilient weak PRF security game with the same advantage Y. □

To complete the proof, observe that Hyb
1
(A) is equivalent to the leakage-resilient weak PRF security game with bit

𝛽 = 0, while Hyb𝑄+1 is equivalent to the leakage-resilient weak PRF security game with bit 𝛽 = 1. The claim now

follows by a hybrid argument. □

49

	Introduction
	Technical Overview

	Preliminaries
	Cryptographic Proof Systems
	Hidden-Bits Generator

	Hidden-Bits Generator from Adaptively-Sound BARGs and OWFs
	Proof of thm:sk-binding (Somewhat Computational Binding)
	Proof of thm:sk-hiding (Computational Hiding)

	Hidden-Bits Generator from BARGs and Public-Key Encryption
	One-Time Dual-Mode Bit Commitment with Extraction
	Hidden-Bits Generator Construction
	Proof of thm:pk-binding (Somewhat Computational Binding)

	BARGs with Adaptive Soundness via Sub-Exponential Hardness
	Leakage-Resilient Weak PRFs from OWFs
	Single-Challenge Security to Multi-Challenge Security

