
HOLEPUNCH: Fast, Secure File Deletion with Crash Consistency

Zachary Ratliff
Harvard University

Wittmann Goh
Harvard University

Abe Wieland
Harvard University

James Mickens
Harvard University

Ryan Williams
Northeastern University

Abstract

A file system provides secure deletion if, after a file is
deleted, an attacker with physical possession of the storage
device cannot recover any data from the deleted file. Un-
fortunately, secure deletion is not provided by commodity
file systems. Even file systems which explicitly desire to
provide secure deletion are challenged by the subtleties
of hardware controllers on modern storage devices; those
controllers obscure the mappings between logical blocks
and physical blocks, silently duplicate physical blocks, and
generally make it hard for host-level software to make
reliable assumptions about how file data is kept on the
device. State-of-the-art frameworks for secure deletion also
have no crash consistency, meaning that an ill-timed power
outage or software fault will desynchonize keys and the
associated encrypted file data, corrupting the file system.

In this paper, we present HOLEPUNCH, a new
software-level approach for implementing secure dele-
tion. HOLEPUNCH treats the storage device as a black
box, providing secure deletion via cryptographic erasure.
HOLEPUNCH uses per-file keys to transparently encrypt
outgoing file writes and decrypt incoming file reads, ensur-
ing that all physical data in the storage device is always
encrypted. HOLEPUNCH uses puncturable pseudorandom
functions (PPRFs) to quickly access file keys; upon the
deletion of file f , HOLEPUNCH updates the PPRF so that,
even if the PPRF is recovered, the PPRF cannot be used
to generate f ’s key. By using PPRFs instead of the key
trees leveraged by prior work, HOLEPUNCH reduces both
the memory pressure caused by key management and the
number of disk IOs needed to access files. HOLEPUNCH
stores its master key in secure TPM storage, and uses a novel
journaling scheme to provide crash consistency between
TPM state and on-disk state.

1. Introduction

File systems allow users to read and write data kept
on an underlying storage device. An important file system
operation is deletion, i.e., the removal of a file from a
storage device. A file system provides secure deletion if,
post-deletion, a file’s data is unrecoverable by an attacker
who obtains unrestricted access to the storage device.

Secure deletion is a fundamental security property, en-
suring the confidentiality of sensitive data (§2). However,
commodity file systems often do not provide secure deletion.
For example, on popular Linux file systems like EXT4,

deleting a file will mark the file’s on-device data blocks
as unallocated, but will not synchronously overwrite the
contents of those blocks; the original data is only replaced if
the file system eventually chooses to allocate the blocks to a
new file. Even when users take explicit action to overwrite
old file data (e.g., by using the Linux shred command to
zero-fill deleted files), the solid-state drives (SSDs) common
in modern laptops and desktops implement wear-leveling
schemes [11]. Wear leveling evenly distributes writes across
physical storage pages, regardless of the logical storage
pages that are targeted by file system IOs. Wear leveling
avoids write hot spots (and thus premature failures) for any
particular SSD page; however, wear leveling means that,
even if a file system or shred-like tool tries to explicitly
overwrite a file’s data, the file’s data may continue to persist
in the underlying SSD pages.

Wear leveling is typically implemented via a hardware
controller in the SSD itself. From the perspective of host
software like an operating system, the controller is a black
box. Early attempts to implement secure deletion via host-
level software leveraged assumptions about how controllers
worked [22], e.g., to allow the host to guess how logical stor-
age regions are mapped to physical ones. However, for any
given storage device, such assumptions might have never
been true, or might have been true at some point but sub-
sequently invalidated by an update to device firmware [20].
For example, prior attempts at secure deletion often assumed
that each logical file block maps to a single physical block;
this assumption of non-duplication is false on SSDs.

Subsequent research demonstrated that host-level soft-
ware could indeed provide secure deletion for black-box
storage [20], [23]. To do so, the host software must leverage
a small, trusted storage device like a TPM chip [29] that can
generate true random numbers (e.g., to use as keys), store
small amounts of information (e.g., keys) in non-volatile
memory, and resist physical tampering that would otherwise
interfere with the first two tasks. Host-level software only
exchanges encrypted data with the black-box storage device,
keeping the relevant keys in trusted storage, and achieving
secure file deletion by discarding a deleted file’s key in the
trusted storage.

Unfortunately, trusted devices like a TPM chip or a
smart card have limited storage space, requiring host-level
software to carefully manage that space to store key material
for a large number of files [6], [20], [23]. For example, in
ERASER [20], host software keeps an encrypted file-key tree
in the untrusted storage device, with trusted hardware only
storing the master key which decrypts the tree. This strategy

requires ERASER to issue IOs that scale with the logarithm
of the file system size; in practice, this overhead significantly
degrades performance for IO-intensive workloads, particu-
larly for non-SSD storage like hard drives that suffer from
mechanical access penalties. To reduce IO amplification,
ERASER stores the upper layers of the file-key tree (FKT) in
memory, but the result is non-trivial memory requirements
(roughly 65 MB per 1 TB of file system data).

A second problem with the traditional FKT approach
involves crash consistency. During a file creation or file
deletion, host-level software must update the FKT on the
untrusted storage device. During rotation of the master key,
software must update both the trusted hardware and the
untrusted storage. If a machine crashes or suffers a power
outage during these critical operations, keys may become
inconsistent with file system state in the untrusted device,
causing some files to become irrevocably lost.

In this paper, we introduce HOLEPUNCH, a block device
driver1 that provides memory-efficient, crash-consistent se-
cure deletion. HOLEPUNCH treats the untrusted storage de-
vice as a black box. To access a file, HOLEPUNCH evaluates
a puncturable pseudorandom function (PPRF) at a specific
point, and then performs a single extra disk I/O to retrieve an
encrypted per-file key that is decrypted using the output of
the PPRF. To delete a file, HOLEPUNCH performs a puncture
operation on the PPRF key, causing the PPRF to “forget”
how to generate the associated per-file key.

The PPRF state grows in size after a puncture, and the
new state must be written to untrusted storage to reflect
the file deletion. A naive implementation of HOLEPUNCH
would require per-puncture IO costs that grow linearly with
each file deletion. To avoid this problem, HOLEPUNCH (1)
periodically rotates the PPRF state to reset its size, and (2)
leverages a tree-like structure to make the on-disk PPRF
state efficiently updateable. HOLEPUNCH uses a TPM to
store the encryption key for the root of the tree, with
each leaf containing an encrypted chunk of the PPRF key.
However, HOLEPUNCH’s in-memory overheads are less than
those of ERASER because HOLEPUNCH’s PPRF allows it to
efficiently generate many keys on-the-fly, unlike ERASER
(which often must explictly store keys in memory to avoid
the IO costs of fetching them from disk). The lower memory
footprint is especially beneficial for machines with large
disks, e.g., datacenter servers whose individual drives store
tens of TBs (§6.2). Unlike ERASER, HOLEPUNCH also pro-
vides crash consistency by carefully updating TPM state and
on-disk structures using a journaling scheme. HOLEPUNCH
leverages deletion batching (§5.5) to reduce the IO cost
of secure deletion without sacrificing the crash consistency
provided by journaling.

In summary, HOLEPUNCH is a software-level approach
for secure deletion that simultaneously:

• makes no assumptions about how storage devices in-
ternally manage physical regions,

1. A file system like EXT4 or NTFS sits atop a block driver that directly
interacts with a storage device. The file system implements higher-level
abstractions like files and directories atop the block interface.

• reduces both the memory space and storage IOs needed
to manage file keys, and

• provides crash consistency, ensuring that the file system
is usable after a crash or power outage occurs.

Given these properties, we believe that HOLEPUNCH is the
first practical system for secure deletion of file system data.

2. Background

Secure deletion frameworks are increasingly relevant for
several reasons. First, in recent years, governments have
begun to issue laws that restrict how businesses may collect
and retain user data. For example, the European Union’s
General Data Protection Regulation (GDPR) [8] and the
California Consumer Privacy Act (CCPA) [26] both confer
users with a “right to be forgotten.” This right allows a user
to demand that a business delete all information that the
business stores about the user. The right to be forgotten is a
boon for privacy advocates, but strong technical mechanisms
for implementing this right are crucial for the practical
enforcement of GDPR-style regulations. Secure deletion
via cryptographic erasure would be a promising solution
if challenges involving key management, performance, and
crash consistency could be solved.

Secure deletion is attractive for non-regulatory reasons
as well, because improper sanitization of storage media
intrinsically poses a security risk to both individuals and
organizations. For example, the Pennsylvania Department of
Labor and Industry accidentally resold unsanitized comput-
ers that contained thousands of state employee records [30].
The United States Veterans Administration also gave away
improperly-sanitized hard disks that contained sensitive pa-
tient information like credit card numbers [12]. If a com-
puter does not enable secure deletion technology by default,
many individuals and organizations will not bother to sani-
tize storage devices.

2.1. Prior Work on Encrypted Storage

Encrypted storage systems like BITLOCKER [16] and
DM-CRYPT [19] aspire to guarantee that storage data at rest
is encrypted. However, as we explained in Section 1, host-
level software lacks insight into how storage controllers
work, meaning that host-level software (whether residing
in the OS or in user-space tools) cannot provide strong
guarantees about secure deletion.

Some storage devices natively implement encryption. In
these “self-encrypting drives” (SEDs), all cleartext writes
from the host are automatically encrypted by the device
before they become persistent on the device; all data re-
trieved from the device is automatically decrypted by the
device before being returned to the host. SEDs implement
the ATA security feature specification [27] or the newer
TCG Opal specification [28]. However, SEDs are beset by
a variety of problems arising from inherent weaknesses in
the specs and poor implementation choices made by SED
vendors [17]. For example, Meijer and van Gastel [17]

found that the Crucial MX100 SSD prompted the user for a
password to unlock the device, but did not use the password
to derive encryption keys. Furthermore, the SSD’s firmware
was debugabble via JTAG [13] interfaces,2 such that an
attacker with physical possession of the SSD could use
JTAG to force the firmware’s password validation routine
to always return “success” and allow the device to unlock.
Meijer and van Gastel also demonstrated that, if an attacker
can modify SED firmware, the attacker can often use the
corrupted firmware to force a device to reveal cleartext
versions of encryption keys. HOLEPUNCH provides secure
deletion on arbitrary black-box storage devices, regardless
of whether those devices do or do not correctly support
native encryption, and regardless of whether those devices
internally perform data duplication or otherwise obscure
logical-to-physical storage mappings. From the perspective
of HOLEPUNCH, the TPM is in the trusted computing base
for secure deletion, but the storage device itself is not.

2.2. Security Goals and Threat Model

More concretely speaking, HOLEPUNCH has two secu-
rity goals:

• Confidentiality: An adversary that obtains physical
access to the storage device should be unable to view
its contents unless the user’s HOLEPUNCH password is
known.

• Secure deletion: An adversary that obtains physical
access to the storage device and knows the user’s
HOLEPUNCH password should be unable to recover
previously deleted files.

We formalize these goals in Section 4.
Our threat model allows an attacker to physically ex-

amine the storage device in arbitrary ways and run attacker-
controlled firmware on the device. However, we assume that
the adversary is (1) computationally-bounded and (2) unable
to recover deleted data from the TPM chip. The former
constraint is a standard cryptographic one, whereas the latter
is realistic given the tamper-resistant nature of hardware-
implemented TPMs. Note that we do not restrict the adver-
sary from reading data that is currently resident in the TPM’s
memory. The reason is that, upon gaining control of a user’s
machine, the adversary can use the local operating system
to interact with the TPM via the TPM’s standard interface.
Through this interface, the adversary can retrieve the TPM’s
current memory contents and use the resident cryptographic
information to derive the encryption keys for files that have
not been securely deleted. However, securely-deleted files
must be unrecoverable in the sense that, from the attacker’s
perspective, data belonging to a securely-deleted file should
be indistinguishable from random bits.

2. JTAG is a hardware debugging protocol that provides full control over
a device. For example, JTAG allows a debugger to read and write arbitrary
on-device registers and memory regions.

3. Design

In this section, we provide an overview of
HOLEPUNCH’s design, explaining how its cryptographic
mechanisms interact with file system abstractions and
storage devices. We defer a detailed discussion of our
HOLEPUNCH implementation to Section 5, since knowledge
of those implementation details is not required to understand
HOLEPUNCH’s basic approach.

HOLEPUNCH is a block device driver that sits between
the file system and the underlying storage device. The
HOLEPUNCH driver makes no assumptions about the inter-
nal workings of a storage device. The driver encrypts each
file f with a random per-file key kf , and stores each kf on
disk; per-file keys are grouped into 4 KB blocks, with the
keys in each storage block s all encrypted by a wrapping
key kτs . Each kτs is generated using the in-memory PPRF,
passing as input a random τs value that is stored alongside
the associated keys in the block. The full collection of
these blocks, which HOLEPUNCH calls the file key table,
is stored in a deterministic location on disk. Given a file f ,
HOLEPUNCH finds the storage location of the relevant table
entry by using f ’s inode number3 to index into the table;
HOLEPUNCH then retrieves the τs stored in the file table
entry, evaluates the PPRF on τs to generate kτs , and finally
uses kτs to decrypt the rest of the table entry and extract
the relevant kf .

HOLEPUNCH evaluates the PPRF using an in-memory
copy of the PPRF state. However, when that state changes
because of a file deletion or PPRF refresh, HOLEPUNCH
also issues the change to an on-disk representation of the
PPRF, so that the change persists across machine reboots
and crashes. HOLEPUNCH stores the on-disk state of the
PPRF using a tree-like structure. Each leaf node contains an
encrypted chunk of PPRF state, and each encrypted interior
node contains (1) pointers to children in the tree and (2) the
key needed to decrypt those children. HOLEPUNCH’s master
key encrypts the second-layer nodes in the on-disk PPRF
key. The master key is randomly generated by the TPM
during HOLEPUNCH initialization. When a user’s machine is
powered off, HOLEPUNCH stores the master key (encrypted
with the user’s password fed through a KDF) in the TPM.
During the boot process, HOLEPUNCH prompts the user for
the password and uses it to decrypt the master key and
thereby unlock access to the file system. Figure 1 gives an
overview of the PPRF tree structure.

3.1. Puncturable PRFs

Ideally, an encrypted storage approach would use a
different encryption key for each file, to limit the damage
if a particular file’s key were leaked. However, using a key
per file introduces management challenges. A modern file
system like EXT4 supports hundreds of millions of files,

3. An inode is an on-disk, per-file metadata structure maintained by the
file system. Among other things, an inode stores pointers to the file’s data
blocks.

!!"#(#$%)

!!"#(#$&)!!"#(%')

!!"#(#$()

!"#$%&	(!

File	Key	Table

… …
… … …

…
…
…

!"#$%&	(" !"#$%&	(#$! !"#$%&	(#

#"% = 2)&&'((3#)#") = 2)&&'((3')

!!*+(%%)!!*,(%()

!456 789:	;<88=>:? (#@ABCDE)
user

passwordTPM

Secure Storage

Persistent Storage

PPRF Key
Tree

Figure 1. Overview of the HOLEPUNCH system design. Note that, in
our HOLEPUNCH implementation, the second layer of the PPRF tree fits
entirely within one block. This property is useful during journaling (§3.4.1).

and reading or writing any particular file requires storage
software to first locate the file-specific key and pull it into
memory. The storage system faces a tension between mem-
ory overhead and performance: aggressively caching keys
in memory creates memory overhead (and may eventually
lead to swapping behavior that hurts IO performance), but
leaving most keys in encrypted form on disk will lead to
IO amplification (since host software cannot read or write
a file before fetching the appropriate on-disk key).

To alleviate this tension, HOLEPUNCH uses a punc-
turable pseudorandom function (PPRF) to efficiently gener-
ate some cryptographic keys on the fly, avoiding the need to
explicitly store the keys in memory to enable fast access to
them. Before explaining how PPRFs work, we first discuss
how vanilla pseudorandom functions (PRFs) operate. A PRF
simulates a random oracle by accepting a random key k and
outputting strings that are computationally indistinguishable
from a truly random function. Formally, we define a PRF
as a family of functions:

{Fk : {0, 1}m(λ) → {0, 1}ℓ(λ)}
where k ←$ {0, 1}λ, λ ∈ N is a security parameter, and m
and ℓ polynomials. The PRF F should satisfy two properties:

• Efficiency: Fk(x) is computable in time polynomial in
λ given k and x.

• Security: No polynomial-time adversary can distin-
guish Fk from a truly random function except with
probability negligible in λ.

Goldreich, Goldwasser, and Micali showed that PRFs
exist under the assumption that pseudorandom generators
exist [10]. While their PRF construction is primarily of
theoretical utility, one can adapt it to construct a more
powerful cryptographic primitive known as a puncturable
PRF [3], [4], [15]. A puncturable PRF is a pseudorandom
function F supporting a puncture operation that converts the
PRF key k into a new key k∗ that is punctured over a set
S ⊆ {0, 1}m(λ) with the following properties.

• Functionality Preserving: Fk(x
′) = Fk∗(x′) for all

x′ ̸∈ S.
• Pseudorandom at punctured points: For all x ∈ S,

and any polynomial time adversary with access to k∗,
the value Fk∗(x) is computationally indistinguishable
from random.

In other words, a puncturable PRF can output a key
k∗ punctured at a set of points S such that the PRF will
evaluate as before on every point not in S, but will reveal
nothing about the PRF’s prior output for points in S. As we
explain below, HOLEPUNCH leverages this feature to forget
the encryption keys associated with securely-deleted files.

3.2. Creating, Reading, and Writing Files

When a new file f is created, HOLEPUNCH asks the
TPM to generate a random key kf . HOLEPUNCH will use
this key to encrypt the new file’s data blocks.4 HOLEPUNCH
also maintains an on-disk file key table in which all kf values
are stored. The file key table is located at a fixed (logical)
location on the storage device, and is indexed by the inode
number if of a file. In the file key table, each 4 KB storage
block s contains 127 32-byte kf values (one for each of
the 127 files with adjacent if numbers), a single 8-byte tag
value τs, 16 magic bytes (to assist with PPRF key rotation
(§3.4.3)), and 8 bytes of padding. HOLEPUNCH feeds τs
to the PPRF to generate the wrapping key kτs for the key
table block; HOLEPUNCH uses kτs to encrypt the 127 kf
values in the block. Note that the on-disk τs is stored in
cleartext, which is safe because even if an attacker learns
τs, the attacker cannot generate kτs without knowing the
PPRF key. Also note that we assume that writes to a 4
KB block are atomic; this assumption is true on modern
storage devices and is important for HOLEPUNCH’s crash
consistency scheme (§3.4).

4. In the file system literature, a “sector” typically refers to the minimum
size of data that a magnetic disk can read or write, a “page” refers to the
minimum IO size for an SSD, and a “block” refers to the granularity at
which a file system allocates data structures on the storage device (such
that a block must span at least one sector/page, but may span more than
one). In this paper, we use the term “block” to refer to a chunk of a file
key table or to a piece of data pointed to by an inode; however, we use
the term in a way that is agnostic about whether the underlying storage
device is a magnetic disk, an SSD, or something else. We use a 4 KB block
size for the file key table because 4 KB is the smallest sector/page size on
commodity storage devices.

When a file corresponding to inode if is opened, the file
system fetches the unencrypted inode as usual. HOLEPUNCH
also performs extra work to:

1) fetch the key table block s associated with inode if ,
2) extract τs from the fetched block,
3) evaluate the PPRF on τs to generate kτs , and
4) decrypt the ciphertext part of the block using kτs ,

obtaining the plaintext kf associated with inode if .
Later, when the file system wants to read or write a file
block pointed to by if , HOLEPUNCH uses kf to decrypt
incoming reads of a file block, and encrypt outgoing writes
to a file block.

In summary, relative to a traditional file system,
HOLEPUNCH requires an extra disk IO during file creation
(to update a key table block) and an extra disk IO during
file opening (to read a key table block). However, our
HOLEPUNCH implementation caches hot table blocks in
memory to amortize the fetch costs. Also note that, even
without caching, HOLEPUNCH’s single extra disk IOs scale
better than ERASER’s IOs (which can scale logarithmically
with the number of files unless large portions of the FKT
state are kept in memory).

3.3. Deleting Files

Upon deleting file f , HOLEPUNCH must ensure that
kf is unrecoverable. To do so, HOLEPUNCH punctures the
PPRF key at the point τs associated with the inode number
if . A complication is that each τs covers 127 per-file keys,
meaning that, absent remediating action, a puncture at τs
would render an additional 126 files unrecoverable. To avoid
this situation, HOLEPUNCH builds a new key table block for
if , keeping the file keys belonging to non-deleted files intact,
but assigning a new τ ′s to the block and re-encrypting the
block via PPRF evaluation over τ ′s. Our HOLEPUNCH imple-
mentation generates a new τ ′s value simply by incrementing
an in-memory atomic counter which is used to ensure that
each tag value is unique. Ensuring uniqueness is important
because, if a single tag were used by multiple key table
blocks, then deleting a file covered by just one of those
blocks would require re-encryption of all of those blocks.

The end-to-end process for file deletion involves the
following steps:

1) read and decrypt the key table block for inode number
if ,

2) replace if ’s file key kf in the block with a new random
key

3) puncture the PPRF key at the block’s tag τs,
4) set τ ′s for the block to be the current value of an atomic

tag counter and then increment the counter,
5) encrypt the new key table block using the output of the

PPRF evaluated on τ ′s,
6) rotate the master key and encrypt the punctured PPRF

key under the new master key (to provide forward
secrecy), and finally

7) write the encrypted PPRF key, the atomic tag counter,
and the encrypted key table block to disk.

HOLEPUNCH’s PPRF key grows linearly with the number of
deletions. As a result, Step 6 will gradually incur more IOs
as HOLEPUNCH deletes more files. To mitigate this problem,
HOLEPUNCH uses a tree structure to represent the PPRF on
disk (Figure 1). HOLEPUNCH’s PPRF tree is a three level n-
ary tree. HOLEPUNCH’s master key encrypts a block of keys
at the second layer, which in turn encrypt blocks of third-
layer keys. Each key in the third layer encrypts a PPRF
key chunk. Using this scheme, each puncture operation
only requires HOLEPUNCH to write a few blocks to update
the on-disk PPRF key. That being said, HOLEPUNCH does
periodically refresh the PPRF key to prevent it from growing
unboundedly (§3.4.3).

3.4. Journaling

A key property of modern file systems is crash con-
sistency [2]. Crash consistency ensures that, after an unex-
pected power failure or system crash, invariants involving
on-disk file system metadata continue to hold. Loss of the
most recent file system updates is acceptable, but the file
system must remain usable post-crash.

The primary approach for guaranteeing crash con-
sistency is to enforce atomic updating of on-disk file
system metadata. For example, to create a new file
/foo/bar.txt, an EXT-like file system [5] must update
three on-disk structures: a bitmap (to indicate that a new
inode for bar.txt has been allocated), the new inode itself
(e.g., to record bar.txt’s creation time and to indicate that
the file currently contains no data blocks), and an updated
directory entry (so that the /foo directory has a pointer
to the new inode). To ensure crash consistency, all three
updates must be treated as an atomic unit—in other words,
after a crash, the file system must perceive that either all
three updates successfully hit the disk, or none of them did.
Otherwise, problems would emerge if, e.g., the update to the
directory entry succeeded but the update to the new inode
did not, meaning that bar.txt’s data blocks would be
whatever blocks the old, junk inode happened to point to.

In a cryptographic approach for secure deletion, key
material must be kept in sync with the on-disk structures
that are protected by those keys. If this invariant is broken,
then encrypted files will become unrecoverable when the
associated keys are lost or not kept up to date. ERASER,
which is the current state-of-the-art file system for secure
deletion, does not ensure consistency between encryption
keys and the associated on-disk state. As a result, we have
empirically observed that, post-crash, up to 64 files may be
lost in ERASER. For example, such data loss will happen if
a crash occurs after ERASER rotates its TPM master key, but
before ERASER updates its on-disk FKT. The inconsistency
arises from ERASER’s non-atomic approach to updating the
key material in the TPM and in on-disk FKT.

HOLEPUNCH provides crash consistency via a jour-
naling approach [2]. The high-level idea is that, before
HOLEPUNCH issues an update u to on-disk key material
and/or TPM state, HOLEPUNCH first writes u to a special
region of the disk called the journal. The write to the

journal memorializes HOLEPUNCH’s intent to update key
material. Once the journal write completes, HOLEPUNCH
actually issues u to the disk and/or the TPM. When u
completes, HOLEPUNCH removes the journal entry. This
approach provides crash consistency as follows:

• If the machine crashes before the journal is updated,
the update is lost but key material remains synchronized
between the disk and the TPM.

• If the machine crashes after the journal is updated
but before the update is completely applied to the
disk and/or TPM, then during the boot process,
HOLEPUNCH detects the non-empty journal and issues
u before resuming normal operation. u is idempotent,
so reissuing it is always safe, even if u partially com-
pleted before the crash occurred.

• If the machine crashes after the disk and/or TPM are
updated but before the journal is cleared, HOLEPUNCH
reissues u. Unbeknownst to HOLEPUNCH the reissu-
ing is unnecessary, but doing so is safe because u is
idempotent.

In the remainder of the section, we provide more details
about what HOLEPUNCH writes to the journal during various
key operations.

3.4.1. Rotating the Master Key. As shown in Figure 1,
HOLEPUNCH’s master key Kmaster is used as the root of
the on-disk PPRF tree. When the machine is powered off,
HOLEPUNCH stores Kmaster in the TPM. The version of
Kmaster in the TPM must be the version of Kmaster used as
the root of on-disk PPRF tree; otherwise, when the machine
boots, HOLEPUNCH will be unable to decrypt the PPRF tree
and generate per-file kf keys (§3.2).

Suppose that Kold is the old master key and Knew is the
new one. To atomically rotate the key, HOLEPUNCH does
the following:

1) Write to the journal EKnew (ℓ2), where ℓ2 is the block
containing the second level of the PPRF tree. Since the
write is a block in size (see Figure 1), it is atomic.

2) Write to the journal the values EKold
(Knew) and

H(Kold) where H is a cryptographic hash function.
Since these values fit within a block, this write is also
atomic. The journal update phase is now complete.

3) Atomically overwrite the second-level block of the on-
disk PPRF tree; in particular, replace EKold

(ℓ2) with
the version in the journal (EKnew(ℓ2)).

4) In the TPM’s NVRAM, atomically overwrite Kold with
Knew.

5) Finally, clear the two journal blocks, setting all of the
bytes to zero. Doing so requires two writes that are
individually atomic, meaning that the machine may
crash immediately after the issuing of the first write.
However, during recovery, HOLEPUNCH will consider
the journal empty if the first journal block is all-zeroes,
regardless of whether the second block contains data.
For this approach to work, Step 1 above must write to
the second journal block, with Step 2 overwriting the
zeroes in the first journal block.

During a reboot, HOLEPUNCH checks whether the jour-
nal is clear. If not, HOLEPUNCH enters recovery mode.
HOLEPUNCH first uses the zeroes-checking approach de-
scribed above to determine whether both blocks of the jour-
nal belong to the same logical update. If not, HOLEPUNCH
terminates recovery because either (1) the on-TPM master
key was not rotated and the PPRF tree root is encrypted with
EKold

, or (2) the on-TPM key was set to EKnew
and the

PPRF tree root is encrypted with EKnew
, but the machine

crashed after one journal block was updated but before the
other was updated. In either scenario, HOLEPUNCH just
clears the journal and resumes normal operation.

If the journal blocks do belong to the same logical
update, HOLEPUNCH reads the current key KTPM from
the TPM, and calculates H(KTPM). If the calculated value
matches the key hash in the journal, i.e., if KTPM == Kold ,
then the machine crashed at some point after Step (2) and
before Step (5). Thus, HOLEPUNCH redoes Steps (3) and
(4), replacing EKold

(ℓ2) with the version in the journal
(EKnew

(ℓ2)), and updating the TPM’s version of the master
key using the EKold

(Knew) value from the journal (recall
that, in this scenario, EKold

is equal to EKTPM
, i.e., the key

that is currently in the TPM). Finally, HOLEPUNCH clears
the journal.

If the journal blocks belong to the same logical update,
but the hash of KTPM does not match the key hash in
the journal, then HOLEPUNCH was able to finish Steps (1)–
(4) before the crash happened. This means that, post-crash,
HOLEPUNCH just needs to clear the journal.

3.4.2. File Deletion. As described in Section 3.3, a file
deletion affects the relevant block in the file key table, a
few blocks in the on-disk PPRF key5 (to represent the new
puncture), and at most four blocks in the PPRF key tree (the
single layer-2 block, and at most three layer-3 blocks in the
tree (Figure 1)).

To make file deletion crash-consistent, HOLEPUNCH
extends its approach for journaling a master key rotation,
following the basic strategy from Section 3.4.1 but writ-
ing additional data blocks to the journal. In particular,
HOLEPUNCH does the following:

1) Write to the journal EKnew
(ℓ2), where ℓ2 is the block

containing the second level of the PPRF tree. Since the
write is a block in size (see Figure 1), it is atomic.

2) Write to the journal the blocks EKnew
(ℓ3,1),

EKnew
(ℓ3,2), and EKnew

(ℓ3,3) where ℓ3,i are the
modified blocks in the third level of the PPRF tree.
Each individual block write is atomic.

3) Write to the journal the values EKold
(Knew) and

H(Kold). Since these values fit within a block, this
write is also atomic. HOLEPUNCH has now memorial-
ized its intention to rotate the master key and update

5. Each puncture causes at most 2 × PPRF_DEPTH new nodes to be
added. Our struct pprf_nodes (§5.1) are 33 bytes in size. Given
this size, and the fact that our HOLEPUNCH prototype schedules a PPRF
key rotation (and thus a tree shrinking) before the PPRF can grow too
large, our prototype never sees more than 3 blocks affected by a puncture.

the entire path in the PPRF key tree that leads to the
PPRF subkey to update.

4) Journal the data blocks associated with the updated
PPRF subkey. Those blocks are encrypted with the
relevant leaf node key in the PPRF key tree.

5) Journal the updated file key table block. This block
replaces the deleted file’s kf with a new random key.
The block also has a new τ ′s, and is encrypted by the
punctured PPRF evaluated on τ ′s.

6) Update the journal with the block address of each data
block that was previously written to the journal in Steps
(4) and (5).

7) Journal the new value of the atomic counter. The jour-
nal update phase is now complete.

8) Atomically overwrite each of the data blocks (i.e.,
the layer-2 and layer-3 PPRF tree blocks, the blocks
belonging to the new PPRF subkey, and the file key
table block).

9) In the TPM’s NVRAM, atomically overwrite Kold with
Knew .

10) Clear the journal.
During recovery, HOLEPUNCH checks whether a complete
journal update was recorded. If not, HOLEPUNCH clears
the journal and terminates recovery. If so, HOLEPUNCH
reinitializes its atomic counter using the value in the log,
and executes a procedure similar to the one in Section 3.4.1
to determine which data blocks must be updated.

3.4.3. PPRF Key Rotation. To journal PPRF key rotations
(§3.3), HOLEPUNCH leverages the magic bytes stored in
the header of each file key block (§3.2). In particular,
HOLEPUNCH does the following:

1) Pick a new PPRF key KPPRFnew , and write to the
journal EK(KPPRFnew) (where K is the master key). A
new, unpunctured PPRF key fits inside a single block,
so this write is atomic.

2) Read all of the file key blocks into memory. For each
one, use the current PPRF key to decrypt the block;
reset the tag to be the index of the file key block within
the table,, and then re-encrypt the block under the new
tag using KPPRFnew . Write the newly encrypted blocks
to disk.

3) Use random data to overwrite the blocks belonging to
the current on-disk PPRF tree. The practical effect is
that the internal nodes of the key tree are reinitialized
to contain new random keys.

4) Using the contents of KPPRFnew , write the block for
the updated on-disk PPRF tree; note that only one block
will be written because a fresh, unpunctured PPRF key
fits within one block.

5) Reset the tag counter to be equal to the total number
of file key blocks in the table. Note that reusing tag
values across different PPRF keys is safe; resetting
the key decreases the (already small) likelihood of tag
wraparound.

6) Clear the journal and schedule the master key rotation
from Kold to Knew .

During recovery, HOLEPUNCH checks whether the journal is
empty. If not, HOLEPUNCH reads EK(KPPRFnew

) from the
journal and decrypts it using the master key K stored in the
TPM. HOLEPUNCH then reads each key table block and tries
to decrypt each one with KPPRFnew

. If the magic number
in the decrypted block is correct, the block was correctly
re-encrypted with KPPRFnew

in Step (2), and HOLEPUNCH
requires no further action for the block. Otherwise, if the
magic number is wrong, then a crash occurred at some
point during Step (2); HOLEPUNCH consults the on-disk
KPPRForiginal

(which must still exist because Step (3) never
completed), using KPPRForiginal

to decrypt the key block,
and then using KPPRFnew

to re-encrypt the block and write
it to disk. Note that if all key table blocks decrypt cor-
rectly with KPPRFnew

, then HOLEPUNCH completed at least
Step (2) before crashing. Regardless, HOLEPUNCH performs
Steps (3)–(6) (some of which may have been completed pre-
crash but are idempotent), completing the recovery process.

Note that, for the journaling of all three operations
mentioned above (master key rotation, file deletion, and
PPRF key rotation), our concrete HOLEPUNCH prototype
has at most one disk IO in flight at any given time. This
simplifies the implementation’s journaling code, but is not
fundamental to the high-level approach.

4. Security Analysis

Cryptographic erasure reduces the problem of securely
deleting a file to the problem of securely deleting a file’s
encryption key. We assume that a computer has two kinds
of storage devices: eraseable ones and non-eraseable ones.
Both kinds of storage allow a logical storage location ℓ to
be read and written. However, an eraseable storage device
is trusted to actually delete the data in ℓ when a new write
to ℓ occurs. In contrast, a non-eraseable device may not
actually discard the value stored at ℓ, e.g., because the
device internally duplicates a single logical block in multiple
physical blocks (§1 and §2.1). A machine’s TPM is an
example of eraseable storage that is also persistent (because
the TPM’s NVRAM retains its values across reboots or
crashes). We also assume that volatile RAM is eraseable,
with the RAM value stored at ℓ being deleted via explicit
overwrites to ℓ or when a machine reboots. In contrast, we
treat hard drives and SSDs as non-eraseable. Given those
definitions, we say that a file system for secure deletion is a
quadruple of algorithms (Setup,Read ,Write,Delete) that
manipulate a computer’s eraseable (and thus secure) storage
S as well as the non-eraseable (and thus insecure) storage
I . We model both S and I as indexable variable-length
arrays, with I being append-only (to model the conservative
assumption that no data is actually deleted) and S allowing
in-place updates (to reflect the true eraseable nature of the
storage). We also allow both S and I to be extended by
allocation on one end. We define the four algorithms as
follows:

• ⊥ ← SetupS,I(λ,N): Accepts a security parameter
λ and a capacity N and initializes the internal state
(S, I) to store up to N files of size n ≤ poly(λ) with
identifiers t ∈ {0, 1}⌈log(N)⌉.

• f,⊥ ← ReadS,I(i): Accepts a file identifier i ∈ {0, 1}t
and retrieves from internal state a file f associated with
i if it exists and ⊥ otherwise.

• i,⊥ ← WriteS,I(i, f): Accepts a file identifier i ∈
{0, 1}t and file content f ∈ {0, 1}n and writes f to
the file with the identifier i that is stored in the internal
state. If no such file exists, ⊥ is returned. Otherwise,
return i on success.

• i,⊥ ← DeleteS,I(i): Accepts an identifier i ∈ {0, 1}t
and updates internal state (S, I) to remove the file f
associated with i if it exists and returns ⊥ otherwise.

We define security using the standard simulation
model [9], i.e., we require that the real-world secure deletion
functionality emulates a secure idealized functionality. In
an ideal world, a file system that achieves secure deletion
would use only the erasable medium S for storing
information. Thus, we define an ideal secure deletion
functionality F in Figure 2. The ideal functionality stores
data only on S, overwriting deleted files with the constant
value 0.

SetupS,I(λ,N)

1 : S[0] = N

2 : return

WriteS,I(i, f)

1 : if i ≥ N :

2 : return ⊥
3 : S[i+ 1] = f

4 : I.append(“wr”||i)
5 : return i

ReadS,I(i)

1 : if !stored(i) :

2 : return ⊥
3 : f = S[i+ 1]

4 : return f

DeleteS,I(i)

1 : if !stored(i) :

2 : return ⊥
3 : S[i+ 1] = 0

4 : I.append(“del”||i)
5 : return i

Figure 2. The ideal secure deletion functionality F . File data is never
written to the insecure (i.e., non-erasable) storage I . The stored function
checks whether a file id i is associated with a currently stored file, and the
append function writes data to the end of I (see appendix for details).

Note that the ordered sequence of Write and Delete
instructions, along with their associated file identifier values,
are encoded into I by the ideal functionality. This is because
a real-life instance of I like an SSD might explicitly track
file activity, e.g., by writing to a special on-device log for
each write or deletion; therefore, there is little hope for
hiding this information in the first place. Furthermore, our
scheme does not attempt to hide the file identifiers used by
the system.

RealΣE,Adv (λ)

1 : N,m← E(1λ)
2 : run Setup(λ,N) on Σ

3 : for i = 1..m do

4 : E issues (Write(i, f),Read(i), or Delete(i)) to Σ

5 : The internal state (S, I) of Σ is given to Adv

6 : v ← Adv(1λ, S, I)

7 : b← E(1λ, v)
8 : return b

IdealFE,Sim(λ)

1 : N,m← E(1λ)
2 : run Setup(λ,N) on F
3 : for i = 1..m do

4 : E issues (Write(i, f),Read(i), or Delete(i)) to F
5 : The internal state (S, I) of F is given to Sim

6 : v ← Sim(1λ, S, I)

7 : b← E(1λ, v)
8 : return b

Figure 3. The real and ideal world games used in Definition 4.1 for
environment E , adversary Adv (respectively, simulator Sim), and a file
system for secure deletion Σ (respectively, ideal functionality F).

Definition 4.1 (Secure Deletion). We say that a file system
Σ = (Setup,Read ,Write,Delete) for storing files of length
n ≤ poly(λ) achieves secure deletion if for all probabilistic
polynomial time (PPT) adversaries Adv , there exists a PPT
simulator Sim such that for all PPT environments E:

|Pr[RealΣE,Adv (λ) = 1]−Pr[IdealFE,Sim(λ) = 1]| ≤ negl(λ)

where the games RealΣE,Adv and IdealFE,Sim are defined in
Figure 3.

In the appendix, we prove that HOLEPUNCH achieves
secure deletion for file data.

5. Implementation

Given the HOLEPUNCH design from Section 3, we
now describe the most interesting aspects of our concrete
HOLEPUNCH implementation. We first explain the binary
PPRF representation that HOLEPUNCH uses, and describe
how HOLEPUNCH evaluates and modifies that PPRF (§5.1).
We then explain how HOLEPUNCH initializes a block de-
vice (§5.2) for use by subsequent file system activity. We
finally describe the implementation and optimization of
HOLEPUNCH’s file accesses (§5.3), file deletions (§5.4), and
PPRF key refreshes (§5.5).

5.1. The HOLEPUNCH PPRF

Our PPRF implementation is inspired by the tree-
based PRF construction of Goldreich, Goldwasser, and Mi-
cali [10]. In that construction, G : {0, 1}λ → {0, 1}2λ is a
length-doubling pseudorandom generator. More specifically,
G(s) = G0(s)||G1(s) with G0(s) and G1(s) representing
the first and second halves of the output of G(s). Goldreich
et al. then define a pseudorandom function family Fk(·) as:

Fk(x) = Gxm(λ)
(Gxm(λ)−1

(. . . (Gx1
(k))))

where x1x2 . . . xm(λ) is the binary representation of the
input x, m is a polynomial, and k ←R {0, 1}λ is a key
chosen uniformly at random. This construction forms a
tree for PRF inputs of length m(λ), such that the tree’s
leaves are the outputs of the PRF. Although the tree has
exponentially many outputs, we can efficiently evaluate
any input to the PRF using only m(λ) evaluations of the
pseudorandom generator G. Such a PRF tree can be used to
build a puncturable PRF [3], [4], [25]. Given a tree-based
PRF F with key k and a point x that we wish to puncture,
let Px be the set of nodes along the path from the xth leaf
to the root of the PRF tree. We can set the punctured key
k∗ = {Nx}, where Nx is the set of neighboring nodes for
each of the nodes in Px. As an example, Figure 4 shows
a tree-based PRF F with key k and four leaves. After
puncturing the value x = 2 (represented by the dotted leaf
k10), a punctured key k∗ = {k0, k11} is produced. The new
key k∗ corresponds to the neighboring nodes along the path
from k10 to k. Using Fk∗ , one can still evaluate all of the
points in the original PRF tree except for the point x = 2.

k

k0 k1

k00

0

k01

1

k10

2

k11

3

G0(k) G1(k)

G0(k0) G1(k0) G0(k1) G1(k1)

Figure 4. Example of a punctured PRF that uses the construction of
Goldreich et al. [10]. The nodes {k0, k1,1} represent the new punctured
key k∗ after puncturing the leaf k10 (the dotted node) associated with the
point x = 2.

HOLEPUNCH represents the PPRF as an array of
struct pprf_nodes (Figure 5). Each structure is
a tagged union [14] that represents an inner node, an
unpunctured leaf node, or a punctured leaf node. For an
inner node, the .next.il and .next.ir fields are
array indices representing the node’s left and right child,
respectively. An unpunctured leaf node contains a single
32-byte key while a punctured leaf node contains all zeroes.

struct pprf_node {
union {

struct {
u32 il;
u32 ir;

} next;
u8 key[32];

} v;
u8 type;

};

Figure 5. The pprf_node structure.

Evaluating the PPRF: Evaluating the PPRF at a point τ
requires HOLEPUNCH to:

1) find the pprf_node leaf that evaluates τ , and then
2) use the leaf node’s subkey value as the initial input to

the length-doubling PRG of the GGM86 construction.
Starting at the pprf_node at index 0, HOLEPUNCH traces
a path down the tree, following the left path at step i if the i-
th bit in the binary representation of τ is 0, and following the
right path otherwise. Let search_depth be the depth of
the discovered leaf node that HOLEPUNCH eventually finds,
and let tree_height be log(N); upon finding the (pre-
sumably unpunctured) leaf node, HOLEPUNCH invokes a
length-doubling PRG tree_height − search_depth
times, using the leaf node’s subkey as the PRG seed and,
during the i-th PRG iteration, taking the left or right half
of the PRG output according to the i-th bit of τ ’s binary
representation. The final PRG output represents the output
of the PPRF on τ .

HOLEPUNCH uses the AES block cipher as a building
block for the pseudorandom generator. Recall that, for any
pseudorandom function F : {0, 1}λ × {0, 1}n → {0, 1}m,
we can define a pseudorandom generator G : {0, 1}λ →
{0, 1}ℓm as G(s) = Fs(0)||Fs(1)|| . . . ||Fs(ℓ). Using this
fact, HOLEPUNCH constructs a length-doubling PRG G :
{0, 1}256 → {0, 1}512 as follows:

G(s) = AES(s, 0)||AES(s, 1)||AES(s, 2)||AES(s, 3)

with AES used in ECB mode, s being a 256 bit key, and
the inputs to each AES block being 128 bits in length.

Puncturing the PPRF: Puncturing the PPRF at a point τ
requires HOLEPUNCH to:

1) find the leaf pprf_node ℓ that evaluates τ ;
2) allocate space for two children pprf_node structures

at the end of the PPRF array;
3) zero out ℓ’s .key field, set the .type to indicate

that it is an internal node, and set .next.il and
.next.ir to point to its children indexes that were
added in Step 2;

4) proceed along the evaluation path from ℓ and repeat
Step 3 for every internal node along the path;

5) for every neighboring node along the evaluation path
from ℓ to τ , set the .key field to equal its correspond-

ing half of the PRG output in the PPRF tree, and set
the .type to indicate that it is a leaf node;

6) set the .type of leaf node at the end of the evaluation
path to indicate that it is punctured, zeroing out all of
its fields.

Given the procedure above, the PPRF key grows by at most
33 × 2 × PPRF_DEPTH bytes with each puncture. Specif-
ically, in Steps 2 and 3, we add two child pprf_nodes
where one corresponds to an internal node along the eval-
uation path, and the other corresponds to a neighboring
node along the evaluation path. We also modify the single
pprf_node ℓ that evaluated τ by zeroing out its .key
field and marking it as an internal node. Therefore, we are
only expanding the key by adding new internal nodes and
new neighbors, and modifying at most one node in the
existing PPRF key state. The PPRF key tree thus enables
efficient updating of the on-disk representation of the PPRF
key.

Periodic refreshes of the PPRF key (§5.5) allow
HOLEPUNCH to prevent the PPRF from growing unbound-
edly. HOLEPUNCH journals PPRF key rotations to make
them crash-consistent (§3.4.3).

5.2. Initialization

When initializing a block device, HOLEPUNCH reserves
the first portion of the device to store various cryptographic
keys, namely,

1) the full PPRF key,
2) the PPRF key tree which HOLEPUNCH uses to encrypt

and efficiently update the on-disk PPRF key,
3) the file key table, and
4) the HOLEPUNCH metadata header. The header contains

the NVRAM index where the master key is located
within the TPM. The header also contains the user
password salt that is passed to the KDF which generates
the key that encrypts the master key.

The amount of space required for the full PPRF key and the
PPRF key tree is governed by a configurable refresh interval
which specifies the maximum number of punctures that
the HOLEPUNCH device can handle before HOLEPUNCH
initiates a PPRF key refresh. For a 1TB hard disk, the refresh
involves reading, re-encrypting, and writing a ∼ 2GB file
key table; on a commodity SSD, the total refresh operation
with its large, sequential IOs will need just a handful of
seconds to complete. HOLEPUNCH derives the space re-
quirements for the file key table by asking the file system
how many inodes the disk will contain; for example, EXT4
allocates an inode for every 16KB of available disk space.

During initialization, HOLEPUNCH creates ⌈ total inodes
127 ⌉.

blocks in the file key table, initializing the encrypted keys
to random bits.6 HOLEPUNCH sets the tag of each key table
block to be the block number; the atomic tag counter is set
to the total number of file key table blocks. HOLEPUNCH

6. Recall that a block is 4096 bytes and HOLEPUNCH stores a 32-byte tag
and 127 32-byte file keys in each key table block. HOLEPUNCH requires a
key table block per 127 inodes, and thus needs ⌈ total inodes

127
⌉ table entries.

then generates a random PPRF key and master key, and
initializes the PPRF key tree with random bits.

5.3. File Access

HOLEPUNCH is a block device driver that sits between
a file system and the underlying storage device. For every
block I/O operation that is generated by the file system,
HOLEPUNCH inspects the Linux bio object associated with
the operation, and checks whether the associated inode
corresponds to a file. If so, and the IO operation is a file
read or write, HOLEPUNCH must do the following:

1) use the bio object to walk kernel data structures and
extract the relevant inode number i;

2) read the associated key table block s, discovering the
τs for the block and the encrypted per-file keys;

3) evaluate the PPRF on τ , generating kτs ;
4) use kτs to decrypt the key table block and obtain the

file key associated with inode i;
5) use the key to decrypt an incoming file block (for a

read) or encrypt an outgoing file block (for a write).
We use AES-CBC with ESSIV for encryption and
decryption.

Step 2 adds an extra disk IO, but HOLEPUNCH caches
recently-accessed key table blocks to eliminate the penalty
of actually reading such blocks from disk during accesses
to hot inodes. Also note that our HOLEPUNCH imple-
mentation caches hot file keys; during the handling of a
particular IO, hitting in the file key cache will avoid the extra
disk IO and the need to evaluate the PPRF. HOLEPUNCH is
able to cache many more file keys than ERASER due to the
lower memory footprint of HOLEPUNCH’s PPRF relative to
ERASER’s file key tree.

File reads and writes do not require HOLEPUNCH-level
journaling. However, a higher-level file system like EXT4
may journal written file data to provide file-system-level
crash consistency for that data.

5.4. Securely Deleting a File

Like ERASER, HOLEPUNCH intercepts file deletion
events using Linux’s kprobe interface [1]. In particular,
HOLEPUNCH interposes on the entry point of Linux’s
vfs_unlink function. When the kernel tries to enter
that function, Holepunch inspects the system call argu-
ments in the CPU registers and uses those arguments to
retrieve a pointer to the inode-to-delete. HOLEPUNCH
checks whether that inode corresponds to a file in the
HOLEPUNCH partition. If so, HOLEPUNCH will:

1) read the key table block associated with the relevant
inode number i, discovering the relevant τ ,

2) evaluating the PPRF on τ to generate kτ and using kτ
to decrypt the key table block in memory,

3) puncture the PPRF key at τ ,
4) generate a fresh, random key to associate with the

inode, and update the corresponding entry in the in-
memory key table block,

5) update the in-memory key table block’s τ to be the
current value of the atomic tag counter (incrementing
the atomic tag counter as a side effect),

6) re-encrypt the key table block using the output of the
PPRF on the new τ , and finally

7) write the new (i.e., punctured) PPRF key, the atomic
tag counter, and the encrypted key table block to disk.

Note that all of these steps occur before the normal
vfs_unlink code executes on inode i. If the machine
crashes after these steps occur, but before the file sys-
tem itself commits the delete operation through file-system
level mechanisms (e.g., file-system-level journaling), the
file system will believe that the inode i is still valid.7
However, attempts to read that a block from that file will
result in HOLEPUNCH decrypting the storage block with the
inode’s new key; thus, old file data will be unreadable,
in accordance with the user’s desire to securely delete the
file. Attempts to overwrite old file data will succeed, and
subsequent attempts to retrieve that newly-written data will
result in correctly-decrypted reads. These semantics are
aligned with those of traditional journaling file systems that
always ensure metadata consistency, but may return junk
data after a crash [21].

We now provide more detail about which happens when
HOLEPUNCH must puncture a point x from the input do-
main of the PPRF (§3.4.2). Let Sx be the on-disk block
containing the pprf_node that evaluates x, and let Snew

be the blocks containing the newly added pprf_nodes that
correspond to the nodes along the evaluation path of x (and
their neighbors). HOLEPUNCH must update Sx such that the
pprf_node that evaluates x is punctured (by zeroing out
the key) and the old on-disk copy of Sx is unrecoverable.
Additionally, HOLEPUNCH must write Snew to the end of
the on-disk array that represents the PPRF key (§3.4.2). Note
that Snew will contain at most two disk blocks (§3.4.2).

To accomplish these tasks, HOLEPUNCH refreshes the
keys in the ancestor layers of the PPRF tree along the
path from Sx to the root. Recall that the root of the tree
is the master key Kmaster and so this key must also be
refreshed. After rotating these keys, HOLEPUNCH then re-
encrypts Sx (after zeroing out the punctured node’s .key
field and setting its .type to indicate that it is punctured)
and re-encrypts its ancestors in the second and third layers of
the PPRF tree. HOLEPUNCH then writes these three blocks
to disk using three IOs. HOLEPUNCH must also encrypt and
write Snew to disk using at most two additional writes in
the case that Snew spans across a block boundary; Snew will
never span two or more block boundaries for any realistic
PPRF configurations. Thus, ignoring the journal overhead,
every puncture operation can be persisted to disk with at
most five disk IOs independent of the size of the on-disk
PPRF key. HOLEPUNCH only requires four IOs if Snew fits
inside a single disk block.

7. Recall that HOLEPUNCH does not encrypt inodes, so HOLEPUNCH-
level file deletion will not somehow re-encrypt an inode and make it
unreadable from the perspective of the file system.

The size of the PPRF tree is small. For example, consider
a 5TB storage device configured with a HOLEPUNCH refresh
interval of 50, 000 punctures; such a configuration would
incur roughly one PPRF key refresh per day for a typical
file system workload on a desktop [24]. The PPRF key itself
(i.e., the data that is encrypted by the keys in the leaves of
the PPRF tree) would have a maximum size of ∼ 73MB.8
Using an 128-ary PPRF tree, the PPRF tree would need to
store ∼ 20K keys in order to encrypt the entire 73MB of the
PPRF key.9 Since each key consumes 32 bytes, the PRRF
tree will only consume only ∼ 625KB of space.

5.5. Refreshing the PPRF Key

The size of the PPRF key is determined by (1) the
size of the input domain, (2) the security parameter λ,
and (3) the current number of punctured elements. The
key size has a logarithmic dependency on the size of the
input domain, and linear dependencies on λ and the number
of punctured elements. The number of punctured elements
grows whenever a file is deleted. To keep the PPRF key from
growing unboundedly, HOLEPUNCH periodically refreshes
the PPRF key, resetting its size to λ bits. A refresh consists
of generating a new PPRF key, re-encrypting all of the on-
disk key table blocks, and writing the master key to disk.
Section 3.4.3 describes how HOLEPUNCH performs these
updates in a crash-consistent way.

By default, our HOLEPUNCH implementation limits the
maximum size of the PPRF key to 50MB, automatically re-
freshing the key if it would exceed this size. With a λ = 256
bit security parameter and an N = 221 input domain, the
file system can generate approximately 50×220

33×21×2 ≈ 37, 000
deletions before the PPRF key must be refreshed. However,
in practice, our prototype implements an optimization called
deletion batching that allows HOLEPUNCH to handle many
more deletions before a key refresh is triggered. With dele-
tion batching, a deletion is recorded in the HOLEPUNCH
journal immediately, but can wait to issue the in-place
updates to HOLEPUNCH structures made in Steps 8 and
9 of Section 3.4.2. N file deletions that target inodes
covered by the same file key block only require a single
PPRF puncture, dramatically reducing HOLEPUNCH’s IO
overheads and allowing the PPRF to absorb more punctures
before needing a refresh. Applications like web browsers,
compilers, and databases often repeatedly create, access,
and then delete many files [7], [24], so deletion batching
is helpful for common workloads. Note that the batching
interval can be adjusted based on the setting. For example,
the average user may prefer a longer batch interval to reduce

8. To derive this number, first note that PPRF_DEPTH =

⌈log (2× 5×226 inodes
127

)⌉. Then consider that the key will grow by at most
(PPRF_DEPTH× sizeof(pprf_node)×2) bytes per deletion. Therefore,
for 50K deletions, we need 50, 000×2×23×33 bytes ≈ 73MB to store
the PPRF key.

9. The reason is that num_leaves = 73×220 bytes of PPRF key
4096 bytes per block . So, the

third layer of the tree will require num_leaves/128 keys, and the second
layer will require num_leaves/(128× 128) keys.

the frequency of PPRF key refreshes, while shorter batch
intervals can be used in more security critical settings.

6. Evaluation

Prior sections demonstrated why HOLEPUNCH provides
secure deletion (§4) and crash consistency (§3.4). In this
section, we show that HOLEPUNCH enjoys these benefits
while exhibiting similar IO performance as ERASER (§6.1)
but more scalable memory consumption (§6.2).

We evaluated HOLEPUNCH on a Linux machine (kernel
v4.7) with an 8-core AMD Ryzen 7 4700G CPU, 32GB of
RAM, and a 256 GB SSD. The machine layered the EXT4
file system atop HOLEPUNCH’s block driver.

6.1. Performance

We used the BONNIE++ benchmarking tool [18] for
measuring IO performance. We compared HOLEPUNCH to
ERASER (a secure deletion system with no crash consistency
but none of HOLEPUNCH’s journaling overhead) and DM-
CRYPT (Linux’s native encrypted block device that imple-
ments full-disk encryption but not secure deletion). The
three systems showed neglible performance differences for
workloads that read and wrote large files because these
workloads did not stress the deletion code paths. So, in
Table 1, we focus on tests involving many small files
(each between 256 and 512 bytes in size). The first set
of BONNIE++ experiments sequentially created, read the
metadata of, and then deleted 1,048,576 small files, whereas
the second set of BONNIE++ experiments randomly created,
stat’ed, and deleted 1,048,576 small files. We also ran a
simple script which sequentially cat’ed 10K small files
(each containing the string “test”) and then rm’ed each of
these files. Finally, we examined the performance of a kernel
compilation.

As shown in Table 1, HOLEPUNCH was at worst 3.87%
slower than ERASER for all but the BONNIE++ random
delete test. The reason was that random deletes rarely
benefited from HOLEPUNCH’s deletion batching optimiza-
tion (§5.5), forcing HOLEPUNCH to issue IOs for a PPRF
puncture during most deletes; as a result, HOLEPUNCH was
12.7% slower than ERASER for this experiment. However,
the kernel compilation test showed that for more realistic
workloads, HOLEPUNCH could indeed leverage deletion
batching to offer very similar performance to ERASER.

We also note that the BONNIE++ experiments put more
pressure on the kernel’s in-memory buffer cache. The in-
creased pressure led to more swapping between the disk
and the buffer cache, increasing contention for the disk’s
finite IO bandwidth. The cat and make benchmarks were
comparatively more CPU-intensive (and thus less sensitive
to how the three approaches for encrypted storage used the
disk’s bandwidth).

1 TB 2 TB 4 TB 8 TB 16 TB 32 TB
Block device size

0

500

1000

1500

2000

M
em

or
y

Fo
ot

pr
in

t (
M

eg
ab

yt
es

)

Eraser
Holepunch (10K del/refresh)
Holepunch (50K del/refresh)
Holepunch (100K del/refresh)
Holepunch (500K del/refresh)

Figure 6. Baseline memory consumption of ERASER compared to various
HOLEPUNCH configurations.

6.2. Memory Usage

In Figure 6, we compare the baseline memory footprint
of HOLEPUNCH and ERASER. Recall that ERASER must
store the upper layers of its FKT in memory or pay IO
access costs that are logarithmic in the number of inodes.
The FKT’s upper layers scale linearly with the size of the
number of inodes. Assuming one inode for every 16KB
of storage space, a 1 terabyte storage device will have
240/214 = 226 inodes. Since each ERASER FKT entry
is padded to 64 bytes and encrypts a block of 64 nodes, the
total memory footprint of a 1 TB drive is approximately 65
MB.

Each HOLEPUNCH file key block contains 127 keys
since we have a 32-byte tag and can fit at most 127 keys into
the remaining space. Therefore, a minimum input domain
size of 220 is required to evaluate tags on ⌈226/127⌉ file
key blocks. HOLEPUNCH doubles this number to 221 since
it needs extra tags as new files are created and old ones
are deleted. So, HOLEPUNCH’s PPRF tree has a depth of
21 for a 1TB storage device. In the worst case, the PPRF
tree grows by 2×PPRF_DEPTH×33 bytes, where 33 bytes
is the size of each PPRF node as described in Section 5.1.
Thus, for a 1TB drive, HOLEPUNCH generates a worst case
of approximately 1.4 KB of in-memory key growth per
deletion. As shown in Figure 6, HOLEPUNCH’s memory
consumption scales much better than that of ERASER as the
size of the storage device grows. While the reduced memory
pressure is more noticeable on larger file systems, we note
that modern laptops already support 4TB drives, and we
anticipate a continued increase in storage sizes.

Unsurprisingly, for a given disk size, HOLEPUNCH’s
worse-case memory overheads get larger for less aggressive
schedules of PPRF rotation. With less aggressive scheduling,
the in-memory PPRF representation is allowed to grow
larger before it is pruned.

TABLE 1. PERFORMANCE BENCHMARK OF DM-CRYPT VS. ERASER VS. HOLEPUNCH

DM-CRYPT ERASER HOLEPUNCH
BONNIE++ Experiments (n = 100) Avg. (files/sec) Std. Dev. Avg. (files/sec) Std. Dev. Avg. (files/sec) Std. Dev.
Sequential Create 61605 48 57759 957 56785 697
Sequential Stat 95997 1147 87748 1238 84363 1987
Sequential Delete 62454 785 46370 888 45716 669
Random Create 61974 298 58104 982 56993 692
Random Stat 98583 1243 88575 2195 86965 2876
Random Delete 49755 502 40345 725 35210 810

Timed Experiments (n = 5) Avg. (sec) Std. Dev. Avg. (sec) Std. Dev. Avg. (sec) Std. Dev.
cat 10K files 12.76 0.07 12.64 0.09 12.15 0.07
rm 10K files 12.55 0.02 12.8 0.06 12.64 0.09
make Linux Kernel 3276.22 19.26 3246.71 3.27 3255.52 2.41

6.3. Crash-Consistency

We experimentally verified the fault tolerance of
HOLEPUNCH. We used a debugger to hook into the kernel
and set breakpoints at important code locations relevant
to key synchronization (e.g., PPRF key refreshes). After
pausing execution at such a breakpoint, we would forcibly
power off the system and verify that the file system was
consistent post-reboot.

7. Discussion

Metadata: HOLEPUNCH provides secure deletion for file
data, but information can leak through metadata as well. For
example, in an EXT4 file system, a directory is essentially
a file whose data blocks contain (file_name, inode_
number) pairs. Securely deleting the data belonging to
file f does not securely delete f ’s metadata in a parent
directory’s data block. Extending HOLEPUNCH to securely
delete such metadata is left for future work.

Usability: In the file systems used by popular consumer
OSes like Windows and macOS, deletion is typically re-
versible, at least to some extent. For example, on Windows,
a deleted file goes to a “trash can” and can be recovered
until the trash can is explicitly emptied by the user (or
implicitly emptied by the system if disk space becomes
low). Deletion undo is helpful if a user accidentally deletes
a file, but it incurs an obvious risk of information leakage
(§2). As a middle ground, a HOLEPUNCH-style system could
incorporate a grace period in which a file deletion would not
become a secure deletion until a grace period had passed.

HOLEPUNCH inherits ERASER’s trigger for initiating a
secure deletion: HOLEPUNCH securely deletes file f only
after observing a system call that explicitly removes f ’s
inode. With this approach, overwriting a file, e.g., using
mv fileA fileB to overwrite the contents of fileB,
will not securely delete fileB. Extending HOLEPUNCH to
support such operations is left for future work.

8. Conclusion

Secure deletion provides users with confidence that a
removed file is actually unrecoverable. However, implement-
ing secure deletion in software is difficult because mod-
ern storage devices may arbitrarily manipulate the physical
blocks that underlie the logical block interface. Crypto-
graphic erasure avoids the problem by only sending en-
crypted blocks to disk and discarding the keys for deleted
blocks. However, for a cryptographic erasure scheme to be
practical, it must guarantee crash consistency. HOLEPUNCH
provides such a scheme. HOLEPUNCH uses puncturable
pseudorandom functions to efficiently manage key data
(both in-memory and on-disk), and uses a journaling scheme
to provide crash-consistent atomic updates of cryptographic
material and the file data protected by those keys. Experi-
ments show that HOLEPUNCH provides similar IO perfor-
mance to the prior state-of-the-art system for cryptographic
erasure, while having more scalable consumption of RAM as
disk size increases. Thus, we believe that HOLEPUNCH is the
first practical system for secure deletion at a file granularity.

Acknowledgements

We thank the anonymous reviewers for their feedback.
We also thank Salil Vadhan for many insightful discussions.

This work was supported in part by Cooperative Agree-
ment CB20ADR0160001 with the Census Bureau, and in
part by Salil Vadhan’s Simons Investigator Award.

References

[1] Kernel probes (kprobes) - the linux kernel documentation. https:
//docs.kernel.org/trace/kprobes.html.

[2] ARPACI-DUSSEAU, R. H., AND ARPACI-DUSSEAU, A. C. Operat-
ing Systems: Three Easy Pieces. https://pages.cs.wisc.edu/∼remzi/
OSTEP/, 2020, ch. Chapter 42: Crash Consistency–FSCK and Jour-
naling.

[3] BONEH, D., AND WATERS, B. Constrained pseudorandom functions
and their applications. In International conference on the theory and
application of cryptology and information security (2013), Springer,
pp. 280–300.

[4] BOYLE, E., GOLDWASSER, S., AND IVAN, I. Functional signatures
and pseudorandom functions. In International workshop on public
key cryptography (2014), Springer, pp. 501–519.

[5] CARD, R. Design and implementation of the second extended
filesystem. In Proc. First Dutch International Symposium on Linux,
Dec. 1994 (1994).

[6] CRESCENZO, G. D., FERGUSON, N., IMPAGLIAZZO, R., AND
JAKOBSSON, M. How to forget a secret. In Annual Symposium on
Theoretical Aspects of Computer Science (1999), Springer, pp. 500–
509.

[7] ELLARD, D., AND LEDLIE, J. Passive {NFS} tracing of email and
research workloads. In 2nd USENIX Conference on File and Storage
Technologies (FAST 03) (2003).

[8] EUROPEAN UNION. General Data Protection Regulation (GDPR).
https://gdpr-info.eu/, 2016.

[9] GOLDREICH, O. Foundations of cryptography: volume 2, basic
applications. Cambridge university press, 2009.

[10] GOLDREICH, O., GOLDWASSER, S., AND MICALI, S. How to
construct random functions. Journal of the ACM (JACM) 33, 4 (1986),
792–807.

[11] GUPTA, A., KIM, Y., AND URGAONKAR, B. DFTL: A Flash Transla-
tion Layer Employing Demand-based Selective Caching of Page-level
Address Mappings. In Proceedings of ASPLOS (2009), pp. 229–240.

[12] HASSON, J. Va toughens security after pc disposal blunders. Federal
Computer Week 26 (2002).

[13] IEEE 1149.1 WORKING GROUP. IEEE Std. 1149.1: Standard Test
Access Port and Boundary-Scan Architecture. https://grouper.ieee.
org/groups/1149/1/, 2023.

[14] IERUSALIMSCHY, R., DE FIGUEIREDO, L. H., AND CELES FILHO,
W. The implementation of lua 5.0. J. Univers. Comput. Sci. 11, 7
(2005), 1159–1176.

[15] KIAYIAS, A., PAPADOPOULOS, S., TRIANDOPOULOS, N., AND
ZACHARIAS, T. Delegatable pseudorandom functions and appli-
cations. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security (2013), pp. 669–684.

[16] KORNBLUM, J. D. Implementing BitLocker Drive Encryption for
Forensic Analysis. International Journal of Digital Forensics and
Incident Response 5, 3–4 (2009), 75–84.

[17] MEIJER, C., AND VAN GASTEL, B. Self-encrypting Deception:
Weaknesses in the Encryption of Solid State Drives. In Proceedings
of the IEEE Symposium on Security and Privacy (2019), pp. 72–87.

[18] MER-TOOLS. Mer-tools/bonnie: Benchmark suite.

[19] MILAN BROZ. dm-crypt: Linux kernel device-mapper crypto target.
https://gitlab.com/cryptsetup/cryptsetup/-/wikis/DMCrypt, 2023.

[20] ONARLIOGLU, K., ROBERTSON, W., AND KIRDA, E. Eraser: Your
data won’t be back. In 2018 IEEE European Symposium on Security
and Privacy (EuroS&P) (2018), IEEE, pp. 153–166.

[21] PRABHAKARAN, V., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Analysis and evolution of journaling file systems.
In USENIX Annual Technical Conference, General Track (2005),
vol. 194, pp. 196–215.

[22] REARDON, J., BASIN, D., AND CAPKUN, S. Sok: Secure data
deletion. In 2013 IEEE symposium on security and privacy (2013),
IEEE, pp. 301–315.

[23] REARDON, J., RITZDORF, H., BASIN, D., AND CAPKUN, S. Secure
data deletion from persistent media. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security (2013),
pp. 271–284.

[24] ROSELLI, D., LORCH, J. R., AND ANDERSON, T. E. A compari-
son of file system workloads. In 2000 USENIX Annual Technical
Conference (USENIX ATC 00) (2000).

[25] SAHAI, A., AND WATERS, B. How to use indistinguishability
obfuscation: deniable encryption, and more. In Proceedings of the
forty-sixth annual ACM symposium on Theory of computing (2014),
pp. 475–484.

[26] STATE OF CALIFORNIA. California Consumer Privacy Act (CCPA).
https://oag.ca.gov/privacy/ccpa, 2018.

[27] STEVENS, C. E. Technical Committee T13 AT Attachment: Working
Drafts. https://www.t13.org/project-working-drafts?page=1, 2020.

[28] TRUSTED COMPUTING GROUP. TCG Storage Security Subsystem
Class: Opal. https://trustedcomputinggroup.org/wp-content/uploads/
TCG-Storage-Opal-SSC-v2p02-r1p0 pub24jan2022.pdf, January 24,
2022.

[29] TRUSTED COMPUTING GROUP. TPM 2.0 Library. https://
trustedcomputinggroup.org/resource/tpm-library-specification/, 2023.

[30] VILLANO, M. Hard-drive magic: Making data disappear forever. New
York Times 2 (2002).

Appendix A.
Security Proof

We provide the full API for the real functionality Σ
used by Holepunch in Figures 7 and 8 and the API
for ideal functionality F in Figure 2. Both functionalities
include subroutines and constants that we describe here.
Additionally, Σ makes use of an IND-CPA secure symmetric
encryption scheme (E,D), a puncturable pseudorandom
function F , and a cryptographic hash function H modeled
as a random oracle.

Subroutines and constants.
• RFSH: a constant that specifies how many deletions can

be applied before a PPRF refresh occurs.
• K: the constant 0 used to indicate the index in S storing

the master key Kmaster .
• PPRF: the constant 1 used to indicate the index in S

storing the PPRF key KPPRF .
• META: the constant 2 used to indicate the index in S

storing metadata about the file system capacity.
• CTR: the constant 3 used to indicate the index in S

storing the atomic tag counter.
• KTREE: the constant 4 used to indicate the index in S

storing the PPRF key tree data structure.
• DELS: the constant 5 used to indicate the index in S

storing the current number of punctures on the current
PPRF key.

• newKeyTree(Kmaster , KPPRF): creates the PPRF
key tree data structure that stores KPPRF encrypted
under the IND-CPA secure scheme (E,D) and using
Kmaster as the root.

• getFile(i): accepts a file identifier and retrieves from
I the encrypted file associated with i if it exists, and
⊥ otherwise.

• randbits(λ): returns λ uniformly random bits
• getKeyBlock(i): accepts a file identifier i and re-

turns the tuple (es, j, τ) corresponding to an encrypted
file key block es, an index j into the file key block that
points to the location of the file key associated with i,
and a tag τ assigned to the block.

• assignTag(es, τ): accepts an encrypted file key
block es and a tag τ and assigns the tag τ to the block
(via writing to the header of es)

Setup(λ,N)

1 : S[K] = randbits(λ)

2 : S[PPRF] = randbits(λ)

3 : num blocks = ⌈N/127⌉
4 : S[META] = (N, num blocks)
5 : S[CTR] = 0

6 : S[KTREE] = newKeyTree(S[K], S[PPRF])

7 : I.append(“kt”||S[KTREE])
8 : for s = 1 . . . num blocks :
9 : ds = randbits(127 · λ)

10 : es = F (S[PPRF], S[CTR])

11 : assignTag(es, S[CTR])

12 : I.append(“blk”||S[CTR]||es)
13 : S[CTR] = S[CTR] + 1

14 : return

Write(i, f)
1 : (N,) = S[META]

2 : if i ≥ N :

3 : return ⊥
4 : (es, j, τ) = getKeyBlock(i)

5 : kτ = F (S[PPRF], τ)

6 : ds = D(kτ , es)

7 : ki = ds[j]

8 : c = E(ki, f)

9 : I.append(“file”||i||c)
10 : return

Read(i)
1 : c = getFile(i)

2 : if c == ⊥ then

3 : return ⊥
4 : (es, j, τ) = getKeyBlock(i)

5 : kτ = F (S[PPRF], τ)

6 : ds = D(kτ , es)

7 : ki = ds[j]

8 : f = D(ki, c)

9 : return f

Delete(i)

1 : c = getFile(i)

2 : if c == ⊥ then

3 : return ⊥
4 : (es, j, τ) = getKeyBlock(i)

5 : kτ = F (S[PPRF], τ)

6 : ds = D(kτ , es)

7 : k′
f = randbits(λ)

8 : ds[j] = k′
f

9 : kτ ′ = F (S[PPRF], S[CTR])

10 : es ′ = E(kτ ′ , ds)

11 : assignTag(es ′, τ ′)

12 : S[CTR] = S[CTR] + 1

13 : S[PPRF] = puncture(S[PPRF], τ)

14 : Knew = randbits(λ)

15 : keyTree = newKeyTree(Knew , S[PPRF])

16 : JournalDelete(keyTree, es ′, S[K])

17 : I.append(“kt”||keyTree)
18 : I.append(“ctr”||S[CTR])
19 : I.append(“blk”||S[3]||es ′)
20 : S[K] = Knew

21 : S[DELS] = S[DELS] + 1

22 : if S[DELS] > RFSH :

23 : Refresh()

24 : return i

Figure 7. The real-world secure deletion scheme Σ used internally by Holepunch to securely delete file data while ensuring crash consistency. We use
the common memory locations S[K] to represent the TPM slot that stores the master key, S[PPRF] to represent the area in RAM that stores the PPRF,
S[META] to represent the area in RAM that stores metadata such as the file system capacity, S[CTR] to represent the area in RAM that stores the tag
counter, and S[KTREE] to represent the area in RAM that stores the current state of the PPRF key tree. We show the journaling logic of the API along
with the procedure for refreshing a PPRF key in Figure 8.

• puncture(KPPRF , τ): accepts a PPRF key and a tag
τ and applies the PPRF’s puncture operation to obtain
a new key K∗

PPRF punctured at the point τ .
• stored(i) accepts a file identifier i and checks if i is

associated with a currently stored file. This works by
simply inspecting the contents of I which fully defines
the set of identifiers associated with currently stored
files.

• I .append(data) writes data to the end of the insecure
(append-only) storage I .

JournalRotate(Knew , keyTree)

1 : I.append(“jrnl kt”||keyTree)
2 : I.append(“jrnl khash”||H(S[K]))

3 : I.append(“jrnl key”||E(S[K],Knew)

4 : return

JournalDelete(keyTree, es ′,Knew)

1 : I.append(“jrnl kt”||keyTree)
2 : I.append(“jrnl khash”||H(S[K]))

3 : I.append(“jrnl key”||E(S[K],Knew)

4 : I.append(“jrnl ctr”||S[CTR])
5 : I.append(“jrnl blk”||S[CTR]||es ′)
6 : return

JournalRefresh(K ′
PPRF)

1 : I.append(“jrnl rfsh”||E(S[K],K′
PPRF))

2 : return

Refresh()

1 : Knew = randbits(λ)

2 : K′
PPRF = randbits(λ)

3 : JournalRefresh(K′
PPRF)

4 : (N,num blocks) = S[META]

5 : for t = 1 . . .num_blocks :

6 : (es, j, τ) = getKeyBlock(t)

7 : kτ = F (S[PPRF], τ)

8 : ds = D(kτ , es)

9 : kt = F (K′
PPRF , t)

10 : es ′ = E(kt, ds)

11 : assignTag(es ′, t)

12 : I.append(“blk”||t||es ′)
13 : S[CTR] = num blocks + 1

14 : keyTree = newKeyTree(Knew ,K
′
PPRF)

15 : JournalRotate(Knew , keyTree)

16 : S[K] = Knew

17 : S[PPRF] = K′
PPRF

18 : return

Figure 8. The internal journaling and refresh logic in the real-world secure deletion functionality Σ.

Simulator Construction. Given access to both S and I from
E’s interaction with the ideal functionality F , the simulator
runs an internal instance of Σ (which we call ΣSim) to
generate a new (S′, I ′) pair. By design, each non-empty
memory location in S (excluding S[0]) contains either non-
deleted messages or the constant 0. Additionally, I contains
an ordered sequence of (“wr”||i) and (“del”||i) entries that
encode the API requests issued by E .

Sim starts at the beginning of I and one-by-one does
the following for every entry ∈ I . If entry = (“wr”||i),
then Sim checks if the associated file f was later deleted
by E . To do this, Sim searches to the end of I looking
for an entry of the form (“del”||i). If no such entry exists,
then Sim learns f by looking at S[i + 1] and can issue a
Write(i, f) call to ΣSim . Otherwise, the file was deleted
and Sim instead issues a Write(i, 0n) call to ΣSim . Lastly,
if entry = (“del”||i), then Sim issues a Delete(i) to
ΣSim . After iterating over all of I , the simulator takes
the (S′, I ′) pair from ΣSim and runs Adv(1λ, S′, I ′) and
outputs whatever Adv outputs.

Lemma A.1 (Efficient Simulator). Sim runs in time
O(poly(λ)).

Proof. Since E runs in time O(poly(λ)), I can be appended
at most O(poly(λ)) times and thus |I| ≤ O(poly(λ)).
Observe that Sim loops over and processes each entry in
I . For every entry, Sim issues either a Write or a Delete
instruction to ΣSim , each of which runs in a constant
number of steps. Furthermore, in the worst case, the entry
is of the form (“wr”||i) and Sim must first search to the
end of I to look for any associated Delete operations,

which takes time at most O(|I|) = O(poly(λ)). There-
fore, in the worst case, processing all of I takes time
O(poly(λ)) · O(poly(λ)) = O(poly(λ)). Finally, the sim-
ulator obtains (S′, I ′) from ΣSim and runs Adv(1λ, S′, I ′).
Since Adv runs in time O(poly(λ)) the total run-time of
Sim remains O(poly(λ)).

Theorem A.2 (HOLEPUNCH achieves secure deletion of
files). The HOLEPUNCH scheme Σ described in Figures 7
and 8 achieves secure deletion of files (Definition 4.1) when
F is a puncturable PRF, (E,D) is an IND-CPA secure
encryption scheme, and H is modeled as a random oracle.

Proof. Observe that from the perspective of the environment
E , both the real and ideal games are identical up until step
6 in the games. This follows from the fact that E is only
sending requests to read, write, and delete files, and any
observable values that E sees up until this point were chosen
by E itself. During step 6, the arrays (S, I) are given to either
Adv or Sim which then return an output to E . Since E’s
view is identical in both games up to step 6, it follows that
if the output of Adv and Sim in step 6 are computationally
indistinguishable then

|Pr[RealΣE,Adv (λ) = 1]−Pr[IdealFE,Sim(λ) = 1]| ≤ negl(λ)

By construction, Sim exactly replays E’s interaction to
a fresh instance of Σ (which we denote ΣSim), modulo the
Write(i, f) operations on files f that were later deleted by
E . For the deleted files, Sim instead issues a Write(i, 0n)
instruction to ΣSim . Finally, Sim takes the arrays (S′, I ′)
from the interaction with ΣSim and outputs Adv(1λ, S′, I ′).
We therefore need to show that the (S′, I ′) pair associated
with ΣSim is computationally-indistinguishable from the

(S, I) pair associated with Σ in the real game. We proceed
using a series of hybrids.

Hybrid 0. This is the RealΣE,Adv (λ) game defined in
Figure 3.

Hybrid 1. This is the same game as RealΣE,Adv (λ) except
for the following. Let f be the first file stored by E that
is later deleted by a Delete instruction, and let i be the
file’s associated tag. Then in Hybrid 1 we replace E’s first
Write(i, f) call with a Write(i, 0n) call instead. We give a
series of simple hybrids to show that Hybrid 0 and Hybrid
1 are indistinguishable.

Observe that the only difference between the (S, I) out-
put by Σ in Hybrid 1 versus the (S, I) output by Σ in Hybrid
0 is that (“file”||i||E(ki, 0

n)) is written to I instead of
(“file”||i||E(ki, f)) as in Hybrid 0 (see lines 8 and 9 of the
Write pseudocode in Figure 7). But for any PPT adversary,
as long as ki is indistinguishable from random, then by
the IND-CPA security of (E,D), the ciphertexts E(ki, f)
and E(ki, 0

n) are computationally indistinguishable from
random (and hence from each other). Observe that ki is a
uniformly random key (line 9 of Setup) and is only ever
written to I as (“blk”||τ ||E(kτ , ds)) (lines 10-12 of Setup)
where ds is the file key block containing ki, and τ is the
tag associated with the block. By the IND-CPA security of
(E,D), the ciphertext E(kτ , ds) is indistinguishable from
random as long as kτ is indistinguishable from random. We
therefore need to show that the key kτ is pseudorandom.
Recall that kτ = F (KPPRF , τ). Furthermore, for every PPT
adversary Adv , even if Adv has access to K∗

PPRF punctured
at the point τ , the value F (K∗

PPRF , τ) is indistinguishable
from random by the psuedorandom at punctured points
property (§3.1). Note that Σ only ever writes an unpunctured
version of KPPRF to I using the key tree data structure
(lines 6 and 7 of Setup). The root of the key tree is a
master key, that we will denote Kold . The key tree data
structure uses Kold to encrypt the keys in layer 2, which in
turn encrypts the keys in layer 3, which finally encrypt the
leaves representing KPPRF . After puncturing the PPRF key
at a point τ , the PPRF subkey that evaluated τ is zeroed out
and re-encrypted under a fresh key in layer 3 of the tree,
which in turn is re-encrypted under a fresh key in layer 2
of the tree, which is finally re-encrypted under a new root
(master) key Knew . Therefore, by the IND-CPA security
of (E,D), and a series of simple hybrid arguments, the
KPPRF is indistinguishable from random as long as Kold

is indistinguishable from random.
Finally, the master key Kold is only ever stored in S[K].

Additionally, the value H(Kold) is written to I during the
journaling operation (line 2 of JournalDelete in Figure 7).
However, after the Delete(i) call, the master key is rotated to
a new uniformly random key Knew such that S[K] = Knew .
Thus, for any PPT adversary Adv that receives (S, I) from
Σ, the probability that Adv queries H on Kold is negligible
and therefore H(Kold) is indistinguishable from random. It
follows that for any PPT adversary that receives (S, I) in
Hybrid 1, the key Kold is indistinguishable from random,
and thus Hybrid 0 and Hybrid 1 are indistinguishable.

Hybrid 2. This is the same as Hybrid 1 except now we also
replace the second file that is stored and later deleted by
E with the all zeros string, i.e., replace the corresponding
Write(i, f) call with a Write(i, 0n) call. The proof that
Hybrids 1 and 2 are indistinguishable follows almost
exactly the same as the proof that Hybrid 0 and Hybrid 1
are indistinguishable. The one difference is that we must
account for the fact that the ciphertext E(Kold ,K

′
old) is

written to I (line 3 of JournalDelete) after the deletion
operation of the first file where Kold is original master
key in Hybrid 1, and K ′

old is the newly rotated master key
from Hybrid 1, i.e., K ′

old is Knew from Hybrid 1 that is
stored in S[K] after deleting the first file. Thus, to show
that K ′

old is pseudorandom, we must additionally show that
E(Kold ,K

′
old) is indistinguishable from random. Because

we showed that Kold is indistinguishable from random in
Hybrid 1, by the IND-CPA security of (E,D) it follows
that E(Kold ,K

′
old) is indistinguishable from random in

Hybrid 2.

Hybrid 3 through d. Let d be the total number of files
that were stored and later deleted in E’s interaction. Then
for j = 3 . . . d, Hybrid j is identical to Hybrid j− 1 except
that we additionally take the jth deleted file and replace its
entry in I with (“file”||i||E(ki, 0

n)) where i is the file’s
identifier. Each hybrid uses the same argument as Hybrid 2
to show that Hybrid j and Hybrid j−1 are computationally
indistinguishable.

Hybrid (d + 1). This is the IdealFE,Sim(λ) game. In
IdealFE,Sim(λ), the internal state of the ideal functionality
(S, I) is given to Sim. However, Sim then constructs
(S′, I ′) by interacting with a fresh instance of the real
functionality ΣSim such that (S′, I ′) exactly matches the
(S, I) pair given to Adv in Hybrid d. Finally, Sim runs
Adv(1λ, S′, I ′) which outputs the same output as Adv in
Hybrid d. It follows that Hybrid d and Hybrid (d + 1) are
identically distributed.

By the indistinguishability of Hybrid 0 and Hybrid
(d + 1) we have shown that the real-world functionality Σ
emulates the ideal functionality F (Figure 2).

