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Abstract. The Automatic Certificate Management Environment pro-
tocol (ACME) has significantly contributed to the widespread use of
digital certificates in safeguarding the authenticity and privacy of Inter-
net data. These certificates are required for implementing the Transport
Layer Security (TLS) protocol. However, it is well known that the cryp-
tographic algorithms employed in these certificates will become insecure
with the emergence of quantum computers. This study assesses the chal-
lenges in transitioning ACME to the post-quantum landscape using Post-
Quantum Cryptography (PQC). To evaluate the cost of ACME’s PQC
migration, we create a simulation environment for issuing PQC-only and
hybrid digital certificates. Our experiments reveal performance draw-
backs associated with the switch to PQC or hybrid solutions. However,
considering the high volume of certificates issued daily by organizations
like Let’s Encrypt, the performance of ACME is of utmost importance.
To address this concern, we propose a novel challenge method for ACME.
Compared to the widely used HTTP-01 method, our findings indicate an
average PQC certificate issuance time that is 4.22 times faster, along with
a potential reduction of up to 35% in communication size.

Keywords: Post-Quantum Cryptography · ACME Protocol · Certifi-
cate Management

1 Introduction

Encrypted data channels play a crucial role in ensuring data privacy on the
Internet. One of the most widely used protocols for implementing these chan-
nels is the Transport Layer Security (TLS) [21]. However, the rapid and reliable
issuance of digital certificates at minimal cost and the management of associ-
ated cryptographic keys throughout their lifecycle presents a bottleneck in the
large-scale adoption of TLS. The widespread deployment of the protocol became
possible only with the emergence of the Let’s Encrypt project. Let’s Encrypt’s
Certificate Authority (CA) has issued over 1 billion digital certificates and con-
tinues to experience substantial growth [6]. The success of Let’s Encrypt can
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be attributed to the automation of all necessary steps for issuing and renewing
digital certificates. The automation of certificate issuance is facilitated by the
Automatic Certificate Management Environment (ACME) protocol [1].

TLS and ACME protocols rely on classical cryptography to guarantee their
security properties. However, the existence of Shor’s quantum algorithm [27]
gives an expiry date to the current protocols dated at the time a Cryptograph-
ically Relevant Quantum Computer (CRQC) [13] exists. This computer could
compromise digital certificates and Key Exchange (KEX) mechanisms based on
classical Public Key Cryptography (PKC). Consequently, attackers could collect
transmitted data today with the anticipation of decrypting it using a CRQC in
the future, a scenario known as "store-now-decrypt-later" attacks [3]. Such at-
tacks would impact the security of existing protocols and applications dependent
on TLS before a CRQC exists.

It is necessary to replace vulnerable algorithms to mitigate the quantum
threats to classical cryptography. The cryptographic algorithms that can exe-
cute on a classical computer and offer security against attackers with access to a
CRQC are called Post-Quantum Cryptography (PQC) [2]. The security of these
cryptographic schemes relies on mathematical problems with no known efficient
solutions for both quantum and classical computation. There is currently a signif-
icant global effort to evaluate and standardize post-quantum schemes. Regarding
the adoption of these schemes, two primary strategies have emerged. The first
strategy involves directly replacing classical algorithms with post-quantum ones.
The second strategy, "hybrid mode" [3], utilizes both classical and post-quantum
algorithms. Proponents of hybrid methods argue that post-quantum algorithms
are relatively new and have not undergone the same level of scrutiny as clas-
sical algorithms. Their reasoning states that by including a classical algorithm
alongside a post-quantum one, the security properties of the cryptographic pro-
tocol can still be guaranteed in case of a flaw or crypto-analytical attack on the
post-quantum algorithm.

The transition from classical to PQC presents several challenges. One of the
most relevant ones is the significantly increased size of cryptographic objects,
such as public keys and signatures, and their impact on the protocol perfor-
mance. For example, certain post-quantum algorithms like Classic McEliece are
impractical for regular TLS handshakes due to the size of their public keys. To
address this issue, researchers have conducted numerous benchmarks of PQC in
network protocols like TLS [28,18], and others have proposed protocol changes
to better accommodate PQC [24,25]. Such changes and evaluations are crucial to
understand the performance implications imposed by PQC in advance. There-
fore, adapting and evaluating protocol changes must be undertaken prior to the
arrival of quantum computers to ensure a smooth transition to PQC.

Although several PQC-based TLS proposals and experiments have been pro-
posed, we could not find any proposal for PQC in the context of ACME. There-
fore, the impacts of using post-quantum schemes in such a scenario still need
to be explored. In this paper, we address this gap by providing the following
contributions:
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– We integrate PQC schemes, namely Dilithium, Falcon, and Sphincs+, along
with hybrid modes, into ACME implementations and the required libraries.
Our modified implementations are publicly available.

– We evaluate ACME using geographically-distant peers, where the server is
close to the Let’s Encrypt CA location. Such a distance allows us to compare
and estimate the impact of PQC on certificate issuance in a more realistic
scenario.

– To expedite the certificate issuance process, we propose an alternative ACME
challenge which can be used for issuing both classical and PQC certificates.

– We analyze the time and communication costs associated with our proposed
challenge, demonstrating that it reduces both issuance time and byte cost
for post-quantum cryptographic objects.

The remainder of this paper is organized as follows. Section 2 presents the
necessary background concepts for understanding this work. Section 3 discusses
quantum threats in ACME, the details of PQC integration, and the evalua-
tion methodology. Section 4 presents our proposed ACME challenge design, its
evaluation, and a discussion of the obtained results. Finally, Section 5 provides
concluding remarks and outlines potential future work.

2 Background

First, we present the main characteristics of TLS and ACME. After that, we
describe PQC concepts and the standardization process conducted by NIST.
Finally, we conclude this section by showing related works about PQC adoption
in network protocols.

2.1 TLS version 1.3

Formerly known as Secure Sockets Layer (SSL), the TLS protocol, in its current
version (1.3), is described in RFC 8446 [21]. TLS provides a communication
channel with confidentiality and authentication assurances between two peers: a
client (e.g., a browser) and a server (e.g., a web server). TLS requires the server
to provide authentication credentials when establishing a connection, while client
authentication is optional.

The TLS 1.3 specification divides the protocol into three parts: (1) a Hand-
shake protocol; (2) a Record protocol; and (3) an Alert protocol. The first part
covers how the two communicating peers establish a session, aided by an Au-
thenticated Key Exchange (AKE) and cryptographic computations ordered in a
Key Schedule [21]. The second part covers how peers use their session data (and
keys) to exchange application data securely, typically utilizing Authenticated
Encryption with Associated Data (AEAD) algorithms. The last part covers how
the peers should handle alert messages and protocol exceptions.

The mechanics of a complete TLS 1.3 handshake are as follows. First, a TLS
client initiates the handshake by sending a ClientHello message. The message
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can include several pieces of information, such as supported algorithms, cipher
suites, and an extension message called keyshare. The keyshare is an ephemeral
Elliptic Curve Diffie–Hellman (ECDH) public key used to create shared secrets
for deriving symmetric keys. Upon receiving the ClientHello, the server re-
sponds with a set of messages: ServerHello, Certificate, CertificateVer-
ify, EncryptedExtensions, and Finished. The server hello includes informa-
tion about algorithm selection, the corresponding ECDH keyshare, and addi-
tional extensions (if available). The server provides a set of certificates, a digital
signature, and an HMAC [15] to authenticate over the handshake transcript data
(Certificate, CertificateVerify, and Finished messages, respectively). Ex-
cept for the ServerHello, all messages are encrypted using keys derived from
the keyshare pair. The EncryptedExtensions message, sent immediately after
the ServerHello, is also encrypted.

The client receives the server’s response and processes it. It verifies the hand-
shake signature, validates the certificates, and the Finished message. Addi-
tionally, the client checks if the server’s reply includes the optional Certifi-
cateRequest message. If it does, the client will authenticate using a certificate
and a handshake signature with its private key. Otherwise, it sends the manda-
tory Finished message and any desired application data to the server, con-
cluding the handshake and initiating secure communication. TLS is commonly
used in upper-layer network protocols like HTTPS and network applications like
OpenVPN. In this work, we focus on using TLS by the ACME protocol.

2.2 ACMEv2 Characteristics

The Automated Certificate Management Environment (ACME) protocol is de-
fined in RFC 8555 [1]. ACME offers services for verifying identity over the In-
ternet and managing certificates. The primary objective of the protocol is to
minimize the need for human intervention in configuring web servers and han-
dling certificates. ACME enables an ACME server (controlled by an Issuer CA)
to issue a Domain-Validated (DV) digital certificate to the ACME client. The
issuance and domain validation processes are fully automated. Currently in its
version 2, ACME plays a crucial role in Let’s Encrypt, one of the largest CAs
on the Internet. Moreover, many certification authorities and PKI vendors, such
as ZeroSSL [30], are adopting the ACME protocol in their products because it
simplifies and enhances the quality of service provided to their customers.

ACME relies on two communication channels: (1) the ACME Channel, pro-
tected by TLS; and (2) the Validation channel, which depends on the validation
method. An ACME client uses TLS to request the issuance of one or more DV
certificates from an ACME server. ACME servers store ACME client accounts
associated with a public-key pair that clients use to authenticate themselves to
the server. However, the server only issues a certificate after the client proves
control over the desired identifier to be certified, i.e., the domain name. To ac-
complish this, the client must solve an ACME challenge. RFC 8555 [1] specifies
the HTTP and DNS challenge types, and RFC 8737 [26] describes the TLS-
ALPN challenge. Generally, a challenge is considered fulfilled if (a) the client
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proves control of the private key associated with the ACME account and (b) the
client proves control of the domain name in question.

ACME protocol messages are based on the JSON Web Signature (JWS)
standard [9] and transmitted through HTTPS/TLS requests. Typically, ACME
HTTPS requests are signed using the account’s private key, while the public
key is usually not included in the JWS body. However, when creating a new
account or revoking a certificate, the “jwk” field (i.e., the public key) is included
in the request. Other requests identify keys using a “Key ID” ("kid") field in the
request [9]. This way, the server can determine which key to verify subsequent
requests.

Figure 1 illustrates the necessary ACME messages for issuing an X.509 cer-
tificate. The issuance process is divided into three steps: (1) account creation;
(2) challenge; and (3) issuance. Communication between the ACME client and
server occurs through HTTPS requests, requiring the ACME client to trust the
ACME server. This trust is established by the ACME client’s confidence in the
server’s certificate chain, which includes intermediate and root CAs. Typically,
root CAs are pre-installed in the client’s certificate repository.

Fig. 1. ACME Issuance Overview

The client initiates an account creation request with the ACME server in the
first step. The client’s account can optionally include contact information and
is associated with a key pair generated by the client. To initiate the creation
process, the client requests server resources by sending a GET /dir message.
The server responds with an HTTP code (typically 200 for success) and a JSON
payload. The JSON payload contains the URLs for the desired resources and the
Terms of Service. If it is the client’s first connection, a new nonce is required. The
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client obtains the nonce by sending a HEAD /new-nonce message. This nonce is
used to protect against possible replay attacks. The registration is concluded
with a POST /new-account request. At this point, it is important to note that
the ACME server does not have any means to confirm the claimed identity other
than the newly registered authentication key, referred to as the “account key”.
Subsequent HTTP requests from the client must be signed with the account key.

The second step aims to prove the client’s identity through an Identifier Vali-
dation Challenge [1]. The ACME protocol specification focuses on domain name
identifiers. There are different types of challenges available, such as HTTP-01,
DNS-01, and TLS-ALPN-01, with HTTP-01 being the most commonly used [5].
In general, to complete the challenge, the client must demonstrate possession of
the account key and control over the identifier. In the case of HTTP-01, the client
must serve a file over HTTP containing the Key Authorization String (KAS). A
KAS is formed by concatenating a 128-bit random token (previously generated
by the server), a dot separator (‘.’), and the base64-encoded key fingerprint. The
ACME server retrieves and checks the file over HTTP to validate the challenge.
Refer to Appendix A for additional details on HTTP-01.

Figure 1 provides an abstract representation of the challenge-solving step.
First, the client requests a new certificate by sending a POST /new-order mes-
sage. The server’s response includes information about the available challenges,
their respective URLs, and the KAS for each challenge. Each challenge requires a
unique KAS generated on demand, meaning authorization requests can fail, and
the client may need to retry them. Additionally, each challenge has a state (e.g.,
pending, valid, deactivated), allowing the server to expect multiple requests us-
ing the same KAS until the certificate is issued. Therefore, the client must check
the status of the desired KAS by sending a POST /authZ/... request and then
proceed with the relevant challenge.

After completing the challenge, the client sends a POST /chal/... message
to inform the server that the challenge has been completed, and it waits for the
server to validate the challenge. The client can check the challenge’s status by
sending POST /authZ/... requests. Once the challenge is deemed valid by the
server, it is considered completed. The server stores the authorization and marks
it as valid for a specific period (not controlled by RFC 8555 [1]).

The issuance step, as depicted in Figure 1, is the final part of the process. The
client sends a POST /finalize message, which includes a PKCS#10 Certificate-
Signing Request (CSR) [17], to the server. It is important to note that the ac-
count key pair used for the CSR generation differs from the one used for the
account registration. Specifically, the CSR must not contain a public key for
any known account. The server validates the CSR and generates the certificate.
Finally, the client can download the issued certificate using a POST /certZ/...
message, often referred to as “POST-AS-GET” [1]. Once the client has obtained
the certificate, the ACME client’s request flow is complete. ACME client im-
plementations like Certbot [8] typically store and automatically configure the
certificate(s) in the web server repository. It enables the seamless activation of
an HTTPS-secured web server with just a few command-line instructions. Ad-
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ditionally, Certbot configures automatic certificate renewal, thereby simplifying
certificate management operations. It is worth mentioning that RFC 8555 does
not distinguish between certificate issuance and renewal, meaning the renewal
process starts with a new request to /new-order.

2.3 Post-Quantum Cryptography

Post-Quantum Cryptography (PQC) or Quantum-Safe Cryptography is an area
of research that focuses on developing cryptographic algorithms that are resistant
to attacks from quantum computers. Traditional public-key schemes based on
problems such as the Discrete Logarithm Problem (DLP), Elliptic Curve Discrete
Logarithm Problem (ECDLP), and Integer Factorization Problem (IFP), are
considered to be vulnerable to attacks by quantum computers, specifically Shor’s
algorithm [27].

The threat of quantum computers to current cryptographic systems raises
concerns about the confidentiality and authentication of data transmitted over
the internet. While the impact on confidentiality is more immediate, as an ad-
versary can gather encrypted data today and decrypt it in the future with the
help of a quantum computer, the impact on authentication is less urgent since
quantum adversaries cannot retroactively impersonate past communications [3].

In this context, efforts are underway to standardize post-quantum algorithms.
One notable initiative is led by the National Institute of Standards and Technol-
ogy (NIST) [14]. NIST has been running a standardization process for PQC al-
gorithms, including key exchange, public-key encryption, and digital signatures.
The initial choice of standards includes Kyber for key exchange and public-key
encryption, as well as Dilithium, Falcon, and Sphincs+ for digital signatures.
These algorithms have gone through multiple rounds of evaluation, and the pro-
cess is currently in the fourth round, with additional schemes under scrutiny [16].

Regarding the impact on the ACME protocol and TLS, the transition to
post-quantum cryptography will involve replacing current signature algorithms
with post-quantum digital signature schemes. However, the transition process
is expected to take significant time, as it requires coordination among various
entities such as certificate authorities (CAs), client and server implementations,
and browsers. Therefore, it is crucial to experiment, evaluate, and plan for a
smooth transition to post-quantum cryptography in ACME and TLS [10]. Ta-
ble 1 provides an overview of the post-quantum signature schemes expected to be
standardized by NIST, along with their sizes and corresponding security levels.

There is limited work specifically focusing on the issuance of post-quantum
certificates. Two main methods have been proposed for implementing hybrid
post-quantum certificates within the X.509 standard format. One method in-
volves concatenating cryptographic objects, such as public keys and signatures,
while the other adds PQC algorithm information as X.509 extensions. The sec-
ond method uses non-critical extensions and minimizes the risk of compatibil-
ity issues with legacy implementations that do not support post-quantum algo-
rithms. Security analyses have been conducted to evaluate the effectiveness of
these combining methods [4]. The impact of post-quantum certificates on PKI
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operations and TLS connections has been discussed in the literature, highlight-
ing concerns about performance, particularly when dealing with the certificate
chain. However, there are often no objections to using the hybrid mode, which
combines both classical and post-quantum algorithms, regarding performance
penalties [20,11].

Table 1. Currently digital signature schemes to be standardized by the NIST PQC
process.

Algorithm Parameter
Set Name

NIST Security
Level

Public key size +
Signature size (bytes)

Dilithium2 1 3732
Dilithium3 3 5245
Dilithium5 5 7187
Falcon-512 1 1587
Falcon-1024 5 3123

SPHINCS+-SHAKE256-128s-simple 1 7888
SPHINCS+-SHAKE256-128f-simple 1 17120
SPHINCS+-SHAKE256-192f-simple 3 35712
SPHINCS+-SHAKE256-192s-simple 3 16272
SPHINCS+-SHAKE256-256f-simple 5 49920
SPHINCS+-SHAKE256-256s-simple 5 29856

3 Quantum Threat and PQC Adoption

We begin by examining the threats to ACME security in the presence of a quan-
tum computer in Section 3.1. Subsequently, we delve into implementation and
design specifics in Section 3.2. Finally, we explore the implications of evaluating
ACME with PQC in Section 3.3.

3.1 Quantum Threats in ACME

The ACME protocol relies on PKC to ensure its cryptographic properties. Con-
sequently, once a CRQC exists, the protocol would become insecure. While the
threat exists, the transition to PQC may not be as urgent for ACME com-
pared to other cases, given that most interactions are certificate-related. How-
ever, RFC 8555 [1] specifies that a secure channel, often implemented using
TLS, must be used for client requests to the server. Therefore, a quantum-safe
ACME implementation depends on a quantum-safe TLS. To prevent "store-now-
decrypt-later" attacks, a quantum-safe Key Exchange (KEX) algorithm must be
used before a CRQC arrives. It is worth noting that the challenge validation
channel in ACME does not necessarily require TLS.
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One of the benefits that ACME provides to clients is the ability to reuse
valid authorizations. After completing a challenge, a client can reuse the au-
thorization to issue a new certificate more efficiently. This feature allows clients
to issue certificates at their convenience, not necessarily immediately after chal-
lenge validation. However, it introduces a potential vulnerability in the form of a
store-now-decrypt-later attack. An attacker could collect TLS-encrypted ACME
messages and, in the future, exploit a hypothetical quantum attack on the TLS
layer to gain access to the ACME information containing challenge authoriza-
tion details. Since RFC 8555 [1] leaves the deactivation of authorizations up to
implementations, many challenge authorizations could remain valid for an ex-
tended period. As a result, an attacker could exploit old valid authorizations
to issue unauthorized certificates. Figure 2 illustrates the attack. Therefore, the
authorization reuse feature needs careful redesign considering the existence of
future CRQCs. More details about authorizations and their validity times are
discussed in Section 4.3.

ACME Client ACME Server

POST /new-account

201 Created+JSON

POST /finalize

200 OK+JSON

...

TLS Tunnel established

...

Challenge Validation Process

Server gives authorization

...

1. Records
traffic

store-now-decrypt-later

2. Decrypts traffic

3. Recover account's private key from public key

Quantum
Computer
Available

4. Recover account's authorization information

POST /certZ/1234...

200 OK

Fig. 2. Unauthorized issuance of a certificate with the help of a quantum computer.

Both attack scenarios, targeting classical certificates and the classical com-
munication channel, can be mitigated by using PQC.

3.2 Integrating PQC algorithms

We selected PQC implementations from the Open Quantum-Safe project li-
boqs [29]. Since our project is developed using the Go language, we used the
liboqs-go binding [19]. We integrated them into Pebble’s ACME server and
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LEGO (“Let’s Encrypt Client and ACME Library in Go”). Pebble is suitable
for testing ACME client implementations. For reproducibility, our ACME imple-
mentations and test scripts are publicly available5. We used the selected standard
candidates from the NIST PQC standardization process for integration:

– Kyber: for Key Exchange in TLS, using security levels 1,3 and 5.
– Dilithium and Falcon: we use the same algorithm and security level param-

eters in all required cryptographic objects. Namely: ACME client account
keys and CSR; ACME server digital certificate (TLS level); issued certifi-
cates; and the certificate chains of issued certificates (Root CA certificate
and Intermediate CA certificate). For simplicity, we did not change Pebble’s
certificate chain size for TLS. We only alter Pebble’s TLS chain to use PQC
algorithms without adding a new Intermediate CA certificate.

– Sphincs+: due to its increased signature sizes, we restrict Sphincs+ only for
the Root CA certificate. We omit Root CA certificates in TLS handshakes,
so Sphincs+ increased sizes are not transmitted in the handshake. Sphincs+
selected parameters are: SHAKE for the hash function, “s” for compact signa-
tures and improved verification timings, and “simple” for performance.

– Hybrid modes: using NIST P-curves, namely P256, combined by concate-
nating with Kyber, Dilithium, and Falcon cryptographic objects. For simplic-
ity, we opted to concatenate cryptographic objects into certificates (public
keys and signatures). Hybrids are recommended because the confidence in
PQC security is not well established yet [3], but also because RFC 8555
states “MUST/SHOULD implement” for some classical algorithms [1], thus
keeping our integration close to the specification. We refer to the hybrid
mode using the ’H’ letter (e.g., “Dilithium H.”).

3.3 Impacts of PQC in ACME

To better understand the consequences of using PQC in ACME, we run sev-
eral experiments using two geographically distant Google N2 Virtual Machines
(VMs) with identical configurations (8 GB memory, two vCPUs). The ACME
client VM was hosted in Osasco, São Paulo, Brazil, while the ACME server lo-
cation was based on one of Let’s Encrypt’s data centers in Salt Lake City, Utah,
USA. The average round-trip time (RTT) for this geographically distant network
was measured to be 157 ms. The number of successful requests was computed
by employing 1024 threads to POST requests to the /finalize endpoint for six
minutes. Each thread simulated a different client sending CSRs, thereby increas-
ing the server’s load during certificate issuance. We set ulimit -n 1048576 to
enhance the server’s load test configuration.

Figure 3 illustrates the impacts of PQC observed during a load test experi-
ment. For automation purposes, the default option is to generate a CSR during
protocol execution, which we refer to as the "CSR-on-the-fly" test. This approach
includes key generation and signing computational times, resulting in delayed

5 https://github.com/AAGiron/acme-newchallenge

https://github.com/AAGiron/acme-newchallenge
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clients and fewer successful requests handled by the server. Alternatively, using
a pre-computed CSR can reduce the PQC impact at the cost of some of ACME’s
automation properties.

From the CA’s perspective, the results demonstrated a noticeable impact
when deploying PQC in the standard ACME configuration. The reduced number
of successfully handled requests implies fewer certificates generated and issued
by the ACME server. Furthermore, larger PQC objects can congest the network
earlier than the baseline configuration (see Section 4.3).

It is worth noting that our experiments did not provide an exact measurement
of the number of certificates issued per second due to the nature of the protocol.
However, our load test is representative as it involves handling multiple signed
requests, CSR generation by client threads, and verification by the server.
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Fig. 3. Load test experiment with and without CSR cryptographic operations.

4 Proposed ACME Challenge

In order to speed up the issuance of digital certificates, we propose an alternate
ACME challenge. In this section, we present our proposed ACME challenge (Sec-
tion 4.1). After that, we evaluate and compare our proposed challenge against
standard ACME certificate issuance and renewal. Lastly, we discuss the experi-
mental findings in Section 4.3.

4.1 Design details

We can consider two general scenarios when an ACME client C will ask an
ACME server S for a new certificate. In the first scenario, C already has a
classical certificate, so C can ask: (a) for a renewal, using the same ACME
account; (b) for a new classical certificate (new account); or (c) a new PQC (or
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hybrid) certificate. In the second scenario, C does not have a classical certificate:
in this case, C can only ask for a new PQC (or hybrid) certificate.

In the first scenario, we assume that C already has a previously issued cer-
tificate. Having a certificate means that these ACME peers have a relationship
that could be used to optimize the certificate issuance process. In the second
scenario, there is no previous relationship available. Therefore, for the second
scenario, C must comply with all ACME requirements, i.e., fulfill the account
creation, challenge validation, and issuance steps.

As described in Section 2.2, the issuance flow has several digitally-signed
requests between peers. Using PQC signatures in such requests would increase
protocol communication costs and impact the overall interaction between those
peers. Also, one could take advantage of the scenario in which the server already
has a certificate. To speed up the issuance process, we propose a new ACME
challenge, depicted in Figure 4.

ACME Client ACME Server

Caption: Content-Type: application/jose+json
Protocol Message

POST /pq-order

ClientHello

200 OK+JSON

Generating
Certificate

POST /certZ/1234...

200 OK

x.509 Certificate

TLS
Layer

ServerHello..., CertificateRequest

Certificate, CertificateVerify, Finished

Finished

Certificate-Signing Request

Fig. 4. Proposed ACME Challenge

Note that our proposal is valid for the scenario in which ACME clients already
have a certificate. We provide an alternative to the original /new-order ACME
server endpoint, called /pq-order. This new endpoint (at the server) expects
a CSR in an HTTP POST message, as the usual /finalize endpoint. The
main difference is that it requires a mutually authenticated TLS handshake.
Mutual authentication means that the ACME client authenticates directly in
the TLS layer, proving that it possesses the private key of that certificate. If
the client successfully authenticates to the server, the server can issue the new
(PQC or hybrid) certificate, replying with the URL where the certificate can be
downloaded.

The fact that the ACME client already possesses a certificate plays a crucial
role in this approach. For example, let Cclassic−cert be the certificate the client
is willing to use in the TLS authentication layer, and Cpqc−cert the certificate
the client requests. If Cclassic−cert was issued by the same ACME server where
Cpqc−cert will be requested, then the peer trust relationship is already estab-
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lished. The ACME server will trust Cclassic−cert (in the pre-quantum scenario),
so additional configuration or protocol messages are unnecessary. In this exam-
ple, the ACME client can ask for a PQC certificate with this new challenge in a
single request. Comparatively, we remove (at least) 4 signed requests from the
ACME flow and replace the challenge with TLS client authentication using the
Cclassic−cert.

Since the /pq-order is an endpoint of the ACME server, clients perform
POST requests with their account information accompanied by a CSR. In this
case, the CSR can be created using a PQC algorithm (hybrid or not), allowing
the issuance of a post-quantum certificate. Note, however, that the signature
present in the request also uses a post-quantum algorithm. Appendix B gives
an example of a POST message. Additionally, our proposed challenge applies to
clients willing to issue a classical certificate, if desired.

Regarding the request validation, the server uses the algorithm name, nonce,
and key ID (kid) information to search for the required account information.
Note that the kid field can be replaced by the public key in a field called jwk
for verifying the message. The optional certhash value is a way of binding the
request to the particular certificate used in the TLS mutual authentication. In
this way, the server can check if the hash is on his list of issued certificates
and if it belongs to the corresponding account in the request. Alternatively, the
ACME server can obtain the client certificate from the TLS layer and compare
domain names and hashes. Golang provides access directly through the standard
library [12]. The ACME server processes the CSR as usual. If the validation is
successful, the server can issue the certificate.

Security Considerations. RFC 8555 describes a threat model against active
and passive attackers considering two communication channels: the ACME chan-
nel, using TLS for security, and the Validation channel, which is dependent on
the ACME challenge (e.g., HTTP). Since the validation channel is bound to the
signatures transferred in the ACME channel, abusing only the validation chan-
nel should not be enough to impersonate a legitimate client (i.e., obtain a valid
authorization).

Regarding the ACME channel, the only thing we changed is that it uses
PQC algorithms. On the other hand, our proposed challenge replaces the avail-
able validation channels from the original ACME challenges with a mutually
authenticated TLS connection channel. Note that our proposed challenge re-
quires a valid mutual authentication TLS session and a valid signature in the
request. Therefore, our challenge keeps the binding between the validation and
ACME channels, thus not deviating from the RFC’s threat model. The main re-
quirement is a mandatory client authentication policy since client authentication
is optional in TLS. An additional consideration is to avoid TLS Post-Handshake
Authentication [21] because the ACME server can issue the certificate only after
the mutually authenticated connection is established.

Our proposed challenge assumes that who owns a certified (and valid) key
pair for a particular domain owns the identifier in question, i.e., the domain.
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This might not be directly applicable in some cases, such as hosting providers.
For example, when the domain ownership is transferred, the original owner could
use the certificate to obtain a new one through our proposed challenge. Although
this is a problem, it could be mitigated by simply revoking the certificate before
transferring a domain. If revoked, the certificate can not be used to authenticate
in our proposed challenge. Therefore, the server will not issue a new certificate
in this case. This requirement implies keeping the certificate’s validity period
within the granted domain ownership validity period.

4.2 Issuance and Renewal Timings

We use the same experiment methodology as described in Section 3.3. In this
case, the issuance time was measured at the client and encompassed all ACME
steps (depicted in Figure 1) until the client obtained its certificate. The renewal
time was considered as a new issuance process by requesting the /new-order end-
point without creating a new account. Consequently, this metric measured the
time from the /new-order POST request until the client received the certificate.
Both renewal and issuance times were computed from 500 protocol executions
(resulting in 500 certificates per algorithm instance) to obtain the average and
standard deviation statistics.

Figure 5 shows the issuance and renewal times for ACME with baseline (clas-
sical) and PQC compared to our proposed challenge. The bars correspond to av-
erage timings, and the graph includes standard deviation information (above the
bars). All standard deviations obtained from our proposed challenge executions
are below 10 ms, whereas in standard ACME, it reaches 1.4 seconds. All bars
are below the baseline standard deviation (using NIST’s P256), which suggests
no PQC transition impact in the timings perceived by the ACME client.
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From the ACME client’s perspective, Figure 5 shows that the average impact
in PQC is not significant. Here the network time dominates, and ACME’s query-
response nature increases the variations (as shown by the standard deviations).
Sphincs+, Dilithium3, Dilithium5, and Falcon-1024 also do not greatly in-
fluence the timings, so these configurations are also viable. On average, it took
near to 7.5 seconds to issue a classical, PQC, or hybrid certificate.

On the other hand, our results suggest that the issuance and renewal time
can be significantly reduced using our proposed challenge. The issuance times
are, on average, 4.22x faster compared to the commonly-used HTTP challenge.
Renewals are also much faster: without the account creation time, our renewals
are near or below 1s (on average), regardless of the algorithm selected for the new
certificate (P256 or PQC). We highlight that our proposed challenge can be used
generically, both for renewing classical certificates or issuing PQC certificates.

4.3 Discussion

In the context of PQC, we expected a significant slowdown in issuance and re-
newal times due to the increased sizes of PQC instances. For example, using
Dilithium2 imposes a payload size of 64.21 KiB on the network. However, this
byte amount is divided among several request messages in ACME (as depicted
in Figure 1). Assuming at least seven signed requests in ACME, each carrying
less than 10 KB (except for certificate download), the data can be transported
within a single round trip without requiring additional RTTs, assuming a stan-
dard TCP/IP network stack. Furthermore, we are not transmitting the Sphincs+
certificate, which saves bytes and keeps the size below network limits, such as
the TCP window size. While literature shows scenarios where PQC imposes ad-
ditional RTTs in other designs [28], issuance times depend not only on RTTs but
also on the variable number of requests and waiting times. Our results indicate
that the average issuance time for PQC was close to the baseline.

We were able to modify ACME and achieved better performance under rea-
sonable assumptions, such as the client already having a classical certificate. By
transitivity, having control of the certificate that certifies a domain demonstrates
control over that domain, even if the certificate’s private key is not stored on
the server. In this scenario, our proposed modification reduced the byte costs of
ACME. Table 2 illustrates the impacts of PQC on ACME and the sizes of our
proposed challenge. Since not all ACME requests are used in our challenge, it
reduces network RTTs. Compared to the original ACME message flow, our chal-
lenge saves 35.39% and 32.14% for Dilithium2 and Falcon-512 instantiations,
respectively.

It is important to note that our challenge differs from the TLS-ALPN-01
challenge. Defined in RFC 8737 [26], the ACME client generates a self-signed
X.509 certificate with the challenge information, such as the KAS, and starts the
TLS server under its control. The ACME server performs a handshake with this
new TLS server to check the required information. However, the TLS-ALPN-01
challenge focuses on cases where the web service providing content is separate
from the TLS server, such as reverse proxies. Additionally, the DNS-1 challenge
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Table 2. Comparison of sizes of ACME client requests, sampled from a pcapng capture
file. Note: “Total (ACME)” excludes repeated requests (like POST /authZ); however,
in practice, more bytes are transmitted (see Section 2.2). Certificate sizes include server
and intermediate CA certificate.

Request Request is in
our challenge?

P256 (baseline)
size (bytes)

Dilithium2 size
(bytes)

Falcon-512 size
(bytes)

GET /dir ✓ 223 223 223
HEAD /new-nonce ✓ 207 207 207

POST /new-account ✓ 718 6097 3010
POST /new-order ✗ 594 3747 1399
POST /pq-order ✓ 1194 10558 4336

POST /authZ ✗ 624 3776 1423
POST /challZ ✗ 627 3779 1425

POST /finalize ✗ 1088 10648 4417
POST-AS-GET /certZ ✓ 649 3713 1361

Total (ACME*) - 4730 32190 13465
Total (Our Challenge) - 2991 20798 9137

Certificate size - 1913 17838 7157

can take up to one hour or up to five minutes under specific conditions [22], mak-
ing it unsuitable for direct comparison against our challenge. Since the HTTP
challenge is the most commonly used, our experiments focused on this scenario.

While our proposed challenge provides faster issuance times, it is not meant
to replace other existing ACME challenges. There may be scenarios where our
challenge is not suitable. One example is when the client does not have a classical
certificate. Another example relates to the validity period of certificates and the
reuse of valid authorizations, as allowed in RFC 8555 [1].

RFC 8555 [1] does not impose a limit on the expiration time of authorizations,
leaving the validity period of a valid authorization to the implementation. For
instance, Let’s Encrypt’s current policy allows reuse for up to 30 days. There-
fore, if an HTTP challenge has been fulfilled, the ACME client has 30 days
to issue or renew certificates, improving performance by skipping the challenge
step. However, this 30-day policy is subject to change [7] and may vary or be
denied in other implementations. On the other hand, our challenge’s validity is
limited to the certificate’s validity period (currently 90 days in Let’s Encrypt’s
policy). In the context of PQC transition, we highly recommend deactivating
authorizations of accounts created with classical cryptography. Deactivation is
necessary because ACME servers cannot guarantee that the TLS connection es-
tablished by ACME clients is quantum-safe. Non-PQC TLS usage by clients and
valid authorizations facilitate quantum attacks, as discussed in Section 3.1.

Nevertheless, our proposal improves performance for issuing certificates (in-
cluding account creation time) and renewals (assuming the client has an account
with the server). In scenarios where our challenge’s assumptions hold, ACME
clients can utilize our approach for renewing classical certificates faster, or during
the PQC transition phase and subsequently renew their PQC certificates. For
security reasons, Issuer CA policies can impose usage limits on clients renew-
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ing with our challenge. These limits can reduce the impact of a certificate’s key
compromise, forcing the client to prove ownership using a different challenge.

Our proposed challenge can be further optimized if additional modifications
are made at the TLS layer. Specifically, mutual authentication in TLS involves
transferring certificates over the network, increasing the size of TLS messages.
RFC 7924 [23] specifies certificate caching mechanisms (client or server), which
could be employed in ACME’s TLS channel to reduce the TLS payload size.

5 Final Remarks and Future Work

This work provided a comprehensive evaluation of ACME’s performance when
secured with PQC algorithms, considering the perspectives of ACME clients
(e.g., web servers) and servers (e.g., Issuer CAs). The comparison against clas-
sical cryptography highlighted different impacts on these entities.

Regarding challenges required for the certificate issuance process, our pro-
posed design showed favorable results. We achieved smaller communication sizes
and decreased network bandwidth by replacing the HTTP challenge and elim-
inating associated signed requests. To encourage practical adoption, we have
made our design and prototype implementation available to the community. We
have also provided an RFC-like description of our challenge as a guide for future
implementations.

There are interesting opportunities for further research and evaluation of
ACME. For instance, investigating ACME’s performance in different computing
environments, such as the Internet of Things (IoT), would be valuable. Addi-
tionally, exploring how ACME performs when issuing certificates for KEMTLS,
a key encapsulation mechanism-based TLS, could provide valuable insights. It is
worth noting that issuing KEM-based certificates in ACME poses challenges due
to the typical usage of CSRs with signature methods. Nonetheless, ACME re-
mains a significant security-enabling protocol that has already benefited various
applications and is likely to continue doing so in the future.
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Appendix

A ACME’s HTTP-01 Challenge

Figure 6 focus on the HTTP challenge message flow, which is more commonly
used, probably due to its simplicity. We omit account creation messages, order
and download requests. First, the client obtains the necessary information for
the challenge (e.g., KAS) with the steps presented in Figure 1. Basically, the
client places the KAS file in (one or more) HTTP servers that it controls. There-
fore, the KAS binds the HTTP server to the ACME client’s account. Then, the
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client notifies the server with a POST to /challZ endpoint. The validation steps
include checking the response (e.g., if the domain name matches the previous
order information) and, most importantly: (i) if the KAS inside the downloaded
file matches; and (ii) if the digital signatures (in the requests) can be verified
using the corresponding account’s public key. Otherwise, the challenge fails.

ACME Client ACME Server

Caption: Content-Type: application/jose+json
HTTP Message

GET {domain}/.well-known/acme/

Key Authorization
String (KAS)

HTTP:80

Validation
Steps

200 OK+JSON

POST /authZ-URL

200 OK+

200 OK+JSON

200 OK+JSON{Token}

POST /authZ-URL

Provisioning
Challenge
File with POST /chalZ-URL

Fig. 6. HTTP challenge flow

In practice, the HTTP challenge (and the other types) can consume more
POST requests to /authZ endpoint than shown in Figure 6. The ACME client
will repeat such a POST request until the status of the order is “valid” (or “in-
valid” in the case of an error). This can increase network traffic when considering
multiple clients at the same time. Moreover, Although the most common option,
the HTTP-01 challenge is not the best option for issuing multiple certificates for
multiple servers and if firewalls are blocking HTTP port (80).

B POST Request Example

Figure 7 shows an example of a POST request to /pq-order (in our proposed
ACME challenge). We followed the notation of the /new-order endpoint [1].
The main differences are: we removed the order’s validity period, when focusing
on the PQC transition, due to the uncertainty of when quantum computers will
arrive; and we included an (optional) certhash field in the protected header.
Both protected and payload fields have integrity guarantees (e.g., by signing).
In this example, Dilithium2 is the PQC algorithm used for signing. The CSR
included in the payload in this case use a post-quantum signature algorithm.
However, we note that one could also use classical algorithms in the POST and
CSR, aiming at renewing classical certificates.

The POST message uses the account’s private key to sign the protected
and payload JSON fields. This complies to JSON Web Signature (JWS) [9]
requirements. After validating the POST message, the server issues the certificate
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POST /acme/pq-order HTTP/1.1
Host: example.com
Content-Type: application/jose+json
{

"protected": base64url({
"alg": "Dilithium2",
"kid": "https://example.com/acme/acct/evOfKhNU60wg",
"nonce": "5XJ1L3lEkMG7tR6pA00clA",
"url": "https://example.com/acme/pq-order",
"certhash": "89f308210c7c7820b...947c3188dedba6e3"

}),
"payload": base64url({

"csr": "MIIBPTCBxAIBADBFMQ...KdZeGsysoCo4H9P",
"identifiers": [
{ "type": "dns", "value": "www.teste.org" },
{ "type": "dns", "value": "teste.org" }

],
}),
"signature": "H6ZXtGjTZyUnPeKn...wEA4TklBdh3e454g"

}

Fig. 7. POST request example

and returns to the client the URL for the certificate’s location (similarly as in
standard ACME). In this way, the ACME client can ask for a classical or PQC
certificate with our proposed challenge in a single request.
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