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Abstract

We study the following broad question about cryptographic primitives: is it possible to
achieve security against an arbitrary poly(n)-time adversary with O(log n)-size messages? It is
common knowledge that the answer is “no” unless information-theoretic security is possible.
In this work, we revisit this question by considering the setting of cryptography with public
information and computational security.

We obtain the following results, assuming variants of well-studied intractability assumptions:

• A private simultaneous messages (PSM) protocol for every f : [n]× [n]→ {0, 1} requiring
(1+ε) log n-bit messages for most functions and (2+ε) log n-bit messages for the remaining
ones. We apply this towards non-interactive secure 3-party computation with similar
message size in the preprocessing model, improving over previous 2-round protocols.

• A secret-sharing scheme for any “forbidden-graph” access structure on n nodes with
O(log n) share size.

• On the negative side, we show that computational threshold secret-sharing schemes with
public information require share size Ω(log log n). For arbitrary access structures, we show
that computational security does not help with 1-bit shares.

The above positive results guarantee that any adversary of size no(logn) achieves an n−Ω(1)

distinguishing advantage. We show how to make the advantage negligible by slightly increasing
the asymptotic message size, still improving over all known constructions.

The security of our constructions is based on the conjectured hardness of variants of the
planted clique problem, which was extensively studied in the algorithms, statistical inference,
and complexity theory communities. Our work provides the first applications of such assump-
tions improving the efficiency of mainstream cryptographic primitives, gives evidence for the
necessity of such assumptions, and suggests new questions in this domain that may be of inde-
pendent interest.

1 Introduction

We consider the following broad question about cryptographic primitives:
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Is it possible to achieve security against arbitrary poly(n)-time adversaries with messages
of size O(log n)?

It is not hard to see that the answer is “no” unless information-theoretic security is possible. Indeed,
a non-uniform adversary can simply apply a brute-force distinguisher implemented by a circuit of
size 2O(logn) = poly(n). A similar argument works for efficient uniform adversaries. In this work,
we revisit this question by considering the setting of cryptography with public information. Public
information may be viewed as a cheap resource: it can often be preprocessed (i.e., generated in an
offline phase before the secret inputs are known), it does not require secure storage, and (under
strong cryptographic assumptions) can even be generically compressed [HJK+16].

As a concrete example, consider the problem of 2-out-of-n secret sharing. It is known that in
any such information-theoretic scheme, even when sharing a 1-bit secret, the bit-length of at least
one share must be at least log n [KN90, CCX13].1 We ask whether the share size can be reduced, in
the computational setting, if the dealer is allowed to publish public information that is generated
jointly with the shares. As argued above, this relaxation is necessary for breaking the log n lower
bound even in the computational security setting. Moreover, by a simple conditioning argument,
public information is not helpful at all in the information-theoretic setting.

We start with a seemingly unrelated observation that if such a 2-out-of-n scheme exists, then
(a variant of) the planted clique problem is computationally hard. Specifically, for fixed public
information I, we generate a polynomial-size, n-partite graph G whose nodes are all pairs (i, si),
where i ∈ [n] and si is a possible share for the i-th party (any string of the appropriate length).
We put an edge in G between (i, si) and (j, sj) (where i ̸= j) if the parties i, j on shares si, sj
respectively, and with public information I, reconstruct the secret 1. Note that a legal sharing of
the secret 1 forms a size-n clique in G between (1, s1), . . . , (n, sn). A legal sharing of the secret 0
forms instead a size-n independent set in G. The security of the secret-sharing scheme implies that
if we pick a random secret b and apply the sharing algorithm to get (I, s1, . . . , sn) then, given a
node (i, si) (corresponding to the view of the i-th party in the secret sharing), it is hard to decide
whether it belongs to a size-n clique or a size-n independent set of G defined by the selected I.

The above observation suggests that the hardness of finding planted cliques is necessary for
improved 2-out-of-n secret sharing in the public information setting. It is natural to ask whether
it is also sufficient. Next, we outline an idea in this direction. This construction does not improve
the share size, but it demonstrates in a simple way a high-level idea that we will apply to improve
the efficiency of other primitives. First, sample an n-partite random graph, where each part is of
size L, and each potential edge between two parts appears with probability 0.5. Then, if the secret
is 1, plant in this graph a random n-partite clique (i.e., select one random node from each of the
n parts and add to the graph all the edges between them, if they do not already exist); similarly,
if the secret is 0, plant in the graph a random n-partite independent set. The resulting graph
will be the public information. The share of party i will be the i-th node of the planted clique
or independent set. The reconstruction is simple: given two shares (i, si) and (j, sj) the share is
determined by whether there is an edge between them in the public graph. For the security of the
scheme, we assume that an adversary that sees the graph and gets the share of a party, i.e., a node
in a clique or independent set, cannot distinguish between these two cases. Unfortunately, with
the above simple planting procedure, the problem can be conjectured to be hard only if L ≥ n (see
Section 2.1); hence the share size, which is logL, is at least logarithmic.

1Here and elsewhere, logn stands for log2 n.
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Generalizing the above example, in this work we systematically explore the possibility of ob-
taining computational security with logarithmic-size messages using public information. We show
that plausible intractability conjectures about different variants of the planted clique problem, col-
lectively referred to as “planted graph” problems, can be used to construct secret-sharing schemes
and secure computation protocols that beat the best-known, and typically the best possible,
information-theoretic protocols.

We apply our approach to several different problems. These include private simultaneous mes-
sages (PSM) protocols and secure 3-party computation, as well as secret sharing for “forbidden-
graph” access structures. For all these primitives, we show how relaxing the standard model by
allowing public information can improve over the communication complexity of the best-known so-
lutions, assuming plausible hardness conjectures about planted graph problems. Similar results are
not known under any other cryptographic assumptions, or even by using ideal forms of obfuscation.
In fact, as in the above examples, assuming the hardness of natural computational problems involv-
ing planted graphs can be shown to be necessary. Finally, we also study the extent to which one
can go below logarithmic-size messages. For the case of secret sharing, we obtain partial negative
results about the access structures that can be realized using computational secret sharing schemes
with public information and sub-logarithmic shares.

Different variants of the planted clique problem, introduced in [Jer92, Kuč95], were studied
within the algorithms, statistical inference, and complexity-theory communities. While such prob-
lems have already found some cryptographic applications, these are either in the context of diversi-
fying assumptions [JP00, ABW10, BKR23] or specialized tasks [GKVZ22]. Our work gives the first
applications of planted graph problems to improving the efficiency of mainstream cryptographic
tasks, and suggests new questions about such problems that may be of independent interest outside
the cryptography community.

1.1 Our results

We now give a more detailed account of our results. For each result, we describe the task that we
study, the previously known results, and our new results obtained by using hardness assumptions
about planted graphs. For a more detailed and technical overview, see Section 2.

1.1.1 PSM protocols with public information

The private simultaneous messages (PSM) model, introduced in [FKN94], is a simple non-interactive
model for secure computation in which Alice and Bob can evaluate a function f(x, y) of their
inputs by sending a single message to a referee Carol. More concretely, Alice is given a private
input x and Bob a private input y. They are both given a common random string r, which is
unknown to Carol. Alice and Bob simultaneously send messages to Carol, where each message
only depends on the input of the sender and r. Carol should be able to compute f(x, y) from
the two messages she receives, but is required to learn no additional information about the inputs
x, y. Most of the study of PSM protocols [FKN94, IK97, BIKK14, LVW17, AHMS18] focused
on the information-theoretic setting, where the best-known protocols for arbitrary functions f :
[n] × [n] → {0, 1} has communication complexity O(n0.5) [BIKK14] and the best known lower
bound is (1 + Ω(1)) log n [AHMS18].

We start by describing a simple and general method for using symmetric encryption to convert
any PSM protocol Π into a computational PSM protocol Π′ with public information and short
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messages. Sample shared randomness r for Alice and Bob in Π, and let the public information of
Π′ include, for each possible input x ∈ [n] of Alice, the encryption of Alice’s message on (x, r) under
some secret key Kx, where the n encrypted messages are cyclically shifted by a random amount
rx. Similarly, the public information includes the n encryptions of the messages of Bob on inputs
(y, r), shifted by a random ry. Then, given the actual inputs x, y, Alice sends to Carol the key Kx

and the location of the corresponding encryption (according to the secret shift rx) and, similarly,
Bob sends the key Ky and the location of the corresponding encryption. Carol then decrypts the
two messages and computes the output, as in Π. The public information length of Π′ is equal to
2n times the message length in Π (e.g., O(n1.5) using [BIKK14]), and the message length of Π′ is
O(log n+λ), where λ denotes a security parameter for the underlying encryption scheme. However,
to enable security against any poly(n)-time Carol, λ must be super-logarithmic in n.

In this paper, we show how to use a planted graph assumption to construct a PSM protocol
with messages of size O(log n). The PSM protocol proceeds in the following natural way. We first
plant a graph obtained from the bipartite graph representing the function f , denoted by H, in
a larger random N -node graph to obtain a graph G. The public information consists of G, and
the shared randomness (only known by Alice and Bob) is the mapping of all nodes in H to the
corresponding nodes in G. On input x, y, Alice and Bob send to Carol the corresponding nodes
in G according to this mapping. Carol outputs 1 if and only if there is an edge between the two
nodes in G she received.

The security of the protocol relies on the assumption that the planted graph H is hidden
within the graph G. This assumption seems to be at least as plausible as the standard planted
clique assumption that was studied extensively. More concretely, the flavor of the planted graph
assumption that we use asserts that any efficient adversary, who receives a pair of nodes (x, y) in G,
cannot distinguish between the case where (x, y) is an edge (resp., non-edge) of the public subgraph
H planted in a random G, as above, and the case of a random graph G with a planted edge (resp.,
non-edge) (x, y) (see Section 2.1 for a detailed discussion of this planted graph assumption and
its variants). In quantitative terms, we assume that any adversary of size no(logn) has an n−Ω(1)

distinguishing advantage. Under the above assumption, the PSM protocol has the same level of
security. Note that we cannot hope for a negligible advantage of n−ω(1), since a planted graph can
be efficiently detected with an inverse-polynomial advantage.

We also present a variant of this construction that makes the adversary’s advantage negligible.
This comes at the cost of increasing the message length to be an arbitrary function in ω(log n)
and relying on a stronger assumption. We would like to stress that even when settling for n−Ω(1)

distinguishing advantage, PSM protocols with public information and O(log n) message size were
not known based on any cryptographic assumption.

The above PSM protocols, like other primitives we construct from planted graph assumptions,
only achieve conjectured security against (non-uniform) no(logn)-time adversaries. This is weaker
than the typical sub-exponential security achieved under standard cryptographic assumptions but
stronger than fine-grained security [Mer78, BRSV18], where security holds against fixed poly-time
adversaries. Note that a similar notion of security against quasi-polynomial time adversaries was
also considered in other contexts (e.g., [ABW10, BLVW19, BKR23]).

On the plausibility of our assumptions. Our PSM protocols can offer different levels of ef-
ficiency depending on the strength of the underlying assumption. In the weaker version of the
assumption, dubbed “weak planted subgraph with hints” (Weak-PSH), we assume that for every

4



constant δ > 0 and sequence of n-node graphs Hn, the distinguishing problem is hard when N –
the number of nodes in G – is n2+δ; under this assumption the message size is (2 + δ) log n. This
assumption is a generalization of the planted clique assumption. On the one hand, we plant an
arbitrary graph and not a clique; however, for the known attacks, the clique seems the easiest graph
to detect. On the other hand, in our assumption, the adversary gets a “hint” consisting of two
nodes from the planted graph H. We show that attacks by low-degree polynomials cannot break
the assumption when N = n2+δ. In the domain of planted problems, low-degree polynomials are a
powerful class of adversaries that capture known attacks on natural problems. It was even conjec-
tured that, for a well-defined subclass of planted problems, security against low-degree polynomials
implies security against general polynomial-time adversaries [Hop18, HW21].

In the stronger version of our assumption, dubbed “planted subgraph with hints” (PSH), we
assume that for almost all graphs H the problem is hard when N – the number of nodes in G
– is n1+δ for any constant δ > 0 (rather than n2+δ); under this assumption, the message size is
(1 + δ) log n. The evidence we have to support the PSH assumption when N = o(n2) is that the
known attacks for the planted clique problem in this regime do not apply to most other graphs H.
For example, consider two simple attacks based on the maximal degree or the total edge count.
While planting an n-node clique H in a random N -node G increases the maximal degree and the
total number of edges by ω(1) standard deviations, planting a “typical” H only changes these
measures by o(1) standard deviations. Our low-degree analysis provides further evidence: we show
that, for any choice of n and N , low-degree attacks are most effective when the hidden graph H is a
clique. We also obtain a formula characterising the effectiveness of low-degree attacks in detecting
a given hidden graph H, but were not able to formally prove that the PSH assumption holds with
respect to low-degree attacks.

Comparison with information-theoretic PSM. By [AHMS18], for almost all f : [n]× [n]→
{0, 1}, the message size in a PSM protocol with information-theoretic security is at least (1 +
Ω(1)) log n even when the error in the reconstruction and the indistinguishability are n−Ω(1); for
perfect PSM protocols the lower bound of [AHMS18] is (1.5 − o(1)) log n. The lower bound of
(1 + Ω(1)) log n holds also for computational PSM protocols without public information.2 Our
PSM protocol is much more efficient than the known information-theoretic PSM protocols and
computational PSM protocols without public information, however, they do not beat the lower
bound of [AHMS18].

1.1.2 Offline-online MPC

We apply the above PSM protocols to obtain offline-online protocols for secure multiparty com-
putation (MPC) in which the online phase is non-interactive and has logarithmic communication.
Concretely, consider MPC with 3 semi-honest parties, Alice and Bob who have inputs x and y,
respectively, and Carol who has no input and should receive the output f(x, y). We allow an offline
stage (not depend on the inputs x, y) which generates correlated randomness to Alice and Bob
and some public information. The goal is for the online stage to be non-interactive and highly
efficient. That is, each of Alice and Bob sends a single short message to Carol. Based on these

2Any unbounded adversary against the PSM protocol can be simulated by a non-uniform polynomial-time adver-
sary, where the adversary holds a polynomial-size table instructing the adversary for every pair of messages m0,m1

if to answer 0 (the messages were generated by the parties in the PSM protocol) or to answer 1 (the messages were
generated by the simulator).
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messages and the public information, Carol computes the output. As far as we know, the prior
work that achieves the most efficient online phase in this setting is the one-time truth table protocol
from [IKM+13]. This protocol, however, uses at least two rounds of online communication. Our
new protocol, in contrast, uses only one online round and, similarly to [IKM+13], for every function
f : [n] × [n] → {0, 1} has message size of O(log n) bits. Being an application of the above PSM
protocol, the MPC protocol relies on the same planted graph assumption.

1.1.3 Forbidden graph secret sharing

For a fixed graph Q with n nodes, a dealer is required to distribute a secret bit b to the n nodes
(parties) so that any 2 nodes can reconstruct the secret if and only if they are connected by an
edge (there is no additional requirements on sets of size different than 2). Forbidden Graph Secret-
Sharing schemes (FGSS) were introduced in [SS97] and further studied in [BIKK14]. The best

known information theoretic FGSS scheme has share size 2Õ(
√
logn) [LVW17]. The best-known

computational FGSS scheme (without public information) has share size poly(log n), assuming the
existence of one-way functions with sub-exponential security [ABI+23]. We show a computational
FGSS scheme with public information and share size O(log n) based on the hardness of deciding
whether a random graph H appears in a large random graph G with N nodes (both graphs are
included in the public information of the FGSS scheme); again we assume that this hardness still
holds when the adversary is given a “hint” of two nodes in H.

The security of our FGSS scheme can be based on the “weak planted subgraph with hints”
(Weak-PSH) assumption discussed above; in this case N = n2+δ and the share size is (2 + δ) log n.
However, as we plant a random graph H that is independent of the graph Q representing the
access structure, we can use a different assumption, dubbed “planted random subgraph with hints”
(PRSH), where we assume that for every constant δ > 0 the distinguishing problem is hard when
H is a random n-node graph and N – the number of nodes in G – is n1+δ; under this assumption
the share size for every graph Q is (1 + δ) log n. While the PRSH assumption is implied by the
PSH assumption, the converse does not seem to hold. Indeed, in PSH the efficient (non-uniform)
distinguisher can depend arbitrarily on the planted graph H, whereas in PRSH a random H is
given as input to the distinguisher.

Finally, note that an FGSS scheme for bipartite graphs can be obtained from PSM protocols for
general f via a transformation from [BIKK14]. However, a similar result for general graphs requires
an extra log n multiplicative overhead. Our direct construction for FGSS avoids this overhead and
moreover relies on a seemingly weaker assumption.

1.1.4 Negative results

We complement the above positive results by some negative results. In Section 8, we show that com-
putational threshold secret-sharing schemes with public information require share size Ω(log log n).
Closing the exponential gap between this lower bound and the log n upper bound given by Shamir’s
scheme is one of the most interesting questions left open by our work.

In Section 7, we establish a two-way connection between this question and a natural decision
problem about planted graphs. Concretely, 2-out-of-n secret-sharing scheme with public informa-
tion and share size δ · log n for δ < 1 is equivalent to the existence of β > 0.5 and an efficiently
samplable joint distribution (G,C, I), where G is an N -node graph, C is an Nβ-sized clique in
G and I is an Nβ-sized independent set, such that it is hard to distinguish between (G, c) and
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(G, i), where c is a random node in C and i is a random node in I. Note that Shamir’s scheme
implies such a distribution (G,C, I) with perfect indistinguishability when β = 0.5, and negative
results for information-theoretic threshold secret sharing [KN90, CCX13] imply that even statistical
indistinguishability is impossible for β > 0.5.

Finally, in Section 9, we show that, when considering secret-sharing schemes with one-bit shares,
all access structures that can be realized with computational security with public information can
also be realized information-theoretically.

1.1.5 Summary and open questions

A summary of our main positive and negative results is presented in Table 1 below.

Information Computational
Theoretic with Public Information

Bound Ref. Bound Assumption & Ref.

PSM ≤
√
n [BIKK14] ≤ 1.01 · log n† PSH (Thm. 5.3)

≥ (1 + Ω(1)) · log n† [AHMS18] ≥ log n

Forbidden Graph ≤ 2Õ(
√
logn) [LVW17] ≤ 1.01 · log n PRSH (Thm. 6.6)

Secret Sharing ≥ log n [KN90, CCX13] ≥ 1
5 log log n (Thm. 8.1)

2-out-of-n ≤ log n [Sha79] ≤ log n [Sha79]
Secret Sharing ≥ log n [KN90, CCX13] ≥ 1

5 log log n (Thm. 8.1)

Non-ideal Binary
Secret Sharing

> 1 (by def.) > 1 (Thm. 9.2)

† Both bounds hold for a 1 − o(1) fraction of the functions f : [n] × [n] → {0, 1}. In the case of
perfect PSM protocols, the lower bound from [AHMS18] is (1.5− o(1)) · log n.

Table 1: Bounds on the complexity of 2-party PSM protocols, n-party forbidden graph secret-
sharing schemes, and 2-out-of-n secret-sharing schemes for the information-theoretic case and the
computational case with public information. The values refer to constructions with perfect correct-
ness and privacy error ε = n−Ω(1) against non-uniform no(logn)-time (resp., unbounded) adversaries
in the computational (resp., information-theoretic) case. The complexity is defined as the maximum
message size (resp., share size) for a single party. The PSH and PRSH assumptions are informally
described in Section 2.1. The super-constant lower bounds ignore constant additive terms.

Our results leave several open questions about the succinctness of computationally secure PSM
protocols and secret-sharing schemes with public information.

• Stronger notions of indistinguishability. Our positive results for PSM protocols and
secret-sharing schemes with O(log n) message or share size are limited in two ways. First,
security only holds against no(logn)-time adversaries (instead of the typical subexponential

2n
o(1)

time). Second, the distinguishing advantage of such adversaries is only n−Ω(1) (instead
of the typical negligible n−ω(1)), where we can only make the advantage negligible at the
price of a super-constant multiplicative overhead. The possibility of removing one of these
limitations or both is left open.
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• Share size of threshold secret sharing. What is the minimal share size of computa-
tionally secure 2-out-of-n secret sharing with public information? Is it possible to beat the
information-theoretic log n bound, even by a constant factor? We were only able to prove
an Ω(log log n) lower bound, and showed the equivalence of improving the upper bound to
planting both a large clique and a large independent set in the same graph such that it is
hard to distinguish a random node in the clique from a random node in the independent set.

• Computational-statistical gaps for secret sharing with small shares. We showed
that for secret sharing with 1-bit secrets, 1-bit shares and public information, settling for
computational security does help realize additional access structures beyond the ones realized
by (ideal) information-theoretic schemes. Is this also the case for domain size 3? Note that
with quasi-polynomial domain size, computational-statistical gaps were recently shown to
exist based on the existence of a (subexponentially secure) one-way function [ABI+23].

2 Overview of Techniques

This paper studies the relation between cryptographic primitives, such as PSM protocols and
secret-sharing schemes, and planted subgraph problems.

2.1 Planted subgraph assumptions

Suppose that G and H are graphs with N and n nodes respectively, where N > n. The operation
of planting H into G consists in selecting a random subset S of n nodes in G and modifying the
edges so that the subgraph induced by S is isomorphic to H. In other words, we are hiding a copy
of H inside G. We are particularly interested in the case in which G is an Erdős-Rényi random
graph, i.e. each edge is independently drawn with probability 1/2. We denote its distribution by
G(N, 1/2).

We analyse three main subfamilies of assumptions: planted clique (PC), planted subgraph
(PS), and planted subgraph with hints (PSH). The first one has a long history: it was introduced
in the ’90s [Jer92, Kuč95] and has been studied since then [AKS98, FK03, Ros08, Ros10, FGR+13,
BHK+16, ABdR+18, MRS21]. The other two assumptions are introduced for the first time in this
work. We describe them below.

The planted clique (PC) assumption. The PC assumption states that a random graph with
a large planted clique looks random. Formally, for an appropriate choice of parameters N , T , and
ε, it claims that, for every non-uniform T (n)-time adversary A,∣∣∣Pr[A(G) = 1

∣∣G $← G(N, 1/2, n)
]
− Pr

[
A(G) = 1

∣∣G $← G(N, 1/2)
]∣∣∣ ≤ ε(n).

Above, G(N, 1/2, n) denotes the distribution that plants an n-node clique in a random N -node
graph.

The assumption was independently introduced by Jerrum [Jer92] and Kučera [Kuč95] and has
been studied since then. The hardness of the problem is supported by the NP-hardness of finding,
or even approximating, the largest clique in a graph [Kar72, H̊as96a].

Trivial attacks, such as counting the number of edges in G, break the assumption for any
ε = negl(n). However, the assumption is believed to hold against non-uniform polynomial time
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adversaries when ε = n−c for a constant c > 0, and N is sufficiently large. Indeed, all the
known attacks fail when N = ω(n2) [Kuč95, AKS98, DM15a, CX16]. In this parameter setting,
the assumption is also supported by many results proving hardness against particular classes of
adversaries [FK03, Ros08, FGR+13, GS14, BHK+16, ABdR+18, FGN+20]. Finally, concerning
the computational power of the attacker, it is known that nO(logn)-time algorithms can detect the
planted clique with Θ(1) advantage [HK11]. This leads to the following conjecture.

Conjecture 2.1 (PC – Informal). For any constant δ > 0, there exists a constant 0 < c < 1/2 such
that the PC assumption holds with N = n2+δ and ε = n−c against all non-uniform no(logn)-time
adversaries.

We refer to Section 4.1 for a more rigorous discussion about this assumption.

The planted subgraph (PS) assumption. The PS assumption generalizes what we described
above: instead of hiding a clique in a random graph, we hide an n-node subgraph H coming from
some distribution D. The assumption asserts that the resulting graph looks random even when H
is revealed. The concept is formalized similarly to the PC problem: for every non-uniform T -time
adversary A,∣∣∣∣∣Pr

[
A(G,H) = 1

∣∣∣∣∣H
$← D

G
$← G(N, 1/2, H)

]
− Pr

[
A(G,H) = 1

∣∣∣∣∣H
$← D

G
$← G(N, 1/2)

]∣∣∣∣∣ ≤ ε.
Above, G(N, 1/2, H) denotes the distribution that plants H in a random N -node graph.

We are particularly interested in two variants of the PS assumption: the case in which D is
deterministic and the case in which the D outputs a random n-node graph. We refer to the latter
as the planted random subgraph (PRS) assumption.

It is generally believed that breaking the PS assumption is easiest when D deterministically
outputs an n-node clique. For instance, the successful attacks against the PC problem leverage the
particular structure of cliques. If we plant a generic subgraph, these algorithms do not perform
as well. It is therefore conjectured that, for an overwhelming fraction of subgraphs H, the PS
assumption holds for D ≡ H3 with parameters T = no(logn) and ε = n−c even when N = n1+δ

(planted cliques needed N = n2+δ). This implies that the PRS assumption holds with similar
parameters. We refer to Section 4.2 for more details.

The planted subgraph with hints (PSH) assumption. The PSH assumption is a variant of
the PS assumption in which the adversary is provided with hints: we reveal where we hid a subset
S of nodes of the planted subgraph. The size of S is bounded by a parameter t. Usually, t is
small, e.g., t = 2. Clearly, after revealing the hints, the graph does not look random anymore: the
adversary notices that G hides the subgraph induced by S. The PSH assumption claims, however,
that the adversary cannot tell if G hides the whole graph H or just the subgraph induced by S.

3We use D ≡ H to denote the distribution that always outputs the subgraph H.
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Formally, for any subset S with fewer than t nodes and every non-uniform T -time adversary A,∣∣∣∣∣∣∣∣∣∣∣
Pr

A
(
Gb, H, (u

b
i)i∈S

)
= b

∣∣∣∣∣∣∣∣∣∣∣

b
$← {0, 1}

H
$← D, H ′ ← Subgraph(H,S)(

G1, (u
1
i )i∈S

) $← G(N, 1/2, H, S)(
G0, (u

0
i )i∈S

) $← G(N, 1/2, H ′, S)

−
1

2

∣∣∣∣∣∣∣∣∣∣∣
≤ ε.

Above, G(N, 1/2, H, S) denotes the distribution that plants H in a random N -node graph and re-
veals where the nodes in S are hidden. The algorithm Subgraph(H,S) outputs instead the subgraph
of H induced by S. When D outputs a random n-node graph, we refer to the assumption as PRSH
(planted random subgraph with hints).

It is believed that revealing t = O(1) nodes on the planted subgraph does not affect the security
of the assumption. This leads to the following conjectures.

Conjecture 2.2 (Weak-PSH, PSH, PRSH – Informal).

• (Weak-PSH). Let (Hn)n∈N be a family of n-node graphs. For any constants δ > 0 and
t ∈ N, there exists a constant 0 < c < 1/2 such that the PSH assumption holds for D ≡ Hn

with N = n2+δ, t leaked nodes, and ε = n−c against all non-uniform no(logn)-time adversaries.

• (PSH). For any constants δ > 0 and t ∈ N, there exists a constant 0 < c < 1/2 such that
the PSH assumption holds for most D ≡ Hn with N = n1+δ, t leaked nodes, and ε = n−c

against all non-uniform no(logn)-time adversaries.

• (PRSH). For any constants δ > 0 and t ∈ N, there exists a constant 0 < c < 1/2 such
that the PRSH assumption holds with N = n1+δ, t leaked nodes, and ε = n−c against all
non-uniform no(logn)-time adversaries.

Note that the PRSH assumption is seemingly more conservative than the PRH assumption in
that it requires the same efficient distinguisher to apply to almost every Hn, whereas in PRH the
distinguisher can depend arbitrarily on Hn.

Also note that all the variations of planted problems we considered above are statistically
hard only when n = O(logN) (e.g., the largest clique in a random N -node graph has O(logN) size
[BE76]). In this parameter regime, our constructions would be outperformed by known information-
theoretic upper bounds [BIKK14, LVW17].

We provide evidence supporting our conjectures: we show that the Weak-PSH assumption
holds against any adversary that can be represented as a degree-D multivariate polynomial, where
D = (log n)2−ε and ε > 0 (a low-degree polynomial). We also show that, independently of N
and the number of hints, cliques are the planted subgraph that are most easily detected by low-
degree polynomials. In the domain of planted problems, low-degree polynomials are a powerful
class of adversaries. For instance, all known attacks against the planted clique problem belong to
this class. For this reason, it was even conjectured that, for planted problems, security against
degree-D polynomials implies security against generic 2D-time adversaries [Hop18, HW21].

In our low-degree analysis, we derive a formula describing the effectiveness of low-degree attacks
in detecting a given planted subgraph H:∑

0<w(α)≤D

(
N − V (α)

n− V (α)

)2

·
∑

π∈Sym(n)

(−1)⟨π◦H+H,α⟩
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The lower the above value, the harder detecting H becomes for degree-D polynomials. In the above
formula, we represented the graphs H and π◦H as

(
n
2

)
-bit vectors encoding their adjacency matrix.

We use w(α) to denote the Hamming weight of the
(
n
2

)
-bit vector α (which can be regarded also as

a n-node graph). We use π◦H to denote the action of any permutation π ∈ Sym(n) on the nodes of
H. Finally, V (α) denotes the number of non-isolated nodes in the graph encoded by α. We observe
that our formula reaches the maximum when H is a clique: in that case, π ◦H +H = 0 for any
π ∈ Sym(n). For generic, less symmetrical graphs H, we expect the inner product ⟨π ◦H +H,α⟩
to assume the values 0 and 1 almost equally often over the choice of π ∈ Sym(n). That brings the
sum

∑
π∈Sym(n)(−1)⟨π◦H+H,α⟩ closer to 0. We refer to Section 4.3 for further details.

2.2 PSM protocols with logarithmic message size

We use the (Weak-)PSH conjecture to build a computational PSM protocol with O(log n) message
size.

Private simultaneous messages protocols with public information. PSM protocols are
a cryptographic primitive that specifies how two parties can simultaneously encode their inputs
(each encoding only depends on the input of the party and a common random string) and non-
interactively evaluate from the encodings a function f on the parties’ inputs. An external observer
that only sees the encoding of the inputs is guaranteed to learn no information beyond the output
of the function.

We consider a computational version of the primitive in which a setup is used to generate
common randomness for the parties (which is kept secret) along with some public information I.
The latter is necessary for the reconstruction of the output, however, it does not help in learning
additional information about the inputs.

We highlight that PSM protocol always needs an algorithm that sets up the randomness of
the parties, no matter what4. The main novelty in this work is that we allow some information
to be public. Since we are considering security in a computational setting, public information can
help in decreasing the size of the message of the parties: I can hide all the information about the
function f and its outputs. By revealing the encodings of their inputs x, y, the parties can make
the extraction of f(x, y) from I easy, while all other information remains secret. This is exactly
the blueprint used by our constructions. In the paper, we focus our attention on functions of the
form f : [n]× [n]→ {0, 1}.

A trivial construction from OWFs. Before using techniques based on planted subgraphs, we
linger for a moment on the notion of PSM protocols with public information and we check what
can be achieved using more standard cryptographic primitives.

We can obtain a trivial construction using OWFs. Represent the function f as an n× n truth
table T in which each row is associated with an input of the first party and each column is associated
with an input of the second party. We permute all the rows and all the columns of T independently
using permutations ϕ0 and ϕ1. Let T ′ be the result. For every i, we encrypt all the elements in
the i-th row of T ′ using a key k0i . We then perform a similar operation on the already encrypted

4If the parties use independent randomness, an adversary can run a residual function attack. Check Section 5.1for
more details.
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matrix switching to columns: for every j, we encrypt all the elements in the j-th column using the
key k1j . The public information I will consist of the resulting doubly-encrypted matrix.

In order for the parties to evaluate f on input x and y, they just need to send (x′, k0x′) and
(y′, k1y′), where x

′ = ϕ0(x) and y′ = ϕ1(y). The output is obtained by decrypting the element in
position (x′, y′) in I using the keys sent by the parties. Observe that even if we assume exponentially
secure OWFs and we opt for security against no(logn)-time adversaries, this construction requires
Ω(log2 n) message size.

PSM protocols with public information from PSH. Using planted subgraphs, we obtain a
PSM protocol with public information where the message size is nearly optimal: under the PSH
conjecture, for most functions f : [n]×[n]→ {0, 1}, the parties just need to communicate (1+δ)·log n
bits where δ is an arbitrarily small positive constant. Under the Weak-PSH conjecture, we achieve
instead (2 + δ) · log n message size for all functions. Observe that there is an information-theoretic
lower bound that requires at least log n bits of communication. Importantly, our construction
achieves security against no(logn)-time adversaries with inverse-polynomial privacy error.

The construction is rather simple: we represent the function f as a bipartite graph H with n
nodes per part. Each node on the left will be associated with a different input for the first party.
Similarly, each node on the right will be associated with a different input for the second party. We
connect two nodes with an edge if the evaluation of f on the corresponding values gives 1. The
public information will consist of a large random graph G in which we plant a copy of H. The
setup will provide the parties with the position of the hidden subgraph. In order to evaluate the
function, all the parties need to do is to reveal where the node associated with their input is hidden.
The output of the function is 1 if and only if there is an edge connecting the broadcast nodes.

Under the PSH assumption with t = 2, the view of an external observer is as if it was given a
random graph with a planted edge (if the output is 1) or a planted “non-edge” (if the output is 0).
So, no information about the inputs is revealed beyond the result of the evaluation.

Theorem 2.3 (Informal). Under the PSH conjecture for t = 2, for most functions f : [n]× [n]→
{0, 1}, the construction described above is a PSM protocol with public information that is secure
against non-uniform no(logn)-time adversaries with ε = n−c privacy error. The message size is
(1 + δ) · log n for a small positive constant δ.

Under the Weak-PSH conjecture for t = 2, the construction is secure against the same class of
non-uniform adversaries for every function f : [n]× [n]→ {0, 1} and achieves (2+δ) · log n message
size.

Privacy amplification. The disadvantage of the construction we just described is the inverse-
polynomial privacy error ε. We therefore tried to amplify it to ε = negl(n). Unfortunately, tech-
niques such as Yao’s XOR lemma, do not seem to help. Another possible approach would have
been the technique used in [BGIK22]. This solution, however, would have increased the message
size to Ω(log2 n). We recall that the trivial solution from OWF achieves exactly this complexity.

In the end, we came up with a candidate construction that we believe to achieve negligible
privacy error against non-uniform no(logn)-time adversaries with ω(1) · log n message size. The idea
is rather simple: we additively secret share the function f among r = ω(1) virtual parties. As we
did for f in the previous paragraph, we can represent each share gj as a 2n-node graph Hj . The
public information will consist of a vector I = (G1, . . . , Gr) where Gj is a random N -node graph
in which we planted Hj .
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In order to evaluate the function, the parties encode their inputs as in the original construction
with respect to each graph Gj . In particular, the parties reveal where the node associated with
their input is hidden in Gj . For every j ∈ [r], the parties obtain a different output bit zj (zj will be
equal to 1, if the broadcast nodes in Gj are adjacent). By XORing all these values, they reconstruct
the output of the evaluation.

To support our claim of security, observe that an adversary cannot learn where Hj is hidden
by solely looking at Gj : it has to work on the joint distribution (G1, . . . , Gr). Indeed, each Hj is
secret and uniformly distributed, so Gj is just a random graph. The natural attack would require
the adversary to find a permutation of the graphs G1, . . . , Gr, so that their “XOR” hides a copy
of f5. However, only a negligible fraction of all permutations satisfies the desired property. In
Section 5.3, we consider more sophisticated attacks.

Offline-online 2-input non-interactive 3-PC with logarithmic communication. Our PSM
protocols give rise to very lightweight 2-input 3-party protocols with an offline phase. Our setting
is the following: suppose that Alice and Bob have some input x, y ∈ [n]. After receiving some
correlated randomness from a trusted dealer, in the so-called offline phase, they want to reveal the
evaluation of a function f : [n] × [n] → {0, 1} on their inputs to their friend, Carol. Carol should
be the only one who learns such output. In our setting, Alice and Bob are, however, lazy: they
want to send a single immediate message that is as short as possible.

PSM protocols with public information are the solution to this problem: the trusted dealer
provides the common randomness to Alice and Bob and the public information to Carol. At that
point, Alice and Bob independently encode their inputs using the PSM protocol and send their
messages to Carol. The public information allows Carol to retrieve the output.

The construction withstands a semi-honest adversary that corrupts at most one party. Observe
that the online phase requires a single round of interaction. Furthermore, our PSM protocols allow
us to achieve ω(1) · log n communication. To our knowledge, the only solution that achieves lower
communication complexity is the one-time truth table protocol of [IKM+13]. Such solution would,
however, require more than one round of interaction.

Compressing the public information. In this work, we decreased the message size of PSM
protocols by introducing public information. A natural question is how big the public information
needs to be and whether this can be reused (e.g., the construction based on graphs cannot be used
more than once).

A partial answer is given by universal samplers [HJK+16]. This primitive can be thought of as a
small public obfuscated program that, on input the description of a distribution D, outputs a sample
from D without revealing any additional information about it. For instance, if D produces large
random RSA moduli, nobody will learn the factorisation of the output of the universal sampler.

Now, suppose that a trusted dealer provides the parties of the PSM protocol with a key pair
(pk, sk) and a universal sampler U . Everybody can evaluate U on input the distribution that gen-
erates the PSM public information I and encrypts the common randomness under pk. Everybody
is able to retrieve I, but only the PSM participants can recover the common randomness using sk
[ASY22].

The universal samplers presented in [HJK+16] set an upper-bound L on the size of the dis-
tributions that can be evaluated. In particular, the size of the sampler is poly(λ, L) where λ is a

5We “XOR” two graphs by XORing their adjacency matrices.
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security parameter. In these constructions, the size of U would therefore be greater than the one
of I. Using a sampler has nevertheless an advantage: if we rely on a programmable random oracle,
U can be reused without limits. In other words, universal samplers allow us to compile a single-use
PSM protocol into a reusable one.

The good news is that the issue with sizes can be fixed: Abram, Obremski and Scholl [AOS23]
built an unbounded universal sampler (again, using a programmable random oracle). This is a
universal sampler that sets no bound on the size of the distributions that can be given as input.
The size of U is simply poly(λ). Notice that if we aim for security against no(logn)-time adversaries,
the size of the sampler is polylog n.

We formalize our results about PSM protocols in Section 5.

2.3 Forbidden graph secret sharing with logarithmic share size

We use the PRSH assumption to build forbidden graph secret-sharing schemes with O(log n) share
size.

Forbidden graph secret-sharing schemes. A secret-sharing scheme consists of a primitive
that allows the sharing of a secret among n parties. In order to reconstruct the secret, the par-
ticipants need to collaborate. Whether the reconstruction succeeds or not depends on the set of
players that collaborate: some subsets are guaranteed to succeed, some of them are guaranteed to
learn no information about the secret, some of them have no guarantee (they may get the whole
secret, just some leakage or nothing at all). These reconstruction policies are described by the
so-called access structure.

We are interested in a particular version of primitive called forbidden graph secret-sharing
schemes [SS97]: the access structure is described by an n-node graph Q. Each party is associ-
ated with a different node. A pair of players is guaranteed to reconstruct the secret if and only
if there is an edge connecting their nodes. If such edge does not exist, they learn no information
about the secret. Finally, if a subset of more than 2 parties collaborates, the construction gives no
guarantee on whether the secret can be recovered.

Secret-sharing schemes with public information. Similarly to what we did for PSM pro-
tocols, we consider security against computational adversaries and we augment the primitive with
public information: in order to secret-share a value x, a player will broadcast large public infor-
mation I along with small shares s1, . . . , sn, one for each party. The public information will be
necessary to reconstruct the secret, however, it will not help in learning x. Since we are in a
computational setting, the public information can help in decreasing the size of the shares.

This version of the primitive is motivated by the fact that, in many settings, the cost of storing
private information is higher than the one for public information. Moreover, in this kind of schemes,
the reconstruction of the secret requires minimal communication. This is even more interesting
whenever the public information is reusable.

A trivial construction from OWFs. Similarly to the case of PSM protocols, before presenting
our solution based on graphs, we linger for a moment on the definition and we try to check what
can be achieved using already known primitives. We can consider a forbidden graph secret-sharing
scheme in which the share of each party Pi consists just of a λ-bit key ki for a symmetric encryption
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scheme. The public information consists instead of a list of n ciphertexts, the i-th one of which is
an encryption under ki of the i-th share of an information-theoretic forbidden-graph secret-sharing
(e.g. [BIKK14]) of our secret. It is trivial to see that this scheme is secure. If we opted for security
against no(logn)-time adversaries, the share size would be at least log2 n.

Forbidden graph secret-sharing schemes with public information from our PSM pro-
tocol. Beimel et al. [BIKK14] showed how to construct a forbidden graph secret-sharing scheme
from a PSM protocol, increasing the share size by a factor of O(log n). Thus, our PSM protocol
with public information implies, using the Weak-PSH assumption, a forbidden graph secret-sharing
scheme with public information having O(log2 n) share size and inverse-polynomial distinguishing
advantage.

Forbidden graph secret-sharing schemes with public information from PRSH. Using
planted subgraphs, we directly obtain a forbidden-graph secret-sharing scheme with public infor-
mation in which the share size is O(log n). Under the PRSH conjecture, we obtain (1 + δ) · log n
share size where δ is a small positive constant. Under the Weak-PSH conjecture, the complexity
becomes instead (2+δ) · log n. Importantly, our construction achieves security against non-uniform
no(logn)-time adversaries with inverse-polynomial privacy error. Our direct construction reduces the
share size and uses a weaker assumption compared to the construction using the PSM protocol.

The construction works as follows: we sample a random n-node graph H and we plant it in
a larger random graph G. Each node in H is associated with a different party. Next, we modify
H: we compare it to the graph access structure Q. For any edge that does not appear in Q, we
remove the corresponding edge in H (if such edge exists). Let H ′ be the graph obtained in this
way. In order to secret-share b = 1, we publish the pair (H ′, G) and we provide each party with the
position of its node in G. In order to secret-share b = 0, we perform the same operations except
that we publish (H ′, G) where G is the complementary graph of G (i.e., G will have all the edges
that do not appear in G).

If a pair of parties is allowed to reconstruct, they can recover b by just comparing the edge that
connects their nodes in H ′ with the edge that connects their shares in G. If both edges exist or
both do not, the secret is 1. Otherwise, it is 0.

Observe that under the PRSH assumption with t = 2, all the information the parties see in G
is the edge (or non-edge) that connects their shares. All the rest looks random. If the pair is not
allowed to reconstruct the secret, their edge in G will be independent of the graph H ′ (their edge
was removed from H).

Theorem 2.4 (Informal). Under the PRSH conjecture for t = 2, the construction described above is
a forbidden-graph secret-sharing scheme with public information that is secure against non-uniform
no(logn)-time adversaries with ε = n−c privacy error. The share size is (1 + δ) · log n for a small
positive constant δ.

In the context of secret sharing, amplifying privacy to a negligible error is easy. We just need
to apply Yao’s XOR lemma with r = ω(1) repetitions. The share size becomes therefore ω(1) · log n
(we recall that the trivial VBB solution requires log2 n share size).

Theorem 2.5 (Informal). Under the Weak-PSH conjecture, for every graph access structure, there
exists a forbidden graph secret-sharing scheme with public information, a one-bit secret, and ω(1) ·
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log n share size. The scheme is secure against non-uniform no(logn)-time adversaries with ε =
negl(n) privacy error.

Compressing the public information. Similarly to PSM protocols, we can use universal sam-
plers to compress the public information and make it reusable. The technique requires the use of
a programmable random oracle.

Suppose that a trusted setup provides the parties with an unbounded universal sampler U .
Suppose also that each party Pi is associated with a key pair (pki, ski). In order for P1 to share a
bit b, the players can run U on input the distribution that generates the secret-sharing of a random
bit c and outputs the public information, the encryption of the share si under pki for every i and
the encryption of c under pk1. Each party can retrieve its share, P1 also learns the random secret
c. At that point, P1 can simply broadcast b ⊕ c. Observe that b can be recovered if and only the
parties are able to reconstruct c.

This solution decreases the size of the public information and makes it reusable. A minor
disadvantage is that the size of the private information stored by each party increases as the size of
ski is at least λ bits where λ is a security parameter. The cost of such storage is however amortized
over many executions of the secret-sharing scheme. Notice that the communication complexity of
the reconstruction is as before: the parties just need to communicate ω(1) · log n bits.

We formalize our results about forbidden-graph secret-sharing schemes in Section 6.

2.4 On breaking the log n barrier for 2-out-of-n secret sharing

Unlike PSM protocols, in the context of secret-sharing schemes with public information, there is no
obvious lower bound on the share size. In particular, we do not know whether there are schemes
with δ · log n share size for any δ < 1. We studied this question in the simplest setting: 2-out-n
secret-sharing schemes. Unfortunately, we could not find an answer, however, we came up with
necessary and sufficient conditions for this to happen.

From secret-sharing to graphs. We show that 2-out-of-n secret-sharing schemes with public
information and share size ℓ are equivalent to a multipartite version of the planted clique problem:
given the public information I, we can derive an n-partite graph with 2ℓ nodes per part. Each of
the nodes in the i-th partition corresponds to a different share for party Pi. We connect all the
pairs of nodes that correspond to shares that reconstruct to 1.

By the correctness of the secret-sharing scheme, if the public information hides the secret b = 1,
the graph we derived hides an n-node clique (the nodes containing the shares of the n parties with
the secret 1 and a random string of the dealer generating the public information I). If instead the
secret is b = 0, the graph hides an n-node independent set. Independently of the secret, each of the
nodes in the hidden subgraph lies on a different part. The security of the 2-out-of-n secret-sharing
scheme guarantees that the two distributions on graphs are indistinguishable even if we leak one of
the nodes in the hidden subgraphs.

The above argument can be reversed to show that distributions over graphs with the described
properties imply a 2-out-of-n secret-sharing scheme with public information. Finding them is
however not simple when ℓ < log n. Indeed, we would need to hide an n-node clique in a graph
that has less than n2 nodes. In this parameter setting, the attacks of [Kuč95, AKS98] succeed in
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recovering the clique for all the graph distributions we tried. The multipartite nature of the graph
seems to make the goal even harder.

A cleaner necessary and sufficient condition. By using a random partitioning argument, we
can further simplify the above characterization and apply it to general, rather than multipartite,
graphs. We look for a distribution D over N -node graphs G that contain both a (not necessarily
unique) Nβ-node clique and an Nβ-node independent set, where β < 1 is a constant. We would
like that, given G, it is infeasible to distinguish between a random node in the clique and a random
node in the independent set. We prove that this problem is equivalent to 2-out-of-n secret sharing:
the distribution D is possible for some β > 1/2 if and only if there is a 2-out-of-n secret-sharing
schemes with δ · log n share size for some δ < 1.

Theorem 2.6 (Planted subgraph formulation of 2-out-of-n secret sharing – Informal). The follow-
ing are equivalent:

• There exists a constant 0 < δ < 1 for which there is a computational 2-out-of-n secret-sharing
scheme with public information and δ · log n share size.

• There exists a a constant 1/2 < β < 1 and a distribution D of triples (G,C, I), where G is
an N -node graph, C is an Nβ-node clique in G and I is an Nβ-node independent set in G,
such that it is hard to distinguish between (G, c) and (G, i), where c and i are random nodes
in C and I respectively.

We formalize this in Section 7.

Remark 2.7 (On search vs. decision). While the above condition has the flavour of a planted
subgraph problem, it is different from traditional planted problems in the following way. In the
traditional case, the planting is done in a way that guarantees (with high probability) that the
planted object occurs only once. Thus, the natural search version of the problem is to find the
single instance of this object. Here, the distribution D can be such that every node is involved
in potentially many planted cliques and independent sets. In fact, for the multipartite version of
the problem, there is an n-partite graph with only 4 nodes in each part such that every node is
involved in both a clique and an independent set of size n [BF07]. Thus, it is not clear how to define
a natural search problem. On the other hand, the information-theoretic impossibility of beating
the log n share size [KN90, CCX13] implies that the above decision problem can be solved by a
computationally unbounded distinguisher.

A lower bound on the share size. We prove a lower bound for 2-out-of-n secret-sharing
schemes with public information: the share size needs to be at least 1

5 log log n.
The idea is rather simple: a 2-out-of-n secret-sharing scheme induces a 2-out-of-n′ scheme for

any n′ ≤ n. The security of the construction does not depend on n′ but only on n. On the other
hand, the size of the public information I decreases with n′. Indeed, as we discussed above, I
can be represented as an n-partite graph. If we restrict the scheme to n′ parties, we just need to
consider n′ of the parts.

Now, if the share size ℓ is smaller than 1
5 log logn, there exists an n′ > 2ℓ for which the size

of the public information becomes O(log n). Such public information is too small to help against
poly(n)-time adversaries. Therefore, it must be that the induced scheme is statistically secure.
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Lower bounds for the information-theoretic case require that ℓ ≥ log n′. That contradicts our
choice of n′.

We formalize the lower bound in Section 8.

On the relation between our primitives and planted subgraph problems. The discussion
about breaking the log n barrier for 2-out-of-n secret-sharing schemes highlighted an important
point: planted subgraph assumptions are not only sufficient to obtain PSM protocols and forbidden
graph secret-sharing schemes with O(log n) share size, they are also necessary.

For instance, consider a function f : [n] × [n] → {0, 1} and let H be the corresponding graph
representation. We can reframe the security of any PSM protocol for f with O(log n) message size
as a planted subgraph problem: we create a bipartite graph G as follows. Each node on the left
side corresponds to a different message the first party can send. Similarly, each node on the right
side corresponds to a different message for the second party. We connect any pair of nodes with
an edge if the corresponding PSM messages give output 1. It is easy to see that the graph hides
at least one copy of H. Breaking the security of the protocol roughly corresponds to recognising
which nodes of H were broadcast by the parties. Here too, the fact that H is not necessarily unique
requires formulating this using the joint distribution of G and H.

We can use an analogous argument to show that also forbidden graph secret-sharing schemes
with O(log n) share size can be reframed as a planted subgraph problem.

Secret-sharing schemes with 1-bit shares. We study the following scenario: employing public
information, when can we construct secret-sharing schemes with one-bit shares?

If an n-party gap access structure has at least ω(log n)-gap between the size of every qualified set
and the size of every forbidden set, using virtual black box obfuscation (VBB), we can construct
a secret-sharing scheme with one-bit shares as follows: The dealer with secret s distributes an
independently and uniformly chosen bit ri to each party Pi and publishes a VBB obfuscation of
the function that, when queried with Q, (ri)i∈Q for any qualified set Q, outputs s and outputs ⊥
otherwise. Then, a computationally bounded adversary with shares (ri)i∈F needs to correctly guess
ω(log n) random bits to recover the share, hence succeeds with negligible probability.

However, for a perfect access structure, where every set is either qualified or forbidden, we
show that a secret-sharing scheme with one-bit shares even with public information achieves less
than 1/6-indistinguishability advantage and perfect correctness only if it admits a perfectly secure
secret-sharing scheme. In other words, access structures that are not binary ideal do not admit a
secret-sharing scheme with one-bit shares even with public information.

To prove this impossibility, we develop an alternative characterization for binary ideal access
structures: an access structure is binary ideal if and only if the set difference between any minimal
qualified set and a maximal forbidden set is odd-sized. We then prove using a combinatorial
argument that whenever this condition is not satisfied, there exists a minimal qualified set Q and a
maximal forbidden set F such that |Q\F | = 2. We show that an adversary who randomly corrupts
one amongst the forbidden sets F,Q \ {i} or Q \ {j}, where (i, j) = Q \ F can recover the secret
with 2/3 advantage. We formalize these results in Section 9.
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3 Preliminaries

Notation. For any integer n ∈ N, we use [n] to denote the set {1, . . . , n}. For every n,N ∈ N
such that n ≤ N , we use [n;N ] to denote the set {n, n + 1, . . . , N}. Notice that [0, 1] denotes the
interval of real values x ∈ R such that 0 ≤ x ≤ 1. For any n,N ∈ N such that n ≤ N , Inj(n,N)
represents the set of injective functions [n]→ [N ]. We use Sym(n) to denote the set of permutations
of [n].

We use negl : N → R to denote a generic negligible function, i.e., negl(n) = o(n−c) for every
constant c ∈ N. We use poly(n) to denote a generic function that is O(nc) for some constant c > 0.
Given a distribution µ over the space Ω and a function f : Ω → R, we use Eµ[f ] to denote the

expectation of f(x) for x
$← µ. In a similar way, we use Varµ[f ] to denote the variance of f(x) for

x
$← µ.
Give two vectors x, y ∈ {0, 1}n, we use ⟨x, y⟩ to denote their inner-product. We use w(x) to

denote the Hamming weight of x, i.e., the number of non-zero entries of x.
Two ensembles of distributions (D0(1n))n∈N and (D1(1n))n∈N are said to be ε-indistinguishable,

for ε : N→ [0, 1], by non-uniform T (n)-time adversaries if, for any non-uniform adversaryA running
in T (n) time, for all sufficiently large n,∣∣∣∣∣Pr

[
A
(
1n, X

)
= b

∣∣∣∣∣b
$← {0, 1}

X
$← Db(1

n)

]
− 1

2

∣∣∣∣∣ ≤ ε(n).
4 The Planted Subgraph Problem

In this section, we study the hardness of planted subgraph problems. Before presenting our as-
sumptions, we introduce some notation. All the graphs in the paper are finite, undirected and
simple. Furthermore, we assume that the set of nodes is [n] for some n ∈ N. Given a graph G, we
denote its complementary by G: this is the graph in which, for every i ̸= j, the edge (i, j) appears
if and only if (i, j) does not appear in G. We use G(n, 1/2) to denote a Erdős-Rényi random graph,
i.e., the uniform distribution over n-node graphs. Observe that each edge appears independently of
the others with probability 1/2. We denote the clique with n-nodes by Kn. For any n-node graph
H and S ⊆ [n], Subgraph(H,S) denotes the subgraph of H induced by the nodes in S. Notice
that this graph has only |S| nodes and its edges are in one-to-one correspondence with the edges of
H having both endpoints in S. We will make extensive use of the following planting experiment,
where we sample a random graph R and then hide inside it a public random graph H.

Definition 4.1 (Planting). Let DR(1n) and DH(1n) be distributions over graphs.
We define the distribution G(DR,DH) as follows:

1. R
$← DR(1n).

2. H
$← DH(1n).

3. Let N and ℓ be the number of nodes of R and H respectively.

4. If ℓ > N , output ⊥.

5. ϕ
$← Inj(ℓ,N).
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6. G← R.

7. For all i, j ∈ [ℓ], if (i, j) appears in H, add (ϕ(i), ϕ(j)) to G.

8. For all i, j ∈ [ℓ], if (i, j) does not appear in H, remove (ϕ(i), ϕ(j)) from G.

9. Output (G,H, ϕ).

We often refer to the graph generated by DR as the ambient graph. We call the output of
DH the hidden graph. Observe that G(DR,DH) hides a copy of H in the ambient graph. More
specifically, the copy is the subgraph induced by ϕ

(
[ℓ]
)
. In other words, the edge (i, j) will appear

in H if and only if (ϕ(i), ϕ(j)) appears in G.
In the paper, we will rarely use the general notation G(DR,DH). Instead, we will typically refer

to the following special cases:

• When DR = G(N, 1/2), we write G(N, 1/2,DH).

• When DR = G(N, 1/2) and DH(1n) ≡ Kn, we write G(N, 1/2, n).

• When DR = G(N, 1/2) and DH(1n) ≡ Hn where Hn is a fixed graph, we write G(N, 1/2, Hn).

• When DR = G(N, 1/2) and DH(1n) = G(n, 1/2), we write G(N, 1/2, n, 1/2).

4.1 The planted clique assumption

We now present the assumptions we will use in this paper. We start by recalling the planted
clique assumption, a problem that has been extensively studied by the computational complexity
community over the last decades [Jer92, Kuč95, AKS98, FK03, BHK+16, MRS21]. The assumption
states that it is hard to distinguish a random graph with a large planted clique from a random
graph. The problem is related to the NP-hardness of finding or even approximating the largest clique
contained in a graph [Kar72, ALM+92, AS92, BGLR93, BS94, BGS95, FGL+95, H̊as96a, H̊as96b].

Definition 4.2 (The planted clique assumption [Jer92, Kuč95]). Let N : N → N be a function
such that N(n) ≥ n for every n ∈ N. Let T : N → N be a time bound and let ε : N → [0, 1] be
an indistinguishability bound. We say that the (N,T, ε)-planted clique (PC) assumption holds if
the following distributions are ε(n)-computationally indistinguishable for any non-uniform

(
T (n) ·

poly(n)
)
-time adversary{

G
∣∣∣(G,R, ϕ) $← G(N, 1/2, n)

}
and

{
G
∣∣∣G $← G(N, 1/2)

}
.

It is easy to see that the (N,T, ε)-PC assumption implies the (N ′, T ′, ε′)-PC assumption for any
functions N ′ ≥ N , T ′ ≤ T and ε′ ≥ ε.

Attacks against the PC assumption. A result by Bollobás and Erdős [BE76] proves that the
largest clique in an N -node random graph has almost always Θ(logN) size. Therefore, the PC
assumption cannot hold against computationally unbounded adversaries when N = poly(n).

The most natural attack against the PC assumption is edge-counting : if the graph G hides a
clique, it will be denser on average. When N = poly(n), this leads to a polynomial-time attack
with n−c advantage (c is a positive constant).

20



Another almost as straightforward attack is the degree attack : the planted nodes have on
average higher degree. In a random N -node graph, the degree of the nodes is described by a
binomial probability distribution with average (N − 1)/2 and standard deviation Θ(

√
N). After

planting the clique, the distribution of the degree of the planted nodes is shifted by n. As noticed
by Kučera in [Kuč95], this not only gives a probabilistic polynomial time attack with inverse-
polynomial advantage: when n = Ω

(√
N · logN

)
, it is possible to recover the planted clique with

constant probability by simply picking the nodes with highest degree.
This approach can be generalized to a common-neighbour attack : for any constant d > 0, we

consider all subsets of d pair-wise adjacent nodes and we count the number of common neighbours.
In a random graph, the average number of common neighbours is Θ(N/2d) and its standard devia-
tion is still Θ(

√
N). On the other hand, when the d nodes lie on the planted clique, the distribution

of common neighbours is shifted by n− d.
In [HK11], it was also noticed that the PC assumption can be broken in time nO(logn): the

adversary can iterate through all subsets of d = 3 log n nodes. If the graph is random, with high
probability, none of these subsets will form a clique.

The last common family of attacks relies on spectral analysis. For instance, in [AKS98], Alon et
al. showed that the planted clique can be found with constant probability whenever N < n2/100.
Other attacks were studied in [FK00, McS01, FR10, AV11, DGGP14, DM15a, CX16]. To this
day, none of the approaches discussed above succeeds in describing an no(logn)-time attack with
on(1)-advantage when N = ω(n2).

Conjectured hardness. Motivated by the failed attacks described above, it is conjectured that,
for N = n2+δ, the advantage of any no(logn) time adversary against the PC problem is dominated
by n−c for some constant c > 0 [MRS21]. As discussed in [BBB19], the assumption is also sup-
ported by its hardness against several classes of attacks: greedy algorithms [McD74, GM75, Kar76,
Pit82, Jer92], local algorithms [GS14, COE15, RV17], query models [FGN+20], bounded-depth
circuits [Ros08], monotone circuits [Ros10], statistical query algorithms [FGR+13] and resolution
[ABdR+18]. Hardness was also proven in the Lovász-Shrijver [FK03] and Sum-of-Squares convex
programming hierarchies [MPW15, BHK+16, DM15b, HKP+18].

Conjecture 4.3 (The PC assumption). For any constant δ > 0, there exists a constant c > 0 such
that the (n2+δ, T, n−c)-PC assumption holds for every T = no(logn).

The PC assumption has been previously used in cryptography. Juels and Peinado [JP00] used
a planted clique hardness assumption to build one-way functions, zero-knowledge proofs, and hi-
erarchical key generation. More recently, in the context of machine learning, Goldwasser et al.
[GKVZ22] used planted cliques to show how a malicious learner can hide a backdoor in a classifier.
The assumption was also used to prove hardness of k-wise dependence testing [AAK+07], ap-
proximating Nash equilibria [HK11], sparse principal component detection [BR13, BBH18, BB19],
restricted isometry sensing [KZ14, WBP16], community detection [HWX15], adaptive estimators
[SBW19], matrix completion [Che15], and submatrix detection [MW15, CLR17, BBH19, MRS21].
In [ERSY22], the PC assumption was used to prove that the NP-Complete Clique problem admits
a non-adaptive pseudorandom self-reduction.

21



4.2 The planted subgraph assumption

We now generalize the PC assumption: instead of planting an n-sized clique in a random graph, we
plant a generic n-node graph coming from a distribution D(1n). We say that the planted subgraph
assumption holds for D if the resulting graph looks random even if we reveal the output of D.

The idea of generalizing the PC problem to a different distribution of hidden subgraphs is not
new. For instance, the planted dense subgraph assumption, which hides a dense subgraph in a
large and sparser ambient graph, has been used in learning theory [HWX15, BBH19]. The DUE
assumption, introduced by Applebaum et al. [ABW10] to build PKE, is also somewhat related: it
conjectures the hardness of detecting a subset of nodes with a small number of neighbours hidden
in a random regular bipartite graph.

Definition 4.4 (The planted subgraph assumption). Let D(1n) be an efficient distribution out-
putting an n-node graph. Let N : N → N be a function such that N(n) ≥ n for every n ∈ N. Let
T : N→ N be a time bound and let ε : N→ [0, 1] be an indistinguishability bound. We say that the
(D, N, T, ε)-planted subgraph (PS) assumption holds if the distributions{

(G,H)
∣∣∣(G,H, ϕ) $← G(N, 1/2,D)

}
and

{
(G,H)

∣∣∣G $← G(N, 1/2), H $← D(1n)
}

are ε(n)-computationally indistinguishable for any non-uniform
(
T (n) · poly(n)

)
-time adversary

We say that the (N,T, ε)-planted random subgraph (PRS) assumption holds if the (D, N, T, ε)-PS
assumption holds for D = G(n, 1/2).

Observe that if D(1n) ≡ Kn, we obtain exactly the PC assumption. Once again, it is easy to see
that, for any distribution D, the (D, N, T, ε)-PS assumption implies the (D, N ′, T ′, ε′)-PS whenever
N ′ ≥ N , T ′ ≤ T and ε′ ≥ ε.

Planting fixed families of graphs. We are particularly interested in a variation of the PS
assumption: the case in which D(1n) ≡ Hn where (Hn)n∈N is a fixed family of n-node graphs. It
is believed that hiding any subgraph Hn is at least as easy as hiding a clique, i.e., detecting Hn is
harder. Indeed, cliques have easily recognisable characteristics that do not occur on most graphs:
they are extremely dense, their nodes have large degree, and any subset of their nodes has a lot of
common neighbours. The common approaches to solve the PC problem try to leverage these traits.

On the other hand, the vast majority of n-node graphs do not satisfy any of these properties.
It is conjectured that, for all δ > 0, the PS assumption holds for every family (Hn)n∈N with
parameters N = n2+δ, ε = n−c and T = no(logn). In Section 4.3, we provide some evidence
to support this claim: we show that the assumption holds against any adversary that can be
represented as a degree-(log n)2−ε polynomial where ε > 0. In the domain of planted problems, this
kind of adversaries have always turned out to lead to the best known attacks. For this reason, it
was even conjectured that if no degree-D polynomial can distinguish, then the planted assumption
holds against any adversary running in time 2O(D) [Hop18, Conjecture 2.2.4].

We additionally conjecture that, except for an inverse-polynomial fraction of n-node graphs Hn,
the PS assumption holds, for every δ > 0, with parameters N = n1+δ, ε = n−c and T = no(logn).
In other words, the size of the graph is n1+δ (compared to n2+δ for hiding cliques). In some sense,
these conjectures give information about the worst-case hardness and the average-case hardness of
detecting a subgraph planted in a random graph.
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Planting random graphs. Another interesting version of the PS problem is the case in which
D(1n) = G(n, 1/2). We refer to this variation as the PRS assumption. Even in this case, the
assumption is believed to hold with parameters N = n1+δ, ε = n−c and T = no(logn). This fact
is actually implied by the conjectured average-case hardness of detecting planted subgraphs. The
PRS assumption is however strictly weaker: if we plant a a fixed graph Hn, the adversary receives
an Hn-dependent non-uniform advice. The same would not happen when Hn is sampled at random.

4.3 The planted subgraph assumption with hints

We finally present a variation of the PS assumption in which we provide the adversary with hints:
we leak the position of t nodes in the hidden subgraph. Formally, the assumption states that even
if we reveal where a subset S of t nodes is hidden, then we cannot distinguish between a graph in

which we plant H
$← D(1n) and a random graph in which we hide the subgraph of H induced by

S. We will consider small t, e.g., t = 2.
The PC assumption is considered robust against leakage. For instance, Brennan and Bresler

[BB20] studied several variations of the PC problem in which the adversary is provided with leakage
about the position of the planted clique. The authors consider e.g. the case in which the clique is
planted in a multipartite graph (the clique will have a single node in each part of the graph).

Definition 4.5 (The planted subgraph assumption with hints). Let D(1n) be an efficient distri-
bution outputting an n-node graph. Let N, t : N → N be functions such that N(n) ≥ n ≥ t(n)
for every n ∈ N. Let T : N → N be a time bound and let ε : N → [0, 1] be an indistinguishabil-
ity bound. We say that the (D, N, t, T, ε)-planted subgraph with hints (PSH) assumption holds if,
for every sequence of subsets (Sn)n∈N such that Sn ⊆ [n], |Sn| ≤ t(n) for every n ∈ N, the fol-
lowing ensembles of distributions are ε(n)-computationally indistinguishable for any non-uniform(
T (n) · poly(n)

)
-time adversary:({

(G,H, (ui)i∈Sn)

∣∣∣∣∣(G,H, ϕ)
$← G(N, 1/2,D)

∀i ∈ Sn : ui ← ϕ(i)

})
n∈N

and 
(G,H, (ui)i∈Sn)

∣∣∣∣∣∣∣∣∣∣
H

$← D(1n)

H ′ ← Subgraph(H,Sn)

(G,H ′, ϕ)
$← G

(
N, 1/2, H ′)

∀i ∈ Sn : ui ← ϕ(i)




n∈N

.

We say that the (N, t, T, ε)-planted random subgraph with hints (PRSH) assumption holds if the
(D, N, t, T, ε)-PSH assumption holds for D = G(n, 1/2).

Observe that if t = 0, we obtain exactly the PS assumption. Once again, it is easy to see
that, for any distribution D, the (D, N, t, T, ε)-PSH assumption implies the (D, N ′, t′, T ′, ε′)-PSH
whenever N ′ ≥ N , t′ ≤ t, T ′ ≤ T and ε′ ≥ ε.

Conjectured hardness. Revealing t(n) = O(1) nodes on the planted graph is believed to not
affect the overall security of the planted subgraph assumptions.
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When t is super-constant, the hardness of the problem becomes, however, less clear. For in-
stance, revealing t = log n nodes on a planted clique would allow distinguishing the graph from a
random one with constant advantage by simply counting the number of common neighbours of the
t nodes. This leads to the following conjectures.

Conjecture 4.6 (wPSH, PSH, and PRSH).

Weak-PSH Conjecture (Weak Planted Subgraph with Hints). For every constants δ > 0
and t ∈ N there exists a constant c > 0, such that for every sequence of graphs (Hn)n∈N (where
Hn is a n-node graph), the (DH , n

2+δ, t, T, n−c)-PSH assumption holds for DH(1n) ≡ Hn,
for all T = no(logn).

PSH Conjecture (Planted Subgraph with Hints). There exists a sequence (Rn)n∈N, where
Rn is a set of n-node graphs, with the following properties:

1. With overwhelming probability a graph is in Rn, that is, there exists a negligible function

negl(n) such that |Rn| ≥ (1− negl(n)) · 2(
n
2) for every n ∈ N.

2. For every constants δ > 0 and t ∈ N, there exists a constant c > 0 such that, for
all T = no(logn) and all sequences (Hn)n∈N such that Hn ∈ Rn for every n ∈ N, the
(DH , n

1+δ, t, T, n−c)-PSH assumption holds for DH(1n) ≡ Hn.

PRSH Conjecture (Planted Random Subgraph with Hints). For every constants δ > 0
and t ∈ N, there exists a constant c > 0 such that the (n1+δ, t, T, n−c)-PRSH assumption
holds for all T = no(logn).

4.4 Security against low-degree polynomials

We now provide some evidence to support our conjectures: we show that the weak PSH assump-
tion holds for any graph Hn against all adversaries that can be represented as degree-(log n)1+ε

polynomials where ε < 1. In the domain of planted problems, interestingly, all known successful
attacks belong to this class [Hop18]. Low-degree polynomials can be incredibly useful in detecting
structures planted in large objects. To give an example, given a graph H with D edges, we can use a
degree-D polynomial p to tell how many copies of H are hidden in another larger graph. Moreover,
if the polynomial p is M -variate, we can always evaluate it in D ·

(
M
D

)
arithmetic operations. For

these reasons, Hopkins conjectured that if there exists no degree-D distinguisher, then the planted
assumption holds against generic 2O(D)-time adversaries [Hop18, Conjecture 2.2.4]. In [HW21],
Holmgren and Wein presented counterexamples to the conjecture of Hopkins. Their techniques,
however, crucially rely on the size of the alphabet used to encode the problem instance to be large.
For this reason, they suggest that the conjecture is still likely to hold when the alphabet size is
constant (this is always the case in planted graph problems) [HW21, Remark 3.3].

We highlight that the conjecture of Hopkins was introduced in the context of the study of
algorithms, where a different notion of indistinguishability is in use: two distributions are “al-
gorithmically indistinguishable” if the advantage of any efficient adversary is 1 − Ω(1) (i.e., it is
impossible to efficiently distinguish with vanishing error probability, or equivalently with advantage
that approaches 1 at the limit). It is, however, reasonable to assume that the conjecture scales to
other notions of indistinguishability, e.g., the main notion we adopt here, where the advantage is
required to be n−Ω(1).
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Theorem 4.7. Let (Hn)n∈N be a sequence of graphs where Hn has n nodes and let t ∈ N be a
constant. Let (Sn)n∈N be a sequence of sets where Sn = {un,1, . . . , un,ℓn} ⊆ [n] and ℓn ≤ t. Let

N(n) := n2+δ where δ > 0 is a constant. Let µn be the distribution that samples (G,H ′
n, ϕ)

$←
G(N(n), 1/2, H ′

n), where H
′
n ← Subgraph(Hn, Sn), then reorders the nodes in G so that ϕ(ui) ends

up in the i-th position and, finally, outputs a bit string encoding the edges of the graph except those
that have both endpoints in ϕ(Sn). Let νn be the analogous distribution where, instead, we sample
G from G(N(n), 1/2, Hn). Let M(n) be the length of the strings generated by µn and νn.

For any constant 0 < ε ≤ 2 and sequence of polynomials (pn)n∈N, where pn ∈ R[X1, . . . , XM ]
has degree at most D(n) := (logn)2−ε, we have

Adv(pn) :=
|Eνn [pn]− Eµn [pn]|√

Varµn [pn]
≤ n−Ω(1). (1)

The notion of advantage used for low-degree polynomials may first look a bit odd. We explain
why it is a meaningful definition. Suppose that Varµn [pn] ∼ Varνn [pn]. When (1) does not hold,
then, it is usually easy to distinguish between µn and νn just based on the result of the evaluation
of pn: since the distributions pn(µn) and pn(νn) are concentrated around their mean, one can
effectively distinguish between the distributions by determining whether the sample is “large” or
“small.” Conversely, if (1) holds, an attacker has a hard time distinguishing between µn and νn
just based on the evaluation of pn: if the result is close to Eνn [pn], it could be that we actually
received a sample from νn, or it could be that, due to its variance, pn(µn) produced a sample that is
relatively far away from its expectation. Since Varµn [pn] ∼ Varνn [pn], the adversary faces a similar
dilemma even if we obtain a value that is close to Eµn [pn] or far from both Eµn [pn] and Eνn [pn].

If instead Varµn [pn] and Varνn [pn] are far apart, the polynomials qn :=
(
pn(X) − Eµn [pn]

)2
and

q′n :=
(
pn(X)− Eνn [pn]

)2
most likely do not satisfy (1).

Example 4.8. To demonstrate the notion of an advantage, we next give an example of a degree-1
polynomial that distinguishes with constant advantage between a random graph with n2 nodes and
a random graph with a planted clique (without any hints). Let G be a graph with n2 nodes. For
each possible edge between the i-th node and the j-th node we have a variable xi,j and consider the
polynomial p((xi,j)1≤i<j≤n2) =

∑
1≤i<j≤n2 xi,j . If G is a random n2-node graph, then the expected

value of the polynomial p is 0.5
(
n2

2

)
. On the other hand, if G is a random graph with a planted

clique of size n, then the expected value of p is 0.5(
(
n2

2

)
+
(
n
2

)
). Recall that the variance of the

number of edges in a n2-node random graph is 0.25
(
n2

2

)
. Thus, the advantage is constant. On the

other hand, if we plant an n-node clique in a random n2+δ-node graph, then the advantage is

O

0.5(
(
n2+δ

2

)
+
(
n
2

)
)− 0.5

(
n2+δ

2

)√
0.25

(
n2+δ

2

)
 = O

(
1

nδ

)
.

Below, we prove Theorem 4.7

Proof. We follow the blueprint of [Hop18, Chapter 2.4]. Without loss of generality, we can assume
that Eνn [pn] ≥ 0, Eµn [pn] = 0 and Varµn [pn] = 1. Indeed, observe that

|Eνn [pn]− Eµn [pn]|√
Varµn [pn]

= Eνn [p
′
n]
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where p′n(X) := σ · (pn(X)− Eµn [pn]) /
√

Varµn [pn] and σ ∈ {−1, 1} is positive if and only if
Eνn [pn] ≥ Eµn [pn]. Let Ξn be the set of all polynomials pn ∈ R[X1, . . . , XM ] of degree at most D(n)
such that Eµn [pn] = 0 and Varµn [pn] = 1.

Observe that µn outputs a uniformly random string. Therefore, as proven in [Hop18, Chapter
2.3], we know that

max
pn∈Ξn

Eνn [pn] =
√√√√ ∑

w(α)≤D(n)
α ̸=0

(Eνn [χα])
2

where χα(x) = (−1)⟨α,x⟩. Now, let U denote the ordered list containing ϕ(i) for every i ̸∈ Sn and
let Ω denote all possible ordered subsets of n − ℓn distinct elements in [N ] \ ϕ(Sn). Let xi be the
i-th bit in the vector output by νn (we recall that such bit describes whether a certain edge appears
in G or not). We observe that, conditioned on U , all xis are independently distributed. Indeed, if
both u, v ∈ U ∪ϕ(Sn), the edge (u, v) will appear in G either with probability 0 or 1 (depending on
the graph Hn). If, instead, either u or v (or both) do not belong to U ∪ ϕ(Sn), the edge (u, v) will
appear in G with probability 1/2 independently of everything else. Therefore, for any α ∈ {0, 1}n,
we have

Eνn [χα] =
∑
ω∈Ω

Pr[U = ω] · Eνn [χα|U = ω] =

=
∑
ω∈Ω

Pr[U = ω] · Eνn

 ∏
i∈[M ]

(−1)xi·αi

∣∣∣∣∣∣U = ω

 =

=
∑
ω∈Ω

Pr[U = ω] ·
∏

i∈[M ]

Eνn [(−1)xi·αi |U = ω] =

=
(N − n)!
(N − ℓn)!

·
∑
ω∈Ω

∏
i∈[M ]

Eνn [(−1)xi·αi |U = ω] .

Now, suppose that there exists an i such that αi = 1 and at least one of the endpoints of the i-th
edge do not belong to ω ∪ ϕ(Sn). Then, Eνn [(−1)xi·αi |U = ω] = 0 as xi is uniformly distributed.
Furthermore, if both endpoints of the edge are in ω ∪ ϕ(Sn), either Eνn [(−1)xi·αi |U = ω] = 1 or
Eνn [(−1)xi·αi |U = ω] = −1 depending on the edge of Hn that we planted there. By using V (α) to
denote the number of endpoints of the edges described by α (ignoring those in ϕ(Sn)), we obtain
that

Eνn [χα] =
(N − n)!
(N − ℓn)!

·
(
N − V (α)− ℓn
n− V (α)− ℓn

)
·

∑
π∈Sym(n−ℓn)

(−1)⟨π◦h,α′⟩.

Above, h denotes the bit vector encoding of the edges of Hn except those that have both endpoints
in Sn. We use instead π ◦ h to denote the vector encoding the graph obtained by permuting the
nodes of Hn \ Sn according to π (again, we ignore the edges that have both endpoints in Sn). We
highlight that π permutes the nodes of Hn, not the edges. As a consequence, π ◦h is a permutation
of h, but not all permutations of h correspond to a π ∈ Sym(n−ℓn). Finally, α′ is a vector obtained
by taking the graph representation of α (we recall that α represents a set of at most D edges in
an N -node graph), we remove N − n isolated nodes from this graph, but not those in Sn (here are
enough isolated nodes as V (α) + t ≤ 2D + t < n.) and we encode the result as a vector as we did
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for Hn. The above formula is obtained by counting the number of (unordered) subsets of nodes in
G \ ϕ(Sn) that contain all the endpoints of the edges in α, ignoring those in ϕ(Sn). This number

is
(N−V (α)−ℓn
n−V (α)−ℓn

)
. We recall that ∏

i∈[M ]

Eνn [(−1)xi·αi |U = ω] ̸= 0 (2)

only if ω is obtained by reordering any of these subsets. Moreover, the exact value of (2) depends
only on such reordering (as the reordering univocally determines how Hn is planted).

To conclude, we have that, for any pn ∈ Ξn, Eνn [pn] is at most

(N − n)!
(N − ℓn)!

√√√√√ ∑
w(α)≤D(n)

α ̸=0

(
N − V (α)− ℓn
n− V (α)− ℓn

)2

·
∑

π1,π2∈Sym(n−ℓn)

(−1)⟨π1◦h+π2◦h,α′⟩ =

=
(N − n)! ·

√
(n− ℓn)!

(N − ℓn)!

√√√√√ ∑
w(α)≤D(n)

α ̸=0

(
N − V (α)− ℓn
n− V (α)− ℓn

)2

·
∑

π∈Sym(n−ℓn)

(−1)⟨π◦h+h,α′⟩

It is easy to see that when Hn is a clique, the above formula reaches its maximum as π ◦ h = h for
any π. The value of such maximum is(

N − ℓn
n− ℓn

)−1

·

√√√√√ ∑
w(α)≤D(n)

α ̸=0

(
N − V (α)− ℓn
n− V (α)− ℓn

)2

Observe that (N−V (α)−ℓn
n−V (α)−ℓn

)(
N−ℓn
n−ℓn

) ≤
(
n− ℓn
N − ℓn

)V (α)

≤
(

1

n1+δ

)V (α)

Furthermore, for every α such that 0 < w(α) ≤ D(n), we have 0 < V (α) ≤ 2D(n). Now, if we take
any m ≤ 2D(n), m > 0, there are most

(N − ℓn)m · (m+ ℓn)
min{2D,2(m+ℓn)2} ≤ Nm · (m+ t)min{2D,2(m+t)2}

different α such that V (α) = m and w(α) ≤ D(n). Therefore, maxpn∈Ξn Eνn [pn] is upper-bounded
by √√√√ ∑

0<m≤
√
D−t

Nm · (m+ t)2(m+t)2

n2m(1+δ)
+

∑
√
D−t<m≤2D

Nm · (m+ t)2D

n2m(1+δ)
≤

≤

√√√√ ∑
0<m≤

√
D−t

(m+ t)2(m+t)2

nm·δ +
∑

√
D−t<m≤2D

(m+ t)2D

nm·δ
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Observe that ∑
√
D−t<m≤2D

(m+ t)2D

nm·δ ≤ 2D ·
(4D)2D

nδ·(
√
D−t)

= 2O
(
(logn)2−ε·log logn

)
−Ω
(
(logn)2−

ε
2

)

Since ε > 0, the above is a negligible function in n. As for the first sum, we have

∑
0<m≤

√
D−t

(m+ t)2(m+t)2

nm·δ ≤
∑

0<m≤
√
D−t

(√
D

2
√
D
)m+t

nm·δ =

=Dt·
√
D ·

∑
0<m≤

√
D−t

(
D

√
D

nδ

)m

Observe that, since ε > 0,

D
√
D = 2O

(
log logn·(logn)1−

ε
2

)
= no(1)

Therefore, D
√
D

nδ is asymptotically smaller than 1/2. We can therefore conclude that

∑
0<m≤

√
D−t

(m+ t)2(m+t)2

nm·δ ≤Dt·
√
D ·

∑
0<m≤

√
D−t

(
D

√
D

nδ

)m

≤

≤Dt·
√
D · 2 · D

√
D

nδ
=
no(1)

nδ
= n−Ω(1)

We have just proven that maxpn∈Ξn Eνn [pn] = n−Ω(1).

The proof of Theorem 4.7 highlights some important facts. First of all, it confirms the intuition
that cliques are the easiest subgraph we can detect (independently of N , t and D). Moreover,
it provides a formula that describes how easy it is for a degree-D polynomial to detect a planted
n-node subgraph H in a random N -node graph: if we provide no hints, the formula is the following:

∑
0<w(α)≤D

(
N − V (α)

n− V (α)

)2

·
∑

π∈Sym(n)

(−1)⟨π◦H+H,α⟩ (3)

The lower the value, the harder detecting H becomes.
We recall that, above, α denotes a subset of at most D edges in an n-node graph. We encode

α as a vector of bits (the i-th bit indicates whether the i-th edge is in the subset or not). We
use a similar representation for H (therefore, the inner-product is well-defined). We use π ◦ H
to denote the graph obtained by permuting the nodes (n.b. not the edges) of H according to π
(once again we represent this graph as a vector). Finally, V (α) denotes the total number of nodes
touched by the edges in α.We observe that the vectors (π ◦H +H)π∈Sym(n) give a good description
of how “structured” H is (e.g., if H is a clique or an independent set, all these vectors are 0).
We conjecture that, for most graphs H, the sum

∑
π∈Sym(n)(−1)⟨π◦H+H,α⟩ should be small for all

choices of α, as ⟨π ◦H +H,α⟩ should assume the values 0 and 1 almost equally often. We leave
the rigorous study of this problem to future work.
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The last important observation is that the proof stops working as soon as D reaches log2 n.
This is no coincidence: the largest clique in a random N -node graph has at most 2 log n nodes with
high probability [BE76]. Therefore, we can distinguish between G(N, 1/2) and G(N, 1/2, n) using
a degree-D′ polynomial where D′ := (3 log n)2. Such polynomial will simply count the number of
cliques of size 3 log n hidden in the graph.

The PRSH conjecture. The PSH conjecture tells us information about the average-case hard-
ness of detecting planted subgraphs: if N = n1+δ, the assumption holds for an overwhelming
fraction of n-node graphs. The conjecture is therefore related to the hardness of the PRSH prob-
lem: in the following theorem, we prove that the former implies the latter.

Theorem 4.9. The PSH conjecture implies the PRSH conjecture.

Proof. Suppose this is not the case: there exists a δ > 0 and t ∈ N such that, for every c > 0, there
exists a non-uniform adversary A that breaks the PRSH assumption for N = n1+δ with advantage
asymptotically greater than n−c. In the context of this proof, we say that an n-node graph Hn is
good if Hn ∈ Rn. Now, consider the PSH conjecture and let c > 0 be the constant associated with δ
and t. Consider the non-uniform adversary A that breaks the PRSH assumption for parameters δ, t
and c/2. For any n ∈ N, we consider the good graph Hn for which the advantage of the adversary A
in the PRSH game conditioned on the hidden subgraph being Hn is greatest (the maximum exists
as there are only a finite number of n-node graphs for a fixed n). Since a random graph is good
with probability 1− negl(n) and since A has advantage asymptotically greater than n−c/2 against
the PRSH game, the advantage of the adversary A in the PRSH game conditioned on the hidden
subgraph being Hn must be asymptotically greater than n−c/2 − negl(n) > n−c. Such adversary
would therefore contradict the PSH conjecture for the graph family (Hn)n∈N.

5 Private Simultaneous Messages with Logarithmic Message Size

In this section, we present a computational 2-party private simultaneous message (PSM) protocol
with public information achieving logarithmic message size (with inverse-polynomial security). The
construction is based on the PSH assumption.

5.1 PSM protocol with public information

We start by formalizing the definition of private simultaneous message protocol with public infor-
mation. As in standard PSM protocols, the primitive allows a pair of parties to encode their inputs
x and y and non-interactively evaluate a function f of the inputs from the encodings. Any external
observer that intercepts the exchanged messages is guaranteed to learn no information beyond the
output of the function.6 A PSM protocol with public information differs in that the setup outputs
also public information that is needed to reconstruct the output.

Definition 5.1 (PSM protocols with public information). Let F := {fn}n∈N be a family of func-
tions such that fn : [n] × [n] → {0, 1}. A (T, ε)-secure private simultaneous messages (PSM)

6Observe that the randomness used by the parties to encode their inputs cannot be independent. If that was not
the case, an external attacker would be able to mount a residual function attack : given the encoding of the input x of
one of the parties, it can generate the encoding of any value y′ for the other party and learn f(x, y′). This guarantees
that in every PSM protocol, the parties need to share some common secret provided to them by a setup procedure.
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protocol with public information for F is a triple of PPT algorithms (Setup,Encode,Output) with
the following syntax:

• Setup is randomized and takes as input 1n and a description of fn. The output is a triple
(I, s0, s1) where I is public information, and s0, s1 are private values.

• Encode is randomized and takes as input 1n, an index i ∈ {0, 1}, a public information I, a
private value si, and an input xi ∈ [n]. The output is a message mi.

• Output is deterministic and takes as input two messages m0,m1 and public information I.
The output is a bit z ∈ {0, 1}.

We require the following properties:

Perfect correctness. For every inputs x, y ∈ [n] and random strings r, r0, r1, if (I, s0, s1)
$←

Setup(1n, fn; r), m0
$← Encode(1n, 0, s0, x; r0), and m1

$← Encode(1n, 1, s1, y; r1), then the
output is correct, i.e., Output(m0,m1, I) = fn(x,y).

Security. There exists a non-uniform polynomial-time simulator PSMSim such that, for every
non-uniform

(
T (n) · poly(n)

)
-time adversary A, sufficiently large n, and x, y ∈ [n], we have∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr


A(1n,mb

0,m
b
1, Ib) = b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b
$← {0, 1}

(I0, s0, s1)
$← Setup(1n, fn)

m0
0

$← Encode(1n, 0, s0, x)

m0
1

$← Encode(1n, 1, s1, y)

(m1
0,m

1
1, I1)

$← PSMSim
(
1n, fn(x, y)

)


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ ε(n),

that is, the adversary cannot distinguish with advantage greater than ε(n) if the messages and
public information were generated as in the PSM protocol with inputs x, y or by the simulator
only holding the output f(x, y).

The message size of a PSM protocol with public information is

ℓ(n) := max
i,r,r′,x∈[n]

{∣∣mi

∣∣∣∣∣∣∣(I, s0, s1)← Setup(1n; r)

mi ← Encode(1n, i, si, x; r
′)

}
.

5.2 PSM protocols with public information from planted subgraphs

In this section, we present a PSM protocol with public information achieving (no(logn), n−c)-security
for a constant c > 0 with O(log n) message size. The scheme is based on the PSH assumption. The
construction is formalized in Figure 1. Before explaining the idea at the base of the construction,
we introduce the following definition.

Definition 5.2. Let F = (fn)n∈N be a family of functions such that fn : [n] × [n] → {0, 1}. We
define the graph Hn as follows:
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• The graph is bipartite and has n nodes per part. We index the nodes with the elements in
[2n]. The first partition will consist of the nodes in [n]. The node 1 ≤ j ≤ n represents the
input j for the first party. The node n + 1 ≤ j ≤ 2n represents the input j for the second
party.

• For every i, j ∈ [n], we draw the edge (i, n+ j) if and only if fn(i, j) = 1.

In the PSM protocol, the public information consists of a large random graph in which we plant
a copy of Hn. Observe that the latter is a smaller bipartite graph that describes the behaviour of
fn: two nodes are connected if and only if the evaluation of fn on the associated values gives 1.
The private information received by the parties consists of the injective map that indicates where
Hn was hidden.

In order to encode its input, a party just needs to reveal where the corresponding node was
hidden in the big graph. The output of the evaluation can be recovered by simply checking whether
the nodes revealed by the parties are adjacent in the public graph. Under the PSH assumption, we
can argue that an external adversary has no clue about where the other 2n − 2 nodes of Hn are
hidden. That ensures that an attacker cannot learn anything about the inputs beyond the output
of the evaluation.

A PSM protocol with public information based on planted subgraphs
Let F = (fn)n∈N be a family of functions such that fn : [n]× [n]→ {0, 1}. Let Hn be the graph
representation of F . Let N : N→ N be a function such that N(n) ≥ 2n for every n ∈ N.

Setup(1n, fn)

1. (G,H, ϕ)
$← G(N, 1/2, Hn).

2. Output I = G, and s0 = s1 = ϕ.

Encode(1n, i, si = ϕ, x)

1. Output mi = ϕ(x+ n · i).

Output(m0,m1, I = G)

1. Output 1 if m0 and m1 are adjacent in G. Otherwise, output 0.

Figure 1: A PSM protocol with public information based on planted subgraphs.

Theorem 5.3. Let F = (fn)n∈N be a family of functions such that fn : [n] × [n] → {0, 1}. If the
(N, 2, T, ε)-PSH assumption holds for D(1n) ≡ Hn, then the construction in Figure 1 is a (T, ε)-
secure PSM protocol with public information for F . The message size of each party is logN , the
public information size is N(N − 1)/2.

Moreover, assume that the Weak-PSH conjecture holds (see Conjecture 4.6). Then, there exists
a constant c > 0, such that for every constant δ > 0 the construction with M(n) = n2+δ achieves
(T, n−c)-security with (2 + δ) · log n message size and O(n4+2δ) public information size for any
T = no(logn). Finally, if the PSH conjecture holds and Hn ∈ Rn for all sufficiently large n, then,
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for every constant δ > 0, there exists a constant c > 0 such that the construction with M(n) = n1+δ

achieves (T, n−c)-security with (1+ δ) · log n message size and O(n2+2δ) public information size for
any T = no(logn).

Proof. Proving correctness is straightforward. We therefore focus on security. We consider the
simulator PSMSim that, on input z ∈ {0, 1}, performs the following operations:

1. Let H ′ be the 2-node graph that is connected if and only if z = 1.

2. (G,H ′, ϕ)
$← G(N, 1/2, H ′)

3. m0 ← ϕ(1)

4. m1 ← ϕ(2)

5. Output (m0,m1, I = G)

Let x, y ∈ [n]. We prove that no non-uniform
(
T (n) · poly(n)

)
-time adversary can distinguish

between the encoding of (x, y) and the output of the simulator with advantage greater than ε(n).
We use a hybrid argument.

Hybrid 0. In this hybrid, we provide the adversary with an encoding of (x, y), i.e., with the
triple (m0,m1, G) where

1. (G,H, ϕ)
$← G(N, 1/2, Hn)

2. m0 ← ϕ(x)

3. m1 ← ϕ(y + n)

Hybrid 1. In this hybrid, instead of planting Hn in G, we just plant the subgraph induced by
the nodes x and n + y. In other words, we plant either the two node graph with just an edge (if
fn(x, y) = 1) or the two node graph with no edge. Formally, we provide the adversary with the
triple (m0,m1, I) generated as follows

1. H ′ ← Subgraph
(
Hn, (x, n+ y)

)
2. (G,H, ϕ)

$← G(N, 1/2, H ′)

3. m0 ← ϕ(x)

4. m1 ← ϕ(y + n)

This hybrid is (T, ε)-indistinguishable from the previous one due to the (N, 2, T, ε)-PSH assumption.
Observe that, in Hybrid 1, the triple (m0,m1, I) is distributed as the output of PSMSim

(
1n, f(x, y)

)
.

This concludes the proof.
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5.3 Privacy amplification of the PSM construction

We now try to amplify the privacy of the our PSM protocol from ε = n−c for a constant c > 0 to
ε = negl(n). Unfortunately, techniques such as Yao’s XOR lemma [Yao82, GNW11] do not seem to
help us if we want to rely on the planted graph assumptions of Conjecture 4.6. A possible solution
would be the approach used by Boyle et al. to amplify the privacy of programmable distributed
point functions [BGIK22]. That would however lead to a PSM protocol with Ω(log2 n) message
size. The same complexity could be achieved using one-way functions. Our construction expresses
the graph Hn of the function as an exclusive-or of random graphs R1, . . . , Rr and applies the PSM
protocol to each Rj ; however, we need to rely on non-standard assumptions for the security.

A PSM protocol with negligible privacy error and slightly superlogarithmic
messages

Let F = (fn)n∈N be a family of functions such that fn : [n] × [n] → {0, 1}. Let Hn be the
graph representation of F . Let N : N→ N be a function such that N(n) ≥ 2n for every n ∈ N.
Let r : N→ N be a function such that r = ωn(1).

Setup(1n, fn)

1. ∀j ∈ [r − 1] : Rj
$← G(2n, 1/2).

2. Rr ← Hn ⊕R1 ⊕ · · · ⊕Rr−1.

3. ∀j ∈ [r] : (Gj , Rj , ϕj)
$← G(N, 1/2, Rj).

4. Output I := (G1, . . . , Gr) and s0 := s1 := (ϕ1, . . . , ϕr).

Encode(1n, i, si = (ϕ1, . . . , ϕr), x)

1. ∀j ∈ [r] : mj
i = ϕj(x+ n · i).

2. Output mi := (m1
i , . . . ,m

r
i ).

Output
(
m0 = (mj

0)j∈[r],m1 = (mj
1)j∈[r], I = (Gj)j∈[r]

)
1. For every j ∈ [r], let zj be 1 if mj

0 and mj
1 are adjacent in Gj . Otherwise, let zj be 0.

2. Output z ← z1 ⊕ · · · ⊕ zr.

Figure 2: A PSM protocol with negligible privacy error and slightly superlogarithmic messages.

We therefore present a candidate construction that we conjecture to achieve ε = negl(n) privacy
error with ωn(1)·log nmessage size. The scheme is formally described in Figure 2. Before explaining
the idea, we need to introduce the following notation.

Definition 5.4 (Graph XORing). Let G0 and G1 be n-node graphs. We define G0 ⊕ G1 as the
n-node graph in which, for every i, j ∈ [n], we draw the edge (i, j) if and only if such edge appears
in only one among G0 and G1. Observe that the adjacency matrix of G0 ⊕ G1 corresponds to the
XOR of the adjacency matrices of G0 and G1.
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The idea at the base of our construction is rather simple: we generate a random additive secret-
sharing scheme of the function fn using r = ωn(1) shares. The function is secret shared at graph
level: we sample r random 2n-node graphs whose XOR is Hn, the graph describing fn. Then, we
essentially apply the n−c-secure PSM protocol described in Section 5.2 on each of the shares. After
encoding the inputs x and y of the parties, it is possible to recover the evaluation of the shares on
such values. By XORing the results of the evaluation, we obtain fn(x, y).

Theorem 5.5. The construction in Figure 2 satisfies the PSM correctness. Moreover, the message
size is r · logN and the public information size is r ·N(N − 1)/2.

We conjecture that the construction in Figure 2 is (poly(n), negl(n))-secure according to Defi-
nition 5.1 when N(n) ≥ n2+δ for some constant δ; we do not know how to prove this conjecture
using a more standard planting assumption.

Failed attacks. Observe that an adversary cannot hope to recover where Rj is hidden by simply

looking at Gj , m
j
0 and mj

1. Indeed, Rj is never revealed: m
j
0 and mj

1 are simply random nodes in a

random graph Gj . Even more generally, for any proper subset S ⊊ [r], the tuple (Gj ,m
j
0,m

j
1)j∈S

is independent of the inputs x and y.
The most natural attack to the construction would therefore be to find permutations ψ1, . . . , ψr ∈

Sym(2n) such that ψ1(G1)⊕· · ·⊕ψr(Gr) hides a copy of Hn. Such approach fails as only a negligible
fraction of all (ψ1, . . . , ψr) satisfies this property.

A more sophisticated attack is the graph extension attack : we build a large graph G whose nodes
are in one-to-one correspondence with the tuples (u1, . . . , ur) where uj is a node of Gj for every
j ∈ [r]. We connect the nodes (u1, . . . , ur) and (v1, . . . , vr) in G if and only if b1⊕· · ·⊕br = 1, where
bj indicates where the edge (uj , vj) appears in Gj . Observe that G hides a copy ofHn. Furthermore,
the nodes associated with the inputs x and y are exactly (m1

0, . . . ,m
r
0) and (m1

1, . . . ,m
r
1). An

adversary could try to leverage the graph G to determine x and y. Luckily, for r = ωn(1), the
graph G has superpolymomial size: not only does this prevent a non-uniform polynomial-time
adversary from reconstructing G, but it also makes Hn harder to recover for superpolynomial-time
adversaries.

5.4 Offline-online non-interactive 2-input 3-pc with logarithmic communication

Using the PSM protocol with public information described in the previous subsection, we build
an offline-online 2-input 3-party protocol, where the online phase is non-interactive and requires
logarithmic communication. More formally, our protocol implements the functionality Ff described
in Figure 3: the first two parties, Alice and Bob, provide inputs x and y. The last party, Carol,
receives the output fn(x, y), where fn : [n]× [n]→ {0, 1} is the function we want to compute. The
construction withstands a semi-honest adversary corrupting a single player. Assuming the PSH
conjecture (see Conjecture 4.6), for most functions (fn)n∈N, the total communication in the online
phase becomes 2(1 + δ) · log n for an arbitrary small constant δ > 0 (the privacy error is inverse-
polynomial in n). If we want to achieve negl(n) privacy error, the communication complexity of
the online phase becomes ωn(1) · log(n). As far as we know, the only construction in the literature
that achieves a similar lightweight online phase is the one-time truth table protocol of Ishai et
al. [IKM+13]. Such solution would, however, require at least two rounds of communication. Our
construction requires instead one.
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The 3-pc functionality Ff

Let (fn)n∈N be a family of functions such that fn : [n]× [n]→ {0, 1}.
Evaluation: On input x ∈ [n] from Alice and y ∈ [n] from Bob, output fn(x, y) to Carol.

Figure 3: The 2-input 3-PC functionality Ff .

The 3-pc protocol Πf

Let (fn)n∈N be a family of functions such that fn : [n] × [n] → {0, 1}. Let
(Setup,Encode,Output) be a PSM protocol with public information for (fn)n∈N.

Offline phase:

1. (I, s0, s1)
$← Setup(1n).

2. Provide s0 to Alice, s1 to Bob, and I to Alice, Bob, and Carol.

Online phase:
Let x ∈ [n] be Alice’s input and y ∈ [n] be Bob’s input.

1. Alice sends m0
$← Encode(1n, 0, s0, x) to Carol.

2. Bob sends m1
$← Encode(1n, 1, s1, y) to Carol.

3. Carol outputs z ← Output(m0,m1, I).

Figure 4: The 3-PC protocol Πf .

The protocol is formally described in Figure 4. The idea is very simple: in the offline phase, a
trusted dealer runs the setup for a PSM protocol with public information. It distributes the secret
information s0 and s1 to Alice and Bob. Carol instead receives the public information I. In the
online phase, Alice and Bob just need to encode their inputs using the PSM protocol and send
the resulting messages to Carol. Observe that, by the security of the PSM protocol, Carol can
reconstruct the output without learning any other information. Alice and Bob instead learn no
information about the other party’s input as they receive no communication.

Theorem 5.6. Assume the existence of authenticated and private point-to-point channels among
the parties. Let T : N→ N be a time bound and let ε : N→ [0, 1] be an indistinguishability bound.
Let (fn)n∈N be a family of functions such that fn : [n] × [n] → {0, 1}. Let (Setup,Encode,Output)
be a (T, ε)-secure PSM protocol with public information for (fn)n∈N. Then, the protocol Πf (see
Figure 4) is an offline-online non-interactive protocol that (T, ε)-implements7 the functionality Ff

(see Figure 3) against a semi-honest adversary corrupting at most one party. Moreover, the total
communication complexity in the online phase is at most twice the message size of the PSM protocol.

Proof. The protocol is trivially secure against a corrupted semi-honest Alice or Bob (indeed, Alice

7I.e. for sufficiently large n, no non-uniform
(
T (n) · poly(n)

)
-time adversary can distinguish the protocol from the

simulation with advantage greater than ε(n).
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and Bob receive no communication). We can therefore focus on the case in which Carol is corrupt. In

such case, the simulator, after receiving the output z, simply runs the PSM simulator (m0,m1, I)
$←

PSMSim(1n, z). It then provides the result to the adversary. Observe that if any
(
T (n) · poly(n)

)
-

time adversary distinguishes between the protocol and the simulation with advantage greater than
ε(n), then it breaks the security of the PSM protocol.

6 Secret Sharing with Logarithmic Share Size

In a secret sharing for a forbidden graph G the parties are the vertices of the graph, every pair of
parties connected by an edge should learn the secret, and every pair of parties not connected by an
edge should get no information on the secret. Using the PRSH assumption, we show how to obtain
O(log n) share size (with inverse-polynomial distinguishing advantage). We start by formalizing
the definition of secret-sharing scheme with public information. We then present our constructions
and prove their security under the assumptions of Section 4.

6.1 Secret-sharing schemes with public information

As already mentioned in the introduction, the goal of this work is to improve the complexity
of secret-sharing schemes. We do this by differentiating between secret information and public
information: in many settings, the cost of storing private information is indeed higher than the one
of public information. So, is it possible to design computational secret-sharing schemes in which
the information given to each party consists of a large public part and a private part smaller than
the share of any known construction?

In this subsection, we formalize the notion of secret-sharing scheme with public information.
As standard secret-sharing schemes, the primitive allows sharing a secret x between n parties. In
order to reconstruct the secret, the parties need to collaborate by pooling their shares together.
Whether the reconstruction succeeds or fails depends on the subset of parties that collaborate: the
scheme is associated with an access structure. The latter describes which subsets succeeds in the
reconstruction and which are guaranteed to learn no information about the secret.

Definition 6.1 (Access structures and promise access structures). An n-party access structure is
a family of sets (Qn)n∈N where, for every n ∈ N,

• S ⊆ [n] for every S ∈ Qn and

• if S1 ⊆ S2 and S1 ∈ Qn, then S2 ∈ Qn.

An n-party promise access structure is a family of sets (Qn,Fn)n∈N where, for every n ∈ N,

• Qn ∩ Fn = ∅,

• S ⊆ [n] for every S ∈ Qn ∪ Fn,

• if S1 ∈ Qn and S2 ∈ Fn, then S1 ̸⊆ S2.

The set Qn represents the subset of parties that succeed in recovering the secret (i.e., the subsets
of qualified parties). On the other hand, the set Fn represents the subsets of parties that should
get no information about the secret (i.e., the forbidden subsets of parties). Observe that there may
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be subsets of [n] that are neither in Qn nor Fn. In these cases, the secret-sharing scheme does not
give any guarantee: the parties might be able to recover the full secret, they might get only some
leakage or no information at all.

In this work, we consider a particular type of access structure called forbidden graph access
structured.

Definition 6.2 (Forbidden graph access structures [SS97]). An n-party forbidden graph access
structure is a family of sets (Qn,Fn)n∈N such that

• Qn ∪ Fn =
{
S ⊆ [n]

∣∣∣|S| ≤ 2
}
.

• |S| = 2 for every S ∈ Qn.

As the name suggests, a forbidden graph access structure can be represented as an n-node
graph, where we draw an edge between nodes i and j if and only if {i, j} ∈ Qn. In other words,
each party is associated with a node. A pair of parties can reconstruct the secret only when their
nodes are connected by an edge and each party is forbidden.

We define secret-sharing schemes with public information. The definition is analogous to that of
any secret-sharing scheme with the exception that the sharing algorithm outputs public information
I along with the shares. The public information is disclosed to all the parties and is it used for the
reconstruction.

Definition 6.3 (Secret-sharing schemes with public information). Let T : N→ N be a time bound
and let ε : N → [0, 1] be an indistinguishability bound. A (T, ε)-secure secret-sharing scheme with
public information for the promise access structure (Qn,Fn)n∈N is a pair of uniform PPT algorithms
(Share,Recover) with the following syntax:

• Share is a randomized algorithm that takes as input 1n and a secret x ∈ {0, 1}. Its output is
public information I and n strings, called shares, s1, . . . , sn, one for each party.

• Recover is a deterministic algorithm that takes as input 1n, a set S ⊆ [n], public information
I, and shares (si)i∈S. Its output is a value x′ ∈ {0, 1} ∪ {⊥}.

We require the following properties:

Perfect correctness. For every n ∈ N, S ∈ Qn, b ∈ {0, 1}, and random string r,

If (I, s1, . . . , sn)← Share(1n, b; r), then Recover
(
1n, S, I, (si)i∈S

)
= b.

Security. For every non-uniform
(
T (n) · poly(n)

)
-time adversary A, sufficiently large n, and S ∈

Fn, ∣∣∣∣∣Pr
[
A
(
1n, I, (si)i∈S

)
= b

∣∣∣∣∣b
$← {0, 1}

(I, s1, . . . , sn)
$← Share(1n, b)

]
− 1

2

∣∣∣∣∣ ≤ ε(n).
We define the share of the scheme as

ℓ(n) := max
i∈[n],x∈{0,1},r

{
|si|
∣∣∣(I, s1, . . . , sn)← Share(1n, x; r)

}
.

Remark 6.4. We next discuss some variants of Definition 6.3.
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• In Definition 6.3, we define the domain of secrets as {0, 1}. To share a secret from a larger
domain, one can share each bit of the secret independently. Furthermore, one can define and
directly construct secret-sharing schemes with domains of secrets (Dn)n∈N, where the domain
of the secrets with parameter 1n is Dn.

• In Definition 6.3, we define secret-sharing schemes with perfect correctness, as all the schemes
we construct have this property. For constructions, one can also consider schemes which have
a negligible error. In our lower bounds, we rule out weaker secret-sharing schemes that are
allowed a non-negligible error probability. This only makes our lower bounds stronger.

• One can define secret-sharing schemes that are only secure against uniform adversaries. Our
constructions are secure against uniform adversaries under the weaker assumptions that the
planted subgraph with hints assumptions are only secure against uniform adversaries.

6.2 Forbidden graph secret sharing from planted random subgraphs

We now present a forbidden graph secret-sharing scheme based on the PRSH problem. We first
informally describe a simpler version of the secret-sharing scheme, which is similar to the PSM
protocol described in Section 5.2. Given a graph Qn =

(
[n], EQ

)
representing a forbidden graph

access structure, we construct a graph H = ([n], E), where if (i, j) ∈ EQ, then (i, j) ∈ E and
if (i, j) /∈ EQ, then (i, j) ∈ E with probability 1/2. When the secret is 1, we plant H in a
random graph with N ≫ n nodes and when the secret is 0 we plant H in the random graph. Let
G1 = ([N ], E1) be the N -node graph with a copy of H or H. The share of party i is ϕ(i) and the
public information is G1. The reconstruction of the secret by a set {i, j} ∈ Qn (i.e., (i, j) ∈ EQ

and (i, j) is an edge in H) is simple: if (ϕ(i), ϕ(j)) ∈ E1, output 1 and otherwise output 0. On the
other hand, if {i, j} /∈ Qn, then (i, j) is an edge in H with probability 1/2 hence an edge in H with
probability 1/2; it can be shown that by the Weak-PSH assumption, the parties cannot distinguish
if H or H is planted in G1 (although they have a hint of two nodes). Our construction is more
complicated as we want to rely on the PRSH assumption. The construction is formally described
in Figure 5. The scheme uses the procedure defined below.

Definition 6.5. Let H =
(
[n], E0

)
and Qn =

(
[n], E1

)
be graphs with n-nodes. We define the

distribution Cut(H,Q) as follows:

1. G← H.

2. For every i, j ∈ [n] such that i ̸= j, if (i, j) does not appears in Qn, remove (i, j) from G (if
the edge exists).

3. Output G.

Let Qn denote the access structure graph. In the scheme, the public information consists of two
graphs G0 and G1. The first graph has n nodes, the second one is instead larger: it has N ≫ n
nodes. We start from an N -node graph G that hides a random graph H. The smaller graph G0 is
obtained by comparing H to Qn: we draw the edge (i, j) in G0 if and only if (i, j) appears in both
Qn and H. When the secret is 1, G1 is equal to G, otherwise, G is equal to the complement G. In
other words, if b = 1, G1 hides a subgraph isomorphic to G0. When the secret is 0, G0 is instead
hidden in the complementary graph. The private share of each party consists of the corresponding
node in the hidden subgraph. Observe that the share size is logN= O(log n).
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Forbidden graph secret-sharing schemes based on planted random subgraphs
Let Qn= ([n], E) be the graph representing the access structure.
Share(1n, x):

1. H
$← G(n, 1/2).

2. G0
$← Cut(H,Qn).

3. (G1, H, ϕ)
$← G(N, 1/2, H).

4. If x = 1, output I := (G0, G1) and, for every i ∈ [n], si := ϕ(i).

5. If x = 0, output I := (G0, G1) and, for every i ∈ [n], si := ϕ(i).

Recover
(
1n, S = (i, j), I, (sk)k∈S

)
1. If |S| ≠ 2 or (i, j) /∈ E, then output ⊥.

2. Rewrite I as (G0, G1) where G0 and G1 are graphs with n and N nodes respectively.

3. Output 1 if (si, sj) is an edge in G1 and (i, j) is an edge in G0. Output the same value
if (si, sj) is not an edge in G1 and (i, j) is not an edge in G0. Otherwise, output 0.

Figure 5: A forbidden graph secret-sharing scheme based on planted random subgraphs.

Theorem 6.6. If the (N, 2, T, ε)-PRSH assumption holds, the construction in Figure 5 is a (T, 2ε)-
secure forbidden graph secret-sharing scheme with logN share size and N(N − 1)/2 + n(n − 1)/2
public information size. Moreover, assume that PRSH conjecture holds (see Conjecture 4.6), then,
for every constant δ > 0, there exits a constant c > 0 such that the construction achieves (T, n−c)-
security with (1 + δ) · log n share size and O(n2+2δ) public information size for every T = no(logn).

Remark 6.7. Under the more conservative Weak-PSH conjecture (see Conjecture 4.6), for every
δ > 0, the construction achieves (T, n−c)-security with (2+ δ) · log n share size and O(n4+2δ) public
information size for any T = no(logn).

Proof. First, suppose that i and j are allowed to reconstruct. If the secret is 1, the edges (i, j) and
(si, sj) will appear in both G0 and G1 or in none of them. If instead the secret is 0, only one of the
edges (i, j) and (si, sj) will appear. Thus, the scheme is perfectly correct.

We next focus on security. Suppose there exists a non-uniform
(
T (n) · poly(n)

)
-time adversary

A that breaks the security of the secret-sharing scheme. Then, there exist a subsequence (nk)k∈N

and sets (Sn)n∈N such that Sn ∈ Fn, |Sn| ≤ 2 and

Pr

[
A
(
1nk , I, (si)i∈Snk

)
= b

∣∣∣∣∣b
$← {0, 1}

(I, s1, . . . , snk
)

$← Share(1nk , b)

]
>

1

2
+ 2ε(nk)

for every k ∈ N.
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We can use A to attack the PRSH assumption. We consider indeed the adversary B that,
given graphs H and G with n and N nodes respectively and nodes (ui)i∈Sn , performs the following
operations:

1. If n ̸= nk for every k ∈ N, it outputs 0.

2. It samples b
$← {0, 1}.

3. G0
$← Cut(H,Qn).

4. If b = 1, it runs A on input I := (G0, G1 = G) and (ui)i∈Sn .

5. If b = 0, it runs A on input I := (G0, G1 = G) and (ui)i∈Sn .

6. If A guesses b, B outputs 1, otherwise, it outputs 0.

Observe that if H is not planted in G, the view of A is independent of b. So, A guesses its
value exactly with probability 1/2. If instead G hid H, the view of A is as in the secret-sharing
security game. So, A guesses b with probability greater than 1/2 + 2ε(nk) for every n = nk. The
advantage of B against the PRSH assumption would therefore be greater ε(nk) for every nk. Since
the adversary B runs in time T (n) · poly(n), the existence of A contradicts the (N, 2, T, ε)-PRSH
assumption. This ends the proof.

Corollary 6.8. Let T : N → N be a time bound. Let ε(n) = n−c for a constant c > 0 and N =
poly(n). If the (N, 2, T, ε)-PRSH assumption holds, then there exists a (T, ε′)-secure forbidden graph
secret-sharing scheme with public information where ε′ = negl(n), the share size is ωn(1) · log(n)
and the public information size is ωn(1) ·O(N2).

Proof. If the (N, 2, T, ε)-PRSH assumption holds, by Theorem 6.6, there exists a forbidden graph
secret-sharing scheme with public information with (T, n−c)-security and O(log n) share size. Using
Yao’s XOR lemma with r = ωn(1) repetitions, we can obtain a secret-sharing scheme with ωn(1) ·
log n share size and (T, negl(n))-security. The scheme consists in generating a random additive
secret sharing of the secret x = x1⊕ · · · ⊕ xr and then secret-share each bit xi among the n parties
using the (T, n−c)-secure scheme with public information.

Remark 6.9. By generalizing the hidden-subgraph assumption to multigraphs it is possible to design
secret-sharing schemes with public information for more general slice access structures. For example
we can consider a promise 3-slice access structure, where Qn ∪ Fn = {S ⊂ [n]||S| = 3}, represent
it by a 3-hypergraph Qn, and plant an n-node graph obtained from Qn in a bigger random 3
hypergraph.

Why did we not build PSM under the PRSH assumption? The PSM construction we
described in Section 5.2 relies on the PSH assumption (see Conjecture 4.6). As a consequence, we
achieved (1 + δ) · log n message size only for most but not all functions fn : [n] × [n] → {0, 1}. A
natural question is whether we could have used the techniques in this section to obtain (1+δ) · log n
message size for all functions under the PRSH assumption. For instance, instead of hiding a copy
of Hn in the public graph G, we could have hidden a random graph R and published R ⊕ Hn

along with G. It would be possible to prove the security of such construction under the PRSH
assumption. However, this solution would have achieved (2 + ε) · log n message size: in order to
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encode its input, a party would need to communicate two nodes, one in the big graph G and one in
R⊕Hn. In the context of secret sharing, one of the two nodes is instead public, so we can achieve
lower complexity.

7 On Breaking the log n Barrier for 2-out-of-n Secret Sharing

In Section 6, we observed that, for forbidden graph access structures, secret-sharing schemes with
public information can achieve better complexity than any previously known construction. One
could ask whether, with a similar approach, it is possible to obtain schemes with share size strictly
smaller than log n. We study this question for a 2-out-of-n secret-sharing scheme with public infor-
mation, i.e., a secret-sharing scheme for the access structure (Qn)n∈N, whereQn = {S ⊆ [n]||S| ≥ 2}
for every n ∈ N (that is, the minimal authorized sets are all sets of size 2). Unfortunately, we could
not answer this question even under the same type of conjectures we made in previous sections.
However, in this section, we study the problem and come up with sufficient and necessary conditions
for a positive answer.

7.1 An equivalent formulation via planting in multipartite graphs

We start by showing the equivalence between 2-out-of-n secret-sharing schemes with O(log n) share
size and a multipartite version of the planted clique problem.

Lemma 7.1. There exists a 2-out-of-n secret-sharing scheme with ℓ = O(log n) share size, one-bit
secret, and (T, ε)-security if and only if there exists a pair of distributions D0, D1 satisfying the
following properties:

• For b ∈ {0, 1}, Db(1n) outputs an n-partite graph G with 2ℓ nodes per part. In addition,
Db(1n) outputs a node ui in each part Ui of the graph.

• The nodes u1, . . . , un output by D0 are an independent set of G with probability 1.

• The nodes u1, . . . , un output by D1 are a clique of G with probability 1.

• For every non-uniform
(
T (n) · poly(n)

)
-time adversary A, sufficiently large n, and i ∈ [n],∣∣∣∣∣Pr

[
A(1n, G, ui) = b

∣∣∣∣∣b
$← {0, 1}

(G, u1, . . . , un)
$← Db(1

n)

]
− 1

2

∣∣∣∣∣ ≤ ε(n).
Proof. Suppose that there exist distributions D0 and D1 as the one described in the theorem. We
build a 2-out-of-n secret-sharing scheme with public information as follows.

• Share(1n, b): compute (G, u1, . . . , un)
$← Db(1n). Output I := G and si := ui for every i ∈ [n].

• Recover
(
1n, S,G, (si)i∈S

)
: if |S| ≤ 1, output ⊥. Otherwise, output 1 if and only if there exist

i, j ∈ S such that si and sj are adjacent in G.

It is trivial to see that the construction is correct and (T, ε)-secure. Furthermore, since ui is hidden
among |Ui| = 2ℓ nodes, it can be encoded using ℓ bits.

We now prove the opposite implication. Consider a (T, ε)-secure secret-sharing scheme with
shares of size ℓ. For every b ∈ {0, 1}, we define the distribution Db(1n) as follows:
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1. (I, s1, . . . , sn)
$← Share(1n, b).

2. Draw an n-partite graph G = (U1, . . . , Un, E) with 2ℓ nodes per part, where the i-th part is
Ui = { (i, s)|s ∈ {0, 1}ℓ }.

3. For every i ̸= j and s, s′ ∈ {0, 1}ℓ, add ((i, s), (j, s′)) ∈ E iff Recover(1n, {i, j}, I, {s, s′}) = 1.

4. Output (G, (1, s1), . . . , (n, sn)).

By the perfect correctness of the secret-sharing scheme, (1, s1), . . . , (n, sn) form an independent
set with probability 1 when b = 0. If instead b = 1, (1, s1), . . . , (n, sn) form a clique. It is also
immediate to see that if a non-uniform

(
T (n) ·poly(n)

)
-time adversary can guess b with probability

greater than 1/2+ ε(n) given only G and (i, si) for any i ∈ [n], then we would be able to break the
(T, ε)-security of the secret-sharing scheme.

Planting in random graphs does not work. Unfortunately, if D1 is the distribution that
plants a clique in a random multipartite graph and D0 is the distribution that outputs the comple-
mentary graph, we cannot hope to obtain a (T, on(1))-secure scheme with share size smaller than
log n. Indeed, we would be planting an n-node clique in a random graph with N < n2 nodes. As
mentioned in Section 4, in this setting, it is possible to recover the clique with Ωn(1) probability
by just picking the nodes with the highest degree. The task becomes even easier when the graph
is multipartite and we leak one of the nodes.

7.2 An equivalent formulation via planting in general graphs

We next provide a variant of Lemma 7.1 that applies to general rather than multipartite graphs:
We show that there exists a 2-out-of-n secret-sharing scheme with public information and share size
δ · log n for some constant δ if and only if for every N ∈ N there is a distribution on N -node graphs
that hide (not necessarily unique) Nβ-sized clique and Nβ-sized independent set for some β > 0.5
and it is hard to distinguish a random node in the clique from a random node in the independent
set.

Theorem 7.2 (A necessary and sufficient condition). Let T : N →→ N be time bound and ε :
N → [0, 1] be an indistinguishability bound. There exists, for some constant 0 < δ < 1 and
some negligible function negl1(n), a 2-out-of-n secret-sharing scheme with δ · log n share size and
(T (n), ε(n)+negl1(n))-security if and only if there exists a constant 1/2 < β < 1 and an ensemble of
distributions (D(1n))n∈N outputting a tuple (G, x1, . . . , xn, y1, . . . , yn) with the following properties:

• G is an N -node graph, where n ≥ Nβ.

• x1, . . . , xn form an n-sized clique of G.

• y1, . . . , yn form an n-sized independent set of G.

• For some negligible function negl2(n) for every non-uniform
(
T (n) ·poly(n)

)
-time polynomial-
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time adversary A and sufficiently large n,∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


A(1n, G, z) = b

∣∣∣∣∣∣∣∣∣∣∣∣∣

b
$← {0, 1}

i
$← [n](
G, (xj , yj)j∈[n]

) $← D(1n)

If b = 1 : z ← xi

If b = 0 : z ← yi


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ ε(n) + negl2(n).

The proof of Theorem 7.2 is implied by Lemmas 7.3 and 7.4.

Lemma 7.3 (Necessary condition). Suppose there exists a 2-out-of-n secret-sharing scheme with
δ · log n share size and (T, ε)-security. Then, there exists a distribution D(1n) outputting a tuple
(G, x1, . . . , xn, y1, . . . , yn) with the following properties:

• G is a 2n1+δ-node graph.

• x1, . . . , xn form an n-sized clique of G.

• y1, . . . , yn form an n-sized independent set of G.

• For every non-uniform
(
T (n) · poly(n)

)
-time polynomial-time adversary A and sufficiently

large n, ∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


A(1n, G, z) = b

∣∣∣∣∣∣∣∣∣∣∣∣∣

b
$← {0, 1}

i
$← [n](
G, (xj , yj)j∈[n]

) $← D(1n)

If b = 1 : z ← xi

If b = 0 : z ← yi


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ ε(n).

Notice that, if we denote the number of nodes in G by N , then it is necessary that the size of
the clique and independent set is Nβ for any constant β > 1.

Proof. If there exists a 2-out-of-n secret-sharing scheme with δ · log n share size and (T, ε)-security,
then, there exist two distribution D0 and D1 satisfying the properties described in Lemma 7.1. Both
of them output graphs with n1+δ nodes. In the first case, the graph hides an n-sized independent
set. In the other case, it hides an n-sized clique. Moreover, the graphs are (T, ε)-indistinguishable
even if we reveal one of the nodes in the clique or the independent set respectively.

We build our distribution D by “glueing” the graphs G0 and G1 output by D0 and D1 respec-
tively. After that, we permute the nodes. Along with the graph, the distribution outputs the nodes
on the clique of G1 and the nodes on the independent set of G0. It is easy to see that D satisfies
the right property.

Lemma 7.4 (Sufficient condition). Suppose that there exists a distribution D(1n), functions T :
N→ N and ε : N→ [0, 1], and constants 0 < γ < δ < 1 with the following properties:

• D(1n) outputs an n1+δ-node graph G along with 2n1+γ nodes x1, . . . , xn1+γ and y1, . . . , yn1+γ .
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• x1, . . . , xn1+γ form an n1+γ-sized clique in G.

• y1, . . . , yn1+γ form an n1+γ-sized independent set in G.

• For every non-uniform
(
T (n) · poly(n)

)
-time adversary A and sufficiently large n,∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr


A(1n, G, z) = b

∣∣∣∣∣∣∣∣∣∣∣∣∣

b
$← {0, 1}

m
$← [n1+γ ](

G, (xj , yj)j∈[n1+γ ]

) $← D(1n)

If b = 1 : z ← xm

If b = 0 : z ← ym


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ ε(n).

Then, there exists an (T, ε′)-secure 2-out-of-n secret-sharing scheme with public information having
δ · log n share size where ε′ = ε(n) + negl(n).

Proof. Let Permute(G) be the algorithm that, on input an N -node graph, outputs a pair (G′, ϕ)

where ϕ
$← Sym(N) and G′ is obtained by permuting the nodes of G according to ϕ. In particular,

the edge (i, j) appears in G if and only if (ϕ(i), ϕ(j)) appears in G′.
We construct the algorithm Share(1n, b) as follows:

1.
(
G, (xj , yj)j∈[n1+γ ]

) $← D(1n).

2. (G′, ϕ)
$← Permute(G).

3. For every i ∈ [n], define the bucket Bi := {nδ · (i− 1) + 1, . . . , i · nδ}.

4. If there is some i ∈ [n] such that Bi ∩
{
ϕ(xj)

∣∣j ∈ [n1+γ ]
}
= ∅ or Bi ∩

{
ϕ(yj)

∣∣j ∈ [n1+γ ]
}
= ∅,

then let s1 = · · · = sn = b, output I = “FAIL”, s1, . . . , sn, and halt.

5. For every i ∈ [n], if b = 1, set si
$← Bi ∩

{
ϕ(xj)

∣∣j ∈ [n1+γ ]
}
.

6. For every i ∈ [n], if b = 0, set si
$← Bi ∩

{
ϕ(yj)

∣∣j ∈ [n1+γ ]
}
.

7. Output I := G′ and s1, . . . , sn.

In order to reconstruct the secret (when I ̸= “FAIL”), a pair of parties just needs to check their
shares si and sj and check if there exists an edge connecting them in G′. That occurs if and only
if the secret is 1. Clearly, the scheme is perfectly correct.

It is easy to observe that the share size is δ · log n. Indeed, for every i ∈ [n], si is hidden in Bi

which has nδ elements.
We next analyze the security of the scheme. Let E be the event that there is some i ∈ [n] such

that Bi ∩
{
ϕ(xj)

∣∣j ∈ [n1+γ ]
}
= ∅ or Bi ∩

{
ϕ(yj)

∣∣j ∈ [n1+γ ]
}
= ∅ and let ε′′(n) be the probability

of E . We next provide a simple upper bound on ε′′(n). Fix i ∈ [n] and consider the event that
Bi ∩

{
ϕ(xj)

∣∣j ∈ [n1+γ ]
}

= ∅. We give an upper bound on the probability of this event using
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a “birthday paradox” analysis. The elements ϕ(x1), . . . , ϕ(xn1+γ ) are chosen at random without
replacements from [n1+δ], thus,

Pr[Bi ∩
{
ϕ(xj)

∣∣j ∈ [n1+γ ]
}
= ∅] =

n1+γ∏
j=1

Pr[ϕ(xj) /∈ Bi|ϕ(x1), . . . , ϕ(xj−1) /∈ Bi]

=
n1+γ∏
j=1

(
1− nδ

n1+δ − j + 1

)

<

(
1− nδ

n1+δ

)n1+γ

≤ e−nγ
.

Thus, by a union bound, ε′′(n) – the probability of E – is negligible.
Suppose that there exists a non-uniform

(
T (n) · poly(n)

)
-time adversary Ass that breaks the

security of the secret-sharing scheme with advantage greater than ε′(n) := ε(n) + ε′′(n). Let i be
the index of the party corrupted by Ass. We build an adversary A that can easily tell whether
a point belongs to the clique or the independent set of the graph output by D. The reduction is
simple; given G and z, the adversary does the following:

• Permutes the nodes of G so that E does not occur and z ends in a random position of the
bucket Bi.

• Provides Ass with the permuted graph and permuted z.

• Outputs the output of Ass.

The view of Ass is the same as in the secret-sharing security game condition on E not occurring.
The advantage of Ass in guessing b is strictly greater than ε′(n)− ε′′(n) ≥ ε(n).

8 A Lower Bound for Threshold Secret Sharing

In this section, we prove a lower bound for computational 2-out-of-n secret-sharing with public
information: the share size has to be at least 1

5 log logn.
The idea is rather simple: a 2-out-of-n secret-sharing scheme induces a 2-out-of-n′ secret-sharing

scheme for any n′ < n. Since we can represent the public information as an n-partite graph (see
Lemma 7.1), the size of the public information decreases as n′ becomes smaller. We show that if
the share size ℓ is smaller than 1

5 log log n, there exists an n′ > 23/2ℓ for which the graph has size
O(log n). At that point, the public information would be so small that the scheme is necessarily
statistically secure. By Theorem A.2 (proved in Appendix A), that would imply that ℓ ≥ log n′,
reaching a contradiction.

Theorem 8.1. Let T : N → N be an increasing time bound and let ε : N → [0, 1] be an indistin-
guishability bound that such that ε(n) ≤ 1/12 for every n ∈ N. For sufficiently large n, in every
(T, ε)-secure 2-out-of-n secret-sharing scheme with public information and reconstruction error at
most 1/(4 log3/5 T (n)) the share size is at least 1

5 log log T (n). In particular, if the scheme is secure
against non-uniform polynomial-time adversaries, the share size is at least 1

5 log log n.
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Proof. Suppose that our claim is false for infinitely many values of n: let (Share,Recover) be a
scheme that contradicts it. Let ℓ= 1

5 log log T (n) be an upper bound on its share size. We construct

a 2-out-of-n′ secret-sharing scheme where n′ = 23ℓ/2. In order to share b ∈ {0, 1}, we perform the
following operations.

• (I, s1, . . . , sn)
$← Share(1n, b).

• Build an n′-partite graph G= (U1, . . . , Un′ , E) with 2ℓ nodes in each partition (similar to the
construction in Lemma 7.1):

– Ui = {(i, s)|s ∈ {0, 1}ℓ} for 1 ≤ i ≤ n′.
– For every i ̸= j and s, s′ ∈ {0, 1}ℓ, draw the edge ((i, s), (j, s′)) if and only if

Recover(1n, {i, j}, I, {s, s′}) = 1.

• Output (G, s1, . . . , sn′).

In order to reconstruct the secret, two parties i, j holding shares si, sj respectively just need to
check if ((i, si), (j, sj)) is in E.

The new scheme is a 2-out-of-n′ secret-sharing scheme with the following properties:

• The reconstruction error is at most 1/(4 log3/5 T (n)) = 1/(4(n′)2),

• It is ε(n)-secure against non-uniform adversaries running in T (n) time (as the public infor-
mation G can be efficiently computed from the original public information I),

• The share size is ℓ = 2
3 log n

′ < log n′ − 6 for sufficiently large n (which depends on the
function T (·)),

• The public information has size (n′)2 · 22ℓ = 25ℓ = log T .

Since the share size in the scheme is smaller than log n′ − 6, by Theorem A.2 the scheme is not
statistically secure, that is there exists a party i such that the statistical distance between the
shares of the i-th party for the secret 0 and its shares for for the secret 0 is at least 1/12. Consider
a non-uniform adversary that given the public information I and the share si returns 1 if the
probability of G, si given the secret 1 is at least the probability of I, si given the secret 0 and 0
otherwise; this adversary guesses the correct secret with probability at least 7/12.

We show that a non-uniform T (n) · poly(n)-time adversary can break the 1/12-security of the
scheme of the original scheme (for infinitely many values of n). For every n for which the share size
is at most 1

5 log log T (n), the non-uniform has a party i as above and a table such that for every
G, si states if the G, si are more likely given 1 or given 0. The adversary is given I, si, where I is
the public information for the original scheme does the following:

• Builds the graph G for the n′-party secret-sharing scheme,

• If the probability of G, si given the secret 1 is at least the probability of G, si given the secret
0, then it returns 1; otherwise it returns 0.

Since the statistical distance between G, si for the secret 1 and the secret 0 is at least 1/12, the
adversary guesses the correct secret with probability at least 7/12. Furthermore, the size of the
table is at most 2log T (n) · 2ℓ = T (n) · log1/5 T (n). This contradicts the (T (n), 1/12)-security of the
scheme.
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Any t(n)-out-of-n secret-sharing scheme with public information implies a 2-out-of-(n−t(n)+2)
secret-sharing scheme with public information and with the same share size; this is done publishing
shares of t(n) − 2 parties as part of the public information. Thus, Theorem 8.1 implies a lower
bound for t(n)-out-of-n secret-sharing schemes.

Corollary 8.2. Let t : N → N be a function such that 2 ≤ t(n) ≤ n − 1. In every t(n)-out-of-n
secret-sharing scheme with public information that is secure against non-uniform polynomial-time
adversaries, the share size is at least 1

5 log log(n− t(n) + 2).

9 No Computational-Statistical Gap with 1-Bit Shares

In this section, we address the most optimistic scenario – employing public information and achiev-
ing secure sharing by distributing single bit shares. We prove that this scenario is indeed too good
to be true, that is, we prove that any n-party access structure Q can be realized by a secret-sharing
schemes with public information and 1-bit shares if and only if the access structure can be real-
ized by a perfect secret-sharing scheme with one-bit shares and without public information. Thus,
there is no gap between computational and statistical secret-sharing scheme with 1-bit shares.
Furthermore, public information does not help in this scenario.

In our result, we will consider an n-party access structure Qn, which we will denote by Q, for
some n ∈ N, rather than considering a sequence (Qn)n∈N. The running time of the adversaries we
construct for Q is polynomial in n; thus, our result will translate to a non-uniform polynomial-
time against a sequence of access structure. Recall that a perfect (information-theoretic) secret-
sharing scheme is a secret-sharing scheme as defined in Definition 6.3 with the following differences:
(1) (Share,Recover) are not required to be efficient algorithms, (2) correctness should hold with
probability 1, and (3) security should hold for unbounded adversaries and ε(n) = 0 (alternatively,
the shares are equally distributed when the secret is 0 and when the secret is 1). We will use
the notions of minimal qualified sets and maximal forbidden sets of an access structure, which we
define below:

Definition 9.1. The minimal qualified sets of an n-party access structure Q, denoted by min (Q),
is defined as

Q ∈ min (Q) if and only if Q ∈ Q and ∄Q∗ ∈ Q s.t. Q∗ ⊊ Q.

The maximal forbidden/unqualified sets of Q, denoted is max
(
Q
)
(where Q =

(
2[n] \ Q

)
), is defined

as
F ∈ max

(
Q
)
if and only if F /∈ Q and ∄F ∗ /∈ Q s.t. F ⊊ F ∗.

The main result of this section is stated as follows:

Theorem 9.2. An n-party access structure can be realized by a secret-sharing scheme with public
information, 1-bit shares, ε(n) = 0.03-indistinguishability, and reconstruction error at most 0.01 if
and only if it can be realized by a perfect secret-sharing scheme with 1-bit shares and without public
information.

Access structures that admit a perfect secret-sharing scheme with 1-bit shares are called binary
ideal access structures. In [BC93, Mat95, Gol98], it was shown that an access structure Q admits a
perfect secret-sharing scheme with one-bit shares and without public information – i.e., Q is binary
ideal – if and only if Q is a port of a binary matroid. We devise an alternative characterization of
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binary ideal access structures to prove our result. Theorem 9.2 is directly implied by Lemma 9.3
and Lemma 9.7.

Lemma 9.3. Le Q be an n-party access structure. If |Q \ F | is odd for every minimal qualified
Q ∈ min (Q) and maximal forbidden F ∈ max

(
Q
)
, then Q can be realized by a linear perfectly

secure secret-sharing scheme with 1-bit shares and without public information.

Proof. Suppose the access structure satisfies the condition in the lemma. We construct a perfect
secret-sharing scheme with public information and 1-bit shares and argue that the scheme is per-
fectly secure. By conditioning on any fixed public information, we obtain a perfect secret-sharing
scheme with one bit shares and without public information.8

A secret-sharing scheme with public information and 1-bit shares is constructed as follows:

• For b ∈ {0, 1}, let Share(b) = (I, r1, . . . , rn), where r1, . . . , rn are uniform and independent
bits, and I contains a bit IQ for each Q ∈ min (Q), where IQ = b⊕

⊕
i∈Q ri.

Perfect correctness is immediate; for any minimal qualified set Q ∈ min (Q),

Recover(Q, I, (ri)i∈Q) = IQ ⊕
⊕
i∈Q

ri.

To show that the scheme is perfectly secure, it suffices to show that the scheme is secure against
an adversary corrupting any maximally unqualified set. Fix F ∈ max

(
Q
)
. For all Q ∈ min (Q),

|Q \ F | is odd. Let I, r1, . . . , rn be shares and public information generated for a secret b ∈ {0, 1}.
Let I ′ = I and r′1, . . . , r

′
n such that r′i = ri if i ∈ F and r′i = 1⊕ ri otherwise. We claim that I ′ = I

and r′1, . . . , r
′
n are sharing of b̄: For every Q ∈ min (Q), since |Q \ F | is odd,

I ′Q = IQ = b⊕
⊕
i∈Q

ri

= b⊕

 ⊕
i∈Q∩F

r′i

⊕
 ⊕

i∈Q\F

(1⊕ r′i)


= b⊕

⊕
i∈Q

r′i

⊕
 ⊕

i∈Q\F

1


= b⊕

⊕
i∈Q

r′i ⊕ 1 = b̄⊕
⊕
i∈Q

r′i.

Since the mapping from I, r1, . . . , rn to I ′, r′1, . . . , r
′
n is invertible, and in both cases the adversary

sees the same shares and public information (i.e., I, (ri)i∈F = I ′, (r′i)i∈F ), the perfect security
follows.

We next prove in Lemma 9.7 that if for some access structure there is a minimal qualified set
Q and a maximal forbidden set F such that |Q∩F | is even, then there is no secret-sharing scheme
with public information and 1-bit shares that realizes the access structure. As a warm-up, we prove

8Since we obtain a linear secret-sharing scheme with one bit shares, the resulting scheme is necessarily efficient
(i.e., the sharing and reconstruction can be computed in polynomial time using the monotone span program of the
scheme).
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in Lemma 9.5, that under the assumptions of Lemma 9.7, there is no perfect secret-sharing scheme
with 1-bit shares that realizes the access structure. To prove Lemma 9.7 (and Lemma 9.5), we need
the following lemma. The proof of this lemma is quite involved and is deferred to Section 9.1.

Lemma 9.4. If there exists Q ∈ min (Q) and F ∈ max
(
Q
)
, such that |Q \ F | is even, then there

exists Q′ ∈ min (Q) and F ′ ∈ max
(
Q
)
, such that |Q′ \ F ′| = 2.

Lemma 9.5. Suppose Q is an n-party access structure such that |Q \F | is even for some minimal
qualified set Q ∈ min (Q) and maximal forbidden set F ∈ max

(
Q
)
. Then, there is no perfect

secret-sharing scheme with 1-bit shares realizing Q.

Proof. By Lemma 9.4, we can assume that Q\F = {i, j} for some parties i ̸= j. Suppose that there

is a perfect secret-sharing scheme realizing Q. For a secret b ∈ {0, 1}, let (I, s1, . . . , sn)
$← Share(b)

be possible public information and shares. Since F is a maximal forbidden set, F ∪{i}, F ∪{j} ∈ Q.
If Recover (F ∪ {i}, I, (si = 0, (sk)k∈F )) = Recover (F ∪ {i}, I, (si = 1, (sk)k∈F )), then an adversary
controlling F and knowing (sk)k∈F can learn that the secret is b. Thus, by possibly permuting the
secrets,

Recover (F ∪ {i}, I, (si = 0, (sk)k∈F )) = 0 and Recover (F ∪ {i}, I, (si = 1, (sk)k∈F )) = 1. (4)

Similarly, by possibly permuting the share of party j,

Recover (F ∪ {j}, I, (sj = 0, (sk)k∈F )) = 0 and Recover (F ∪ {j}, I, (sj = 1, (sk)k∈F )) = 1. (5)

Thus, by the perfect correctness, given the shares (sk)k∈F\{i,j}, the shares of i, j and the secret are,
respectively, either 0, 0, and 0, or 1, 1, and 1. This, along with the perfect correctness and the fact
that Q ⊆ F ∪ {i, j} imply that

Recover
(
Q, I, (si = 0, sj = 0, (sk)k∈Q\{i,j})

)
= 0

and
Recover

(
Q, I, (si = 1, sj = 1, (sk)k∈Q\{i,j})

)
= 1.

There are two cases for Recover
(
Q, I, (si = 0, sj = 1, (sk)k∈Q\{i,j})

)
.

• If Recover
(
Q, I, (si = 0, sj = 1, (sk)k∈Q\{i,j})

)
= 0, then,

Recover
(
Q, I, (si = 0, sj = 0, (sk)k∈Q\{i,j})

)
= Recover

(
Q, I, (si = 0, sj = 1, (sk)k∈Q\{i,j})

)
= 0,

that is, the parties in the forbidden set Q \ {j} when holding (si = 0, (sk)k∈Q\{i,j}) can infer
that the secret is 0, contradicting the perfect security of the scheme.

• If Recover
(
Q, I, (si = 0, sj = 1, (sk)k∈Q\{i,j})

)
= 1, then,

Recover
(
Q, I, (si = 0, sj = 1, (sk)k∈Q\{i,j})

)
= Recover

(
Q, I, (si = 1, sj = 1, (sk)k∈Q\{i,j})

)
= 1,

that is, the parties in the forbidden set Q \ {i} when holding (sj = 1, (sk)k∈Q\{i,j}) can infer
that the secret is 1, contradicting the perfect security of the scheme.

In both cases we reach a contradiction, thus, there is no perfect secret-sharing scheme realizing Q
with one bit shares.
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We next generalize Lemma 9.5 to computational secret-sharing schemes with public information.
The first problem is that there might be an error in the reconstruction. This will be dealt by
conditioning the sharing algorithm to output vectors of shares without reconstruction errors (since
the proof Lemma 9.5 only considers the correctness for a small number of sets, by a union bound,
this conditioning will not change the distribution of the shares drastically). The second problem is
that we do not have perfect security and the security only holds against polynomial time adversaries.
In the next lemma, we show how to construct an appropriate efficient adversary.

Lemma 9.6. Let A be set of parties and i /∈ A be such that A /∈ Q and A ∪ {i} ∈ Q. If in a
perfectly correct secret-sharing scheme (Share,Recover)

Pr

[
Recover (A ∪ {i}, I, (si = 0, (sk)k∈A))
= Recover (A ∪ {i}, I, (si = 1, (sk)k∈A))

∣∣∣∣b $← {0, 1}, (I, s1, . . . , sn)
$← Share(1n, b)

]
≥ 0.06,

then there is a non-uniform polynomial time adversary that holds I, (sk)k∈A and guesses the secret
with probability at least 0.53.

Proof. For a ∈ {0, 1} we define an adversary Aa as follows: Given I, (sk)k∈A, if

Recover (A ∪ {i}, I, (si = 0, (sk)k∈A)) = Recover (A ∪ {i}, I, (si = 1, (sk)k∈A)) (6)

output Recover (A ∪ {i}, I, (si = 0, (sk)k∈A)), else output a.
By the perfect correctness of the scheme, when (6) holds, the adversary always outputs the

correct value of the secret. Thus, for at least one value of a the adversary Aa guesses the secret
correctly with probability at least 0.06 + 0.94 · 0.5 = 0.53.

Lemma 9.7. Suppose Q is an n-party access structure such that |Q \F | is even for some minimal
qualified set Q ∈ min (Q) and maximal forbidden set F ∈ max

(
Q
)
. Then, for any secret-sharing

scheme with public information, 1-bit shares, and reconstruction error of at most 0.01, there exists a
non-uniform polynomial-time adversary that holds the public information and shares of a forbidden
set and guesses the secret correctly with probability at least 0.51.

Proof. First assume that the secret-sharing scheme is perfectly correct, we will get rid of this
assumption in the end of the proof. By Lemma 9.4, we can assume that Q \ F = {i, j} for some

parties i ̸= j. For a uniformly chosen secret b ∈ {0, 1}, let (I, s1, . . . , sn)
$← Share(b). Since F is a

maximal forbidden set, F ∪ {i}, F ∪ {j} ∈ Q. If

Pr[Recover (F ∪ {i}, I, (si = 0, (sk)k∈F )) = Recover (F ∪ {i}, I, (si = 1, (sk)k∈F ))] ≥ 0.1 (7)

(where the probability is the choice of I, (sk)k∈F generated by Share(1n, b) for a random b), then,
by Lemma 9.6, there is an adversary that guesses the secret with probability at least 0.53. Thus,
we can assume that

Pr[Recover (F ∪ {i}, I, (si = 0, (sk)k∈F )) ̸= Recover (F ∪ {i}, I, (si = 1, (sk)k∈F )) ] > 0.9. (8)

Similarly, we can assume that

Pr[Recover (F ∪ {j}, I, (sj = 0, (sk)k∈F )) ̸= Recover (F ∪ {j}, I, (sj = 1, (sk)k∈F )) ] > 0.9. (9)
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By permuting the values of the share of party j we can assume that

Pr[Recover (F ∪ {i}, I, (si = 0, (sk)k∈F )) = Recover (F ∪ {j}, I, (sj = 0, (sk)k∈F )) ] ≥ 0.5. (10)

We conclude with the following inequality.

Pr

[
Recover (F ∪ {i}, I, (si = 0, (sk)k∈F )) = Recover (F ∪ {j}, I, (sj = 0, (sk)k∈F ))

̸= Recover (F ∪ {i}, I, (si = 1, (sk)k∈F )) = Recover (F ∪ {j}, I, (sj = 1, (sk)k∈F ))

]
≥ 1− Pr [Recover (F ∪ {i}, I, (si = 0, (sk)k∈F )) ̸= Recover (F ∪ {j}, I, (sj = 0, (sk)k∈F )) ]

− Pr [Recover (F ∪ {i}, I, (si = 0, (sk)k∈F )) = Recover (F ∪ {i}, I, (si = 1, (sk)k∈F )) )]

− Pr [Recover (F ∪ {j}, I, (sj = 0, (sk)k∈F )) = Recover (F ∪ {j}, I, (sj = 1, (sk)k∈F )) )]

≥ 0.3.

(11)

Furthermore, if there is a value σ ∈ {0, 1} such that

Pr
[
si = σ

∣∣∣b $← {0, 1}, (I, s1, . . . , sn)
$← Share(1n, b)

]
≥ 0.55,

then an adversary that controls F and holds shares (sk)k∈F can output

Recover (F ∪ {i}, I, (si = σ, (sk)k∈F ))

and succeed with probability at least 0.55. Thus, we assume that for every σ ∈ {0, 1}

Pr
[
si = σ

∣∣∣b $← {0, 1}, (I, s1, . . . , sn)
$← Share(1n, b)

]
≥ 0.45,

Pr
[
sj = σ

∣∣∣b $← {0, 1}, (I, s1, . . . , sn)
$← Share(1n, b)

]
≥ 0.45.

(12)

Let b0, (sk)k∈F∪{i,j} ∈ {0, 1} be a secret and shares. By the perfect correctness and the fact
that Q ⊆ F ∪ {i, j}, if

Recover (F ∪ {i}, I, (si, (sk)k∈F )) = b0 and Recover (F ∪ {j}, I, (sj , (sk)k∈F )) = b0,

then Recover
(
Q, I, (si, sj , (sk)k∈Q\{i,j})

)
= b0.

9 Thus, by (11),

Pr

[
Recover

(
Q, I, (si = 0, sj = 0, (sk)k∈Q\{i,j})

)
̸= Recover

(
Q, I, (si = 1, sj = 1, (sk)k∈Q\{i,j})

) ] ≥ 0.3. (13)

There are two cases for Recover
(
Q, I, (si = 0, sj = 1, (sk)k∈Q\{i,j})

)
.

• The first option is that

Pr

[
Recover

(
Q, I, (si = 0, sj = 0, (sk)k∈Q\{i,j})

)
= Recover

(
Q, I, (si = 0, sj = 1, (sk)k∈Q\{i,j})

) ] ≥ 0.15, (14)

9If the probability of the vector I, ((sk)k∈F∪{i,j}) is zero, then this fact does not follow from the correctness;
however, in this case we can define Recover (Q, I, (sk)k∈Q) as we wish.
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where the probability is over the choice of I, (sk)k∈Q\{i,j} generated by Share(1n, b) for a
random b. In this case, by (12),

Pr

[
Recover

(
Q, I, (si, sj = 0, (sk)k∈Q\{i,j})

)
= Recover(Q, I, (si, sj = 1, (sk)k∈Q\{i,j}))

]
≥ 0.15 · 0.45 > 0.06,

where the probability is over the choice of I, (sk)k∈Q\{j} generated by Share(1n, b) for a random
b (i.e., also over the choice of si). By Lemma 9.6 applied to the forbidden set Q \ {j}, there
is an adversary that guesses the secret with probability at least 0.53.

• Otherwise, by (13) and (14)

Pr

[
Recover

(
Q, I, (si = 0, sj = 1, (sk)k∈Q\{i,j})

)
= Recover

(
Q, I, (si = 1, sj = 1, (sk)k∈Q\{i,j})

) ] > 0.15.

Similar to the previous case, by Lemma 9.6 applied to the forbidden set Q \ {i}, there is an
adversary that guesses the secret with probability at least 0.53.

In all cases we construct a non-uniform adversary that guesses the secret with probability at
least 0.53 (assuming that the scheme is perfectly correct).

Finally, we deal with the fact that the secret-sharing scheme might have (small) error in the
reconstruction, that is, the correctness for every qualified set holds with probability at least 0.99.
In the proof of the lemma we only consider the qualified sets F ∪{i}, F ∪{j},. By the union bound,
with probability at least 0.97 these three sets correctly reconstruct the secret simultaneously. We
apply the above argument to the modification of the scheme in which the sharing algorithm only
deals vectors of shares in which these 3 sets do not err. In this modified secret-sharing scheme,
there is a non-uniform adversary controlling a forbidden set that guesses the secret with probability
at least 0.53. We apply the same adversary to the original secret-sharing scheme; the adversary
guesses the secret with probability at least 0.97 · 0.53 > 0.51.

9.1 Proof of Lemma 9.4

We next prove Lemma 9.4, that is, we prove that if there are a minimal qualified set Q and a
maximal forbidden set F such that |Q \ F | is even, then there are a minimal qualified set Q and a
maximal forbidden set F such that |Q \ F | = 2.

Proof of Lemma 9.4. Choose Q∗ ∈ min (Q) and F ∗ ∈ max
(
Q
)
such that |Q∗ \ F ∗| is minimal

amongst all pairs such that |Q \ F | is even, that is, for any Q ∈ min (Q) and F ∈ max
(
Q
)
such

that |Q \ F | is even, |Q \ F | ≥ |Q∗ \ F ∗|. Since Q is a monotone access structure, F ∗ ⊈ Q∗ and
|Q∗ \ F ∗| ≥ 2. If Q∗ \ F ∗ is of size 2, we are done; we will prove a contradiction assuming this size
is greater than 2.

We will consider the restriction of Q to the parties in Q∗ ∪ F ∗, that is, the access structure
Q′ = {Q ∈ Q : Q ⊆ Q∗ ∪ F ∗)}. If there exists Q ∈ min (Q′) and F ∈ max

(
Q′
)
such that |Q \ F | is

even and smaller than |Q∗ \ F ∗|, then Q ∈ min (Q) and F can be extended to F ′ ∈ max
(
Q
)
such

that |Q \ F | = |Q \ F ′|, a contradiction.
Observe that, for any Q ∈ min (Q′), either Q \ F ∗ = Q∗ \ F ∗ or |Q \ F ∗| is odd. The following

definitions are central to the remainder of the proof.
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Definition 9.8 (A core). Let B = min (Q′) \ {Q∗}. We say that a set C ⊆ F ∗ \ Q∗ is a core if
C ∩Q ̸= ∅ for all Q ∈ B, and, for any i ∈ C, there exists Q ∈ B such that Q ∩ C = {i}.

Fix a core C; for ℓ ∈ Q∗ \ F ∗, we say that a set Cℓ is an ℓ-core if Cℓ is a maximal subset of C
such that for every Q ∈ B,

if Q ∩ C ⊆ Cℓ, then ℓ ∈ Q. (15)

Finally, fix a core C and ℓ-cores (Cℓ)ℓ∈Q∗\F ∗; for every i ∈ C define

Ei = {ℓ ∈ Q∗ \ F ∗ s.t. i ∈ Cℓ}.

We start with a simple claim that will be used a few times in the proof; this claim provides the
motivation to the definition of an ℓ-core.

Claim 9.9. Let ℓ ∈ Q∗ \ F ∗. Then there exists a maximal forbidden set F ∈ max
(
Q′
)
such that

(Q∗ ∪ F ∗) \ ((C \ Cℓ) ∪ {ℓ}) ⊆ F and ℓ /∈ F .

Proof. Consider the set A = (Q∗ ∪ F ∗) \ ((C \ Cℓ) ∪ {ℓ}). We claim that A does not contain any
minimal qualified set Q ∈ min (Q′) = B ∪ {Q∗}:

• Q∗ ⊈ A, since ℓ ∈ Q∗ and ℓ /∈ A.

• If Q ∈ B and Q ∩ (C \ Cℓ) ̸= ∅, then Q ⊈ A.

• If Q ∈ B and Q ∩ (C \ Cℓ) = ∅, then Q ∩ C ⊆ Cℓ and, by the definition of an ℓ-core, ℓ ∈ Q,
hence Q ⊈ A.

Therefore, there exists F ∈ max
(
Q′
)
such that A ⊆ F . If ℓ ∈ F , then Q∗ ⊆ F (since C ⊆ F ∗ \Q∗),

contradicting the fact that F ∈ max
(
Q′
)
and Q∗ ∈ min (Q′). (of Claim 9.9)

The structure of the rest of the proof is as follows. We first prove in Claim 9.10 that a core
exists. Then we prove in Claim 9.11 that the assumption that |Q∗\F ∗| > 2 implies that Ei = Q\F ∗

for every Q ∈ B such that Q ∩ C = {i} (by the definition of a core, such a set exists). Thereafter,
we prove in Claim 9.13 that the sets (Ei)i∈C are ordered by inclusion, in particular, there exists an
ℓ such that ℓ ∈ Ei for all i ∈ C. We complete to proof by showing that this is not possible and the
assumption that |Q∗ \ F ∗| > 2 is false.

Claim 9.10. There exists a core C.

Proof. For all Q ∈ B, Q ̸⊆ Q∗ and Q ⊆ Q∗ ∪ F ∗. Consequently, for all Q ∈ B,

Q ∩ (F ∗ \Q∗) ̸= ∅.

We construct a core C ⊆ F ∗ \ Q∗ in steps, maintaining the property that Q ∩ C ̸= ∅ for every
Q ∈ B. We start with C = F ∗ \Q∗. If for every i ∈ C there is some Q ∈ B such that Q ∩C = {i},
then C is a core. Otherwise, there exists i ∈ C such that Q ∩ C ̸= {i} for all Q ∈ B, that is,
Q ∩ (C \ {i}) ̸= ∅ for every Q ∈ B and we set C = C \ {i}. We repeat this step until the set C is a
core. (of Claim 9.10)

Claim 9.11. For every i ∈ C and every Q ∈ B such that Q ∩ C = {i},

Ei = Q \ F ∗.
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Proof. We first prove that Ei ⊆ Q\F ∗. Let ℓ ∈ Ei, i.e., i ∈ Cℓ and Q∩C = {i} ⊆ Cℓ. This implies
that ℓ ∈ Q (since Cℓ is an ℓ-core). We have shown that Ei ⊆ Q. By definition, Ei ⊆ Q∗ \ F ∗, thus,
Ei ⊆ Q \ F ∗.

Next we prove the “harder direction”, namely, Q \F ∗ ⊆ Ei. Let ℓ ∈ Q \F ∗. Suppose towards a
contradiction that ℓ /∈ Ei, i.e., i /∈ Cℓ. Since Cℓ is a maximal set satisfying (15), there exists Q′ ∈ B
such that

i ∈ Q′, ℓ /∈ Q′, and Q′ ∩ C ⊆ Cℓ ∪ {i}.

By Claim 9.9, there exists F ∈ max
(
Q′
)
such that (Q∗ ∪F ∗) \ ((C \Cℓ)∪ {ℓ}) ⊆ F and ℓ /∈ F .

If i ∈ F , then Q′ ⊆ F , since ℓ /∈ Q′ and Q′ ∩C ⊆ Cℓ ∪{i}; this is not possible as Q′ ∈ min (Q′) and
F ∈ max

(
Q′
)
. We conclude that i, ℓ /∈ F . On the other hand, Q ∩ C = {i} and ℓ ∈ Q \ F ∗, thus,

{i, ℓ} ⊆ Q and {i, ℓ} ⊆ Q \ F . Furthermore, as Q ∩ C = {i},

Q \ F ⊆ Q \ ((Q∗ ∪ F ∗) \ ((C \ Cℓ) ∪ {ℓ})) ⊆ Q ∩ ((C \ Cℓ) ∪ {ℓ}) = {i, ℓ}.

This contradicts our assumption that Q∗ \F ∗ is the smallest set with even size, concluding the
proof that Q \ F ∗ ⊆ Ei, implying that Ei = Q \ F ∗. (of Claim 9.11)

We will hereafter denote Q∗ \ F ∗ by E.

Claim 9.12. For any i1, i2 ∈ C, if Ei1 \Ei2 and Ei2 \Ei1 are non-empty, then there exists a Q0 ∈ B
such that

Q0 ∩ E = E \ (Ei1△Ei2). (16)

Proof. As a first step, we show that there exists Q0 ∈ B such that

Q0 ∩ C = {i1, i2}. (17)

Suppose that this is not true. Let ℓ1 ∈ Ei1 \ Ei2 and ℓ2 ∈ Ei2 \ Ei1 . Take Q1, Q2 ∈ B such that
C ∩Q1 = {i1} and C ∩Q2 = {i2} (by definition of the core C, such Q1, Q2 exist); by Claim 9.11,
Ei1 = Q1 \ F ∗ and Ei2 = Q2 \ F ∗. Since ℓ1 ∈ Ei1 and ℓ2 /∈ Ei1 , we have i1 ∈ Cℓ1 and i1 /∈ Cℓ2 . As
ℓ1 ∈ Ei1 = Q1 \F ∗, it must be that ℓ1 ∈ Q1. As ℓ2 /∈ Ei1 = Q1 \F ∗ ⊆ Q∗ \F ∗ and ℓ2 ∈ Q∗ \F ∗, it
must be that ℓ2 /∈ Q1. We claim that

A = (Q∗ ∪ F ∗) \ ((C \ {i1, i2}) ∪ {ℓ1, ℓ2})

is a forbidden set in Q′, i.e., it does not contain any minimal qualified sets in Q ∈ min (Q′) =
B ∪ {Q∗}:

• ℓ1, ℓ2 ∈ Q∗ and ℓ1, ℓ2 /∈ A, thus Q∗ ⊈ A.

• If Q ∈ B and Q ∩ C ⊈ {i1, i2}, then Q ⊈ A.

• By our assumption, there is no Q ∈ B such that Q ∩ C = {i1, i2}.

• If Q ∈ B and Q ∩ C = {i1} ⊆ Cℓ1 , then, by the definition of an ℓ1-core, ℓ1 ∈ Q and Q ⊈ A.

• If Q ∈ B and Q ∩ C = {i2} ⊆ Cℓ2 , then, by the definition of an ℓ2-core, ℓ2 ∈ Q and Q ⊈ A.
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Let F ∈ max
(
Q′
)
be a maximal forbidden set containing A. If ℓ1 ∈ F , then Q1 ⊆ F , a contradiction

to the definition of sets in min (Q′) ,max
(
Q′
)
. Similarly (by considering Q2), ℓ2 /∈ F and {ℓ1, ℓ2} ⊆

Q∗ \ F . Furthermore, Q∗ \ F ⊆ Q∗ \ A ⊆ {ℓ1, ℓ2} (since Q∗ ∩ C = ∅). Thus, Q∗ \ F = {ℓ1, ℓ2},
contradicting the choice of Q∗, F ∗.

Let Q0 ∈ B be a set satisfying (17), i.e., Q0 ∩ C = {i1, i2}; we argue that (Ei1△Ei2) ∩Q0 = ∅.
Otherwise, there exists ℓ1 such that

ℓ1 ∈ (Ei1△Ei2) ∩Q0. (18)

Without loss of generality, let ℓ1 ∈ Ei1 \ Ei2 . Then, i1 ∈ Cℓ1 and i2 /∈ Cℓ1 . By Claim 9.9, there is
a maximal forbidden set F ∈ max

(
Q
)
such that (Q∗ ∪ F ∗) \ ((C \ Cℓ1) ∪ {ℓ1}) ⊆ F and ℓ1 /∈ F .

Let Q2 ∈ B such that C ∩ Q2 = {i2} (Q2 exists by the definition of the core C); by Claim 9.11,
Ei2 = Q2 \ F ∗. Since ℓ1 /∈ Ei2 = Q2 \ F ∗ ⊆ Q∗ \ F ∗ and Ei2 ⊆ Q∗ \ F ∗, we deduce that ℓ1 /∈ Q2.
This implies that i2 /∈ F (otherwise Q2 ⊆ F ). On the other hand, by (17) and (18), {i2, ℓ1} ⊆ Q0,
i.e., {i2, ℓ1} ⊆ Q0 \ F . Furthermore,

Q0 \ F ⊆ Q0 \ ((Q∗ ∪ F ∗) \ ((C \ Cℓ1) ∪ {ℓ1})) = (Q0 ∩ (C \ Cℓ1)) ∪ {ℓ1} = {i2, ℓ1}.

This implies that Q0 \ F = {i2, ℓ1}, a contradiction.
This proves that there exists Q0 ∈ B such that Q0 ∩ C = {i1, i2} and (Ei1△Ei2) ∩Q0 = ∅. We

will show that Q0 satisfies the requirements of the claim, namely, Q0 ∩ E = E \ (Ei1△Ei2). We
prove the equality by double inclusion. The inclusion Q0 ∩ E ⊆ E \ (Ei1△Ei2) is implied by the
facts that Q ⊆ E and (Ei1△Ei2) ∩Q0 = ∅.

We next prove that E\(Ei1△Ei2) ⊆ Q0∩E. Note that E\(Ei1△Ei2) = (E1∩E2)∪(E\(E1∪E2)).
If ℓ ∈ Ei1 ∩Ei2 , then i1, i2 ∈ Cℓ. As Q0 ∩C = {i1, i2} ⊆ Cℓ, the definition of an ℓ-core implies that
ℓ ∈ Q0. Hence, it suffices to show that if ℓ ∈ E \ (Ei1 ∪ Ei2), then ℓ ∈ Q0. Suppose that this is
not true, i.e., there is an ℓ ∈ E \ (Ei1 ∪ Ei2) such that ℓ /∈ Q0. By Claim 9.9, there is a maximal
forbidden set F ∈ max

(
Q′
)
such that (Q∗ ∪F ∗) \ ((C \ Cℓ) ∪ {ℓ}) ⊆ F . Let Qi1 , Qi2 ∈ B such that

Qi1 ∩ C = {i1} and Qi2 ∩ C = {i2}. As argued above, since ℓ /∈ Ei1 = Q0 \ F ∗, it must be that
ℓ /∈ Q0 and, by similar arguments, ℓ /∈ Q2. If i1 ∈ F (resp., i2 ∈ F ), then Q0 ⊆ F (resp., Q2 ⊆ F ),
a contradiction. We proved that {i1, i2} ⊆ Q0 \ F . On the other hand,

Q0 \ F ⊆ Q0 \ ((Q∗ ∪ F ∗) \ ((C \ Cℓ) ∪ {ℓ})) ⊆ Q0 ∩ C = {i1, i2}.

But then, Q0 \ F = {i1, i2}; a contradiction. (of Claim 9.12)

Claim 9.13. For any i1, i2 ∈ C, either Ei1 ⊆ Ei2 or Ei2 ⊆ Ei1.

Proof. Towards a contradiction, suppose Ei1 \Ei2 and Ei2 \Ei1 are non-empty. Recall that the size
of the set E = Q∗ \F ∗ is even. Let Q0 be a minimal authorized set in B guaranteed by Claim 9.12;
observe that

|Q0 ∩ E| = |E \ (Ei1△Ei2)| = |E| − |Ei1△Ei2 | = |E| − |Ei1 | − |Ei2 |+ 2(|Ei1 ∩ Ei2 |). (19)

Since Ei1 \Ei2 and Ei2 \Ei1 are non-empty, Ei1 ̸= E ̸= Ei2 . By Claim 9.11, Ei1 = Q \F ∗ for some
Q ∈ B. Since Ei1 ⊈ E = Q∗ \ F ∗, the size of Ei1 is an odd positive number; the same holds for
|Ei2 |. But then, by (19) and the fact that Q0 ∩ E ̸= E (since |Ei1△Ei2 | > 0), the size of Q0 ∩ E
is an even number less that |E| = |Q∗ \ F ∗|. However, Q0 ∩ E = Q0 \ F ∗, a contradiction to the
choice of Q∗, F ∗. (of Claim 9.13)
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We complete the proof of lemma using Claim 9.13. As observed above, Ei = Q \ F ∗ for some
Q ∈ B such that Q ∩ C = {i}. Since Q ⊈ F ∗ and Q ⊆ (Q∗ ∪ F ∗), it must be that Q \ F ∗ ̸= ∅.
Hence, |Ei| is a positive number for each i ∈ C. Since (Ei)i∈C is a monotone family of non-empty
sets, there exists ℓ ∈ (Q∗ \ F ∗) such that ℓ ∈ Ei for all i ∈ C, , i.e., Cℓ = C. We will show that is
impossible; i.e., we will show that for each ℓ ∈ Q∗ \ F ∗ there exist i ∈ C such that i /∈ Cℓ. Choose
ℓ′ ∈ Q∗ \ F ∗ such that ℓ′ ̸= ℓ; such ℓ′ exists because Q∗ \ F ∗ is non-singleton. Choose Q ∈ B such
that Q \ F ∗ = {ℓ′} (such Q′ exists since F ∗ is a maximal forbidden set, i.e., F ∗ ∪ {ℓ′} is qualified);
then, Q belongs to B, and ℓ /∈ Q. But then, Cℓ ̸= C; otherwise, Q∩C ⊆ Cℓ but ℓ /∈ Q, contradicting
(15). We conclude that there exists i /∈ Cℓ. This proves of the lemma.
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A Share-Size of Statistical Threshold Secret-Sharing Schemes

Kilian and Nisan [KN90] proved a lower bound of log n on the share size of information-theoretic
2-out-of-n secret-sharing schemes. Another proof of the lower bound was given in [CCX13]. We
next generalize this lower bound to schemes in which the security is only statistical, the correctness
is not perfect, and public information is allowed. We first prove the result for secret-sharing schemes
without public information. For the next lemma, we say that a secret-sharing scheme has total
correctness error δ if the sum of the probabilities of reconstruction errors over all minimal authorized
sets and the two secrets b ∈ {0, 1} is at most δ.

Lemma A.1. The share size of any information-theoretic 2-out-of-n secret-sharing scheme without
public information and with 1/3-indistinguishability and total reconstruction error 1/2 is at least
log n− 5.
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Proof. For ε > 0, consider an ε-secure 2-out-of-n secret-sharing scheme. Fix i ∈ [n]; let D be the
domain of shares. For b ∈ {0, 1}, let pb(x) be the distribution induced by the i-th share over D
when the secret is b. By the ε-security of the scheme,∑

x∈D:p1(x)≥p0(x)

(p1(x)− p0(x)) ≤ ε. (20)

Let X0 and X1 be two independent random variables distributed according to distributions p0(x)
and p1(x), respectively and let G = {x ∈ D : p0(x) ≥ εp1(x)}. Then,

Pr[X0 = X1] =
∑
x∈D

(p1(x)p0(x)) =
∑

x∈D\G

p1(x)p0(x) +
∑
x∈G

p1(x)p0(x) ≥
∑
x∈G

εp21(x). (21)

By (20),

ε ≥
∑

x∈D\G

(p1(x)− p0(x)) ≥
∑

x∈D\G

p1(x)(1− ε) =⇒
∑
x∈G

p1(x) ≥
1− 2ε

1− ε
. (22)

Next, by Cauchy-Schwarz,(
1− 2ε

1− ε

)2

≤

(∑
x∈G

p1(x) · 1

)2

≤

(∑
x∈G

p21(x)

)(∑
x∈G

12

)
≤ |D|

∑
x∈G

p21(x). (23)

By (21) and (23),

Pr[X0 = X1] ≥
ε

|D|

(
1− 2ε

1− ε

)2

. (24)

We next use an argument from the unpublished result by Kilian and Nisan [KN90]. Let (S1, . . . , Sn)
denote the joint distribution of the n shares induced by the scheme conditioned on the secret being
0. Let (S′

1, . . . , S
′
n) denote the joint distribution of the n shares conditioned on the secret being 1,

drawn independently of (S1, . . . , Sn). If Si = S′
i and Sj = S′

j occur simultaneously for i ̸= j, then
the reconstruction errs either for the secret 0 or for the secret 1. This implies that

n∑
i=1

n∑
j=i+1

Pr[Si = S′
i, Sj = S′

j ] ≤ 1/2. (25)

Hence,

1 ≥ Pr[∃j s.t. Sj = S′
j ] ≥

n∑
i=1

Pr[Si = S′
i]−

n∑
i=1

n∑
j=i+1

Pr[Si = S′
i, Sj = S′

j ]

≥ nε

|D|

(
1− 2ε

1− ε

)2

− 1

2
,

where the last inequality uses (24) and (25). Setting ε = 1/3 in the above inequality, we get
|D| ≥ n/18 and the share size, i.e., log |D|, is at least log n− 5.
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We next prove the lower bounds for schemes with public information. To eliminate the public
information in secret-sharing schemes with perfect correctness and security, we can fix any value
I of the public information that has positive probability and share the secret conditioned on the
public information being I. For statistical secret-sharing schemes this is more delicate; it can be
done for 2-out-of-n secret-sharing schemes since the number of minimal authorized sets and the
number of unauthorized sets is small. We note that removing the public information for 2-out-
of-n secret sharing schemes and forbidden graph secret-sharing schemes is easy if we start with
a scheme with 1/12n-indistinguishability and reconstruction error 1/2n4; we get a secret-sharing
scheme with the same share size and without public information that has 1/3-indistinguishability
and reconstruction error. This is done by using the Markov inequality and the union bound. As
we do not want to lose too much in the indistinguishability and 1/n2 reconstruction error, we use
a somewhat more complicated argument that results in a scheme with n/2 parties.

Theorem A.2. The share size of any information-theoretic 2-out-of-n secret-sharing scheme with
public information and with 1/12-indistinguishability and reconstruction error 1/(4n2) is at least
log n− 6.

Proof. Let Π be an information-theoretic 2-out-of-n secret-sharing scheme with public information
and with 1/6-indistinguishability and correctness error 1/(4n2). Let I be a possible value of the
public information in Π and ΠI be the scheme Π conditioned on the public information being
I. Note that ΠI is a secret-sharing scheme without public information. We show that there
exists an I such that ΠI implies a secret-sharing scheme without public information and with 1/6-
indistinguishability and total correctness error less than 1/2. We then apply Lemma A.1 to deduce
the theorem.

Fix a party i, and let Si and S
′
i be random variables denoting the share of party i with secret 1

and with the secret 0 respectively and I be the random variable denoting the public information.
By the security of Π, the statistical distance between I, Si and I, S

′
i is at most 1/12. This implies

that the expected value over I of the statistical distance between Si and S
′
i conditioned on I is at

most 1/12. By the Markov inequality, if we sample I as in Π, then with probability at most 1/4,
the statistical distance between Si and S

′
i conditioned on I exceeds 1/3. Next, by the correctness

of Π, the sum of the probabilities of the reconstruction errors over all sets {i, j}i ̸=j and the two
secrets b ∈ {0, 1} is at most 1/2n; the probabilities are taken over the public information and the
share of party i. By the Markov inequality, if we sample I as in Π, then with probability at most
1/4, the sum of the reconstruction errors conditioned on I exceeds 2/n.

To conclude, for the fixed party i, with probability at least half over I sampled as in Π, both
the statistical distance is at most 1/3 and the sum of the probabilities of error is at most 2/n. This
implies that there exists a value I of the public information such that for at least half of the parties,
the distance in the distributions of the share of the parties given the secret 0 and 1 respectively is
at most half 1/3 and the sum of the error probabilities is at most 1/n. We fix a set of n/2 such
parties and consider the secret-sharing ΠI restricted to the parties in this set; this is a 2-out-of-
n/2 secret-sharing scheme with 1/3-indistinguishability and total reconstruction error of at most
1/2 ·n/2 ·2/n = 1/2 (where we sum the errors over all n/2 parties counting each set twice, ignoring
the fact that the error per party was computed with respect to all n parties). By Lemma A.1, the
share size in the resulting scheme (hence also in Π) is at least log(n/2)− 5 = logn− 6.
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