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Abstract. This paper introduces LERNA, a new framework for single-
server secure aggregation. Our protocols are tailored to the setting where
multiple consecutive aggregation phases are performed with the same set
of clients, a fraction of which can drop out in some of the phases. We
rely on an initial secret sharing setup among the clients which is gen-
erated once-and-for-all, and reused in all following aggregation phases.
Compared to prior works [Bonawitz et al. CCS’17, Bell et al. CCS’20],
the reusable setup eliminates one round of communication between the
server and clients per aggregation—i.e., we need two rounds for semi-
honest security (instead of three), and three rounds (instead of four) in
the malicious model. Our approach also significantly reduces the server’s
computational costs by only requiring the reconstruction of a single
secret-shared value (per aggregation). Prior work required reconstructing
a secret-shared value for each client involved in the computation.
We provide instantiations of LERNA based on both the Decisional Com-
posite Residuosity (DCR) and (Ring) Learning with Rounding ((R)LWR)
assumptions respectively and evaluate a version based on the latter as-
sumption. In addition to savings in round-complexity (which result in
reduced latency), our experiments show that the server computational
costs are reduced by two orders of magnitude in comparison to the state-
of-the-art. In settings with a large number of clients, we also reduce the
computational costs up to twenty-fold for most clients, while a small set
of “heavy clients” is subject to a workload that is still smaller than that
of prior work.

Keywords: Secure Aggregation · Reusable Setup · Privacy Preserving Machine
Learning

1 Introduction

A secure aggregation protocol allows a set of clients, each holding an input xi, to
interact with one or more servers, so that the latter learns the sum

∑
xi, but no

additional information. The inputs xi could be integers, often mod q, or vectors



of integers. In contrast to the usual setting of multi-party computation, which
assumes point-to-point channels, here communication only occurs between each
individual client and the server(s), i.e., there is no direct inter-client communi-
cation and clients can only communicate indirectly through the server(s).

Secure aggregation protocols are suitable for a broad range of applications,
such as privacy-preserving telemetry in browsers [16], analytics in digital con-
tact tracing [3], and Federated Machine Learning [10]. Practical multi-server
protocols [17, 21] are, in fact, already being considered for standardization by
IETF [28]. In this paper, however, we target the single-server setting. This set-
ting is preferable whenever distributing trust among multiple non-colluding en-
tities is not easily feasible. However, it is also more challenging, as protocols
require multiple rounds of interaction and need to accommodate for potential
client dropouts, whilst ensuring the correctness of aggregation and the privacy of
clients’ inputs against other colluding clients and/or the server. These protocols
have emerged primarily in the context of Federated Machine Learning, starting
from Bonawitz et al. [11], which underlies Google’s Federated ML system [10],
and its recent optimizations and extensions [8, 7].

This paper introduces a new general paradigm for single-server secure ag-
gregation, which improves upon the state-of-the-art in terms of round and com-
putational complexities. Our protocols are particularly advantageous in settings
where repeated aggregation phases are performed with the same set of clients
(some of which may drop out) as they only require two rounds per aggregation,
in addition to an initial setup round, at the presence of semi-honest colluding
clients and/or server. In comparison, prior protocols [11, 8] require three rounds
per aggregation (without initial setup). In the malicious security model, all pro-
tocols require one additional round, namely, three rounds in our protocols and
four rounds in prior works. Moreover, our approach also significantly improves
the server workload by reducing the number of secret-sharing reconstructions.

Repeated Aggregation. While existing single server aggregation protocols
mainly focus on running a single aggregation, many scenarios require running
repeated aggregation sessions throughout a period of time, with the same set of
clients. A prototypical application involves a number of sensors or nodes in a
network reporting telemetry data. For example, a company of Internet of Things
(IoT) devices may want to aggregate operation data from a certain area period-
ically to help understand how the devices are used throughout the day. Other
examples include wireless sensor networks (WSN) [26], smart meters [4], and
medical devices [29].

Our protocol leverages the repeated aggregation setting by having an ini-
tial setup round that generates correlated states among clients to facilitate the
many aggregation phases later, reducing both round and computational com-
plexity. The protocol is robust to drop-outs, as long as the fraction of drop-out
clients is bounded at any point in time. Our main protocol focuses on the setting
with a large number of clients, e.g. M ≥ 20K. To reduce communication costs,
it selects a committee of fixed size O(κ2) in the initial setup round to hold the
correlated states. And the committee stays unchanged through out many ag-
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gregation phases. The protocol guarantees the privacy of clients’ inputs against
statically corrupted clients that may collude with the server, provided that the
total number of corrupted clients in the setup and all aggregation phases are
bounded. Compared to protocols designed for single aggregation, we rely on the
more stringent condition that the total number of corrupted clients is bounded
across many aggregation sessions. However, one can alleviate this assumption by
periodically rerunning the setup phase, generating fresh correlated states among
clients. Different applications may refresh at a different frequency, say, every day,
every week, or even longer, depending on how likely clients are corrupted. Viewed
this way, our protocol offers a new tradeoff between the rate of corruption and
efficiency gain.

Alternatively, when the number of client is small, e.g. M ≤ 80, our protocol
can avoid the committee in the initial setup round to guarantee stronger privacy:
in this setting, the clients may be adaptively corrupted instead of statically as
assumed above. (See Section E for details on this variant.)

Existing Single-server Secure Aggregation. It is helpful to first review the
blueprint behind existing single-server aggregation protocols [11, 8]. Here, we
restrict ourselves to the semi-honest setting for simplicity, but these protocols
(along with ours) can be modified to support malicious corruption of server and
clients.

The initial idea is to have each client i ∈ [M ] send a masked input zi = xi+ci
to the server. To generate these masks, every pair of clients i, j establishes a
shared key kij = kji = PRG(gsisj ), where gsi is a group element which acts as
an ephemeral public key associated with each client i ∈ [M ], and which is shared
in an initial round (through the server) with all other clients. The value si is
kept secret by client i. Then, each client i ∈ [M ] uses the mask

ci =
∑
j<i

kij −
∑
j>i

kij .

These masks satisfy in particular the cancellation property
∑

i ci = 0, and con-
sequently the server can simply output

∑
i zi =

∑
i xi.

A first concern is that this only works if each client remains alive and indeed
submits its own masked input—a term kij = kji included in client j’s mask cj
is not canceled out without client i’s contribution. To handle a dropout, each
client additionally secret shares their own secret si, which is reconstructed in
case they drop out, to then, in turn, derive all kji’s for j ̸= i.

A second concern is that a slow client i could be prematurely labeled as a
dropout, and their secret si reconstructed before the masked value zi reaches the
server, thus revealing xi. To prevent this, each client initially shares a second
random mask bi, along with si, and sends instead the masked input zi = xi+bi+
ci to the server. Then, after receiving the masked inputs {zi}i∈I from a subset
I ⊆ [M ] of the clients, for each i ∈ I, the server reconstructs bi, thus allowing
the inclusion of (xi + ci) in the final sum. In contrast, it reconstructs si for all
i /∈ I, thus enabling the computation of

∑
i∈I xi as discussed above. For every
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client i /∈ I, because bi remains secret, the value xi remains protected even if
later zi is obtained by the adversary.

Therefore, the overall protocol needs three rounds. An additional round is
needed to tolerate a malicious server, and it forces the server to commit to a
single set I of clients which are claimed not to have dropped out.

The Costs of Secret Sharing. The most expensive part in the above blueprint
is the initial sharing of si and bi, along with the later reconstruction of (one of)
them for each client. This impacts both the round and computational complexity
in several ways.

Foremost, secret sharing si and bi takes one additional round of communi-
cation. While some initial setup round is somewhat inherent (e.g., to share keys
to allow clients to communicate with each other via the server), this becomes a
bigger concern in the repeated aggregation setting. Here, it is crucial that the
values si and bi are re-generated and re-shared at each repeated session, for oth-
erwise dropping out at some later session may compromise the privacy of the
inputs from prior sessions.

Moreover, the computation and communication costs due to secret sharing
are high – Θ(M) for each client, and Θ(M2) for the server. Crucially, the server
needs to reconstruct one secret shared value—either si or bi—for each client.
In addition, for every client dropout, the server needs to perform Θ(M) expo-
nentiations to recover the corresponding values kij . To reduce costs, Bell et.
al. [8] proposed to have clients only secret share in a random neighborhood of
size Θ(logM + κ), where κ is the statistical security parameter. Though this
idea reduces the client and server costs to Θ(logM + κ) and M(Θ(logM + κ)),
respectively, the improvement is at the cost of weakening the security guarantees
at the presence of maliciously corrupted clients and/or server.3

Our Contributions. This paper proposes LERNA, a new lightweight approach
to single-server secure aggregation which addresses the aforementioned issues.
Foremost, it reduces the round complexity to two respectively three communi-
cation rounds for semi-honest and malicious security, respectively, in addition
to an initial offline round which establishes a setup that can be re-used across
multiple aggregations. Moreover, LERNA also features very small server costs,
as the server only needs to perform a single reconstruction of a secret-shared
value. We validate the performance of LERNA also by benchmarking a proto-
type implementation.

An important feature of our implementation is that it identifies a (random)
subset of the clients as a committee. Our benchmarking shows that the compu-
tational costs of committee members are smaller than the client costs of prior
solutions. However, LERNA is even more lightweight for clients outside of the
committee. Indeed, in addition to participating in an initial setup stage, non-
members only need to send a single message to the server to include their input in
an aggregation session, and subsequent interaction within the same session only

3 More specifically, using the protocol of Bell et. al., if the server is malicious, it may
recover the sums of inputs of multiple subsets of clients.
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involves committee members. Our benchmarking demonstrates up to twenty-fold
performance improvement for these non-committee clients.

A drawback of our solution, as shown in our benchmark, is a relatively
heavy communication cost in the initial offline round. This requires participat-
ing devices to have sufficient storage and network bandwidth. To amortize this
one-time cost, an ideal application for LERNA runs repeated aggregation for
large numbers of iterations, T , before rerunning the setup. We envision run-
ning LERNA for machine learning from data collected from a large number of
relatively powerful devices, e.g. the payment terminals Amazon One, medical
imaging devices, weather stations, etc.

Our protocols are built on top of a new primitive, which we call a key-
homomorphic masking scheme, which allows clients to initially secret share a
re-usable secret value (i.e., which can be reused across multiple computations) to
the committee as part of the initial offline round. We provide two instantiations
from, respectively, the DCR assumption [19] and (Ring) LWR assumption [6],
with the latter being our main result.

Related Work. The same reduction in round complexity was very recently
achieved by Guo et al. [22], also relying on a re-usable secret shared value.
However, their solution performs the aggregation in the exponent of a discrete-
log hard group, resulting essentially in the sever obtaining the value g

∑
i xi ,

where g is a group generator. In other words, the actual result can only be ex-
tracted by computing the discrete logarithm, which is feasible only if

∑
i xi is

sufficiently small. This forces the computation to be over small domains accom-
modating Federated learning of models with small weights, such as quantized
or compressed models. In contrast, most Federated ML tasks typically involve
large values. LERNA does not suffer from this drawback. Our approach differs
from [22] in that it relies on different mathematical structures (underlying the
LWR and DCR assumptions) to obtain the aggregated sum in the clear. This,
in turn, requires overcoming a few challenges, in particular, designing special
secret-sharing schemes tailored to our requirements – linear reconstruction via
small coefficients (for LWR) and working over the integers (for DCR).

The work of [24] proposed a semi-honest protocol, SASH+, using a seed-
homomorphic PRG based on LWR similar to our key-homomorphic masking
scheme. However, SASH+ exploits the homomorphic property in a different way
from LERNA. At high-level, assuming LWR with dimension n, SASH+ reduces
the problem of aggregating ℓ-dimension inputs to aggregating n-dimensional
homomorphic PRG seeds, which is done using the protocol of [8]. This reduction
reduces the computation cost of the server and each client by roughly a factor of
(ℓ/n), but at the cost of increasing the round complexity from 3 to 4 per iteration,
and introducing an error to the aggregation result that scales linearly with M .
In comparison, LERNA reduces the round complexity from 3 to 2, and improves
the computation cost at the same time. LERNA also computes the aggregation
results exactly without error. As we’ll discuss in our benchmarks, LERNA server,
and non-committee clients are significantly faster than SASH+’s, while LERNA
committee clients become slower than SASH+ clients for very large M .

5



The work of [31] focuses on the specific application of repeated aggregation
in federated machine learning (FL), where the server selects a random subset of
clients to aggregate at each iteration. It observes that the usual random client se-
lection strategy in FL causes a leakage of client inputs when the model is close to
converged. The paper proposes a new client selection algorithm to mitigate this
leakage, assuming an honest server following this new algorithm. We note that
LERNA can also be adapted to run repeated aggregation over a different subset
of clients at each iteration. The mitigation strategy can then be orthogonally
applied to the semi-honest version of LERNA. We stress that the client selec-
tion strategy is not to be confused with LERNA’s committee selection. Client
selection could be added on top of our protocol (but is not included explicitly),
and would happen in every iteration, whereas committee selection is within our
protocol, and happens only once during its setup phase.

A recent and concurrent work by Bell et al. [7] additionally considers the
question of input validation. While this is extremely important, it is orthogo-
nal to the issues studied by this paper. Their system also uses Ring-LWE for
efficiency improvement, but still follows broadly the above blueprint without a
re-usable setup.

Follow-up Work of [25]. We point interested readers also to the follow-up
work [25].

1.1 Overview of LERNA

LERNA’s approach differs from the existing protocols in [11, 8] whose core idea
is hiding each input xi with a masks that, as described above, satisfies the can-
cellation property. Instead, LERNA starts with a conceptually simpler solution,
where each client i hides its input xi with a (random) mask ci as zi = xi + ci,
and sends the masked value zi to the server. With the help of the clients, the
server first recovers cU =

∑
i∈U ci, for the set of online clients U , and hence the

aggregation result xU =
∑

i∈U zi − cU . The key question we answer is how the
clients securely help the server to compute cU .

Straw Man Solution. The first näıve idea is to let every client secret share its
mask ci with all other clients using a linear secret sharing scheme (Share,Recon),
such as Shamir’s secret-sharing scheme. In particular, the Recon algorithm in-
volves evaluating a linear function on the shares. As in prior works [11, 8] each
client only has a private and authenticated channel with the server. They can
also communicate with each other indirectly through the server. Assuming a
PKI setup, such indirect communication can be private and authenticated.

In more detail, each client i ∈ [M ] sends (through the server) the j’th share cij
of ci to each other client j ∈ [M ], before sending their masked input zi = ci+xi.
The server then finds the set of clients U who have completed both steps, and
notifies them of the set U for aggregation. Each client j then locally aggregates
the shares it has received from clients i ∈ U , obtaining cUj =

∑
i∈U cij . By the

linear homomorphism of the secret sharing, cUj is the j’th share of the aggregated
mask cU . As long as enough clients, say j ∈ U ′ ⊆ U , send their aggregated
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shares cUj to the server, the latter can reconstruct cU = Recon({cUj }j∈U ′), and
then recover the aggregated input xU .

This simple solution is, however inefficient: The step where each client i shares
its mask ci with all other clients has overall Ω(M2) communication complexity
per aggregation. To aggregate T times, the cost grows as Ω(M2 × T ).

Key-homomorphic Masking Scheme. Somewhat informally a key-homomorphic
masking scheme involves a pair of algorithmsMask,UnMask. TheMask algorithm
takes an input x from some input space Zp, a masking key k from some key space
K, and a tag τ , and computes a masked message z ← Mask(k, τ, x). The UnMask
algorithm takes the above z and an “empty” mask c ← Mask(k, τ, 0) under the
same key k and tag τ , and recovers the message x← UnMask(z, c).

Importantly, the scheme is additively key-homomorphic for masks with the
same tag τ : Mask(k+k′, τ, x+x′) ≡ Mask(k, τ, x)⊞Mask(k′, τ, x′), where ⊞ rep-
resents homomorphic addition. We can generalize the additive homomorphism
to evaluate any linear function L over masks {zi ← Mask(ki, τ, xi)}:

Eval(L, {zi}) ≡ Mask(L({ki}), τ, L({xi})) ,

where the linear function L is evaluated respectively over ki’s in the key space
K and over xi’s in the message space Zp.

Jumping ahead, our instantiation of the masking scheme under LWR will
only achieve approximate key-homomorphism. We will explain below how we get
around this limitation. For now, it is helpful to assume a perfect masking scheme
to convey the main idea.

Sketch of the LERNA Protocol. We now describe the semi-honest protocol.
Note that the following description depends on a commitment Q ⊆ [M ]. One can
easily think of this committee as containing all clients, although in our concrete
instantiation below, we only include a (random) subset of the clients in Q

– Setup phase: The clients agree on a common committee Q ⊆ [M ] using public,
common randomness. Every client i secret shares a fresh masking key ki as
{kij}j∈[Q] and sends the j’th share kij to committee member j ∈ Q.

– Online phase: In the tth aggregation session,

1. The clients sample a common tag τ ← H(sid, t) using a hash function
H, modeled as a random oracle. Every client Pi then computes a masked
input zi ← Mask(ki, τ, xi) and sends zi to the server.

The server identifies the set U of online clients. It sends U to all committee
members Q, indicating that it wants to aggregate the inputs in U .

2. Upon receiving U , every committee member Pj aggregates the key shares
kij it received from clients i ∈ U , obtaining kUj =

∑
i∈U kij , which by linear

homomorphism, equals the j’th share of kU =
∑

i∈U ki. (Therefore, given
enough shares {kUj }j∈U ′ , for a large enough subset U ′, one can recover

kU .) Then, Pj computes an empty mask cUj ← Mask(kUj , τ, 0), and sends
it back to the server.
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Upon receiving enough shares {cUj }j∈U ′ from a subset U ′ ⊆ U , the server
homomorphically computes the aggregated mask

cU = Eval(Recon, {cUj }j∈U ′)

≡ Mask(Recon({kUj }j∈U ′), τ, 0) ≡ Mask(kU , τ, 0)

where the first equivalence uses the fact that the Recon algorithm is linear.
Similarly,

zU =
∑
i∈U

zi =
∑
i∈U

Mask(ki, τ, xi)

≡ Mask(
∑
i∈U

ki, τ,
∑
i∈U

xi) = Mask(kU , τ, xU )

The server can now recover xU = UnMask(zU , cU ).

LWR-based Instantiation. Our main instantiation of the masking scheme is
inspired by the simple seed-homomorphic PRG of [12]. The LWR assumption [6]
is associated with two moduli q > p, where p is the modulus of the message
space. A tag τ is an LWR public vector a ∈ Zn

q , and the masking key k is an
LWR secret s ∈ Zn

q . A masked input z is simply an LWR sample rounded to p
added with the message x, i.e.,

LWR: τ = a ∈ Zn
q , k = s ∈ Zn

q , z = ⌊⟨s,a⟩⌋p + x ∈ Zp .

The linear structure of LWR implies the key homomorphism property. However,
it only holds approximately due to rounding errors. More specifically: i) additive
key-homomorphism holds approximately with bounded error, and ii) linear key-
homomorphism holds with bounded error if the linear function L evaluated has
small coefficients. To see i), consider two masks with keys k1 = s1, k2 = s2,
inputs x1, x2, and a common tag τ = a. We have

z1 + z2 = ⌊⟨s1,a⟩⌋p + x1 + ⌊⟨s2,a⟩⌋p + x2

= ⌊⟨s1 + s2,a⟩⌋p + x1 + x2 + ε ,

where ε is the rounding difference between ⌊⟨s1,a⟩⌋p+⌊⟨s2,a⟩⌋p and ⌊⟨s1 + s2,a⟩⌋p,
which is bounded by 1. With regard to ii), when evaluating a linear function L
over the masks using the above approximate additive homomorphism, the error
is scaled by the coefficients of L.

The approximate key homomorphism creates a technical issue in the protocol:
when the server evaluates Recon homomorphically, it introduces an additive error
in the aggregation result. To remove the error, our solution is to multiply the
inputs with a scaling factor ∆, set to be larger than the noise.

If the coefficients of Recon are large – e.g., as in Shamir’s secret sharing –
then the error induced by homomorphic evaluation, and hence the scaling factor
∆ becomes large, causing a significant overhead in the protocol. To minimize
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this overhead, we will use a linear secret-sharing scheme whose reconstruction
function has only −1, 0, 1 coefficients – referred to as the flatness property. An
additional benefit of the flatness property is that Recon becomes computationally
cheaper, involving only simple additions and subtractions.

Committee Based Flat Secret Sharing Scheme. As motivated above, we
need a secret sharing scheme with small reconstruction coefficients. One solution
appears to come from the work of [20], which transforms any monotone Boolean
formula for the threshold function into a linear secret-sharing scheme with small
coefficients, satisfying flatness. Unfortunately, however, known constructions of
Boolean formulae for the threshold function with M inputs has a size Ω(M5.3)
[32], which by the transformation of [20] gives a secret sharing consisting of
Ω(M5.3) elements in total. This is prohibitively expensive and recent work [5]
indicates several challenges in improving this.

Our committee-based construction follows the blueprint of [20], but drasti-
cally reduces the total share size from Ω(M5.3) to Θ(κ2) where κ is the security
parameter. Our key observation is that in the setting of secure aggregation, a
much weaker secret sharing scheme (than that of [20]) suffices:

1. Instead of using a monotone Boolean formula for threshold functions, it suf-
fices to consider gap threshold functions. Such a function outputs 1 if more
than ρ fraction of the inputs are 1 and outputs 0 if less than γ < ρ fraction
of the inputs are 1 (and has no guarantees for inputs in between). The values
of ρ and γ correspond to the reconstruction and privacy thresholds in the
context of secret sharing.

2. Instead of using a single formula, we use a distribution F of formulae. Our
secret-sharing scheme has a setup phase where a formula is sampled f ← F .
As such, the security and correctness of secret sharing only need to hold with
overwhelming probability over the random choice of f .
Sampling f ← F directly translates to sampling a committee of share holders
in the secret sharing scheme, corresponding to the committee Q chosen in the
setup phase of our protocol above.

3. In fact, we do not even need formulae that compute exactly the gap threshold
function. Instead, it suffices if for every “promised” input x, a random formula
f ← F computes the correct output with overwhelming probability. That is,

∀x with hamming weight < γM or > ρM,

Pr [f(x) correct |f ← F ] > 1− negl(κ).

These relaxations allow us to modify the randomized construction of formulae
for threshold function in [32] to obtain a distribution of formulae with sizes
Θ(κ2) satisfying the above. The transformation of [20] then gives a committee
based secret sharing consisting of only Θ(κ2) elements in total, with a Θ(κ2)
size committee.

Server Efficiency. LERNA admits very efficient server computation. Upon col-
lecting all the masked inputs zi and all the mask shares cUi , the server simply
computes a sum

∑
i∈U zi, reconstruction over shares cUi , and finally unmasks.
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Since our secret sharing has 0/1 coefficients, reconstruction is also computing
a sum. LERNA server is 100× faster than that of prior work [8], where the
server needs to perform Θ(M) reconstruction of Shamir’s secret sharing, and
Θ(M(logM+κ)) group exponentiations. See Section 5 and Section 6 for asymp-
totic comparisons and experimental data.

Static vs. Adaptive Corruptions. One consequence of the above approach
is that the random choices involved in sampling the formula (i.e., the commit-
tee of share holders) need to be independent of corruptions and dropouts in
an execution of the protocol, which we expect to be chosen non-adaptively (for
dropouts, in fact, we only require an overall set of potential dropouts to be fixed
non-adaptively, but when individual parties drop out can be chosen adaptively).
We stress that this assumption already inherently underlies the optimized aggre-
gation protocol from [8], which relies on choosing a random graph independently
of corruption and dropout patterns.

For the setting where the number of clients is small, e.g. M ≤ 80, we show an
alternative instantiation of LERNA that doesn’t involve sampling a committee of
share holders in Section E. In this variant, LERNA tolerates adaptive corruption.

2 Preliminaries

In this section, we explain the system and failure models of LERNA, and give
an overview of LERNA’s security requirements. We provide a formal security
definition in the UC framework in Appendix B.

System Model. LERNA is a framework for secure aggregation involving M
clients and a single server. Different from the systems in [11, 8], LERNA has a
one-time setup phase followed by many, T , online phases (also referred to as ag-
gregation sessions). The setup phase creates correlated secrets s1, . . . , sM among
theM clients, which are re-used in all following online phases. During each online
phase, the server computes the aggregation over fresh inputs x1, . . . ,xM from
the same set of clients. The inputs to the clients xi ∈ Zℓ are large integer vectors
from a bounded (but potentially exponentially large) range, and the aggregation
results are computed coordinate-wise over the integers.

Communication Model. Similar to prior work, LERNA has a simple communi-
cation pattern. During the online phases, each client communicates only with
the server through private and authenticated channels. During the setup phase,
the clients communicate indirectly with each other through the server, also in a
private and authenticated way. This can be achieved by assuming a PKI setup,
or, to avoid the PKI setup, the clients can run pairwise key-agreement through
the server at the beginning of the setup phase. We need to assume (similarly to
[11, 8]) the server behave honestly in the key-agreement round.

The LERNA protocol proceeds in rounds. In each round, each client may send
one message to the server, and may receive a reply message from the server. For
simplicity, we assume synchronized communication channels.
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Failure Model. LERNA is designed to be robust against two types of failures,
corruption and dropout. For the first type of failure, a subset of the parties, may
or may not include the server, collude to try to learn the individual input of the
other clients. We further differentiate static and adaptive corruptions. In static
corruption, the adversary selects a subset of corrupted parties at the beginning
of the protocol execution. In adaptive corruption, the adversary is free to choose
which party to corrupt at any stage of the protocol execution. Our main protocol
in Section 4, suitable for running with large number of clients, tolerates static
corruption. The variant described in Section E for running with small number of
clients tolerates adaptive corruption. In the semi-honest setting, the adversary
learns the inputs and the internal states of the corrupted parties, throughout
the setup phase and all online phases. In the malicious setting, the adversary
controls the actions of the corrupted parties entirely.

For the second type of failure, a potentially different subset of clients drop
out from each online phase (and may come back in the future). We model no
clients dropout during the setup phase. This is equivalent to saying only the set
of clients who complete the setup phase is considered during the following online
phases. More precisely, we model the dropout failure by allowing the adversary
to choose a set of potential dropout clients Dt for each online phase t, all at the
beginning of the protocol. The adversary is allowed to adaptively decide whether
and when each client Pi ∈ Dt (from the potential set) actually drops out during
the online phase t.

Security Definition. The security of LERNA has two aspects: correctness and
privacy. They are parameterized by a constant fraction δ, which represents the
fraction of dropout clients tolerated by LERNA.

Correctness guarantees that in the semi-honest setting, the server computes
the correct result in a session, as long as less than δM clients drop out in that
session. In contrast, in the malicious setting, a corrupted client may arbitrarily
“pollute” the aggregation result or cause it to be ⊥, indicating an error.

For privacy, we consider an adversary that statically corrupts at most a γ
fraction of the clients, before the aggregation protocol begins. We tolerate any
fraction 0 ≤ γ < 1− δ. The adversary may additionally corrupt the server. The
following privacy guarantee applies to both the semi-honest and the malicious
settings.

In the simpler case, where only clients but not the server are corrupted, the
adversary learns only the corrupted clients’ inputs in each aggregation session
and nothing else. In the case where the server is also corrupted, the adversary
learns the corrupted clients’ inputs, as well as a single sum of the honest clients’
inputs in a sufficiently large set U ⊆ [M ], where |U | > (1− δ)M .

For comparison, the privacy guarantee of [8] is weaker. In the case where
both the server and a subset of the clients are corrupted, an adversary may learn
multiple non-overlapping sums of the honest inputs in each aggregation session.
Their security guarantees that each such sum contains at least Ω(logM) inputs,
which provides a weaker degree of anonymity.
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Formally, we define the security of LERNA in the UC framework [15]. De-
tails of the UC framework and our formal security definition are deferred to
Appendix B.

3 Technical Tools

In this section, we construct two technical tools, a key-homomorphic masking
scheme and a flat secret sharing scheme. As outlined in the technical overview
(Section 1.1), the masking scheme is used for hiding clients’ input vectors, and
the secret sharing scheme is used for sharing each client’s secret masking key.

3.1 Key-homomorphic Masking

We first introduce the syntax of a key-homomorphic masking scheme.

– Setup(1λ, ℓ, Bmsg) : takes as inputs the security parameter λ, a message di-
mension ℓ, and a lower bound Bmsg on the message modulus. It outputs public
parameters pp, which defines a key space K, a message space Zℓ

pm
with some

modulus pm ≥ Bmsg, and a mask space Zℓ
q with some modulus q.

In our framework, we assume every client enters the setup phase (Figure 1) with
common correctly generated public parameters pp. If the Setup algorithm is
deterministic, or public-coin, then this assumption is simply a notational conve-
nience, since each client can compute the common pp on its own, using a random
oracle to derive common public randomness if necessary.

– KeyGen(pp) : outputs a masking key k ∈ K.
– TagGen(pp) : outputs a tag τ .

In our framework, each client Pi derives its secret masking key ki in the setup
phase, and re-uses it during all online phases. In contrast, it derives a fresh tag
τ for each online phase, using common public randomness. We only require the
key-homomorphic property to hold for masks under the same tag τ . While the
tag is public to all clients, the masking keys must remain secret.

– Mask(pp, k, τ,m) : takes as inputs a masking key k ∈ K, a tag τ , and a message
m ∈ Zℓ

pm
, and outputs a masked message cm.

– UnMask(pp, cm, c0) : takes as inputs a masked message cm, and an “empty”
mask c0 (of message 0) under the same key and tag. It recovers a message m∗

or ⊥.

The UnMask algorithm is a bit unusual, as it doesn’t take the masking key k or
the tag τ to recover the message. Instead, it asks the caller to first compute an
empty mask c0 using the key k and tag τ , and then feed c0 to the algorithm.
We define such a syntax because in our framework, the caller of UnMask is the
server. The clients jointly help the server compute the empty mask c0, instead of
revealing their masking keys, so that the keys remain secret during each online
phase.
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– Eval(pp, L, {ci}): takes as inputs a linear function L with d integer coefficients
and d masks {ci}i∈[d]. It homomorphically evaluates L on the masks and
outputs the result cL.

As mentioned earlier, the input masks {ci} to the Eval algorithm should be
masked under a common tag τ . Evaluating L on the masks roughly translates
to evaluating L on both the masking keys, over the key space K, and over the
the messages, over the message space Zℓ

pm
. We define this property below as

key-homomorphism.

Correctness. Formally, we define the correctness and the key-homomorphism
requirement as follows.

Definition 1 (correctness). For all public parameters pp, tags τ , and keys k out-
put by Setup, TagGen and KeyGen, and for all messages m ∈ Zℓ

pm
, the following

holds.

Pr

[
UnMask(pp, cm, c0) = m

∣∣∣∣∣ cm ← Mask(pp, k, τ,m),

c0 ← Mask(pp, k, τ,0).

]
= 1.

Definition 2 (key-homomorphism). Consider any linear function L, repre-
sented by d integer coefficients. For all public parameters pp, tag τ , and keys
k1, .., kℓ output by Setup, TagGen, and KeyGen, and all messages m1, ...,md ∈
Zℓ
pm

, the following holds.{
c̃L ← Mask

(
pp, L({ki}), τ, L({mi})

)}
≡

{
cL ← Eval(pp, L, {ci}) | ci ← Mask(pp, ki, τ,mi )

}
,

where L({mi}) is evaluated over Zℓ
pm

and L({ki}), over the key space K.

The key-homomorphism definition above requires the evaluated mask cL to
have the same distribution as the “target” mask c̃L. We next introduce a relax-
ation to this rather strong property. Roughly, the evaluated mask cL should be
distributed close to the target mask c̃L. In other words, through homomorphic
evaluation we obtain the target mask with some bounded additive noise.

Our framework requires two additional properties from an approximate key-
homomorphic scheme. First, when computing UnMask on a masked input cm
and an empty mask c0, any additive noises in them translate to additive noises
in the recovered message. Second, when computing Eval on noisy masks, the ad-
ditive noises translates to an additive noise in the evaluated mask, with bounded
magnitude. We formalize the above requirements as follows.

Definition 3 (ε-approximate key-homomorphism). Consider any linear func-
tion L, with d integer coefficients whose absolute values are bounded by some
BL ∈ N.

– Let c̃L, cL be the evaluated and the “target” masks as defined in Definition 2.
We require

∥c̃L − cL∥∞ ≤ εdBL.
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– Let cm, c0 be the masked input and the empty mask as defined in Definition 1.
For all integer noise vectors e1, e2 ∈ Zℓ, we require

UnMask(pp, cm + e1, c0 + e2) = m+ e1 + e2 mod pm.

– Let pp, {ci} be the public parameters and the masks as defined in Definition 2.
For all integer noise vectors {ei}, whose values are bounded by some Be ∈ N
we require

∥Eval(pp, L, {ci})− Eval(pp, L, {ci + ei})∥∞ ≤ BedBL.

Security. For security, we require a mask under a randomly chosen key hides
its message. We further require this holds for a polynomial number of adaptive
sessions, each with a fresh tag sampled with public randomness, reusing the same
key.

Definition 4 (security). Let λ be the security parameter. The masking scheme
is secure if for all input dimension ℓ = ℓ(λ) ≤ poly(λ) and message modulus
lower bound Bmsg = Bmsg(λ) ≤ 2poly(λ), any efficient adversary A has negligible

advantage in distinguishing the experiments ExpA,b
Mask(1

λ) defined as follows:

– The challenger computes pp← Setup(1λ, ℓ, Bmsg), and samples a masking key
k ← KeyGen(pp). It launches A(1λ), sends pp to A, and repeats the following
steps until A outputs a bit b′.
1. Run τ ← TagGen(pp; r) using fresh randomness r, and send (τ, r) to A.
A replies with a message m ∈ Zℓ

pm
.

2. If b = 1, compute c1 ← Mask(pp, k, τ,m). Otherwise, compute c0 ←
Mask(pp, k, τ,0). Send cb to A.

Construction Based on LWR.We construct a 1-approximate key-homomorphic
masking scheme based on the learning with rounding (LWR) assumption[6]. The
construction is a slight modification to the almost seed homomorphic PRG based
on LWR in [12].

Definition 5 (LWR [6]). let λ be the security parameter, n = n(λ), q = q(λ),
p = p(λ) be integers. The LWRn,q,p assumption states that for any m = poly(n)
A← Zm×n

q , s← Zn
q , u← Zm

q , the following indistinguishability holds:

(A, ⌊A · s⌋p) ≈
c (A, ⌊u⌋p),

where ⌊·⌋p is the rounding function defined as ⌊·⌋p : Zq → Zp : x 7→ ⌊(p/q) · x⌋.

Construction 1 (key-homomorphic masking by LWR).

– Setup(1λ, ℓ, pm) : deterministically choose a modulus q and dimension n such
that LWRn,q,pm is assumed to be hard. Output pp = (ℓ, pm, q, n). The key
space is K = Zn

q , the message space, Zℓ
pm

, which is the same as the mask
space.

– KeyGen(pp) : sample a vector s← Zn
q , and output k = s.
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– TagGen(pp) : sample a matrix A← Zn×ℓ
q , and output τ = A.

– Mask(pp, k, τ,m) : parse the key and tag as k, τ = s, A. Output the masked
message cm = ⌊A · s⌋pm

+m ∈ Zℓ
pm

.

– UnMask(pp, cm, c0) : output the message m∗ = cm − c0 ∈ Zℓ
pm

.
– Eval(pp, L, {ci}) : parse L as d integer coefficients u1, . . . , ud. Output the eval-

uated mask cL =
∑

i∈[d] uici ∈ Zℓ
pm

.

The idea of the construction is simple. A masking key is an LWR secret k = s,
and a tag is a random LWR public matrix τ = A. Given a masking key s, a tag
A, and a message m as inputs, the Mask algorithm hides the message m with a
fresh LWR sample ⌊A · s⌋pm

.

Lemma 1. Construction 1 is a 1-approximate key-homomorphic masking scheme
under the LWRn,q,pm assumption.

Proof (of Lemma 1). The correctness of the above construction is clear, and the
security of the above construction follows immediately from the LWR assump-
tion. We show that the above construction has 1-approximate key-homomorphism.

Consider first the simple case of adding two masks of dimension ℓ = 1.
Let τ = a ∈ Zn

q be any tag, k1 = s1, k2 = s2 ∈ Zn
q be any two keys, and

m1,m2 ∈ Zpm
be any two messages. The two masks c1, c2, and the target mask

c̃sum are computed as

c1 = ⌊⟨s1,a⟩⌋pm
+m1, c2 = ⌊⟨s2,a⟩⌋pm

+m1,

c̃sum = ⌊⟨s1 + s2,a⟩⌋pm
+m1 +m2.

The difference between the evaluated mask csum = c1 + c2 and the target mask
c̃sum is simply the rounding error

e = ⌊⟨s1,a⟩⌋pm
+ ⌊⟨s2,a⟩⌋pm

− ⌊⟨s1 + s2,a⟩⌋pm
∈ {0, 1}.

Generalizing the above, we can conclude that multiplying a mask c by a coeffi-
cient u causes an error |e| ≤ |u|. And evaluating a linear function over d masks
with coefficients bounded by BL causes an error |e| ≤ dBL. If the masks already
contain errors bounded by Be, then the evaluation amplifies it to an additional
error |e| ≤ BedBL. We have verified that Construction 1 has 1-approximate
key-homomorphism per Definition 3. □

Choosing Parameters q, n. It is proved in [6] that under the Learning With Er-
ror (LWE) assumption with dimension n, modulus q, and any noise distribution
bounded by B, the LWR assumption also holds with dimension n and moduli
q, pm such that q ≥ Bpmnω(1). It’s commonly believed that the LWE assumption
holds for sufficiently large B = poly(n), and sub-exponential modulus-to-noise
ratio α = q/B ≤ 2

√
n. Therefore, given a message modulus pm ∈ N, it suffices

to set n = (log pm +Ω(λ))2, and q = Bpmnlog λ.

Extension to Ring LWR. The above scheme can also be instantiated using the
Ring LWR assumption introduced together with LWR in [6]. We implement the
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more computationally efficient version with Ring LWR and present experiment
data in Section 6.

Construction Based on DCR. In Appendix A, we also construct an exact
key-homomorphic masking scheme under the decisional composite residuosity
(DCR) assumption.

3.2 Flat Secret Sharing

A threshold secret-sharing scheme with M parties normally has two algorithms
Share,Recon, and is parameterized by privacy and reconstruction thresholds γ, ρ,
where 0 < γ < ρ < 1. Running Share on a secret value createsM shares. Running
Recon on any subset of more than ρM shares recovers the secret. Any subset of
less than γM shares contains no information about the secret.

Secret Sharing in Our Framework. Our framework uses the scheme in an
unusual way. In the setup phase, the clients run Share to create shares of their
masking keys. In the online phase, the server runs Recon not over the key shares,
but homomorphically over empty masks created under the key shares. As long
as Recon is a linear function, the key-homomorphism property (Definition 2)
ensures that running Recon over the masks translates to over the underlying key
shares. The two thresholds γ, ρ guarantees the masking keys are hidden when
at most γM clients are corrupted, and Recon succeeds when at least ρM clients
are online.

This approach creates a technical challenge when the masking scheme has
only approximate key-homomorphism (Definition 3). Namely, evaluating Recon
homomorphically creates an additive noise, which grows with the magnitude of
the coefficients of Recon. The noise then propagates into the aggregation result.

To help remove the noise, each client input is multiplied with a scaling factor
∆, set larger than the noise. To accommodate the factor ∆ in the clients inputs,
the message modulus of the masking scheme is in turn increased by log∆ bits.
This overhead motivates us to construct a secret-sharing scheme with small
coefficients in Recon, which we call a flat secret sharing scheme.

Overview of Our Scheme. Our starting point is the linear secret sharing
scheme [20] that has 0, 1 coefficients. However, using the scheme has a prohibitive
overhead: the total share size scales polynomially in the population M , namely
Ω(M5.3).

A first attempt at reducing the share size is to run the scheme in a small com-
mittee, sampled during the setup phase. If client corruption and dropout happen
independently to the committee sampling, then the fractions of corruption and
dropout in the committee roughly equal the true fractions in the population.
This is true in our framework, where the set of corrupted clients, and potential
dropout clients are decided statically at the beginning.

That is, we add a Setup algorithm to the scheme, which samples a committee
Q ⊆ [M ] at random. It can be shown that when the fractions 0 < γ < ρ < 1
has a constant gap, a committee of size O(κ) suffices, with a O(2−κ) statistical
error.
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Running [20] as a blackbox with a committee of size O(κ) reduces the total
share size from O(M5.3) to O(κ5.3). But we are able to further improve it to
O(κ2), with a O(κ2)-size committee, by re-visiting the analysis of [32], and con-
structing a committee version of [20] in a non-blackbox way. We summarize the
syntax of our committee-based scheme for some secret spaceM below.

– Setup(1κ,M) takes as inputs the statistical security parameter κ, and the
population size M . It outputs a committee Q of share holders, and public
parameters pp.

– Share(pp, s) outputs shares {sj}j∈Q computed from s ∈M.
– Recon(pp,W, {sj}j∈W ) takes as inputs a set W indicating which shares are

received, and the set of shares {sj}j∈W . It outputs a recovered secret s∗ or ⊥.

Correctness and Security. Formally, we define the correctness requirements
as follows.

Definition 6 (ρ-reconstruction). Let κ be the statistical security parameter. For
all population size M ∈ N, secret s ∈M, and subset T ⊆ [M ] with size |T | > ρM
the following holds.

Pr

Recon(pp,W, {sj}W )

= s

∣∣∣∣∣∣∣
(Q, pp)← Setup(1κ,M),

W = T ∩Q,

{sj}Q ← Share(pp, s)

 ≥ 1− negl(κ).

The usual security requires that, for any corruption set C ⊆ [M ] below
the threshold, i.e. |C| ≤ γM , corrupted shares {sj}Q∩C contain no information
about the secret s.

We need a stronger property (which implies the usual one) to prove security of
our framework: given corrupted shares {sj}Q∩C of 0, there is algorithm Ext that
“extents” them to a full set of shares {sj}Q for any secret s. The shares {sj}Q
distribute statistically close to shares of s. This is analogous to the property
that, given a corrupted subset of Shamir’s shares, one can interpolate the rest
of the shares to any secret s. We formalize this requirement as follows.

Definition 7 (γ-simulation-privacy). Let κ be the statistical security parameter.
There exists an efficient deterministic algorithm Ext such that for all population
size M ∈ N, secret s ∈M, and subset C ⊆ [M ] with size |C| < γM the following
two distributions are statistically close.
They share the same public parameters (Q, pp)← Setup(1κ,M).

1. {sj}Q is computed normally as {sj}Q ← Share(pp, s).
2. {s̃j}Q = {s′j}Q∩C ∪ {s̃j}Q∩C is computed by
{s′j}Q ← Share(pp, 0) and {s̃j}Q∩C = Ext(pp, C, {s′j}Q∩C , s).

Flatness. As explained in “Secret Sharing in Our Framework”, we require the
Recon algorithm to have small coefficients as a linear function over the input
shares. This minimizes the noise introduced by evaluating Recon homomorphi-
cally over empty masks. A similar situation arises in the security proof of our
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framework, where the simulator needs to evaluate Ext (Definition 7) homomor-
phically over noisy masks. We therefore additionally require Ext to have small
coefficients as a linear function over the input shares and the secret. We sum-
marize the above requirements as “flatness”.

Definition 8 (flatness). Let κ be the statistical security parameter. A flat secret
sharing scheme satisfies the following.

– The Recon algorithm, when not outputting ⊥, can be written as a linear func-
tion over the input shares, with integer coefficients bounded by O(1).

– The Ext algorithm can be written as a linear function over the input shares
and the secret, with integer coefficients bounded by O(log κ).

Construction Details. We start by recalling the result of [9] and [20], summa-
rized in the following theorem.

Theorem 1 (formula to secret sharing [9],[20]). For secrets over M = Zq for
any modulus q orM = Z, there exists an efficient algorithm that translates any
monotone Boolean formula f : {0, 1}M → {0, 1}, over variables x1, . . . , xM , of
size d = |f |, to a pair of secret sharing algorithms Sharef ,Reconf satisfy the
following:

– Sharef (s) computes d share units, each corresponding to a literal in f . For
each share holder i ∈ [M ], its share si consists of all units corresponding to
xi. Sharef (s) outputs the shares {si}.
If M = Zq, each share unit is an element in Zq. If M = Z, with secrets
bounded by B, each unit is an integer bounded by B2κ.

– For any subset T ⊆ [M ], let aT ∈ {0, 1}M denote the assignment where ai = 1
iff i ∈ T . For every subset of the shares {sj}T , reconstruction Recon(T, {sj}T )
succeeds iff f(aT ) = 1.
For any subset {sj}C that fails to reconstruct, there exists a simulation algo-
rithm Ext defined analogously to Definition 7.

– The algorithms Sharef ,Reconf satisfy “flatness” per Definition 8.

With Theorem 1, constructing a flat secret sharing scheme for any access
structure reduces to finding a corresponding formula f :

– Setup constructs a formula f as pp, and defines the committee Q as the set of
distinct literals in f .

– Share,Recon simply run Sharef ,Reconf given by Theorem 1.

Below we first describe the result of [32], which shows the existence of a formula
ft, of size O(M5.3), for any t-threshold function. (Note that for any γM < t <
ρM , ft satisfies our requirement.)

Construction 2 (t-threshold monotone Boolean formula [32]).
In [32], ft (over M variables) is implicitly constructed through a formulae dis-
tribution Ft satisfying the following:

∀a ∈ {0, 1}M , Pr [f(a) = Thresht(a) | f ← Ft] > 1− 2M , (1)
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where Thresht denotes the t-threshold function. Applying the union bound over
all 2M values for a, we have

Pr
[
∀a ∈ {0, 1}M , f(a) = Thresht(a) | f ← Ft

]
> 0.

Hence, there exists a formula ft in Ft that computes Thresht exactly.
Further, note that for any threshold 0 < t < M , the function Thresht over M

inputs is equivalent to ThreshM ′/2 over M ′ = M +D ≤ 2M inputs, with D ≤M
dummy variables always set to 1 or 0, respectively for the case of t < M/2 or
t ≥ M/2. For technical reasons, we always choose M ′ to be odd. Therefore, it
remains to construct a formulae distribution FM/2, for any odd M .

The construction is recursive. In the base case, F (0) is defined as

F (0) :=

{
xj for a uniform j $← [M ] w/ prob. p = 3−

√
5

0 w/ prob. (1− p).

For i ≥ 1, the formulae distribution F i is defined inductively

F (i) := (F
(i−1)
1 ∨ F

(i−1)
2 ) ∧ (F

(i−1)
3 ∨ F

(i−1)
4 ),

where F
(i−1)
1 , F

(i−1)
2 , F

(i−1)
3 , F

(i−1)
4 are distributions independent and identical

to F (i−1). It’s shown that after k = O(1) + 2.65 logM recursion steps, the dis-
tribution FM/2 = F (k) satisfies Equation 1.

Correctness and Efficiency of Construction 2. According to Equation 1, we ex-

amine the probability that, for any assignment a ∈ {0, 1}M , a sample f (i) ← F (i)

computes the incorrect result.

– When a has less than M/2 ones, f (i)(a) is supposed to output 0, but instead

(incorrectly) outputs 1. Let p
(i)
s denote this probability, i.e., f (i)(a) = 1. By

construction, we have

p(i)s =
(
1− (1− p(i−1)

s )2
)2
. (2)

– When a has at least M/2 ones, let p
(i)
c denote the probability that f (i)(a)

(incorrectly) outputs 0. Similarly, we have

p(i)c = 1− (1−
(
p(i−1)
c

)2
)2. (3)

By construction of F (0), and that M is odd, we also have

p(0)s < p(
1

2
− 1

2M
), p(0)c ≤ (1− p) + p(

1

2
− 1

2M
).

It remains to show that p
(k)
s , p

(k)
c < 2M for k = O(1)+ 2.65 logM , which follows

from the technical claims below, which are taken directly from [32].
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Claim 1 (phase 1). For the recurrence relations specified by Equation 2, 3 with

any initial values satisfying p
(0)
s < p/2 − p/(2M), p

(0)
c < 1 − p/2 − p/(2M), it

holds that p
(k1)
s ≤ p/2−Ω(1), and p

(k1)
c ≤ 1− p/2−Ω(1) for k1 = 1.65 logM .

Claim 2 (phase 2). For the recurrence relations specified by Equation 2, 3 with

any initial values satisfying p
(0)
s < p/2 − Ω(1), and p

(0)
c < 1 − p/2 − Ω(1), it

holds that p
(k2)
s , p

(k2)
c < 2M for k2 = O(1) + logM .

Intuitively, a formula sampled from F (0) fails with probability close to (but
less than) p/2 and 1 − p/2 respectively in the two cases. Each recursive step
“shifts” them further away from the starting points towards 0. Claim 1 shows
that it takes k1 = O(logM) steps to start at Θ(1/M)-away and shift to Ω(1)-
away from the starting points. Claim 2 shows that it takes additional k2 =
O(logM) steps to shift exponentially close to 0.

Since each recursive step multiplies the formula size by 4, after k = k1+k2 =
O(1)+2.65 logM steps, the formulas in F (k) has size 4O(1)+2.65 logM = O(M5.3).

Reducing the Size of Construction 2. Our first observation is instead of the for-
mula ft, we only need a a formula fρ,γ that 1) computes 1 if the inputs have
> ρM ones, 2) computes 0 if the inputs have < γM ones, and 3) may otherwise
compute either. We denote this (ρ, γ)-threshold function Threshρ,γ . A similar
trick reduces computing Threshρ,γ over M variables to Thresh1/2+δ,1/2−δ over
M ′ ≤ 2M variables for some constant fraction δ = (ρ− γ)/4.

This observation allows us to calculate the initial failure probability for
f (0) ← F (0) differently from above.

– When a has less than M(1/2 − δ) ones, f (0) fails (i.e., computes 1) with

probability p
(0)
s < p(1/2− δ) < p/2−Ω(1).

– When a has more than M(1/2 + δ) ones, f (0) fails with probability p
(0)
c <

(1− p) + p(1/2 + δ) < 1− p/2−Ω(1).

Since the initial values of p
(0)
s , p

(0)
c already satisfies the condition for Claim 2,

we indeed only need k2 = O(1) + logM recursive steps! This observation al-
ready let us reduce the size of the formula from 4O(1)+2.56 logM = O(M5.3) to
4O(1)+logM = O(M2).

Our second observation is that in the static corruption model, the set of
corrupted and the reconstructing share holders C, Ti at each iteration i is fixed
before the secret sharing Setup algorithm. Therefore, instead of finding an exact
formula fρ,γ that’s correct on all assignments, it suffices to sample f ← Fρ,γ

during Setup that’s correct on the (poly(κ) many) fixed assignments aC and
aTi

.
In particular, we can avoid taking the union bound over 2M values for a, and

only construct a distribution Fρ,γ (equivalently, F1/2+δ,1/2−δ) such that

∀a ∈ {0, 1}M , Pr [f(a) = Threshρ,γ(a) | f ← Fρ,γ ] > 1− 2κ.

By Claim 2, we now only need k′2 = O(1) + log κ recursive steps, which further
reduces the formula size to O(κ2)!
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To summarize, we obtain the following lemma.

Lemma 2 (flat secret sharing). For any population size M ∈ N, constant frac-
tions 0 < γ < ρ < 1, integer modulus q and dimension ℓ, there exists a flat
secret-sharing scheme Setup,Share,Recon for secrets spaceM = Zℓ

q orM = Zℓ,
with privacy and reconstruction thresholds γ, ρ. Furthermore,

– It has committee size |Q| = O(κ2), where the constant depends on the thresh-
olds γ, ρ.

– The Recon algorithm, when written as a linear function, has O(κ) non-zero
coefficients, which are 1 or −1.

Concrete Algorithm for Theorem 1. When sharing a secret according to a for-
mula f , Sharef views f as a tree with AND, OR on the intermediate nodes, and
literals xi on the leaf nodes. It assigns a share to each node of this tree: i) Upon
reaching an AND node, split the current share s into two additive shares of s,
and assign them to the children. ii) Upon reaching an OR node, duplicate s and
assign them to the children. iii) Upon reaching a literal xi, assign s to share
holder i. Reconstruction according to f follows a similar recursive algorithm.

4 The LERNA Framework

In this section, we describe our abstract secure aggregation protocol assuming
the existence of the two technical tools introduced in Section 3:

– An ε-approximate key-homomorphic masking scheme HM = (HM.Setup,KeyGen,
TagGen,Mask,UnMask,Eval) setup properly with HM.pp, specifying a message
space Zℓ

pm
, mask space Zℓ

q and key space K.
– A flat secret sharing scheme SS = (SS.Setup,Share,Recon) for sharing the

masking keys in the above key space K.

The protocol additionally assumes a public key encryption scheme and two hash
functions H1,H2 modeled as random oracles. We assume the hash functions
H1,H2 output exactly the numbers of random bits required by the algorithms
SS.Setup, and TagGen.

The protocol runs with M clients {Pi} and a single server S for T iterations.
During each iteration t ∈ [T ], every client Pi obtains a fresh integer vector x ∈ Zℓ

from a bounded range [0, Bx]. To avoid wrap-around in the aggregation results,
we setup the masking scheme with a modulus lower bound Bmsg = ∆MBx,
where ∆ is a message scaling factor introduced in the protocol.

The protocol is further parameterized by two thresholds γ, δ ∈ (0, 1), specify-
ing the maximum fractions of corrupted clients and dropout clients, respectively,
under the restriction that γ + δ < 1. We set the privacy threshold of the secret
sharing scheme to γ, and the reconstruction threshold to ρ = 1− δ.

In the online phase, the protocol uses a noise bound Be and a message scaling
factor ∆, which we specify in Section 4.4 and Appendix A for concrete instanti-
ations under LWR and DCR.
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4.1 The Semi-honest Protocol

We start with the simpler, semi-honest variant of the protocol, given in Figure 1,
and Figure 2. We prove the correctness and sketch the privacy of the semi-
honest protocol in Appendix 4.3. We describe the additional steps to obtain the
malicious variant in the next subsection, and defer the more formal (in the UC
framework) security proof for the malicious protocol to Appendix C.

Setup Phase
Inputs to Pi: The session id sid, public keys of other clients, and public param-
eters of the masking scheme HM.pp.

1. Each client Pi obtains common randomness r1 = H1(sid) for sampling the
committee (Q,SS.pp)← SS.Setup(; r1).
Next, Pi samples a masking key ki ← KeyGen(HM.pp) and secret shares it to
the committee:

{ki
j}j∈Q ← Share(SS.pp, ki).

Pi encrypts each share ki
j with the public key of its target Pj as k̃i

j , and sends

(sid, i, j, {k̃i
j}j∈Q) to the server S.

2. The server S receives the above encrypted shares from all M clients, and dis-
tributes them through messages (sid, {k̃i

j}i∈[M ]) to every committee member
Pj ∈ Q.

3. Each committee member Pj ∈ Q receives encrypted shares, decrypts them,
and stores the plain shares {ki

j}i∈[M ].

Fig. 1: LERNA protocol for the setup phase.

Setup Phase. During the setup phase, the clients first agree on a small com-
mittee Q, computed using public common randomness r1. They each sample a
secret masking key ki, and secret share it to the committee Q, using the server
to distribute those shares. To keep the shares secret from the server, the clients
encrypt each share using the public key of its target share-holder.

Note that the clients only run the setup phase once, followed by T online
phases. In each online phase, each client Pi uses the same masking key ki to
mask its fresh input vector xi. Reusing the masking key may seem like a privacy
concern. To address this, we ensure that in each online phase, the clients sample
a fresh tag τ used for computing the mask. The randomness of the tag τ protects
the input vector xi, as long as the masking key remains secret.

Online Phase.

Step 1: Every client runs the key-homomorphic masking scheme HM.Mask to
obtain a masked input vector zi, and sends it to the server S. It’s important
to note that key-homomorphism only holds for masks computed using the same
tag τ . Therefore, the clients sample the tag using public common randomness
r2.
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Online Phase: iteration t = 1, ..., T
Inputs to Pi: The session id sid, and an integer vector xi ∈ Zℓ.

1. Each client Pi obtains common randomness r2 = H2(sid, t) for sampling a tag
τ = TagGen(HM.pp; r2), computes

zi ← Mask(HM.pp, ki, τ,∆ · xi),

and sends a message (sid, i, zi, t) to the server S.
2. The server S receives a masked input vector zi from each online client, and

records the set of dropout clients D. It computes the “online set” U = [M ]\D,
and sends a message (sid, U, t) to every online committee member Pj ∈ (Q∩U).

3. Each online committee member Pj checks that |U | > (1− δ)M , and computes
a reconstruction vector

wj = Mask(HM.pp,
∑

i∈U ki
j , τ,0) + ej ,

where ej ← [Be]
ℓ is a uniformly sampled noise from range Be. If |U | is too

small, Pj sets wj = ⊥. Pj sends a message (sid, j,wj , t) to the server S.
4. The server S receives a reconstruction vector wj from every online committee

member, ignoring ⊥. It records the set of valid vectors W . S homomorphically
sums over the masked inputs as csum = Eval(HM.pp,+, {zi}i∈U ), and then
homomorphically runs the Recon algorithm over the vectors {wi}

c0 = Eval
(
HM.pp,Recon(SS.pp,W, ·), {wi}

)
.

If Recon aborts on the set W , then S outputs a message (sid,⊥, D, t).
Otherwise, it uses c0 as the “empty mask” to recover x′

U ←
UnMask(HM.pp, csum, c0), and rounds x′

U by ∆ to obtain xU . It outputs a
message (sid,xU , D, t).

Fig. 2: LERNA protocol for the online phase (semi-honest).

Step 2: The server receives the masked input vectors {zi} from the online
clients, and replies the online set U to each committee member. Note that non-
committee member clients don’t need to send anything in the rest of the online
phase.

Step 3: Every committee member Pj aggregates locally its shares of masking

keys from the online set U to obtain an aggregated key share kUj , uses it to
compute an “empty mask” as its reconstruction vector wj , and sends it to the
server S.

Step 4: The server S receives reconstruction vectors {wj} from the online
committee members. It proceeds to locally recover the aggregation result.

First, it homomorphically aggregates the masked input vectors zi to ob-
tain csum. By key-homomorphism, the vector csum approximately equals run-
ning HM.Mask on the scaled aggregation result x′

U = ∆ ·
∑

U xi under the key
kU =

∑
U ki. It remains to obtain an “empty mask” c0 under the same key kU ,
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with which the server can recover the scaled aggregation result x′
U , and then the

actual aggregation result xU = ⌊x′
U/∆⌉ through rounding.

To obtain the empty mask c0 under the key kU , the server homomorphi-
cally runs the algorithm SS.Recon over the reconstruction vectors wj . By key-
homomorphism, the result indeed approximately equals c0. Note that approxi-
mate key-homomorphism causes some errors in the recovered result x′

U . But we
set the scaling factor ∆ sufficiently large to make sure such errors are removed
by the rounding step.

Alternative to the PKI Setup. The setup phase of our protocol requires the
clients to encrypt their secret shares under the public keys of the target share-
holders. For simplicity, our protocol assumes a public key infrastructure (PKI),
and that each client enters the setup phase knowing every other client’s public
key.

An alternative approach is to let the clients run pairwise key agreement at
the beginning of the setup phase, as described in the “Communication Model”
paragraph (Section 2).

Committee Members and Non-members. Note that in each online phase,
non-member clients only have one task: send masked input vectors to the server.
The rest of the reconstruction steps are handled by committee member clients.

This separation of responsibility suggests an alternative aggregation model,
where during each phase, only a small, potentially random, subset among the
non-member clients is required to provide inputs. Our protocol can be adapted
straightforwardly to guarantee: as long as not too many committee members
drop out during the session, the server can securely compute the aggregation
result. This scenario can be useful for stochastic federated learning algorithms
that benefit from a large input population, but only learns from a random subset
at each iteration.

4.2 Achieving Malicious Security

To achieve malicious security, we keep the setup phase (Figure 1) unchanged, and
only modify the online phase (Figure 2) starting from step 2. The modifications
follow similar ideas to prior work [11, 8]. The modified online phase is given in
Figure 3, where the changes are highlighted in blue.

To see why we need the additional steps in the malicious setting, consider
the following corrupted server. Recall that in the semi-honest online protocol,
the server sends an online set U to online committee members to recover an
aggregation result xU =

∑
U xi. A corrupted server instead sends different online

sets, U ̸= U ′, to two subsets of online committee members. As long as both
subsets are large enough, the correctness of the semi-honest protocol guarantees
the successful recovery of both results xU and xU ′ by the server. This obviously
violates our security definition, which requires only a single sum of honest inputs
is leaked in each online phase.

The additional steps 3 - 4 in Figure 3 roughly ask each client, including
corrupted ones, to “vote” on an online set U by signing a hash hU . The server
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Online Phase: iteration t = 1, ..., T
Inputs to Pi: The session id sid, public keys of other clients, and an integer
vector xi ∈ Zℓ.

2. The server S records the dropout set D and online set U = [M ] \ D as in
Figure 2, and sends a message (sid, U, t) to every online committee member
Pj ∈ (Q ∩ U). Additionally, it sends a short hash of U , hU to every online
client.

3. Each client Pi receives a hash hU from the server S, and sends its signature
σi(hU ) to S.

4. The server S receives a signature from every online client, and sends the set of
valid signatures {σi(U)} to every online committee member Pj .

5. Each online committee member Pj checks that at least (1 + γ)M/2 signatures
over the hash hU are valid. If there are not enough valid signatures, it sets the
reconstruction vector wj = ⊥. Otherwise, it proceeds as in Figure 2 step 3 to
compute the vector wj , and sends it to the server S.

6. The server S receives a reconstruction vector wj from every online commit-
tee member, ignoring invalid vectors like ⊥. It proceeds as in Figure 2 step
4 to recover the result xU . In case of any failed step, it outputs a message
(sid,⊥, D, t).

Fig. 3: LERNA protocol for the online phase (malicious).

collects those signatures as unforgeable votes and sends them to the committee
members. The threshold in step 5 is set such that at most one online set U∗ can
have enough votes. Therefore, the above attack is prevented.

Preventing Abort Attacks. While setting the threshold for valid signatures
in Step 5 to (1 + γ)M/2 guarantees that at most one online set U∗ has enough
votes, it creates an opportunity for malicious clients to abort the protocol, even
when the server is honest, by not sending enough valid signatures. To avoid this
issue, we need enough honest clients so that their signatures alone are enough for
the threshold. Restricting the corruption and dropout threshold γ, δ such that
(3γ + 2δ) < 1 suffices.

Claim 3. Assuming (3γ + 2δ) < 1, and the server is honest, then every honest
committee member always collects at least (1 + γ)M/2 valid signatures in Step
5.

Proof. By the assumption, there are at least (1− γ− δ)M honest clients in each
iteration that remain online, and will send a valid signature in Step 3 on the hash
hU received from an honest server. Calculation shows (1−γ−δ)M ≥ (1−γ)M/2
iff 1 ≥ (3γ + 2δ). □

By the above claim, an honest server is guaranteed to receive non-⊥ recon-
struction messages from all honest online committee members in Step 6. By
ρ-reconstruction (ρ = 1 − δ) of the secret sharing, the server succeeds in com-
puting the empty mask c0.
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Finally, the server may still abort if UnMask(HM.pp, csum, c0) fails. However,
in our LWR masking scheme (Construction 1), the UnMask algorithm simply
computes a subtraction modulo pm, which always succeeds. We note that this
is not true for the DCR masking scheme (Construction 3), where UnMask may
fail on maliciously generated input c̃0.

Overhead of the Malicious Protocol. As highlighted in Figure 3, the com-
munication and computation overhead of the malicious variant consists of the
server sending valid signatures {σi(U)} in step 4, and each committee member
verifying those signatures in step 5, respectively.

For ease of presentation, the variant shown in Figure 3 requires every client to
send a signature in step 3. However, it can be shown that at the cost of a O(2−κ)
statistical error in privacy, only committee members need to send signatures.
Note that the number of signatures is at most the committee size |Q| = O(κ2),
which is independent of the number of clients M , or the input dimension ℓ.
Therefore, when M or ℓ is large, sending and checking those signatures incur
only negligible communication and computation overheads over the semi-honest
variant.

4.3 Correctness and Privacy

To capture the security of LERNA formally, we define a secure aggregation
functionality FSecAgg in the UC framework (See Figure 8, and Appendix B).
We state and prove the UC security of LERNA in Theorem 2 and Appendix C,
which captures both correctness and privacy guarantees.

Below, we illustrate correctness by proving Lemma 3 (as a special case of
Theorem 2). We then informally argue the privacy of the semi-honest variant,
which already contains most of the key ideas.

Correctness.

Lemma 3 (correctness). If less than δM clients dropout in an online session t,
then the server outputs the correct aggregation result with overwhelming proba-
bility in the semi-honest setting.

Proof (sketch). Looking at the reconstruction step (online step 4), we first argue
that the aggregated mask csum is distributed close to a mask over the aggregation
result. By ε-approximate key homomorphism (Definition 3), we have

∥csum −Mask(HM.pp,
∑
i∈U

ki, τ,∆
∑
i∈U

xi)∥∞ ≤ εM.

For the UnMask algorithm to work correctly, we need to argue the recon-
structed mask c0 is distributed close to an empty mask under the key

∑
i∈U ki.

To this end, we first argue that the Recon algorithm succeeds over the shares
from the setW with overwhelming probability. By assumption, online set U com-
puted by the server at the online step 2 has size |U | > (1− δ)M . Therefore, all
online committee members send reconstruction vectors wj at online step 3. Let

26



the online set at online step 3 be U ′ ⊆ U . The set of valid reconstruction vectors
W equals W = U ′ ∩Q. By assumption, we have |U ′| > (1− δ)M . Therefore, by
(1− δ)-reconstruction, the algorithm Recon indeed succeeds with overwhelming
probability.

By flatness (Definition 8), the function Recon(SS.pp,W, ·) is linear with O(1)
coefficients. Therefore, by ε-approximate key homomorphism, we have

∥c0 −Mask(HM.pp,
∑
i∈U

Recon(SS.pp,W, {kij}j∈W )︸ ︷︷ ︸
ki

, τ,0)∥∞
≤ O(εBe|Q|),

where Be is the bound on the noises ej in the vectors wj .
Finally, we conclude that the UnMask algorithm on masks csum and c0 returns

a noisy result x′
U = ∆

∑
U xi+e, where the noise has entries bounded by ∥e∥∞ =

O(ε(M + Be|Q|)). As long as the message scaling factor ∆ is sufficiently large
∆ ≥ 2∥e∥∞, the server indeed recovers the correct result through rounding by
∆. □

(Semi-honest) Privacy. To argue privacy informally, we sketch an efficient
simulator S which emulates the protocol execution with an adversary A, without
knowing each client’s inputs. We focus on the more interesting case where the
server and a subset C of up to γM clients are corrupted, and the simulator S
simulates the remaining set H = [M ] \ C of honest clients.

The simulator is allowed to query the following leakage function once per
online iteration t

f(U, t) =

{
xH∩U =

∑
i∈H∩U xi if |U | > (1− δ)M

⊥ otherwise,

which outputs the sum of honest inputs (at iteration t) over any sufficiently large
set U . Intuitively, this shows that the adversary A doesn’t learn any information
beyond the above leakage during each iteration. Specifically, the leakage per
iteration is a single sum over at least (1− δ − γ)M honest inputs.

The simulator is defined implicitly through the following hybrid experiments
from the real protocol execution to the emulated execution.

H1. We briefly summarize the messages between honest clients and the corrupted
server, hence equivalently the adversary A.
During setup, an honest client Pi shares its masking key ki to the committee
Q as {kij}j∈Q ← Share(SS.pp, ki), and sends the encrypted shares to A. By
the security of encryption, effectively only the shares directed to corrupted
clients {kij′}j′∈C∩Q are seen by the A. An honest committee member Pj

further receives shares from A as {ki′j }i∈C .
During each online phase, an honest client Pi sends its masked input vec-
tor zi ← Mask(pp, ki, τ,∆xi) to A. An honest committee member Pj fur-
ther receives an online set U and sends a reconstruction vector wi ←
Mask(pp,

∑
i∈U kij , τ,0) to A.

27



Fig. 4: Illustration of the simulator.

H2. In this hybrid, we apply γ-simulation privacy (Definition 7) of the secret
sharing scheme to compute the key shares of ki separately as corrupted
shares and honest shares, using the Ext algorithm:
{k̃ij}j∈C∩Q ← Share(SS.pp, 0),

{k̃ij}j∈H∩Q = Ext(SS.pp, C, {k̃ij}j∈C∩Q, ki).
Flatness (Definition 8), further says the Ext algorithm can be written as a
linear function with coefficients bounded by O(log κ), where κ is the statis-
tical security parameter. Therefore, for every i ∈ H and j ∈ H ∩Q, we can
write

k̃ij = cjki + Ext′j({k̃ij}j∈C∩Q), (4)

where cj is an integer bounded by O(log κ).
H3. In this hybrid, we apply approximate key-homomorphism (Definition 3) to

simulate the reconstruction vectors as follows

wj ≈ Mask(pp,
∑

i∈H∩U k̃ij ,
∑

i′∈C∩U ki
′

j + τ,0) + ej

≈ Mask(pp,
∑

i∈H∩U k̃ij , τ,0) // first term (FT)

+Mask(pp,
∑

i′∈C∩U ki
′

j , τ,0) + ej .

We further simulate the first term (FT) using approximate key-homomorphism
and Equation. (4) as

FT + ej

≈ cj
∑

i∈H∩U Mask(pp, ki, τ,0) // sum term (ST)

+Mask(pp,
∑

i∈H∩U Ext′j({k̃ij}C∩Q), τ,0) + ej .

Finally, we simulate the sum term (ST) using approximate key-homomorphism
as

ST + ej (5)

≈ cj
(∑

H∩U zi −Mask(pp, 0, τ,∆

xH∩U︷ ︸︸ ︷∑
H∩U xi)

)
+ ej .
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As long as the smudging noise ej is sampled from a sufficiently large range
Be = O(ε · log κ ·M · 2κ), this hybrid is statistically close to the previous
one.

H4. In this hybrid, we apply the security (Definition 4) of the masking scheme to
simulate the masked input vectors as z̃i ← Mask(pp, ki, τ,0). This hybrid is
exactly how the simulator S interacts with A. The only outside information
needed by S is the sum xH∩U , used for simulating the sum term (ST)
(Equation 5). This can be obtained through its one access to the leakage
function f at each iteration.

4.4 Instantiation Under LWR

Concretely, we instantiate the LERNA protocol with the LWR-based 1-approximate
homomorphic masking scheme in Construction 1.

We set the noise boundBe = O(log(κ)M2κ) as required by the security proofs
in Section 4.3 and Appendix C, where κ is the statistical security parameter. We
set the message scaling factor ∆ = O(M +Be|Q|) as required by the correctness
proof of Lemma 3, where |Q| = O(κ2) is the committee size of the flat secret
sharing scheme, as described in Section 3.2. Under these settings, our protocol
sets up the LWR-based masking scheme with message modulus (which is the
same as the mask modulus) pm = ∆MBx, which has bit length log pm < O(1)+
3 log κ+ κ+ 2 logM + logBx.

The LWR-based masking scheme has keyspace K = Zn
q , where the dimension

n and modulus q is chosen such that LWRn,q,pm is assumed to be hard. We
therefore instantiate a flat secret-sharing scheme with secret spaceM = K = Zn

q .
We present communication and computation efficiency analysis for the LWR

instantiation in Appendix 5, and we summarize the comparisons with [8] in
Table 1 and Table 2.

5 Efficiency Analysis

In this section, we analyze the communication and computation efficiency of
LERNA, running with M clients and input vectors from [0, Bx]

ℓ for every ag-
gregation session. We use the instantiation under LWR, with dimension n and
moduli q, pm set in Section 4.4, as a concrete example. We compare with the
state-of-art secure aggregation protocol [8] in the end.

Communication. Since the server communication equals the sum of the client
communications, we focus on the client side. In the following, We differentiate
the committee members in Q ⊂ [M ], where |Q| = O(κ2) and the non-members.
We start with the semi-honest variant.

Non-member client.

– Setup: It sends |Q| = O(κ2) encrypted shares of its masking key, where each
share has the same size as the masking key itself. In the LWR instantiation,
this takes O(κ2n log q) bits.
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– Online: It sends a masked input vector, which takes O(ℓ log pm) bits, where
log pm = O(κ+ logM + logBx).

Committee member client.

– Setup: It receives M encrypted shares, which takes O(Mn log q) bits.
– Online: It receives an online set U (M bits), and sends an empty mask, which

takes O(ℓ log pm) bits.

In the malicious variant, during each online phase each client additionally
receives a short hash from the server, and sends a signature back. We count
both messages as O(λ) bits, where λ is the computational security parameter. A
committee member additionally receives O(M) valid signatures. Assuming the
signature scheme allows aggregation, we count the aggregated signature also as
O(λ) bits. We summarize the above in Table 1.

Phase Setup Online

Non-member O(κ2n log q) O(ℓ(κ+ logM + logBx) + λ)

Member O((κ2 +M)n log q) O(ℓ(κ+ logM + logBx) + λ+M)

[8] client O(logM + κ) O(ℓ(logM + logBx) + (logM + κ)λ)

Table 1: Client communication (bits) of LERNA and [8]

Computation. In the following asymptotic analysis, we count addition, multi-
plication, and rounding of ring elements as Õ(1) for simplicity. We benchmark the
concrete computation efficiency of our prototype implementation in Section 6.
We again start with the semi-honest variant.

Non-member client.

– Setup: It first compute |Q| = O(κ2) shares of its masking key. In our scheme,

computing each share takes O(log κ) = Õ(1) additions in the secret space.

Therefore, in total it takes Õ(κ2n) time in the LWR instantiation. It then

encrypts each share, which in total takes Õ(κ2n) time.
– Online: It computes an ℓ dimension masked input vector. Under the more com-

putationally efficient 4 Ring LWR assumption, our scheme takes O(ℓ log n) =

Õ(ℓ) time to compute such a mask.

Committee member client.

– Setup: It decrypts M received shares, which takes O(Mn) time.
– Online: It aggregates received shares over an online set U , where |U | < M ,

which takes O(Mn) time. It then computes an empty ℓ dimension mask, which

takes Õ(ℓ) time.

4 using NTT for polynomial multiplication
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Server.

– Setup: It has no significant computation except forwarding messages from the
clients to the committee members.

– Online: It first homomorphically adds the received dimension masked input
vectors, which takes O(Mℓ) in Zpm

. It next homomorphically computes Recon
over the received empty masks. In our scheme, Recon can be written as a linear
function, with O(κ) non-zero coefficients, where the coefficients take O(κ2)

time to find. In total, running Recon over the masks takes Õ(κℓ+ κ2) time.

In the malicious variant, we ignore the time for the server to compute a hash
of the online set U , as well as the time for each client to sign the hash. The
server additionally aggregates upto M signatures, and each committee member
checks their validity. We count both as Õ(M) time. We summarize the above in
Table 2.

Phase Setup Online

Non-member Õ(κ2n) Õ(ℓ)

Member Õ((κ2 +M)n) Õ(ℓ+Mn)

[8] client Õ(1) Õ(κ2 + κℓ)

LERNA Sever Õ(1) Õ((κ+M)ℓ+ κ2)

[8] server Õ(κM) Õ(κMℓ+ κ2M)

Table 2: Computation time of LERNA and [8]

Comparison with [8]. For comparison, we consider the protocol of [8], adapted
to our setting, multiple online aggregation sessions with a PKI setup. Its high-
level (semi-honest) structure consists of one setup round and three online rounds.

– Setup: The server generates a communication graph where each client has
k = O(logM + κ) neighbors, and sends to each client Pi its list of neighbors
Ni.

– Online:
1. Each client Pi generates a key-agreement pair ski, pki and a PRG seed bi.

It secret shares the secret key and the seed ski, bi to its neighbors using
Shamir, and distributes encrypted shares, as well as its public key pki
through the server.

2. Each client Pi runs key-agreement with its neighbors to obtain pairwise
shared secrets {kij}j∈Ni . It masks its input vector by expanding the pair-
wise secrets kij and its own seed bi using the PRG. It sends the masked
inputs to the server, which replies to the online set among its neighbors.

3. Each client Pi collects shares of bi for its online neighbors and shares of
ski for its dropout neighbors. It sends those shares to the server, which
recovers the aggregation result by re-computing various masks through
the PRG.
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In the malicious variant, the protocol lets each client sample its own neighbors
during setup, and adds an extra “signature check” round similar to Figure 3. W
Note that in both the semi-honest and the malicious variants, [8] takes one more
round than LERNA per iteration and achieves a weaker privacy guarantee, as
explained in Section 2.

We reproduce its communication and computation efficiencies reported in [8]
in Table 1 and Table 2.

6 Experimental Evaluation

We benchmark the concrete efficiency of the LERNA framework by implementing
the semi-honest protocol instantiated under the (Ring) LWR assumption (cf.
Section 4.4 for a description).

As our baseline, we compare our protocol design with the semi-honest pro-
tocol from [8], adapted naturally to the multi-session setting following the de-
scription in Section 5. In particular, the baseline server uses the setup phase
to randomly sample a communication graph, and inform each client of its set
of neighbors. Baseline clients re-use the same communication graph throughout
the following online phases.

Our benchmarks clearly highlight the lightweight server computation during
each online phase.

6.1 Implementation Details

Our prototypes are implemented in Python. The protocol simulations are run
locally, using the ABIDES simulation framework [14]. Our implementations use
the following libraries for heavy computations:

– SEAL [30] and PySEAL 5 for polynomial arithmetics required by Ring LWR.
– Gmpy2 6 for large integer arithmetics.
– M2Crypto 7 as an interface to AES for implementing a PRG and a random

oracle.
– PyNaCl 8 for public key encryption and key-agreement.

Setting Parameters. In the LERNA framework, we need to set two security
parameters, λ = 128, κ = 40. Computationally secure primitives (e.g., encryption
and the masking scheme) are set to have λ = 128 bits of security, and statistically
secure primitives (e.g., the flat secret sharing scheme) are set to have κ = 40 bits
of security. The concrete committee size equals |Q| = 214 = 16384 for κ = 40.

In our prototype, the message modulus pm for the (Ring) LWR based key-
homomorphic masking scheme is set as described in Section 4.4, which ranges

5 https://github.com/Lab41/PySEAL
6 https://gmpy2.readthedocs.io/
7 https://m2crypto.readthedocs.io/
8 https://pynacl.readthedocs.io/
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(a) LERNA client
setup computation.

(b) LERNA client
online computation.

(c) LERNA server
online computation.

Fig. 5: LERNA computation time vs. number of clients (M), with fixed input
dimension ℓ = 10K.

from 142 to 145 bits in our benchmark settings. We set the RLWR dimension
to be 211, and the modulus to q = pm · 2254 to guarantee at least 128 bits of
security, according to the hardness estimator 9 of [2].

In the baseline prototype, we set the field size for Shamir’s secret sharing to
be a 257 bit prime, because the secrets are 256 bit curves used in key-agreement.
To set the neighborhood size k and privacy threshold t of Shamir’s secret sharing,
we follow Theorem 3.10 in [8] (section 3.5). In our settings where the number
of parties ranges from M = 400, . . . , 80K, the neighborhood size ranges from
k = 109, . . . , 126, and the privacy threshold ranges from t = 55, . . . , 63 to achieve
2−κ = 2−40 statistical error.

6.2 Benchmarks

Our benchmarks are run on a desktop machine with 32 Gigabyte of memory
and with a single core CPU speed 3.9GHz. Our prototype implementations do
not take advantage of multiple cores. For computation time measurements, we
report an average over 10 experiment runs.

Computation Efficiency. We first benchmark the computation time of our
LERNA prototype with increasing numbers of clients M = 20K . . . , 80K. We
run the prototype with ℓ = 10K dimension inputs vector with random entries
from [0, 264], and fix the corruption threshold at γ = 10%. In Figure 5a, 5b,
and 5c, we respectively plot our client runtime during the setup and the online
phases, and our server runtime during the online phase. Comparing Figure 5a
and 5b, we observe that the setup phase is much heavier compared to the online
phases.

In Figure 5b, and 5c, we observe that the dropout rate affects the computa-
tion time of both committee member clients and the server. This is because our
committee member needs to aggregate masking key shares over the dropout set,
which becomes larger both under higher dropout rates and with a larger number
of clients. Our server similarly aggregates masked input vectors over the online
set, which becomes smaller under higher dropout rates.

9 running code provided at https://lwe-estimator.readthedocs.io

33



(a) LERNA client
online computation.

(b) LERNA server
online computation.

Fig. 6: LERNA computation time vs. input dimension (ℓ), with fixed number of
clients M = 20K. The plot for client setup computation is omitted, as it doesn’t
depend on ℓ.

In Appendix D, we give more detailed numbers about the running time of
different components of our protocols.

We next benchmark the computation time of our protocol with increasing
input dimensions ℓ = 10K . . . , 50K. We run the prototype with M = 20K
clients, and fix the corruption threshold again at γ = 10%. In Figure 6a, and
Figure 6b, we respectively plot our client and server during the online phase.
Since the clients and the server during the setup phase are independent of input
dimensions, we omit their plots.

Communication Efficiency. In Table 3 we report the communication sizes
of our client with increasing input dimensions ℓ = 10K . . . , 50K. The server
communication can be deduced as the sum of all clients. Hence we omit its
table. We run the prototype with M = 20K clients, and input entries from
[0, 264]. We fix the corruption threshold and the dropout rate both at 10%.

Phase ℓ = 10K ℓ = 30K ℓ = 50K

Non-member setup 2.00 (GB) 2.00 (GB) 2.00 (GB)

Member setup 4.44 (GB) 4.44 (GB) 4.44 (GB)

Non-member online 0.18 (MB) 0.54 (MB) 0.91 (MB)

Member online 0.37 (MB) 1.09 (MB) 1.82 (MB)

Table 3: Client communication sizes.

The total offline communication of our clients is indeed heavy, as reported in
Table 3. Each client sends encrypted shares of its masking key to the server. Due
to the large Ring LWR dimension (2048) and modulus (∼400 bits), this phase
requires large communication (2 GB) from each client. Each committee member
additionally receives the encrypted shares from the clients.

Thankfully, the entire offline phase doesn’t need to be synchronized, which
eases the bandwidth requirement. If needed, each client can send a share of its
masking key to a committee member one at a time.
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(a) Client online
computation.

(b) Server online
computation.

(c) Client amortized
computation.

Fig. 7: Computation time comparison between LERNA and [8], with fixed input
dimension ℓ = 10K, and dropout rate γ = 10%. 7b compares the server com-
putation at a smaller number of clients M = 400, . . . , 3200 due to the high cost
of the baseline server. 7c compares the amortized computation time of a single
setup phase plus 20/40/80 online phases. Since the baseline client has negligible
computation during setup, its amortized time equals that shown in 7a.

Comparing with the Baseline. To compare with the baseline, we run both
prototypes with 10K dimension inputs vectors with random entries from [0, 264].
We fix the corruption rate and the dropout rate at γ = 10%.

As discussed in the introduction, we assume a statically corrupted set of
clients throughout the repeated T sessions. A larger T , means a stronger as-
sumption on the staticness and the fraction of corruption. On the flip side, since
our protocol enjoys a re-usable setup across T sessions, a larger T gives better
efficiency. In comparing with the baseline, we not only compare the computation
time of each online iteration (Figure 7a, 7b), but also the amortized time over
different settings of T (Figure 7c). The client computation and communication
cost of running our setup phase (, where a fresh committee is formed and se-
cret masking keys are shared,) are shown in Figure 5a and Table 3. The server
costs of setup for our server and for the baseline solution are negligible. Hence
we omit reporting them here. From Figure 7a, we observe that even our slower
committee member client runs faster than the baseline during each online iter-
ation for M = 20K to M = 80K. As expected, its running time grows faster
with M than the baseline because our committee member needs to aggregate
masking key shares over the dropout set. If the dropout rate is a non-zero con-
stant, as set in our experiment, then the committee client’s work grows linearly
in M . In comparison, the computation of the baseline depends linearly in its
neighborhood size in the communication graph, which is O(logM).

In Figure 7c, we compare the clients’ amortized running time (showing the
heavy member clients for LERNA) of a single setup phase followed by T =
20/40/80 online iterations. Since the baseline client has negligible computa-
tion during setup, its amortized time equals its online computation time, which
doesn’t change with T . We observe an advantage, even for the member clients,
over the baseline when amortized over more than T = 40 online sessions. For ex-
ample, at M = 80K, the total client computation time of 40 LERNA iterations
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equals 22 + 0.5 · 40 = 42(s), according to Table 2. The total time of 40 baseline
iterations is at least 1.2 · 40 = 48(s), according to the plot.

In Figure 7b we are only able to compare the server’s performance at mod-
erate numbers of clients M = 400 . . . 3200, because the baseline server runs too
long when M reaches 10K. But this is enough to illustrate LERNA’s advantage
(concretely, more than 100×) in server computation times.

Comparing with SASH+[24]. As mentioned in “Related Work”, the pro-
tocol SASH+ from [24] reduces aggregating ℓ-dimension inputs to aggregating
n-dimensional homomorphic PRG seeds, where n is the LWR dimension. SASH+
then runs [8] for the latter. Asymptotically, SASH+ reduces the computation cost

of [24] from Õ(κ2+κℓ) to Õ(κ2+κn+ℓ) for the clients, and from Õ(κMℓ+κ2M)

to Õ(κMn+κ2M+ℓM) for the server. (See Appendix 5 for details on the formu-
las, and a comparison with LERNA’s asymptotic efficiency.) We optimistically
estimate that SASH+ reduces the computation cost of [8] by a factor of (ℓ/n).

In our benchmarks, ℓ = 10K, and the LWR dimension n = 2048. We estimate
the server and client computational costs of SASH+ to be 5x smaller than [8] (in
reality, the improvement is smaller due to other computation steps that remain
constant). Under this estimation, we observe that the LERNA server (Figure 7b)
and non-committee member clients (Figure 5b) still significantly outperforms the
SASH+ server and SASH+ clients. However, the cost of a LERNA committee
member (Figure 7a) becomes comparable to (when M is relatively small e.g.
20K) or slower than (when M is larger) a SASH+ client.
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A LERNA Under DCR

A.1 Key Homomorphic Masking based on DCR

In this section, we construct an (exact) key-homomorphic masking scheme based
on the decisional composite residuosity assumption [27, 19], which considers a
modulus that is a product of two distinct primes, N = p · q. If p, q are safe
primes, i.e., p = 2p′ + 1, q = 2q′ + 1 for some primes p′, q′, we say the modulus
N is admissible. We recall some results about the group Z∗

Nr+1 below.

Lemma 4 ([19]). For all λ, r ∈ N, for all N = pq, a product of two distinct λ bit
safe primes, and for all messages m ∈ ZNr , there exists an efficient algorithm
(i.e. polynomial time in λ and r) Dec such that

Pr
[
m = Dec(hm, N, r)

∣∣hm = (1 +N)m mod Nr+1
]
= 1

Lemma 5 ([18, 19]). Let λ be the security parameter. Consider r to be any
polynomial of λ, and any N = pq, a product of two distinct λ bit safe primes.
Let X = {a|a ∈ Z∗

Nr+1 , (a|N) = 1} be the subgroup of Z∗
Nr+1 with jacobi symbol

1 modulo N . Let L = {aNr |a ∈ X} be the subgroup of (Nr)th powers of X. We
have the following.

– The subgroups X,L are cyclic, each with order 2Nrp′q′, and 2p′q′. Knowing
only N , one can efficiently sample (statistically close to uniform) a generator
of L.

– X is a direct product of X = H · L, where H = {(1 + N)a mod Nr+1 : a ∈
ZNr}.

– Assuming the decisional composite residuosity (DCR) assumption, we have

{a← X} ≈c {b← L}.

We choose to use the subgroups X and L instead of Z∗
Nr+1 and the (Nr)th

powers because X,L are cyclic, which is convenient for proving security. In the
following, we construct a masking scheme for messages in ZNr for any admissible
N and polynomial r = r(λ), based on the DCR assumption.

Construction 3 (key-homomorphic masking by DCR).

– Setup(1λ, ℓ, pm): sample an admissible 2λ bit modulus N = (2p′+1) ·(2q′+1),
and choose r the smallest integer such that Nr > pm. Output pp = (N, r).
The key space is K = Z2p′q′ , the message space, ZNr , and the mask space
Z∗
Nr+1 .

Note that his Setup algorithm is not public coin. To use this masking scheme
in LERNA, we need each client enter the protocol with public parameters
HM.pp correctly computed by a trusted setup.

– KeyGen(pp): sample a random value k ← ⌊N/2⌋ and output k.
Observe that the order of L is 2p′q′, and that k mod 2p′q′ is statistically close
to uniform over Z2p′q′ .
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– TagGen(pp): sample ℓ random elements (forming a vector) v ∈ Lℓ, each as
follows. First sample ui ← Z∗

Nr+1 , and compute the jacobi symbol (ui|N). If

it’s 1, then compute vi = uNr

. Otherwise, let a be any fixed constant with
Jacobi symbol −1, and compute a component vi = (au)N

r

. Output τ = v.
– Mask(pp, k, τ,m): parse τ as v ∈ Z∗ℓ

Nr+1 , and output the masked message cm,
with each component cm,i = (1 +N)mivki mod Nr+1.

– UnMask(pp, cm, c0): compute (component-wise) hm = cm/c0 mod Nr+1, and
then output the message as m← Dec(hm, N, r). If Dec fails, then output ⊥.

– Eval(pp, L, {ci}) parse L as d integer coefficients u1, . . . , ud. Output the eval-
uated mask cL =

∏
i∈[d c

ui
i mod Nr+1.

We briefly verify the correctness of our scheme in the 1-dimensional case (ℓ = 1).
Let τ = v be any tag and k be any key, and m ∈ ZNr be any message. Then the
masked message cM and a mask for zero are computed

cm = (1 +N)mvk ∈ mod Nr+1, c0 = vk ∈ mod Nr+1.

UnMask first computes hm = cm/c0 = (1 + N)m mod Nr+1, and then m ←
Dec(hm, N, r). By Lemma 4, Dec(hm, N, r) exactly recovers the message m,
hence correctness holds.

To prove the security of the above construction, we first state and prove the
following lemma. The proof argument is similar to that of Theorem 2 (EDDH
from DCR) in [23].

Lemma 6. Let λ be the security parameter. Consider any r that’s polynomial in
λ, and any N = pq, a product of two λ bit safe primes (i.e. p = 2p′+1, q = 2q′+1
for two primes p′, q′). Let X,L,H be the subgroups defined in Lemma 5, and
let G(L) denote the set of generators of L. Assuming the decisional composite
residuosity (DCR) assumption, we have{

g, ga, gb, gab
∣∣ g ← G(L); a, b← ⌊N/2⌋

}
≈c

{
g, ga, gb, gabh

∣∣ g ← G(L);h← H; a, b← ⌊N/2⌋
}
.

Proof. Consider the following hybrids: For notational convenience, let od(L) =
2p′q′ denote the order of the group L.

H1.
{
g, ga, gb, gab

∣∣ g ← G(L); a, b← ⌊N/2⌋
}
.

H2.
{
g, ga, gb, gab

∣∣ g ← G(L); a, b← [od(L)]
}
.

We have H1 ≈ H0 because for a, b ← ⌊N/2⌋, a, b mod od(L) are close to
uniform over Zod.

H3.
{
g, ga, gb, gab

∣∣ g ← G(L); a← [od(L)]; b← [Nrod(L)]
}
.

We have H2 ≡ H1.
H4.

{
g, x, gb, xb

∣∣ g ← G(L);x← X; b← [Nrod(L)]
}
.

Assuming DCR, we have H3 ≈c H2 by a direct application of Lemma 5.
H5.

{
g, vh, gb1 , vb1hb2

∣∣ g ← G(L); v ← L;h← H; b← [Nrod(L)]
}
, where b1 = b

mod od(L), and b2 = b mod Nr.
We have H4 ≡ H3 because X = H · L (Lemma 5).
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H6.
{
g, vh, gb, vbhd

∣∣
g ← G(L); v ← L;h← H; b← [od(L)], d← [Nr]

}
.

We have H4 ≡ H3 by Chinese remainder theorem.
H7.

{
g, x, gb, xbh

∣∣ g ← G(L);x← X;h← H; b← [od(L)]
}
.

We have H5 ≡ H4, again because X = H · L.
H8.

{
g, ga, gb, gabh

∣∣ g ← G(L);h← H; a, b← [od(L)]
}
.

Assuming DCR, have H6 ≈c H5, symmetrical to H3 ≈c H2.
H9.

{
g, ga, gb, gabh

∣∣ g ← G(L);h← H; a, b← ⌊N/2⌋
}
.

We have H7 ≈ H6, symmetrical to H1 ≈ H0.

□

Lemma 7. For any modulus of the form Nr where N is a product of two dis-
tinct λ bit safe primes, and r = r(λ) is any polynomial, Construction 3 is a
(exact) key-homomorphic masking scheme for messages in ZNr under the DCR
assumption.

Proof. The correctness and key-homomorphism of the above construction are
clear. We show that the above construction is indeed secure per Definition 4.
For simplicity, we again show the 1-dimensional case (ℓ = 1). We define a series

of hybrids that starts with exactly the experiment ExpA,1
Mask(1

λ) and ends with

the experiment ExpA,0
Mask(1

λ). Let Ai be the probability that A outputs 1 in Hi.

H1. This hybrid is exactly the experiment ExpA,1
Mask. The challenger first samples

a masking key k ← ⌊N/2⌋, and then repeat the following until A outputs a
bit b′ and stops.
(a) The challenger samples ui ← Z∗

Nr+1 , and computes either vi = uNr

i or

vi = (aui)
Nr

as the tag for iteration i, depending on the Jacobi symbol
(ui|N). It sends vi, ui to A. (The randomness for the sampling is ui.)

(b) The challenger receives a message mi from A, computes the masked
message ci = (1 +N)mivki , and sends ci to A.

H2. In this hybrid, the challenger proceeds identically as before, except that it
samples the tag vi differently. In the beginning of the experiment, it samples
a random generator g for L.
Next, during each iteration i, it samples the random value ũi differently. It
samples random exponents ai ← ZNr+1 and bi ← ⌊N/2⌋. With probability
1/2, it either computes ũi = (1+N)aigbi or ũi = (1+N)aigbi/a. (Recall a
is a fixed constant with Jacobi symbol -1). Finally, it computes the tag ṽi
from ũi as in the previous hybrid:

ṽi =
(
(1 +N)aigbi

)Nr

= gbiN
r

.

In this hybrid, the masked message ci is therefore computed as

c̃i = (1 +N)mi ṽki = (1 +N)migbikN
r

.

By the properties of listed in Lemma 5, this hybrid is statistically close to
the previous one.
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H3. In this hybrid, the challenger computes c̃i differently. It samples di ← ZNr ,
and computes

c̃i = (1 +N)migbik2N
r

(1 +N)di

= (1 +N)mi+digkbi2N
r

.

By Lemma 6, this hybrid is computationally close to the previous one.
H4. In this hybrid, the challenger computes c̃i differently. It samples di ← ZNr ,

and computes
c̃i = (1 +N)digbik2N

r

.

Since di is randomly sampled from ZNr , this hybrid is identical to the
previous one. Hence |A2 −A3| = 0.

H5. H4: In this hybrid, the challenger computes c̃i differently:

c̃i = gkbi2N
r

.

By Lemma 6 again, this hybrid is computationally close to the previous one,
hence |A3 −A4| < negl(λ).

H6. In this hybrid, the challenger follows the experiment ExpA,0
Mask. In particular,

compared to the previous hybrid, it samples ũi differently as ũi ← Z∗
Nr+1 .

In this hybrid, we have

ṽi = ũ2Nr

i or (aũi)
2Nr

, c̃i = ṽki .

By the properties listed in Lemma 5, this hybrid is statistically close to the
previous one, hence |A4 −A5| < negl(λ).

□

Extension to Class Groups. We note that the above construction using DCR
can be straightforwardly generalized to using the group theoretic framework
introduced in [1]. In particular, when the framework is instantiated under class
groups, the above construction has a public coin Setup algorithm, which avoids
the need for a trusted setup as under the DCR assumption.

A.2 Instantiating LERNA Under DCR

When instantiating LERNA with the DCR-based exact homomorphic masking
scheme (Construction 3), we need to address two issues.

First, the Setup algorithm cannot be a public coin because the scheme is only
secure when the factoring of N is hidden. To use the scheme, LERNA needs to
assume a trusted setup that computes the public parameters HM.pp. As noted
at the end of Appendix A.1, this issue is avoided by extending the construction
to use class groups.

Second, the key space of the scheme K = Z2p′q′ has a modulus 2p′q′, which
is not known to the clients or the server. To secret share masking keys in K, we
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instantiate the flat secret sharing scheme with the secret space M = Z, with
bounded range ⌊N/2⌋.

With the above issues addressed, we now set the message modulus pm for the
masking scheme. Since the scheme has exact key-homomorphism, there is no need
for smudging noise in the LERNA protocol at all, i.e., Be = 0. Consequently, we
can simply set the message scaling factor∆ = 1, and Bmsg = ∆MBx = MBx. As
specified in Setup, the message modulus of the masking scheme has bit length
at most 2λ + logM + logB, and the mask modulus has bit length at most
4λ+logM +logB. Here λ is the computational security parameter for Paillier’s
encryption scheme (e.g., λ = 4096 bits).

B Secure Aggregation in The UC Framework

The UC framework [15] captures the correctness and security goals of a protocol
in an ideal functionality F , such as our secure aggregation functionality FSecAgg

in Figure Fig. 8. In the ideal protocol execution, an environment Z provides
inputs to and reads outputs from a set of dummy parties, who simply forward
messages between the environment Z and the functionality F . The ideal adver-
sary/simulator S does not directly corrupt the dummy parties. Instead, it sends
corruption commands to the functionality F . How much information is leaked
to S, as well as what adversarial influences are allowed from S, are completely
specified by the behavior of the functionality F .

In contrast, in the real protocol execution, the environment Z provides inputs
to and reads outputs from the actual protocol parties. An adversary A directly
issues corruption commands to each party. When the adversary A is allowed to
issue such commands and the effect of those commands are specific to different
types of adversaries.

In both the ideal and the real protocol executions, the environment Z com-
municates with the adversary (S and A, respectively) freely. A protocol Π is
said to UC-realize a functionality F if for all efficient adversary A, there exists
an efficient ideal adversary / simulator S such that no efficient environment Z
can distinguish a real protocol Π against an ideal protocol with the functionality
F .

Next, we provide more details on our secure aggregation protocol and the
ideal aggregation functionality FSecAgg.

Protocol Execution of Secure Aggregation. In this work, we construct a
protocol between M clients {Pi} and a server S. The protocol has a single setup
phase, and multiple online phases (also referred to as aggregation sessions). In the
beginning of the protocol execution, each client obtains (from the environment
Z) as its input a list of public keys of other clients. They then execute the setup
phase of the protocol. In the beginning of each aggregation session, each client
obtains a new aggregation input, and executes the online phase of the protocol.
The server outputs the aggregation result at the end of each aggregation session.

In our construction, we describe a round-based protocol, assuming every
party has access to a synchronized communication channel. Formally, this is
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modeled by a functionality FSync (as described in the [15]). The functionality
FSync keeps a round counter, and only advances the counter, (signaling a round
is complete,) after all honest online parties’ messages of the current round are
received. For ease of presentation, in the main body (Section 4) we describe the
round-based protocol without explicitly mentioning the functionality FSync.

Note that although our real protocol is round-based, our ideal functionality
is defined in an (asynchronized) event-driven way. This does not trivially al-
low the environment Z to distinguish the real from the ideal protocol, because
the simulator S in the ideal protocol execution can simulate the round based
communication pattern internally when communicating with the environment
Z.
Corruption in Secure Aggregation. In this work, we consider two types of
corruptions. They respectively model colluding parties and dropout clients. In
the following, we describe when the adversary A is allowed to issue the two types
of corruption commands, and how a corrupted party behaves.

The first type of corruption models a statically chosen set of colluding parties,
which may include the server S. To corrupt a party of the first type, the adversary
A (in the real protocol execution) sends a command (corrupt, 1) to the target
party (which could be a client or the server). If A is a semi-honest adversary,
then the corrupted party sends its state to A, and forwards all later messages to
A. If A is a malicious adversary, then the corrupted party sends its state to A,
and starts to execute arbitrary code as demanded by A. We only consider static
corruption of the first type, where the adversary A is only allowed to issue the
(corrupt, 1) command at the very beginning of the protocol execution.

The second type of corruption models a statically chosen set of dropout
clients during each aggregation session. To corrupt a party of the second type, the
adversary sends a command (corrupt, 2) to the target party (which can only be a
client). The corrupted party ignores any following messages in the protocol until
the next aggregation session starts. The start of the next aggregation section is
signaled by a new aggregation input from the environment Z. We require the
adversary A to decide a potential set Dt ⊆ [M ] of dropout clients for every
aggregation session t, all at the beginning of the protocol execution. Then, the
adversary A is allowed to issue the (corrupt, 2) command at any time during
each aggregation session t to any client Pi ∈ Dt from the potential dropout set
in the current session.

Note that in the above modeling, each aggregation session starts with the
full set of parties, so the dropout sets Dt1 , Dt2 for different sessions can overlap
in arbitrary ways.

The FSecAgg Functionality. The functionality Fδ,M,T,ℓ,SampR
SecAgg modeling T ses-

sions of secure aggregation among M parties with dropout threshold 0 < δ < 1
is described in Fig. 8.

For technical reasons, the functionality is parameterized by a modulus sam-
pling function SampR, instead of a fixed input modulus R. In the beginning,
before the first iteration, the functionality samples a modulus R ← SampR().
In each iteration, parties hold new input vectors xi ∈ Zℓ

R of dimension ℓ. Ag-
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gregation is performed component-wise and the server recovers xU =
∑

i∈U xi

mod R also of dimension ℓ.

Functionality Fδ,M,T,ℓ,SampR
SecAgg

FSecAgg is parameterized by a fraction 0 < δ < 1, a modulus sampling func-
tion SampR and runs with M clients {Pi}i∈[M ] and a server S for T aggregation
sub-sessions, also referred to as iterations. The inputs at each iteration are ℓ di-
mensional vectors in ZR (i.e., xi ∈ Zℓ

R), where the modulus R ← SampR() is
sampled at the beginning, before the first iteration.
For iteration t = 1, . . . , T :

1. FSecAgg receives an input message (sid, i,xi, t) from every client Pi, where sid
is the session number, and t is the iteration number. Upon receiving an input,
it notifies the adversary S which client has sent its input.

2. Upon receiving all inputs, FSecAgg accepts a message (sid, D, t) from the adver-
sary S, where D ⊆ [M ] specifies the set of drop-outs in the current iteration.

3. Let U = [M ] \ D. If U > (1 − δ)M then FSecAgg computes xU =
∑

i∈U xi

mod R, otherwise, it sets sum = ⊥. If any of the summed input is ill-
formed, (i.e., not in Zℓ

R), then the sum is also set to ⊥. Finally, FSecAgg sends
(sid,xU , D, t) to the server.

Fig. 8: The ideal functionality for secure aggregation.

The fact that FSecAgg does not necessarily computes aggregation over a fixed
modulus is not an issue for our application. Since the goal of the LERNA frame-
work is to compute aggregation over the integers Zℓ, any sampled modulus R
that’s large enough to avoid wrap-around of the results suffices. Our two instan-
tiations of the framework (Section 4.4, Appendix A) both achieves the function-
ality FSecAgg with such modulus sampling functions.

Another technical detail about the functionality FSecAgg is that, in step 2,
it accepts a message (sid, D, t) from the ideal adversary S to specify a set D of
dropout clients. This may seem redundant since in the ideal protocol the func-
tionality FSecAgg receives any corruption command directly from the adversary
S. In particular, it learns directly which dummy clients are dropped out. (See the
“Corruption in Secure Aggregation” section above for more details.) Why not
just define FSecAgg to aggregate over the remaining online clients? The answer
is that in the malicious setting, the adversary A in the real protocol can make a
corrupted client (of type 1) under its control to also behave like it has dropped
out. To model this additional adversarial influence, we allow S to specify the
“effectively dropout” set D as a separate message to the functionality.

Note on correctness. Since FSecAgg allows the ideal adversary S to choose
arbitrary dropout sets D, S may make the functionality always output ⊥ by
setting D to be larger than a δ fraction. In this case, correctness is vacuous. A
trivial protocol, which lets the server S always output (sid,⊥, [M ], t) for all t,
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UC-realizes the functionality FSecAgg. To rule out this trivial protocol, we say
that a semi-honest secure aggregation protocol is non-trivial if for every iteration
t ∈ [T ] the server outputs (sid, ∗, D, t) where D ⊆ Dt. The malicious variant is
defined analogously with the requirement D ⊆ Dt ∪ C, where C is the set of
maliciously corrupted clients.

C Security Proof of LERNA in UC

Theorem 2. Let λ, κ be the computational and statistical security parameters.
For all input range bound Bx with bit length bounded by poly(λ), input dimension
ℓ, number of clients M , that are polynomials in λ, number of online sessions T
that is polynomial in λ, κ, and corruption and dropout thresholds γ, δ such that
δ+γ < 1, the semi-honest (malicious resp.) protocol in Section 4 is a non-trivial

protocol that UC-realizes the secure aggregation functionality Fδ,M,T,ℓ,SampR
SecAgg in

the presence of semi-honest (malicious resp.) adversaries that statically corrupt
less than γM clients and the server.

The modulus sampling function SampR depends on the concrete instantiations
of the key-homomorphic masking scheme, but always samples a modulus R ≥
M ·Bx to avoid wrap-around in the aggregation result.

The modulus sampling function SampR in the LWR instantiation (Section 4.4)
outputs exactly the desired modulus R = M ·Bx. In the DCR instantiation (Ap-
pendix A), SampR outputs a modulus of the form R = Nr ≥ M · Bx, where N
is an RSA modulus, and r is the smallest integer to satisfy the requirement.

In the following, we sketch a proof for the malicious variant. The semi-honest
variant follows analogously.

Proof (of Theorem 2, malicious ver.). We first check non-triviality, which requires
the dropout set D output by an honest server at any iteration t does not exceed
the adversarially chosen dropout set Dt plus the corruption set C. By inspection,
our sever indeed always outputs the set D of clients who don’t send a message
during the online step 2, which is either actually dropped out, or corrupted.

Next, we describe an ideal adversary/simulator S that externally interacts
with the functionality FSecAgg and the environment Z, while internally simulates
a protocol execution with an instance of the adversary A.

When interacting with Z, S simply forwards all communication between A
and Z. During the simulated protocol execution, S simulates messages from
honest parties to interact internally with A. Importantly, S needs to simulate
these messages without knowing honest parties’ inputs while ensuring the sim-
ulated view of A is indistinguishable from the real-world execution. During the
simulated execution, when A issues any corruption command, S forwards them
to FSecAgg.

We show that the view of Z, consisting of

– the inputs supplied by Z to honest parties,
– the view of A, and
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– the output of honest parties, which only exists when the server S is honest,

in the ideal execution and in a real execution are computationally close. Hence Z
cannot distinguish the two executions. In the following, let C denotes the set of
corrupted parties during the simulation, and H denote the set of (online) honest
parties.

The Case of an Honest Server. When the server S is not corrupted, A in
the simulated execution only sees the following messages:

– Setup: shares of honest clients’ masking keys {kij}i∈H
j∈C ;

– Online: an online set U ⊆ [M ], and honest signatures σi(hU )i∈H .

Since none of these messages depend on honest clients’ inputs, S can simulate the
honest clients and the server by simply following the protocol, without knowing
their inputs. In particular, S simulates the honest clients with input vectors 0.
S also needs to make sure FSecAgg outputs (to the dummy server S) consistent

aggregation results with the real execution. In particular, through interacting
with FSecAgg, S needs to emulate the adversarial influences that A would make
on the results.

First consider the case where the honest server outputs (sid,⊥, D, t) in the
simulation. If |D| ≥ δM , then clearly this is caused by too many clients dropping
out during the simulation. To emulate this effect, S simply sends D to FSecAgg

(step 2). According to the functionality, FSecAgg outputs (sid,⊥, D, t) to the
dummy server, as desired.

If |D| < δM , then by correctness (Lemma 3), we conclude that there exists
at least one corrupted client (which cause the server to output ⊥, through ad-
versarial messages). To emulate this effect, S sends D to FSecAgg, and sets one
of the corrupted client’s inputs to ⊥. According to the functionality, FSecAgg

outputs (sid,⊥, D, t) to the dummy server, due to an ill-formed summand.
Next, consider the case where the server outputs (sid, x̃U , D, t) during the

simulation. Recall that S simulates honest clients by setting their inputs to 0.
We claim the aggregation result x̃U is exactly the effective sum of corrupted
parties, which follows from the key-homomorphic property (Definition 2, 3) of
our masking scheme. To emulate this effect, S sends D to FSecAgg, and sets one
(if there is any) of the corrupted client’s input to x̃U , and the rest to 0.

The Case of a Corrupted Server. When the server S is corrupted, the
remaining honest clients don’t have any output in both the ideal and the real
execution. S only needs to make sure the view of A in the simulated execution
is consistent with the honest clients’ input. The view of A in the simulated
execution consists of the following:

– Setup: shares of honest parties’ masking keys {kij}i∈H
j∈C ;

– Online: The masked input vectors

{zi ← Mask(HM.pp, ki, τ,∆xi)}i∈H

from honest clients, the honest signatures {σi(hUi
)}i∈H where {Ui} are pos-

sibly different online sets sent to honest client {Pi}H , and the reconstruction
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vectors
{wj = Mask(HM.pp,

∑
i∈Uj

kij , τ,0) + ej}i∈H∩Q

from honest committee members.

We first note that in the protocol, an honest committee member only sends a
reconstruction message wj (online step 5) if it sees at least (1 + γ)M/2 valid
signatures on Uj . We claim that there exists at most one such set, denoted U∗,
with enough valid signatures.

Claim 4. For each online session t, there exists at most one set U∗ among all
online sets {Uj}H∩Q received by honest committee members, that have at least
(1 + γ)M/2 valid signatures.

Proof. Since each such set requires at least (1 + γ)M/2 valid signatures, more
than (1 + γ)M/2 − γM = (1 − γ)M/2 are from honest clients. Two such sets
would require more than (1 − γ)M honest signatures, which is more than the
number of honest clients. This is impossible, as each honest client creates at
most one such signature. □

When such a set U∗ exists, and when enough honest committee members send
reconstruction vectors for U∗ to the corrupted server, the view of A allows it
to recover the sum of honest inputs xH∩U∗ included in U∗. In order to simulate
such a view, S clearly needs to learn the sum xH∩U∗ from FSecAgg, which is
possible by setting D = [M ] \ U∗, and sending (sid, D, t) to FSecAgg in step 2.

However, there seems to be a timing issue. S only learns the set U∗ and
hence the sum xH∩U∗ after online step 4 of the simulated protocol, where the
corrupted server sends signatures on Uj to committee members Pj . This means
S needs to simulate the masked input vectors {zi}i∈H , during online step 1,
without knowing the sum xH∩U∗ .

To solve this issue, the strategy is to set the simulated masked input vectors
to empty masks of 0: z̃i ← Mask(HM.pp, ki, τ,0). Later during online step 5 S,
already knowing the sum xH∩U∗ , program it into the simulated reconstruction
vectors {w̃i}H∩Q, such that they reconstructs to the correct result. This is pos-
sible due to the key-homomorphic property of the masking scheme. We describe
the simulation strategy in more detail below.

– Setup phase. In Step 1, honest clients are supposed to sample their masking
keys {ki}i∈H and secret shares them with the committee. S simulates hon-
est parties simply following the protocol. It obtains key shares {kij}j∈Q∩C =
Share(SS.pp, ki), encrypts them, and sends them to the server.
In Step 2, S receives encrypted shares from corrupted clients. It decrypts them
and obtains {kij}i∈C

j∈H∩Q. In case of decryption failures, it sets corresponding
shares to some default value.

– Online phase. In Step 1, honest clients are supposed to compute masked
inputs vectors: zi = Mask(HM.pp, ki, τ,∆xi), with honest input vector xi. S
simulates those by computing (empty) masks of 0: z̃i ← Mask(HM.pp, ki, τ,0).
We will rely on the security of secret sharing to argue the masking keys ki are
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hidden from A, and then invoke the security of the masking scheme to argue
{zi}H and {z̃i}H are indistinguishable.

In Steps 2, 3 and 4, the (malicious) server sends hUi
to clients Pi for their

signatures, and sends collected signatures on Uj to committee members Pj . S
simulates the honest clients and committee members following the protocol.
As argued earlier, there is a unique U∗ = Uj , received by some honest client
Pj that has enough valid signatures. (The case where no such U∗ exists is
analogous but only simpler, hence is omitted.)

The simulator now pauses to interact with FSecAgg at Step 2.

– Interacting with FSecAgg. In Step 1, FSecAgg accepts inputs for corrupted
clients from S, which are set to 0. FSecAgg also notifies S whenever an input
is received from an honest dummy client. S proceeds in the above internally
simulated protocol during online step 1 according to these notifications.

In Step 2, S sets D̃ to be the set of honest parties in U∗, i.e., D̃ = H∩U∗, and
sends (sid, D̃, t) to FSecAgg. The functionality replies with the sum xH∩U∗ .

– Online phase cont. In Step 5, honest committee members who receive U∗

with enough valid signatures are supposed to compute the reconstruction vec-
tors wj = Mask(HM.pp,

∑
i∈U∗ kij , τ,0) + ej . To simulate wi, first note that

by almost key homomorphism of HM, we have

wj ≈ Mask(HM.pp,
∑

i∈C∩U∗

kij , τ,0)

+Mask(HM.pp,
∑

i∈H∩U∗

kij , τ,0) + ej ,

where we abuse notation to homomorphically “add” (+) two masks by im-
plicitly running the Eval algorithm. We use this notation in the following also
for other linear functions.

S can simulate the first term Mask(HM.pp,
∑

i∈C∩U∗ kij , τ,0) exactly using
the received shares during the setup phase. The goal is to simulate the second
term – which depends on key shares kij of an honest masking key ki to an
honest committee member – without leaking additional information about ki
beyond what’s already known to A. In particular, these include

• The simulated message z̃i, which is an empty mask computed under ki.

• The corrupted shares of ki, which are {kij′}j′∈C∩Q.

To this end, we first invoke γ-simulation privacy (Definition 7) to simulate
the honest share kij according to the corrupted shares {kij′}j′∈C∩Q, and the
masking key itself ki. We will next invoke flatness (Definition 8) and key-
homomorphism to replace the use of ki with an empty mask under ki, i.e. the
message z̃i.

In more detail, by simulation privacy and flatness, there exists a deterministic
linear function Extj that computes kij = Extj(ki, {kij′}j′∈C∩Q) with integer
coefficients bounded by O(log κ), where κ is the statistical security parameter.
We further separate the coefficient before the secret ki out, and write kij =
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cj · ki + Ext′j({kij′}j′∈C∩Q). We have∑
i∈H∩U∗

kij = cj
( ∑
i∈H∩U∗

ki
)
+

( ∑
i∈H∩U∗

Ext′j({kij′}j′∈C∩Q)
)

︸ ︷︷ ︸
fi

,

where we call the right term fj for short, which S can simulate exactly. Finally,
by approximate key-homomorhpism, we can simulate the second term as

Mask(HM.pp,
∑

i∈H∩U∗

kij , τ,0) + ej

≈ cj ·Mask(HM.pp,
∑

i∈H∩U∗

ki, τ,0)

+Mask(HM.pp, fj , τ,0) + ej

≈ cj
∑

i∈H∩U∗

z̃i +Mask(HM.pp, fCShare, τ,0) + ej

The last thing to do is to program the sum xH∩U∗ in to the simulated w̃j

vectors. Combining the above, S simulate w̃j as

w̃j = Mask(HM.pp,
∑

i∈C∩U∗

kij , τ,0)

+ cj
∑

i∈H∩U∗

z̃i +Mask(HM.pp, fj , τ,0)

+Mask(HM.pp, 0, τ,−xH∩U∗) + ej .

In the above arguments using ε-approximate key-homomorhpism, we assume
that the noise ej is sampled uniformly from a sufficiently large range [Be] to
smudge the distribution differences introduced by homomorphic evaluation.
Inspecting the coefficients shows that Be ≥ O(ε · log κ ·M · 2κ) suffices.

A similar series of hybrid experiments to those in Section 4.3 concludes the proof.
□

D Experimental Evaluation: Further Results

We briefly summarize the major computation tasks of LERNA’s clients and the
server. In the setup phase, the client tasks are the following.

– ShareAndEnc: Each client secret shares its masking key, and encrypt each share
under the target share holder’s public key.

– DecShares: Each committee member receives encrypted key shares and de-
crypts them.

– SumShares: Each committee member pre-computes a sum over received key
shares. Later during each online phase, when clients drop out, the committee
member subtracts their shares from the pre-computed sum.
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In the online phase, the client tasks are the following.

– MaskInputs: Each client masks its input vector.
– SubShares: Each committee member learns the dropout clients, and subtracts

their key shares from the pre-computed sum.
– MaskShares: Each committee member computes an empty mask using its ag-

gregated key share.

In the setup phase, the server has essentially no computation task beyond for-
warding messages. In the online phase, the server tasks are the following.

– SumMasks: Homomorphically sum masked input vectors.
– Recon: Homomorphically evaluate the Recon algorithm over received empty

masks.

Table 4 records computation times of a committee member client, broken
down by major computation tasks, when the dropout rate is fixed at 10%. We
omit the table for a non-member client, since it essentially contains a subset of
the rows, namely ShareAndEnc in the setup phase, and MaskInputs in the online
phase.

Tasks M=20K (s) M=40K (s) M=80K (s)

ShareAndEnc 3.75 3.76 3.75

DecShares 3.22 6.71 13.6

SumShares 1.13 2.29 4.57

(Setup) Total 8.10 12.76 22.00

MaskInputs 0.06 0.06 0.06

SubShares 0.10 0.18 0.40

MaskShares 0.05 0.04 0.05

(Online) Total 0.21 0.28 0.50

Table 4: Committee member client computation times (s).

Table 5 records computation times of the server, similar to Table 4. Since
that the major computation tasks for our server all happen in the online phase,
we omit its Setup phase.

Tasks M=20K (s) M=40K (s) M=80K (s)

SumMasks 4.67 9.75 18.92

Recon 0.12 0.13 0.13

(Online) Total 4.79 9.88 19.05

Table 5: Server computation times (s).
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E LERNA with Small Number of Clients

When running LERNA with a small number of clients, e.g. M ≤ 80 it becomes
suitable to use Shamir’s secret sharing scheme as an alternative to the committee
based flat secret sharing constructed in Section 3.2.

1. There is no need for running a committee based scheme when the number of
clients M is small.

2. Even though Shamir cannot achieve “flatness” per Definition 8, combined
with the standard trick of “clearing the denominator”, Shamir’s reconstruc-
tion coefficients become bounded by (M !)2, wich is tolerable for small M .

We note that since there is no longer a fixed committee throughout multiple
iterations in this setting, this variant with small number of clients tolerates
adaptive corruption.

In the following, we first introduce two variants of Shamir, to be used with
the LWR and DCR based masking scheme respectively. We then highlight the
technical changes to the protocol and parameter settings when instantiated with
Shamir’s secret sharing.

E.1 Two Variants of Shamir

We briefly describe two known variants of Shamir suitable for using with the
LWR and DCR based masking scheme respectively.

Shamir with Bounded Recon Coefficients. As described in the beginning of
Section 3.2, since the LWR based masking scheme has only approximate key-
homomorphism, evaluating Recon homomorphically creates an additive noise,
which grows with the magnitude of the coefficients of Recon.

The usual Shamir’s secret sharing works over a field and relies on Lagrange
interpolation for reconstruction. Due to the use of division for computing the
Lagrange coefficients, they can be arbitrarily large (in the field). To avoid the
divisions, a standard trick is to multiply a factor α = (M !) to each coefficient to
“clear the denominator”. The multiplied coefficients are all bounded by (M !)2.
As a result, this variant does not reconstruct the original secret, but α times the
secret. We refer the reader to [12] for more details of this trick.

Construction 4 ([12]). LetM be the number of share holders, q be the modulus
of the secret space Zq, and t be the privacy threshold.

– Share(s) samples a degree t random polynomial f such that f(0) = s, and
with other coefficients in Zq. Output {sj}j∈[M ], where sj = f(j).

– Reconα(W, {sj}j∈W ) outputs ⊥ if |W | ≤ t. Otherwise, pick the first t + 1
indices in W as W ′, let {lj}W ′ be the Lagrange coefficients for interpolating
those points to position 0, and outputs s′ =

∑
j∈W ′(αlj) · sj mod q.

Note that the security proof of LERNA relies on extending shares of 0 for
corrupted parties into a full set of shares consistent with any secret s (formally
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defined through the Ext algorithm in Definition 7). The usual Shamir’s scheme
satisfies this requirement: given any subset of shares below the reconstruction
threshold, Ext can interpolate them into a polynomial f such that f(0) = s,
for any s, and then compute the rest of the shares using f . However, this Ext
algorithm again has arbitrarily large coefficients, due to the use of division in
polynomial interpolation.

We need to use the trick of “clearing the denominator” again with Ext to
make its coefficients bounded by (M !)2. We call this scaled version Extα. Extα
can only extend to a set of shares scaled by α = M !.

Shamir over Bounded Integers. As mentioned in the overview, since the
DCR based masking scheme has an unknown modulus for its secret space, it
needs a secret sharing scheme over bounded integers.

First, as there is no division over the integers this variant requires the same
trick of “clearing the denominator” to avoid computing division for reconstruc-
tion coefficients. Second, Shamir’s scheme relies on sampling a random poly-
nomial to share a secret. But how should one sample a random polynomial
over the integers? [13] shows that for sharing secrets of bounded magnitude by
B, it suffices to sample a polynomial with random coefficients from the range
2B ·M · (M !)2 · 2κ, where κ is the statistical security parameter.

Construction 5 ([13]). Let M be the number of share holders, B be the up-
perbound on the integer secret values, and t be the privacy threshold.

– Share(s) samples a random degree t polynomial f such that f(0) = s, and
other coefficients from [0, . . . , 2BM(M !)22κ]. Output {sj}j∈[M ] where sj =
f(j).

– Reconα(W, {sj}j∈W ) outputs ⊥ if |W | ≤ t. Otherwise, pick the first t +
1 indices in W as W ′, let {lj}W ′ be the Lagrange coefficients (in Q) for
interpolating those points to position 0. Note that αlj ∈ Z. Output s′ =∑

j∈W ′(αlj) · sj over Z.

Similar to the first variant, there exists an algorithm Extα, satisfying an anal-
ogous security definition to Definition 7, that extends shares of 0 for corrupted
parties into a full set of scaled-by-α shares consistent with any secret s.

E.2 LERNA Protocol with Shamir

Due to the fact that the two variants of Shamir are no longer committee based,
and both have a Reconα algorithm that recovers not the origional secret s, but
α · s, we need to make some minor changes to the LERNA protocol.

Setup Phase. The only change is that the secret sharing scheme doesn’t have a
SS.Setup algorithm to sample a committeeQ anymore. Each client Pi in step 1 di-
rectly secret shares its masking key ki to all other clients {kij}j∈[N ] ← Share(ki),
and then proceeds as in Figure 1.

Online Phase.
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Online Phase: iteration t = 1, ..., T
Inputs to Pi: The session id sid, and an integer vector xi ∈ Zℓ.

1. Each client Pi obtains common tag τ as in Figure 2, and computes

zi ← Mask(HM.pp, ki, τ,∆ · α−2 · xi),

and sends a message (sid, i, zi, t) to the server S.
3. Each client Pj checks that |U | > (1− δ)M , and computes

wj = Mask(HM.pp,
∑

i∈U α · ki
j , τ,0) + ej ,

where ej ← [Be]
ℓ is a uniformly sampled noise from range Be. Pj sends a

message (sid, j,wj , t) to the server S.
4. The server S proceeds as in Figure 2 to homomorphically sum masked inputs

as csum, and then homomorphically multiply csum with α2 to obtain cα,sum.
It next runs the Reconα algorithm over the vectors {wi}

c0 = Eval
(
HM.pp,Reconα(W, ·), {wi}

)
,

and uses c0 as the “empty mask” to recover x′
U ← UnMask(HM.pp, cα,sum, c0),

and rounds x′
U by ∆ to obtain xU . It outputs a message (sid,xU , D, t).

Fig. 9: LERNA protocol for the online phase with Shamir.

1. As explained in the previous section, the two variants of Shamir have a Extα
algorithm, that can only be used for simulating scaled shares for the honest
clients. Hence in step 3 of the online phase, each honest client creates its
empty mask wj under scaled shares

∑
i∈U α · kij for the proof to go through.

2. The two variants have a Reconα algorithm that reconstructs the secret s scaled
by α. In step 4, the server runs Reconα homomorphically over reconstruction
vectors wi, which contain shares that are already scaled by α as required
above. The resulting empty mask c0 is effectively under the key α2kU . To
match this additional factor of α2 in c0, the server needs to homomorphically
scale csum also by α2. And to cancel the effect of scaling csum, each client
needs to multiplies its input by α−2 mod pm in step 1 before masking it.

The above changes are highlighted by blue in Figure 9.

Parameter Settings for LWR Instantiation. There are two parameters we
need to set, the noise magnitude Be and the message scaling factor ∆. Be needs
to be sufficiently large to smudge the homomorphic noise created by homomor-
phically evaluating Extα during simulation. Since Extα has coefficients bounded
by (M !)2, it suffices to set Be = O((M !)2 · M · 2κ). We refer the reader to
Appendix 4.3 and Appendix C for details on the simulation.

∆ needs to be sufficiently large to remove the homomorphic noise created
by homomorphically evaluating Reconα over the already noisy vectors wj . The
final error has magnitude bounded by M(M !)2Be = O(M2(M !)42κ), so we set
∆ = O(M2(M !)42κ).
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Under these settings, we can setup the LWR-based masking scheme with
message modulus pm > ∆MBx, which has bit length log pm ≤ (4M+3) logM+
κ+ logBx. An additional requirement on pm comes from the highlighted online
phase Step 1. The protocol requires multiplying α−2 mod pm to each client’s
input. It suffices to choose pm as a prime, so that α−1 always exists.

Parameter Settings for DCR Instantiation. Since the DCR-based masking
scheme has exact key-homomorphism, there is no homomorphic noise to smudge
during simulation. Therefore, we can set Be = 0, and consequently ∆ = 1.

Under these settings, we setup the DCR-based scheme with message modulus
pm > MBx, which has bit-length at most 2λ + logM + logB. Here λ is the
computational security parameter for Paillier’s encryption scheme (e.g., λ = 4096
bits).
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