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Abstract

Private computation of nonlinear functions, such as Rec-
tified Linear Units (ReLUs) and max-pooling operations, in
deep neural networks (DNNs) poses significant challenges
in terms of storage, bandwidth, and time consumption. To
address these challenges, there has been a growing inter-
est in utilizing privacy-preserving techniques that lever-
age polynomial activation functions and kernelized con-
volutions as alternatives to traditional ReLUs. However,
these alternative approaches often suffer from a trade-off
between achieving faster private inference (PI) and sac-
rificing model accuracy. In particular, when applied to
much deeper networks, these methods encounter training
instabilities, leading to issues like exploding gradients (re-
sulting in NaNs) or suboptimal approximations. In this
study, we focus on PolyKervNets, a technique known for
offering improved dynamic approximations in smaller net-
works but still facing instabilities in larger and more com-
plex networks. Our primary objective is to empirically ex-
plore optimization-based training recipes to enhance the
performance of PolyKervNets in larger networks. By do-
ing so, we aim to potentially eliminate the need for tradi-
tional nonlinear activation functions, thereby advancing the
state-of-the-art in privacy-preserving deep neural network
architectures. Code can be found on GitHub at: https:
//github.com/tolusophy/PolyKervNets/

1. Introduction

The widespread adoption of Machine Learning as a
Service (MLaaS) has encountered a substantial challenge
in the form of privacy concerns associated with sensitive
user data. To address these concerns, various privacy-
preserving techniques have been developed and deployed.
One promising approach seeks to perform inference directly
on encrypted data [1–10], employing methods such as ho-
momorphic encryption (HE) [11] or multiparty computa-
tion (MPC) [12], including secret sharing (SS). In typical

privacy-preserving inference (PI) protocols, HE/SS handles
linear operations, while garbled circuits (GC) are used for
nonlinear operations.

While these protocols efficiently handle linear opera-
tions, nonlinear operations present a significant challenge,
often dominating runtime and incurring substantial costs
in terms of storage and latency. To address this issue,
researchers have explored different strategies, including
budgeting [13–16] for nonlinear functions (although this
remains inefficient) and leveraging polynomial activation
functions [17–24] and polynomial kernel convolutions [25].
The latter approach combines convolutions and polynomial
activations, eliminating the need for separate nonlinear ac-
tivation functions. According to [2], the complete replace-
ment of ReLUs with polynomial activation functions i.e., x2

(Quad) [1] can result in impressive latency improvements of
up to 3000× and communication efficiency gains of up to
300×.

However, while these innovations have contributed to the
design of privacy-friendly networks, they can introduce per-
formance challenges, especially when fully replacing Re-
LUs [21]. Previous studies [1,9,17,22] that have completely
replaced ReLUs with low-degree polynomials have demon-
strated improvements on smaller and simpler datasets and
models. However, when these approaches are applied to
larger datasets and more complex models, they encounter
training instabilities, resulting in issues such as NaNs or sig-
nificant performance degradation [21].

In this paper, we aim to solve these issues by find-
ing the best training optimization-based training recipes for
deep polynomial residual models, with a specific focus on
PolyKervNets (PKNs) [25], a recent state-of-the-art tech-
nique which changes the convolution kernel from a linear
to a polynomial one. PKNs leverage expressive polynomial
convolution kernels (polykerv) to design dynamic functions
that adapt at each layer. However, like other approaches,
they face limitations, with the authors unable to extend them
beyond 18 layers of residual networks. By getting the best
training recipes for PKNs, we believe they can be extended
to other polynomial-based approaches, as well as more re-
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cent networks i.e., ViTs. Our main contributions in this
work are as follows:

• We empirically demonstrate that using PKNs to re-
design deeper networks leads to training instabilities,
leading to gradient explosion, even in residual net-
works.

• We also introduce Regularized PolyKervNets (RP-
KNs), which utilizes a learnable regularization pa-
rameter that is capable of minimizing the occurrence
of vanishing or exploding gradients, thereby enabling
PKNs for much deeper residual networks. We also in-
troduce Regularized PolyKervNets Activation (React-
PKNs), which is basically R-PKNs but as an activation
function and also gives more control over the choice of
initialization. Our approach improved the depth limit
of PKNs from 18 residual layers to 50.

• We also assess the performance of RPKNs in a knowl-
edge distillation setting. We train a student RPKN
model alongside its vanilla architecture as the teacher.
Notably, both architectures are trained concurrently so
that the student model can follow the teacher’s learning
journey. This improved the training stability as well as
performance of RPKNs.

2. Background
2.1. PolyKervNets

Conventional CNN models predominantly rely on acti-
vation layers to introduce point-wise non-linearity into the
machine learning model. In the work by [25], it was demon-
strated that CNN architectures could achieve greater ex-
pressiveness by replacing the linear convolution layer with
patch-wise non-linearity using the kernel trick, as described
in [26]. This innovative approach, known as polynomial
kernel convolution (PolyKervNets or PKNs), and has been
leveraged in several works [27–29], expanded upon the
ideas presented in [26]. While [26] primarily focused on
fundamental computer vision tasks, [25] explored the in-
tersection between the requirements of privacy-preserving
inference (PI) protocols and the core concepts from [26].
They pushed the envelope by completely eliminating non-
linear layers, resulting in the creation of privacy-friendly
variants of conventional CNN architectures.

We begin with the conventional convolution operator,
which takes an input x ∈ Rn and weights w ∈ Rn, and
produces the following output:

kc(x,w) = xTw + b

where b represents the bias term. In the context of PolyK-
ervNets, a patch-wise nonlinear kernel is applied, defined

as follows:

kp(x,w) = (xTw + cp)
dp + b

Here, dp (dp ∈ Z+) denotes the polynomial degree, and
cp (cp ∈ R+) is a learnable balance factor. In essence, the
polynomial degree extends the feature space to dp dimen-
sions, and the balancing factor adjusts the non-linear terms.
Consequently, the polynomial kernel not only captures lin-
ear relationships similar to the standard convolutional oper-
ator but also generates non-linear terms. These non-linear
terms can be seen as an approximation of the output from
an activation layer, making the activation learnable and en-
hancing its expressiveness with each use.

2.2. Problems with PKNs

While polynomial approximations of nonlinear functions
are the preferred approach for designing PI-friendly net-
works, they either suffer from training instabilities as the
model gets deeper or a high accuracy deficit compared to
their vanilla variants. Though PKNs provide an active way
of co-designing polynomial kernels suitable for each con-
volution layer, it also terribly suffers from the same issues
as the depth increases. In fact, while the method was able to
achieve proximal results with respect to the vanilla architec-
tures, training stability decreased as depth increased. It was
a struggle to train networks larger than PKR-4 (ResNet-18)
as they either returned NaN loss values, or diverge to a lo-
cal minimal of an accuracy around 10%. In this section, we
will show the problems using three experiments;

Table 1. MSE Loss between Outputs of PKN Variants and their
Vanilla Counterparts

Method PKN (dp = 2, cp = 0) PKN (dp = 3, cp = 0) PKN (dp = 4, cp = 0)
FC only 0.1177 0.111 0.1125
CNN3 2.1792 9.7036 85.2739
Lenet 2.3994 55.0785 NaN
VGG11 0.0092 0.0092 0.0092
VGG16 0.0023 0.0023 NaN
Resnet18 NaN NaN 0.6143
Resnet32 NaN 0.8051 NaN
Resnet50 NaN NaN NaN

Mean Squared Error (MSE) Loss of PKNs Compared to
Their Vanilla Variants: For this experiment, we employed
multiple networks and initialized their weights randomly.
Subsequently, we cloned these networks and replaced the
convolution layers with polykerv layers, removed the ReLU
layers, and replaced the max-pooling layers with average
pooling layers. These models were frozen, and without
having to train, we conducted a forward pass using the
same randomly generated input for each network. The
MSE Loss for the final outputs of each PKN variant was
then computed. In Table 1, we can see the inconsistencies
with regards to each network. Most of the deeper networks
returned NaN values, which is caused by the forward



activation values growing exponentially, leading to an
explosion.

Table 2. Train Loss and Test Accuracy on CIFAR-10 (Training
from Scratch)

Method ReLU PKN (dp = 2) PKN (dp = 3) PKN (dp = 4)
CNN3 1.3774 (53.04) 1.4432 (52.19) 1.4526 (51.36) 1.6928 (43.07)
Lenet 1.3312 (53.67) 1.4977 (49.13) 1.7463 (39.30) NaN
VGG11 0.5133 (73.86) 0.5912 (71.43) NaN NaN
VGG16 0.4848 (73.68) 0.5958 (71.07) NaN NaN
Resnet18 0.8198 (66.60) 0.8336 (66.38) NaN NaN
Resnet32 0.8953 (63.55) NaN NaN NaN
Resnet50 1.4356 (47.22) NaN NaN NaN

Standard Train-from-Scratch Recipe: For this experi-
ment, we followed the same steps as in the first experi-
ment. This time, we trained all models from scratch on the
CIFAR-10 dataset. Note that, except for CNN3 and LeNet,
the other networks were obtained from PyTorch’s library.
These networks were originally designed for 224× 224 im-
ages, but we trained them on 32×32 images for 100 epochs
using the SGD with momentum algorithm (with a learning
rate of 0.001 and momentum of 0.5). The purpose of this
experiment was to compare the performance of each PKN
variant with that of ReLU-based networks and not neces-
sarily achieve optimal results for these networks. We ini-
tialized cp as 0.5 for each degree of PKN, and the results
showed comparable performance for smaller PKN networks
with dp = 2 (see Table 2). Unfortunately, this compar-
ison was limited to ResNet-18, as larger models returned
NaN values. For other degrees, the performances were less
promising, suggesting a faster explosion in gradients as dp
increased.

Table 3. Train Loss and Test Accuracy on CIFAR-10 (Finetuning)

Method ReLU PKN (dp = 2) PKN (dp = 3) PKN (dp = 4)
Resnet18 0.0613 (80.84) 0.6479 (79.55) NaN NaN
Resnet32 0.0402 (82.11) NaN NaN NaN
Resnet50 0.0216 (84.30) NaN NaN NaN

Fine-tuning Recipe: For this experiment, we followed the
same steps as in the second experiment. This time, we lever-
aged pre-trained models obtained from PyTorch’s library
and fine-tuned each network, including the PKN variants,
using the SGD with momentum algorithm (with a learning
rate of 0.001 and momentum of 0.9). While these networks
were originally designed for 224×224 images, we acknowl-
edge that achieving optimal results on 32× 32 images may
be challenging. Again, our primary objective is to highlight
the issues with PKNs. We initialized cp as 0.5 for each de-
gree of PKN, and the results presented here also reinforce
our point about the limitations of PKNs in terms of depth
(see Table 3).

3. Regularized PKNs (R-PKNs)

In order to address the high sensitivity issue observed in
PKNs, we introduce a learnable parameter ap (ap ∈ R+)
that modifies the standard PKN kernel as follows:

kp(x,w) = ap((x
Tw + cp)

dp + b)

Here, ap serves as a regularizing factor for the weights
and coefficients associated with each input x across all lay-
ers f(x) within the learner θ without having to use the gra-
dient clipping method. We refer to this enhanced variant as
Regularized PKNs, or R-PKNs for short.

However, if we expand and separate the R-PKN kernel
kp(x,w) as follows:

kp(x,w) =

dp∑
i=0

ap(c
dp−i
p (xTw)i)

We can create a learnable low-degree polynomial acti-
vation function, specifically for dp = 2, which provides
greater control and flexibility. The new form of the activa-
tion function is expressed as:

f(x) = ap(x
2) + bp(x) + cp

In this expression, x represents the output of a convolu-
tional kernel kc(x,w) = xTw, bp is a learnable function
that can be flexibly initialized and corresponds to 2apcp in
the expanded function, and cp is defined as cp = c2p. This
modification simplifies the deployment of R-PKNs in pre-
trained networks. We refer to this version as Regularized
PolyKervNet Activation, or React-PKNs for short, which
we use extensively in our experiments.

4. Empirical Journey

Our objective is to discover the optimal training strate-
gies to enhance the performance of polynomial activation
functions within very deep networks, with a specific fo-
cus on PKNs. To achieve this goal, we have organized our
experiments into distinct phases. We center our attention
on the ResNet architecture for our experimental investiga-
tions and illustrate the effectiveness of Regularized PKNs
(R-PKNs) on the CIFAR-10 dataset.

In [25], it was observed that PKNs can produce results
closely aligned with their vanilla counterparts but tend to
encounter instability as the network depth increases. In
fact, when adapting PKNs to ResNet-32 and ResNet-50
architectures, it returned NaN. In response to this chal-
lenge, we embark on a journey to identify the most effective
optimization-based strategies for training these networks.

To augment the CIFAR-10 dataset, we introduce hori-
zontal image flipping with a 50% probability and apply the



colorjitter transformation. In an effort to maximize the po-
tential of models available in the PyTorch library, we up-
scale the image size from 32× 32 to 224× 224 pixels. The
models we employ are pre-trained, and we fine-tune all lay-
ers on the CIFAR-10 dataset. Our default batch size is 128.

In the following sections, we will delve into the intrica-
cies of each experiment, providing comprehensive details,
discussing the outcomes, and drawing conclusions based on
the insights gained from our experiments.

4.1. Impact of Learning Rate

We begin with the optimal results obtained from each
of the vanilla ResNet models we utilized. We trained each
model using both the SGD and Adam optimizers (Table 4)
with a learning rate of 3 × 10−4 for 50 epochs while em-
ploying the ReduceLRonPlateau scheduler. We limited the
training to 50 epochs because the optimal results were al-
ready achieved by the 15th epoch.

Table 4. Baseline Accuracy Comparison of ReLU-Based ResNet
Models on CIFAR-10 Using Adam and SGD Optimizers (%).
These results establish the foundational performance benchmarks
for our subsequent comparative analysis.

Method ResNet-10 ResNet-14 ResNet-18 ResNet-32 ResNet-50
SGD 87.88 89.24 94.35 94.77 95.33
ADAM 91.64 93.21 94.32 94.72 95.16

The table above serves as the baseline for every training
approach we use with respect to the R-PKN-based ResNet
models. To simplify the model names and reduce confu-
sion, we adopt a naming convention similar to that of PKNs.
Specifically, ResNet-10 becomes RPKR-10, ResNet-14 be-
comes RPKR-14, ResNet-18 becomes RPKR-18, ResNet-
32 becomes RPKR-32, and ResNet-50 becomes RPKR-
50, where RPKR stands for Regularized PolyKervResNet.
Also, since we are leveraging the React-PKNs, our learn-
able parameters’ initialization are: ap = 0.009, bp =
0.5, cp = 0.47. These were gotten from a study [23] on
Polynomial Activation Functions. Finally, we trained these
variants for 200 epochs to ensure that we achieve the best
results.

We then train RPKRs with different learning rates (1e-3
and 3e-4) without using schedulers and report their results
in Table 5. We observe that using a smaller learning rate for
RPKRs generally leads to more stable results, even though
they may not closely match the results of the vanilla net-
works in Table 4. However, thanks to our learnable param-
eters, we can now extend the depth limit from ResNet-18
(PKR-4/RPKR-18) to ResNet-32 (RPKR-32). In the PKN
paper, as well as in our preliminary studies in the earlier
sections of this paper, it was noted that training a ResNet-
32 network with PKNs was not feasible. This represents
a significant improvement, although RPKR-50 is still not

Table 5. Evaluating the Effects of Learning Rates on RPKR Vari-
ants Performance in CIFAR-10 Dataset. This comparison with the
baseline performances (referenced in Table 4) reveals that smaller
RPKR networks employing a learning rate of SGD 3e-4 demon-
strate performances closely matching the baseline. Conversely, the
larger RPKR networks underperform in comparison, indicating a
potential scalability issue with increased network size under this
learning rate regime.

Method RPKR-10 RPKR-14 RPKR-18 RPKR-32 RPKR-50
SGD (lr=1e-3) 85.64 82.65 82.78 67.43 68.17
SGD (lr=3e-4) 86.3 85.9 87.08 85.41 66.54
ADAM (lr=1e-3) 83.36 82.06 82.61 37.35 76.15
ADAM (lr=3e-4) 85.72 84.82 87.09 85.61 58.3

fully stable. In summary, for RPKNs, a smaller learning
rate tends to yield better results.

4.2. Impact of Batch Sizes

Using a learning rate of 3× 10−4 for its stability, as ob-
served in our earlier experiments, we investigated the im-
pact of batch size on RPKNs. In contrast to our previous
experiments where schedulers were not employed, we uti-
lized the ReduceLROnPlateau scheduler for this specific set
of experiments.

Table 6. Comparative Performance of RPKR Variants with Varied
Optimization Methods and Batch Sizes. Employing the ReduceL-
ROnPlateau scheduler, we trained various RPKR models under
different batch sizes. Our findings indicate that the Adam opti-
mizer consistently outperforms SGD in PKN methods. Notably,
the choice of batch size plays a crucial role in reaching optimal
solutions. Smaller networks align closely with baseline perfor-
mance at batch sizes of 1, 4, and 128, whereas a larger batch size
of 512 leads to suboptimal results.

Method RPKR-10 RPKR-14 RPKR-18 RPKR-32 RPKR-50
SGD (bs=128) 75.71 68.64 88.77 84.39 70.56
SGD (bs=512) 48.67 58.16 78.23 62.86 70.73
ADAM (bs=128) 86.15 87.16 88.28 86.15 74.2
ADAM (bs=512) 81.23 84.55 86.31 83.12 68.43
ADAM (bs=4) 88.79 88.35 86.75 77.61 75.65
ADAM (bs=1) 89.01 89.98 87.21 79.31 75.07

In Table 6, increasing the batch size did not lead to an
improvement in the performance of RPKRs. In fact, for
smaller RPKRs, there was a significant increase in accu-
racy when we reduced the batch size from 128 to 4 and
1. However, training networks using a very small batch
size requires a considerable amount of time, which may
not be practically efficient. Additionally, as the model size
increased, the performance with respect to batch size de-
creased.

While SGD struggled to consistently deliver satisfactory
results, employing the Adam optimizer with a batch size of
128 and a scheduler consistently outperformed Adam with-
out a scheduler. This brought us closer to our objective
of achieving optimal performance, particularly for larger



model sizes. Notably, in [25], PKRs achieved significantly
improved results when using Adam with a learning rate of
1e-3 and a step scheduler that reduces the step size by a
factor of 0.1 every 80 epochs. We hypothesize that this dif-
ference in performance could be attributed to the choice of
hyperparameters and variations in training configurations.
Our primary objective is to identify an optimal training con-
figuration or recipe that can effectively extend the applica-
bility of PKNs and potentially other polynomial-based neu-
ral network architectures to models with substantial depth.
Our aim is to achieve this extension without resorting to
gradient-constraining techniques, such as gradient clipping.

4.3. Training with MoMo

During the course of our study, we encountered an opti-
mization algorithm that automatically learns and adapts the
step sizes for momentum-based optimizers. MoMo [30] uti-
lizes momentum estimates of the batch losses and gradients
sampled at each iteration to construct a model of the loss
function. It then approximately minimizes this model at
each iteration to compute the next step. This allows us to
train RPKNs without the need for using schedulers.

Table 7. Comparative Efficiency of RPKR Models with Mo-
MoAdam Optimizer: RPKR models using MoMoAdam outper-
formed those using Adam and scheduler-based methods, espe-
cially in the RPKR-32 model. The study highlights the efficacy
of very small learning rates for optimal performance in deeper ar-
chitectures, as evidenced by the results at the 200th epoch, under-
scoring the intricacies of training complex networks.

Method RPKR-10 RPKR-14 RPKR-18 RPKR-32 RPKR-50
MoMoAdam (lr=1e-2) 86.08 78.97 82.69 42.48 55.49
MoMoAdam (lr=1e-3) 87.73 86.38 88.12 83.7 75.21
MoMoAdam (lr=3e-4) 87.07 88.48 89.65 88.37 72.16
MoMoAdam (lr=3e-5) 86.48 78.07 82.35 82.62 83.08
MoMoAdam (lr=5e-6) 70.06 77.91 82.1 82.44 83.38

Note that we aim to achieve similar or close results to
those shown in Table 4. To investigate the impact of Mo-
MoAdam (a version of MoMo adapted for the Adam opti-
mizer) on RPKNs, we conducted experiments with various
initial learning rates. The results in Table 7 indicate that uti-
lizing MoMoAdam yields significantly better results com-
pared to using just Adam or Adam with schedulers.

When comparing the performance of RPKRs and vanilla
ResNets using a learning rate of 3e-4, we observe an in-
crease in performance when employing MoMoAdam in-
stead of Adam. However, achieving satisfactory results with
ResNet-50 remains a challenge. Notably, we discovered
that using a smaller learning rate than 3e-4 yielded decent
performance in RPKR-50, albeit requiring longer training
times. This suggests that larger models using R-PKNs ben-
efit from smaller learning rates but require extended train-
ing periods. Our observations indicate that training with
learning rates of 3e-5 and 5e-6 showed potential for im-

provement, with slower training being attributed to the ini-
tial learning rate.

4.4. Impact of Knowledge Distillation

In this section, we explore the application of knowl-
edge distillation (KD), a well-established technique in deep
learning. In traditional KD, a trained teacher network (θt)
provides guidance for training a smaller student network
(θs). The primary objective is to transfer the knowledge
and generalization capabilities of the teacher to the student,
allowing the student to achieve performance close to that of
the teacher.

In our specific context, we employ KD to delve deeper
into the potential advantages of Regularized PolyKervNet
Activation (React-PKNs). Our approach involves training
a student network alongside its vanilla counterpart, which
acts as the teacher. This novel method entails concurrent
training of both architectures, enabling the student model
to closely follow the learning trajectory of the teacher.
By incorporating KD with React-PKNs, our aim is to en-
hance training stability and overall performance across all
residual-based PKN variants we have adapted.

The KD process involves forwarding the input x through
the teacher network θt, calculating the cross-entropy loss,
and performing backpropagation. Subsequently, the output
generated by the updated teacher’s weights serves as the la-
bel for the student network. The Kullback-Leibler (KL) di-
vergence loss between the student and teacher is then used
to update the student model.

Table 8. Accuracy (%) of RPKR Models Trained Using Distilled
Knowledge from their Vanilla Variants. This comparison indicates
that implementing knowledge distillation in PKNs closely aligns
the student models’ performance with that of their teacher models.

Method RPKR-10 RPKR-14 RPKR-18 RPKR-32 RPKR-50
ADAM (lr=3e-4) 90.00 91.68 92.11 - -
MoMoAdam (lr=3e-4) 91.61 92.87 94.00 - -
MoMoAdam (lr=3e-5) - - - 87.02 88.71
MoMoAdam (lr=5e-6) - - - 86.77 88.06

Our experiments, as shown in Table 8, reveal that em-
ploying a learning rate of 3e-4 in Adam and MoMoAdam
for both teacher and student models leads to improved re-
sults and significantly reduces accuracy discrepancies, es-
pecially for smaller architectures (10, 14, 18). However,
maintaining stability for larger models becomes challeng-
ing with this learning rate setting. As a remedy, we re-
duced the learning rate to 3e-5 and 5e-6 for RPKR-32 and
RPKR-50, while keeping the teacher variants (ReLU-based)
at 3e-4. For smaller networks, we did not perform further
experiments at this stage. Our results indicate notable im-
provements for these larger networks, thus addressing the
stability concerns. Better results can be achieved than those
presented here with longer training.



5. Results Discussion and Future Work
In this section, we summarize the key findings from our

experiments and outline potential directions for future re-
search:

5.1. Key Findings

• In our experiments, we observed that employing
smaller learning rates generally resulted in more sta-
ble outcomes for RPKRs, particularly for larger net-
work architectures. Although RPKRs did not precisely
match the performance of vanilla networks, using
smaller learning rates significantly improved stability.
This allowed us to extend the depth limit to ResNet-32,
with RPKR-50 showing promising progress. In sum-
mary, for RPKNs, smaller learning rates tend to yield
more favorable outcomes.

• The impact of increasing batch sizes on RPKR per-
formance was inconsistent. Surprisingly, reducing
the batch size from 128 to 4 and even 1 led to sub-
stantial accuracy gains for smaller RPKRs. How-
ever, extremely small batch sizes may not be practi-
cal due to prolonged training times. Additionally, as
model size increased, the relationship between batch
size and performance weakened. Utilizing the Adam
optimizer with a scheduler consistently outperformed
Adam without a scheduler, particularly for larger mod-
els.

• Our experiments with MoMoAdam, an optimizer that
adjusts step sizes using momentum estimates, demon-
strated significant performance improvements for RP-
KRs. Smaller learning rates, such as 3e-5 and 5e-
6, produced respectable results for larger RPKRs, al-
beit with extended training durations. This suggests
that larger RPKR models benefit from smaller learn-
ing rates but require longer training periods.

• Knowledge distillation (KD) proved effective in en-
hancing the performance and stability of RPKRs. The
concurrent training of student and teacher models us-
ing React-PKNs and the Kullback-Leibler (KL) diver-
gence loss resulted in substantial accuracy improve-
ments. Lower learning rates, such as 3e-5 and 5e-6,
demonstrated potential for further enhancement, espe-
cially for larger RPKR models. KD addressed stability
concerns and brought RPKR models closer to achiev-
ing optimal performance.

5.2. Future Directions

In conclusion, while we have made significant progress
in our quest to optimize the training of polynomial-based
networks, particularly RPKNs, it’s important to acknowl-
edge the constraints that have shaped the scope of our study.

Due to limitations in time and resources, as this project was
conducted as part of a course, we were unable to conduct
additional experiments that would explore the full extent
and boundaries of the methods under investigation.

Nonetheless, we firmly believe that our empirical jour-
ney represents a valuable contribution to the understanding
and advancement of these models. Our findings, although
not exhaustive, offer important insights into training strate-
gies for polynomial-based networks. As we were unable to
push these methods to their limits, we outline several in-
triguing avenues for future research:

• Investigating the potential benefits of combining R-
PKNs with gradient clipping to determine if this ap-
proach can yield comparable or superior results in
terms of stability and overall performance.

• Exploring layer-wise learning rate initialization, where
deeper layers are assigned different learning rates than
initial layers, in order to further optimize the train-
ing process for polynomial-based networks. A quick
experiment with this gave RPKR-50 an accuracy of
87.9% without requiring tuning or knowledge distil-
lation.

• Exploring alternative optimization techniques, such
as Quasi-Newton based approaches, to determine if
certain types of optimizers exhibit superior perfor-
mance and convergence properties when applied to
polynomial-based networks.

• Extending the scope of our conclusions to assess
whether they are applicable to other polynomial-based
approaches, beyond RPKRs, in various deep learning
scenarios.

• Evaluating the generalizability of our approach to dif-
ferent datasets and model architectures, such as Vision
Transformers (ViTs), to determine its effectiveness in
a broader context.
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