
Camel: E2E Verifiable Instant Runoff Voting without Tallying
Authorities

Luke Harrison

University of Warwick

United Kingdom

l.harrison.3@warwick.ac.uk

Samiran Bag

University of Warwick

United Kingdom

Samiran.Bag@warwick.ac.uk

Feng Hao

University of Warwick

United Kingdom

feng.hao@warwick.ac.uk

ABSTRACT
Instant Runoff Voting (IRV) is one example of ranked-choice vot-

ing. It provides many known benefits when used in elections, such

as minimising vote splitting, ensuring few votes are wasted, and

providing resistance to strategic voting. However, the voting and

tallying procedures for IRV are much more complicated than those

of plurality and are both error-prone and tedious. Many automated

systems have been proposed to simplify these procedures in IRV.

Some of these also employ cryptographic techniques to protect

the secrecy of ballots and enable verification of the tally. Nearly

all of these cryptographic systems require a set of trustworthy tal-

lying authorities (TAs) to perform the decryption of votes and/or

running of mix servers, which adds significant complexity to the

implementation and election management. We address this issue by

proposing Camel: an E2E verifiable solution for IRV that requires no

TAs. Camel employs a novel representation and a universally verifi-

able shifting procedure for ballots that facilitate the elimination of

candidates as required in an IRV election. We combine these with a

homomorphic encryption scheme and zero-knowledge proofs to

protect the secrecy of the ballots and enable any party to verify the

well-formedness of the ballots and the correctness of the tally in an

IRV election. We examine the security of Camel and prove it main-

tains ballot secrecy by limiting the learned information (namely

the tally) against a set of colluding voters.

KEYWORDS
E2E verifiability; Self-enforcing e-voting; Instant Runoff Voting.

1 INTRODUCTION
Instant Runoff Voting (IRV), commonly referred to as the Alterna-

tive Vote (AV) in the United Kingdom, is an example of ranked-

choice voting. In these methods, a voter must rank a list of candi-

dates in order of their preference. Once all votes have been cast

in an IRV election, the most-preferred choice on each vote is ex-

amined, and the candidate that receives the fewest most-preferred

placements amongst all votes is eliminated from the election and

removed from the votes [1]. This procedure repeats until a candi-

date receives 50% of all most-preferred placements, at which point

they are declared the winner. IRV has been used for many local

elections in the United States, including in San Francisco, Oakland,

Santa Fe and New York City, as well as for statewide elections in

Maine and Alaska [2]. It has also seen use in the national legislature

of Australia, the presidential elections in Ireland [3], and the party

leadership elections in the United Kingdom [4].

Many benefits have been listed for adopting IRV in elections com-

pared to other voting systems. IRV provides more representative

outcomes and helps to avoid vote splitting, where two candidates

with similar ideologies may split the vote of their base between

themselves (this problem has been noted particularly for plurality

voting [5]). IRV has also been shown to commonly elect the Con-

dorcet winner: the candidate that is the most socially-optimal [6].

Unlike Condorcet voting however, candidates in IRV must have

sufficiently broad appeal and enough most-preferred placements to

progress in an election without elimination. Strategic voting is also

less of a concern when using IRV; although the complete avoid-

ance of strategic voting in IRV is impossible (due to the Gibbard-

Satterthwaite theorem [7, 8]), it is noted that IRV is highly resistant

to strategic voting when compared against other voting methods

including plurality, Borda count, approval voting and range voting,

with only a small difference in comparison to the Woodall, Benham,

Smith-AV and Tideman methods [9].

Despite all these benefits, it can be difficult to adopt IRV for

practical elections. This is largely due to the vote counting and

elimination procedures, which can be complex and error-prone to

perform by hand. We may instead simplify and automate these

processes by adopting an e-voting solution for IRV through ei-

ther voting machines or online voting. The UK Labour Party 2020

Leadership election used IRV with online ballots, although those

without a verified email address were permitted to vote by postal

ballot [4]. However, these systems for IRV are not verifiable; voters

must assume that their vote has been tallied and recorded correctly,

with no means to truly verify this for themselves. A malfunctioning

or compromised voting server may alter a vote in a way that is

imperceptible to the voter. We address this in our paper by propos-

ing a fully verifiable system for IRV. Our solution builds upon the

important notion of End-to-End (E2E) verifiability, which covers

verifiability in three aspects: cast as intended, recorded as cast, and
tallied as recorded [10].

E2E verifiable systems have been studied previously for IRV [11–

15]. All of these systems rely upon a set of trustworthy parties

known as tallying authorities (or TAs) to perform the cryptographic

procedures necessary for computing the tallies, however, choosing

and managing such TAs has proven to be a particularly difficult

issue in practice [16]. To overcome this, we follow the notion of

self-enforcing e-voting (SEEV) initiated by DRE-i [17] and DRE-

ip [18]. SEEV aims to achieve E2E verifiability without the need

for any TAs. To realise this, we adopt a similar approach to the

cancellation of random factors used in DRE-ip in our design. DRE-ip

only supports plurality voting, whilst our protocol supports IRV:

a much more complicated electoral scheme than that of plurality.

The major challenges in our work lie in proving that the IRV ballots

have been constructed correctly and that the IRV voting procedure

has been followed accordingly, with the correct tally computed,

and appropriate candidates eliminated, from ballots at each stage

of the tallying process. These challenges must be solved in a secure

1

manner that allows public verification of the ballots and the tally.We

will explain how we have overcome these challenges through a new

matrix representation of IRV ballots. This representation permits

straightforward tallying of IRV ballots as well as verification of

eliminated candidates through a novel shifting procedure.

In this paper, we propose a new voting protocol called “Camel”
1
.

Camel is the first E2E verifiable e-voting system for IRV without

tallying authorities. First, we explain the standard IRV procedure

for paper ballots (§2) and then introduce a matrix representation of

IRV ballots, together with a novel procedure to tally, eliminate and

transfer votes in their electronic form. Based on the new matrix rep-

resentation, we construct the Camel protocol, using zero-knowledge

proofs to prove that all encrypted ballots are well-formed and that

the tallying process is done according to the specification with pub-

lic verifiability (§3). We present formal security proofs to prove the

security of Camel (§4). Next, we compare Camel with related E2E

verifiable solutions in the literature to demonstrate its feasibility

for IRV elections in practice (§5). Finally, §6 concludes the paper.

2 PRELIMINARIES
2.1 Instant Runoff Voting
IRV requires each voter to rank 𝑛 candidates for an election in

order of preference. For instance, in an election between candidates

𝐴, 𝐵, 𝐶 and 𝐷 , a voter may choose to write down their vote as

[𝐴 : 1
𝑠𝑡

; 𝐵 : 3
𝑟𝑑

; 𝐶 : 2
𝑛𝑑

; 𝐷 : 4
𝑡ℎ], meaning they prefer 𝐴 to

all other candidates, 𝐶 to 𝐵 and 𝐷 (but not 𝐴), 𝐵 to 𝐷 (but not 𝐴

or 𝐶) and 𝐷 to no others. Given a collection of votes, the election

authority then tallies all most-preferred choices amongst all votes

to produce a collective ranking. For an election consisting of 60

voters, we might have the tally as [𝐴 : 8 ; 𝐵 : 17 ; 𝐶 : 16 ; 𝐷 : 19],
meaning 𝐴 received 8 most-preferred placements, 𝐵 received 17, 𝐶

received 16 and finally 𝐷 received 19.

The tally of most-preferred placements is then examined to de-

termine the candidate (or candidates) with the fewest placements.

In the previous example, 𝐴 would be this candidate. Once this can-

didate has been determined, it is then eliminated from all votes. In

our example, any vote that placed 𝐴 as their most-preferred choice

would have their vote transferred to their next-most-preferred

choice; for instance, the vote [𝐴 : 1
𝑠𝑡
; 𝐵 : 3

𝑟𝑑
; 𝐶 : 2

𝑛𝑑
; 𝐷 : 4

𝑡ℎ]
would become [𝐵 : 2

𝑛𝑑
; 𝐶 : 1

𝑠𝑡
; 𝐷 : 3

𝑟𝑑]. 𝐶 becomes the new

most-preferred choice. The votes are then re-tallied and the elimi-

nation procedure repeats over more rounds until one candidate is

listed as the most-preferred choice on more than 50% of all votes

and wins the election.

2.2 Permutation Matrices and Eliminations
IRV requires multiple passes over votes in order to eliminate candi-

dates and determine a winner. Accordingly, we utilise permutation

matrices for IRV ballots and eliminate candidates over multiple

rounds, with each elimination being universally verifiable. We be-

gin with an explanation of our method over plaintext votes, before

presenting an E2E verifiable scheme in §3.

1
Camels have multiple chambers in their stomach, which enables the processing of

food in stages with the maximum extraction of nutrients and the minimum loss of

water. This resembles how our protocol processes the tallying of votes in stages.

2.2.1 Setup. We first provide a setup procedure for our method.

Let C denote a set of 𝑛 candidates for an election. We assume each

candidate in C is mapped to a unique value from [1, 𝑛], e.g. 𝐴 ↦→ 1,

𝐵 ↦→ 2,𝐶 ↦→ 3 and 𝐷 ↦→ 4. Let 𝐾 denote a set of voters. Our scheme

operates over 𝑛 − 1 tallying rounds (as we will explain). Initialise
tally vectors t(𝑚) ←

(
𝑡
(𝑚)
1

, . . . , 𝑡
(𝑚)
𝑛

)
with 𝑡

(𝑚)
𝑖

= 0 (𝑖 ∈ [1, 𝑛]),
one for each round𝑚 ∈ [1, 𝑛 − 1].

2.2.2 Vote Casting Phase. Our method operates over two phases.

The first phase allows votes to be cast. Let the vector a𝑘 = (𝑎1, . . . , 𝑎𝑛)
represent an 𝑛-ary permutation of the candidates for a voter 𝑘 ∈ 𝐾 ,
where 𝑎𝑖 is preferred to 𝑎 𝑗 if 𝑖 < 𝑗 . We require voters to submit

the full permutation a𝑘 during this phase and not any partial or in-

complete rankings. To facilitate tallying of votes in the subsequent

phase, we transform a𝑘 into a permutation matrix V𝑘 = (𝑣𝑖 𝑗)𝑘
where each row 𝑖 in the matrix encodes the candidate 𝑎𝑖 from a𝑘 .
Suppose a𝑘 is (4, 2, 1, 3). We produce the following matrix from a𝑘 .

4 ©«
0 0 0 1 ª®®¬

2 0 1 0 0

1 1 0 0 0

3 0 0 1 0

(1)

Once all votes have been submitted and transformed into permuta-

tion matrices, we proceed onto the next phase.

2.2.3 Tallying Phase. The second phase of our method handles all

tallying and elimination procedures within IRV and operates over

𝑛 − 1 rounds. We use V(𝑚)
𝑘

to denote the voting matrix V𝑘 at round

𝑚. We initialise matrices V(1)
𝑘

at the first round for all voters as

their corresponding permutation matrices V𝑘 from the previous

Vote Casting phase.

In each round, we first check to see if any candidates must be

eliminated. For the first round, there will be no such candidates. We

compute the tally for the first round simply as t(1) ← ∑
𝑘 (v1)

(1)
𝑘

.

Here, we use (v𝑖) (𝑚)𝑘
to denote the row 𝑖 from V(𝑚)

𝑘
. Hence, t(1)

is computed as the sum over the first row of V(1)
𝑘

for all voters,

encapsulating all most-preferred choices. We then directly inspect

t(1) to determine if one candidate received more than 50% of prefer-

ences; if this is the case, we then terminate and announce a winner.

Otherwise, we must mark a candidate for elimination that received

the fewest preferences. Denote this candidate as 𝛼 (1) for the first
round. We then progress onto the second round.

In the second round, we must eliminate the candidate 𝛼 (1)

marked in the previous round from all the votes as required by

IRV. To perform the eliminations, we introduce a new shifting pro-

cedure for permutation matrices. We inspect each matrix V(1)
𝑘

from

the previous round and locate the row in each that encodes 𝛼 (1) .
Let 𝑖 denote the index of this row for any of the matrices. We delete

this row 𝑖 and shift all subsequent rows 𝑖′ > 𝑖 up by one index. The

result is a newmatrix containing no eliminated candidates. We then

compute the tally t(2) for the second round as t(2) ← ∑
𝑘 (v1)

(2)
𝑘

and mark a new candidate 𝛼 (2) for elimination in the following

round. This procedure repeats until one candidate receives 50% of

the votes in one of the rounds (in the worst case, we reach round

2

𝑛 − 1 where only two candidates will remain). We illustrate this

procedure over multiple rounds in Figure 1.

We give the full shifting procedure as Algorithm 1. This algo-

rithm constructs a matrix V(𝑚)
𝑘

when given V(𝑚−1)
𝑘

from the pre-

vious round and the candidate 𝛼 (𝑚−1) marked for elimination. In

§3.3, we will show a zero-knowledge proof technique to ensure the

shifting procedure is followed honestly without revealing votes.

Once the shifting procedure completes and creates the voting ma-

trix V(𝑚)
𝑘

, we compute the tally at round𝑚 as t(𝑚) ← ∑
𝑘 (v1)

(𝑚)
𝑘

and mark 𝛼 (𝑚) for elimination at the start of the next round.

Algorithm 1 Shifting procedure for matrices.

Require: 𝑚 ≥ 2; an (𝑛 −𝑚 + 2) × 𝑛 matrix V(𝑚−1)
𝑘

; a candidate

𝛼 (𝑚−1) marked for elimination.

Ensure: 𝛼 (𝑚−1) is removed from V(𝑚−1)
𝑘

to create V(𝑚)
𝑘

.

procedure shift(𝛼 (𝑚−1) , V(𝑚−1)
𝑘

)

for 𝑙 ∈ [1, 𝑛 −𝑚 + 2] do
if (v𝑙)

(𝑚−1)
𝑘

encodes 𝛼 (𝑚−1) then
for 𝑖 ∈ [𝑙, 𝑛 −𝑚 + 1] do

// Shift up all choices below an eliminated row.
(v𝑖) (𝑚−1)𝑘

← (v𝑖+1) (𝑚−1)𝑘

// Remove the eliminated row or any remaining duplicate.
delete (v𝑛−𝑚+2) (𝑚−1)𝑘

2.3 Tie-Breaking Eliminations
It is possible that multiple candidates in a round may jointly qualify

for elimination; in this case, we have a tie that must be broken. There

are various methods to break ties, each with their own advantages

and disadvantages. Onemethod is to simply choose at random a can-

didate in the tie to eliminate. This method is supported by Lundell,

who argues that the exclusion of chance in a tie-breaker encourages

voters to be insincere when listing their preferences [19]. Another

method is to use information from earlier rounds to break any

ties. O’Neill considers both forwards and backwards tie-breakers;

forwards tie-breaking eliminates the candidate with the fewest

preferences from the earliest round, whilst backwards tie-breaking

eliminates the candidate with the fewest preferences from the lat-

est round [20]. The latter method is favoured by O’Neill, arguing

that the most relevant information to break a tie comes from the

previous round, not the first round. It is also possible that a tie still

happens in forward or backward tie-breaking; in this case, random

tie-breaking may be used instead.

Both forwards and backwards tie-breaking methods are simple

to implement within our system. Suppose a set S of candidates are

tied for the fewest preferences at a round𝑚. One must only look at

the tallies t(𝑚
′)
where𝑚′ < 𝑚 and then mark the first candidate

𝑐 ∈ S that minimises 𝑡
(𝑚′)
𝑐 for elimination. This candidate may

then be eliminated using Algorithm 1 as normal. One must look at

all tallies in ascending order of𝑚′ if using forwards tie-breaking,
and conversely in descending order of𝑚′ if using backwards tie-

breaking. If there are still ties in all t(𝑚
′)
, then the candidate to be

eliminated is chosen by random by using a pre-agreed procedure.

Another approach suggested by Robert et al. is eliminating all

tied candidates at once [21]. This avoids the need to look at infor-

mation from prior rounds or choose any candidates at random to

eliminate. The method we described in §2.2 only supports eliminat-

ing one candidate per round, however it can be adjusted to mimic

multiple eliminations as follows. First, during the setup procedure,

initialise an empty stack of candidates. Then, during a tallying

round𝑚, suppose 𝑛
(𝑚)
𝛼 candidates have the fewest votes at the end

of the round. Push all𝑛
(𝑚)
𝛼 candidates onto the stack and proceed to

the next round. In the next round, pop one candidate from the stack

and eliminate them as normal. Then, at the end of the round, only

if the stack is empty, determine a new number 𝑛
(𝑚+1)
𝛼 of candidates

to eliminate and push them onto the stack. Repeat until all rounds

are completed or a candidate is elected with more than 50% of the

votes. This modification mimics eliminating multiple candidates

at once by instead splitting the eliminations over multiple rounds,

ensuring that no new candidate is selected for elimination until all

candidates on the stack have been eliminated.

In §3, we describe how we use our method from §2.2 to construct

an E2E verifiable IRV e-voting protocol. The cryptographic descrip-

tion of the e-voting protocol remains the same, regardless of which

tie-breaking method is chosen.

3 THE CAMEL SYSTEM
We now present Camel, an E2E verifiable system for IRV without

requiring any tallying authorities. Our description of Camel is in

the context of onsite voting in a polling station.

3.1 Requirements and Assumptions
We require that only eligible voters can vote and their eligibility is

checked by election staff at the polling station. At the polling station,

voters are authenticated with identifying documents before being

given an anonymous voting credential (e.g., a random passcode

or a smart card). With this credential, the voter enters a private

voting booth and logs onto a Direct Recording Electronic (DRE)

machine with a touch-screen interface, which allows the voter to

rank the candidates in an order of their liking. The DRE machine

records the voter’s ranked choice in a ballot but does not know the

voter’s real identity, i.e., voting is anonymous. Camel only supports

full rankings of candidates and we leave support for partial or

incomplete rankings for future work.

We assume multiple DRE machines are securely connected to

a server, which could be local in a polling station or placed at a

precinct level. We regard the front-end DRE machines and the

server together as one Camel system. We assume an external public

bulletin board, where the Camel system has append-only write

access (over a secure TLS channel) and everyone from the public

has read access. By the nature of a touch-screen voting interface,

the system learns a voter’s choice by definition, but the voter’s

privacy is still preserved through anonymity. The plaintext ballots

are encrypted in an election; the encrypted ballots, in conjunction

with their well-formedness proofs, are published as the election

progresses. After the election, additional zero-knowledge proofs

are published to allow anyone to publicly verify the elimination of

the least-preferred candidate and the transfer of votes in each IRV

round without revealing any secret information about the vote.

3

©«
0 0 0 1 ª®®¬

✗ (
0 1 0 0

) →
(

0 1 0 0

)
0 1 0 0 ↗ 1 0 0 0 ✗ 0 0 1 0

1 0 0 0 ↗ 0 0 1 0 ↗
0 0 1 0 ↗

elim 4 elim 1 finish

Figure 1: Eliminating two candidates 4 and 1 from the permutation matrix of (4, 2, 1, 3). Here, 4 is eliminated in the first round
and 1 is eliminated in the second round. The result is a shifted matrix of size 2 × 4.

3.2 Cryptographic Description
TheCamel system follows the samemethod as given in §2.2.We now

explain how cryptographic techniques are applied to this method

to create a verifiable IRV voting system needing no TAs.

3.2.1 Setup. We initialise a mapping of each candidate in C to

[1, 𝑛] and the vectors t(𝑚) (𝑚 ∈ [1, 𝑛 − 1]) as described in §2.2.

Additionally, let 𝑝 and 𝑞 be two large primes such that 𝑞 | 𝑝 − 1. De-
note by G𝑞 the subgroup (of prime order 𝑞) of the group Z∗𝑝 . Unless
stated otherwise, we assume all modular operations to be performed

under the modulus 𝑝 . We also require two random generators of

G𝑞 , which we denote 𝑔0 and 𝑔1. To construct 𝑔0 and 𝑔1, we may fix

𝑔0 to be a non-identity element in G𝑞 and compute 𝑔1 based on a

one-way hash function including 𝑔0 and public contextual informa-

tion about the election (e.g., election name, date and candidates)

in the input [22]. This ensures that the discrete logarithm relation-

ship between 𝑔0 and 𝑔1, namely, log𝑔0
𝑔1, is unknown to anyone.

Finally, we initialise additional vectors s(𝑚) ←
(
𝑠
(𝑚)
1

, . . . , 𝑠
(𝑚)
𝑛

)
with 𝑠

(𝑚)
𝑖

= 0 (𝑖 ∈ [1, 𝑛]) per each round𝑚 ∈ [1, 𝑛−1]. The purpose
of s(𝑚) is to hold the sum of all randomness generated for the most

preferred choice in a vote at round𝑚. This is necessary for the final

verification of the tally.

3.2.2 Vote Casting Phase. The voter only needs to interact with

the DRE machine once during the Vote Casting phase. The voter

submits their ranking of 𝑛 candidates in their order of preference.

The vote is transformed into a permutation matrix V𝑘 for the

voter 𝑘 . The DRE server then generates a matrix X𝑘 = (𝑥𝑖 𝑗)𝑘
of random factors where (𝑥𝑖 𝑗)𝑘 ∈𝑅 Z∗𝑞 and computes the ballot

(𝐵𝑖 𝑗)𝑘 =
〈
(𝑏𝑖 𝑗)𝑘 , (𝑌𝑖 𝑗)𝑘

〉
as follows.

(𝑏𝑖 𝑗)𝑘 ← 𝑔
(𝑥𝑖 𝑗)𝑘
0

𝑔
(𝑣𝑖 𝑗)𝑘
1

(𝐵𝐶1)

(𝑌𝑖 𝑗)𝑘 ← 𝑔
(𝑥𝑖 𝑗)𝑘
1

(𝐵𝐶2)

Here, we use “𝐵𝐶” to denote ballot construction. (𝐵𝐶1) and (𝐵𝐶2)

create ElGamal ciphertexts fulfilling the following logical relation

(which can be enforced by a disjunctive ZKP [23]).(
log𝑔0

(𝑏𝑖 𝑗)𝑘/𝑔1 = log𝑔1
(𝑌𝑖 𝑗)𝑘

)
∨

(
log𝑔0

(𝑏𝑖 𝑗)𝑘 = log𝑔1
(𝑌𝑖 𝑗)𝑘

)
The DREmachine constructs a set of non-interactive ZKPs (NIZKPs)

proving well-formedness of the ballots. We discuss the details of

these in §3.3. The voter’s ballot (𝐵𝑖 𝑗)𝑘 , alongside its corresponding
NIZKPs, is printed onto a receipt together with a digital signature

to prove authenticity.

To facilitate the cast as intended property, we use a similar voter-

initiated auditing procedure proposed by Benaloh [24]. The voter

may audit or confirm their ballot. In the case of auditing the ballot,

the DRE machine adds the voter’s ranking of candidates and the

matrix X𝑘 to the printed receipt. The corresponding ballot (𝐵𝑖 𝑗)𝑘
is included in a set A of audited ballots and the entire receipt is

posted to the public bulletin board. The voter may then check that

the ranking on the receipt is consistent with their chosen order; if

not, a dispute should be raised with the election organisers imme-

diately. Should a voter opt to confirm their ballot, then the ballot

is included in a set C of confirmed ballots and the DRE machine

prints a ballot confirmation message on the receipt together with a

digital signature. The same receipt is also published to the bulletin

board, which the voter can check afterwards.

3.2.3 Tallying Phase. Once the voting server has received all votes,
the Tallying phase begins. This phase operates over multiple rounds.

During a round𝑚, the voting server first eliminates the candidate

𝛼 (𝑚−1) marked from the previous round from all matrices V(𝑚−1)
𝑘

using Algorithm 1 (or simply setsV(1)
𝑘

= V𝑘 if𝑚 = 1) to createV(𝑚)
𝑘

.

The server then computes the round-based ballots (𝐵𝑖 𝑗) (𝑚)𝑘
by

performing a new encryption of V(𝑚)
𝑘

using (𝐵𝐶1) and (𝐵𝐶2). This

re-encryption is a necessary step for ensuring the well-formedness

of ballots, and as such the voting server computes an additional

NIZKP of well-formedness during each round. In short, these proofs

show that the matrix V(𝑚)
𝑘

is a modification of V(𝑚−1)
𝑘

with only

the row encoding the eliminated candidate removed. We discuss

these in further detail in §3.3. Figure 2 illustrates the re-encryption

process of the Tallying phase for a 5-candidate election.

Once all matrices V(𝑚)
𝑘

and their corresponding well-formedness

proofs have been constructed for each voter, the voting server then

updates the vectors t(𝑚) and s(𝑚) as follows.

t(𝑚) ←
∑︁
𝑐 ∈ C
(v1) (𝑚)𝑐 (𝑇1)

s(𝑚) ←
∑︁
𝑐 ∈ C
(x1) (𝑚)𝑐 (𝑇2)

Here, (v1) (𝑚)𝑐 and (x1) (𝑚)𝑐 simply denote the first rows of the

matrix V(𝑚)𝑐 and randomness X(𝑚)𝑐 generated at a round 𝑚 re-

spectively for a confirmed ballot. The randomness must be kept

secret until the end of the round, at which point it must be securely

deleted. The tally t(𝑚) and the vector s(𝑚) are published to the

public bulletin board and t(𝑚) is directly inspected to determine if

there is a winner or if there is a least preferred candidate 𝛼 (𝑚) to
mark and eliminate at the start of the next round. The new ballot

(𝐵𝑖 𝑗) (𝑚)𝑘
is appended to the voter’s receipt on the bulletin board

(and also signed), allowing them to check the receipt and verify that

4

v15

m = 3

v11 v12 v13 v14

v31 v32 v33 v34 v35

v51 v52 v53 v54 v55

v51

v14

m = 2

v11 v12 v13 v15

v21 v22 v23 v24 v25

v31 v32 v33 v34 v35

v53 v54 v55v52
Bk

(4)

Bk
(3)

Bk
(2)

Bk
(1)

if (v4)k
(1) = α(1)

then (v1)k
(2) = (v1)k

(1)

 (v2)k
(2) = (v2)k

(1)

 (v3)k
(2) = (v3)k

(1)

 (v4)k
(2) = (v5)k

(1)

encrypt
if (v2)k

(2) = α(2)
then (v1)k

(3) = (v1)k
(2)

 (v2)k
(3) = (v3)k

(2)

 (v3)k
(3) = (v4)k

(2)

ZKP

if (v1)k
(3) = α(3)

then (v1)k
(4) = (v2)k

(3)

 (v2)k
(4) = (v3)k

(3)

ZKP
encrypt

encrypt
v35

m = 1

v11 v12 v13 v14 v15

v21 v22 v23 v24 v25

v31 v32 v33 v34

v41 v42 v43 v44 v45

v51 v53v52 v54 v55
encrypt

m = 4

v31 v32 v33 v34 v35

v51 v52 v53 v54 v55

ZKP

Figure 2: The shifting and re-encryption processes for the Tallying phase. Here, (vi) (𝑚)𝑘
denotes the row 𝑖 of matrix V(𝑚)

𝑘
at

round𝑚. For the first round𝑚 = 1, the matrix V(1)
𝑘

is taken to be V𝑘 from the Vote Casting phase. V(1)
𝑘

is encrypted to create 𝐵 (1)
𝑘

.

During all other rounds𝑚 ≥ 2, one row is removed from the matrix V(𝑚−1)
𝑘

(the one encoding the candidate 𝛼 (𝑚−1) marked for

elimination) using Algorithm 1. This creates a new matrix V(𝑚)
𝑘

for the next round. The matrix V(𝑚)
𝑘

is encrypted to create the

ballot 𝐵 (𝑚)
𝑘

. Then, NIZKPs of well-formedness are constructed between the ballots 𝐵 (𝑚−1)
𝑘

and 𝐵 (𝑚)
𝑘

, proving that V(𝑚)
𝑘

is the

result of removing the row encoding 𝛼 (𝑚−1) from V(𝑚−1)
𝑘

. The voting server computes the tallies s(𝑚) and t(𝑚) and marks a
new candidate 𝛼 (𝑚) to eliminate during the next round. The whole procedure repeats until a winner may be determined.

all eliminations are being performed correctly by Camel. Camel

then moves onto a new round and repeats this phase until a winner

is elected.

3.2.4 Tally Verification. Once the Tallying phase ends and the

election is complete, anyone may perform the following checks to

verify the integrity of the tallies at each round. First, the NIZKPs

of well-formedness hold. Second, the digital signatures are valid.

Third, the following equations hold for all𝑚 ∈ [1, 𝑛 − 1], 𝑗 ∈ [1, 𝑛].∏
𝑐 ∈ C
(𝑏1𝑗) (𝑚)𝑐 = 𝑔

𝑠
(𝑚)
𝑗

0
𝑔
𝑡
(𝑚)
𝑗

1
(𝑇𝑉1)

∏
𝑐 ∈ C
(𝑌1𝑗) (𝑚)𝑐 = 𝑔

𝑠
(𝑚)
𝑗

1
(𝑇𝑉2)

We use “𝑇𝑉 ” to denote tally verification. Anyone with access to the

public bulletin board can verify these equations.

3.3 Ballot Well-formedness
NIZKPs are necessary to ensure the well-formedness of all cast

ballots in Camel. Ballots are encrypted once during the Vote Casting

phase, and are then re-encrypted in all subsequent rounds in the

Tallying phase. As such, we consider the well-formedness proofs

for the Vote Casting phase and the Tallying phase separately.

3.3.1 Well-formedness during Vote Casting. In the Vote Casting

phase, ballots are constructed from permutation matrices; hence

we define a ballot to be well-formed during Vote Casting if its un-

derlying plaintext vote is a permutation matrix. We may use the

following Theorem to determine whether a binary matrix is also a

permutation matrix.

Theorem 3.1. An 𝑛 × 𝑛 binary matrix V𝑘 = (𝑣𝑖 𝑗)𝑘 satisfying

(𝑣𝑖 𝑗)𝑘 = 0 ∨ (𝑣𝑖 𝑗)𝑘 = 1 is a permutation matrix if and only if∑𝑛
𝑖=1 (𝑣𝑖 𝑗)𝑘 =

∑𝑛
𝑗=1 (𝑣𝑖 𝑗)𝑘 = 1.

Proof. (⇒). Suppose V𝑘 is a permutation matrix. Then each

row of V𝑘 is an encoding of a different candidate from C. Since each
encoding only contains a single 1, it is trivial that

∑𝑛
𝑖=1 (𝑣𝑖 𝑗)𝑘 = 1.

Additionally, since each encoding is for a different candidate, each

column of V𝑘 contains only a single 1 with all other values at 0,

hence

∑𝑛
𝑗=1 (𝑣𝑖 𝑗)𝑘 = 1.

(⇐). Suppose

∑𝑛
𝑖=1 (𝑣𝑖 𝑗)𝑘 =

∑𝑛
𝑗=1 (𝑣𝑖 𝑗)𝑘 = 1. Since V𝑘 is a binary

matrix, there must be only one 1 in each row for

∑𝑛
𝑖=1 (𝑣𝑖 𝑗)𝑘 = 1 to

5

hold, hence each row is an encoding of a candidate from C. Addi-
tionally, since

∑𝑛
𝑗=1 (𝑣𝑖 𝑗)𝑘 = 1, these entries of 1must be in different

columns, hence each encoding is for a unique candidate from C.
Therefore V𝑘 is a collection of unique encodings of candidates from

C and is, by definition, a permutation matrix. □

We use Theorem 3.1 to construct the following NIZKP of well-

formedness 𝑃𝑉𝐶
𝑊𝐹

for ballots created during the Vote Casting phase.

𝑃𝑉𝐶𝑊𝐹

{
(𝐵𝑖 𝑗)𝑘 =

〈
(𝑏𝑖 𝑗)𝑘 , (𝑌𝑖 𝑗)𝑘

〉}
=

𝑃𝐾

{
(𝑥𝑖 𝑗)𝑘 :((
log𝑔0

(𝑏𝑖 𝑗)𝑘/𝑔1 = log𝑔1
(𝑌𝑖 𝑗)𝑘

)
∨

(
log𝑔0

(𝑏𝑖 𝑗)𝑘 = log𝑔1
(𝑌𝑖 𝑗)𝑘

))
∧

(
log𝑔0

(
𝑛∏
𝑖=1

(𝑏𝑖 𝑗)𝑘

)
/𝑔1 = log𝑔1

𝑛∏
𝑖=1

(𝑌𝑖 𝑗)𝑘

)
∧

(
log𝑔0

(
𝑛∏
𝑗=1

(𝑏𝑖 𝑗)𝑘

)
/𝑔1 = log𝑔1

𝑛∏
𝑗=1

(𝑌𝑖 𝑗)𝑘

) }
The first statement ensures that V𝑘 is a binary matrix. The last two

conjunctive statements result from utilising Theorem 3.1 alongside

the additively homomorphic property of the ElGamal ciphertexts.

𝑃𝑉𝐶
𝑊𝐹

should hold for all 𝑖, 𝑗 ∈ [1, 𝑛].

3.3.2 Well-formedness during Tallying. We require an additional

theorem of well-formedness for the ballots that are re-encrypted

during the Tallying phase. This is because rows of the matrices

are deleted between rounds in this phase. We define a matrix V(𝑚)
𝑘

to be well-formed during Tallying if it is the result of shifting the

matrix V(𝑚−1)
𝑘

using Algorithm 1 with 𝛼 (𝑚−1) from the previous

round.

Consider first the row 𝑙 of V(𝑚−1)
𝑘

that encodes 𝛼 (𝑚−1) . By

definition of Algorithm 1, only the rows 𝑖 > 𝑙 of V(𝑚−1)
𝑘

are shifted

upwards by one index to create V(𝑚)
𝑘

. All other rows 𝑖 < 𝑙 remain

the same between V(𝑚−1)
𝑘

and V(𝑚)
𝑘

. This means we can verify the

well-formedness of a matrix V(𝑚)
𝑘

with the following expression.

i f (𝑣𝑙𝛼 (𝑚−1))
(𝑚−1)
𝑘

= 1 ∧∑
𝑗≠𝛼 (𝑚−1) (𝑣𝑙 𝑗)

(𝑚−1)
𝑘

= 0

then

∧
𝑖∈[1,𝑙−1] (v𝑖)

(𝑚)
𝑘

= (v𝑖) (𝑚−1)𝑘

∧∧
𝑖∈[𝑙,𝑛−𝑚+1] (v𝑖)

(𝑚)
𝑘

= (v𝑖+1) (𝑚−1)𝑘

Expression 1: Verification of a row between V(𝑚−1)
𝑘

and V(𝑚)
𝑘

.

This expression first checks that the bit at index 𝛼 (𝑚−1) of row 𝑙

is equal to 1, with all other bits of the row equal to 0, i.e., that row

𝑙 is an encoding of 𝛼 (𝑚−1) . If this holds, then all rows 𝑖 < 𝑙 must

remain the same between V(𝑚−1)
𝑘

and V(𝑚)
𝑘

, whilst all other rows

𝑖 > 𝑙 of V(𝑚−1)
𝑘

must have been shifted upwards by one place to

create V(𝑚)
𝑘

. Examples are illustrated in Figure 2.

We wish to apply Expression 1 over all rows of the matrices

V(𝑚−1)
𝑘

andV(𝑚)
𝑘

. To achieve this, note that only one row ofV(𝑚−1)
𝑘

may encode 𝛼 (𝑚−1) . Therefore, we may rewrite Expression 1 as a

1-of-(𝑛−𝑚+2) disjunctive statement. This is stated by the following

Theorem.

Theorem 3.2. An (𝑛 −𝑚 + 2) × 𝑛 binary matrix V(𝑚)
𝑘

(𝑚 ≥ 2) is

well-formed during round𝑚 if and only if the following holds.∨
𝑙 ∈ [1,𝑛−𝑚+2]

©« 𝛾 ∧ ©«
∧

𝑖∈ [1,𝑙−1]
𝜓
ª®¬ ∧ ©«

∧
𝑖∈ [𝑙,𝑛−𝑚−1]

𝜓 ′
ª®¬ ª®¬

Where we have:

• 𝛾 ← (𝑣𝑙𝛼 (𝑚−1))
(𝑚−1)
𝑘

= 1 ∧∑
𝑗≠𝛼 (𝑚−1) (𝑣𝑙 𝑗)

(𝑚−1)
𝑘

= 0

• 𝜓 ← (v𝑖) (𝑚)𝑘
= (v𝑖) (𝑚−1)𝑘

• 𝜓 ′ ← (v𝑖) (𝑚)𝑘
= (v𝑖+1) (𝑚−1)𝑘

With 𝛼 (𝑚−1) as the candidate marked for elimination from the

previous round𝑚 − 1.

Proof. Follows from definition of Algorithm 1. □

The statement 𝛾 verifies that a row 𝑙 of V(𝑚−1)
𝑘

encodes 𝛼 (𝑚−1) ;
if it does, then the statements𝜓 and𝜓 ′ ensure that all rows 𝑖 < 𝑙 are
the same between V(𝑚−1)

𝑘
and V(𝑚)

𝑘
, whilst all other rows 𝑖 > 𝑙 of

V(𝑚−1)
𝑘

were shifted upwards by one place to createV(𝑚)
𝑘

. Note that

Theorem 3.2 only applies for rounds𝑚 ≥ 2, as two successive round-

based ballots are needed. For the first round, there will trivially be

no candidates to eliminate and we have V(1)
𝑘

= V𝑘 , so Theorem 3.1

and 𝑃𝑉𝐶
𝑊𝐹

are sufficient to rely on for𝑚 = 1 only.

Theorem 3.2 uses only conjunctive and disjunctive statements

and propositions of equality. This means we may use the stan-

dard techniques of conjunctive and disjunctive knowledge [23] to

prove Theorem 3.2 holds between two encrypted ballots 𝐵
(𝑚−1)
𝑘

and 𝐵
(𝑚)
𝑘

. We refer to this proof of well-formedness as 𝑃𝑇
𝑊 𝐹

for

the Tallying phase. We denote the direct translations of 𝛾 ,𝜓 and𝜓 ′

into zero knowledge statements as Γ, Ψ and Ψ′ respectively. The
full definitions of Γ, Ψ and Ψ′ are given in Appendix A.

4 SECURITY ANALYSIS
4.1 E2E Verifiability
We discuss that Camel satisfies the three requirements of E2E veri-

fiability, namely the cast as intended, recorded as cast and tallied as
recorded requirements [10]. Since we follow the Benaloh vote cast-

ing approach [24], it is straightforward to see that Camel satisfies

the “cast as intended” requirement. Camel commits to encrypted

ballots by appending them onto a receipt. When a voter chooses

to audit their ballot, the randomness X𝑘 and the voter’s plaintext

matrix V𝑘 are revealed on the receipt. The voter may check that

V𝑘 is the permutation matrix for their intended vote. The receipt

is also published on the bulletin board, so anyone may verify that

the ciphertext is the correct encryption of V𝑘 using randomness

X𝑘 . Also, the tallying rounds are universally verifiable – provided

that the well-formedness verifications hold, and the voter’s initial

ranking is recorded correctly, then the voter can be sure that their

vote is being transformed correctly by Camel through Algorithm 1.

Voters may choose to audit their vote an unpredictable number

of times. A voter may choose to confirm their vote once they are

convinced their vote is being cast correctly. The voter should check

their receipt then matches the one held on the bulletin board. If

both receipts match, then the voter can be sure that Camel has

recorded their vote, fulfilling the “recorded as cast” requirement.

6

The following theorem shows that Camel satisfies the “tallied as

recorded” requirement, provided that the proofs of well-formedness

and the tally verification equations hold over all rounds.

Theorem 4.1. In Camel, assuming the proofs of well-formedness

𝑃𝑉𝐶
𝑊𝐹

and 𝑃𝑇
𝑊 𝐹

hold, and the tally verification equations (𝑇𝑉1) and

(𝑇𝑉2) also hold, then the reported tallies t(𝑚) are the correct tallies
of all confirmed votes on the bulletin board per tallying round𝑚.

That is, the tally at the round𝑚 is the correct tally of all voters’

most preferred candidates as required for an IRV election.

Proof. We show that the proofs of well-formedness 𝑃𝑉𝐶
𝑊𝐹

and

𝑃𝑇
𝑊 𝐹

, and the tally verification equation (𝑇𝑉2), collectively guar-

antee that the remaining tally verification equation (𝑇𝑉1) holds iff

t(𝑚) =
∑
𝑐 ∈ C v

(𝑚)
1

for each tallying round𝑚.

(⇒). Suppose (𝑇𝑉1) holds and

∏
𝑐 ∈ C (𝑏1𝑗)

(𝑚)
𝑐 = 𝑔

𝑠
(𝑚)
𝑗

0
𝑔
𝑡
(𝑚)
𝑗

1
.

Through definition of (𝐵𝑖 𝑗)𝑘 , we have (𝑏1𝑗)
(𝑚)
𝑘

= 𝑔
(𝑥1𝑗) (𝑚)𝑘

0
𝑔
(𝑣1𝑗) (𝑚)𝑘

1

and therefore the following holds.∏
𝑐 ∈ C
(𝑏1𝑗) (𝑚)𝑐 =

∏
𝑐 ∈ C

𝑔
(𝑥1𝑗) (𝑚)𝑐

0
𝑔
(𝑣1𝑗) (𝑚)𝑐

1

= 𝑔

∑
𝑐 ∈ C (𝑥1𝑗)

(𝑚)
𝑐

0
𝑔

∑
𝑐 ∈ C (𝑣1𝑗)

(𝑚)
𝑐

1

It is clear that s(𝑚) =
∑
𝑐 ∈ C (x1)

(𝑚)
𝑐 and t(𝑚) =

∑
𝑐 ∈ C (v1)

(𝑚)
𝑐 .

(⇐). Suppose t(𝑚) =
∑
𝑐 ∈ C (v1)

(𝑚)
𝑐 . By definition of (𝐵𝑖 𝑗)𝑘 ,

we have

∏
𝑐 ∈ C (𝑏1𝑗)

(𝑚)
𝑐 = 𝑔

∑
𝑐 ∈ C (𝑥1𝑗)

(𝑚)
𝑐

0
𝑔

∑
𝑐 ∈ C (𝑣1𝑗)

(𝑚)
𝑐

1
. Then, by

applying (𝑇𝑉2), we have the following.∏
𝑐 ∈ C
(𝑌1𝑗) (𝑚)𝑘

= 𝑔

∑
𝑐 ∈ C (𝑥1𝑗)

(𝑚)
𝑐

1
= 𝑔

𝑠
(𝑚)
𝑗

1

Hence s(𝑚) =
∑
𝑐∈ C (x1)

(𝑚)
𝑐 . By substituting 𝑠

(𝑚)
𝑗

and 𝑡
(𝑚)
𝑗

into∏
𝑐 ∈ C (𝑏1𝑗)

(𝑚)
𝑐 , we receive 𝑔

𝑠
(𝑚)
𝑗

0
𝑔
𝑡
(𝑚)
𝑗

1
. This is precisely (𝑇𝑉1). □

Therefore, provided the well-formedness and tally verifications

are performed successfully, the reported tallies t(𝑚) are the correct
tallies, for each tallying round𝑚, of all of the confirmed votes on

the bulletin board in Camel.

4.2 Ballot Secrecy
We now consider ballot secrecy for an election, which describes

the principle that any voting system should preserve the privacy

of any individual’s vote. For our work on Camel, we make use

of Benaloh’s definition of vote privacy [25], and define it to be

maintained if an attacker colluding with [dishonest voters has

only a negligible chance to distinguish between any two elections

having the same partial tally of honest votes. We note that, in

2015, Bernhard et al. [26] proposed BPRIV, which is an alternative

game-based definition of privacy. However, we favour Benaloh’s

definition for our work. This is because BPRIV assumes an “honest

single trustee” (which can be extended to multiple trustees), that

not only performs decryption, but is also tasked with removing

any duplicated ballots. However, Camel does not involve any TAs

(trustees) by design. We first state the Decision Diffie-Hellman

(DDH) assumption [27] and assume it to be hard in G𝑞 .

Assumption 4.1. Given𝑔,𝑔𝑎, 𝑔𝑏 andΩ ∈ {𝑔𝑎𝑏 , 𝑅}, where𝑎, 𝑏 ∈ Z∗𝑞
and 𝑅 ∈ G𝑞 , it is hard to decide whether Ω = 𝑔𝑎𝑏 or Ω = 𝑅.

We then require the following assumptions. We state these ex-

plicitly and show they are implied from the DDH assumption.

Assumption 4.2. Consider the following security experiment

𝐸𝑥𝑝𝑅𝑁𝐷A (_). For any 𝑔𝑎, 𝑔𝑏 ∈ G𝑞 , define 𝐷𝐻𝑔 (𝑔𝑎, 𝑔𝑏) = 𝑔𝑎𝑏 .

𝐸𝑥𝑝𝑅𝑁𝐷A (_)

𝑔
$← G𝑞

𝐴
$← G𝑞

𝑑
$← {0, 1}

𝑑′ ← AO(·) (𝑔,𝐴)
Return 𝑑 = 𝑑′

O()

𝐵
$← G𝑞

Ω0 ← 𝐷𝐻𝑔 (𝐴, 𝐵)
Ω1

$← G𝑞
Return (𝐵,Ω𝑑)

In this experiment, the challenger first selects, at random, two el-

ements𝑔 and𝐴 fromG𝑞 . It then invokes the adversaryA with these

elements. A has access to the oracle O and may query it 𝑝𝑜𝑙𝑦 (_)
times. On every query, O selects a random element 𝐵 from G𝑞 and

computes 𝐷𝐻𝑔 (𝐴, 𝐵). O then returns 𝐵, and either 𝐷𝐻𝑔 (𝐴, 𝐵) or a
new random element from G𝑞 ; the choice depends on a secret bit 𝑑

chosen by the challenger. The task of the adversary is to guess 𝑑 .

The advantage of an adversary A, against the security experi-

ment 𝐸𝑥𝑝𝑅𝑁𝐷A (_), is defined as below.

𝐴𝑑𝑣𝑅𝑁𝐷A (_) =
����𝑃𝑟 [𝐸𝑥𝑝𝑅𝑁𝐷A (_) = 1] − 1

2

����
For any PPT adversary A, 𝐴𝑑𝑣𝑅𝑁𝐷A (_) ≤ 𝑛𝑒𝑔𝑙 (_).

Lemma 4.1. The DDH assumption implies assumption 4.2.

Proof. Proved as Lemma 4 in Kurosawa and Nojima [28]. □

Assumption 4.3. Consider the following security experiment

𝐸𝑥𝑝𝑅𝑁𝐷1

A (_). The adversary passes two inputs to the oracle O on

each query. Both of the inputs are a single bit. O randomly selects

one of them in correspondence with another secret bit 𝑑 chosen by

the challenger, and uses the chosen value to compute Ω𝑑 . O then

returns 𝐵 and Ω𝑑 to the adversary. Everything else is the same as

the security experiment 𝐸𝑥𝑝𝑅𝑁𝐷A (_).

𝐸𝑥𝑝𝑅𝑁𝐷1

A (_)

𝑔
$← G𝑞

𝐴
$← G𝑞

𝑑
$← {0, 1}

𝑑′ ← AO(·,·) (𝑔,𝐴)
Return 𝑑 = 𝑑′

O(𝑣0, 𝑣1)

𝐵
$← G𝑞

Ω0 ← 𝐷𝐻𝑔 (𝐴, 𝐵) ∗ 𝑔𝑣0
Ω1 ← 𝐷𝐻𝑔 (𝐴, 𝐵) ∗ 𝑔𝑣1
Return (𝐵,Ω𝑑)

The advantage of an adversary A, against the security experiment

𝐸𝑥𝑝𝑅𝑁𝐷1

A (_), is then given as the following.

𝐴𝑑𝑣𝑅𝑁𝐷1

A (_) =
����𝑃𝑟 [𝐸𝑥𝑝𝑅𝑁𝐷1

A (_) = 1] − 1

2

����
For any PPT adversary A, 𝐴𝑑𝑣𝑅𝑁𝐷1

A (_) ≤ 𝑛𝑒𝑔𝑙 (_).
7

Lemma 4.2. Assumption 4.2 implies 4.3.

Proof. The lemma can be easily proven by applying the triangle

inequality for computational indistinguishability [29]. This states

that 𝑆𝐷 (𝐷0, 𝐷2) ≤ 𝑆𝐷 (𝐷0, 𝐷1) + 𝑆𝐷 (𝐷1, 𝐷2) is true for any three

distributions𝐷0,𝐷1, and𝐷2, where 𝑆𝐷 denotes statistical difference.

Using the triangle inequality, one can show that the inequality

𝐴𝑑𝑣𝑅𝑁𝐷1

A (_) ≤ 2 ∗𝐴𝑑𝑣𝑅𝑁𝐷A (_) holds. □

We now define the indistinguishability notion in an IRV election.

The adversary must choose two different sets of votes in a tally-

ing round𝑚 having the same cardinality and the same tally. The

challenger randomly chooses one of them and converts the set of

votes into encrypted ballots using (𝐵𝐶1) and (𝐵𝐶2). The adversary’s

task is to identify the set of votes selected by the challenger. The

only condition is that the tallies must be equal (it is easy to see that

if the tallies in the two bulletin boards are unequal, the adversary

can trivially distinguish between the two bulletin boards). This is

formalised through the following definition and subsequent lemma.

Definition 4.3. Let us consider the following security experiment

𝐸𝑥𝑝𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_). In this experiment, the challenger first chooses

two random generators𝑔0 and𝑔1. It then creates two bulletin boards

𝐵𝐵0, and 𝐵𝐵1, both initially empty. It also stores three variables

𝑋 ,𝑉0, and 𝑉1 (of size (𝑛 −𝑚 + 1) × 𝑛) initialized with zeroes, i.e.

𝑋 (𝑖, 𝑗) = 𝑉0 (𝑖, 𝑗) = 𝑉1 (𝑖, 𝑗) = 0,∀𝑖 ∈ [1, 𝑛 − 𝑚 + 1], 𝑗 ∈ [1, 𝑛].
Assume that Γ is the set of all well-formed (𝑛 −𝑚 + 1) ×𝑛 matrices

at round 𝑚. The challenger then invokes A = (A0,A1). A has

access to the oracle O, and on each query, passes two inputs 𝑣0 ∈ Γ
and 𝑣1 ∈ Γ to O. O then selects a random (𝑛 −𝑚 + 1) × 𝑛 matrix

𝑥 ∈ Z𝑛 · (𝑛−𝑚+1)𝑝 , and generates the variables 𝑐0 and 𝑐1 as shown in

the experiment; these represent the ballots for the votes 𝑣0 and 𝑣1.

It stores 𝑐0 and 𝑐1 in the bulletin boards 𝐵𝐵0 and 𝐵𝐵1 respectively.

It also stores the cumulative values of the selected randomnesses

in the matrix 𝑋 . Similarly, it stores the cumulative values of 𝑣0, and

𝑣1 in variables 𝑇0 and 𝑇1 respectively.

When A0 returns, the challenger then invokes A1 with 𝑋 and

one of 𝐵𝐵0 or 𝐵𝐵1. The goal ofA1 is to identify the correct bulletin

board selected by the challenger.A wins the game ifA1 can identify

the bulletin board, provided the tallies in both of them are the same.

𝐸𝑥𝑝𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_)

𝑔1, 𝑔0
$← G𝑞

𝐵𝐵0 = 𝐵𝐵1 = ∅
𝑉0 = 𝑉1 = 0

𝑋 = 0

𝑠𝑡 ← AO(·,·)
0

(𝑣1, 𝑣0)
𝑑

$← {0, 1}
𝑑′ ← A1 (𝑠𝑡, 𝐵𝐵𝑑 , 𝑋)
Return (𝑇0 = 𝑇1) ∧ (𝑑 = 𝑑′)

O(𝑣0, 𝑣1)
𝑥

$← Z𝑛 · (𝑛−𝑚+1)𝑝

𝑐0 (𝑖, 𝑗) ← (𝑔𝑥 (𝑖, 𝑗)
0

𝑔
𝑣0 (𝑖, 𝑗)
1

, 𝑔
𝑥 (𝑖, 𝑗)
1

) : 𝑖 ∈ [1, 𝑛 −𝑚 + 1], 𝑗 ∈ [1, 𝑛]
𝑐1 (𝑖, 𝑗) ← (𝑔𝑥 (𝑖, 𝑗)

0
𝑔
𝑣1 (𝑖, 𝑗)
1

, 𝑔
𝑥 (𝑖, 𝑗)
1

) : 𝑖 ∈ [1, 𝑛 −𝑚 + 1], 𝑗 ∈ [1, 𝑛]
𝑋 (𝑖, 𝑗) ← 𝑋 (𝑖, 𝑗) + 𝑥 (𝑖, 𝑗) : 𝑖 ∈ [1, 𝑛 −𝑚 + 1], 𝑗 ∈ [1, 𝑛]
𝐵𝐵𝑖 ← 𝐵𝐵𝑖

⋃{𝑐𝑖 } : 𝑖 = 0, 1

𝑇0 (𝑖, 𝑗) ← 𝑇0 (𝑖, 𝑗) + 𝑣0 (𝑖, 𝑗) : 𝑖 ∈ [1, 𝑛 −𝑚 + 1], 𝑗 ∈ [1, 𝑛]
𝑇1 (𝑖, 𝑗) ← 𝑇1 (𝑖, 𝑗) + 𝑣1 (𝑖, 𝑗) : 𝑖 ∈ [1, 𝑛 −𝑚 + 1], 𝑗 ∈ [1, 𝑛]
The advantage of an adversary A, against the security experi-

ment 𝐸𝑥𝑝𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_) is defined as below.

𝐴𝑑𝑣𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_) =
����𝑃𝑟 [𝐸𝑥𝑝𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_) = 1] − 1

2

����
Lemma 4.4. For any PPT adversary A = (A0,A1), it holds that

𝐴𝑑𝑣𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_) ≤ 𝑛𝑒𝑔𝑙 (_).

Proof. We show that if there exists an adversaryA = (A0,A1),
against the security experiment 𝐸𝑥𝑝𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_), it could be used

in the construction of another adversary B, against the security
experiment 𝐸𝑥𝑝𝑅𝑁𝐷1

B (_) of Assumption 4.3. B works as follows. It

first receives as input 𝑔 and 𝐴 according to Assumption 4.3. B then

invokes A with 𝑔 and 𝐴, i.e., 𝑔1 = 𝑔 and 𝑔0 = 𝐴. On each query

that A0 makes to O with input 𝑣0 and 𝑣1, the adversary B makes

𝑛 · (𝑛 −𝑚 + 1) queries of the form (𝑣0𝑡 (𝑖, 𝑗), 𝑣1𝑡 (𝑖, 𝑗)) in the security

experiment 𝐸𝑥𝑝𝑅𝑁𝐷1

B (_), where 𝑖 ∈ [1, 𝑛 −𝑚 + 1], 𝑗 ∈ [1, 𝑛], and
𝑡 ∈ [1, []. Here, [denotes the total number of queries to O made by

A0 in 𝐸𝑥𝑝
𝐼𝑁𝐷−𝑉𝑜𝑡𝑒
A (_). B does not know the value of [; it makes

a random guess of [∈𝑅 𝑝𝑜𝑙𝑦 (_). If the guess is incorrect, B aborts

and returns a random bit. B receives (𝐵(𝑖, 𝑗),Ω𝑑 (𝑖, 𝑗)) as the value
returned by the oracle in 𝐸𝑥𝑝𝑅𝑁𝐷1

B (_).
For each of the first [−1 queries,B makes𝑛 · (𝑛−𝑚+1) queries to

its internal oracle, and receives𝑛·(𝑛−𝑚+1) responses whichwe give
as (𝐵𝑘 (𝑖, 𝑗),Ω𝑑𝑘 (𝑖, 𝑗)), ∀𝑖 ∈ [1, 𝑛 −𝑚 + 1], 𝑗 ∈ [1, 𝑛], 𝑘 ∈ [1, [− 1].
The input for the last query made by A0 in 𝐸𝑥𝑝𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_) is
simply (𝑣0[, 𝑣1[). Assign 𝑉 (𝑖, 𝑗) =

∑[
𝑘=1

𝑣
0𝑘 (𝑖, 𝑗) =

∑[
𝑘=1

𝑣
1𝑘 (𝑖, 𝑗),

∀𝑖 ∈ [1, 𝑛 −𝑚 + 1], 𝑗 ∈ [1, 𝑛]. B selects random 𝑋 (𝑖, 𝑗) $←− Z𝑝 ,
∀𝑖 ∈ [1, 𝑛 −𝑚 + 1], 𝑗 ∈ [1, 𝑛], and assigns the values 𝐵[(𝑖, 𝑗) and
Ω𝑑[(𝑖, 𝑗) as follows.

𝐵[(𝑖, 𝑗) =
𝐴𝑋 (𝑖, 𝑗)∏[−1
𝑘=1

𝐵𝑘 (𝑖, 𝑗)

Ω𝑑[(𝑖, 𝑗) =
𝑔
𝑋 (𝑖, 𝑗)
0

𝑔
𝑉 (𝑖, 𝑗)
1∏[−1

𝑘=1
Ω𝑑𝑘 (𝑖, 𝑗)

Where 𝑖 ∈ [1, 𝑛 −𝑚 + 1], 𝑗 ∈ [1, 𝑛], and log𝑔0
𝑔1 is unknown.

Denote 𝐵𝐵𝑑 = {(𝐵𝑘 ,Ω𝑑𝑘) : 𝑘 ∈ [1, []}. B simulates all ZKPs and

invokes A1 with 𝐵𝐵𝑑 . If A1 can identify 𝑑 , so can B. If B can

correctly guess the value of [, then their advantage is the same

as that of A. Otherwise, if B cannot guess it correctly, then their

advantage is 0. We may therefore write the following.

𝑃𝑟 [𝐸𝑥𝑝𝑅𝑁𝐷1

B (_) = 1]

≥ (1/𝑝𝑜𝑙𝑦 (_)) · 𝐸𝑥𝑝𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_) + (1 − 1/𝑝𝑜𝑙𝑦 (_)) · 1
2

8

And hence:

𝐴𝑑𝑣𝑅𝑁𝐷1

B (_) ≥ 1/𝑝𝑜𝑙𝑦 (_) · 𝐴𝑑𝑣𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_)

From this, we get, 𝐴𝑑𝑣𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_) ≤ 𝑝𝑜𝑙𝑦 (_) ·𝐴𝑑𝑣𝑅𝑁𝐷1

B (_). This
completes the proof. □

Next we use experiment 𝐸𝑥𝑝𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_) to prove our scheme

is secure against an active adversary that can corrupt some but

not all of the voters in an IRV election. In particular, we show that

an attacker who corrupts an arbitrary number of voters will only

learn the partial tally of the honest votes. The challenger selects

between two sets of honest votes that have the same partial tally.

The task of the adversary is to identify the set of votes selected by

the challenger. All NIZKPs of well-formedness are simulated by the

challenger; this means that the adversary has a negligible advantage

in distinguishing the NIZKPs from real ones. The advantage of

the adversary comes from the encrypted ballots. The following

lemma proves that the attacker will have negligible advantage

in determining the set of honest votes that was selected by the

challenger.

Lemma 4.5. Assume that in an arbitrary IRV election, there are
a voters, where a ∈ 𝑝𝑜𝑙𝑦 (_). Denote by 𝑃𝑖 the index for a voter
𝑖 ∈ [1, a]. Let 𝐻 be the set of indices of the honest voters. All other
voters are corrupted by the adversary A. Let 𝑉𝑖 denote the matrix (at
round𝑚) that represents the vote of 𝑃𝑖 . Consider two sets of matrices
Θ0 = {−→𝑉 0𝑖 : 𝑖 ∈ [1, |𝐻 |]} and Θ1 = {−→𝑉 1𝑖 : 𝑖 ∈ [1, |𝐻 |]}, satisfying∑ |𝐻 |
𝑖=1

−→
𝑉 0𝑖 =

∑ |𝐻 |
𝑖=1

−→
𝑉 1𝑖 (i.e., their tallies are the same). Then, the

adversary cannot distinguish between the following two cases.
(1) {𝑉𝑖 : 𝑖 ∈ 𝐻 } = Θ0.
(2) {𝑉𝑖 : 𝑖 ∈ 𝐻 } = Θ1.

Proof. We show that if there exists such an adversary A, it

could be used in the construction of another adversaryB = (B0,B1),
against the security experiment 𝐸𝑥𝑝𝐼𝑁𝐷−𝑉𝑜𝑡𝑒B (_). B functions as

follows. First,B0 receives the two generators𝑔0 and𝑔1. Then, when-
ever A enters a vote 𝑣 for a corrupt voter, B0 queries the oracle O
with (𝑣, 𝑣) (the two entries are the same). B0 then selects

−→
𝑉 0𝑖 and−→

𝑉 1𝑖 for some 𝑖 ∈ [1, |𝐻 |], and queries O with (−→𝑉 0𝑖 ,
−→
𝑉 1𝑖).

As the number of honest voters is |𝐻 |, which is equal to |Θ0 |
and |Θ1 |, B0 can hence set a unique pair of votes from (Θ0,Θ1)
that represents the vote of the 𝑖𝑡ℎ honest voter. B0 returns once all
a queries to O are completed. Then, B1 is invoked with 𝐵𝐵𝑑 (for

𝑑 ∈ {0, 1}) and sends it to A. If A can identify 𝑑 , so can B1. □

5 RELATEDWORK
A number of verifiable e-voting schemes for IRV have been consid-

ered in the literature [11–15]. Of these, the most relevant to ours

are the works of Benaloh et al. from 2009 [15] and Ramchen et

al. from 2019 [11]. As such, we compare Camel against these two

works.

Benaloh et al. proposed a verifiable voting protocol called Shuffle-
Sum in 2009 [15]. This protocol implements Single Transferable Vote
(STV), a more general voting protocol than IRV that allows for mul-

tiple winners, with the single-winner case reducing to IRV. Tallying

in Shuffle-Sum uses homomorphic addition over first-preference

ballots. Eliminations are handled through homomorphic subtraction

over preference-order ballots, with eliminated candidates identified

through encrypted indicator bits [15]. Their ballot representation
schemes are more compact than ours, however the authors re-

quire a mixing scheme to convert between the first-preference and

preference-order ballots, which is not necessary in Camel. The au-

thors additionally require a set of trustees to compute the election

result, with a threshold of these needing to be honest [15]. As Camel

is free from any trustees, it avoids the added computational and

communication costs between them, as well as any associated trust

assumptions. The limitation of Camel compared to Shuffle-Sum is

the lack of support for STV; we plan to explore support for STV as

part of future work.

Ramchen et al. proposed a new MPC protocol designed for IRV

in 2019 [11]. Their protocol has an additive property permitting

tallying of votes in a source group, and a multiplicative property

permitting the elimination of candidates in a target group. A veri-

fiable encryption switching permits transformations between the

two groups. The authors use a similar matrix representation of

votes to ours, although the elimination procedure is different; can-

didates are eliminated by “striking out” their columns in the matrix.

The tallying procedure is also different; their scheme produces an

indicator vector describing which candidate a vote should count for

using a homomorphic dot product. Their protocol follows the verifi-

ability model of Schoenmakers and Veeningen [30] rather than E2E

verifiability. This enables verification of the tally, although it is not

possible for a voter to check that their vote is representative of their

choice and that it is included in the tally. The authors also require

a set of trustees to compute the election result. One limitation of

Camel compared to the work of Ramchen et al. is that their scheme

supports partial rankings of candidates [11], whilst Camel requires

full rankings. This would require non-trivial modifications to our

ballot representation scheme and well-formedness proofs; we leave

this for future work.

6 CONCLUSION
In this paper, we proposed Camel: the first E2E verifiable system

for IRV without tallying authorities. Camel utilises a matrix rep-

resentation for votes and manages the elimination of candidates

through a novel shifting procedure with universal verifiability. One

candidate is eliminated in each tallying round, which permits veri-

fication through comparisons between the two ballots in any two

successive rounds. We discussed the E2E verifiability of Camel and

proved that it retains ballot secrecy and limits a colluding set of

voters to learn nothing more than the partial tallies at each round.

Camel simplifies the election management in an E2E system

by removing tallying authorities, which are present in related sys-

tems such as those of Benaloh et al. [15] and Ramchen et al. [11].

However, Camel has a limitation in that it currently only supports

IRV (single-winner STV), while Benaloh et al.’s system can support

multi-winner STV. Furthermore, Camel requires voters to give full

rankings of all candidates, while Ramchen et al.’s scheme allows for

partial rankings. We plan to study support for multi-winner STV

and partial rankings in future work.

9

ACKNOWLEDGEMENT
Wewould like to acknowledge the support of EPSRC (EP/T014784/1).

REFERENCES
[1] R. Richie. Instant Runoff Voting: what Mexico (and others) could learn. ELJ, 3(3):

501–512, 2004.

[2] K. Tomlinson, J. Ugander, and J. Kleinberg. Ballot Length in Instant Runoff Voting.

arXiv preprint arXiv:2207.08958, 2022.
[3] B.P. Marron. One Person, One Vote, Several Elections: Instant Runoff Voting and

the Constitution. Vermont Law Review, 28:343, 2003.
[4] UK Labour Party. Labour Leadership and Deputy Leadership Elections 2020 -

Procedure and timetable. 2020. URL https://labourlist.org/wp-content/uploads/

2020/01/LE20-Procedures-and-Timetabale.pdf.

[5] A. Sen. Majority Decision and Condorcet Winners. SC&W, 54(2):211–217, 2020.

[6] R. Richie, J. Seitz-Brown, and L. Kaufman. The Case for Instant Runoff Voting.

CPE, pages 1–11, 2023.
[7] A.Gibbard. Manipulation of Voting Schemes: a General Result. Econometrica,

pages 587–601, 1973.

[8] M.A.Satterthwaite. Strategy-proofness and Arrow’s Conditions: Existence and

Correspondence Theorems for Voting Procedures and Social Welfare Functions.

JET, 10(2):187–217, 1975.
[9] J. Green-Armytage. Four Condorcet-Hare Hybrid Methods for Single-winner

Elections. VM, 29:1–14, 2011.

[10] F. Hao and P.YA. Ryan. Real-world Electronic Voting: Design, Analysis and Deploy-
ment. CRC Press, 2016.

[11] K. Ramchen, C. Culnane, O. Pereira, and V. Teague. Universally Verifiable MPC

and IRV Ballot Counting. In FC 2019, pages 301–319. Springer, 2019.
[12] F. Hertel et al. Extending the Tally-hiding Ordinos System: Implementations for

Borda, Hare-Niemeyer, Condorcet, and Instant-Runoff Voting. Cryptology ePrint
Archive, 2021.

[13] V. Cortier, P. Gaudry, and Q. Yang. A Toolbox for Verifiable Tally-hiding E-voting

Systems. In ESORICS, 2022.
[14] N. Huber et al. Kryvos: Publicly Tally-Hiding Verifiable E-Voting. In CCS, 2022.
[15] J. Benaloh, T. Moran, L. Naish, K. Ramchen, and V. Teague. Shuffle-Sum: Coercion-

Resistant Verifiable Tallying for STV Voting. TIFS, 4(4):685–698, 2009.
[16] B. Adida et al. Electing a University President using Open-audit Voting: Analysis

of Real-world Use of Helios. EVT/WOTE, 2009.
[17] F. Hao et al. Every Vote Counts: Ensuring Integrity in Large-Scale Electronic

Voting. JETS, pages 1–25, 2014.
[18] S. Shahandashti and F. Hao. DRE-ip: a Verifiable E-voting Scheme without

Tallying Authorities. In ESORICS, 2016.
[19] J. Lundell. Random Tie-breaking in STV. Voting Matters, 22:1–6, 2006.
[20] J. C. O’Neill. Tie-breaking with the Single Transferable Vote. Voting matters, 18

(14), 2004.

[21] H. M. Robert III, D. H. Honemann, T. J. Balch, D. E. Seabold, and S. Gerber.

Robert’s Rules of Order Newly Revised. PublicAffairs, 2020.
[22] F. Hao et al. End-to-End Verifiable E-voting Trial for Polling Station Voting. IEEE

S&P, 18(6):6–13, 2020.
[23] J. Camenisch andM. Stadler. Proof Systems for General Statements about Discrete

Logarithms. Technical Report/ETH Zurich, 260, 1997.
[24] J. Benaloh. Ballot Casting Assurance via Voter-initiated Poll Station Auditing.

EVT, 2007.
[25] J. Benaloh. Verifiable Secret-ballot Elections. 1989.

[26] D. Bernhard et al. SoK: A Comprehensive Analysis of Game-based Ballot Privacy

Definitions. In IEEE S&P, 2015.
[27] D.R.Stinson and M.Paterson. Cryptography: Theory and Practice. CRC press,

2018.

[28] K. Kurosawa and R. Nojima. Simple Adaptive Oblivious Transfer without Random

Oracle. In ASIACRYPT, 2009.
[29] K James et al. Security Foundations for Application-Based Covert Communica-

tion Channels. In IEEE S&P, pages 1971–1986. IEEE, 2022.
[30] B. Schoenmakers and M. Veeningen. Universally Verifiable MPC from Threshold

Homomorphic Cryptosystems. In ACNS, 2015.
[31] A. Fiat and Shamir A. How to Prove Yourself: Practical Solutions to Identification

and Signature Problems. In Crypto, 1986.

APPENDIX
A WELL-FORMEDNESS OF TALLYING PHASE
During the Tallying phase, we use Theorem 3.2 to verify that a ma-

trix V(𝑚)
𝑘

is well-formed, i.e., it is the result of applying Algorithm 1

to V(𝑚−1)
𝑘

given a candidate 𝛼 (𝑚−1) marked for elimination. Recall

that the following must hold:∨
𝑙∈[1,𝑛−𝑚+2]

©« 𝛾 ∧ ©«
∧

𝑖∈[1,𝑙−1]
𝜓
ª®¬ ∧ ©«

∧
𝑖∈[𝑙,𝑛−𝑚+1]

𝜓 ′ª®¬ ª®¬
Where we have:

• 𝛾 ← (𝑣𝑙𝛼 (𝑚−1))
(𝑚−1)
𝑘

= 1 ∧∑
𝑗≠𝛼 (𝑚−1) (𝑣𝑙 𝑗)

(𝑚−1)
𝑘

= 0

• 𝜓 ← (v𝑖) (𝑚)𝑘
= (v𝑖) (𝑚−1)𝑘

• 𝜓 ′ ← (v𝑖) (𝑚)𝑘
= (v𝑖+1) (𝑚−1)𝑘

Theorem 3.2 cannot be applied directly to the encrypted ballots

𝐵
(𝑚)
𝑘

and𝐵
(𝑚−1)
𝐾

. Instead, we transform𝛾 ,𝜓 and𝜓 ′ into zero knowl-
edge statements Γ, Ψ and Ψ′ as part of a proof of well-formedness

𝑃𝑇
𝑊 𝐹

. We define 𝑃𝑇
𝑊 𝐹

as below.

𝑃𝑇𝑊 𝐹

{
(𝐵𝑖 𝑗) (𝑚)𝑘

=

〈
(𝑏𝑖 𝑗) (𝑚)𝑘

, (𝑌𝑖 𝑗) (𝑚)𝑘

〉}
=

𝑃𝐾

 (𝑥𝑖 𝑗)
(𝑚)
𝑘

:

((
log𝑔0

(𝑏𝑖 𝑗) (𝑚)𝑘
/𝑔1 = log𝑔1

(𝑌𝑖 𝑗) (𝑚)𝑘

)
∨

(
log𝑔0

(𝑏𝑖 𝑗) (𝑚)𝑘
= log𝑔1

(𝑌𝑖 𝑗) (𝑚)𝑘

))
∧

∨
𝑙 ∈ [1,𝑛−𝑚+2]

Γ ∧ ©«
∧

𝑖∈ [1,𝑙−1]
Ψ
ª®¬ ∧ ©«

∧
𝑖∈ [𝑙,𝑛−𝑚+1]

Ψ′
ª®¬

The first statement in 𝑃𝑇

𝑊 𝐹
ensures that V(𝑚)

𝑘
is a binary matrix.

The final statement then ensures Theorem 3.2 holds between the

two ballots 𝐵
(𝑚)
𝑘

and 𝐵
(𝑚−1)
𝑘

.

We denote by Γ the following logical statement.

log𝑔0
(𝑏
𝑙𝛼 (𝑚−1))

(𝑚−1)
𝑘

/𝑔1 = log𝑔1
(𝑌
𝑙𝛼 (𝑚−1))

(𝑚−1)
𝑘

∧ log𝑔0
∏

𝑗≠𝛼 (𝑚−1)
(𝑏𝑙 𝑗) (𝑚−1)𝑘

= log𝑔1

∏
𝑗≠𝛼 (𝑚−1)

(𝑌𝑙 𝑗) (𝑚−1)𝑘
(Γ)

Γ utilises the additive property of the ElGamal ciphertexts to prove

that a row 𝑙 encodes the candidate 𝛼 (𝑚−1) marked for elimination.

We then denote by Ψ the following logical statement.(
log𝑔0

(𝑏𝑖 𝑗) (𝑚)𝑘
/𝑔1 = log𝑔1

(𝑌𝑖 𝑗) (𝑚)𝑘

∧ log𝑔0 (𝑏𝑖 𝑗)
(𝑚−1)
𝑘

/𝑔1 = log𝑔1
(𝑌𝑖 𝑗) (𝑚−1)𝑘

)
∨

(
log𝑔0

(𝑏𝑖 𝑗) (𝑚)𝑘
= log𝑔1

(𝑌𝑖 𝑗) (𝑚)𝑘

∧ log𝑔0 (𝑏𝑖 𝑗)
(𝑚−1)
𝑘

= log𝑔1
(𝑌𝑖 𝑗) (𝑚−1)𝑘

)
(Ψ)

Ψ ensures that each entry in rows 𝑖 < 𝑙 of 𝑏
(𝑚)
𝑘

and 𝑏
(𝑚−1)
𝑘

are the

encryption either both 0 or both 1, i.e. the encryption of the same

encoding of a candidate.

10

https://labourlist.org/wp-content/uploads/2020/01/LE20-Procedures-and-Timetabale.pdf
https://labourlist.org/wp-content/uploads/2020/01/LE20-Procedures-and-Timetabale.pdf

Finally, we denote by Ψ′ the following logical statement.(
log𝑔0

(𝑏𝑖 𝑗) (𝑚)𝑘
/𝑔1 = log𝑔1

(𝑌𝑖 𝑗) (𝑚)𝑘

∧ log𝑔0 (𝑏 (𝑖+1) 𝑗)
(𝑚−1)
𝑘

/𝑔1 = log𝑔1
(𝑌(𝑖+1) 𝑗) (𝑚−1)𝑘

)
∨

(
log𝑔0

(𝑏𝑖 𝑗) (𝑚)𝑘
= log𝑔1

(𝑌𝑖 𝑗) (𝑚)𝑘

∧ log𝑔0 (𝑏 (𝑖+1) 𝑗)
(𝑚−1)
𝑘

= log𝑔1
(𝑌(𝑖+1) 𝑗) (𝑚−1)𝑘

)
(Ψ′)

Ψ′ ensures that each entry in all other rows 𝑖 > 𝑙 of 𝑏
(𝑚−1)
𝑘

are the

same encryption as those shifted upwards by one place in 𝑏
(𝑚)
𝑘

.

𝑃𝑇
𝑊 𝐹

should hold for all 𝑖, 𝑗 ∈ [1, 𝑛] and𝑚 ∈ [1, 𝑛 − 1]. All proofs
of well-formedness are realised as proofs of knowledge 𝑃𝐾 . These

proofs are constructed using the standard techniques for creating

conjunctive and disjunctive ZKPs [23]. We make each proof non-

interactive by applying the Fiat-Shamir heuristic [31].

11

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Instant Runoff Voting
	2.2 Permutation Matrices and Eliminations
	2.3 Tie-Breaking Eliminations

	3 The Camel System
	3.1 Requirements and Assumptions
	3.2 Cryptographic Description
	3.3 Ballot Well-formedness

	4 Security Analysis
	4.1 E2E Verifiability
	4.2 Ballot Secrecy

	5 Related Work
	6 Conclusion
	References
	A Well-formedness of Tallying Phase

