
Toward A Practical Multi-party Private Set Union

Jiahui Gao ∗ Son Nguyen ∗ Ni Trieu ∗

March 16, 2024

Abstract

This paper studies a multi-party private set union (mPSU), a fundamental cryptographic
problem that allows multiple parties to compute the union of their respective datasets without
revealing any additional information. We propose an efficient mPSU protocol which is secure in
the presence of any number of colluding semi-honest participants. Our protocol avoids computa-
tionally expensive homomorphic operations or generic multi-party computation, thus providing
an efficient solution for mPSU.

The crux of our protocol lies in the utilization of new cryptographic tools, namely, Member-
ship Oblivious Transfer (mOT) and Conditional Oblivious Pseudorandom Function (cOPRF).
We believe that the mOT and cOPRF may be of independent interest.

We implement our mPSU protocol and evaluate their performance. Our protocol shows an
improvement of up to 37.82× in term of running time and 389.85× bandwidth cost compared
to the existing state-of-the-art protocols.

1 Introduction

Secure multi-party computation (MPC) enables multiple parties to compute an arbitrary function
on their private input without revealing additional information. A special case of MPC is the private
set operation, which provides a secure means for joining data distributed across disparate databases.
Private set intersection (PSI) and private set union (PSU) are two common set operations in this
category. PSI finds applications in a variety of privacy-sensitive scenarios such as measuring the
effectiveness of online advertising [21], contract tracing [43, 2], and contact discovery [19], and cache
sharing in IoT [32]. Similarly, PSU has numerous practical use cases. For example, PSU can be
used to implement Private-ID functionality [7], cyber risk assessment and management via joint IP
blacklists and joint vulnerability data [20], private database supporting full join [27], association
rule learning [24], joint graph computation [6], and aggregation of multi-domain network events [9].

Over the last decade, a substantial body of research [37, 39, 8] has focused on PSI, whereas
PSU has received relatively little attention. The majority of present practical PSU protocols
[27, 16, 46, 23, 3] have only been optimized for the two-party setting. In this study, we investigate
multi-party PSU (mPSU) in the semi-honest model, which allows more than two parties to compute
the union of their private data sets without revealing additional information.

∗Arizona State University, {jgao76, snguye63, nitrieu}@asu.edu

1

1.1 Multi-Party PSU vs 2-Party PSU

Multi-party PSU is a natural extension of the two-party PSU and enables much richer data shar-
ing than a two-party PSU. However, designing a multi-party protocol in secure computation is
challenging as it usually requires a dishonest majority (e.g. provides security in the presence of
a number of dishonest, colluding participants). Existing mPSU protocols in generic MPC [4, 44],
or homomorphic encryption [25, 15, 41, 18], are considerably more complex and expensive in the
multiparty case than in the two-party case.

A possible solution for computing mPSU is leveraging efficient multi-party PSI protocols. Given
their recent PSI improvements [10, 31] with practical implementations, one might think that mPSU
can be computed directly from multi-party PSI using DeMorgan’s Law as

⋃n
i=1Xi = U \

(⋂n
i=1(U \

Xi)
)
, where U is a universe of input items. While this approach correctly and securely computes

the set union, it is inefficient when U is significantly larger than
⋃n

i=1Xi. Thus, this solution is
still far from practical.

Another potential approach is to extend the aforementioned practical two-party PSU proto-
cols [37, 39, 8] to the multi-party case. However, it remains unclear how to achieve a secure mPSU
protocol through this extension since the intermediate result would leak information like the inter-
section or intersection cardinality or union of a subset of parties’ inputs which violate the mPSU
functionality.

At this point, one may wonder why these leakages are of concern. Consider the application of
“Cyber risk assessment and management via joint IP blacklists and joint vulnerability data” [20]
previously mentioned and elaborated in [27]: “Organizations aim to optimize their security updates
to minimize vulnerabilities in their infrastructure. Crucial role in the above is played by joint lists
of blacklisted IP addresses. At the same time, organizations are understandably reluctant to reveal
details pertaining to their current or past attacks or sensitive network data”. This application
requires minimal leakage from PSU. Specifically, if we implement mPSU using pairwise 2-party
PSU, it could potentially leak blacklisted IP addresses of each organization. E.g., if X2 = X3 and
|X2 ∩X1| = 0, then P1 learns X3. Moreover, in certain scenarios, revealing the cardinality count of
a subset of parties’ inputs poses an issue. For example, when n = 3 and P1 receives count = 2 for
x ̸∈ X1, the P1 can learn X3 if |X3| = 1. Another instance is if count = n− 1 for x ̸∈ X1, P1 learns
that everyone except him has x.

To grasp the challenges of extending from two-party to multiple-party PSU, we begin by review-
ing the state-of-the-art 2-party PSU protocols [16, 46, 23, 3], which follow the framework of [27]
based on oblivious transfer (OT), which consists of two main stages:

1. Reverse Private Membership Test (RPMT): The receiver learns the bit representing the mem-
bership of each element in the sender’s set. (e.g. for an element x in sender’s set, the receiver
with set Y learns a bit b = 1 if x ∈ Y and b = 0 otherwise.). Note that the bit b reveals
no additional information about the sender’s set X, apart from the intersection cardinality
|X ∩ Y |, which is already revealed by the final PSU output.

2. Oblivious Transfer (OT): The sender obliviously sends each item x in its set X to the receiver
using OT. Concretely, the sender and the receiver invoke an OT functionality in which the
sender possesses messages {⊥, x} while the receiver holds the choice bit b, where ⊥ represents
a predefined special character. The bit b is the membership indicator bit which is derived
from the preceding stage. The result of the OT provides the receiver with either ⊥ or the
sender’s item x which is not the intersection item. By merging this outcome with its set Y ,

2

the receiver can produce the set union. This OT step prevents the receiver from deducing
the intersection set, thereby fulfilling the functionality of a two-party PSU.

To summarize, in the two-party protocol, the parties initially establish the sender’s element
membership, followed by the receiver obliviously obtaining only the set difference from the sender.
While this framework functions effectively and securely for the 2-party PSU, it cannot be directly
extended to multi-party settings due to various sources of information leakage. To be more precise,
assume there are n parties, each with a set Xi, and P1 is the one who receives the final output.
Considering a single element x ∈

⋃n
i=2Xi \X1 which will be learned by P1 from a PSU protocol,

there are two types of information leakage considered in the multi-party setting:

• Which party sends this element x? The initial potential leakage arises from the origin
of x. If P1 and Pi∈[2:n] invoke OT in the same manner as 2-party protocols, P1 will know the
contribution for the received element which is indeed an information leakage in the multi-party
setting.

• How many x are there? Another potential leakage is the number of element x. In a 2-party
setting, this count is consistently one, as the sender is the sole provider of new elements to
the receiver (assuming that the X2 is not a multi-set). In a multi-party setting, for element
x ∈

⋃n
i=2Xi \X1, any Pi∈[2:n] can have it in the input set. So the number of duplications can

range from 1 to n− 1.

In general, any information that can not be derived from the final output is not allowed. In the
case of mPSU, the potential information leakage can be the union or intersection of the input from
a subset of participants which can be addressed by avoiding the two leakages mentioned above.
Thus, in the multi-party setting, the definition and execution of RPMT and OT must differ from
those in the 2-party setting. Furthermore, another main challenge in designing mPSU is to prevent
leakages in the event of collusion among a subset of parties.

1.2 Related Work

In this section, we focus on the state-of-the-art of multi-party PSU protocols. The earliest construc-
tion of such a protocol was proposed by Kissner and Song [25], which relied heavily on homomorphic
encryption (the Paillier encryption) and the idea of polynomial representation. Input sets are rep-
resented as polynomials where each party Pi∈[n] represents an input set Xi = {xi,1, . . . , xi,m} as
a polynomial whose roots are its elements, which we denote fi(x) =

∏m
j=1(x − xi,j). All parties

together compute the encryption of polynomial p =
∏n

i=1 fi which presents the polynomial of the
union

⋃n
i=1Xi. Using polynomial evaluation on the encrypted p, all parties are able to extract the

union items without disclosing additional information. The protocol proposed in [25] has O(n3m2)
computation complexity. Relying on the polynomial presentation technique, Frikken [15] proposed
an efficient mPSU protocol that requires the O(n2m log(m)) number of multiplications. [41] pre-
sented input sets using rational polynomial functions and reversed Laurent series. As a result, it
showed a more efficient protocol than previous works [25, 15], but the protocol is secure up to n/2
corrupted parties.

Blanton and Aguiar [4] presented a new direction to compute mPSU that avoids expensive
homomorphic encryption but heavily relies on MPC. Their idea is to combine the input sets of
all parties under a secret-shared form, perform an oblivious sort on the resulting set, and then

3

Protocol
Overall

Communication

Computation
Round

Overall
HE

Leader P1 Party Pi∈[2,n]
[25] O(n2m) O(n3m2) O(nm2) O(nm2) O(n)

[15] O(n2m) O(n2m log(m)) O(nm) O(nm log(m)) O(n)

[4] O(n2m log2(mn)) O(n2m log2(mn)) 0 0 O(log(nm))

[18] O(n2mλ) O(n2mλ) O(nmλ) O(nmλ) O(1)

[44] O(n2m log |U|) O(n2m log |U|) O(|U|) O(|U|) O(1)

Ours O(n2m logm/ log logm) O(n2m logm/ log logm) O(nm) O(nm) O(n)

Table 1: Communication (overall), computation (overall and number of homomorphic operation),
and round complexities of n-party PSU protocols which are secure in the presence of any number
of colluding semi-honest participants. #HE represents the number of additive homomorphic oper-
ations. n is number of parties, each with set size m; λ is the statistical security parameter; U is
the universal domain of the input; σ is the bit length of input element;t is the number of AND
gates in the SKE decryption circuit. Notably, the complexity of [18] consists of λ due to the usage
of the Bloom filter. All [25, 15, 18] use Paillier encryption to compute addition on the encryptions
(#HE) while our protocol uses ElGamal encryption scheme to re-randomize the ciphertexts.

remove the duplications by comparing the adjacent elements. In the context of MPC, a more
practical sorting algorithm is Batcher’s network which requires O(mn log(mn)) comparisons to
sort the union sets. Due to the underlying MPC techniques, the protocol of [4] is inefficient when
the m and n are large.

Recently, [42, 18] compute the mPSU using Bloom filter (BF). Specifically, each party Pi∈[1,n]
inserts its input items into a local BF and transmits the encrypted version of the resulting BF to
a designated leader party P1. Subsequently, the P1 aggregates the encrypted local BFs from all
parties to generate a global BF, denoted by G, from which the union items are computed. While
the protocol presented in [42] makes use of an outsourcing server to compute G, [18] is built on
homomorphic encryption (HE), which requires a homomorphic computation per each entry of G,
and might need the expensive multi-key HE. Moreover, the BF-based approach is associated with
a high false positive rate.

In another work, Vos at. el.[44] proposed private OR protocols and build mPSU protocols upon
it. They consider relatively small universe (e.g. up to 32-bit long element). At the high-level
idea, their approach presents the input set in a bit vector of length |U|. The bit is set to 1 if its
corresponding element belongs to the given input set and 0 otherwise. By invoke the proposed
private OR protocol, the leader learns the bit vector of the union. While optimization is given
by applying divide-and-conquer so that the long vector can be divided into small ones, it is still
inefficient especially for the standard input of 128-bit elements. Concurrently with our work, Liu
and Gao [29] presented an efficient mPSU protocol, but requires a weak security assumption wherein
the leader is not in collusion with any other participating parties.

For a comprehensive analysis of representative multi-party PSU protocols that are resilient to
the presence of any number of colluding semi-honest participants, we provide a summary of their
theoretical complexity in Table 1. Additionally, in Section 5.2, we present a numerical performance
comparison of our proposed protocols with prior works [15, 4, 18].

4

1.3 Technical Overview of Our Protocols

We present an efficient protocol for mPSU that guarantees security in the semi-honest setting. We
demonstrate the practicality of our mPSU protocol with an implementation. It is shown to be
efficient even for large sets with 220 items distributed among 8 parties. The main reason for our
protocol’s high performance is its reliance on fast symmetric-key primitives, Diffie-Hellman-based
PRF [12] from the elliptic curve, and ElGamal encryption. This is in contrast with prior protocols,
which require expensive Paillier encryption on the polynomial set representation [25, 15] or each
entry of the Bloom filter [18]. Additionally, our approach eliminates the need for the inefficient
oblivious sort/OR operations and generic MPC of [4, 44].

Technical Overview. In our protocol, we assume the existence of a leader party denoted as P1.
This party learns the final result by growing the union starting with X1. To be specific, P1 learns
Xt \

⋃t−1
i=1 Xi from Pt. This is achieved by interacting sequentially with each party P2, . . . , Pn. All

the party agree on a multi-key cryptosystem for encryption, and sets are encrypted to prevent
the leader from learning the partial union. Moreover, we propose new primitives Membership
Oblivious Transfer(mOT) and Conditional Oblivious Pseudorandom Function(cOPRF) to prevent
the information leakage introduced earlier in the Section 1.1.

Briefly, the mOT is a two-party protocol, in which a leader P1 (also referred to as the receiver)
holding a set X1 interacts with the sender Pt who possesses an input item xt,j , j ∈ [m], and two
associated values {v0, v1}. Similar to the traditional OT [38], the result is that the sender Pt

learns nothing whereas the receiver P1 obtains one of the two sender’s associated values depending
on whether xt,j ∈ X1. In our mPSU protocol, sender Pt prepares v0 = Enc(pk, 0) and v1 =
Enc(pk, xt,j)}), where pk is the public key for the multi-key cryptosystem. If xt,j ∈ X1, P1 learns
Enc(pk, 0); otherwise it learns Enc(pk, xt,j). By executing the mOT multiple times with Pt∈[2,n] for
each item xt,j ∈ Xt, the leader P1 obtains a set E of encryptions Enc(pk, xi,j) for xi,j ∈

⋃n
i=1Xi and

τ encryptions of zero, where τ =
∑n

i=1 |Xi| − |
⋃n

i=1Xi| indicates the number of duplicate items.
At this point, the union set can be obtained by decrypting E and removing the zeros.

For the dishonest majority setting in which the protocol is secure against an arbitrary number
of colluding parties, the decryption should be executed by all the parties. Thus, we employ the
multi-key cryptosystem based on ElGamal encryption scheme (ref. Section 2.6). The decryption
process involves a partial decryption that requires the individual party’s secret key. In our protocol,
each party is required to perform its own private permutation on the partial decryption result before
sending it to another party. This step aims to prevent a coalition of corrupt parties (including the
leader P1) from learning which parties hold which elements. We implement the permutation and
decryption using our simple building block “Oblivious Shuffle and Decryption” (Shuffle&Decrypt),
which is described in Section 3.3.

The brief overview of mOT executions above ignores many important concerns — in particular,
how the P1 obtains encryption of zero from Pj∈[i+1,n] for a duplicated item x which Pi also has.
We propose utilizing an Oblivious PRF (OPRF), wherein P1 obliviously learns and maintains a list
of PRF values for the union sets

⋃t
i=1Xi,∀t ∈ [2, n]. The PRF values hide the actual input items

and are used as the input into mOT, rather than the input sets as previously described. In our
protocol, we require an extended variant of OPRF to prevent a coalition of corrupt parties from
learning the partial union (we describe the attack explicitly in Section 4). Thus, we introduce a
new gadget called Conditional OPRF (cOPRF). Similar to the classical OPRF, the cOPRF has the
additional feature that the sender Pi has a set of elements Xi, and the receiver Pt>i only obtains

5

the correct/active PRF value if its input query xt is not present in the sender’s set Xi, and “fake”
or inactive PRF value otherwise. Thus, the parties only need to maintain the list of active PRF
values. We describe the cOPRF ideal functionality and its instantiation in Section 3.2.

In brief, our contributions can be summarized as follows:

• We present an efficient mPSU construction, which eliminates the need for computationally
expensive homomorphic operations or generic multi-party computation, and is secure in the
presence of any number of colluding semi-honest participants.

• We introduce new building blocks, namely Membership Oblivious Transfer (mOT), Condi-
tional OPRF (cOPRF), Oblivious Shuffle and Decryption (Shuffle&Decrypt), which may be of
independent interest and can be used in other related protocols.

• We show that our protocol is significantly faster than previous work [15, 4, 18]. For example,
for four parties with data-set of 216 item each, our mPSU protocol shows an improvement up
to 37.82× in terms of running time and up to 306.45× less bandwidth requirement when com-
pared to the state-of-the-art protocols. Our implementation will be made publicly available
on GitHub.

2 Preliminaries

In this work, the computational and statistical security parameters are denoted by κ, λ, respectively.
We use [m] to refer to the set {1, . . . ,m}, and [i, j] to denote the set {i, . . . , j}. We denote the
concatenation of two strings x and y by x||y. We use f ◦ g to denote the composition of the
functions f and g. We use F (k, x) to denote the evaluation of x on a pseudorandom function
F : {0, 1}κ × {0, 1}⋆ → {0, 1}κ given key k.

In this work, we rely on Diffie-Hellman OPRF protocol [12] in which the PRF value of x has
a form F̄ (k, x) = H(x||0)k for a random hash function H : {0, 1}⋆ → {0, 1}κ. Moreover, within
our mPSU protocol, we establish F (k, x) = H(x||0)k as the designated “active” PRF from cOPRF,
which is used for managing the list of union items.

2.1 Multi-party Private Set Union

The ideal functionality of multi-party PSU (mPSU) is given in Figure 1. It allows n parties, each
holding a set Xi of the input items, to learn the union

⋃n
i=1Xi and nothing else. For simplicity,

we assume that all parties have the same set size m, which is publicly known.

Threat Model and Security Goal. From the ideal functionality of mPSU, we can see that
the mPSU protocol is secure if the mPSU protocol is considered secure as long as it does not
disclose any additional information beyond the union and m to the parties, encompassing partial
set union/intersection.

Note that our protocol can be easily extended to accommodate varying set sizes, while also
protecting the set size of each party. This can be accomplished if all parties agree on an upper
bound set size m and utilize it as the input set size. Before initiating the protocol, each party can
pad their set with a particular item, such as zero, to reach the size of m. It is customary in private
set operation literature to assume that all parties have the same set size.

6

Parameters: n parties P1, ..., Pn, and the set size m.
Functionality:

• Wait for input set Xi of size m from Pi.

• Give P1 the union
⋃n

i=1 Xi.

Figure 1: Multi-party Private Set Union Ideal Functionality

In this paper, we focus on the semi-honest setting, where it is assumed that parties adhere to
the protocol description but attempt to glean additional information from the protocol’s transcript.

2.2 Oblivious PRF

An oblivious pseudorandom function (OPRF) [14] is a 2-party protocol in which the sender has a
PRF key k and the receiver learns F (k, q). Here, F is a PRF, and q is a query input chosen by the
receiver. Figure 9 formally presents a variant of the OPRF where the receiver obtains outputs of
multiple chosen queries.

2.3 Oblivious Transfer

Oblivious Transfer (OT) is a fundamental primitive of secure computation, and introduced by
Rabin [38]. It refers to the problem where a sender with two input strings (x0, x1) interacts with
a receiver who has an input choice bit b. The OT gives the receiver xb and nothing to the sender.
Figure 10 presents the OT functionality.

2.4 Secret-shared Private Membership Test

Secret-shared Private Membership Test (SS-PMT) is the main building block in different applica-
tions [35, 28, 10, 36, 29, 46]. It refers to the two-party setting where a P0 with input a set of items
X = {x1, . . . , xn} interacts with a P1 who has an input single item y. SS-PMT gives both parties
a secret-share of a membership bit, i.e. the two parties obtain XOR shares of 1 if y ∈ X and 0
otherwise. Figure 11 presents the SS-PMT functionality.

2.5 Bin-and-ball Scheme

Our protocols employ hashing schemes such as the Cuckoo and Simple hashing schemes [34, 37]
to allocate items into bins. We review the basics of the Cuckoo hashing and Simple hashing
schemes [34, 37] as follows.

Cuckoo hashing. In basic Cuckoo hashing, there are µ bins denoted B[1 . . . µ], a stash, and h
random hash functions H1, . . . ,Hh : {0, 1}⋆ → [µ]. One can use a variant of Cuckoo hashing such
that each item x ∈ X is placed in exactly one of µ bins. Using the Cuckoo analysis [34, 11] based
on the set size |X|, the parameters µ, h are chosen so that with high probability (1−2−λ) every bin
contains at most one item, and no item has to be placed in the stash during the Cuckoo eviction
(i.e. no stash is required).

7

Simple hashing. One can map its input set Y into µ bins using the same set of h Cuckoo hash
functions (i.e, each item y ∈ Y appears h times in the hash table). Using a standard ball-and-bin
analysis based on h, µ, and |X|, one can deduce an upper bound η such that no bin contains more
than β items with high probability (1− 2−λ).

2.6 Multi-key Cryptosystem

We revise the multi-key cryptosystem that needs for ourmPSU protocol. We first give an overview of
each component of the cryptosystem. We then present a construction based on the ElGamal scheme.
Amulti-key cryptosystem is defined as a tuple of PPT algorithm (KeyGen,Enc,ParDec,FulDec,ReRand)
with properties as follows:

• Key Generation: KeyGen(1κ, n). In a setting with n parties, a key generation algorithm
takes security parameter κ as input and gives each party Pi a secret key ski and a joint public
key pk = Combine(sk1, sk2, . . . , skn), where Combine is an algorithm to generate the public
key from the input secret keys depending on the construction.

• Encryption: ct← Enc(pk;m). Given a joint public key pk and a message m←M from the
plaintext spaceM, an encryption algorithm outputs a ciphertext ct.

• Decryption: There are two types of decryption:

– Partial decryption ct′ ← ParDec(ski, ct,A). A partially decryption algorithm takes a
secret key ski and a ciphertext ct ← C encrypted under the partial pubic key pkA =
Combine({skj | j ∈ A}) and outputs a ciphertext ct′ ← C which is encrypted under the
partial pubic key pkA\{i} = Combine({skj | j ∈ A, j ̸= i}). Note that in the context of
the multi-key encryption system, we utilize set A to represent the collection of public
keys belonging to the parties within A.

– Full decryption: m ← FulDec(sk1, sk2, ..., skn; ct). A full decryption algorithm takes a
ciphertext ct ← C encrypted under pk and all the secret keys and outputs a message
m←M.

• Re-randomization: ct′ ← ReRand(ct, pk). A re-randomization algorithm takes a ciphertext
ct← C encrypted under pk and gives a new ciphertext ct′ ← C encrypted under the same pk
such that they are both encryptions of the same message m←M.

The multi-key cryptosystem should satisfy correctness and security as defined in [17, 1, 5].
Informally, the multi-key cryptosystem satisfies correctness if m = FulDec(sk1, ..., skn, ct) or m =
FulDec(sk1, . . . , ski−1, ski+1, . . . , skn, ct

′) for ct = Enc(pk,m) and ct′ = ParDec(ski, ct{1,...,i−1,i+1,...,n}).
For security, the ciphertext ct or ct′ is random and reveals nothing about the plaintext. When n = 1,
we have a single-key encryption scheme which is indeed the traditional ElGamal system[13].

A Construction While there are many multi-key cryptosystems, we choose ElGamal system[13]
as it is easy to implement and efficient (we do not perform any arithmetic computation on the
encryption). In the following, we present the ElGamal scheme in the multi-key setting with n
parties P1, ..., Pn.

8

• Key Generation: Given a security parameter κ and number of parties n. A cyclic group G
of order p is chosen, and all the parties agree on a common generator g. Each party Pi∈[n]
chooses a random secret key ski ← {0, 1}κ and publishes the value of hi = gski . We can define
the public key pk = Combine(sk1, sk2, ..., skn) = gΣ

n
i=1ski =

∏n
i=1 hi.

• Encryption: To encrypt a message m, one can compute ct = (ct1, ct2) = (gr,m · pkr) where
r is a randomly chosen value from {0, 1}κ.

• Decryption: The two decryption algorithms are as follows:

– Partial decryption: To partially decrypt a ciphertext ct = (ct1, ct2) encrypted under
the partial pubic key pkA =

∏
j∈A hj , one can output ct′ = ParDec(ski, ct, A) = (ct′1, ct

′
2),

where ct′1 = ct1 · gr
′
, ct′2 = ct2 · ct−ski

1 · (pkA\{i})
r′ , the r′ ← {0, 1}κ is a random value,

and pkA\{i} =
∏

j∈A\{i} hj . Note that the use of the random r′ aims to re-randomize the
ct1.

– Full decryption: To fully decrypt a ciphertext ct = (ct1, ct2) encrypted under pk =∏
i∈[n] hi, one can compute m = FulDec(sk1, sk2, ..., skn; ct) = ct2 · ct

−Σn
i=1ski

1 .

• Re-randomization: To rerandomize a ciphertext ct encrypted under the pk, one can choose a
random value r′ ← {0, 1}κ, and compute (ct′1, ct

′
2) = ReRand((ct1, ct2), pk) where ct

′
1 = ct1 ·gr

′

and ct′2 = ct2 · pkr
′
.

3 Our mPSU Building Blocks

We introduce three simple cryptographic gadgets that will serve as the fundamental building blocks
in our mPSU protocol.

• The first gadget is called “Membership Oblivious Transfer” (mOT) which enables a receiver
to obtain one of two associated values from the sender based on the set membership. The
mOT allows a leader party in our mPSU protocol to obliviously retrieve the items of other
parties that are not in the intersection while maintaining privacy.

• The second gadget is called “Conditional OPRF” (cOPRF) which allows the receiver to obtain
a PRF value of its query x if and only if x satisfies the pre-defined condition (i.e., membership
test). The cOPRF eliminates duplicated items from the final mPSU output by giving the
“fake” PRF value of the intersection item, which will be ignored in subsequent computations
(i.e., an inactive PRF value).

• In our mPSU protocol, the union result is stored under the multi-key encryption until the final
step, which requires all parties to decrypt the ciphertexts together. The encryption protects
against corrupted parties from learning partial union. We revise a multi-key cryptosystem in
Section 2.6, and introduce a simple tool called “Shuffle and Decryption” (Shuffle&Decrypt) to
implement the last step of our mPSU construction.

In the following, we present the definition and ideal functionality of each building block, which
specify the input and output. Parties should not gain any additional knowledge beyond the desired
output, ensuring the security of each introduced primitive.

9

Parameters: Sender S and Receiver R, the receiver set size m, the length ℓ.
Functionality:

• Wait for input keyword y and a pair (v0, v1) ∈ {0, 1}ℓ × {0, 1}ℓ from S.

• Wait for input set X = {x1, ..., xm} from R.

• Give R the value v where v equals to v0 if y ∈ X, and v1 otherwise.

Figure 2: Membership Oblivious Transfer (mOT) Ideal Functionality

3.1 Membership Oblivious Transfer (mOT)

Definition 1. Membership Oblivious Transfer (mOT) is a two-party protocol, in which a sender S
with a keyword y ∈ {0, 1}⋆ and two associated values {v0, v1} ∈ ({0, 1}ℓ)2 interacts with a receiver
R who has a set of keywords X = {x1, ..., xm} ∈ ({0, 1}⋆)m. The mOT gives the receiver the value
vb where b = 0 if y ∈ X and b = 1 otherwise, and nothing to the sender.

Similar to the traditional OT, the associated values v0, v1 are indistinguishable with their domain
{0, 1}ℓ, so that the membership of y in terms of X is also not revealed to the receiver. We name
our gadget “Membership Oblivious Transfer” as the receiver’s obtained value depends on whether
y ∈ X. We formally describe the mOT ideal functionality in Figure 2.

From Definition 1, we see that if a construction for mOT is secure, it should satisfy two following
properties:

• Similar to the traditional one-out-of-two oblivious transfer [38], the receiver R only learns one
of the two associated values of the sender S. In addition, the receiver R has no information
about whether y ∈ X from the protocol’s output. In fact, the latter is satisfied if the associated
values (v0, v1) are sampled according to the same distribution.

• The sender S learns nothing about the receiver’s input and output.

To sum up, our security objective for mOT is to enable the sender to anonymously transmit
one of its associated values to the receiver based on the membership condition.

Our mOT Protocol. Our mOT construction consists of two main phases. The first phase follows
the popular steps in the circuit-PSI protocols [35, 36], which enables the sender and the receiver
to compute a secret share of a membership bit, i.e. the two parties obtain XOR shares of 1 or 0 if
the sender’s keyword y is or is not in the receiver’s set X.

The second phase allows the receiver to obtain the corresponding associated value from the
sender, depending on whether the output of the first phase was shares of 0 or 1. Typically, this step
can be done using generic two-party secure computation (e.g., garbled circuit) in the literature.
However, it is relatively inefficient. Instead, we propose a simple solution that relies on OT. More
precisely, the sender randomly chooses a value r ← {0, 1}ℓ and masks its associated values by
computing (r ⊕ v0, r ⊕ v1). Denote a secret share bit of S and R to be bS and bR received from
the first phase, respectively. Using the choice bit bR, the receiver obliviously obtains w = r ⊕ vbR
when interacting with the sender with input (r ⊕ v0, r ⊕ v1) via OT. Next, the sender sends u =
r⊕bS ·(v1⊕v0) to the receiver R. The value u helps to remove the mask r from the w by computing
v = u ⊕ w, which is the receiver’s output. We formally present the construction of our mOT in
Figure 3.

10

Parameters:

• Sender S and Receiver R, the receiver set size m, the length ℓ.

• The OT and SS-PMT functionalities described in Section 2.

Input:

• Receiver R: X = {x1, . . . , xm} ⊂ ({0, 1}⋆)m

• Sender S: y ∈ {0, 1}⋆ and two associated values (v0, v1) ⊂ ({0, 1}ℓ)2

Protocol:

1. The sender S and the receiver R invoke a SS-PMT functionality where:

• R has an inputs X, and S has an input y.

• S and R obtain the bit bS and bR, respectively. Here, bS⊕bR = 1 if y ∈ X and 0 otherwise.

2. S and R invoke an OT instance where:

• S acts as an OT sender with input two strings {r ⊕ v0, r ⊕ v1}, where r ← {0, 1}ℓ is a
random chosen value.

• R acts as an OT receiver with input a choice bit bR.

• R obtains w = r ⊕ vbR .

3. S sends u = r ⊕ bS · (v1 ⊕ v0) to R who outputs v = u⊕ w.

Figure 3: Membership Oblivious Transfer (mOT) Construction

For the correctness of the mOT construction, one can rewrite w = r ⊕ bR · v1 ⊕ (1 ⊕ bR) · v0.
Hence, v = u ⊕ w = (bR ⊕ bS) · v1 ⊕ (1 ⊕ bR ⊕ bS) · v0 which equals to vbR⊕bS as desired (recall
that bR⊕ bS = 1 if y ∈ X and 0 otherwise). We present the security proof of the below theorem in
Appendix A.1.

Theorem 2. The mOT protocol described in Figure 3 securely implements the mOT functionality
defined in Figure 2 in the semi-honest setting, given the OT and SS-PMT functionalities described
in Section 2.

3.2 Conditional OPRF (cOPRF)

As described in Section 2.2, an OPRF [14] enables the receiver to learn a PRF value on its input
query q without knowing the sender’s PRF key k. In this work, we introduce a new notion of
a conditional oblivious PRF (cOPRF). Intuitively, the functionality is similar to OPRF, with the
additional feature that the sender has a set of elements X, and the receiver obtains a designated
PRF value depending on whether its query q is within the sender’s set X.

Definition 3. Conditional OPRF (cOPRF) is a two-party protocol, in which a sender S has a
PRF key k ∈ {0, 1}κ and an associated set X = {x1, ..., xm} ∈ ({0, 1}⋆)m, and the receiver learns
F̄ (k, q||b) where b = 0 if q ∈ X and b = 1 otherwise. Here, F̄ is a PRF, and q is a query input
chosen by the receiver.

11

Parameters: Sender S and Receiver R, the receiver set size m, and the PRF F .
Functionality:

• Wait for input set X = {x1, ..., xm}, a PRF key k.

• Wait for input a query q from R.

• Give R the PRF value F̄ (k, q||i) where i = 0 if q ̸∈ X?, and i = 1 otherwise.

Figure 4: Conditional OPRF (cOPRF) Ideal Functionality

Parameters:

• Sender S and Receiver R, the receiver set size m, the PRF F

• The mOT functionalities described in Figure 2

• The hash function H : {0, 1}⋆ → {0, 1}κ

Input:

• Sender S: X = {x1, . . . , xm} ⊂ ({0, 1}⋆)m and the PRF key k

• Receiver R: q ∈ {0, 1}⋆

Protocol:

1. The receiver chooses a random α← Z and computes vi = H(q||i)α for i ∈ {0, 1}.

2. The sender S and the receiver R invoke a mOT functionality where:

• R acts as the sender with input (q, v0, v1).

• S acts as the receiver with input X, and obtains v.

3. The sender computes w = vk and sends it to the receiver who outputs w1/α.

Figure 5: Conditional OPRF (cOPRF) Construction

From Definition 3, we see that a cOPRF remains secure when the underlying PRF function
F̄ reveals nothing about the query, akin to the traditional OPRF. Moreover, the receiver learns
nothing about the sender’s input from the cOPRF output, even when sending the same query or
multiple queries. The formal description of a conditional oblivious PRF (cOPRF) functionality
is given in Figure 4. The primary security goal of cOPRF is to enable the receiver to acquire a
designated PRF value according to a defined condition. These PRF values can then be employed
in the following computation phase tailored to that condition, as seen in our mPSU protocol.

Our cOPRF Protocol. We present the construction of an cOPRF, which is built on our mOT
primitive. While many OPRF protocols exist such as the BaRK OPRF [26], we use the Diffie-
Hellman OPRF protocol [12] in which the PRF value of x has a form H(x||0)k for a random hash
function H : {0, 1}⋆ → {0, 1}κ

The protocol starts with the receiver R picking a random number α← {0, 1}κ and computing
vi = H(q||i)α for i ∈ {0, 1}. The goal is to allow the receiver R obliviously send vi to the sender
S depending on whether q ∈ X. This can be done using the mOT in which the receiver R acts as

12

Parameters: n parties, parameter m, and a multi-key encryption scheme defined in Sec-
tion 2.6
Functionality:

• Wait for input secret key ski and a permutation function πi : [m]→ [m] from each party
Pi∈[n]. Here, (pk, {ski}i∈[n])← KeyGen(1κ, n).

• Wait for a combined input a set of ciphertexts {ct1, . . . , ctm} where cti = Enc(pk, xi)
from all parties {P1, . . . , Pn}.

• Give {xπ(1), . . . , xπ(m)} to P1 where π = πn ◦ πn−1 ◦ . . . ◦ π1.

Figure 6: Oblivious Shuffle and Decryption (Shuffle&Decrypt) Ideal Functionality

the mOT’s sender with input (q, v0, v1) while the sender S acts as the mOT’s receiver with input
X. As a result, S obtains v. Next, the S raises v to the k power as w = vk and sends the result
w back to the R. Now, the receiver can raise the w to the 1/α to obtain the final output y. We
formally present our cOPRF construction in Figure 5.

It is not hard to see that the output of the cOPRF protocol satisfies correctness. More precisely,
if q ̸∈ X, v = v1 = H(q||0)α, thus, the protocol’s output y = w1/α = H(q||0)k as desired. In case the
q ∈ X, the value y = H(q||1)k is a pseudorandom value which is computationally indistinguishable
to H(q||0)k when the PRF key is unknown. In general, our cOPRF protocol is secure against the
same query (i.e. the same query will always leads to the same pseudorandom value no matter
its membership related to sender’s set). We present the security proof of the below theorem in
Appendix A.2.

Theorem 4. The cOPRF protocol described in Figure 5 securely implements the cOPRF function-
ality defined in Figure 4 in the semi-honest setting, given the mOT functionalities described in
Section 2.

3.3 Oblivious Shuffle and Decryption (Shuffle&Decrypt)

Definition 5. Oblivious Shuffle and Decryption (Shuffle&Decrypt) is a n-party protocol, in which
each party Pi∈[n] holds a permutation πi : [m] → [m] and a secret key ski of the multi-key cryp-
tosystem as (pk, {ski}i∈[n]) ← KeyGen(1κ, n). Given a set of ciphertexts {ct1, . . . , ctm} where
cti = Enc(pk, xi), the Shuffle&Decrypt functionality gives {xπ(1), . . . , xπ(m)} to the party P1 where
π = πn ◦ πn−1 ◦ . . . ◦ π1, and nothing to other parties.

The private permutation aims to remove the linkage between the ciphertext cti and the plaintext
xi. We formally describe the Shuffle&Decrypt ideal functionality in Figure 6.

Our Shuffle&Decrypt Protocol. The Shuffle&Decrypt construction is simple and directly built
from calling algorithms provided in the multi-key cryptosystem. First, the P1 re-randomizes the
ciphertexts and then permutes the result. P1 then sends the permuted set C1 to P2. The re-
randomization aims to hide the permutation function from P2. The P2 now performs partial
decryption using its secret key sk2. This decryption removes the role of sk2 from the original
ciphertext. P2 then applies the permutation π2 on the resulting ciphertexts C2 and forwards them

13

Parameters:

• n parties, the set size m

• A multi-key cryptosystem (KeyGen,Enc,ParDec,FulDec,ReRand) defined in Section 2.6

Input:

• Each party Pi∈[n]: The secret key ski and a permutation function πi : [m] → [m]. Here,
(pk, {ski}i∈[n])← KeyGen(1κ, n)

• All parties: {ct1, . . . , ctm} where cti = Enc(pk, xi)

Protocol:

1. P1 re-randomizes ctj = ReRand(ctj , pk),∀j ∈ [m], and sends C1 = {ct11, . . . , ct1m} to P2 where
ct1j = ctπ1(j),∀j ∈ [m].

2. For i = 2 to n:

• Pi computes a partial decryption c̄tij = ParDec(ski, ct
i−1
j , Ai),∀j ∈ [m], where Ai = {1, i, i+

1, . . . , n}.
• Pi permutes the set {c̄ti1, . . . , c̄t

i
m} as ctij = c̄tπi(j),∀j ∈ [m].

• Pi sends Ci = {cti1, . . . , ctim} to P(i+1)%n.

3. P1 outputs ParDec(sk1, ct
n
j , {1}),∀j ∈ [m].

Figure 7: Oblivious Shuffle and Decryption (Shuffle&Decrypt) Construction

to P3. Note that P2 does not need to rerandomize C2 as the C2 is in the random distribution and
thus it hides the permutation of P2. The process repeats sequentially through P4, . . . , Pn. After
the partial decryption was executed by Pn, the ciphertexts require only the secret key sk1 for the
final decryption. Pn now sends these ciphertexts in the permuted order to P1 which performs the
partial decryption and outputs the final result. Figure 7 presents the Shuffle&Decrypt construction.
From the high-level description, it is clear that the protocol is correct given the correctness of
the underlying multi-key cryptosystem. We present the security proof of the below theorem in
Appendix A.3.

Theorem 6. Given the multi-key cryptosystem defined in Section 2.6, the Shuffle&Decrypt protocol
described in Figure 7 securely implements the Shuffle&Decrypt functionality defined in Figure 6 in
the semi-honest model, against any number of corrupt, colluding, semi-honest parties.

4 Our mPSU Construction

Figure 8 presents our main mPSU protocol, which guarantees security against any number of
corrupt, colluding, semi-honest parties. The protocol makes use of our new mOT, cOPRF and
Shuffle&Decrypt gadgets.

4.1 Our Protocol

The design of a secure mPSU protocol presents significant challenges, specifically with regard to (1)
ensuring that the output does not contain duplicate items, (2) preventing the disclosure of partial

14

P1 : X1 P2 : {x2} P3 : {x3} P4 : {x4}
Round 1 ⇐ OPRF & mOT ⇒ ⇐ cOPRF ⇒

F1(X1) F1(x2) r3
S F1(X1) ∪{F1(x2)} ⇐ cOPRF ⇒
E {Enc(x2)} F1(x4)

Round 2 ⇐ OPRF & mOT ⇒ ⇐ cOPRF ⇒
F2(X1) ∪ {F2(x2)} F2(r3) F2(x4)

S F2(X1) ∪ {F2(x2)} ∪{F2(r3)}
E {Enc(x2),Enc(0)}
Round 3 ⇐ OPRF & mOT ⇒

F3(X1) ∪ {F3(x2)} ∪ {F3(r3)} F3(x4)
S F3(X1) ∪ {F3(x2)} ∪ {F3(r3)}∪{F4(x4)}
E {Enc(x2),Enc(0),Enc(x4)}
Shuffle {Enc(0),Enc(x4),Enc(x2)}
Decrypt {0, x4, x2}
Output X1 ∪ {x4, x2}

Table 2: Illustration of our mPSU protocol for 4 parties. P1 has an input set of X1 while Pi have input
set of only one item xi for i ∈ [2, 4]. In addition, we assume that x2 = x3 ̸∈ X1 and x4 ∈ X1. The Fi−1(·)
denotes the multi-key PRF F ((ki+1, . . . , k2), ·), which represents the PRF value received in the i-th round.
⇐ P⇒ denotes the execution of protocol P between two parties. Colors indicating the corresponding output
for each invocation of protocol. The same color for OPRF and cOPRF means they use the same key. For
example, in round 1, P1 and P2 invoke the OPRF and mOT (Step (3,a) and (3,b) in Figure 8). P1 updates
its set by the PRF value F1(X1) and receives the message (F1(x2),Enc(x2)) from P2. P2 invokes cOPRF
protocol with P3 and P4 concurrently. P3 receives a random value r3 since x3 = x2 and P4 receives the PRF
value F1(x4) for x4. The following rounds are similar.

union results, and (3) hiding which items from which parties. To illustrate the high-level idea of
our protocol, we consider a simple 4-party case where the leader party P1 has a set X1 of items
while each of the remaining party Pi for i ∈ [2, 4] possesses a single item Xi = {xi}. We assume
that the item x2 of P2 and x3 of P3 are not in the X1 but x4 of P4 is (i.e. x2, x3 ̸∈ X1 and x4 ∈ X1).

Regarding (1), a potential approach is to enable the leader P1 to engage with the other parties
and obtain an encryption of xi if xi ̸∈ X1 and an encryption of the zero otherwise. An encryption
of zero indicates the presence of common items between P1 and Pi, which can be removed after
decryption. To this end, the P1 and Pi invoke the mOT instance in which Pi acts as the sender
with input

(
xi,Enc(pk, 0),Enc(pk, xi)

)
and P1 acts the receiver with input X1, thereby obtaining

the desired encryption. After executing the mOT instances, the leader party P1 acquires E =
{Enc(pk, x2),Enc(pk, x3),Enc(pk, 0)} from the party P2, P3 and P4, respectively. The set E allows
the leader P1 to obtain the set union after decryption.

The above protocol description does not entirely address the issue of removing duplicate items
since x2 could be identical to x3. To overcome the limitation, we leverage the OPRF in the following
manner. The leader party P1 with input X1 interacts with P2 holding the PRF key k and receives
the PRF values S = {y | y = F (k, x), x ∈ X1}. They then execute the mOT where P2 has keyword
F (k, x2) and messages (r2||Enc(pk, 0), F (k, x2)||Enc(pk, x2)) so that P1 can obliviously obtain v2||e2
from P2 where v2||e2 equals F (k, x2)||Enc(pk, x2) if x2 ̸∈ X1, and r2||Enc(pk, 0) otherwise for a
random r2. The P1 appends v2 to S and e2 to an empty set E. At this point, S = {y | y =
F (k, x), x ∈ X1} ∪ {F (k, x2)} if x2 ̸∈ X2, and S = {y | y = F (k, x), x ∈ X1} ∪ {r2} otherwise.
The updated set S will be used as the input to the next mOT between P1 and P3. It helps to

15

remove the duplication items of P2 and P3 from the final output. Concretely, P3 prepare the
keyword and messages in the same way for the mOT as

(
F (k, x3),Enc(pk, 0),Enc(pk, x3)

)
. The

mOT functionality checks the membership condition whether F (k, x3) is in the updated S and then
gives P1 the corresponding result v3||e3 which equals to either r3||Enc(pk, 0) for a random r3 or
F (k, x3)||Enc(pk, x3). If x2 = x3 ̸∈ X1, the P1 obtains the encryption e2 = Enc(pk, x2) from P2,
but e3 = Enc(pk, 0) from P3. The r3 is indistinguishable from the PRF value F (k, x3), thus r3
reveals nothing to P1 about whether x2 = x3. The P1 continues to update the PRF set S and the
encryption set E by repeating the above process sequentially with P4.

When considering P1 colludes with P3, there is a security problem when x2 = x3. Concretely,
P1 learns the value F (k, x2) as the output from the mOT with P2, and P3 receives the same value
from invoking OPRF with P2, thus, the P1 and P3 infer the fact that P2 has the element x3 = x2.
To address this vulnerability, i.e., the challenge (2), we propose to use multi-key OPRF and our
new gadget cOPRF. The detail is described in Section 4.1.1.

Upon the completion of (n− 1) instances of the mOT protocol between the leader party P1 and
other parties Pi, the leader P1 has acquired an encryption set E, containing encryptions Enc(pk, x)
for x ∈

⋃n
i=1Xi and τ encryptions of zero, where τ =

∑n
i=1 |Xi| − |

⋃n
i=1Xi| indicates the number

of duplicate items. In order to satisfy requirement (3) of the mPSU protocol, we employ the
Shuffle&Decrypt functionality, which permits each party to apply its own permutation function on
the encryption set E.

We demonstrate our mPSU protocol execution in Table 2 pertaining to the 4-party scenario
described above.

At this stage, we are currently focusing on a simple scenario where each Pi∈[2,n] possesses only
one item. In order to generalize our method to a set Xi, we apply a popular technique known
as bin-and-ball technique. At the high level, the party Pi∈[2,n] places its input values into β bins
through the use of Cuckoo hashing, where each bin is allowed to contain at most one item. The
leader P1 utilizes the same set of Cuckoo hash functions to map the input values in S into β bins
using Simple hashing. The mapping allows the parties to execute the simple case above bin-by-bin
efficiently. As a result, for each bin, the P1 obtains encryptions of the partial union set which are
subsequently combined into a big encryption set E before being subjected to decryption.

4.1.1 The Usage of OPRF and cOPRF

OPRF is widely used in the design for private set operation and we use it for our design as well. All
the inputs are converted into corresponding PRF values for the comparison, this prevents leakage
of the original input elements. In the OPRF protocol, the sender learns the key and the receiver
can only evaluate the PRF values for his chosen inputs. This prevents the dictionary attack from
the receiver to evaluate arbitrary element. In our mPSU protocol, the leader P1 maintained a list
S to store and update the (active) PRF values for the set while growing the union. To be specific,
in round i− 1 for i ∈ [2, n], Pi acts as the OPRF sender with a key ki and updates the PRF list S
for P1. From now, the PRF of element x given key k is denoted as F (k, x). We use Diffie-Hellman
PRF defined as F (k, x) = H(x||0)k so that the output of OPRF and cOPRF are compatible in
our mPSU protocol. Note that the formulation of F does not affect the correctness of our mPSU
protocol asthe probability of two queries sharing the same PRF F remains negligible within κ.

However, as mentioned in the 4-party case earlier, there is a problem and we formalize it here.
In round i − 1, after updating the PRF value, Pi invoke the mOT with P1 so that P1 learns the
PRF values for any xi ∈ Xi \

⋃i−1
j=1Xj . If P1 and any Pj∈[i+1,n] collude, P1 can check Pj ’s PRF

16

Parameters:

• n parties Pi∈[n] for n > 1.

• The mOT, OPRF, Shuffle&Decrypt functionalities described in Figures 2&9&6, respectively.

• A multi-key cryptosystem (KeyGen,Enc,ParDec,FulDec,ReRand) defined in Section 2.6.

• Hashing parameters: a number of bins µ, maximum bin sizes β : Z → Z for simple-hashing bins, the h
hash functions Hj∈[h] : {0, 1}⋆ → [µ].

Input:
• Party Pi∈[n] has Xi = {xi,1, . . . , xi,m}.

Protocol:

1. All n parties call the key generation algorithm KeyGen(1λ, 1κ). Each Pi receives a private key ski and a
joint public key pk.

2. Local Execution:

(a) Pi∈[2,n] hashes items Xi into µ bins using the Cuckoo hashing. Let Ci
b,1 denote the items in the

Pi’s bth bin. Pi computes the encryption eib,1 = Enc(pk, Ci
b,1), for b ∈ [µ].

(b) Pi∈[n] hashes Xi into µ bins under k hash functions. Let Si
b,1 denote the set of items in the Pi’s

bth bin. Pi pads S
i
b,1 with dummy values to the maximum bin size β(m).

(c) For bin b ∈ [µ], the P1 initials an empty set Eb.

3. P1 sequentially interacts with Pi for i ∈ [2, n] as follow.

(a) For each bin b ∈ [µ], the P1 and Pi invoke the functionality of OPRF where:

• P1 acts as the receiver with input the set S1
b,i−1.

• Pi acts as the sender with input the random-chosen PRF key ki.

• P1 obtains a set S1
b,i of the PRF values F (ki, y) for y ∈ S1

b,i−1. Note that F (ki, y) =

H(ki, y||1)ki for a random hash function H.

(b) For each bin b ∈ [µ], P1 and Pi invoke a mOT instance where:

• P1 acts as the receiver with input S1
b,i.

• Pi acts as the sender with input (yb,i, rb,i||Enc(pk, 0), yb,i||ēb,i). Here, rb,i is a random value;
yb,i = F (ki, C

i
b,i−1) if Ci

b,i−1 ̸= ∅ and random otherwise; ēb,i = Enc(pk, 0) if Ci
b,i−1 = ∅,

otherwise, ēb,i = eib,i−1.

• P1 obtains vb||eb.
P1 appends eb to Eb. P1 hashes

⋃µ
b=1

(
S1
b,i ∪ vb

)
into µ bins under h hash functions. The P1

redefines S1
b,i to be the set of items in its bth bin, and then pads S1

b,i with dummy values to the
maximum bin size β(im).

(c) For each bin b ∈ [µ], Pi and Pt∈[i+1,n] invoke the cOPRF where:

• Pt acts as the receiver with input Ct
b,i−1 or a dummy if Ct

b,i−1 = ∅.

• Pi acts as the sender with input the PRF key ki and the set Si
b,i−1.

• Pt obtains wb, and sets wb = ∅ if Ct
b,i−1 = ∅.

Pt hashes W = {wb | b ∈ [µ] & wb ̸= ∅} into µ bins using the Cuckoo and Simple hashing. Let
St
b,i and Ct

b,i denote the items in the Simple and Cuckoo b-th bin, respectively. Pt pads St
b,i with

dummy to maximum bin size β(m).

(d) The Pi and Pt∈[i+1,n] invoke a mOT instance where:

• Pi acts as the receiver with input {F (ki, y) | y ∈ Si
b,i−1}

• Pt acts as the sender with input (Ct
b,i,Enc(pk, 0), e

t
b,i−1).

• Pi obtains c and sends c′ = ReRand(c, pk) to Pt

Pt computes etb,i = ReRand(c′, pk)

4. All the parties invoke the Shuffle&Decrypt functionality where:

• P1 inputs E =
⋃µ

b=2 Eb, the sk1 and a random permutation π1 : [m] → [m].

• Pi inputs the private key ski and a random permutation πi : [m] → [m].

• P1 obtains a set U .

5. P1 removes all zero from U , and outputs U ∪X1.

Figure 8: Our mPSU Protocol

17

values and the output of mOT with Pi. The intersection recovers a subset of Pi’s input with Pj ’s
knowledge of the correspondence of the PRF value and the original input. To address the leakage,
we ensure that the corrupt party Pi obtains an fake/“inactive” PRF value of their input item xi
(which has a form H(x||1)k) if the xi appears in any input set of previous parties Pt∈[2,i−1] so that
the intersection is always empty. This objective can be achieved through the use of our cOPRF
primitive.

Recall that our cOPRF is a single-query PRF, thus, we use the bin-and-ball technique to enhance
the performance of our protocol. We now demonstrate how to execute the cOPRF using the recursive
method. Initially, each party Pt∈[2,n] hashes input set Xt into a Cuckoo hashing table Ct

1and
a Simple hashing table St

1 using the same h hash functions. Both tables are updated in each
round. We use Ct

b,i and St
b,i to denote the bth bin of party Pt’s Cuckoo hashing table and Simple

hashing table in round i correspondingly. In round i− 1, Pi invokes cOPRF protocol with Pt∈[i+1,n]

bin by bin, where Pi acts as the sender with key ki and input set Si
b,i−1 while Pt acts as the

receiver with query c ∈ Ct
b,i−1. The cOPRF provides Pt the active/correct PRF value which equals

F ((ki, ki−1, . . . , k2), xt,j) for an input xt,j if xt,j ̸∈ Xi and c has a form F ((ki−1, . . . , k2), xt,j) – in
other words, xt,j ̸∈ X2 ∪ . . . ∪ Xi−1. The cOPRF gives Pt an inactive PRF value as H(c||1)ki if
xt,j ∈ Xi or c is random from the earlier round. For the baseline starting in round 1, P2 plays the
role of cOPRF sender with key k2. For a query element xt,j ∈ Ct

b,1 from Pt∈[3,n], cOPRF outputs wb

as the correct/active PRF value F (k2, xt,j) if xt,j /∈ X2 or a random/inactive value rt,j otherwise.
Pt creates the Simple hashing table St

2 and Cuckoo hashing table Ct
2 for round 2 by hashing the

received PRF values.
We present the cOPRF execution in Step (3,c), Figure 8. It should be noted that, by invoking

OPRF and cOPRF in each round, the input for the mOT from party Pi in round i−1 is a multi-key
PRF value. For an element xi,j , the associated PRF is of form F ((ki, . . . , k2), xi,j) if xi,j /∈

⋃i−1
t=2Xt.

The randomness always has a contribution from the key ki chosen by party Pi himself. This prevents
the information leakage from the collusion between the P1 and the PRF key selector for the usage
of single-key PRF scheme.

When using the bin-and-ball scheme, parties are required to apply the mapping to their multi-
key PRF values. In round i−1, each individual Pi∈[2,n] must also map its PRF values using Cuckoo
hashing, and the resulting Cuckoo-hashing bin serves as the input of the sender Pi in the mOT
process. Since the P1 and Pi invoke mOT in Step (3,b) which takes care of the membership test,
these two parties only need to execute the OPRF computation (instead of cOPRF). Note that P1

does not need to query the PRF values for dummy items, but instead aggregates all non-dummy
PRF values in the set S1

b,i−1 and employs them as input to the OPRF execution.

4.1.2 The Usage of mOT

As per the overview description, each party Pi∈[2,n] should oblivious transmit element x ∈ Xi to P1

if x /∈
⋂i−1

t=1Xt. In round i, the parties P1 and Pi engage in the mOT to incrementally acquire the
PRF values and encrypted union items. We now introduce the usage of mOT in detail.

Instead of using the original element, P1 and Pi use PRF values as the input set and value
for the mOT execution. Same as what we do for the cOPRF, mOT is executed in a bin-by-bin
manner. In round i − 1, each party Pi has Cuckoo hashing table Ci

i−1 and a simple hashing
table Si

i−1 while P1 having a Simple hash table S1
i−1 to store the PRF values. As introduced in

Section 4.1.1, P1 updates his PRF values by OPRF. Concretely, assuming that after the mOT with
Pi−1, the set S1

b,i−1 contains either random values r or F ((ki−1, . . . , k2), x) for x ∈
⋃i−1

t=1Xi. In the

18

next round, Pi selects the PRF key ki. The P1 submits OPRF queries on S1
i−1 to Pi and obtains

S1
b,i = {F (ki, s) | s ∈ S1

i−1} while Pi learns nothing. Note that the F (ki, s) has a form H(ki, s||0)
which is the same as the “active” PRF in cOPRF. Clearly, the set S1

b,i consists of F ((ki, . . . , k2), x)

for x ∈
⋃i−1

t=1Xi and F (ki, r) for random r ∈ S1
i−1. We present the OPRF in Step (3,a), Figure 8.

The elements of each bin in S1
i serves as the input set For P1 for each call of mOT.

The mOT execution between P1 and Pi should allow P1 to add the PRF values F ((ki, . . . , k2), x)
of the Pi’s item x ∈ Xi to S1

i if x is not in the union of {X1, . . . , Xi−1}. To achieve this, they invoke
the mOT protocol where P1 plays the role of receiver and Pi as sender. Considering the b-th bin,
P1’s input set for the mOT is S1

b,i while Pi’s input should be of form (cb,i, rb,i||Enc(pk, 0), cb,i||eb,i).
The cb,i = F (ki, c) is the PRF value stored in the b-th bin of his Cuckoo hashing table where c is the
value obtained from cOPRF executions with previous parties Pi∈[2,i−1]. The rb,i is randomly chosen.
The main tricky part is how to define eib,i. If eb,i is an encryption Enc(pk, x) of the Pi’s input item
x, and if the the cb,i is an inactive/fake PRF value, then eb,i is added to Eb as cb,i never appears
in the P1’s set S1

b,i. Recall that the inactive PRF cb,i indicates that the corresponding x is in the
set of previous parties Pt∈[2,i−1]. Hence, if we set ēb,i = Enc(pk, x), the Eb contains two ciphertexts
that are encryptions of the same x. This will reveal to P1 the multiplicity of each element in the
union after decrypting Eb. To avoid this issue, we propose the following method to compute eb,i.

Our objective is to ensure that eib,i is the encryption of the Pi’s input item x if x does not
appear in any set of X2, . . . , Xi−1; otherwise it should be the encryption of zero. In brief, the value
of eib,i depends on the membership test of x with set Xt∈[2,i−1]. This can be achieved by having
Pi participate with each party Pt∈[2,i−1] using mOTin round t − 1 alongside with the execution of
cOPRF. For the b-th bin of the hash table in round t− 1, Pt and Pi invoke mOT where Pt acts as
Receiver with input St

b,t−1 while Pi acts as Sender with input (Ci
b,t−1, v0 = Enc(pk, 0), v1 = ei(b,t−1)).

We use eib,t denotes the encryption corresponding to the value x whose PRF value stored in the

Ci
b,t−1 if x does not appear in any set of X2, . . . , Xt−1. Initially eib,1 = Enc(pk, x). The mOT

functionality returns the value v = v0 to Pt if x ∈ Xt and v = v1 otherwise. The Pt then
rerandomizes v by computing v′ ← ReRand(v, pk) and returns the result to Pi. The Pi then
computes eib,t = ReRand(v′, pk) which is the input to mOT. The first re-randomization from Pt

aims to prevent the Pi from determining the output of Pt, which would reveal whether x ∈ Xt.The
second re-randomization prevents the Pi to learn whether x ∈ Xt∈[2,t−1] if colluding with P1. The
computation described above is presented in Step (3,d), Figure 8.

4.2 Correctness and Security

Correctness. We consider three following cases depending on whether a specific item xi,k ∈ Xi

of the smallest-index party Pi is in P1 or other parties Pt for n ≥ t > i > 1. Since Pi is the smallest
index that has xi,k, no previous parties have xi,k. Thus, Pi obtains Ci

b,i−1 = F (ki−1, . . . , k2, xi,k)
after interacting with Pt∈[2,i−1] via the cOPRF.

• Case 1 (xi,k ∈ X1) – the P1 has xi,k: As xi,k ∈ X1, the OPRF with Pt∈[2,i] in Step (3,a) gives
P1 the multi-key PRF value F ((ki, . . . , k2), xi,k). In the mOT execution between P1 and Pi,
the input keyword of Pi as yb,i = F (ki, C

i
b,i−1) is in S1

b,i. Thus, P1 receives the encryption
of zero Enc(pk, 0) from the mOT functionality. As a result, xi,k does not appear in the final
result from the Shuffle&Decrypt execution.

• Case 2 (xi,k ̸∈ X1 and xi,k ∈ Xt) – the P1 does not have xi,k, but another party Pt has xt,j =

19

xi,k for t > i: The mOT execution between P1 and Pi on input related to yb,i = F (ki, C
i
b,i−1)

gives P1 the yb,i and eb,i = Enc(pk, xi,k). The PRF value yb,i is added to the set S1
b,i, and the

xi,k will appear in the final union output.

Assume that xt,j = xi,k ∈ Xj was mapped into the b-th Cuckoo bin. Since xt,j ∈ Xi, the
cOPRF and mOT with Pi gives Pj an inactive/fake PRF value Ct

b,i and et,b = Enc(pk, 0).
Thus, when executing mOT with Pt, the P1 obtains Enc(pk, 0). Hence, the xt,j does not
appear in the final result.

• Case 3 (xi,k ̸∈
⋃n

j=1,j ̸=iXj) – no party has xi,k: The mOT execution between P1 and Pi

gives P1 an Enc(pk, xi,k). Thus, xi,k appears in the final result from the Shuffle&Decrypt
functionality.

Security. The security of our mPSU protocol is given as below.

Theorem 7. Given the multi-key cryptosystem, mOT, OPRF, cOPRF and Shuffle&Decrypt func-
tionalities described in Section 2.6, and Figures 2&9&6, respectively, the mPSU protocol described
in Figure 8 securely implements the mPSU functionality defined in Figure 1 in the semi-honest
model, against any number of corrupt, colluding, semi-honest parties.

Proof. Let C and H be a coalition of corrupt and honest parties, respectively. We must show how
to simulate C’s view in the ideal model. We consider three following cases based on whether C has
an item x:

1. C does not have x, but H has x: If H contains only one honest party Pi, then Pi has x. The
corrupted parties C can deduce that the honest party Pi has x from the output of the set
union. Hence, there is nothing to hide about whether Pi has x in this case. If H has more
than one honest party (say Pi and Pj>i). We consider two following cases:

• Only Pi has x: we must show that the protocol must hide the identity of Pi. If P1 ∈ H,
only the honest party P1 learns the union

⋃n
i=1Xi in Step 5. In addition, the cOPRF

and mOT between Pi and previous corrupt parties Pt<i ∈ C reveals nothing to C, even
when C contains same items, this leads to submitting the same cOPRF queries. Thus,
the simulation is simple.

If P1 ∈ C, the corrupt P1 obtains Enc(pk, x) and the F ((ki, . . . , k2), x) from Pi. Since the
encryption is protected under the Shuffle&Decrypt functionality until the P1 learns the
union sets which was permuted by the honest party Pi, the encryption reveals nothing
to C. Similarly, the PRF value consists of the Pi’s key ki, which hides x from C.

• Both Pi and Pj have x: If i = 1, then the honest leader P1 receives encryptions of
zeros Enc(pk, 0) and “fake” PRF values when executing mOT with Pj . Thus, the C
learns nothing about which parties in H have x. If P1 ∈ C, the corrupt P1 receives the
encryption Enc(pk, x) from Pi and Enc(pk, 0) from Pj . Thanks to the CCA property of
the encryption scheme and the permutation in Shuffle&Decrypt, C cannot distinguish
the two encryptions. Thus, the protocol hides the identity of which honest party has x.

2. C have x, but H does not have x: We must show that the protocol must hide the information
that H does not have x. Consider the cOPRF (or OPRF) and mOT executions where a party
in H acts as the sender and a party in C acts as the receiver, the corrupt set C receives

20

nothing related to x. In the final step, the encryption set E contains Enc(pk, x), which was
permuted by the honest parties H. Hence, all honest parties have an indistinguishable effect
on the Shuffle&Decrypt step.

3. Both C and H have x. When C acts as the receiver invokes the cOPRF (or OPRF) with an
honest sender which does not have x, the C obtains the correct/active PRF values. When
C interacts with an honest party that has x, the C obtains the active/correct PRF values
(if P1 ∈ C) and the inactive/fake PRF values. Since the PRF values contain the PRF key
of the honest set H and their distribution is random. Thus, C learns nothing from cOPRF
or OPRF executions. Similarly, the corrupt coalition’s view is simulated from Step (3b, 3d)
based on the functionality of mOT and encryption scheme. Moreover, the Enc(pk, x) appears
only once in the encryption set E, thus, C learns nothing about whether H has x.

4.3 Complexity

Our Protocol
m = 28 m = 212 m = 216 m = 220

t = 1 t = 4 t = 16 t = 1 t = 4 t = 16 t = 1 t = 4 t = 16 t = 1 t = 4 t = 16

LAN (s)

n = 3 2.34 0.68 0.38 36.19 9.33 2.94 601.09 153.94 42.10 7206.93 1928.18 538.60
n = 4 4.41 1.24 0.62 69.64 17.53 5.02 1147.23 291.49 78.70 13499.71 3578.83 985.87
n = 6 10.62 2.90 1.20 167.80 42.46 11.79 2786.58 724.33 189.36 32298.18 8884.75 2334.88
n = 8 19.68 5.24 1.98 312.52 79.01 21.53 5176.58 1331.38 349.97 59807.53 16212.85 4290.46

WAN (s)

n = 3 12.03 10.58 10.32 52.38 26.56 20.48 655.88 208.86 97.07 9920.07 2961.36 1219.62
n = 4 19.58 16.53 15.93 94.21 43.12 30.91 1214.65 370.88 161.04 18937.01 5444.82 2088.87
n = 6 36.72 29.04 27.36 210.05 85.91 55.57 2909.79 859.65 327.68 45732.48 12943.89 4434.85
n = 8 56.70 42.36 39.13 371.11 139.81 82.78 5356.24 1523.28 544.93 84535.25 23227.10 7576.88

Comm. Cost (MB)

n = 3 1.51 21.01 333.27 5332.40
n = 4 2.28 31.74 503.39 8054.17
n = 6 3.82 53.24 844.55 13512.85
n = 8 5.36 74.80 1186.52 18984.38

Table 3: The running time and communication cost of our mPSU protocol: the number of parties n ∈
{3, 4, 6, 8}, set size m ∈ {28, 212, 216, 220}, and numbers of thread t = {1, 4, 16}. The reported running
time represents the time taken for the entire protocol to complete. Communication cost is computed as the
average cost across all parties.

P1 P2 P3 P4

Comm.Cost
Running Time

Comm.Cost
Running Time

Comm.Cost
Running Time

Comm.Cost
Running Time

LAN WAN LAN WAN LAN WAN LAN WAN

m = 28

Total 4.56 4.41 19.58 4.53 4.41 19.58 4.56 4.41 19.58 4.59 4.41 19.58
OPRF 0.11 2.89 4.93 0.02 0.43 1.11 0.04 0.96 1.64 0.06 1.50 2.18
mOT 4.30 0.16 12.37 1.43 0.05 4.12 1.43 0.05 4.12 1.43 0.05 4.12
cOPRF - - - 2.93 1.08 9.69 2.93 1.08 9.69 2.93 1.08 9.69
Shuffle&Decrypt 0.15 1.02 2.00 0.15 1.02 2.00 0.15 1.02 2.00 0.15 1.02 2.00

m = 212

Total 63.47 69.64 94.21 63.01 69.64 94.21 63.50 69.64 94.21 63.91 69.64 94.21
OPRF 1.76 47.03 50.32 0.26 6.62 7.61 0.59 15.21 16.37 0.91 25.19 26.34
mOT 59.33 0.91 19.98 19.78 0.30 6.66 19.78 0.30 6.66 19.78 0.30 6.66
cOPRF - - - 40.59 15.99 29.83 40.59 15.99 29.83 40.59 15.99 29.83
Shuffle&Decrypt 2.38 16.05 19.32 2.38 16.05 19.32 2.38 16.05 19.32 2.38 16.05 19.32

m = 216

Total 1006.73 1147.23 1214.65 999.43 1147.23 1214.65 1007.21 1147.23 1214.65 1013.72 1147.23 1214.65
OPRF 28.09 739.20 744.78 4.13 107.07 108.67 9.36 242.86 244.73 14.60 389.27 391.38
mOT 940.54 12.38 83.61 313.51 4.13 27.87 313.51 4.13 27.87 313.51 4.13 27.87
cOPRF - - - 643.69 254.17 302.74 643.69 254.17 302.74 643.69 254.17 302.74
Shuffle&Decrypt 38.10 303.31 309.82 38.10 303.31 309.82 38.10 303.31 309.82 38.10 303.31 309.82

Table 4: The breakdown running time and communication cost for each party in our 4-party mPSU protocol
(n = 4).

We presented the communication, computation, and round complexities of our mPSU protocol

21

in Figure 1 and elaborate on them here. It is clear that our protocol has n rounds for both Step (3)
and Step (4). Leveraging the bin-and-ball technique introduced in [34, 37], parties hash elements
into Cuckoo and Simple hashing tables consisting of O(m) bins. Each bin of the Simple hashing
table accommodates up to O(logm/ log logm) elements. In round i− 1, party Pi engages in mOT
with P1 and cOPRF with the remaining parties, each incurring a cost of O(logm/ log logm) in terms
of communication and computation per bin. This yields a total cost of O(n2m logm/ log logm).

5 Implementation and Performance

We implement our protocol and evaluate it with various number of parties, set sizes, and number
of threads. All evaluations were performed with an item input length 128 bits, a statistical security
parameter λ = 40, and a computational security parameter κ = 128. We do a number of experi-
ments on a single server that has AMD EPYC 74F3 processors and 256GB of RAM. We run all
parties in the same network, but simulate a network connection using the Linux tc command: a
LAN setting with 0.02ms round-trip latency, 10 Gbps network bandwidth; a WAN setting with a
80ms round-trip latency, 400 Mbps network bandwidth.

Our mPSU protocol is built on ElGamal encryption scheme (multi-key cryptosystem), Diffie-
Hellman OPRF (cOPRF), SS-PMT, and OT (mOT and cOPRF). We implement the exponentiation
for OPRF and ElGamal encryption using the elliptic curve code (Curve25519) from Relic [40]. For
the SS-PMT implementation which requires garbled circuit for two strings comparison, we use the
EMP-toolkit library [45]. Finally, we use the OT-extension [22] provided in [33] to implement mOT.
Our complete implementation will be available on GitHub.

Our protocol scales well using multi-threading between the parties. In each round, the party
Pi∈[2,n−1] can use n−i+1 threads so that each party operates OPRF with mOT and cOPRF building
blocks with other parties P1 and Pj∈[i+1,n] at the same time. In addition, each pair of parties can use
multiple threads to execute these building blocks bin-by-bin in parallel. We evaluate it on number
of threads t ∈ {1, 4, 16} to show the performance of our protocols running with multi-threading.

5.1 Performance of Our mPSU Protocol

Table 3 presents the overall runtime and communication overhead of our mPSU protocol.
The performance difference between WAN and LAN is primarily due to the latency instead

of bandwidth for the smaller input. The gap increases with the number of parties which is also
observed in other protocols with an O(n) or higher round complexity.

Additionally, we present the breakdown cost of our protocol for each party in 4-party scenarios
with varying set sizes in Figure 4. Specifically, we present the performance metrics of the mOT in
Step (3,e) and the cOPRF in Step (3,d) in our protocol within the column designated for cOPRF
in Figure 4. All reported running time values in Table 3 and Figure 4 represent end-to-end time.

5.2 Comparison with Previous Work

To demonstrate the performance of our mPSU protocols with a comparison, we have implemented
the semi-honest protocols proposed in [15, 4] and estimate the performance for protocol proposed
in [18]. Table 5 presents the running time and communication cost of various mPSU protocols [15,

22

4, 18] which are secure in the dishonest majority 1 and semi-honest setting. We do not incorporate
the results from [44] into our comparison, as their protocol only work for a small universe. Even in
their largest setting, with a universe size of 232, it is considerably smaller than the general scenario
involving 128-bit elements. According to [44, Figure 7], in a scenario involving 5 parties, each
with only 32 elements of 32-bit length, their protocol takes around 10 seconds. Interestingly, this is
comparable to the runtime of our protocol involving 6 parties, each with 256 elements in a 128-bit
universe.

In [4], each input set Xi is initially shared among n parties using a secret-sharing scheme.
Subsequently, these parties employ a generic secure computation technique to compute the union
on the shares. Our implementation of the [4]’s method, however, is limited to the two-party scenario
where each Xi is secret-shared between only two parties (which is in favor of [4]). Consequently,
the secure computation takes place exclusively between these two parties. We implement [4] using
EMP-toolkit library [45] which provides the most of the state-of-the-art techniques for two-party
secure computation in the semi-honest setting. As shown in Table 5, for n = 4, our protocol is 1.87
times faster for the large set size of 220 in the LAN setting and 6.54− 37.82× faster than [4] in the
WAN. Additionally, the cost for [4] is significantly (162.43− 389.85×) higher than our protocol for
set size m ∈ {28, 212, 216, 220}.

We report the partial running time and communication cost of the mPSU protocol proposed
by [18]. The first step of their protocol is for each party to locally compute an encryption of a
local Bloom filter. To achieve a false positive rate of 2−40, the table size should be at least 60nm.
We estimate the time and communication cost for this single step of each party based on the
performance shown in [30] (as well as our [15]’s implementation), where each Paillier encryption
takes about 2.5 ms with a key length of 2048 bits, and report the numbers in Table 5.

Our mPSU protocol outperforms previous works in the LAN setting. Despite the low com-
munication cost due to the usage of homomorphic encryption, the running time of [15, 18] is not
practical even for small set sizes. Thus, we skip the evaluation of the [18, 15] in the WAN setting.

6 Conclusion

In this work, we propose an efficient mPSU protocol in the semi-honest setting against an adversary
that colludes an arbitrary number of participants. Our protocol is built on mOT, cOPRF which
we believed of independent interests. Our protocol significantly outperforms prior mPSU works in
the same security setting in terms of running time and communication cost. Our mPSU framework
is the generalization of the well-studied 2-party PSU protocols to the multi-party setting. We
highlight some directions for future work:

• Improving scalability: Unlike the 2-party PSU and some other efficient private set intersection
protocols, our protocol still heavily relies on public key techniques which is the bottleneck
of the performance. We leave the mPSU protocol constructed mainly on the symmetric key
techniques as the future work.

• This study concentrates on semi-honest mPSU, which we consider a preliminary stage in
advancing towards efficient malicious MPSU. To achieve malicious MPSU, one can employ
cryptographic commitment techniques at each step of the protocol, albeit with added costs.

1The recent mPSU protocol [29] provides a weak security guarantee wherein the leader does not collude with any
parties.

23

m Ours [18] [4] [15]

Running Time
LAN (second)

28 4.41 155.63 2.70 6009.00
212 69.64 2490.04 57.725 -
216 1147.23 39840.65 1158.53 -
220 13499.71 637450.40 25279.39 -

Running Time
WAN (second)

28 19.58 - 128.05 -
212 94.21 - 2387.70 -
216 1214.65 - 45939.46 -

Comm. Cost
(MB)

28 9.12 15.72 1481.34 4.25
212 126.96 251.65 30116.50 68.00
216 2013.56 4026.53 617047.00 1088.00
220 32216.68 64424.48 12559743.00 17408.00

Table 5: Performance comparison of different mPSU protocols with n = 4 parties, each having
m ∈ {28, 212, 216, 220}. The communication cost is computed as the overall cost across all parties.

References

[1] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and
Daniel Wichs. Multiparty computation with low communication, computation and interaction
via threshold FHE. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 483–501. Springer, Heidelberg, April 2012.

[2] Alex Berke, Michiel Bakker, Praneeth Vepakomma, Kent Larson, and Alex ’Sandy’ Pentland.
Assessing disease exposure risk with location data: A proposal for cryptographic preservation
of privacy, 2020.

[3] Alexander Bienstock, Sarvar Patel, Joon Young Seo, and Kevin Yeo. Near-Optimal oblivious
Key-Value stores for efficient PSI, PSU and Volume-Hiding Multi-Maps. In 32nd USENIX
Security Symposium (USENIX Security 23), pages 301–318, Anaheim, CA, August 2023.
USENIX Association.

[4] Marina Blanton and Everaldo Aguiar. Private and oblivious set and multiset operations. In
Heung Youl Youm and Yoojae Won, editors, ASIACCS 12, pages 40–41. ACM Press, May
2012.

[5] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical
GapSVP. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of
LNCS, pages 868–886. Springer, Heidelberg, August 2012.

[6] Justin Brickell and Vitaly Shmatikov. Privacy-preserving graph algorithms in the semi-honest
model. In Bimal K. Roy, editor, ASIACRYPT 2005, volume 3788 of LNCS, pages 236–252.
Springer, Heidelberg, December 2005.

24

[7] Prasad Buddhavarapu, Andrew Knox, Payman Mohassel, Shubho Sengupta, Erik Taubeneck,
and Vlad Vlaskin. Private matching for compute. Cryptology ePrint Archive, Paper 2020/599,
2020. https://eprint.iacr.org/2020/599.

[8] Dung Bui and Geoffroy Couteau. Improved private set intersection for sets with small entries.
PKC, 2023. https://eprint.iacr.org/2022/334.

[9] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropoulos. SEPIA: Privacy-
Preserving aggregation of Multi-Domain network events and statistics. In 19th USENIX Secu-
rity Symposium (USENIX Security 10), Washington, DC, August 2010. USENIX Association.

[10] Nishanth Chandran, Nishka Dasgupta, Divya Gupta, Sai Lakshmi Bhavana Obbattu, Sruthi
Sekar, and Akash Shah. Efficient linear multiparty PSI and extensions to circuit/quorum PSI.
In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 1182–1204. ACM Press,
November 2021.

[11] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. Pir-psi: Scaling private contact
discovery. Cryptology ePrint Archive, Paper 2018/579, 2018. https://eprint.iacr.org/

2018/579.

[12] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on Information
Theory, 22(6):644–654, 1976.

[13] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete loga-
rithms. In G. R. Blakley and David Chaum, editors, CRYPTO’84, volume 196 of LNCS, pages
10–18. Springer, Heidelberg, August 1984.

[14] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search and
oblivious pseudorandom functions. In Joe Kilian, editor, Theory of Cryptography, pages 303–
324, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[15] Keith B. Frikken. Privacy-preserving set union. In Jonathan Katz and Moti Yung, editors,
ACNS 07, volume 4521 of LNCS, pages 237–252. Springer, Heidelberg, June 2007.

[16] Gayathri Garimella, Payman Mohassel, Mike Rosulek, Saeed Sadeghian, and Jaspal Singh.
Private set operations from oblivious switching. In Juan A. Garay, editor, Public-Key Cryp-
tography – PKC 2021, pages 591–617, Cham, 2021. Springer International Publishing.

[17] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the Forty-
First Annual ACM Symposium on Theory of Computing, STOC ’09, page 169–178, New York,
NY, USA, 2009. Association for Computing Machinery.

[18] Xuhui Gong, Qiang-Sheng Hua, and Hai Jin. Nearly optimal protocols for computing multi-
party private set union. In 2022 IEEE/ACM 30th International Symposium on Quality of
Service (IWQoS), pages 1–10, 2022.

[19] Christoph Hagen, Christian Weinert, Christoph Sendner, Alexandra Dmitrienko, and Thomas
Schneider. Contact discovery in mobile messengers: Low-cost attacks, quantitative analyses,
and efficient mitigations. ACM Trans. Priv. Secur., 26(1), nov 2022.

25

https://eprint.iacr.org/2020/599
https://eprint.iacr.org/2022/334
https://eprint.iacr.org/2018/579
https://eprint.iacr.org/2018/579

[20] Kyle Hogan, Noah Luther, Nabil Schear, Emily Shen, David Stott, Sophia Yakoubov, and
Arkady Yerukhimovich. Secure multiparty computation for cooperative cyber risk assessment.
In 2016 IEEE Cybersecurity Development (SecDev), pages 75–76, 2016.

[21] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn Seth,
Mariana Raykova, David Shanahan, and Moti Yung. On deploying secure computing: Private
intersection-sum-with-cardinality. In IEEE European Symposium on Security and Privacy,
EuroS&P 2020, Genoa, Italy, September 7-11, 2020, pages 370–389. IEEE, 2020.

[22] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers effi-
ciently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–161. Springer,
Heidelberg, August 2003.

[23] Yanxue Jia, Shi-Feng Sun, Hong-Sheng Zhou, Jiajun Du, and Dawu Gu. Shuffle-based private
set union: Faster and more secure. In 31st USENIX Security Symposium (USENIX Security
22), pages 2947–2964, Boston, MA, August 2022. USENIX Association.

[24] M. Kantarcioglu and C. Clifton. Privacy-preserving distributed mining of association rules
on horizontally partitioned data. IEEE Transactions on Knowledge and Data Engineering,
16(9):1026–1037, 2004.

[25] Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In Victor Shoup,
editor, CRYPTO 2005, volume 3621 of LNCS, pages 241–257. Springer, Heidelberg, August
2005.

[26] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched obliv-
ious PRF with applications to private set intersection. In Edgar R. Weippl, Stefan Katzen-
beisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016,
pages 818–829. ACM Press, October 2016.

[27] Vladimir Kolesnikov, Mike Rosulek, Ni Trieu, and Xiao Wang. Scalable private set union
from symmetric-key techniques. In Steven D. Galbraith and Shiho Moriai, editors, ASI-
ACRYPT 2019, Part II, volume 11922 of LNCS, pages 636–666. Springer, Heidelberg, De-
cember 2019.

[28] Tancrède Lepoint, Sarvar Patel, Mariana Raykova, Karn Seth, and Ni Trieu. Private join
and compute from PIR with default. In Mehdi Tibouchi and Huaxiong Wang, editors, ASI-
ACRYPT 2021, Part II, volume 13091 of LNCS, pages 605–634. Springer, Heidelberg, Decem-
ber 2021.

[29] Xiang Liu and Ying Gao. Scalable multi-party private set union from multi-query secret-
shared private membership test. Cryptology ePrint Archive, Paper 2023/1413, 2023. https:
//eprint.iacr.org/2023/1413.

[30] Huanyu Ma, Shuai Han, and Hao Lei. Optimized paillier’s cryptosystem with fast encryption
and decryption. In Annual Computer Security Applications Conference, ACSAC ’21, page
106–118, New York, NY, USA, 2021. Association for Computing Machinery.

26

https://eprint.iacr.org/2023/1413
https://eprint.iacr.org/2023/1413

[31] Ofri Nevo, Ni Trieu, and Avishay Yanai. Simple, fast malicious multiparty private set in-
tersection. In Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi, editors, CCS ’21:
2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event,
Republic of Korea, November 15 - 19, 2021, pages 1151–1165. ACM, 2021.

[32] Duong Tung Nguyen and Ni Trieu. Mpccache: Privacy-preserving multi-party cooperative
cache sharing at the edge. Cryptology ePrint Archive, Report 2021/317, 2021. https://

eprint.iacr.org/2021/317.

[33] Lance Roy Peter Rindal. libOTe: an efficient, portable, and easy to use Oblivious Transfer
Library. https://github.com/osu-crypto/libOTe.

[34] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private set in-
tersection using permutation-based hashing. In Jaeyeon Jung and Thorsten Holz, editors,
USENIX Security 2015, pages 515–530. USENIX Association, August 2015.

[35] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. Efficient circuit-
based PSI with linear communication. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part III, volume 11478 of LNCS, pages 122–153. Springer, Heidelberg, May
2019.

[36] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. Efficient circuit-
based PSI via cuckoo hashing. In Jesper Buus Nielsen and Vincent Rijmen, editors, EU-
ROCRYPT 2018, Part III, volume 10822 of LNCS, pages 125–157. Springer, Heidelberg,
April / May 2018.

[37] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set intersection based
on ot extension. ACM Trans. Priv. Secur., 21(2), jan 2018.

[38] Tal Rabin. A simplified approach to threshold and proactive RSA. In Hugo Krawczyk, editor,
CRYPTO’98, volume 1462 of LNCS, pages 89–104. Springer, Heidelberg, August 1998.

[39] Srinivasan Raghuraman and Peter Rindal. Blazing fast PSI from improved OKVS and subfield
VOLE. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022,
pages 2505–2517. ACM Press, November 2022.

[40] RELIC. A modern research-oriented cryptographic meta-toolkit with emphasis on efficiency
and flexibility. https://github.com/relic-toolkit.

[41] Jae Hong Seo, Jung Cheon, and Jonathan Katz. Constant-round multi-party private set union
using reversed laurent series. volume 7293, pages 398–412, 05 2012.

[42] Katsunari Shishido and Atsuko Miyaji. Efficient and quasi-accurate multiparty private set
union. In 2018 IEEE International Conference on Smart Computing (SMARTCOMP), pages
309–314, 2018.

[43] Ni Trieu, Kareem Shehata, Prateek Saxena, Reza Shokri, and Dawn Song. Epione: Lightweight
contact tracing with strong privacy. CoRR, abs/2004.13293, 2020.

27

https://eprint.iacr.org/2021/317
https://eprint.iacr.org/2021/317
https://github.com/osu-crypto/libOTe
https://github.com/relic-toolkit

[44] Jelle Vos, Mauro Conti, and Zekeriya Erkin. Fast multi-party private set operations in the
star topology from secure ands and ors. Cryptology ePrint Archive, Paper 2022/721, 2022.
https://eprint.iacr.org/2022/721.

[45] Xiao Wang, Alex J Malozemoff, and Jonathan Katz. Emp-toolkit: Efficient multiparty com-
putation toolkit, 2016.

[46] Cong Zhang, Yu Chen, Weiran Liu, Min Zhang, and Dongdai Lin. Linear private set union
from Multi-Query reverse private membership test. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 337–354, Anaheim, CA, August 2023. USENIX Association.

Parameters: A PRF F , and a bound m on the number of queries.
Functionality:

• Wait for input (q1, . . . , qm) from the receiver where qi ∈ {0, 1}κ.

• Sample a random PRF key k and give it to the sender.

• Give {F (k, q1), . . . , F (k, qm)} to the receiver.

Figure 9: OPRF Ideal Functionality

Parameters: Two parties: Sender and Receiver
Functionality:

• Wait for input strings (x0, x1) ⊂ ({0, 1}∗)2 from the sender.

• Wait for input choice bit b ∈ {0, 1} from the receiver.

• Give xb to the receiver.

Figure 10: Oblivious Transfer (OT) Ideal Functionality.

Parameters: Two parties: P0 and P1, and the set size n.
Functionality:

• Wait for input a set of items X = {x1, . . . , xn} ⊂ ({0, 1}∗)n from the P0.

• Wait for input item y ∈ {0, 1}⋆ from the P1.

• Give bi to the Pi∈{0,1} where b0 ⊕ b1 = 1 if y ∈ X and 0 otherwise.

Figure 11: Secret-shared Private Membership Test (SS-PMT) Ideal Functionality.

A Security Proof

A.1 Security Proof of Theorem 2

Proof. We construct simulators SimS and SimR to simulate the view of corrupted sender S and
corrupted receiver R, respectively. We argue the indistinguishability of the simulator and the real

28

https://eprint.iacr.org/2022/721

execution.
Simulating S: The simulator SimS has input (y, v0, v1) and receives output from the SS-

PMT ideal functionality, consisting of a secret-shared membership bit bS . For the OT execution,
the simulator SimS obtains nothing, except the random OT transcript which is random. Since the
output of SS-PMT is secret-shared amongst the corrupt sender and honest receiver, one can replace
the bit bS with a random. It is straightforward to check that the simulation is perfect.

Simulating R: SimR with input X receives nothing from the SS-PMT ideal functionality,
expect a secret-shared membership bit bR. SimR obtains w from the OT and u from the sender
in the last step. We show that the output of the simulator SimR is indistinguishable from the real
execution. For this, we formally show the simulation by proceeding with the sequence of hybrid
transcripts T0, T1, T2 where T0 is real view of the receiver, and T2 is the output of SimR.

• Let T1 be the same as T0, except the SS-PMT output which can be replaced with random as
the honest sender holds a secret-shared of the output. Thus, T0 and T1 are indistinguishable.

• Let T2 be the same as T1, except the OT execution and obtaining u. Due to the underlying
security property of OT, the receiver only learns one of the two strings related to v0 or v1. In
addition, the sender’s associated values were masked with a random value r before the OT
execution. Thus, w reveals nothing about vi∈{0,1}. When having u = r ⊕ bS · (v1 ⊕ v0), the
corrupt receiver might try to unmask r by computing u ⊕ w. However, the resulting value
is indeed the protocol’s output which can be simulated. Therefore, we can replace both w
and u with random (the receiver sees a system of two equations that contains three unknown
variables). In summary, T2 and T1 are indistinguishable.

A.2 Security Proof of Theorem 4

Proof. The security follows from the security of the mOT functionality and the fact the value
vi = H(q||i)α and y = w1/α is distributed uniformly.

More precisely, the corrupt sender S learns nothing from the mOT execution as v0 and v1 are in
the same distribution. The value v1 reveals nothing about the receiver’s input q due to the secret
α under the Diffie–Hellman assumption.

The corrupt receiver obtains w = vk from the honest sender. Due to the secret PRF key k, the
receiver learns nothing from v. Thus, simulation is trivial, as the parties’ views in the protocol are
exactly the cOPRF output.

A.3 Security Proof of Theorem 6

Proof. Let A be a coalition of corrupt parties. The view of A is a set of ciphertexts {Ci | Pi ∈ A},
and the output of the Shuffle&Decrypt which is {xπ(1), . . . , xπ(m)} if the leader P1 ∈ A.

Thanks to the property of the multi-key cryptosystem, Ci∈[n] reveals nothing about the un-
derlying plaintexts. If P1 is honest, the randomization hides the party’s permutation function.
Moreover, when assuming {Pi, Pj} ∈ A but {Pi+1, . . . , Pj−1} ̸∈ A, one might think that A might
learn the permutation functions of honest parties {Pi+1, . . . , Pj−1}. However, the output of the
partial decryption gives ciphertexts in the random distribution. Thus, the resulting view is random
to A (i.e., the corrupt coalition’s view is simulated).

29

	Introduction
	Multi-Party PSU vs 2-Party PSU
	Related Work
	Technical Overview of Our Protocols

	Preliminaries
	Multi-party Private Set Union
	Oblivious PRF
	Oblivious Transfer
	Secret-shared Private Membership Test
	Bin-and-ball Scheme
	Multi-key Cryptosystem

	Our mPSU Building Blocks
	Membership Oblivious Transfer (mOT)
	Conditional OPRF (cOPRF)
	Oblivious Shuffle and Decryption (Shuffle&Decrypt)

	Our mPSU Construction
	Our Protocol
	The Usage of OPRF and cOPRF
	The Usage of mOT

	Correctness and Security
	Complexity

	Implementation and Performance
	Performance of Our mPSU Protocol
	Comparison with Previous Work

	Conclusion
	Security Proof
	Security Proof of Theorem 2
	Security Proof of Theorem 4
	Security Proof of Theorem 6

