Sing a song of Simplex*

Victor Shoup†

Offchain Labs
victor@shoup.net

January 11, 2024

Abstract. We flesh out some details of the recently proposed Simplex atomic broadcast protocol, and modify it so that leaders disperse blocks in a more communication-efficient fashion. The resulting protocol, called DispersedSimplex, maintains the simplicity and excellent latency characteristics of the original Simplex protocol. We also present several variations, including one with “stable leaders” and another that is “signature free”. We also suggest a number of practical optimizations and provide concrete performance estimates that take into account not just network latency but also network bandwidth limitations and computational costs.

1 Introduction

Byzantine fault tolerance (BFT) is the ability of a computing system to endure arbitrary (i.e., Byzantine) failures of some of its components while still functioning properly as a whole. One approach to achieving BFT is via state machine replication [Sch90]: the logic of the system is replicated across a number of machines, each of which maintains state, and updates its state is by executing a sequence of transactions. In order to ensure that the non-faulty machines end up in the same state, they must each deterministically execute the same sequence of transactions. This is achieved by using a protocol for atomic broadcast.

In an atomic broadcast protocol, we have a committee of n parties, some of which are honest (and follow the protocol), and some of which are corrupt (and may behave arbitrarily). Roughly speaking, such an atomic broadcast protocol allows the honest parties to schedule a sequence of transactions in a consistent way, so that each honest party schedules the same transactions in the same order. Each party receives various transactions as input — these inputs are received incrementally over time, not all at once. It may be required that a transaction satisfy some type of validity condition, which can be verified locally by each party. These details are application specific and will not be further discussed. Each party outputs an ordered sequence of transactions — these outputs are generated incrementally, not all at once. One key security property of any secure atomic broadcast protocol is safety, which means that each party outputs the same sequence of transactions. Another key property of any secure atomic broadcast protocol is liveness. There are different notions of liveness one can consider, but the basic idea is that the protocol should not get stuck and stop outputting transactions.

Different protocols make different assumptions about the latency guarantees of the network and the number of corrupt parties. Here, we assume that the number of corrupt parties is less than $n/3$.

* This paper has been evolving since first submitted to https://eprint.iacr.org/ on Dec. 13, 2023 under the original title of “DispersedSimplex: simple and efficient atomic broadcast”. Since then, the stable leader and signature-free variants have been added, as well as a number of practical optimizations and concrete performance estimates that take into account not just network latency but also network bandwidth limitations and computational costs.
and we consider protocols that are guaranteed to provide safety without any latency assumption, and that are guaranteed to provide liveness only in intervals of “network synchrony”, in which the latency is below a certain defined threshold. This is the partial synchrony model, introduced in [DLS88]. The bound of $n/3$ on the number of corrupt parties is optimal in this model. Many quite practical atomic broadcast protocols have been proposed in this model, starting with the classic PBFT protocol [CL99], and this is still an area of active research.

In this paper, we consider the recently proposed Simplex atomic broadcast protocol [CP23]. Like many other recent protocols in this space (such as HotStuff [YMR+18] and HotStuff-2 [MN23]), Simplex is a leader-based, permissioned blockchain protocol: the protocol proceeds in slots (a.k.a., views, rounds), so that in each slot a leader proposes a block of transactions, and these blocks get added to a tree of blocks chained together by cryptographic hashes, rooted at a special genesis block. Over time, a path of committed blocks in this tree emerges — safety ensures that all parties agree on the same path of committed blocks. In these protocols, leaders typically are rotated in each slot — either in a round-robin fashion or using some pseudo-random sequence — which also has the nice effect of mitigating against censorship of transactions. The protocol relies on authenticated communication links and a PKI to support digital signatures (preferably aggregate or threshold signatures for better communication complexity).

Simplex is a wonderfully simple, efficient, and elegant protocol. In this paper, we hope to add to the Simplex story in a small way, mainly by showing how to improve its communication complexity. First, we flesh out some missing (but crucial) details of the Simplex protocol that are needed to get a protocol with acceptable communication complexity. Second, and more importantly, we modify the protocol so that leaders disperse blocks in a more communication-efficient fashion, while maintaining the simplicity and excellent latency characteristics of the protocol. We call this variation on the Simplex protocol DispersedSimplex. We give a detailed analysis of DispersedSimplex (safety, liveness, and performance), and compare it to Simplex, HotStuff, and HotStuff-2 (as well as the ICC protocols in [CDH+21]). We also discuss a number of implementation details, and argue (based on concrete micro-benchmarks and realistic assumptions on network behavior) that despite its simplicity, in typical scenarios, and with committees of size up to 100 connected via a wide-area network (WAN), DispersedSimplex should perform in practice as well as or better than many other protocols (including PBFT and HotStuff). These arguments suggest that it would be worthwhile to measure the actual performance of a real-world implementation (which we have not done). We also present several variations, including one with “stable leaders” (which we argue should achieve even better performance) and one that does not require any signatures at all (with roughly the same communication complexity as if aggregate or threshold signatures were used, but somewhat higher latency). Our presentation is fairly self contained — certainly, no knowledge of the Simplex protocol itself is assumed, but some familiarity with similar protocols (like PBFT or HotStuff) would be helpful.

2 The DispersedSimplex protocol

Like many other protocols in this area, the Simplex protocol iterates through slots (a.k.a., views, rounds), where in each slot there is a designated leader who proposes a new block, which is chained to a parent block, and two rounds of voting are used to commit the block. Moreover, to improve latency, the protocol is “pipelined”, in the sense that it optimistically moves onto the next slot as soon as the first round of voting succeeds, before the block for that slot is committed. Leaders
may be rotated in each slot, either in a round-robin fashion or using some pseudo-random sequence. The DispersedSimplex protocol has the same structure as the Simplex protocol; however, instead of broadcasting the block directly, the slot leader uses well-known techniques for information dispersal to disseminate large blocks in a way that keeps the overall communication complexity low and avoids a bandwidth bottleneck at the leader. In particular, the communication is balanced, meaning that each party, including the leader, transmits roughly the same about of data over the network. Our main insight (such as it is) is how the information dispersal can be interleaved with the proposal phase and the first voting round so that no extra latency is incurred.

2.1 Preliminaries

We have a committee of n parties, P_1, \ldots, P_n, at most $t < n/3$ of which are corrupt. We assume the parties are connected by authenticated point-to-point channels.

We will not generally assume network synchrony. However, we say the network is δ-synchronous over an interval $[a, b + \delta]$ if every message sent from an honest party P at time $t \leq b$ to an honest party Q is received by Q before time $t + \delta$. In this case, for all $t \in [a, b]$, we say that the network is δ-synchronous at time t.

2.1.1 Signatures. We make use of an $(n - t)$-out-of-n threshold signature scheme (although later, in Section 5.4, we discuss how to avoid signatures with concomitant tradeoffs). We refer to a signature share and a signature certificate: signature shares from $n - t$ on a given message may be combined to form a signature certificate on that message. This can be implemented as just a set of signatures, or as an aggregate signature scheme (such as one based on BLS signatures [BLS01] as in [BDN18]) or as a threshold version of an ordinary signature scheme (such as one again based on BLS signatures as in [Bol03]). The second and third implementations will result in much more compact threshold signatures. The third implementation requires a set-up phase to distribute shares of a signing key; however, this set-up can be implemented using an atomic broadcast protocol (such as DispersedSimplex) using one of the first two implementations, so that only a PKI set-up is required; once this set-up phase is complete, the protocol can shift to using the third implementation.

The security property for such a threshold signature scheme may be stated as follows.

Quorum Size Property: It is infeasible to produce a signature certificate on a message m, unless $n - t - t'$ honest parties have issued signature shares on m, where $t' \leq t$ is the number of corrupt parties.

Under our assumption that the number of corrupt parties is strictly less than $n/3$, one can easily establish the following standard property.

Quorum Intersection Property: It is infeasible to produce signature certificates on two distinct messages m and m', unless at least one honest party issued signature shares on both m and m'.

2.1.2 Information dispersal. We explicitly make use of well-known techniques for asynchronous verifiable information dispersal (AVID) techniques involving erasure codes and Merkle trees (introduced in [CT05]). In particular, the payload of block will be encoded using an $(n, n-2t)$-erasure code. Such an erasure code encodes a payload M as a vector of fragments f_1, \ldots, f_n, any $n-2t$ of which can be used to reconstruct m. Using a standard Reed-Solomon code, this leads to a data expansion rate of (at most) roughly 3; that is, $\sum_i |f_i| \approx n/(n-2t) \cdot |M| < 3|M|$.
2.2 Protocol data objects

2.2.1 Blocks. A block \(B \) is of the form \(\text{Block}(v, h, r) \), where

- \(v = 0, 1, \ldots \) is the slot number associated with the block (and we say \(B \) is a block for slot \(v \)),
- \(h \) is the hash of the \(B \)'s parent block, and
- \(r \) is the root of a Merkle tree for the erasure-code fragments \(f_1, \ldots, f_n \) encoding \(B \)'s payload \(M \).

2.2.2 Support, commit, and complaint shares and certificates. A support share on a block \(B = \text{Block}(v, h, r) \) from party \(P_j \) is an object of the form \(\text{SuppShare}(B, \sigma_j, f_j, \pi_j) \), where \(\sigma_j \) is a valid signature share from \(P_j \) on the object \(\text{Supp}(B) \), and \(\pi_j \) is a correct validation path from the root \(r \) to the leaf \(f_j \) at position \(j \). A support certificate on \(B \) is an object of the form \(\text{SuppCert}(B, \sigma) \), where \(\sigma \) is a valid signature certificate on the object \(\text{Supp}(B) \).

A commit share on slot \(v \) from party \(P_j \) is an object of the form \(\text{CommitShare}(v, \sigma_j) \), where \(\sigma_j \) is a valid signature share from \(P_j \) on the object \(\text{Commit}(v) \). A commit certificate on \(v \) is an object of the form \(\text{CommitCert}(v, \sigma) \), where \(\sigma \) is a valid signature certificate on the object \(\text{Commit}(v) \).

A complaint share on slot \(v \) from \(P_j \) is an object of the form \(\text{ComplaintShare}(v, \sigma_j) \), where \(\sigma_j \) is a valid signature share from \(P_j \) on the object \(\text{Complaint}(v) \). A complaint certificate on \(v \) is an object of the form \(\text{ComplaintCert}(v, \sigma) \), where \(\sigma \) is a valid signature certificate on the object \(\text{Complaint}(v) \).

2.2.3 Payload reconstruction. Note that while a quorum of \(n - t \) support shares for a block \(B \) is required to construct a corresponding support certificate, we can reconstruct the payload of \(B \) from a quorum of just \(n - 2t \) support shares, as follows. Using the fragments in these \(n - 2t \) support shares, we reconstruct a tentative payload \(M' \) from the fragments, compute fragments \((f'_1, \ldots, f'_n) \), and compute the root \(r' \) of a Merkle tree for \((f'_1, \ldots, f'_n) \). If \(r' = r \), then the effective payload of \(B \) is defined to be \(M' \), and otherwise, the effective payload is defined to be \(\bot \). Under collision resistance for the hash function used for the Merkle trees, any \(n - 2t \) valid support shares for \(B \) will yield the same effective payload — moreover, if \(B \) was constructed properly from a payload \(M \), the effective payload will be \(M \) (and therefore, an effective payload of \(\bot \) indicates that the party that constructed the block \(B \) was malicious). This observation is the basis for the protocols in [DW20,LLTW20,YPA+21]. Moreover, with this approach, we do not need to use anything like an “erasure code proof system” (as in [ADVZ21]), which would add significant computational complexity (and in particular, the erasure coding would have to be done using parameters compatible with the proof system, which would likely lead to much less efficient encoding and decoding algorithms).

2.3 Subprotocols

We describe our protocol in terms of a main protocol and a few simple subprotocols. In our presentation, these subprotocols are all running concurrently with each other and with the main protocol: a single party can be thought of as running a local instance of the main protocol and each of the subprotocols on different threads on the same CPU. However, this particular architecture is mainly intended just for ease of presentation.

We describe first the data structures and logic of the subprotocols.
2.3.1 Support, commit, and complaint pools. Each party maintains a support pool, a commit pool, and a complaint pool. Whenever a party receives a quorum of \(n - t\) support, commit, or complaint shares, and it does not already have a corresponding certificate, it will generate a certificate, add it to the corresponding pool, and broadcast the certificate to all parties. Similarly, whenever a party receives a support, commit, or complaint certificate, and it does not already have a corresponding certificate, it will add it to the corresponding pool, and broadcast the certificate to all parties.

2.3.2 Approved block pool. Each party also maintains an approved block pool. The approved block pool always contains a tree of blocks, rooted at a special genesis block \(B_{\text{gen}} := (0, *, *)\). Initially, the approved block pool only contains the genesis block. A block \(B = (v, h, r)\) is added to the pool if

- the approved block pool contains a parent block \(B' = (v', h', r)\) with \(v' < v\) and \(h = \text{Hash}(B')\);
- the support pool contains a support certificate for \(B\);
- the party has received a quorum of \(n - 2t\) support shares for \(B\), from which the party can reconstruct the effective payload \(M\) of \(B\) as described above (note that we may have \(M = \perp\));
- \(M \neq \perp\) and satisfies some correctness predicate that may depend of the path of blocks (and their payloads) from genesis to block \(B'\).

Unlike the support, commit, and complaint pools, when a party adds a block to its approved block pool, it does not broadcast anything to other parties. We say a block is approved by \(P\) if it belongs to the approved block pool of \(P\).

2.3.3 Block commitment. We say that a block \(B\) for slot \(v\) is explicitly committed by \(P\) if it is approved by \(P\) and the commit pool of \(P\) contains a commit certificate for slot \(v\). In this case, we say that all of the predecessors of block \(B\) are implicitly committed by \(P\). The genesis block is always considered to be a committed block.

2.4 The main protocol

The logic of the main protocol for a party \(P_j\) is described in Fig. 1. In the description, \(\text{leader}(v)\) denotes the leader for slot \(v\) — as discussed above, leaders may be rotated in each slot, either in a round-robin fashion or using some pseudo-random sequence. The details for generating and validating block proposals are described below. In the main protocol, a party makes its decisions based on the objects in its support, commit, complaint, and approved block pools (which are maintained as described in Section 2.3) and the objects it has received from other parties over authenticated channels. Note that a party will not issue a commit share in a slot if it has already issued a complaint share in that slot — this rule is essential for safety. Also note that a party may issue a support share in a slot even if it has already issued a complaint share in that slot — this rule is not essential and the protocol would also provide both safety and liveness if a party chose not to issue a support share in this case.

2.4.1 Generating block proposals. The logic for generating block proposal material \(B, (f_1, \pi_1), \ldots, (f_n, \pi_n)\) in slot \(v\) at line (*) is as follows:
DispersedSimplex: main loop for party P_j

\[
\begin{align*}
B_{last} & \leftarrow B_{gen} \\
\text{for } v = 1, 2, \ldots & \\
\quad t_{start} & \leftarrow \text{clock()} \\
\quad \text{done} & \leftarrow \text{proposed} \leftarrow \text{supported} \leftarrow \text{complained} \leftarrow \text{false} \\
\text{while not done do} & \\
\quad \text{wait until either:} & \\
\quad & \begin{cases}
\text{there is a complaint certificate for slot } v \text{ in the complaint pool} & \Rightarrow \text{done} \leftarrow \text{true} \\
\text{there is an approved block } B \text{ for slot } v \text{ in the approved block pool} & \Rightarrow
\end{cases} \\
\quad & \begin{cases}
\text{if not complained then broadcast a commit share for } v & \\
\text{not complained and clock()} > t_{start} + \Delta & \Rightarrow
\end{cases} \\
\quad \text{complained} & \leftarrow \text{true} \\
\quad \text{broadcast a complaint share for slot } v \\
\quad \text{leader}(v) = P_j \text{ and not proposed} & \Rightarrow \\
\quad \text{proposed} & \leftarrow \text{true} \\
\quad \text{generate block proposal material } B, (f_1, \pi_1), \ldots, (f_n, \pi_n) & \\
\quad \text{for } i \in [n]: & \text{send } \text{BlockProp}(B, f_i, \pi_i) \text{ to } P_i \\
\quad (\star) & \\
\quad \text{not supported and received from leader}(v) \text{ a valid block proposal } \text{BlockProp}(B, f_j, \pi_j) & \Rightarrow \\
\quad \text{supported} & \leftarrow \text{true} \\
\quad \text{generate a signature share } \sigma_j \text{ on } \text{Supp}(B) & \\
\quad \text{broadcast the support share } \text{SuppShare}(B, \sigma_j, f_j, \pi_j) \\
\end{align*}
\]

Fig. 1. Logic for main loop of DispersedSimplex protocol for party P_j

- compute $h := \text{Hash}(B_{last})$;
- build a payload M that validly extends the path in the block tree ending at B_{last};
- compute the erasure code fragments (f_1, \ldots, f_n) of M;
- compute the Merkle tree for (f_1, \ldots, f_n) with root r and validation paths π_1, \ldots, π_n;
- Set $B := \text{Block}(v, h, r)$.

2.4.2 Validating block proposals
To check if $\text{BlockProp}(B, f_j, \pi_j)$ is a valid block proposal from the leader in slot v at line $(\star\star)$, party P_j checks that each of the following conditions holds:

- B is of the form $\text{Block}(v, h, r)$, where $h = \text{Hash}(B')$ for some (unique) approved block $B' = \text{Block}(v', \cdot, \cdot)$ in the approved block pool;
- $v' < v$;
- the complaint pool contains complaint certificates for slots $v' + 1, \ldots, v - 1$;
- π_j is a correct Merkle validation path from the root r to the leaf f_j at position j.

Note that even if some of the conditions do not hold at a given point in time, they may hold at a later point in time. When party P_j sees a block proposal in slot v, it can check the stated conditions — if these conditions fail due to the lack of an approved parent block or complaint certificate, these conditions will need to be rechecked whenever a new block is added to the approved block pool or a new complaint certificate is added to the complaint pool. We will discuss below (in Section 5.1) how to efficiently implement the test that the complaint pool contains the necessary complaint certificates using a data structure whose size is proportional to the gap between current slot and the last committed slot so that the amortized cost of these tests is $O(1)$ per slot.
3 Analysis

By abuse of terminology, we state security properties unconditionally — they implicitly assume the security of the threshold signature scheme and the collision resistance of the hash functions used to build Merkle trees and chain blocks together, and should be understood to hold with all but negligible probability for all efficient adversaries.

3.1 Initial observations

We state some basic properties:

Uniqueness and Validity Property: Suppose that a block B for some slot v is approved by a party. Then no other block for slot v can be approved by that party or any other party. Moreover, if the leader for slot v is honest, B must have been proposed by that leader.

The first part follows from the Quorum Intersection Property, based on the fact an honest party issues a support share for at most one block per slot. The second part follows from the Quorum Size Property.

Completeness Property: If an object X appears in any pool (support, commit, complaint, approved block) then X (or its equivalent) will eventually appear in the corresponding pool of every other party. Moreover, if X appears in a party’s pool at a time t at which the network is δ-synchronous, it will appear in every party’s pool before time $t + \delta$.

For the support, commit, and complaint pools, this is clear. For the approved block pool, we are relying on the Quorum Size Property: when a support certificate for B is added to the support pool, at least $n - 2t$ honest parties must have already broadcast support shares for B, which contain B as well as fragments sufficient to reconstruct B’s payload.

Incompatibility of Complaint and Commit Property: It is impossible to produce both a complaint and commit certificate for the same slot v.

This follows from the Quorum Intersection Property, based on the fact that in each slot, an honest party will never issue both a complaint share and a commit share.

3.2 Safety

Safety follows immediately from the following lemma.

Lemma 3.1 (Safety). Suppose a party P explicitly commits a block B for slot v, and a block C for slot $w \geq v$ is approved by some party Q. Then B is an ancestor of C in Q’s approved block pool.

Proof. By the Incompatibility of Complaint and Commit Property, no complaint certificate for slot v can be produced. Let C' be the parent of C and suppose w' is the slot number of C'. Since C' is in Q’s approved block pool, a support certificate for C' must have been produced, which means at least one honest party must have issued a support share for C', which means $v \leq w' < w$. The inequality $v \leq w'$ follows from the fact that there is no complaint certificate for slot v, and an honest party will issue a support share for C only if it has complaint certificates for slots $w' + 1, \ldots, w - 1$.

If $v = w'$, we are done by the (first part of the) Uniqueness and Validity Property, and if $v < w'$, we can repeat the argument inductively with C' in place of C.

1 Note that the “or equivalent” qualification is necessary to account for signature certificates, if these are not necessarily unique.
3.3 Liveness

Liveness follows immediately from the following lemmas. The first lemma analyzes the optimistic case where the network is synchronous and the leader of a given slot is honest, showing that the leader’s block will be committed.

Lemma 3.2 (Liveness I). Consider a particular slot \(v \geq 1 \) and suppose the leader for slot \(v \) is an honest party \(Q \). Suppose that the first honest party \(P \) to enter the loop iteration for slot \(v \) does so at time \(t \). Further suppose that the network is \(\delta \)-synchronous over the interval \([t, t + 3\delta]\) for some \(\delta \leq \Delta/3 \). Then the all honest parties will finish the loop iteration before time \(t + 3\delta \) by validating \(Q \)'s proposed block \(B \), and will eventually commit \(B \). Moreover, if the network is \(\delta \)-synchronous over the interval \([t, t + 4\delta]\), then all honest parties will commit the block \(B \) before time \(t + 4\delta \).

Proof. By the Completeness Property, before time \(t + \delta \), each honest party will enter the loop iteration for slot \(v \) by time \(t + \delta \), having either a complaint certificate for slot \(v - 1 \) or a approved block for slot \(v - 1 \). So before time \(t + \delta \), the leader \(Q \) will propose a block \(B \) that extends a block \(B' \) with slot number \(v' < v \). By the logic of the protocol, we know that \(Q \) must have complaint certificates for slots \(v' + 1, \ldots, v - 1 \) at the time it makes its proposal. Again by the Completeness Property, before time \(t + 2\delta \), each honest party will have \(B' \) and these complaint certificates in their own pools, and moreover, will receive \(Q \)'s proposal before this time, and hence will broadcast a support share for \(Q \)'s proposal by this time. Therefore, before time \(t + 3\delta \), each honest party will have approved \(B \). By the assumption that \(\delta \leq \Delta/3 \), when each honest party has approved \(B \), the complaint condition will not have been met, and therefore, each honest party will issue a commit share for \(v \) at this time. If the network remains \(\delta \)-synchronous, the commit shares will be received by all honest parties before time \(t + 4\delta \). \(\Box \)

The second lemma analyzes the pessimistic case, when the network is asynchronous or the leader of a given round is corrupt. It says that eventually, all honest parties will move on to the next round.

Lemma 3.3 (Liveness II). Suppose that the network is \(\delta \)-synchronous over an interval \([t, t + \Delta + 2\delta]\), for an arbitrary value of \(\delta \), and that at time \(t \), some honest party is in the loop iteration for slot \(v \) and all other honest parties are in a loop iteration for \(v \) or a previous slot. Then before time \(t + \Delta + 2\delta \), all honest parties finish the loop iteration for slot \(v \).

Proof. By the Completeness Property, every honest party will enter the loop iteration for slot \(v \) before time \(t + \delta \). By time \(t + \delta + \Delta \), every honest party will have either approved a block or broadcast a complaint share for slot \(v \). In either case, less than \(\delta \) time units later all honest parties will have either approved a block or obtained a complaint certificate for slot \(v \), and hence will have finished the loop iteration for slot \(v \).

Finally, we note that in periods of asynchrony, for any slot \(v \) in which the leader \(Q \) is honest, if any block is committed in slot \(v \), it must have been the block proposed by \(Q \). This follows from the (second part of the) Uniqueness and Validity Property.

3.4 Complexity estimates
3.4.1 Communication complexity. We measure the communication complexity per slot. This is the sum over all honest parties P and all parties Q of the bit-length of all slot-v-specific messages sent from P to Q.

The communication complexity per slot of DispersedSimplex is easily seen to be

$$O(n\beta + n^2(\kappa + \lambda \log n)),$$

where

- β is a bound on the size of a block,
- κ is a bound on the size of a threshold signature share or certificate,
- and λ is a bound on the size of the hash function outputs used for Merkle trees and block chaining.

Indeed, the cost breaks down as follows:

- $O(n\beta)$ for disseminating payload fragments,
- $O(n^2 \log n \cdot \lambda)$ for disseminating Merkle paths,
- $O(n^2 \kappa)$ for disseminating signature shares and certificates,
- $O(n^2 \lambda)$ for disseminating block hashes.

If blocks are large, in particular, if $\beta \gg n(\kappa + \lambda \log n)$, the communication complexity will be dominated by the cost of disseminating the payload fragments.

Moreover, the communication load is balanced, meaning that each party, including the leader for a slot, transmits roughly the same amount of data over the network.

3.4.2 Latency. We may also measure various notions of latency. We define:

- optimistic proposal-commit latency: assuming the leader is honest, and that the network is appropriately synchronous, the time it takes for the leader’s proposal to be committed by all honest parties (same as the notion of “proposal confirmation time” in [CP23]);
- optimistic consecutive-proposal latency: assuming two consecutive leaders are honest, and that the network is appropriately synchronous, the amount of time that elapses between when they make their respective proposals (similar to the notion of “optimistic block time” in [CP23]).

If a given transaction is submitted to the system (i.e., to all parties), the sum of these two latencies upper bounds the total time it takes for a transaction to be included in a proposal and then committed. The optimistic consecutive-proposal latency also upper bounds what we might call the optimistic reciprocal block throughput, the reciprocal of the rate at which blocks are proposed (and committed) in a steady state where all leaders are honest and the network is appropriately synchronous.

For DispersedSimplex, just as for Simplex, we readily see that if the network is δ-synchronous for $\delta \leq \Delta/3$, then the optimistic proposal-commit latency is 3δ and the optimistic consecutive-proposal latency is 2δ.

It is also useful to look at the latency between proposals made between non-consecutive honest leaders. That is, if leaders in slots v and $v + k + 1$ are honest, but the k leaders in the intervening slots are crashed or corrupt, how much time may elapse between the time the leader in slot v makes its proposal and the time the leader in slot $v + k + 1$ makes its proposal. Let us call this the
optimistic \(k \)-gap proposal latency. For DispersedSimplex, just as for Simplex, this is \(2\delta + k \cdot (\Delta + \delta) \). If leaders are chosen at random, then the probability that there is a gap of size \(k \) between slots with honest leaders decreases exponentially with \(k \).

We note that DispersedSimplex protocol is optimistically responsive, meaning that it runs as fast as the network will allow so long as leaders are honest.

3.5 Other costs and concrete estimates

In this section, we discuss other costs and make some concrete estimates for performance under specific assumptions. We are generally interested in values of \(n \) up to around 100, where each of the \(n \) parties is running commodity hardware and connected to a WAN with typical network bandwidth and latency.

We first consider the computational cost of erasure coding. This should not have a significant impact on the overall system performance, assuming one uses a reasonably good implementation of erasure coding algorithms. One such implementation is the reed-solomon-simd library at https://github.com/AndersTrier/reed-solomon-simd, which is based on [LC12,LAHC16]. We benchmarked this implementation with parameters corresponding to \(t = 32 \) and \(n = 3t + 1 = 97 \) and payload sizes of 100KB and 1MB on a Macbook Pro with an Apple M1 Max CPU. The encoder runs at a rate of nearly 2GB/s for both payload sizes. The decoder runs at a rate of about 250MB/s for the 100KB payload and about 500MB/s per second for the 1MB payload. Generally, the encoder speed is independent of the payload size and the decoder speed increases with the payload size (because fixed costs get amortized). At these speeds, it is very unlikely that the erasure coding will be a bottleneck.

We next consider the computational cost of signature generation, verification, and aggregation. Let us assume we use aggregate BLS signatures with the standard proof-of-possession mitigation against rogue-key attacks, so that public keys and signatures are very cheaply aggregated by simply adding them together. On the same hardware above, we benchmarked the blst library at https://github.com/supranational/blst. The cost of signing or verifying one BLS signature is well under 1ms, and the cost of adding public keys and signatures in the aggregation process can be effectively ignored (at least for quorums of size up to a few hundred). To aggregate many unverified BLS signatures, a party \(P \) can very cheaply aggregate the unverified signatures and then verify the result. If the aggregate verification fails, \(P \) will have to perform a much more expensive search to find out which of the individual signatures were bad. However, once the bad signatures are found, since the parties that contributed those signatures must be corrupt, \(P \) can simply ignore all signatures (and indeed all messages) sent from these parties going forward. This works because we are assuming the signatures are sent over authenticated channels (although \(P \) cannot publicly prove their corrupt behavior, unless the BLS signatures are themselves authenticated using some cheaper digital signature, such as EdDsa). Thus, over the long run, the cost of verifying and aggregating a set of individual signatures is essentially just the cost of one BLS signature verification. Similarly, when a party \(P \) receives an aggregate signature from another party, if the verification of that aggregate signature fails, \(P \) can simply ignore that party going forward.

The other main computational cost to consider is that of hashing. On the same hardware mentioned above, the openssl implementation of SHA256 runs at a speed of 2GB/s.

With these benchmarks, and additional assumptions on network bandwidth and latency, we can estimate the performance (latency and throughput) of the protocol (in the optimistic setting).
We shall assume network bandwidth of 1Gb/s (i.e., 125MB/s) and that the protocol is running over a WAN, so that there is essentially no contention for network bandwidth among the parties. Specifically, our assumption is that all parties can simultaneously transmit to the network at a rate of 1Gb/s. We shall assume a network latency of 100ms (so it takes 100ms for a packet to travel from \(P \) to \(Q \) once \(P \) has transmitted the packet, which is generally consistent with round-trip times reported in https://www.cloudping.co/grid/p_90/timeframe/1D).

The protocol’s performance will depend on:

- transmission delay: the delay per slot induced by network bandwidth,
- propagation delay: the delay per slot induced by the network latency,
- computation delay: the delay induced by computation.

The optimistic consecutive-proposal latency is just the sum of these delays and throughput is the block size \(\beta \) divided by the sum of these delays. Here, we will assume that \(\beta \) is the number of bytes in a block. Of course, \(\beta \) also impacts transmission and computation delay.

We will make one small change to the protocol that will streamline its execution. Namely, instead of using an \((n, n - 2t)\)-erasure code, we will use an \((n - 1, n - 2t - 1)\)-erasure code, and adopt the convention that the leader does not hold a fragment. We note that with this change, the encoding of a block is still at most \(3\beta \) bytes, and that the above benchmarks for \(n = 97 \) are still valid. With this change, the way the the block data flows through the network in a given slot is as follows:

- the leader encodes a block of size \(\beta \) as a codeword of size \(\approx 3\beta \), and transmits to each of the \(n - 1 \) other parties its fragment, which has size \(\approx 3\beta/n \), so that the leader transmits a total of \(\approx 3\beta \) bytes across the network.
- each party other than the leader broadcasts its fragment of size \(\approx 3\beta/n \) to the \(n - 2 \) other parties (besides itself and the leader), so each such party transmits a total of \(\approx 3\beta \) bytes across the network.

Assuming fragments are sufficiently large, each fragment can be broken up into many packets, and a simple “packet-switching pipeline” strategy can be used to minimize the transmission delay. Specifically, the leader begins by sending to each other party \(P \) the first packet of \(P \)'s fragment, then it sends to each other party \(P \) the second packet of \(P \)'s fragment, and so on; at the same time, when a party \(P \) receives one packet of its own fragment from the leader, it immediately broadcasts that fragment to all other parties. One sees that with this simple “packet-switching pipeline” strategy, the transmission delay per slot is roughly \(3\beta \) bytes divided by the network bandwidth available to each party (without pipelining, it would be twice as much). With a network bandwidth of 1Gb/s, this translates into a transmission delay per slot of about 25ms for every 1MB of (original, unencoded) block data.

Next, consider propagation delay. This is twice the network latency, so \(2 \cdot 100\text{ms} = 200\text{ms} \) under our assumptions. To make things more concrete, let us choose a block size that roughly balances transmission and propagation delay, so a block size of 8MB. With a block size this large, and for \(n \approx 100 \), the size of each fragment is \(\approx 240\text{KB} \), large enough to make the simple “packet-switching pipeline” strategy feasible (with packets of size \(\approx 1\text{KB} \), a party can transmit one packet to each other party in time under 1ms).

Third, consider computation delay. There are several components to this:
- **erasure coding:** the leader encodes β bytes of data, and then each receiving party decodes and encodes the same amount of data; with our given estimates (for $n = 97$), this takes $2 \cdot 4\text{ms} + 16\text{ms} = 24\text{ms}$. Using multiple cores, this could likely be reduced significantly.

- **hashing:** the leader hashes 3β bytes of data, and then each receiving party hashes the same amount of data; with our given estimates, this takes $2 \cdot 12\text{ms} = 24\text{ms}$. However, the hashing done by the leader can overlap entirely with the transmission delay (the hashing can be done concurrently with the transmission of the fragments). For the receiving parties, in a typical execution, of the 3β bytes of data they need to hash, at least 2β bytes of hashing can overlap with the transmission delay (assuming the hashing is done as packets are received). If they receive support shares from all other parties, no more hashing needs to be done. In the worst case, they need to hash β bytes (after the re-encoding step), and with our given estimates, this takes 4ms. Using multiple cores, this could likely be reduced even more.

- **signing and aggregating:** each party generates a support share and then forms a support certificate. With our given estimates, this takes a total of 2ms. However, the 1ms of time spent forming a support certificate easily overlap the above 4ms of hashing time (assuming multiple cores). We do not count here the cost of processing commit shares and certificates, as these can be performed on a separate core.

This all adds up to a computation delay of $24\text{ms} + 4\text{ms} + 1\text{ms} = 29\text{ms}$, and we will round this up to 40ms to be conservative (although by exploiting multiple cores, it could be much less).

With these parameters, we estimate the total delay per slot as:

- 200ms transmission,
- 200ms propagation,
- 40ms computation.

This translates to a throughput of 8MB every 440ms, so about 18MB per second. The optimistic consecutive-proposal latency is 440ms and the optimistic proposal-commit latency is that plus about 100ms, so about 540ms.

To get a better understanding of this setting, consider the following example timeline. Suppose that at time t a leader starts transmitting the packets of a block. By time (roughly) $t + 100\text{ms}$ the other parties start echoing these packets. By time (again, roughly) $t + 200\text{ms}$ the leader finishes transmitting packets and transmits the remaining elements of its block proposal. By time $t + 300\text{ms}$ all of these packets and remaining elements have been echoed by the other parties; moreover, by this same time, the other parties have validated the block proposal and have broadcast a signature share on a corresponding support message. By time $t + 400\text{ms}$, the other parties have received all the fragments and other data they need, and then perform 40ms of computation to finish the slot with an approved block by time $t + 440\text{ms}$.

Note that all of the above estimates are essentially independent of n. Indeed, the component of propagation and computation delay that depends on n will be a very small fraction of the total for block sizes of at least 1MB and for n up to several hundred.

Later in Section 5.3 we will discuss a variation of DispersedSimplex that supports “stable leaders”, and we will argue that this leads to even better performance.
4 Comparison to other protocols

4.1 Simplex

As already mentioned above in Section 3.4.2, the optimistic proposal-commit latency (3δ) and the optimistic consecutive-proposal latency (2δ) of DispersedSimplex are the same as for Simplex. A proper comparison of the communication complexity of DispersedSimplex and Simplex is not really possible. This is because description of Simplex in [CP23] is a bit problematic: taking the description of the protocol in Section 2.1 of [CP23] literally, the size of the message in slot v is actually proportional to v, but elsewhere (in particular in Section 3.4 of [CP23]) it is suggested that messages are much smaller (but without any details). DispersedSimplex is optimistically responsive, just like Simplex.

4.2 HotStuff and HotStuff-2

We may also compare DispersedSimplex to HotStuff [YMR+18] and the recently proposed improvement HotStuff-2 [MN23].

4.2.1 Latency. HotStuff-2 has an optimistic proposal-commit latency of 5δ while HotStuff has a an optimistic proposal-commit latency of 7δ. Pipelined versions of these protocols can achieve an optimistic consecutive-proposal latency 2δ. Thus, (pipelined versions of) HotStuff and HotStuff-2 have the same optimistic consecutive-proposal latency of DispersedSimplex, but have worse optimistic proposal-commit latency (which is just 3δ for DispersedSimplex).

We note that HotStuff and HotStuff-2 are optimistically responsive, just like DispersedSimplex and Simplex.

4.2.2 Communication complexity. The reported communication complexity of HotStuff and HotStuff-2 is

\[O(n(\beta + \kappa + \lambda)) \]

Recall that \(\beta \) bounds the block size, \(\kappa \) the signature share/certificate size, and \(\lambda \) the hash size. For small blocks, specifically if \(\beta \ll n(\kappa + \lambda \log n) \), this communication complexity is better than that of DispersedSimplex, which is \(O(n\beta + n^2(\kappa + \lambda \log n)) \), as we discussed above in Section 3.4.1. However, this reported communication cost does not actually take into account the cost of reliable block dissemination. In these protocols, the leader is (apparently) supposed to simply send its proposed block to each party — at least, that is what is written in [YMR+18].

This creates two problems. First, there is no mechanism specified that ensures that all honest parties obtain the payloads of committed blocks. Naive mechanisms in which parties simply poll other parties for missing blocks can easily degenerate into \(O(n^2\beta) \) communication complexity: all corrupt parties could simply ask for a block from all honest parties. If information dispersal techniques are used to ensure data availability, this would again make the communication complexity quadratic in \(n \). So at best, the communication complexity of these protocols is better only for small blocks and only assuming corrupt parties do not misbehave too much.

Second, if the description in [YMR+18] is taken literally, the communication load in HotStuff (and apparently HotStuff-2) is very unbalanced. This can create a communication bottleneck at the leader. Indeed, as demonstrated empirically in [MXC+16,SDPV19], it seems that for systems with
moderate network size (n up to a hundred or so) and large block sizes, taking care to disseminate blocks to all parties in a way that does not create a bottleneck at the leader is more important in practice than worrying about the quadratic dependence on n in the communication complexity. In contrast, as mentioned above in Section 3.4.1, the communication load of DispersedSimplex is balanced. That is, each party, including the leader, transmits roughly the same amount of data over the network. Thus, while in HotStuff (and HotStuff-2), the leader has to transmit $O(n\beta)$ bytes across the network, in DispersedSimplex, the leader (and every party) transmits $O(\beta)$ bytes across the network.

4.2.3 Concrete estimates. It would be interesting to perform a careful empirical investigation to compare the real-world performance of DispersedSimplex and (pipelined) HotStuff/HotStuff-2 under various parameter settings. However, we can attempt to make a “back of the envelope” calculation, similar to what we did in Section 3.5. With the parameters we used there (1Gb/s network bandwidth and 100ms network latency), the propagation delay per slot would be the same, so about 200ms, and the computation delay would be less. As for the transmission delay, if the block size is β bytes, then in each slot the leader has to transmit a total of $n\beta$ bytes across the network. This is obviously much worse than the 25ms per 1MB of block data for DispersedSimplex. With these estimates, the best possible throughput that could be achieved is 1.25MB of block data per second. More concretely, suppose we set the block size to 1MB. So ignoring computation delay (which is just a few ms), the throughput is about 1MB per second (vs 18MB for DispersedSimplex), the optimistic consecutive-proposal latency is 1s (vs 440ms for DispersedSimplex), and (for HotStuff-2) the optimistic proposal-commit latency is that plus about 300ms, so about 1.3s (vs 540ms for DispersedSimplex).

In the above calculations, we saw that for an unbalanced protocol like HotStuff (or PBFT), as n increases, the throughput should decrease, and the latency should increase, while in a balanced protocol like DispersedSimplex, throughput and latency should not depend very much on n. This type of behavior has been confirmed experimentally in papers such as [MXC+16,SDPV19], although not for the exact protocols considered here. Also, while we focused on throughput and latency, there are other costs to consider — namely, the monetary (or other) costs associated with transmitting a certain amount of data. These costs are directly proportional to the overall communication complexity, and it is indeed true that erasure coding does inflate these costs by a factor of 3. Another factor to potentially consider is the fact that for a balanced protocol like DispersedSimplex, the rate at which each party is transmitting is fairly constant, while for protocols like HotStuff, it is very bursty.

4.2.4 A tension between timeouts. Another issue with HotStuff-2 is that in addition to a timeout analogous to the value Δ used in DispersedSimplex, there is a waiting period Δ' used by the leader in some situation to ensure that it becomes aware of any “hidden locks” held by other parties that would prevent its proposal from being accepted (and thus lose the liveness property). Now, it is a well-established technique that a system might choose an initial timeout Δ-value, but parties might adjust this value upwards if progress is not being made for a while (which would deal with situations where the network becomes significantly slower than the design parameter for an extended period). One could obviously implement such a technique in both DispersedSimplex and HotStuff-2. Note that parties make these decisions locally and may end up with (very) different
values of Δ. However, to preserve liveness in HotStuff-2, the leader would have to adjust Δ' as well as Δ. Unfortunately, if the leader’s value of Δ' becomes too large relative the timeout Δ-values of the other parties, the other parties will time out before the leader makes its proposal. It is not clear if this is a significant problem in practice, but it is worth pointing it out as a potential problem. In contrast, in a protocol such as DispersedSimplex, if some parties have a Δ-value that is “too large”, this will not impact liveness — it will only impact what we called above the “optimistic k-gap proposal latency”, that is, the latency between proposals made between consecutive honest leaders separated by k corrupt leaders.

4.3 ICC

The Simplex protocol bears a passing resemblance to the ICC protocols ICC in [CDH+21]. The main difference is that for the ICC protocols, if the leader for a slot v is perceived to fail, then instead of simply timing out, a (somewhat complicated) fail-over mechanism is triggered that will eventually approve a proposal for slot v from a different party. Latency and communication costs in the optimistic setting for protocols ICC0 and ICC1 in [CDH+21] are very similar to that of Simplex. We note that protocol ICC2 in [CDH+21] employs information dispersal techniques to get better communication complexity, but at the expense extra latency. Thus, DispersedSimplex is both simpler and more efficient than that any of the ICC protocols.

5 Other topics

5.1 Implementing the block proposal validation logic

To validate a proposal for a block B in slot v whose parent is a block B' in slot v', a party needs to check if its complaint pool contains complaint certificates for slots $v' + 1, \ldots, v - 1$. Here is a simple, practical way to do this.

Suppose that when a party enters the loop iteration for slot v, the highest slot number for which it has committed is v_{com}. We know by the Incompatibility of Complaint and Commit Property, there can never be a complaint certificate for slot v_{com}. So the party can maintain two data structures.

- A doubly linked list of those slots in the range $\{v_{\text{com}}, \ldots, v - 1\}$ for which it does not have a complaint certificate, in order from lowest to highest.
- A lookup table from $\{v_{\text{com}}, \ldots, v - 1\}$ to nodes in this doubly linked list — this table could just be a dynamic, circular array.

Then, the party can perform the following operations:

- Whenever a new complaint certificate appears for a slot in the range $\{v_{\text{com}}, \ldots, v - 1\}$, it accesses the corresponding node via the lookup table and removes it from the linked list.
- When the value of v_{com} or v is increased, it updates both the lookup table and linked list in the obvious way.

For each slot, a constant amount of work is performed to maintain this data structure. Moreover, at any point in time, a party can find in constant time the highest slot number $v^* < v$ for which it has complaint certificates for slots $v^* + 1, \ldots, v - 1$.

15
5.2 Simple variations

We mention here a few simple variations of DispersedSimplex.

- **Choice of parent block.** In the protocol, the leader in slot \(v \) proposes a new block whose parent is \(B_{\text{prev}} \). In fact, the leader is free to choose as the parent block any block \(B' \) for a slot \(v' \) such that \(v' < v \) and the leader’s complaint pool contains complaint certificates for each slot \(v' + 1, \ldots, v - 1 \).

- **Moving on from bad blocks.** In the protocol, in managing the approved block pool, when a party reconstructs the payload and finds that it is bad (either \(\bot \) or otherwise invalid), it effectively just ignores the block and the slot will eventually time out. In a variation, parties could choose to move on to the next slot right away. To do this, we also have to modify the protocol in two ways. First, each party should record the fact that is there was bad block in a given slot. Second, the logic for block proposal validation should change, so that instead of checking that we have a complaint pool contains complaint certificates for each slot \(v' + 1, \ldots, v - 1 \), we check that for each of these slots, we either saw a bad block or we have a complaint certificate.

- **Optimizing small payloads.** For small payloads, instead of erasure coding the payload and dispersing fragments, the leader could just disperse the payload directly. A support share would also contain the payload as well.

5.3 Stable leaders

In many settings, it makes sense to keep a leader that is doing a good job in place for an extended number of slots. There are a number of advantages to this. One advantage is with respect to the most common type of failure, when a party is temporarily crashed or rebooting. In this case, whenever such a crashed party is selected as leader, the protocol has to wait sufficiently long to “time out” and move to the next slot, effectively wasting the equivalent of a few slots. In contrast, if a leader by default stays in place for, say, 1000 slots, when we come to a crashed leader, we will still waste the equivalent of a few slots, but this will be a much smaller percentage of all slots. Another advantage is that if transactions are being submitted to the system by external clients, then (just as in classical PBFT) these transactions can typically just be sent to a stable leader (but may be sent to other parties as well if censorship is suspected). Yet another advantage, as we will discuss below, is that a stable leader can drive the protocol even faster, achieving both higher throughput and lower latency.

The Simplex protocol has such a very natural internal logic to it that the logic for maintaining stable leaders suggests itself almost immediately. Let us say that by default a leader will stay in place for a certain number of consecutive slots, which we call an epoch. For example, one epoch might be 1000 consecutive slots.

- So that we can move to the next epoch as soon as we detect a faulty leader, we shall adopt the convention that a complaint certificate for a slot \(v \) effectively covers the rest of the epoch containing \(v \).

- In order to maintain safety, this means that any party that issues a complaint share for a slot \(v \) must abstain from issuing a commit certificate in slot \(v \) and all remaining slots of the interval containing \(v \).

- This means that once one honest party issues a complaint share for a slot \(v \), it may not be possible to commit a block in slot \(v \) or in any of the remaining slots of the interval containing \(v \), even though blocks may continue to be supported and approved.
Therefore, in order to maintain liveness, we introduce logic that prevents parties from moving too far ahead of the slot of the last committed block in an epoch.

The details of our protocol, which we call StableDispersedSimplex, are in Fig. 2. Note that for any slot number \(v \), \(\text{begin}(v) \) denotes the first slot number of the epoch containing \(v \), while \(\text{end}(v) \) denotes the last slot number in an epoch. The value \(k \) is a constant parameter, which can be set to 1 or any other small positive integer. The logic to go to the next slot on seeing an approved block ensures that the approved blocks do not get more than \(k \) slots ahead of the committed blocks (and if the network is well behaved and the leader is honest, it should never get more than 1 slot ahead).

The protocol makes use of the identical subprotocols for maintaining support, commit, complaint, and approved block pools. The logic for generating block proposals is identical to that in the basic protocol. The logic for validating block proposals is the same as in the basic protocol, except that instead of checking that the complaint pool contains complaint certificates for slots \(v' + 1, \ldots, v - 1 \), it checks that it contains complaint certificates that effectively cover this interval — that is, for each \(w \in [v' + 1 \ldots v - 1] \), there exists a complaint certificate for a slot \(u \) such that \(w \in [u \ldots \text{end}(u)] \). It is an easy exercise to generalize the data structures and algorithms in Section 5.1 to work in this setting. One sees that this protocol is identical to the basic protocol if all epochs are of size 1. We leave the safety and liveness analysis to the reader.
Just as we mentioned in Section 2.4, the protocol would also provide both safety and liveness even if we imposed the rule that a party does not issue a support share if it has already issued a complaint share (and this rule would be imposed for the remainder of the epoch). We note also that the “moving on from bad blocks” variation in Section 5.2 could also be adopted here, except that such a bad block would effectively cancel the remainder of the epoch.

Note that the complaint mechanism can also be used to dislodge a leader that is producing committed blocks that consistently do not satisfy some “quality” metric (this includes apparent censorship), or perhaps is producing approved blocks at a rate that is consistently slow (but not slow enough to trigger a normal timeout).

5.3.1 Improved performance through stability. As mentioned above, performance can be improved by having stable leaders. To see how, let us return to the concrete example in Section 3.5, with the parameters used there: \(n \approx 100 \) parties connected over a WAN, 1Gb/s bandwidth, 100ms latency, and an 8MB block size.

In the example timeline we gave there, if the leader starts transmitting the packets of a block at time \(t \), then by time (roughly) \(t + 200\text{ms} \) the leader stops transmitting, but the other parties will not finish the slot until time (again, roughly) \(t + 440\text{ms} \). With a constantly rotating leader, the leader for the next slot will wait until this time before it begins transmitting the packets of its block. However, a stable leader can start transmitting these packets already at time \(t + 200\text{ms} \). Indeed, between time \(t \) and \(t + 200\text{ms} \), it could have gathered the transactions for its next block (and even performed the erasure encoding of that block), so that it can start transmitting the these packets right away at time \(t + 200\text{ms} \). By time \(t + 400\text{ms} \) all of these packets will have been transmitted by the leader, and by time \(t + 500\text{ms} \) all of these packets will have been echoed by all other parties; moreover, by the same time, the previous block should already have been approved (this should have happened already at time \(t + 440\text{ms} \)), and so the other parties have all the data they need to validate the block proposal and will broadcast a signature share on a corresponding support message. Thus, throughout an epoch, we basically get another level of pipelining, with the leader starting a new slot every 200ms. Moreover, throughout an epoch when the leader is honest and the network is well behaved, all parties will essentially fully utilize their network bandwidth all of the time. Achieving all this assumes multi-threading on a few cores.

This translates to a throughput of 8MB every 200ms, so about 40MB per second. The optimistic consecutive-proposal latency is 200ms and the optimistic proposal-commit latency is that plus about 100ms, so about 300ms.

Finally, we note that while the stable leader may nearly saturate its upload bandwidth, it is not consuming very much download bandwidth, which leaves plenty of bandwidth available for downloading transactions that are submitted directly to the stable leader by external clients.

5.4 A signature-free variant

It is perhaps worth pointing out that Simplex, as well as DispersedSimplex, can be implemented without any threshold signatures at all. In this implementation, the only cryptographic assumptions needed are authenticated communication links and collision resistant hash functions (used for block chaining in both Simplex and DispersedSimplex and for Merkle trees in DispersedSimplex). The price to pay, however, is some extra latency. In this section, we sketch how this may be done in a fairly simple and modular fashion.
The basic idea is to use the "echo/ready" logic of Bracha’s reliable broadcast protocol [Bra87] in place of threshold signatures. The general idea is this:

– To issue a signature share on a message \(m \), a party broadcasts the object \(\text{Echo}(m) \).
– Whenever a party receives the same object \(\text{Echo}(m) \) from \(n - t \) distinct parties, or the same object \(\text{Ready}(m) \) from \(t + 1 \) distinct parties, he broadcasts the object \(\text{Ready}(m) \) (if he has not done so already).
– Whenever a party receives the same object \(\text{Ready}(m) \) from \(n - t \) distinct parties, he reports out a signature certificate on \(m \).

The analogs of the Quorum Size Property and Quorum Intersection Property hold here as well:

Quorum Size Property: If some honest reports out a signature certificate on a message \(m \), then \(n - t - t' \) honest parties must have issued signature shares on \(m \), where \(t' \leq t \) is the number of corrupt parties.

Quorum Intersection Property: If some honest party reports out a signature certificate on \(m \) and some honest party reports out a signature certificate on \(m' \neq m \), then at least one honest party must have issued signature shares on both \(m \) and \(m' \).

Another property enjoyed by this logic is a completeness property, which says that if one honest party reports out a signature certificate on a message \(m \) at time \(t \), then eventually all honest parties will do so (and before time \(2\delta \) if the network is \(\delta \)-synchronous over \([t, t+2\delta]\)).

The above logic can be incorporated into the management of the support, commit, and complaint pools in Section 2.3.1. These pools keep track of those which certificates have been reported out, and this information is used to manage the approved block pool as in Section 2.3.2, to commit blocks as in Section 2.3.3, and to implement the logic of the main protocol as in Section 2.4. This all works because the only thing that a party in the original protocol did with a certificate was to (i) keep track of which certificates it had obtained obtained, and (ii) ensure that all other parties obtained the same certificates.

5.4.1 Safety and liveness

In terms of the analysis of the safety and liveness properties of the resulting protocol, the only changes are as follows:

– In the completeness property in Section 3.1, the statement regarding the timing of the delivery of object \(X \) should read as follows: *if \(X \) appears in a party’s pool time \(t \) and the network is \(\delta \)-synchronous over \([t, t+2\delta]\), then \(X \) it will appear in every party’s pool before time \(t + 2\delta \).*

– Lemma 3.1 holds without change.

– Lemmas 3.2 and 3.3 hold if we replace the assumption that the network is \(\delta \)-synchronous by the assumption that it is \((\delta/2)\)-synchronous.

5.4.2 Communication complexity

The communication complexity is the same as reported in Section 3.4.1, but with \(\kappa := 1 \).

5.4.3 Latency

If we consider the latency metrics discussed in Section 3.4.2, then all of the latency bounds essentially double. In particular, if the network is \(\delta \)-synchronous, then for Dispersed-Simplex, as well as for Simplex, the optimistic proposal-commit latency is \(6\delta \) and the optimistic
consecutive-proposal latency is 4δ. These estimates take into account the fact that if an honest leader makes a proposal at time t, then all parties will receive the proposal by time $t + \delta$; however, the other parties may need to wait until time $t + 2\delta$ to obtain the data needed to validate the proposal (the support or complaint certificate for the previous slot) as they wait for Bracha’s “ready amplification” logic to run its course.

As discussed in Section 3.4.2, the optimistic consecutive-proposal latency upper bounds the optimistic reciprocal block throughput, the reciprocal of the rate at which blocks are proposed (and committed) in a steady state where all leaders are honest and the network is appropriately synchronous. In this setting, the optimistic reciprocal block throughput is actually bounded by $\approx 3\delta$.

To see this, let us define p_v to be the time at which the slot-v leader proposes a block B_v, and s_v to be the time at which the following event happens: either

- all honest parties have issued a support share for B_v, or
- some honest party approves B_v.

With this definition, and by Bracha’s “echo/ready” logic, we see that by time $s_v + 2\delta$, all honest parties will have approved B_v. We have

$$s_{v+1} \leq s_v + 3\delta.$$ \hfill (1)

To see this, note that by time $s_v + 2\delta$ all honest parties, including the slot-$(v + 1)$ leader, will have approved B_v, and so by time $s_v + 3\delta$ all honest parties have either issued a support share for B_{v+1} or approved B_{v+1}. We also clearly have

$$p_v \leq s_v.$$ \hfill (2)

In addition, we have

$$s_v \leq p_v + 2\delta,$$ \hfill (3)

which again follows from Bracha’s “echo/ready” logic. Therefore, if the leaders in slots $v, v + 1, \ldots, v + k$ are all honest, we have

$$p_{v+k} \leq s_{v+k} \quad \text{(from (2))}$$
$$= p_v - p_v + s_{v+k}$$
$$\leq p_v - (s_v - 2\delta) + s_{v+k} \quad \text{(from (3))}$$
$$= p_v + 3\delta + (s_{v+k} - s_v)$$
$$\leq p_v + 3\delta + 3k\delta \quad \text{(from (1))},$$

which implies (for large k) that the optimistic reciprocal block throughput is bounded by $\approx 3\delta$.

5.4.4 Stable leaders.

The above technique can clearly be used to make the StableDispersed-Simplex protocol in Section 5.3 signature free as well. In this setting, the optimistic reciprocal block throughput can be reduced from $\approx 3\delta$ to $\approx 2\delta$. Moreover, the very fact that the leader is stable makes the notion of optimistic reciprocal block throughput more relevant. The main idea is the observation that a stable leader need not wait until it has reported out a support certificate for one block before proposing the next block (in contrast, if the leader is constantly rotating, the next leader must wait to report out either a timeout or support certificate for the previous slot, in order to maintain liveness). Instead, we can impose the following pipelined proposal rule: the leader will propose block B_{v+1} in slot $v + 1$ upon
– receiving *support-echo* objects for B_v from $n - t$ distinct parties, or
– receiving *support-ready* objects for B_v from $t + 1$ distinct parties.

This proposal rule ensures that at the time the leader proposes B_{v+1}, at least $n - t - t'$ honest parties have issued support shares for B_v (and hence have already approved B_{v-1}). Thus, the leader does not run too far ahead of the other honest parties.

With the values p_v and s_v defined as above, the inequalities (2) and (3) hold just as before. Based on the pipelined proposal rule, it is not hard to see that $p_{v+1} \leq s_v + \delta$. From this, we see that

$$s_{v+1} \leq \max\{s_v + 2\delta, p_{v+1} + \delta\} \leq s_v + 2\delta.$$

Therefore, by reasoning similar to that used above, we see that

$$p_{v+k} \leq p_v + 2(k + 1)\delta,$$

which implies (for large k) that the optimistic reciprocal block throughput is bounded by $\approx 2\delta$.

Note also that with this pipelining, if one also takes into account transmission and computational delays, this version of the protocol should be able to sustain exactly the same level of throughput discussed in Section 5.3.1 (under the same assumptions).

Acknowledgments

Thanks to Benjamin Chan and Rafael Pass for helpful discussions on the Simplex protocol. Thanks to Ed Felten for suggesting the “packet-switching pipeline” strategy in Section 3.5.

References

