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Abstract. In PKC 2014, a policy-based signature (PBS) scheme was
proposed by Bellare and Fuchsbauer in which a signer can only sign
messages conforming to some policy specified by an issuing authority
and the produced signatures are verified under the issuer’s public key.
PBS construction supports the delegation of signing policy keys with
possible restrictions to the original policy. Although the PBS scheme is
meant to limit the signing privileges of the scheme’s users, singers could
easily abuse their signing rights without being held accountable since
PBS does not have a tracing capability, and a signing policy key defines
a policy that should be satisfied by the message only. In this work, we
build on PBS and propose a traceable policy-based signature scheme
(TPBS) where we employ a rerandomizable signature scheme, a digi-
tal signature scheme, and a zero-knowledge proof system as its building
blocks. TPBS introduces the notion of identity keys that are used with
the policy keys for signing. Thus it achieves traceability without compro-
mising the delegatability feature of the PBS scheme. Additionally, TPBS
ensures non-frameability under the assumption of a corrupted tracing au-
thority. We define and formally prove the security notions of the generic
TPBS scheme. Finally, we propose an instantiation of TPBS utilizing
the Pointcheval-Sanders rerandomizable signature scheme, Abe et al.’s
structure-preserving signature scheme, and Groth-Sahai NIZK system,
and analyze its efficiency.

Keywords: policy-based signatures · attribute-based signatures · reran-
domizable signatures · group signatures.

1 Introduction
In policy-based signature (PBS) schemes, a signer can produce a valid signature
of a message only if the message satisfies a specific hidden policy [4]. PBS schemes
allow an issuer to delegate signing rights to specific signers under a particular
policy (by sharing a signing policy key). Yet, the produced signature is verifiable
under the issuer’s public key. Besides unforgeability, the standard security notion
for signature schemes, the privacy of the PBS scheme ensures that signatures do
not reveal the policy under which they were created. Generally speaking, PBS
schemes aim to extend the functionality of digital signature schemes by offering
some form of delegation of signing rights under the issuer’s policy signing key.
Although there exist some primitives that offer signing rights delegation, such
as group signatures (GS) [5] and attribute-based signatures (ABS) [15, 3], PBS
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introduces some distinct features that other primitives do not fulfill. For instance,
in GS schemes, a member signs any message on behalf of the whole group.
However, PBS schemes give the issuer fine-grained control over who is allowed
to sign which messages. On the other hand, in ABS schemes, the produced
signature attests to a specific claim predicate (public policy) regarding certified
attributes that the signer possesses. Additionally, ABS schemes do not impose
any restrictions on the messages to be signed. PBS fulfills these gaps by hiding
the policy under which the signature is created and requiring that the signed
message conforms to the hidden policy.

Bellare and Fuchsbauer show that the PBS framework allows delegation, where
a signer holding a key for some policy can delegate such a key to another signer
with possible restrictions on the associated policy. Delegation enables the sign-
ing of messages that satisfy both the original and restricted policies which suites
applications in hierarchical settings. For instance, if an issuer in a certain orga-
nization granted one of the managers the signing rights of contracts with clients
X, Y, and Z, such a manager can delegate these signing rights to a team leader in
his unit. Furthermore, the manager may restrict such rights and limit the team
leader to signing contracts with client Z only.

The standard security requirements of PBS schemes are unforgeability and
privacy [4]. Unforgeability ensures that an adversary cannot create a valid sig-
nature without having a policy key where the signed message conforms to such
a policy. Privacy guarantees that a signature does not reveal the policy associ-
ated with the key. Privacy also implies unlinkability, where an adversary cannot
decide whether two signatures were created using the same policy key. Although
the PBS privacy definition ensures full signer anonymity, it permits key misuse
without accountability. For instance, a signer of a given message may deny their
responsibility for such a signature, especially in a delegatable setting where sign-
ers delegate their signing keys to others, signing accountability becomes of a vital
value. Furthermore, policy key holders (delegated or not) may share their keys
with anyone which authorizes them to sign messages under the issuer’s name
without any sort of liability over the signed message. Note, a straightforward
way to overcome the latter problem could be by defining very restrictive policies
and the issuer can keep track of all the generated policy keys, messages to be
signed, and the identities of users who receive such keys. In case of a dispute,
the issuer uses such information to determine who received the keys used in the
signature generation of such a specific message. However, in this approach, the
issuer can only identify the policy key receiver and not the signer. Also, the
issuer is not able to prove such a claim, thus, unframeability is not ensured.

In an attempt to tackle the aforementioned problem, Xu et al. have proposed a
traceable policy-based signature scheme [18]. In their proposal, the user’s identity
is attached to the policy. More precisely, the issuer generates signing keys for
the user ensuring that the user’s identity is part of the key, i.e. generating the
signing keys for id||p, where id denotes the user identity and p, denotes the policy
under which the signer is allowed to sign a specific message. To sign a message,
the signer first encrypts their identity under the public key of an opener and
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provides a Non-Interactive Zero Knowledge (NIZK) proof of the issuer signature
on id||p such that p permits the message and id has been correctly encrypted to
the given ciphertext. The generated signature contains the ciphertext in addition
to the resulting NIZK proof. To trace a message to its original signer, the opener
decrypts the ciphertext using its decryption key to reveal the signer’s identity.
Although Xu et al.’s proposal provides traceability, it does not protect against
frameability because the issuer generates the signing keys of the scheme users.
Moreover, attaching user identities to the policy seems counter-intuitive to the
original goal of PBS schemes, where the signing rights are granted to users who
have access to a policy key which allows them to sign messages that conform to
the policy. Consequently, the issuer has to issue multiple signing keys to each
scheme user to include their identities for the same policy. According to Xu et
al. [18], a direct consequence of such an approach for traceability, is that the
proposed scheme does not support policy key delegation because the policy is
tied to a specific identity. More precisely, if a key holder delegates their key in
the form p′ = id||p1||p2 the signature generated with p′ will always be traced
back to the original key holder id.

Our Contributions. We propose a Traceable Policy-Based Signature (TPBS)
scheme that supports delegation. TPBS extends the functionality of the orig-
inal PBS scheme by adding a tracing mechanism to enforce accountability. We
design TPBS where the generated signature of a given message does not reveal
the policy nor the identity used in the signing process. The user’s signing key in
TPBS consists of an identity key and a policy key which are generated indepen-
dently; thus, TPBS supports policy key delegation similar to the PBS scheme. In
TPBS, each user generates a secret key which is used in an interactive protocol
with the TA to generate the user’s identity key. However, the user’s secret key is
never exchanged with the TA preventing a misbehaving tracing authority or any
party intercepting the user’s communication with the TA from framing such a
user. We formally define the extractability, simulatability, non-framability, and
traceability security notions for TPBS. Moreover, we propose a generic construc-
tion for TPBS employing a rerandomizable digital signature (RDS) scheme and
a simulation-sound extractable non-interactive zero-knowledge (SE-NIZK) proof
system. Then we prove that the generic construction achieves the defined secu-
rity notions. Finally, we give a concrete instantiation for TPBS with Pointcheval-
Sanders rerandomizable signature scheme and Groth-Sahai zero-knowledge proof
system and analyze its efficiency.

2 Preliminaries and Building Blocks

Sampling x uniformly at random from Zq is denoted by x
$← Zp. We denote by

i an identity from the identity universe I, i ∈ I. Let λ ∈ N denotes our security
parameter, then a function ϵ(λ) : N → [0, 1] denotes the negligible function if
for any c ∈ N, c > 0 there exists λc ∈ N s.t. ϵ(λ) < λ−c for all λ > λc. We
use f(.) to denote a one-way function with a domain denoted by F , and we
use PoK(x : C = f(x)) to denote an interactive perfect zero-knowledge proof of
knowledge of x such that C = f(x) [11]. Let a policy checker (PC) denote an
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NP-relation PC : {0, 1}∗{0, 1}∗ ← {0, 1}, where the first input is a pair (p,m)
representing a policy p ∈ {0, 1}∗ and a message m ∈ {0, 1}∗, while the second
input is a witness wp ∈ {0, 1}∗. The signing of m is permitted under policy p if
(p,m,wp) is PC-valid such that PC((p,m), wp) = 1 [4].

2.1 Rerandomizable Digital Signature Scheme (RDS)

RDS schemes are digital signature algorithms that allow rerandomizing a sig-
nature such that the rerandomized version of the signature is still verifiable
under the verification key of the signer [19, 16, 17, 10]. An RDS scheme is a
tuple of five polynomial-time algorithms, RDS = {ppRDS ← ppGenRDS(1λ),
(skRDS , pkRDS)← KeyGenRDS(ppRDS), σRDS ← SignRDS(skRDS ,m), σ′RDS ←
RandomizeRDS(σRDS), {⊤,⊥} ← VerifyRDS(pkRDS ,m, σRDS)}. Some RDS
schemes include a σRDS ← SignComRDS(skRDS , C) procedure that enables the
signing of a commitment C of a hidden message m such that the resulting σRDS

is verifiable for m. Note that if σRDS is generated using SignComRDS, it could
not be verified without the knowledge of m or some trapdoor information gener-
ated from m [9, 16]. RDS schemes ensure existential unforgeability under chosen
message attacks (EUF-CMA) and unlinkability where it is infeasible for adver-
saries to link a rereandomized version of a signature to its original one. RDS
unlinkability also implies the indistinguishability of rereandomized signatures.
The formal definition of such security notions and their associated experiments
are given in [16, 19] and in Appendix A.1.

2.2 Simulation-Sound Extractable NIZK (SE-NIZK)

A SE-NIZK system enables a prover with a witness w to prove non-interactively
the truthfulness of a statement x to a verifier without conveying why [13]. For x in
an NP-language L such that (x,w) in a relation R associated with L, a SE-NIZK
is a tuple of six polynomial-time algorithms, NIZK = {crs ← SetupNIZK(1λ),
(crs, trNIZK)← SimSetupNIZK(1λ), πNIZK ← ProveNIZK(crs, x, w), πNIZK ←
SimProveNIZK(crs, x, trNIZK), {⊤,⊥} ← VerifyNIZK(crs, x, πNIZK), w ←
ExtrNIZK(crs, x, πNIZK)}. SE-NIZK schemes ensure zero-knowledge which en-
sures a negligible success of an adversary that can distinguish between a proof
for a statement x using a witness w from a simulated one. They also provide
simulation-extractability which implies that it is hard for an adversary to output
a verifiable proof for a statement x using a witness w such that R(x,w) = 0. The
formal definitions of such security notions are given in [4] and in Appendix A.2.

2.3 Digital Signature Schemes

A digital signature scheme is a tuple of four polynomial-time algorithms,
Sig = {ppSig ← ppGenSig(1λ), (pkSig, skSig) ← KeyGenSig(ppSig), σSig ←
SignSig(skSig,m), {⊤,⊥} ← VerifySig(pkSig,m, σSig)}. The standard security
notion of a digital signature scheme is EUF-CMA [1] (see Appendix A.3).

3 Traceable Policy-Based Signatures (TPBS)
We build on PBS and present a Traceable Policy-Based Signatures (TPBS)
scheme. The main idea of our scheme is that in addition to the PBS issuer’s
policy key, we require the use of an identity key for signing a message that sat-
isfies the policy defined by the issuer in the policy key. Hence, we introduce a



Traceable Policy-Based Signatures with Delegation 5

Tracing Authority (TA) where every scheme user registers with to generate an
identity key. The user then uses the identity key in addition to the policy key
to sign a message that conforms to the policy set by the issuer. The produced
signature allows the TA to trace it to the registration information acquired from
the user during identity key generation. Note that contrary to the issuer’s policy
key, which could be shared among users allowed by the issuer to sign a specific
message, the identity key is generated by individual users and is not shared with
any other entity in the system. In what follows, we give the black box definitions
of the proposed construction.

TPBS is a tuple of ten polynomial-time algorithms, TPBS = {ppGen, TASetup,
IssuerSetup, UserKeyGen, IDKeyGen, PolicyKeyGen, Sign, Verify, Trace, Judge}
which are defined as follows.

- ppGen. This algorithm outputs the public parameters of the scheme, which
become an implicit input to all the other algorithms, ppTPBS ← ppGen(1λ)

- TASetup. This algorithm generates the TA’s public secret key pair
(pkTA

TPBS, sk
TA
TPBS), initializes a private empty registry Reg, and defines the iden-

tity universe I such that |I|= |Reg|, (pkTA
TPBS, sk

TA
TPBS, Reg) ← TASetup(ppTPBS)

- IssuerSetup. This algorithm generates the issuer’s public key secret key pair,
(pkIssuerTPBS , skIssuerTPBS )← IssuerSetup(ppTPBS)

- UserKeyGen. For user identity i ∈ I, this algorithm generates the user’s se-
cret public key pair (ski, pki). We assume that pki is authentically associated
with i in a public registry D such that D[i] = pki, a PKI system may be
used for such a purpose. Moreover, this algorithm outputs the registration in-
formation IDi generated from ski using a one-way function, (pki, ski, IDi) ←
UserKeyGen(ppTPBS, i)

- IDKeyGen. This two-party interactive procedure runs between a scheme user
and the TA to generate the user’s identity key. The inputs of the user’s routine
are (i, (ski)), and the inputs to the TA’s routine are ((skTA

TPBS), i, IDi), where i
and IDi are sent to the TA by the user. At the end of the interaction, the user
obtains the TA’s signature σi

ID over their hidden secret ski. Finally, the user
sets skiTPBS = (ski, σ

i
ID) whereas the TA obtains some registration information

Reg[i] = IDi, ((Reg[i]), (skiTPBS)) ← IDKeyGen((skTA
TPBS)

(i,IDi)←−−−→
σi
ID

(ski)) where

the first (resp. second) (.) in the input and output of IDKeyGen contains values
that are only known to the TA (resp. user).

- PolicyKeyGen. The issuer runs this procedure to generate a secret key for a
specific policy p ∈ {0, 1}∗, skpTPBS ← PolicyKeyGen(skIssuerTPBS , p)

- Sign. On input of a message m, a witness wp ∈ {0, 1}∗ that m
conforms to a specific policy p, the secret signing key skpTPBS, the user
identity key skiTPBS , this procedure generates a signature σm, σm ←
Sign(pkTA

TPBS, pk
Issuer
TPBS , skpTPBS, sk

i
TPBS,m, p, wp)
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- Verify. This algorithm verifies the signature σm over m using the issuer’s and
TA’s public keys, {⊤,⊥} ← Verify(pkTA

TPBS, pk
Issuer
TPBS ,m, σm)

- Trace. This algorithm is run by the TA to trace a signature σm over m to its
original signer and returns the signer identity along with proof confirming such
a claim, (i, πTrace)← Trace(pkTA

TPBS, pk
Issuer
TPBS , skTA

TPBS, Reg,m, σm)

- Judge. This algorithm verifies the output of the tracing algorithm, {⊤,⊥} ←
Judge(pkTA

TPBS, pk
Issuer
TPBS ,m, σm, i, πTrace)

TPBS Correctness for the correctness of TPBS, we require that for
all λ ∈ N, all ppTPBS ← ppGen (1λ), for all (pkTA

TPBS,(sk
TA
TPBS,Reg))

← TASetup(ppTPBS), for all (pkIssuerTPBS ,skIssuerTPBS ) ← IssuerSetup (ppTPBS),
for all i ∈ I, for all (pki, ski, IDi) ← UserKeyGen (ppTPBS), for all

((Reg[i]),(skiTPBS)) ← IDKeyGen ((skTA
TPBS)

(i,IDi)←−−−→
σi
ID

(ski)), for all skpTPBS

← PolicyKeyGen (skIssuerTPBS ,p), and for all (m, p,wp) ∈ {0, 1}∗ s.t
PC((p,m), wp) = 1, we have σm ← Sign (pkTA

TPBS,pk
Issuer
TPBS ,skpTPBS,sk

i
TPBS,m,p,wp)

such that ⊤ ← Verify (pkTA
TPBS,pk

Issuer
TPBS ,m,σm). Moreover, we have

(i, πTrace) ← Trace (pkTA
TPBS,pk

Issuer
TPBS ,Reg,m,σm) such that ⊤ ← Judge

(pkTA
TPBS,pk

Issuer
TPBS ,m,σm,i,πTrace).

To prevent a misbehaving TA or any party who has access to the policy
key skpTPBSfrom framing a user, we ensure that skiTPBS contains ski which is
generated by individual users and not shared with any entity in the scheme.
Moreover, since our scheme segregates the identity keys from the policy keys,
the delegatability of policy keys becomes a natural extension for our scheme
and could be achieved seamlessly by applying the same technique of Bellare and
Fuchsbauer [4]. Moreover, segregating the issuer and TA rules make our scheme
a perfect fit for decentralized environments where multiple issuers may coexist.

3.1 TPBS Security Definitions

The security notions of PBS are privacy (policy-indistinguishability) and un-
forgeability [4]. Privacy of the policy ensures that a signature reveals neither the
policy associated with the policy key nor the witness that was used in creating
such a signature. Unforgeability is defined as the infeasibility of creating a valid
signature for a message m without holding a policy key for some policy p and
a witness wp such that PC((p,m), wp) = 1. In the same context, Bellare and
Fuchsbauer have defined simulatability and extractability as stronger versions
of the aforementioned security notions [4]. The main reason behind introducing
such stronger notions is that the traditional notions of policy privacy and un-
forgeability are insufficient for all applications. For instance, a PBS scheme with
a policy checker PC such that for every message m, there is only one policy p
where PC((p,mi), wi) = 1 for i ∈ {0, . . . , n}, such a scheme does not hide the
policy, yet still satisfies indistinguishability.

Since TPBS signing requires the user’s identity key and the produced signa-
tures are traceable by the TA, we extend the definition of privacy to include user
anonymity in addition to policy-privacy. Moreover, we define non-frameability
and traceability to capture the newly introduced traceability feature. We also
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define simulatability and extractability as the stronger notions of privacy and
unforgeability. Note that our definition of simulatability and extractability dif-
fers from those in PBS in that they include the newly introduced signer identity
and tracing feature. In what follows, we give the formal definitions of the TPBS
security notions. The oracles used in the security experiments are defined in
Fig. 1 in which the lists, U contains all the honest users’ identities in the system,
T tracks all dishonest users in the system where the adversary has access to their
identity secret key, and L tracks all the policies that the adversary has access
to their policy keys. Qi is a key-value pair matrix that contains the honestly
generated identity keys defined by the user identity i. Qp is a key-value pair
matrix that contains the honestly generated policy keys defined by the policy p.
M andM′ are used to track signatures generated by the signing oracles.

Note that OKeyGen is set up to generate the signer identity key from scratch
and return it to the adversary along with the policy key. Such a setup allows
the adversary to corrupt as many users as it wants without engaging with the
oracle interactively.

3.2 Privacy

TPBS ensures privacy if it guarantees signer anonymity and policy-privacy, which
are defined as follows.

Signer anonymity. Anonymity is modeled by the indistinguishability exper-
iment in Fig. 2, where the adversary has access to OKeyGen(.), OUSign(.),
OIdLoRSign, and OTrace(.) oracles. The challenge oracle OIdLoRSign is ini-
tialized with a random bit b ∈ {0, 1}. The adversary inputs to OIdLoRSign
are (i0, i1,m, p, wp) where the adversary chooses i0, i1 from a predefined list
of users U that it has no access to their signing keys. After verifying that
PC((p,m), wp) = 1 and i0, i1 ∈ U , the oracle generates σmb

for the message m us-
ing (skpTPBS,sk

ib
TPBS). Finally, the oracle returns σmb

to the adversary.The adver-
sary wins if it can determine the bit b with more than the negligible probability.
The adversary has access to OUSign(.) oracle, which on input (i ∈ U ,m, p, wp),
it obtains a signature on message m under the identity key of i ∈ U and any
policy of its choice. Furthermore, OUSign(.) returns the TA signature σi

ID of the
user i to simulate the case where σi

ID is leaked without the knowledge of ski.
Furthermore, we give the adversary access to skIssuerTPBS to simulate the case of a
corrupt issuer. Note, to prevent trivial attacks, the queries to OKeyGen(.) are
limited to users’ identities not in U which models the set of honest users. Also,
the adversary cannot query the OTrace with the output of OIdLoRSign.

Anonymity is defined in a selfless setting where we do not provide the ad-
versary with access to the identity keys of the two signers, ski0TPBS and ski1TPBS,
involved in the query to OIdLoRSign [8]. This models the case where an internal
adversary should not be able to distinguish between two signatures generated
under two identities different than its own, even if both signatures are gener-
ated using the same policy key. Such a restriction is essential to construct a
significantly more efficient scheme [6].
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OKeyGen(i, p)
if i ∈ U return ⊥
(pki, ski, IDi)← UserKeyGen(ppTPBS)

((Reg[i]), (sk
i
TPBS))← IDKeyGen((skTA

TPBS)
(i,IDi)←−−−−→
σi
ID

(ski))

sk
p
TPBS ← PolicyKeyGen(skIssuer

TPBS , p)

T = T ∪ {i, ski}; L = L ∪ {p}

return (sk
i
TPBS, sk

p
TPBS)

OUSign(ij ,m, p, wp)

if PC((p,m), wp) = 0 ∨ ij /∈ U
return ⊥

(sk
ij
TPBS) = (skij

, σ
ij
ID)← Qi[ij ]

sk
p
TPBS ← PolicyKeyGen(skIssuer

TPBS , p)

σm ← Sign(pkTA
TPBS, pk

Issuer
TPBS , sk

p
TPBS, sk

ij
TPBS,m, p, wp)

M =M∪ σm

return (σm, σ
ij
ID, sk

p
TPBS)

OIdLoRSign(ij0 , ij1 ,m, p, wp)

if PC((p,m), wp) = 0 ∨ ij0 , ij1 /∈ U

return ⊥

(sk
i0
TPBS)← Qi[j0][1]; (sk

i1
TPBS)← Qi[j1][1]

sk
p
TPBS ← PolicyKeyGen(skIssuer

TPBS , p)

σmb
← Sign(pkTA

TPBS, pk
Issuer
TPBS , sk

p
TPBS, sk

ib
TPBS,m, p, wp)

M′
=M′ ∪ (m,σmb

)

return σmb

OSign(m, i, p, wp)

if i ∈ T ∧ p ∈ L
return ⊥

if i /∈ Qi (pki, ski, IDi)← UserKeyGen(ppTPBS)

((Reg[i]), (sk
i
TPBS))← IDKeyGen((skTA

TPBS)
(i,IDi)←−−−−→
σi
ID

(ski))

Qi[i] = sk
i
TPBS

else sk
i
TPBS = Qi[i]

if p /∈ Qp sk
p
TPBS ← PolicyKeyGen(skIssuer

TPBS , p)

Qp[p] = sk
p
TPBS

else sk
p
TPBS = Qp[p]

σm ← Sign(pkTA
TPBS, pk

Issuer
TPBS , sk

p
TPBS, sk

i
TPBS,m, p, wp)

M =M∪ (m,σm)

return σm

OPLoRSign(i,m, p0, wp0 , p1, wp1)

if PC((p0,m), wp0
) = 0 ∨ PC((p1,m), wp1

) = 0

return ⊥
(pki, ski, IDi)← UserKeyGen(ppTPBS)

((Reg[i]), (sk
i
TPBS))← IDKeyGen((skTA

TPBS)
(i,IDi)←−−−−→
σi
ID

(ski))

sk
p0
TPBS ← PolicyKeyGen(skIssuer

TPBS , p0)

sk
p1
TPBS ← PolicyKeyGen(skIssuer

TPBS , p1)

σmb
← Sign(pkTA

TPBS, pk
Issuer
TPBS , sk

pb
TPBS, sk

i
TPBS,m, pb, wpb

)

M =M∪ {m,σm}
return σmb

OSim-or-Sign(ij , p,m,wp)

if PC((p,m), wp) = 1

(sk
ij
TPBS)← Qi[ij ]

sk
p
TPBS ← PolicyKeyGen(skIssuer

TPBS , p)

σm0 ← Sign(pkTA
TPBS0

, pk
Issuer
TPBS0

, sk
p
TPBS, sk

ij
TPBS,m,wp)

σm1
← SimSign(trNIZK , pk

TA
TPBS1

, pk
Issuer
TPBS1

,m)

M′
=M′ ∪ {m,σmb

}

return σmb

return ⊥

OTrace(m,σm)

if σm ∈ M′
return ⊥

(i, πTrace)← Trace(pkTA
TPBS, pk

Issuer
TPBS , sk

TA
TPBS, Reg,m, σm)

return (i, πTrace)

Fig. 1: TPBS Security Oracles

Definition 1. (TPBS Anonymity) The TPBS scheme is anonymous if for any

PPT adversary A, |Pr[ExpAnonymity
A,TPBS (λ) = ⊤]− 1

2 |≤ ϵ(λ), where ExpAnonymity
A,TPBS

is defined in Fig. 2.

Policy-privacy. Policy-privacy is modeled by the indistinguishability experi-
ment in Fig. 3, where the adversary has access to OKeyGen(.) and OPLoRSign
oracles. The challenge oracle OPLoRSign is initialized with a random bit b ∈
{0, 1}. The adversary inputs to OPLoRSign oracle are (i,m, p0, wp0

, p1, wp1
).

After verifying that PC((p0,m), wp0
) = 1, and PC((p1,m), wp1

) = 1, the ora-
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ExpAnonymity

A,TPBS (λ)

b
$← {0, 1},U = {0, . . . , n},M′

= {},Qi = [ ], ppTPBS ← ppGen(1λ)

(pk
TA
TPBS, sk

TA
TPBS)← TASetup(ppTPBS)

(pk
Issuer
TPBS , sk

Issuer
TPBS )← IssuerSetup(ppTPBS)

foreach ij ∈ U
(pkij

, skij
, IDij

)← UserKeyGen(ppTPBS)

((Reg[ij ]), (sk
ij
TPBS))← IDKeyGen((skTA

TPBS)
(i,IDij

)

←−−−−−→
σ
ij
ID

(skij
))

Qi[ij ] = sk
ij
TPBS

b
′ ← AOKeyGen(.),OUSign(.),OTrace(.),OIdLoRSign(.,b)

(U, ppTPBS, pk
TA
TPBS, pk

Issuer
TPBS , sk

Issuer
TPBS )

if b = b
′

return ⊤
return ⊥

Fig. 2: TPBS Anonymity Experiment

cle generates skiTPBS and skpb

TPBS for b ∈ {0, 1}. It then signs m using (skpb

TPBS,
skiTPBS) and returns σmb

. The adversary wins if it can determine the bit b with a
probability better than the random guess. Note that we give the adversary access
to skTA

TPBS and skIssuerTPBS to simulate the case of a corrupt TA and\or issuer.

Definition 2. (TPBS Policy-privacy) The TPBS scheme is policy-private if

for any PPT adversary A, |Pr[ExpPolicy−privacy
A,TPBS (λ) = ⊤] − 1

2 |≤ ϵ(λ), where

ExpPolicy−privacy
A,TPBS is defined in Fig. 3.

ExpPolicy−privacy

A,TPBS (λ)

b
$← {0, 1}, ppTPBS ← ppGen(1λ)

(pk
TA
TPBS, sk

TA
TPBS)← TASetup(ppTPBS)

(pk
Issuer
TPBS , sk

Issuer
TPBS )← IssuerSetup(ppTPBS)

b
′ ← AOKeyGen(.),OPLoRSign(.,b)

(ppTPBS, pk
TA
TPBS, pk

Issuer
TPBS , sk

TA
TPBS, sk

Issuer
TPBS )

if b = b
′

return ⊤
return ⊥

Fig. 3: TPBS Policy-privacy Experiment

Consider a PBS scheme where for every message m there is only one policy p
such that PC((p,m), wp) = 1; then the aforementioned policy-privacy definition
can not hide the associated policy. It has been proven that simulatability is a
stronger notion of policy-privacy that remedies the aforementioned limitation [4].
Since the same limitation is inherited in TPBS, thus, we also define simulatability,
and we prove that our definition implies the privacy of TPBS, which is defined
as both anonymity and policy-privacy.

Simulatability. This security notion requires the existence of a simulator that
can create simulated signatures without having access to any of the users’ signing
keys or witnesses. Yet, such signatures are indistinguishable from real signatures.
Thus, we assume that for every TPBS procedure, there exists a simulated proce-
dure whose output is indistinguishable from the non-simulated one. We denote
such a procedure with the Sim prefix. More precisely, we require the following al-
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gorithms, SimppGen, SimTASetup, SimIssuerSetup, SimUserKeyGenTPBS, SimID-
KeyGen, SimPolicyKeyGen, SimSign, and SimTraceTPBS. Note that SimppGen,
SimTASetup, and SimIssuerSetup also output the trapdoor information trTPBS,
trTA, and trIssuer, respectively. Such trapdoor outputs are used as inputs to
the other relevant simulated procedures instead of the secret inputs. We give
the definitions of the simulated procedures in Fig 9 after we present the generic
construction.

We formally define simulatability in a selfless setting by the experiment in
Fig. 4, in which the adversary has access to OKeyGen(.), OUSign(.), OTrace(.),
and OSim-or-Sign(.) oracles. OSim-or-Sign(.) is its challenge oracle which on the
input of some ij from a predefined list of honest users identities U , a message m,
a policy p, and a witness wp that m conforms to p, the oracle outputs a signature
σm. The adversary wins if it can determine whether σm is generated using ij
identity key and p policy key or it is a simulated signature. To prevent trivial
attacks, the adversary cannot query the OTrace(.) with the signatures generated
by the challenging oracle.

Definition 3. (TPBS Simulatability) The TPBS scheme is simulatable if for

any PPT adversary A, |Pr[ExpSIM
A,TPBS(λ) = ⊤] − 1

2 |≤ ϵ(λ), where the

ExpSIM
A,TPBS is defined in Fig. 4.

ExpSIM

A,TPBS(λ)

b
$← {0, 1},U = {0, . . . , n},M′

= {},Qi = [ ]

ppTPBS0
← ppGen(1λ), (ppTPBS1

, trTPBS)← SimppGen(1λ)

(pk
TA
TPBS0

, sk
TA
TPBS0

)← TASetup(ppTPBS0
)

(pk
Issuer
TPBS0

, sk
Issuer
TPBS0

)← IssuerSetup(ppTPBS0
)

(pk
TA
TPBS1

, sk
TA
TPBS1

, trTA)← SimTASetup(ppTPBS1
)

(pk
Issuer
TPBS1

, sk
Issuer
TPBS1

, trIssuer)← SimIssuerSetup(ppTPBS1
)

foreach ij ∈ U
(pkij

, skij
, IDij

)← UserKeyGen(ppTPBS)

((Reg[ij ]), (sk
ij
TPBS))← IDKeyGen((skTA

TPBS)
(i,IDij

)

←−−−−−→
σ
ij
ID

(skij
))

Qi[ij ] = sk
ij
TPBS

b
′ ← AOKeyGen(.),OUSign(.),OTrace(.),OSim-or-Sign(.)

(U, ppTPBSb
, pk

TA
TPBSb

, sk
TA
TPBSb

, pk
Issuer
TPBSb

, sk
Issuer
TPBSb

)

if b = b
′
return ⊤

return ⊥

Fig. 4: TPBS Simulatability Experiment

3.3 Unforgeability

Intuitively unforgeability is the infeasibility of creating a valid signature on a
message m without holding the policy key for policy p to which m conforms. To
model users’ corruption and collusion attacks where users could combine their
policy keys to sign messages non of them is authorized to, Bellare and Fuchsbauer
have defined the unforgeability of the PBS scheme by an experiment where the
adversary is allowed to query a key generation oracle to generate user keys and
gain access to some of them. However, in their definition, it becomes hard to
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efficiently determine if an adversary has won the unforgeability experiment by
producing a valid signature such that PC((p,m), wp) = 1 using a queried policy
key or not since policy-privacy requires hiding the policy and witness used in
generating a specific signature. To overcome the aforementioned limitation, they
defined extractability as a strengthened version of unforgeability and proved that
extractability implies unforgeability [4]. Since TPBS privacy requires hiding the
policy, witness, and signer’s identity used in generating signatures over m, we
define extractability and adapt it to imply the unforgeability for TPBS.

Extractability. We formally define TPBS extractability by the experiment in
Fig. 5, where we assume the existence of an extractor algorithm Extr which
upon inputting a valid message signature pair (m,σm) in addition to trapdoor
information trTPBS, it outputs the tuple (p, ski, sk

p
TPBS, wp). An adversary A who

has access to OKeyGen and OSign oracles (Fig. 1) wins ExpExt
A,TPBS if it outputs

a valid message signature pair (m∗, σm∗) such that either i) it does not hold some
ski∗TPBS that is obtained from OKeyGen oracle or for all p, it obtained skpTPBS by
querying OKeyGen oracle, ii) it does not hold an skp∗TPBS corresponds to p∗ such
that PC((p∗,m∗), w∗p) = 1 or iii) PC((p∗,m∗), w∗p) = 0. Note that since trTPBS
is required by Extr algorithm, the extractability experiment is initialized using
SimppGen(1λ) algorithm rather than ppGen(1λ), and all other algorithms are
kept the same.

Definition 4. (TPBS Extractability) a TPBS scheme is extractable if for any

PPT adversary A, Pr[ExpExt
A,TPBS(λ) = ⊤] ≤ ϵ(λ), where ExpExt

A,TPBS is defined
in Fig. 5.

ExpExt

A,TPBS(λ)

(ppTPBS, trTPBS)← SimppGen(1λ)

(pk
TA
TPBS, sk

TA
TPBS, Reg)← TASetup(ppTPBS)

(pk
Issuer
TPBS , sk

Issuer
TPBS )← IssuerSetup(ppTPBS)

Qi = Qp = [ ]

T = L =M = {}

(m
∗
, σm∗ )← AOKeyGen(.),OSign(.)

(ppTPBS, pk
TA
TPBS, pk

Issuer
TPBS )

if (m
∗
, σm∗ ) ∈ M ∨ Verify(pkTA

TPBS, pk
Issuer
TPBS ,m

∗
, σm∗ ) = ⊥

return ⊥

(p
∗
, sk

∗
i , sk

p
TPBS, wp∗ )← Extr(trTPBS,m

∗
, σm∗ )

if sk
∗
i /∈ T ∨ p

∗
/∈ L ∨ PC((p∗

,m
∗
), w

∗
p) = 0

return ⊤
return ⊥

Fig. 5: TPBS Extractability Experiment

3.4 Non-frameability

This property ensures that even if the tracing authority, issuer, and all corrupt
users in the scheme collude together, they cannot produce a valid signature that
is traced back to an honest user. TPBS non-frameability is modeled by the exper-
iment defined in Fig. 6, in which the adversary has access to both TA and issuer
secret keys (skTA

TPBS, sk
Issuer
TPBS ), in addition to OKeyGen, OUSign, and OTrace or-

acles. The adversary wins if it outputs a verifiable (m∗, σm∗) that has not been
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queried to OUSign and when (m∗, σm∗) is traced back to its signer, the tracing
algorithm outputs an identity of one of the honest users in U . Additionally, the
output of OTrace oracle should be verifiable using the Judge algorithm.

Definition 5. (TPBS Non-frameability) a TPBS scheme is non-frameable if for

any PPT adversary A, Pr[ExpNon−frameability
A,TPBS (λ) = ⊤] ≤ ϵ(λ), where the non-

frameability experiment is defined in Fig. 6.

ExpNon−frameability

A,TPBS (λ)

U = {0, . . . , n},M = {},Qi = [ ], ppTPBS ← ppGen(1λ)

(pk
TA
TPBS, sk

TA
TPBS)← TASetup(ppTPBS), (pk

Issuer
TPBS , sk

Issuer
TPBS )← IssuerSetup(ppTPBS)

foreach ij ∈ U
(pkij

, skij
, IDij

)← UserKeyGen(ppTPBS)

((Reg[ij ]), (sk
ij
TPBS))← IDKeyGen((skTA

TPBS)
(i,IDij

)

←−−−−−→
σ
ij
ID

(skij
))

Qi[ij ] = sk
ij
TPBS

(m
∗
, σm∗ )← AOKeyGen(.),OUSign(.),OTrace(.)

(U, ppTPBS, pk
TA
TPBS, pk

Issuer
TPBS , sk

Issuer
TPBS , sk

TA
TPBS)

if (m
∗
, σm∗ ) ∈ M∨ Verify(pkTA

TPBS, pk
Issuer
TPBS ,m

∗
, σm∗ ) = ⊥

return ⊥

(i
∗
, π

∗
Trace)← Trace(pkTA

TPBS, pk
Issuer
TPBS , sk

TA
TPBS, Reg,m, σm)

if i
∗

/∈ U
return ⊥

return Judge(pkTA
TPBS, pk

Issuer
TPBS ,m

∗
, σm∗ , i

∗
, π

∗
Trace)

Fig. 6: TPBS Non-Frameability Experiment

3.5 Traceability

Traceability requires that even if all scheme users collude together, they cannot
produce a signature that cannot be traced. We require the tracing authority to
be honest, as knowing the secret key of the tracing authority would allow the
adversary to sign a dummy ski under the tracing authority’s secret key resulting
in an untraceable signature. TPBS traceability is modeled by the experiment
defined in Fig. 7, in which the adversary has access to OKeyGen and OTrace
procedures. We omit the adversarial access to OSign oracle since the adversary
could corrupt as many users as it wants and get access to their keys. Hence
it could use the signing algorithm directly Sign(.) to produce signatures. The
Adversary wins if it outputs a verifiable (m∗, σm∗), which when traced, the
tracing algorithm Trace outputs ⊥.
Definition 6. (TPBS Traceability) a TPBS scheme is traceable if for any PPT

adversary A, Pr[ExpTraceability
A,TPBS (λ) = ⊤] ≤ ϵ(λ), where the traceability experi-

ment is defined in Fig. 7.

4 TPBS Generic Construction
The main building blocks of the new construction are a EUF-CMA RDS scheme
capable of signing a commitment on a secret message, a SE-NIZK proof system,
and a digital signature scheme. Figure 8 depicts the complete generic construc-
tion of TPBS.

User setup. The general idea of the new scheme is that in addition to the policy
key skpTPBS that is generated by the issuer using PolicyKeyGen and shared with
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ExpTraceability

A,TPBS (λ)

(ppTPBS)← ppGen(1λ), (pkTA
TPBS, sk

TA
TPBS)← TASetup(ppTPBS)

(pkIssuer
TPBS , skIssuer

TPBS )← IssuerSetup(ppTPBS)

(m∗, σm∗)← AOKeyGen(.),OTrace(.)(ppTPBS, pk
TA
TPBS, pk

Issuer
TPBS )

if Verify(pkTA
TPBS, pk

Issuer
TPBS ,m∗, σm∗)

(i∗, π∗
Trace)← Trace(pkTA

TPBS, pk
Issuer
TPBS , Reg,m∗, σm∗)

if i = ⊥
return ⊤

return ⊥

Fig. 7: TPBS Traceability Experiment

any user who is allowed to sign a messagem conforming to p, each user has to run
an interactive algorithm IDKeyGen with the TA to obtain an identity key skiTPBS.
Prior to engaging in IDKeyGen, the user runs the algorithm UserKeyGen where

it selects some ski
$← F and generates the user’s registration information IDi.

More precisely, IDi contains Ci = f(ski) and the user’s digital signature τi over
Ci. During the execution of IDKeyGen, the user obtains the TA’s RDS signature
σi
ID on the user-chosen secret value ski. However, to ensure non-framability,

the TA uses the special form of RDS signing scheme SignComRDS to generate
σi
ID ← SignComRDS(skTA

RDS , C) where the generated RDS signature is verifiable
over ski without being shared with the TA. At the end of the interaction, the
user stores σi

ID along with ski as the user’s identity key skiTPBS and the TA
keeps track of users’ registration information IDi in a secret registry Reg.

Signing. To sign a message m, the user generates a rerandomized version of the
TA signature σ′iID along with a SE-NIZK proof πm for the relation R′NP that is
given by

((pkTA
TPBS, σ

′i
ID, pkIssuerTPBS ,m), (ski, p, sk

p
TPBS, wp)) ∈ R′NP ⇔

VerifyRDS(pkTA
TPBS, ski, σ

′i
ID) = 1 (1a)

∧ VerifySig(pkIssuerTPBS , p, skpTPBS) = 1 (1b)

∧ PC((p,m), wp) = 1 (1c)

whose statements X = (pkTA
TPBS, σ

′i
ID, pkIssuerTPBS ,m) with witnesses W = (ski, p,

skpTPBS,wp). Intuitively, πm proves that a) σ′iID is the TA signature over some
signer-generated secret value ski, b) the user holds the issuer’s signature over
some policy p, and c) the message m conforms the policy p under some witness
wp, i.e. PC((p,m), w) = 1.

Verifying and tracing. Signature verification is done by verifying πm over the
statements X. To trace a signature to its signer, the TA associates σ′iID in the
signature to the original signer registration information in Reg. However, since
the user’s secret chosen value ski is never shared with the TA, the TA uses a
tracing trapdoor C ′i for f(ski) which is generated during the execution of the
UserKeyGen algorithm and shared with the TA as part of IDi which is held
secretly in Reg by the TA. To prove successful tracing, the TA produces a NIZK
proof π for the relation TNP given by
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((pkTA
RDS , σ

′i
ID, Ci), (C

′
i)) ∈ TNP ⇔
VerifyRDS(pkTA

RDS , C
′
i, σ
′i
ID) = 1 (2a)

∧ Ci 7→ C ′i (2b)

whose statements X ′ = (pkTA
RDS , σ

′i
ID, Ci) with witnesses W ′ = C ′i. Intuitively,

π proves that a) σ′iID is verifiable under the TA public key using the trapdoor
information C ′i, and b) Ci and C ′i are generated using the same secret value
ski i.e., Ci 7→ C ′i. One advantage of using a sign-rerandomize-proof paradigm
rather than a sign-encrypt-proof paradigm is that the former paradigm produces
a significantly more efficient signature than the latter [16, 6]. On the other hand,
the tracing algorithm becomes a linear operation in the number of scheme users
and requires a memory size linear in the number of scheme users as well, which
is considered an affordable price since tracing is an infrequent operation and is
run by a computationally powerful TA [6].

Note that in Fig. 8, we use two different instances of the digital signature
scheme. The issuer uses one to sign a policy p in PolicyKeyGen, and the scheme
users use the other to sign the output of the one-way function to generate IDi

in UserKeyGen. We label the latter with the subscript Σ. We also need different
CRSs for each relation, R′NP (1) and TNP (2), However, we keep the description
short, thus, we do not make it explicit.

In Fig. 9, we show how SimppGen(.), SimSign(.), Extr(.) are constructed in
accordance with the concrete construction in Fig. 8. Since trTA, and trIssuer is
equal to skTA

TPBS and skIssuerTPBS , respectively, we omit the details of SimTASetup(.),
SimIssuerSetup(.), SimUserKeyGenTPBS(.), SimIDKeyGen(.), SimPolicyKeyGen(.),
and SimTrace(.) which are defined in the same way as TASetup(.), IssuerSetup(.),
IDKeyGen(.), PolicyKeyGen(.), and Trace(.), respectively, .

5 TPBS Security
The definition of extractability of TPBS (see Def. 4) implies its unforgeability.
The privacy of TPBS includes policy privacy and anonymity. Accordingly, we
first prove that simulatability implies both anonymity and policy-privacy. Then
we present a security proof for simulatability (implies privacy), extractability
(implies unforgeability), non-frameability, and traceability. Note that due to the
page limit, we only give proof sketch for theorem 2. The corresponding formal
proof is provided in the full version of the paper and in Appendix B.

Theorem 1. Simulatability implies both anonymity and policy-privacy

Proof. Assuming an adversary A against TPBS anonymity in ExpAnonymity
A,TPBS

in Fig. 2 (resp. policy-privacy in ExpPolicy−privacy
A,TPBS in Fig. 3), we can

construct an adversary B (resp. B′) against the simulatability of TPBS.
B receives (U ,ppTPBSb

,pkTA
TPBSb

,skTA
TPBSb

,pkIssuerTPBSb
,skIssuerTPBSb

) from its challenger

in the ExpSIM
A,TPBS in Fig. 4, chooses d

$← {0, 1}, and runs A on (U ,
ppTPBSb

,pkTA
TPBSb

,pkIssuerTPBSb
,skIssuerTPBSb

). Whenever A queries its challenging oracle
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ppGen(1λ)

Choose a one-way function f(.) : F → C

crs← SetupNIZK(1λ), ppRDS ← ppGenRDS(1λ)

ppSig ← ppGenSig(1λ), ppSigΣ
← ppGenSig(1λ)

return ppTPBS = {f(.), crs, ppRDS , ppSig, ppSigΣ
}

TASetup(ppTPBS)

(pk
TA
RDS , sk

TA
RDS)← KeyGenRDS(ppRDS)

(pk
TA
TPBS, sk

TA
TPBS) = (pk

TA
RDS , sk

TA
RDS), Reg = [ ]

return (pk
TA
TPBS, sk

TA
TPBS)

IssuerSetup(ppSig)

(pk
Issuer
TPBS , sk

Issuer
TPBS )← KeyGenSig(ppTPBS)

return (pk
Issuer
TPBS , sk

Issuer
TPBS )

UserKeyGen(ppTPBS, i)

(pk
i
SigΣ

, sk
i
SigΣ

)← KeyGenSig(ppSigΣ
)

D[i] = pki = (pk
i
SigΣ

), ski
$← F, (Ci, C

′
i) = f(ski)

τi ← SignSig(Ci, sk
i
SigΣ

), IDi = {Ci, C
′
i, τi}

return (pki, ski, IDi)

IDKeyGen((skTA
TPBS)

(i,IDi)←−−−→
σi
ID

(ski))

User TA

(i, IDi, ski) (sk
TA
TPBS)

i,IDi−−−−−−−−−−−−−→

{Ci, C
′
i, τi} ← IDi, pk

i
SigΣ

= D[i]

if Reg[i] = ∅

∧ VerifySig(pki
SigΣ

, Ci, τi)

∧ Ci 7→ C
′
i

PoK(ski:Ci=f(ski))←−−−−−−−−−−−−→

σi
ID←−−−−−−−−−−−−−− SignComRDS(skTA

RDS , Ci)

sk
i
TPBS = (ski, σ

i
ID) Reg[i] = IDi

PolicyKeyGen(skIssuer
TPBS , p)

sk
p
TPBS ← SignSig(skIssuer

TPBS , p)

return sk
p
TPBS

Sign(pkTA
TPBS, pk

Issuer
TPBS , skp

TPBS, sk
i
TPBS,m, p, wp)

(ski, σ
i
ID) = sk

i
TPBS, σ

′i
ID ← RandomizeRDS(σi

ID)

πm ← ProveNIZK(crs, (pkTA
TPBS, σ

′i
ID, pk

Issuer
TPBS ,m),

(ski, p, sk
p
TPBS, wp))

return σm = (σ
′i
ID, πm)

Verify(pkTA
TPBS, pk

Issuer
TPBS ,m, σm)

(σ
′i
ID, πm)← σm

return VerifyNIZK(crs, (pkTA
TPBS, σ

′i
ID, pk

Issuer
TPBS ,m), πm)

Trace(pkTA
TPBS, pk

Issuer
TPBS , Reg,m, σm)

if Verify(pkTA
TPBS, pk

Issuer
TPBS ,m, σm)

(σ
′i
ID, πm) = σm

foreach C
′
i ∈ Reg

if VerifyRDS(pkTA
RDS , C

′
i, σ

′i
ID) = 1 ∧ Ci 7→ C

′
i

π ← ProveNIZK(crs, (Ci, σ
′i
ID), C

′
i)

return (i, (πTrace)) = (i, (Ci, τi, π))

return ⊥

Judge(pkTA
TPBS, pk

Issuer
TPBS , skTA

TPBS,m, σm, i, πTrace)

if Verify(pkTA
TPBS, pk

Issuer
TPBS ,m, σm)

pk
i
SigΣ

= D[i], (Ci, τi, π) = πTrace

if (VerifySig(pki
SigΣ

, Ci, τi)

∧ VerifyNIZK(crs, (Ci, σ
′i
ID), π)) = 1

return ⊤

return ⊥

Fig. 8: Generic Construction of TPBS

SimppGen(1λ)

(crs, trNIZK)← SimSetupNIZK(1λ), ppRDS ← ppGenRDS(1λ)

ppSig ← ppGenSig(1λ), ppSigΣ
← ppGenSig(1λ)

return ppTPBS ← (crs, ppRDS , ppSig, ppSigΣ
), trTPBS = trNIZK

SimSign(trNIZK , (pkTA
TPBS, pk

Issuer
TPBS ,m))

sk
′
i

$← F, σ
i
ID ← SignRDS(skTA

TPBS, sk
′
i)

σ
′i
ID ← RandomizeRDS(σi

ID)

πm ← SimProveNIZK(crs, trNIZK , (pk
Issuer
TPBS , pk

TA
TPBS, σ

′i
ID,m))

return σm = (σ
′i
ID, πm)

Extr(trNIZK ,m, σm)

(σ
′i
ID, πm) = σm

(p, ski, sk
p
TPBS, wp)← ExtrNIZK(crs, trNIZK ,m, πm)

return (p, ski, sk
p
TPBS, wp)

Fig. 9: TPBS Simulated algorithms

OIdLoRSign with (ij0 , ij1 ,m, p, wp), if PC((p,m), wp) = 0 or ij0 , ij1 /∈ U , B
returns ⊥, otherwise it queries its challenger in the simulatability game with
(ijd ,m, p, wp) and returns σmb

to A. When A outputs b′, B outputs 0 if (b′ = d),
indicating that A returned the identity B queried OSim-or-Sign with; thus σmb
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is not a simulated signature. B outputs 1 otherwise. B′ could be constructed
similarly as follows. It receives (U ,ppTPBSb

,pkTA
TPBSb

,skTA
TPBSb

,pkIssuerTPBSb
,skIssuerTPBSb

) its

challenger in the simulatability game in Fig. 4, chooses d
$← {0, 1}, and runs

A on (ppTPBSb
,pkTA

TPBSb
,skTA

TPBSb
,pkIssuerTPBSb

,skIssuerTPBSb
). Whenever A queries its chal-

lenge oracle OPLoRSign with (i,m, p0, wp0 , p1, wp1), if PC((p0,m), wp0) = 0 or
PC((p1,m), wp1) = 0 or i /∈ U , B′ returns ⊥, otherwise it queries its challenger in
the simulatability game with (i,m, pd, wpd

) and returns σmb
to A. When A out-

puts b′, B′ outputs 0 if (b′ = d) and 1 otherwise. In either case, if in ExpSIM
B,TPBS(λ)

(resp. ExpSIM
B′,TPBS(λ)) the challenger’s bit is 0 indicating a signed signature, then

B (resp. B′) perfectly simulates ExpAnonymity
A,TPBS (λ) (resp. ExpPolicy−privacy

A,TPBS (λ))
for A. However, if the bit is 1 indicating a simulated signature, then the bit d
chosen by B (resp. B′) has no relation to A’s response. Hence, B outputs 1 with
probability 1

2 . Therefore, the success probability of B (resp. B′) is half that of A
in the anonymity (resp. policy-privacy) experiment.

Theorem 2. Given a zero-knowledge simulation-sound extractable NIZK sys-
tem, an unlinkable RDS scheme, an unforgeable RDS scheme, an unforgeable
digital signature scheme, a one-way function, and an interactive perfect zero-
knowledge proof of knowledge, the traceable policy-based signature scheme in
Fig. 8 is simulatable, extractable, non-frameable, and traceable.

Proof. (Sketch) Simulatability follows from the zero-knowledge property of the
underlying SE-NIZK proof system, and the unlinkability of the used RDS
scheme. Extractability directly follows from the unforgeability of both the used
RDS scheme and digital signature scheme and the simulation-extractability of
the underlying SE-NIZK proof system. Likewise, non-frameability follows from
the unforgeability of the used digital signature scheme, and the zero-knowledge
property of the underlying SE-NIZK proof system given a one-way function
f(.), and an interactive perfect zero-knowledge proof of knowledge PoK. Finally,
traceability follows from the unforgeability of the used RDS scheme and the
simulation-extractability of the underlying SE-NIZK proof system.

6 TPBS Instantiation and Performance
We instantiate TPBS with Pointcheval-Sanders (PS) RDS Scheme [16, 17]1 be-
cause of its short signature size and low signing cost in addition to its ability
to sign a hiding commitment over a message using a special form of its signing
algorithm. we consider the One-way function f(.) over a type-3 bilinear group
map defined by (p,G, G̃,GT , e) where the SDH assumption holds to be simply
the function f(ski) = (gski , g̃ski)/ for (g, g̃) ∈ (G, G̃) and ski ∈ Z∗p. We instanti-
ate the issuer digital signature algorithm with the structure-preserving signature
scheme in of Abe et al. [2]. We instantiate the SE-NIZK scheme with the Groth-
Sahai proof system [14]. Any digital signature scheme can be utilized in TPBS,

1 PS scheme has two variants one is based interactive assumption to prove its security
[16] and a slightly modified one [17] where its security is proved based on the SDH
assumption both could be used to instantiate our scheme
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we keep it as a black box since it is not utilized in TPBS signature genera-
tion or verification. Finally, we instantiate the PoK with the four-move perfect
zero-knowledge protocol of Cramer et al. [11]. We keep the original definition
of Bellare and Fuchsbauer for a policy p that defines a set of Pairing Product
Equations (PPEs) (E1, . . . , En), such that the policy checker PC((p,m), wp) = 1
iff Ej((p,m), wp) = 1 for all j ∈ [n]. The complete specifications of the algo-
rithms used in instantiating TPBS are depicted in Appendix C. In what follows,
we give the concrete description of TPBS’s instantiated procedures.

ppGen. for a security parameter λ, let (p,G, G̃,GT , e, g, g̃) defines a type-3 bi-
linear group map that is generated by (g, g̃) that is used by all the scheme
algorithms, Run ppSig ← ppGenAbe(1λ), ppSigΣ ← ppGenSig(1λ), ppRDS ←
ppGenPS(1λ), and crs ← SetupGS. Set ppTPBS = {crs, ppRDS , ppSig, ppSigΣ},
where ppTPBS becomes an implicit input for all TPBS algorithms.

TASetup. (pkTA
TPBS, sk

TA
TPBS) ← KeyGenPS(ppRDS) such that pkTA

TPBS = (g1, Ã, B̃),

skTA
TPBS = (a, b). Setup an empty Reg = [ ].

IssuerSetup. (pkIssuerTPBS , skIssuerTPBS ) ← KeyGenAbe(ppAbe) such that pkIssuerTPBS =

(U, V,H,Z), and skIssuerTPBS = (u, v, h, z) for U ∈ G, (V,H,Z) ∈ G̃ and (u, v, h, z) ∈
Z∗p
UserKeyGen. Generates (pkiSigΣ

, skiSigΣ
) ← KeyGenSig(ppSigΣ), sets D[i] =

(pkiSigΣ
), picks ski

$← Z∗p, calculates Ci = (Ci, C
′
i) = (gski

1 , B̃ski), generates

τi ← SignSig(Ci, sk
i
SigΣ

), sets IDi = {Ci, τi}, finally return (pki, ski, IDi).

IDKeyGen. The user sends (i, IDi) to the TA, the TA parses IDi as {(Ci, C
′
i), τi}

and obtains an authentic copy of pkiSigΣ
, if Reg[i] = ∅ ∧ VerifySig(pkiSigΣ

, Ci, τi)

∧ e(Ci, B̃) = e(g1, C
′
i), the TA engages with the user to start the inter-

active zero-knowledge protocol PoK(ski : Ci = gski
1 ), if TA verifies that

the user knows ski such that the relation of PoK holds, the TA generates

σi
ID ← SignComPS(skTA

TPBS, Ci) as follows, the TA picks r
$← Z∗p and gener-

ates σi
ID = (σi

ID1
, σi

ID2
)← (gr1, (g

a
1 (Ci)

b)r, finally the TA sets Reg[i] = IDi and

the user set his scheme identity key as skiTPBS = (ski, σ
i
ID).

PolicyKeyGen. For policy p ∈ {0, 1}∗, which is presented by a set of PPE equa-

tions (E1, . . . , En) for a number of secret group elements (M, Ñ) ∈ GkM × G̃kN ,
the issuer generates skpTPBS ← SignAbe(skIssuerTPBS , (M, Ñ)) such that skpTPBS =
(R,S, T ).

Sign. To sign a message m, the signer first generates a rerandomized version of

σi
ID, σ′iID ← RandomizePS(σi

ID), along with a SE-NIZK proof πm for relation
R′NP that is defined in 1 as follows

((pkTA
TPBS, σ

′i
ID, pkIssuerTPBS ,m), (ski, p, sk

p
TPBS, wp)) ∈ R′NP ⇔

e(σ′ID1, Ã)e(σ′ID1, B̃
ski) = e(σ′ID2, g̃) ∧ e(g, B̃ski) = e(gski , B̃) (1a)

∧ e(R, V )e(S, g̃)e(M,H) = e(g, Z) ∧ e(R, T )e(U,N) = e(g, g̃) (1b)

∧ Ej(((M, Ñ),m), (Wp, W̃p)) = 1 ∀j ∈ [n] (1c)
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Verify. To verify a message signature pair (m,σm), the verifier parses (σ′iID, πm)

from σm and runs VerifyNIZK(crs, (pkTA
TPBS, σ

′i
ID, pkIssuerTPBS ,m), πm). Finally, the

verifier outputs ⊤ in case of verification success and ⊥ otherwise.

Trace. To trace a message signature pair (m,σm) to its original signer,
the TA verifies such pair. If the verification succeeds, it parses (σ′iID, πm)
from σm and exhaustively searches Reg for a matching i as follows.
foreach C′

i ∈ Reg

if e(σ′
ID2

, g̃)e(σ′
ID1

, Ã)−1 = e(σ′
ID1

, C′
i)

(i, IDi) = Reg[i]

π ← ProveNIZK(crs, (Ci, σ
′i
ID), C′

i) ∋ e(σ′
ID2

, g̃)e(σ′
ID1

, Ã)−1 = e(σ′
ID1

, C′
i)

∧ e(Ci, B̃) = e(g1, C
′
i)

πTrace ← (Ci, τi, π)

return (i, πTrace)

Judge. After verifying (m,σm), parses (Ci, τi, π) from πTrace and outputs ⊤ if

VerifySig(pkiSigΣ
, Ci, τi) ∧ VerifyNIZK(crs, (Ci, σ

′i
ID), π)) or ⊥ otherwise.

Performance Analysis. Let TPBS be initialized with n users and the policy
p be expressed in 1 PPE uniquely defined by (M, Ñ) ∈ G × G̃ group elements.
To sign a message m that conforms to p, The proposed instantiation produces a
total signature size of 14 elements in G + 16 elements in G̃, where σ′iID is a PS
signature of size 2 elements in G, and πm is a Groth-Sahai proof of knowledge
of size 12 elements in G + 16 elements G̃. Signing costs two exponentiations
in G to generate σ′iID and approximately 40 exponentiations in G + 70 expo-

nentiations in G̃ to produce πm. Verifying a given TPBS message signature pair
costs approximately a total of 100 pairing operations to verify πm

2. For tracing
a signature, the TA performs at most n + 2 pairing operations and produces a
proof π of size 16 group elements in G̃, which costs around 10 exponentiations
in G and 20 exponentiations in G̃. To verify the output of the tracing algorithm,
the Judge performs around 40 pairing operations to verify π in addition to the
verification cost of the TPBS signature and the verification cost of the signature
τi of the user on the registration information.

7 Comparisson with PBS and Xu et al.’s Schemes
TPBS builds on PBS and further provides traceability and non-frameability.
Accordingly, in addition to the issuer in PBS, TPBS has a TA that can trace sig-
natures back to their signers. Non-frameability of TPBS holds under the assump-
tion of a misbehaving TA. TPBS black-box construction has four new algorithms
when compared to PBS. Namely, UserKeyGen, and IDKeyGen, where the latter is
run interactively between each scheme user and the TA to generate such user’s
identity key, Furthermore, we introduce the Trace, and Judge algorithms. where
Trace algorithm is used by the TA to trace a signature to its original signer and
Judge algorithm is used to verify the output of the Trace algorithm. The security

2 The verification cost of Groth-Sahai proofs could be enhanced using batch verifica-
tion [7]
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model of TPBS differs from that of PBS in that it includes formal definitions
for traceability and non-frameability and, the definitions of simulatability and
extractability capture the introduced notion of signer anonymity and identity
features.

Xu et al. also builds on PBS by attaching the user’s identity to the hidden policy
and utilizing a sign-encrypt-proof paradigm to provide the traceability feature.
On the other hand, TPBS utilizes sign-rerandomize-proof which produces more
efficient signatures than the sign-encrypt-proof paradigm used in Xu et al.’s
proposal. TPBS separates identity keys from policy keys, thus it supports the
delegation of policy keys in the same way as PBS which is not applicable in
Xu et al.’s proposal. The issuer Xu et al.’s scheme generates the signing keys
of the user, thus, it does not ensure non-frameability. However, in TPBS the
scheme users generate their identity keys using an interactive protocol with the
TA, hence TPBS provides non-frameability. Xu et al.’s proposal does not give a
formal definition for traceability.

Table 1 summarizes the comparison between TPBS, PBS, and Xu et al.’s
proposal. We consider the utilized building blocks and the availability of the
traceability feature. If traceability is ensured by a scheme, then we contrast
the schemes in terms of how the signer identity is utilized. We also consider the
structure of the TA, whether a scheme enables the delegation of signing keys, and
finally what security definitions are considered in the scheme’s security model.

Table 1: Comparison between TPBS, PBS and Xu et al.’s proposal. N/A denotes
an unavailable feature/entity.

TPBS(this work) PBS [4] Xu et al. [18]

Building blocks
RDS

SE-NIZK
encryption scheme

SE-NIZK
digital Sig.

SE-NIZK
digital Sig. digital Sig.

Traceability yes no yes

Identity identity key N/A attached to the policy

Tracing Authority standalone N/A issuer acts as the TA*

Delegatability yes yes no

Security definitions

simulatability
simulatability simulatabilityextractability
extractability extractabilitytraceability

non-frameability

*Although the scheme defines two different entities issuer and opener, the issuer has to participate
in the opening process since it generates policy keys that contain the users’ identities.

8 Conclusion
We have proposed TPBS, a traceable policy-based signature scheme that sup-
ports delegatability. Our scheme fills the gap in the original policy-based schemes
by linking a signature to the identity of its signer when needed, thus holding the
signer of a specific message accountable for the produced signature. We have
analyzed the security of TPBS and proved that it is an anonymous, policy-
private, unforgeable, traceable, and non-frameable signature scheme. Moreover,
we provided a concrete instantiation of TPBS using the Pointcheval-Sanders
rerandomizable signature scheme, the structure-preserving signature scheme of
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Abe et al., and the Groth-Sahai NIZK system and analyzed its efficiency. Fol-
lowing policy-based signature schemes which can be used in the construction
of mesh signatures, ring signatures, etc., TPBS can be adapted for signature
schemes that require traceability such as sanitizable and accountable redactable
signatures.
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A Building Blocks Security Definitions
A.1 RDS Schemes Security

In what follows, we give the formal definitions of the security properties of RDS
schemes that are required to prove the security of TPBS.

Existential Unforgeability under Chosen Message Attack (EUF-
CMA). This security notion implies that given access to a signing oracle
OSignRDS (see Fig. A.10), it is hard for an adversary A who does not have
access to the signing keys to output a valid message signature pair (m∗, σ∗RDS)
for which m∗ was never queried to the signing oracle [16].
OSignRDS(m)

σRDS ← SignRDS(skRDS ,m)

M =M∪ {m,σRDS}
return σRDS

OCSignRDS(C)

j = j + 1

(σRDS)← SignComRDS(skRDS , C)

C[j][0] = C; C[j][1] = σRDS

return σRDS

OLoRRDS(j)

(σ
′
RDS0

)← RandomizeRDS(C[j][1])

m
$← Z∗

p

(σRDS1
)← SignRDS(skRDS ,m)

return (σ
′
RDSb

)

return 0

Fig.A.10: RDS security experiments oracles

Definition 7. (RDS EUF-CMA) The RDS scheme is EUF-CMA secure if the

for any PPT adversary A, Pr[ExpEUF−CMA
A,RDS (λ) = ⊤] ≤ ϵ(λ), where the RDS

EUF-CMA experiment is defined in Fig. A.11.

ExpEUF−CMA

A,RDS (λ)

M = {}

ppRDS ← ppGenRDS(1λ)

(pkRDS , skRDS)← KeyGenRDS(ppRDS)

(m∗, σ∗
RDS)← AOSignRDS(.)(pkRDS)

if (m∗, σ∗
RDS) /∈M

return VerifyRDS(pkRDS ,m
∗, σ∗

RDS)

return 0

Fig.A.11: RDS EUF-CMA experiment.

Unlinkability. Unlinkability of RDS schemes is the infeasibility of linking a
rerandomized version of a signature over a message m to the original signature
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it has been created from if one does not explicitly know m [17]. Unlinkability
is formally defined by the experiment in Fig. A.12, where an adversary A is
given access OCSign(.) and OLoRRDS(.) oracles, which are defined in Fig. A.10.
the adversary A constructs a list C of RDS signatures over some commitments
C it does not know their corresponding openings using OCSign(.) then asks
OLoRRDS(.) to rerandomize one of two signatures in C of its choice. The oracle
OLoRRDS(.) is initialized with a secret random bit b ∈ {0, 1}, depending on
b, the oracle calls RandomizeRDS on either the left or right input signature and
outputs σ′RDSb

. The adversary wins if it can determine which signature is used in
the rerandomization process with probability better than the random guess [19].

Definition 8. (RDS Unlinkability) The RDS scheme is unlinkable if for any

PPT adversary A, |Pr[ExpUnlinkability
A,RDS (λ) = ⊤]− 1

2 |≤ ϵ(λ), where the unlinka-
bility experiment is defined in Fig. A.12.

ExpUnlinkability

A,RDS (λ)

ppRDS ← ppGenRDS(1λ)

(pkRDS , skRDS)← KeyGenRDS(ppRDS)

j ← 0; C = [ ]

b
$← {0, 1}

a← AOCSignRDS(.),OLoRRDS(.,b)(pkRDS)

if a = b

return 1

return 0

Fig.A.12: RDS unlinkability experiment.

A.2 SE-NIZK Schemes Security

In what follows, we give the formal definitions of the security properties of
SE-NIZK schemes that are required for proving the security of TPBS. Zero
knowledge. This security notion implies that given access to a prove oracle
OSim-or-ProveNIZK (see Fig. A.13), it is hard for adversary A to distinguish
between a proof for a statement x using a witness w from a simulated one.
OSim-or-ProveNIZK(x,w)

πNIZK0
← ProveNIZK(crs, x, w)

if R(x,w) = 1

πNIZK1
← SimProveNIZK(crs, x, trNIZK)

else return ⊥
return πNIZKb

OSimNIZK(x)

πNIZK ← SimProveNIZK(crs, x, trNIZK)

M =M∪ (x, πNIZK)

return πNIZK

Fig.A.13: NIZK system security experiments oracles
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Definition 9. (NIZK Zero-knowledge) The NIZK system is zero-knowledge if

for any PPT adversary A, |Pr[ExpZK
A,NIZK(λ) = ⊤]− 1

2 |≤ ϵ(λ), where the zero-
knowledge experiment is defined in Fig. A.14.

ExpZK
A,NIZK(λ)

crs0 ← SetupNIZK(1λ)

(crs1, trNIZK)← SimSetupNIZK(1λ)

b
$← {0, 1}

a← AOSim-or-ProveNIZK(.,b,trNIZK)(crsb)

if a = b

return 1

return 0

Fig.A.14: NIZK system zero-knowledge experiment.

Simulation-extractability. This security notion implies that given access to a
simulated prove oracle OSimNIZK (see Fig. A.13), it is hard for adversary A to
output a verifiable proof for a statement x using a witness w where R(x,w) = 0.

Definition 10. (NIZK Simulation-extractability) The NIZK system is
simulation-extractable if the for any PPT adversary A, Pr[ExpSim−Extr

A,NIZK (λ) =
⊤] ≤ ϵ(λ), where the NIZK simulation-extractability experiment is defined in
Fig. A.15.

ExpSim−Extr
A,NIZK (λ)

(crs, trNIZK)← SimSetupNIZK(1λ)

M = {}

(x∗, π∗
NIZK)← AOSimNIZK(.,trNIZK)(crs)

if (x∗, π∗
NIZK) /∈M∧ VerifyNIZK(crs, x∗, π∗

NIZK)

w ← Extr(trNIZK , x∗, π∗
NIZK)

if R(x,w) = 0

return 1

return 0

Fig.A.15: NIZK system simulation-extractability experiment.

A.3 Digital Signature Schemes Security

In what follows, we give the formal definition of Existential Unforgeability un-
der Chosen Message Attack (EUF-CMA) of digital signature schemes that are
required for proving the security of TPBS.

Existential Unforgeability under Chosen Message Attack (EUF-
CMA). This security notion implies that given access to a signing oracle
OSignSig (see Fig. A.16), it is hard for an adversary A who does not have access
to the signing keys to output a valid message signature pair (m∗, σ∗Sig) for which
m∗ was never queried to the signing oracle.



Traceable Policy-Based Signatures with Delegation 25

OSignSig(m)

σSig ← SignSig(skSig,m)

M =M∪ {m,σSig}
return σSig

Fig.A.16: Digital signature security experiments oracles

Definition 11. (Digital signature scheme EUF-CMA) The digital signa-
ture scheme is EUF-CMA secure, if the for any PPT adversary A,
Pr[ExpEUF−CMA

A,Sig (λ) = ⊤] ≤ ϵ(λ), where the EUF-CMA experiment is defined
in Fig. A.17.

ExpEUF−CMA

A,Sig (λ)

M = {}

ppSig ← ppGenSig(1λ)

(pkSig, skSig)← KeyGenSig(ppSig)

(m∗, σ∗
Sig)← AOSignSig(.)(pkSig)

if (m∗, σ∗
Sig) /∈M

return VerifySig(pkSig,m
∗, σ∗

Sig)

Fig.A.17: Digital signature scheme EUF-CMA experiment.

B Proof of Theorem 2
In this section, we present the proof of the Theorem 2.

Proof. We prove each security property individually.

B.1 Simulatability

Recall that for an adversary A to win the simulatability game ExpSim
A,TPBS in

Fig. 4, it has to guess the bit ‘b’ that OSim-or-Sign(.) is initialized with. In
other words, A wins if it can determine whether the output signature σm of
OSim-or-Sign(.) is generated using the secret keys or it is a simulated signa-
ture. By contradiction, We show that if there exists an adversary A that wins
ExpSim

A,TPBS, we can construct an adversary B that wins the NIZK Zero-knowledge

game ExpZK
B,NIZK of the underlying NIZK system in Fig. A.14 or B′ that wins the

unlinkability game ExpUnlinkability
B′,RDS of the underlying RDS scheme in Fig. A.12,

by linking the rerandomized version of σi
ID produced by the challenging oracle

to a one that B′ obtained from querying OUSign for the same identity i.

B is constructed as follows. B receives crs from its challenger in
ExpZK

B,NIZK in Fig. A.14, generates the following: ppRDS ← ppGenRDS(1λ),

ppSig ← ppGenSig(1λ), and ppSigΣ ← ppGenSig(1λ). B sets ppTPBS ←
(crs, ppRDS , ppSig, ppSigΣ). Then B runs TASetup(ppTPBS) to obtain
(pkTA

TPBS, sk
TA
TPBS, Reg), IssuerSetup(ppTPBS) to obtain (pkIssuerTPBS , skIssuerTPBS ).

For ij ∈ U , B runs the algorithms UserKeyGen(.) and IDKeyGen(.) to obtain

(sk
ij
TPBS) and sets Qi[ij ] = sk

ij
TPBS = (skij ).
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To simulate A calls to OKeyGen oracle for i /∈ U , B runs the algo-
rithms UserKeyGen(.) and IDKeyGen(.) to obtain (skiTPBS) and the algorithm
PolicyKeyGen(.) to obtain skpTPBS and returns (skpTPBS, sk

i
TPBS) to A. To simulate

A calls to OUSign oracle, B runs PolicyKeyGen(skIssuerTPBS , p) to obtain skpTPBS,and
Sign(skpTPBS,Qi[ij ],m, p, wp) to obtain σm. To simulate A calls to OTrace oracle,
B simply runs the Trace algorithm on Reg. To simulate A calls to OSim-or-Sign
oracle, B parses (skij , σ

ij
ID) ← Qi[ij ][1] rerandomizes σ

ij
ID to obtain σ′

ij
ID then

forwards (pkTA
TPBS, pk

Issuer
TPBS , σ′

ij
ID,m, p, ski, wp) to OSim-or-ProveNIZK challenge

oracle in ExpZK
B,NIZK(λ) to obtain πm, then B′ forwards σm = (σ′

ij
ID, πm) to A.

Once A outputs b′, B copies it to its challenger in ExpZK
B,NIZK(λ), and stops.

B′ is constructed as follows. B′ receives ppRDS and pkRDS from its chal-
lenger in the unlinkability game ExpUnlinkability

B,RDS in Fig. A.12, generates the

following; (crs, trNIZK) ← SimSetupNIZK(1λ), ppSig ← ppGenSig(1λ), and
ppSigΣ ← ppGenSig(1λ). B′ sets ppTPBS ← (crs, ppRDS , ppSig, ppSigΣ), pk

TA
TPBS ←

pkRDS and initializes an empty Reg. Then B′ runs IssuerSetup(ppTPBS) to
obtain (pkIssuerTPBS , skIssuerTPBS ). For j ∈ U , B′ uses UserKeyGen(ppTPBS) to gen-
erate (pkij , skij , IDij ), sets Reg[ij ] = IDij , parses IDij = ((Cij , C

′
ij
), τij ),

queries OCSignRDS(Cij ) in ExpUnlinkability
B,RDS to obtain σ

ij
ID, and finally sets

Qi[ij ] = sk
ij
TPBS = (skij , σ

ij
ID). To simulate A calls to OKeyGen oracle i /∈ U , B′

uses UserKeyGen(ppTPBS) to generate (pki, ski, IDi), sets Reg[i] = IDi, parses

IDi = ((Ci, C
′
i), τi), queries OCSignRDS(Ci) in ExpUnlinkability

B,RDS to obtain σi
ID,

sets skiTPBS = (ski, σ
i
ID), and finally runs PolicyKeyGen(skIssuerTPBS , p) to obtain

skpTPBS. To simulate A calls to OTrace oracle, B simply runs the Trace al-
gorithm on Reg. To simulate A calls to OSim-or-Sign oracle, B′ invokes its
RDS challenging oracle in ExpUnlinkability

B,RDS on (ij) to obtain σ′IDb
, and πm ←

SimProveNIZK(crs, (pkTA
TPBS, σ

′
IDb

, pkIssuerTPBS ,m), trNIZK), sets σm = (σ′IDb
, πm)

and finally returns σm to A. When A outputs b′, B′ copies it to its RDS unlink-
ability challenger and exits.

B.2 Extractability

Recall that for adversary A to win the extractability game ExpExt
A,TPBS in Fig. 5,

it has to output a verifiable (m∗, σm∗) where m∗ has never been queried to
the OSign oracle and when the Extr algorithm is run over (m∗, σm∗) using

the trapdoor information trTPBS, the returned (p∗, sk∗i , sk
p∗

TPBS, wp∗) satisfies
any of the following conditions: i) sk∗i /∈ T , which implies that the adversary
has never obtained some skiTPBS through OKeyGen where ski = sk∗i , or ii)
p∗ /∈ L, which implies that the adversary has not queried OKeyGen with p∗

or iii) PC((p∗,m∗), w∗p) = 0. Thus we distinguish between three different types
of adversaries that may win the extractability game in Fig. 5, i) A is of type-
1 if VerifyRDS(pkTA

TPBS, sk
∗
i , σ
′i∗
ID) = 1 and for all i ∈ T , C∗i ̸= f(sk∗i ) ii) A

is of type-2 if VerifySig(pkIssuerTPBS , p, skpTPBS) = 1 and p∗ /∈ L iii) A is of type-
3 if VerifyRDS(pkTA

TPBS, sk
∗
i , σ
′i∗
ID) = 0 or VerifySig(pkIssuerTPBS , p∗, skp∗TPBS) = 0 or

PC((p∗,m∗), w∗p) = 0. By contradiction, we show that if there exists an adver-

sary A of type-1, type-2, and type-3 that wins ExpExt
A,TPBS, we can construct
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an adversary B that wins the EUF-CMA game ExpEUF−CMA
B,RDS of the underly-

ing RDS scheme in Fig. A.11, an adversary B′ that wins the EUF-CMA game
ExpEUF−CMA

B′,Sig of the underlying signature scheme in Fig. A.17, and an adver-

sary B′′ that wins the ExpSim−Extr
B′′,NIZK game of the underlying NIZK system in

Fig. A.15, respectively.

For a type-1 A adversary, B is constructed as follows. B receives
ppRDS , and pkRDS from its challenger in EUF-CMA game ExpEUF−CMA

B,RDS

in Fig. A.11, generates the following: (crs, trNIZK) ← SimSetupNIZK(1λ),
ppSig ← ppGenSig(1λ), and ppSigΣ ← ppGenSig(1λ). Then B sets ppTPBS ←
(crs, ppRDS , ppSig, ppSigΣ), T = {} and pkTA

TPBS = pkRDS . Next, B runs
IssuerSetup(ppTPBS) to obtain (pkIssuerTPBS , skIssuerTPBS ). To simulate A calls to
OKeyGen oracle, B uses UserKeyGen(ppTPBS) to generate (pki, ski, IDi), queries
OSignRDS(ski) in ExpEUF−CMA

B,RDS to obtain σi
ID, sets skiTPBS = (ski, σ

i
ID),

Sets T = T ∪ {i, ski}, runs PolicyKeyGen(skIssuerTPBS , p) to obtain skpTPBS and
finally returns (skpTPBS, sk

i
TPBS) to A. To simulate A calls to OSign ora-

cle, if i /∈ T , B uses UserKeyGen(ppTPBS) to generate (pki, ski, IDi), queries
OSignRDS(ski) in ExpEUF−CMA

B,RDS to obtain σi
ID, sets skiTPBS = (ski, σ

i
ID),

runs PolicyKeyGen(skIssuerTPBS , p) to obtain skpTPBS, and runs Sign directly over
the message m using the generated keys. Once A outputs (m∗, σm∗), B parses
(σ′i

∗

ID, π∗m) ← σm, and runs ExtrNIZK(trNIZK , pkIssuerTPBS , pkTA
TPBS,m

∗, π∗m) to ob-
tain (p∗, sk∗i , sk

p
TPBS, wp∗), if sk∗i /∈ T , it forwards (sk∗i , σ′i

∗

ID) to its challenger in

ExpEUF−CMA
B,RDS , which constitutes a forgery over sk∗i .

For a type-2 A adversary, B′ is constructed as follows. B′ receives ppSig, and

pkSig from its challenger in EUF-CMA game ExpEUF−CMA
B,Sig Fig. A.17, generates

the following: (crs, trNIZK)← SimSetupNIZK(1λ), ppSigΣ ← ppGenSig(1λ), and
ppRDS ← ppGenRDS(1λ). B′ sets ppTPBS ← (crs, ppRDS , ppSig, ppSigΣ), L = {},
and pkIssuerTPBS ← pkSig. Then B′ runs TASetup(ppTPBS) to obtain (pkTA

TPBS, sk
TA
TPBS).

To simulate A calls to OKeyGen oracle, B′ runs the algorithms UserKeyGen(.)
and IDKeyGen(.) to obtain (skiTPBS) and forwards p to OSignSig(.) oracle in

ExpEUF−CMA
B′,Sig to obtain skpTPBS and returns (skpTPBS, sk

i
TPBS) to A. To simu-

late A calls to OSign oracle, if p /∈ L, B′ runs the algorithms UserKeyGen(.)
and IDKeyGen(.) to obtain (skiTPBS) and forwards p to OSignSig(.) oracle in

ExpEUF−CMA
B′,Sig to obtain skpTPBS and runs Sign directly over the message m using

the generated keys. Once A outputs (m∗, σm∗), B′ parses (σ′i∗ID, π∗m)← σm∗ , and

runs ExtrNIZK(trNIZK , pkIssuerTPBS , pkTA
TPBS,m

∗, π∗m) to obtain (p∗, sk∗i , sk
p∗

TPBS, wp∗),

if p /∈ L, it forwards (p∗, skp
∗

TPBS) to its challenger in ExpEUF−CMA
B′,Sig (λ), which

constitutes a forgery over p∗.

For a type-3 A adversary, B′′ is constructed as follows. B′′ receives
crs from its challenger in ExpSim−Extr

B′′,NIZK in Fig. A.15, generates the fol-

lowing: ppSig ← ppGenSig(1λ), ppSigΣ ← ppGenSig(1λ), and ppRDS ←
ppGenRDS(1λ). B′′ sets ppTPBS ← (crs, ppRDS , ppSig, ppSigΣ). Then B′′ runs
TASetup(ppTPBS) to obtain (pkTA

TPBS, sk
TA
TPBS), IssuerSetup(ppTPBS) to obtain

(pkIssuerTPBS , skIssuerTPBS ). To simulate A calls to OKeyGen oracle, B′′ runs the al-



28 I. Afia and R. AlTawy

gorithms UserKeyGen(.) and IDKeyGen(.) to obtain (skiTPBS) and the algo-
rithm PolicyKeyGen(.) to obtain skpTPBS and returns (skpTPBS, sk

i
TPBS) to A.

To simulate A calls to OSign oracle, B′′ runs the algorithms UserKeyGen(.)
and IDKeyGen(.) to obtain (skiTPBS) and the algorithm PolicyKeyGen(.)
to obtain skpTPBS, parses (ski, σ

i
ID) ← (skiTPBS), generates σ′iID ←

RandomizeRDS(σi
ID), sends ((pkTA

TPBS, σ
′i
ID, pkIssuerTPBS ,m), (ski, p, sk

p
TPBS, wp)) to

OSimNIZK oracle in ExpSim−Extr
B′′,NIZK to obtain πm, then B′′ forwards

σm = (σ′iID, πm) to A. Once A outputs (m∗, σm∗), B′′ parses
(σ′i

∗

ID, π∗m) ← σm, and sends ((pkTA
TPBS, σ

′i∗
ID, pkIssuerTPBS ,m), π∗m) to its challenger

in ExpSim−Extr
B′′,NIZK , which constitutes a winning condition where the relation

R′NP((pkTA
TPBS, σ

′i
ID, pkIssuerTPBS ,m∗), (sk∗i , p, sk

p∗
TPBS, wp∗)) = 0.

B.3 Non-frameability

Recall that for an adversary A to win ExpNon−Frameability
A,TPBS in Fig. 6; it has to

output (m∗, σm∗) when it is traced back, the tracing result (i∗, π∗Trace) points
to some honest signer whose signing keys were not shared with A and yet such
tracing result is accepted by Judge algorithm. Without loss of generality, let
an adversary A win ExpNon−Frameability

A,TPBS for user identity iz ∈ U . Here we
distinguish between two tracing results; i) i∗ = iz and IDi∗ = Reg[iz], which
implies that A has successfully revealed skiz from an earlier signature by the
user iz, and ii) i∗ = iz however IDi∗ ̸= Reg[iz] that the honest user iz has used
in IDKeyGen(.) algorithm which implies A has manipulated Reg. Given a one-
way function f(.), and an interactive perfect zero-knowledge proof of knowledge
PoK, by contradiction, We show that if there exists an adversary A who wins
ExpNon−Frameability

A,TPBS , we can construct an adversary B who wins ExpZK
B,NIZK

of the underlying NIZK scheme in Fig. A.14 or we can construct a successful
adversary B′ against ExpEUF−CMA

B′,Sig of the underlying user digital signature
scheme in Fig. A.17.

B is constructed as follows. B receives crs from its challenger in Fig. A.14. B
generates ppRDS ← ppGenRDS(1λ), (ppSig) ← ppGenSig(1λ), and ppSigΣ ←
ppGenSig(1λ). Then B sets ppTPBS ← (crs, ppRDS , ppSig, ppSigΣ). B runs
TASetup(ppTPBS) to obtain (pkTA

TPBS, sk
TA
TPBS, Reg), and IssuerSetup(ppTPBS) to

obtain (pkIssuerTPBS , skIssuerTPBS ). For j ∈ U , B uses UserKeyGen(ppTPBS) to gener-

ate (pkij , skij , IDij ), generates ((Reg[ij ]), (sk
ij
TPBS)) ⇔ IDKeyGen(.) and sets

Qi[ij ] ← sk
ij
TPBS. To simulate A calls to OKeyGen oracle for i /∈ U , B runs the

algorithms UserKeyGen(.) and IDKeyGen(.) to obtain (skiTPBS) and the algorithm
PolicyKeyGen(.) to obtain skpTPBS and returns (skpTPBS, sk

i
TPBS) to A.

To simulate A calls to OUSign oracle, B runs PolicyKeyGen(.) to obtain skpTPBS,
For j ∈ U ∧ j ̸= z, B runs Sign(skpTPBS,Qi[ij ],m, p, wp) to obtain σm. For
user iz, B parses σi

ID ← Qi[z][1], calculates σ′iID ← RandomizeRDS(σi
ID),

and sends (pkTA
TPBS, σ

′i
ID, pkIssuerTPBS ,m), (ski, p,sk

p
TPBS,wp)) to its challenging or-

acle OSim-or-ProveNIZK(.) in Fig. A.14 to obtain πm and finally outputs σm =
(σ′iID, πm) to A. To simulate A calls to OTrace oracle, B simply runs the Trace
algorithm on Reg since all identity keys are generated using the IDKeyGen(.)
algorithm. When A outputs (m∗, σm∗), which passes the winning conditions de-
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fined in the experiment Fig. 6, B runs (i∗z, π
∗
Trace) ← Trace(Reg,m∗, σm∗), if

IDi∗ = IDiz , it outputs 0 to its challenger oracle in Fig. A.14 and 1 otherwise.

On the other hand, B′ could be constructed as follows. ppSigΣ , pkSigΣ from
its challenger in Fig. A.17. B′ sets D[iz] ← pkSigΣ and generates (crs) ←
SetupNIZK(1λ), ppRDS ← ppGenRDS(1λ), and ppSig ← ppGenSig(1λ). B′ sets
ppTPBS ← (crs, ppRDS , ppSig, ppSigΣ). Then B′ runs TASetup(ppTPBS) to obtain
(pkTA

TPBS, sk
TA
TPBS, Reg), and IssuerSetup(ppTPBS) to obtain (pkIssuerTPBS , skIssuerTPBS ). For

j ∈ U ∧ j ̸= z, B′ uses UserKeyGen(ppTPBS) to generate (pkij , skij , IDij ), gen-

erates ((Reg[ij ]), (sk
ij
TPBS)) ⇔ IDKeyGen(.) and sets Qi[ij ] ← sk

ij
TPBS. For iz, B′

picks skiz
$← Z∗p, calculates Ciz = (ciz , c̃iz )

$← f(skij ), sends ciz to its challenger
signing oracle OSignSig in Fig. A.17 to obtain τiz , constructs IDiz and generates
σiz
ID ← SignComRDS(skTA

RDS , ciz ) and sets Qi[iz] ← skizTPBS = (skiz , σ
iz
ID) and

Reg[iz] = IDiz . To simulate A calls to OUSign oracle, B′ runs PolicyKeyGen(.) to
obtain skpTPBS, and runs Sign(skpTPBS,Qi[ij ],m, p, wp) to obtain σm. To simulate
A calls to OTrace oracle, B′ simply run the Trace algorithm on Reg. When A out-
puts (m∗, σm∗), which passes the winning conditions defined in the experiment
Fig. 6, B′ runs (i∗z, π∗Trace)← Trace(Reg,m∗, σm∗), parses {C∗iz , τ

∗
iz
} ← ID∗iz and

sends {c∗iz , τ
∗
iz
} to its challenger oracle in Fig. A.17, which constitutes a winning

condition since c∗iz ̸= ciz such that IDiz = (ciz , c̃iz , τiz ).

B.4 Traceability

Recall that for an adversary to win ExpTraceability
A,TPBS in Fig. 7; it has to out-

put (m∗, σm∗) where the produced signature cannot be traced to some signer
whose signing keys are obtained through OKeyGen(.) oracle. In other words, for
adversary A to win, it should have access to a verifiable σi

ID under pkTA
TPBS

that has been obtained without calling the OKeyGen(.) oracle or adversary
A has succeeded in generating NIZK proof for a false statement such that
VerifyRDS(pkTA

TPBS, sk
∗
i , σ
′i∗
ID) = 0. Thus we distinguish between two different

types of adversaries that may win the traceability experiment in Fig. 7, i) A is
of type-1 if VerifyRDS(pkTA

TPBS, sk
∗
i , σ
′i∗
ID) = 1 and Reg[i] = ∅ ii) A is of type-2

if VerifyRDS(pkTA
TPBS, sk

∗
i , σ
′i∗
ID) = 0. We show by contradiction that if an adver-

sary A of type-1 or type-2 wins in ExpTraceability
A,TPBS , we can construct an adversary

B that wins the ExpEUF−CMA
B,RDS in Fig. A.11 or an adversary B′ that wins the

ExpSim−Extr
B′,NIZK in Fig. A.15, respectively.

For A of type-1, B is constructed as follows, B receives ppRDS , and
pkRDS from its challenger in ExpEUF−CMA

B,RDS Fig. A.11, generates the fol-

lowing: (crs, trNIZK) ← SimSetupNIZK(1λ), ppSig ← ppGenSig(1λ), and
ppSigΣ ← ppGenSig(1λ). B sets ppTPBS ← (crs, ppRDS , ppSig, ppSigΣ), and
pkTA

TPBS ← pkRDS and initializes an empty Reg. Then B runs IssuerSetup(ppTPBS)
to obtain (pkIssuerTPBS , skIssuerTPBS ). To simulate A calls to OKeyGen oracle, B
uses UserKeyGen(ppTPBS) to generate (pki, ski, IDi), queries OSignRDS(ski) in
ExpEUF−CMA

B,RDS to obtain σi
ID, sets skiTPBS = (ski, σ

i
ID), Reg[i] = IDi, runs

PolicyKeyGen(skIssuerTPBS , p) to obtain skpTPBS and finally returns (skpTPBS, (sk
i
TPBS))

to A. To simulate A calls to the OTrace oracle, B simply runs the Trace algo-
rithm on Reg. Once A outputs (m∗, σm∗), B parses (σ′i

∗

ID, π∗m)← σm∗ , and runs
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ExtrNIZK(trNIZK , pkIssuerTPBS , pkTA
TPBS, σ

′i∗
ID,m∗, π∗m) to obtain (p∗, sk∗i , sk

p
TPBS, wp∗),

and forwards (sk∗i , σ
′i∗
ID) to its challenger in ExpEUF−CMA

B,RDS , which constitutes
a forgery over sk∗i .

For a type-2 A adversary, B′ is constructed as follows. B′ receives crs from
its challenger in ExpSim−Extr

B′,NIZK in Fig. A.15, generates the following: ppSig ←
ppGenSig(1λ), ppSigΣ ← ppGenSig(1λ), and ppRDS ← ppGenRDS(1λ). B′ sets
ppTPBS ← (crs, ppRDS , ppSig, ppSigSigma

). Then B′ runs TASetup(ppTPBS) to ob-
tain (pkTA

TPBS, (sk
TA
TPBS, Reg)), IssuerSetup(ppTPBS) to obtain (pkIssuerTPBS , skIssuerTPBS ).

To simulate A calls to OKeyGen oracle, B′ runs the algorithms UserKeyGen(.)
and IDKeyGen(.) to obtain (skiTPBS) and the algorithm PolicyKeyGen(.) to obtain
skpTPBS and returns (skpTPBS, sk

i
TPBS) to A. To simulate A calls to OTrace oracle,

B′ simply run the Trace algorithm on Reg. Once A outputs (m∗, σm∗), B′ parses
(σ′i

∗

ID, π∗m) ← σm∗ , and sends (m,σ′i
∗

ID, π∗m) to its challenger in ExpSim−Extr
B′,NIZK

which constitutes a winning condition for statement (1a) in relation R′NP that is
defined in (1).

C Protocols Used in Instantiating TPBS
C.1 Pointcheval-Sanders (PS) RDS Scheme

PS is a pairing-based RDS scheme that enables the produced signature to be
rerandomized and still be verifiable using the verification keys of the signer [16].
It also allows signing a commitment on a hidden message such that the resulting
signature is verifiable for the message itself. The PS scheme specifies the following
six procedures.

- ppGenPS. The algorithm outputs the public parameters of the scheme such that
ppPS = (p,G, G̃,GT , e) where (p,G, G̃,GT , e) defines a type-3 bilinear group
map [12].

- KeyGenPS. This procedure returns the signer’s secret and public key pair, the

signer picks g1
$← G, g̃1

$← G̃ and (a, b)
$← Z∗p, sets sk

signer
PS = (a, b) and computes

(Ã, B̃)← (g̃a, g̃b), sets pksignerPS = (g1, g̃1, Ã, B̃).

- SignPS. This algorithm outputs the digital signature σPS for a message

m ∈ Zp by randomly choosing h
$← G1\{1G1} and sets σPS = (σPS1, σPS2) ←

(h, h(a+b.m)).

- RandomizePS. This algorithm rerandomizes the digital signature on a message

m and outputs σ′PS by randomly choosing r′
$← G1\{1G1} and computing σ′PS ←

(σr ′
PS1, σ

r ′
PS2)← (hr ′, hr′(a+b.m)).

- VerifyPS. This algorithm verifies the signature σPS over m by verifying
e(σPS1, ÃB̃m) = e(σPS2, g̃1) and outputs {⊤,⊥}.
- SignComPS: This a special form of SignPS algorithm that allows the signer to
generate a signature over a messagem by only knowing a commitment of the mes-

sage gm1 by randomly choosing r
$← Z∗p and computing σPS ← (σPS1, σPS2) ←

(gr1, (g
a
1 (g

m
1 )b)r, σPS ← SignComPS(skSigner

PS , gm1 ).
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C.2 Abe et al. Optimal Structure-Preserving Signatures

Abe et al. demonstrated that the lower bounds for a structure-preserving signa-
ture scheme to protect against random message attack as i) it must use at least
two pairing product equations to verify a signature, and ii) the signature size
must be at least 3 group elements [2]. Moreover, they presented a structure-
preserving signature scheme that matches such lower bounds to sign a pair of
group elements (M,N) ∈ G× G̃ as follows:

- ppGenAbe. This algorithm outputs the public parameters of the system such
that ppAbe = (p,G, G̃,GT , e, g, g̃) where (p,G, G̃,GT , e) defines a type-3 bilinear
group map [12] which is generated by (g, g̃).

- KeyGenAbe. picks u, v, h, z
$← Z∗p and computes U = gu, V = g̃v, H = g̃h,

Z = g̃z (pkAbe, skAbe) = ((U, V,H,Z), (u, v, h, z)).

- SignAbe. On input of a message m in the form of (M,N) ∈ G× G̃, the signer

picks r
$← Z∗p and computes R = gr, S =z−rv .M−h, T = (g̃.N−u)

1
r and outputs

σAbe = (R,S, T ).

- VerifyAbe. This algorithm accepts σAbe over m if M,R, S ∈ G and N,T ∈ G̃
and

e(R, V )e(S, g̃)e(M,H) = e(g, Z) ∧ e(R, T )e(U,N) = e(g, g̃)

Finally, the authors showed how the above scheme could be extended to sign
messages in GkM × G̃kN

C.3 Groth-Sahai Zero-knowledge Proof System

In what follows, we introduce Groth-Sahai (GS) pairing-based Non-interactive
zero-knowledge system as one of the TPBS building blocks. Groth-Sahai enables
a prover to convince a verifier that a set of variablesXi ∈ G1, Ỹj ∈ G2, xi, yj ∈ Zp

simultaneously satisfy a set of equations [14]. Groth and Sahai presented four
general equations that can be used to represent the statement to be proved.

Pairing-product equation. For known Aj ∈ G1, B̃i ∈ G2 and γij ∈ Zp

n∏
j=1

e(Aj , Ỹj)

m∏
i=1

e(Xi, B̃i)

m∏
i=1

n∏
j=1

e(Xi, Ỹj)
γij = 1

Multi-exponentiation equation in G1. For known Aj , T ∈ G1 and bi, γij ∈ Zp

(Can be written for G2 as well)

n∏
j=1

A
yj

j

m∏
i=1

Xbi
i

m∏
i=1

n∏
j=1

X
yjγij

i = T

Quadratic Equation. For known aj , biγij , t ∈ Zp

n∑
j=1

ajyj

m∑
i=1

xibi

m∑
i=1

n∑
j=1

xiγijyj = t

The Groth-Sahai NIZK system is defined by the following three procedures:
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- SetupGS. The algorithm outputs the Common Reference String (CRS) parame-
ters of the system either in hiding or binding setting, CRSGS ← CRSGenGS(1λ).

- ProveGS. The prover uses this algorithm to generate the proof elements πGS

and θGS . {πGS , θGS} ← ProveGS(CRSGS , Xi, Ỹj , xi, yj , C,D) where (C,D) are

the commitments of the secret variables Xi ∈ G1, Ỹj ∈ G2, and xi, yj ∈ Zp either
in a hiding or a binding setting.

- VerifyGS. The verifier uses this algorithm to verify the proof ele-
ments π and θ satisfy the prover statement and outputs {⊤,⊥} ←
VerifyGS(CRSGS , CGS , DGS , πGS , θGS).


