
Efficient Post-Quantum Secure Deterministic Threshold
Wallets from Isogenies

Poulami Das1, Andreas Erwig2, Michael Meyer3, and Patrick Struck4

1CISPA Helmholtz Center for Information Security, Germany
2Technical University of Darmstadt, Germany

3University of Regensburg, Germany
4University of Konstanz, Germany

December 13, 2023

Abstract

Cryptocurrency networks crucially rely on digital signature schemes, which are used as
an authentication mechanism for transactions. Unfortunately, most major cryptocurren-
cies today, including Bitcoin and Ethereum, employ signature schemes that are susceptible
to quantum adversaries, i.e., an adversary with access to a quantum computer can forge
signatures and thereby spend coins of honest users. In cryptocurrency networks, signa-
ture schemes are typically not executed in isolation, but within a so-called cryptographic
wallet. In order to achieve security against quantum adversaries, the signature scheme
and the cryptographic wallet must withstand quantum attacks.

In this work, we advance the study on post-quantum secure signature and wallet
schemes. That is, we provide the first formal model for deterministic threshold wallets
and we show a generic post-quantum secure construction from any post-quantum secure
threshold signature scheme with rerandomizable keys. We then instantiate our construc-
tion from the isogeny-based signature scheme CSI-FiSh and we show that our instantiation
significantly improves over prior work.

1 Introduction

Blockchain technology and cryptocurrencies have gained huge popularity over the past decade
as they introduced a revolutionary digital payment paradigm that does not rely on a trusted
authority such as banks or other financial institutions. The most fundamental building block
of virtually all blockchain and cryptocurrency networks are digital signature schemes which
are used as an authorization mechanism for transactions. More concretely, when a user Alice
with public key pkA wishes to send a payment of c coins to another user Bob identified
by public key pkB, Alice assembles a transaction of the form “Send c coins from pkA to
pkB” and attaches a valid signature under pkA to the transaction. That is, the security of
a cryptocurrency user’s funds solely depends on the security of its signing secret key. The
two most widely used signature schemes in the cryptocurrency space are the ECDSA and the
Schnorr [Sch90] signature schemes, which are, unfortunately, both insecure in presence of a
quantum adversary. More concretely, ECDSA and Schnorr rely on the hardness of computing

1

the discrete logarithm of an element in a cyclic group of prime order, a mathematical problem
that is assumed to be computationally hard for classical computers, but that can be solved
efficiently by quantum computers using Shor’s algorithm [Sho94].

Due to this inherent vulnerability against adversaries with access to quantum comput-
ers, several research works (e.g., [ESZ22, TMSM21, EEE20, EZS+19]) and industry projects
(e.g., [QRL, Bit, Moc]) have started to investigate so-called post-quantum secure cryptocur-
rency networks, where all cryptographic building blocks are instantiated such that they can be
executed on classical machines but remain secure even against quantum adversaries. Since the
most essential building block of cryptocurrency networks is the signature scheme, a first step
towards a post-quantum secure network is to replace its classically secure signature scheme,
such as ECDSA or Schnorr, by a post-quantum secure variant. However, a simple exchange
of the signature scheme is not sufficient to achieve full security against a quantum adversary:
in the cryptocurrency space, signature schemes are typically executed within so-called cryp-
tographic wallets, which are environments that securely store the signing keys of a user and
execute the signing process. Naturally, the signature’s secret key is only protected against
quantum adversaries if both, the signature scheme itself and the wallet scheme, are post-
quantum secure.

Cryptographic Wallets. Over the past decade, many works studied secure cryptographic
wallets and proposed different constructions [GS15, LFA20, MPs19, AGKK19, KMOS21].
Eventually, the concept of deterministic wallets [Max11, Wui12] has been established as the
de-facto standard, which was first formalized by Das et al. [DFL19]. At a high level, a
deterministic wallet maintains a master signing secret/public key pair (msk ,mpk) as well as a
state St and uses the initial values to deterministically derive session signing keys. That is, a
deterministic wallet defines two deterministic algorithms, a secret and a public key derivation
algorithm. The secret key derivation algorithm takes as input msk , St and an identity ID , and
outputs a session secret key sk ID . The public key derivation algorithm is defined analogously.
This deterministic key derivation has the important advantage that the wallet can derive many
keys, while only having to store the master key pair and state.

Das et al. [DFL19] formalize deterministic wallets in the so-called hot/cold setting, where
the wallet consists of two devices, a hot and a cold wallet. The hot wallet stores the master
public key mpk and state St and is connected permanently to the Internet, whereas the cold
wallet stores the master secret key msk and state St and only comes online when it has to
generate a signature. The assumption is then that the cold wallet cannot get corrupted, since
it is mostly offline.

Limitations of Previous Works. While deterministic wallets have been studied exten-
sively in the classical setting [DFL19, DEF+21, FTS+18, YLY+22, ER22], to the best of our
knowledge there exist only two prior works in the post-quantum setting [ADE+20, Hu23].
Alkeilani Alkadri et al. [ADE+20] initiated the study of post-quantum secure deterministic
wallets in the hot/cold setting. To this end, the authors provided a generic construction of a
deterministic wallet and instantiated the construction with the lattice-based signature scheme
qTesla [ABB+20]. Unfortunately, their work has two important drawbacks: (1) due to the
relatively large public key and signature sizes of lattice-based signature schemes, the wallet
construction of Alkeilani Alkadri et al. [ADE+20], is mainly a feasibility result and not suitable
for deployment in practice; and (2) the assumption of incorruptible cold wallets is idealized and

2

might not hold in practice, since a cold wallet can get compromised even if it is not connected
to the internet, e.g., by an adversary with access to the cold wallet device. A follow-up work
by Hu [Hu23] presents a deterministic wallet construction from the lattice-based signature
scheme Falcon [FHK+18]. While the instantiation from Falcon allows for smaller public key
and signature sizes, the work of Hu still relies on the assumption of incorruptible cold wallets.
A very recent work by Das et al. [DEF+23] investigates deterministic threshold wallets in the
classical setting, however without providing a formal model for such threshold wallets.

1.1 Our Contribution.

In this work, we address the above shortcomings of previous works, namely we (1) provide
an efficient construction of deterministic wallets in the post-quantum setting, (2) formally
model deterministic threshold wallets, and (3) give an efficient instantiation of deterministic
threshold wallets using the isogeny-based CSI-FiSh signature scheme [BKV19]. In detail, our
contribution is as follows:

• In Section 3, we show that CSI-FiSh equipped with rerandomizable keys can instan-
tiate the generic construction of deterministic wallets provided by Alkeilani Alkadri et
al. [ADE+20]. Importantly, our instantiation from the isogeny-based signature scheme
improves over both prior works [ADE+20, Hu23] w.r.t. public key and signature sizes,
the two most important metrics for the practicality of post-quantum secure deterministic
wallets.

• In Section 4, we present a model for deterministic wallets that does not rely on the
hot/cold setting and therefore avoids the idealized assumption of incorruptible cold
wallet devices. In our model, the wallet is thresholdized, i.e., it consists of several
devices which are permanently online and which respectively store only a share of the
wallet’s master signing secret key. That is, in our model the master secret key remains
secure as long as at most a certain number of wallet devices get compromised. While
the idea for this model has first appeared in a work of Das et al. [DEF+23], we are the
first to formalize it. We further show that a deterministic wallet in the threshold setting
can be constructed generically from any threshold signature scheme with rerandomizable
keys.

• Finally, in Section 6 we provide a concrete instantiation of our generic deterministic
threshold wallet construction by translating our isogeny-based signature scheme with
rerandomizable keys to a threshold variant.

We would like to hereby point out that the primitive of signature schemes with rerandomiz-
able keys is not limited to wallets. Thus, our construction of a threshold signature scheme with
rerandomizable keys might be independent interest, for instance to build sanitizable signature
schemes [ACdMT05].

1.2 Related Work

1.2.1 Related Work on Deterministic Wallets.

In the past, many works have studied the concept of cryptographic wallets in general (e.g., [GS15,
LFA20, MPs19, AGKK19, KMOS21]) and the concept of deterministic wallets in particular

3

(e.g., [DFL19, DEF+21, FTS+18, YLY+22, ER22]). Most related to our work are the works
of Alkeilani Alkadri et al. [ADE+20] and Das et al. [DEF+23]. The former studies the notion
of deterministic wallets in the hot/cold setting which remain secure against a quantum ad-
versary. That is, Alkeilani Alkadri et al. [ADE+20] present a formal model of deterministic
wallets in the post-quantum setting, where the adversary has access to a quantum computer
whereas honest parties have access to classical computers only. The authors present a generic
construction of such a wallet scheme from any signature scheme with rerandomizable keys
that satisfies certain properties and the authors show a concrete instantiation of their generic
construction from the lattice-based signature scheme qTesla [ABB+20]. A follow-up work by
Hu [Hu23] showed an instantiation from the lattice-based signature scheme Falcon [FHK+18],
which significantly decreased the signature and public key sizes of the wallet scheme. Das
et al. [DEF+23], on the other hand, translate the widely used BIP32 standard for hierarchi-
cal deterministic wallets [Wui12] to the threshold setting, essentially obtaining deterministic
threshold wallets. However, the authors do not formally model threshold wallets and focus
only on the classic setting, whereas our work is in the post-quantum setting.

1.2.2 Related Work on Rerandomizable and Threshold Signatures.

The notion of signature schemes with rerandomizable keys has first been introduced by Fleis-
chhacker et al. [FKM+16] and has since been found to be a useful building block for the
construction of deterministic wallets [DFL19, DEF+21, ER22]. Threshold signature schemes
in the classical setting have been widely studied since several decades (e.g., [GJKR96, Bol03,
CGJ+99, LJY14]) and more recently there have been works on threshold signatures in the
post-quantum setting (e.g., [DM20, ASY22]). In a very recent work, Das et al. [DEF+23]
combined the notions of signatures with rerandomizable keys and threshold signatures to the
notion of threshold signatures with rerandomizable keys. In our work, we follow their notion
and provide an instantiation in the post-quantum setting. Eaton et al. [ESS21] show that key-
blinding—a very similar concept to rerandomizable signatures—can be applied to CSI-FiSh
in the context of the Tor network.

Remark 1. Very recently and independently of our work, Shaw and Dutta [SD23] developed
similar results to our first contribution, i.e., instantiated a deterministic wallet using the CSI-
FiSh signature scheme. However, our work primarily focuses on extending this to the threshold
setting, which is not considered by Shaw and Dutta.

2 Preliminaries

2.1 Notation

We denote the uniform random sampling of a value r from a set S by r ← $ S. For a
deterministic algorithm A, we write a ← A(x) to denote the execution of A on input x
that outputs a. Likewise, for a probabilistic algorithm B, we write b ← $ B(x) to denote
the execution of B on input x that outputs b. For an interactive algorithm Π, we write
⟨Π(x1), · · · ,Π(xn)⟩ to denote the joint execution of Π by a set of n parties {P1, · · · , Pn}
where each party Pi for i ∈ [n] uses xi as input.

4

2.2 Adversary Model

In this work, we generally assume a semi-honest (or passive1) adversary. Similar to a fully
malicious adversary, a semi-honest adversary learns all secret values and can observe all inter-
nal computation of a corrupted party, however, in contrast to a fully malicious adversary, the
semi-honest adversary is restricted to follow the protocol instructions. We note that one can
transform a scheme that is secure against a semi-honest adversary into a secure scheme against
a fully malicious adversary by adding zero-knowledge proofs of correct behavior for each pro-
tocol instruction. In addition, we assume static corruptions throughout this paper, i.e., the
adversary has to decide at the beginning of a security game which parties to corrupt. Finally,
we consider a quantum adversary in this work, i.e., the adversary is assumed to have access to
a quantum computer, through which it can access a random oracle in superposition [BDF+11].

2.3 Small-Range Distributions

In the proof of Theorem 2, we make use of Zhandry’s small-range distributions, defined below.
For such distributions, the number of potential outputs is small.

Definition 1 (Small-range distributions [Zha12]). Let X , Y be sets, r be an integer, D be a
distribution on Y, P be a random function from X to [r], and y⃗ = (y1, . . . , yr) be r samples of
D. Define a function H : X → Y by H(x) 7→ yP (x). The distribution of H, induced by P and
y⃗, is called a small-range distribution with r samples of D.

Zhandry developed a lemma providing an upper bound of an adversary in distinguishing
a random oracle from one that is drawn from a small-range distribution. We recall this result
below.

Lemma 1 ([Zha12]). There is a universal constant C such that, for any set X and Y, dis-
tribution D on Y, integer l, and any quantum algorithm A making q queries to an oracle
H : X → Y, the following two cases are indistinguishable, except with probability less than Cq3

l :

• H(x) = yx where y⃗ is a list of samples of D of size |X |.

• H is drawn from the small-range distribution with l samples of D.

2.4 Signatures (with Rerandomizable Keys)

In the following, we recall the definitions of signature schemes and signature schemes with
rerandomizable keys.

Definition 2 (Signature Scheme). A signature scheme Sig is a tuple of algorithms (KGen, Sign,
Ver) such that

KGen(1λ) is the key generation algorithm. Its input is a security parameter and its output is
a key pair consisting of a secret key sk and a public key pk .

Sign(sk ,m) is the signing algorithm. Its input is a secret key sk and a message m and its
output is a signature σ.

1We use the terms “passive” and “semi-honest” interchangeably.

5

Ver(pk ,m, σ) is the verification algorithm. Its input is a public key pk , a message m, and a
signature σ, and its output is a bit.

Definition 3 (Signature Scheme with Rerandomizable Keys). A signature scheme with reran-
domizable keys RSig consists of a tuple of algorithms RSig := (KGen, RandSK, RandPK, Sign,
Ver), where KGen, Sign, Ver satisfy the definition of a standard signature scheme (cf. Defini-
tion 2). For randomness space R, (RandSK, RandPK) are two polynomial-time algorithms such
that

RandSK(sk , ρ) is the secret key rerandomization algorithm that takes as input a secret key sk
and a randomness ρ ∈ R and outputs a randomized secret key sk ′.

RandPK(pk , ρ) is the public key rerandomization algorithm that takes as input a public key pk
and a randomness ρ ∈ R and outputs a randomized public key pk ′.

A signature scheme with rerandomizable keys RSig must satisfy the following properties:

• Rerandomizability of public keys: For all λ ∈ N, all public keys (·, pk) ← KGen(1λ) and
ρ ∈ R, the distributions of pk ′ and pk ′′ are computationally indistinguishable, where
pk ′ ← RandPK(pk , ρ), and pk ′′ ← KGen(1λ).

• Correctness under rerandomizable keys: For all λ ∈ N, all m ∈ M, all (sk , pk) ←
KGen(1λ), all ρ ∈ R, the rerandomized keys sk ′ ← RandSK(sk , ρ) and pk ← RandPK(pk , ρ)
satisfy that

Pr[Verify(pk ′,m, Sign(sk ′,m)) = 1] ≥ 1− negl(λ) .

• Simulatability: For all λ ∈ N, all (sk , pk) ← KGen(1λ), and all m ← {0, 1}∗, there
exists a polynomial-time algorithm T which on input pk and m outputs a signature σ.
It must hold that for κ ∈ poly(λ) the distributions {σ1, · · · , σκ} and {σ′

1, · · · , σ′
κ} are

computationally indistinguishable where σi ← T (pk ,m) and σ′
i ← RSig.Sign(sk ,m) for

i ∈ [κ].

Definition 4 (Unforgeability of signature schemes with honestly rerandomizable keys). A
signature scheme with rerandomizable keys RSig is unforgeable under honestly rerandomiz-
able keys if no efficient adversary A wins game EUF-CMA-HRK as described below with non-
negligible probability in the security parameter λ.

Game EUF-CMA-HRK:

• The game initializes two lists S ← ∅ and L ← ∅, and executes (sk , pk)← RSig.KGen(1λ).
Then A is run on input pk .

• The adversary obtains access to the following oracles:

– Rand: Upon a query, this oracle samples a fresh random value from R as ρ ← $ R,
stores ρ in L, and returns ρ.

– Sign: On input (mρ), the oracle checks whether ρ /∈ L and if so outputs ⊥. Oth-
erwise, it derives a public pk ′ ← RSig.RandPK(pk , ρ) key and a secret key sk ′ ←
RSig.RandSK(sk , ρ) and executes σ ← RSig.Sign(sk ′,m). The oracle then stores the
tuple (pk ′,m) in S.

6

• The adversary outputs a forgery (σ∗,m∗, ρ∗). The adversary wins the game, if, for
pk∗ ← RSig.RandPK(pk , ρ∗), it holds that: (1) ρ∗ ∈ L, (2) (pk∗,m∗) /∈ S, and (3)
RSig.Ver(pk∗,m∗, σ∗) = 1.

The default security notion EUF-CMA for a signature scheme follows by removing the
oracle Rand as well as all usage of the rerandomization algorithms.

2.5 Interactive Threshold Signatures (with Rerandomizable Keys)

In the following, we recall the notions of interactive threshold signatures (with rerandomizable
keys) as described by Das et al. [DEF+23].

Definition 5 (Interactive Threshold Signature Scheme). An interactive (t, n)-threshold sig-
nature scheme TSig is executed among a set of n parties {P1, · · · , Pn} and consists of a tuple
of procedures TSig = (KGen, TSign, Ver) which are defined as follows:

KGen(1λ, t, n): The probabilistic key generation algorithm takes as input a security parameter
λ and two integers t, n ∈ N such that t < n. It outputs a public key pk and a set of
secret key shares {sk1, . . . , skn} such that each party Pi obtains pk and sk i.

TSign(sk i,m): The probabilistic interactive signing algorithm takes as input a secret key share
sk i for i ∈ [n] and a message m. It outputs either a signature σ or ⊥.

Ver(pk ,m, σ): The deterministic verification algorithm takes as input a public key pk , a mes-
sage m and a signature σ and outputs a bit 0/1.

Definition 6 (Interactive Threshold Signature Scheme with Rerandomizable Keys). An in-
teractive (t, n)-threshold signature scheme with rerandomizable keys is a tuple of procedures
TRSig = (KGen, RandSK, RandPK, TSign, Ver) where (KGen, TSign, Ver) are defined as for in-
teractive (t, n)-threshold signatures. We assume that the public parameters pp define a ran-
domness space R := R(pp). The algorithms RandSK and RandPK are defined as:

RandSK(i, sk i, ρ): The deterministic secret key share rerandomization algorithm takes as input
an index i ∈ [n], a secret key share sk i and a randomness ρ ∈ R and it outputs a
rerandomized secret key share sk ′i.

RandPK(pk , ρ): The deterministic public key rerandomization algorithm takes as input a public
key pk and a randomness ρ ∈ R and it outputs a rerandomized public key pk ′.

We require the following properties of a threshold signature scheme with rerandomizable
keys:

• Rerandomizability of public keys: For all λ ∈ N, all t, n ∈ N with t < n, all (·, pk) ←
KGen(1λ, t, n) and all ρ ← $ R, the distributions of pk ′ and pk ′′ are computationally
indistinguishable, where pk ′ ← RandPK(pk , ρ) and (·, pk ′′)← KGen(1λ).

• Correctness under rerandomized keys: For all λ, t, n ∈ N, with t < n, all ({sk1, . . . , skn},
pk) ← KGen(1λ, t, n), all ρ ←$R, and all m ∈ M, the rerandomized keys {sk ′i}i∈[n] ←
{RandSK(i, sk i, ρ)}i∈[n] and pk ′ ← RandPK(pk , ρ) satisfy:

Pr[Ver(pk ′,m, σ)|σ ←
〈
TSign(sk ′1,m), . . . , TSign(sk ′n,m)

〉
] = 1.

7

• Simulatability: For all λ, t, n ∈ N, with t < n, all ({sk1, . . . , skn}, pk) ← KGen(1λ, t, n),
and all m ∈ {0, 1}∗, there exists a polynomial-time algorithm T which on input pk and
m outputs a signature σ. It must hold that for κ ∈ poly(λ) the distributions {σ1, . . . , σκ}
and {σ′

1, . . . , σ
′
κ} are computationally indistinguishable where

σ′
i ← ⟨TSign(sk1,m), . . . , TSign(skn,m)⟩

and σi ← T (pk ,m) for i ∈ [κ].

Both of the above primitives must satisfy a security notion of unforgeability. For interactive
threshold signature scheme, this notion is defined similarly to the unforgeability of a standard
digital signature scheme with the differences that (1) the adversary is allowed to corrupt up
to t parties in the beginning of the game and (2) the signing oracle is interactive and allows
the adversary to learn the transcript of the signing protocol execution as well as all internally
computed messages for corrupted parties.

For interactive threshold signature schemes with rerandomizable keys, Das et al. [DEF+23]
define the notion of unforgeability under honestly rerandomizable keys, which we follow in this
work (though Das et al. define the notion for a malicious adversary, whereas our definition is
w.r.t. a semi-honest adversary). The main difference to the unforgeability notion of interactive
threshold signature schemes is that the adversary can query the signing oracle on honestly
rerandomized keys and win the game even with a valid forgery under an honestly rerandomized
key. We denote the game by T-EUF-CMA-HRK and formally describe it below.

Definition 7 (Unforgeability of interactive threshold signature schemes with honestly reran-
domizable keys). An interactive (t, n)-threshold signature scheme TRSig is unforgeable under
honestly rerandomizable keys if no efficient adversary A wins game T-EUF-CMA-HRK as de-
scribed below with more than negligible probability in the security parameter λ.

Game T-EUF-CMA-HRK:

• The adversary A outputs a list of corrupted parties C, such that |C| ≤ t and for all i ∈ C
it holds that i ∈ [n].

• The game computes ({sk1, . . . , skn}, pk)← TRSig.KGen(1λ, t, n) and initializes two lists
S ← {ϵ} and L ← {ϵ}. Then A is run on input pk and {sk i}i∈C.

• The adversary obtains access to the following oracles:

– Rand: Upon a query, this oracle samples a fresh random value from R as ρ←$R,
stores ρ in L, and returns ρ.

– Sign: On input message m and a randomness ρ, the oracle checks whether ρ /∈ L
and if so outputs ⊥. Otherwise, it derives a public key and secret key shares for
honest parties with the randomness ρ, i.e., it computes pk ′ ← TRSig.RandPK(pk , ρ)
and sk ′i ← TRSig.RandSK(i, sk i, ρ) for all i ∈ {1, · · · , n} \ C. The oracle and the
adversary then jointly execute the procedure TRSig.TSign, where the oracle runs all
honest parties Pi on input (sk ′i,m). The oracle then stores the tuple (pk ′,m) in S.

• The adversary outputs a forgery (σ∗,m∗, ρ∗). The adversary wins the game, if the fol-
lowing conditions hold:

8

1. ρ∗ ∈ L
2. (ρ∗,m∗) /∈ S
3. TRSig.Ver(pk∗,m∗, σ∗) = 1, for pk∗ ← TRSig.RandPK(pk , ρ∗).

Just as for EUF-CMA, the default security notion T-EUF-CMA for interactive threshold
signatures can be restored by removing the oracle Rand and the usage of the rerandomization
algorithms.

2.6 Isogeny Group Action

Let p = 4 ·
∏n

i=1 ℓi − 1 be prime with small distinct odd primes ℓi. We write E for the set
of supersingular elliptic curves E over Fp, whose Fp-rational endomorphism ring EndFp(E)
is isomorphic to an order O ⊂ Q(

√
−p). The class group cl(O) of O, given as the quotient

of the fractional invertible ideals and the principal ideals of O, induces a free and transitive
group action cl(O) × E → E . For an ideal a ∈ cl(O) and a curve E ∈ E , we write this group
action as a ∗ E = E′. This action can be expressed via isogenies: For any invertible ideal a
and any curve E ∈ E , we can define the subgroup E[a] =

⋂
α∈a ker(α), which uniquely (up to

isomorphism) determines an isogeny φ : E → E′ for some E′ ∈ E .
In order to efficiently evaluate this class group action, CSIDH usually fixes ideals li =

⟨ℓi, π − 1⟩ resp. l−1
i = ⟨ℓi, π + 1⟩ with Frobenius endomorphism π, whose action is efficiently

computable via an ℓi-isogeny. Hence, we can represent ideals as products a =
∏n

i=1 l
ei
i , where

the exponents ei lie in a small range [−Bi, Bi], and compute their action through a sequence
of ℓi-isogenies. Assuming that different exponent vectors (e1, . . . , en) for small bounds Bi only
rarely represent the same ideal class, we can heuristically sample from the full class group
by picking Bi such that the number of exponent vectors is

∏n
i=1(2Bi + 1) ≈ √p ≈ #cl(O).

CSIDH uses this heuristic for sampling private keys as such exponent vectors, since uniform
sampling would require knowledge of the class group structure and the efficient evaluation of
the action of any ideal, both of which are computationally expensive problems in general.

Although this restriction translates to several complications for building CSIDH-based
signature schemes, CSI-FiSh [BKV19] solves these problems for the CSIDH-512 parameter
set using a 511-bit prime p. In particular, Beullens et al. computed N = #cl(O) and the
class group structure, and found that l1 is a generator of cl(O) in this case. Hence, we can
uniformly sample an integer s ∈ Z/NZ as private key, corresponding to the ideal class of
ls1. Following this, the corresponding exponent vector (s, 0, . . . , 0) can be transformed to an
equivalent exponent vector of small norm, such that its action is efficiently computable.

Due to this embedding Z/NZ ↪→ cl(O) given by a 7→ ga, we will write [a] for ga with a
fixed generator g of cl(O) of order N , and denote the group action ga ∗E by [a]E. Note that
in this notation we have [a][b]E = [a+ b]E.

2.7 CSI-FiSh Signature Scheme

The CSI-FiSh signature scheme is based on a simple identification scheme. The prover pos-
sesses a secret s ∈ Z/NZ and a corresponding public key E1 = [s]E0 for an initially chosen
starting curve E0 ∈ E . The prover proves knowledge of s to a verifier as follows: (1) The prover
samples b ∈ Z/NZ and commits to Eb = [b]E0; (2) The verifier sends a random challenge bit
c ∈ {0, 1}; (3) The prover responds with r = b− cs; (4) The verifier accepts if [r]Ec = Eb.

9

The success probability for a prover to succeed without knowledge of s is 1
2 , and thus

for security parameter λ, we have to repeat this scheme λ times. Using λ rounds and the
Fiat-Shamir transform then leads to a signature scheme. To sign a message m, we sample
b1, . . . , bλ ∈ Z/NZ and compute the commitment curves E(i) = [bi]E0. We set (c1, . . . , cλ) =
H(E(1), . . . , E(λ),m) with a cryptographic hash function H and ci ∈ {0, 1}, and compute the
responses ri = bi− cis. This results in a signature σ = (r1, . . . , rλ, c1, . . . , cλ). The verification
proceeds similarly to the procedure above. On input σ = (r1, . . . , rλ, c1, . . . , cλ), we recompute
E(1), . . . , E(λ) through E(i) = [ri]Eci . We then accept if (c1, . . . , cλ) = H(E(1), . . . , E(λ),m),
and reject otherwise.

Remark 2. We can decrease the number of required rounds by picking k secrets s(1), . . . , s(k)

and corresponding public keys Ei = [s(i)]E0. The verifier can then pick challenges from
{0, . . . , k}, and the prover answers with r = b − s(c) if c > 0, or r = b otherwise. This
decreases the soundness error from 1/2 to 1/(k+1), and leads to a tradeoff between increased
public key size and smaller signature size due to the fewer rounds [DG19, BKV19].

Remark 3. In addition, when using the usual CSIDH starting curve E0, we can double the
challenge space by exploiting the fact that [s]E is the quadratic twist of [−s]E. In particular, we
can use the challenge space ci ∈ {−k, . . . , k} and compute responses as ri = bi−Sign(ci)·s(|ci|).
Using this trick, public key sizes reduce by factor 2, see [BKV19].

3 Rerandomization of CSI-FiSh Keys

In this section, we present an instantiation of a signature scheme with rerandomizable keys
(cf. Definition 3) from the CSI-FiSh signature scheme. Consider the basic CSI-FiSh scheme
with a single secret s ∈ Z/NZ and public key E1 = [s]E0. We can rerandomize this key pair
by setting s′ = s + ρ and E′

1 = [ρ]E1 = [ρ][s]E0 = [s + ρ]E0 for a random ρ ∈ Z/NZ, as
depicted in Fig. 1.

The theorem below shows that security of CSI-FiSh implies security of the corresponding
signature scheme with rerandomizable keys. The proof follows from Theorem 4. which covers
the more general setting of the threshold version of the scheme.

Theorem 1. Let Σ be the CSI-FiSh signature scheme (cf. Fig. 1). Let further be Σ′ be the
rerandomizable signature scheme from Fig. 1. Assuming that Σ is unforgeable, Σ′ is unforgeable
against honestly rerandomized keys.

It is easy to see that the construction achieves the property of rerandomizability of public
keys. The simulatability property follows from the simulatability of CSI-FiSh signatures.
Having established Theorem 1, we can use CSI-FiSh with reandomizable keys to instantiate
the generic wallet construction given in [ADE+20]. This gives an alternative instantiation than
the lattice-based presented in [ADE+20]. While isogeny-based signatures are generally slower
in computation than the lattice-based signatures considered in [ADE+20], they come with the
advantage of significantly smaller key and signature sizes. For blockchain applications such as
deterministic wallets, the bottleneck is typically size rather than computation time and hence,
isogeny-based signatures seem better suited for blockchains than lattice-based signatures. We
provide a more detailed comparison in Section 6.

10

KGen()

s←$ Z/NZ
E1 ← [s]E0

return (pk , sk)← (E1, s)

RandSK(sk , ρ)

parse sk as s

s′ ← s+ ρ

return s′

RandPK(pk , ρ)

parse pk as E1

E1,ρ ← [ρ]E1

return E1,ρ

Sign(sk ,m)

parse sk as s

b1, . . . , bλ ←$ Z/NZ
for i = 1..λ

E(i) ← [bi]E0

(c1, . . . , cλ)← H(E(1), . . . , E(λ),m)

ri ← bi − cis

σ ← (r1, . . . , rλ, c1, . . . , cλ)

return σ

Ver(pk ,m, σ)

parse pk as E1

parse σ as (r1, . . . , rλ, c1, . . . , cλ)

for i = 1..λ

E(i) ← [ri]Eci

if (c1, . . . , cλ) ̸= H(E(1), . . . , E(λ),m)

return 0

return 1

Figure 1: The signature scheme CSI-FiSh. Note that we give the scheme with the secret key
containing a single secret s as opposed to multiple secrets described in the remark above.
Adding the two algorithms RandSK and RandPK gives the signature scheme CSI-FiSh with
rerandomizable keys.

4 Deterministic Threshold Wallets

In this section, we first present our formal model of a deterministic threshold wallet scheme.
We then show a generic construction from an interactive threshold signature scheme with
rerandomizable keys and prove our construction secure.

4.1 Model

In the following, we provide a formal model of deterministic threshold wallets. The essen-
tial difference of a deterministic threshold wallet to an interactive threshold signature scheme
with rerandomizable keys is that the initial key generation algorithm outputs a master key
(mpk , {msk1, . . . ,mskn}) as well as a state St . This state is used during the rerandomiza-
tion of the master public key and secret key shares to deterministically derive the respective
randomness. This essentially allows the wallet to derive all randomness deterministically. We
now provide the formal definition.

Definition 8 (Deterministic Threshold Wallet). A (t, n)-deterministic threshold wallet scheme
DTW is executed among a set of n parties {P1, . . . , Pn} and consists of a tuple of procedures
DTW := (DTW.KGen, DTW.RandSK, DTW.RandPK, DTW.TSign, DTW.Verify), which are defined as fol-
lows:

DTW.KGen(1λ, t, n): The master key generation algorithm takes as input a security parameter
λ, as well as two integers t, n ∈ N such that t < n. It outputs a master public key mpk ,
master secret key shares {msk1, . . . ,mskn} as well as an initial state St such that each
party Pi obtains mpk , msk i, and St .

11

DTW.RandSK(i,msk i,St , ID): The deterministic secret key derivation algorithm takes as input
an index i ∈ [n], a master secret key share msk i, a state St , and an identity ID . It
outputs a session secret key share sk IDi .

DTW.RandPK(mpk ,St , ID): The deterministic public key derivation algorithm takes as input a
master public key mpk , a state St , and an identity ID . It outputs a session public key
pk ID .

DTW.TSign(sk IDi ,m): The probabilistic interactive signing algorithm takes as inputs a session
secret key share sk IDi for i ∈ [n], and a message m. It outputs a signature σ or ⊥.

DTW.Verify(pk ID ,m, σ): The deterministic verification algorithm takes as input a session pub-
lic key pk ID , a message m, and a signature σ. It outputs 1 if σ is a valid signature for
m under public key pk ID and 0 otherwise.

Definition 9 (Correctness of Deterministic Threshold Wallets). For all t, n ∈ N with t < n,
all (mpk , {msk1, . . . ,mskn},St) ← $ DTW.KGen(λ, t, n), and all ID ∈ {0, 1}∗, we define pk ID

and sk IDi for 1 ≤ i ≤ n as

sk IDi := DTW.RandSK(i,msk i, ID ,St), pk ID := DTW.RandPK(mpk , ID ,St).

DTW is correct if for all λ, t, n ∈ N with t < n, all ID ∈ {0, 1}∗, all m ∈ M, and all (mpk ,
{msk1, . . . ,mskn},St)←$ DTW.KGen(λ, t, n), it holds that

Pr[DTW.Verify(pk ID ,m, σ) = 1] = 1

where
σ ←$

〈
DTW.TSign(sk IDi ,m), . . . , DTW.TSign(sk IDn ,m)

〉
.

A deterministic threshold wallet must satisfy two security notions, namely unforgeability
and unlinkability. The former is defined similarly to the corresponding notion of an interactive
threshold signature scheme with rerandomizable keys and we formally define this property
in Definition 11. The later is formally defined in Definition 10. Essentially, unlinkability
guarantees that an adversary upon seeing a public key pk cannot distinguish whether pk has
been derived from mpk or from an independently generated master public key. The idea
behind this notion is that parties in a cryptocurrency network cannot link several payments
to the same wallet. Importantly, in the threshold setting, unlinkability can only hold as long
as no party is corrupted. As soon as a single party in the wallet scheme is corrupted, the
adversary learns the state of the scheme and can derive session public keys itself.

Definition 10 (Unlinkability). A (t, n)-deterministic threshold wallet scheme DTW is unlikable
if no efficient adversary A wins game WUNL as described below with more than negligible
probability in the security parameter λ.

Game WUNL:

• The game computes

(mpk , {msk1, · · · ,mskn},St)←$ DTW.KGen(1λ, t, n)

and initializes a list K ← {ϵ}. Then A is run on input mpk .

12

• The adversary obtains access to the following oracles:

– PK: On input an identity ID , the oracle computes

pk ID ← DTW.RandPK(mpk , ID ,St)

sk IDi ← DTW.RandSK(i,msk i, ID ,St)

for all i ∈ [n]. The oracle then sets K[ID]← (pk ID , {sk IDi }i∈[n]) and outputs pk ID .

– Sign: On input message m and an identity ID , the oracle aborts if K[ID] = ⊥.
Otherwise, the oracle fetches (pk ID , {sk IDi }i∈[n])← K[ID] and executes

σ ←$

〈
DTW.TSign(sk IDi ,m), · · · , DTW.TSign(sk IDn ,m)

〉
.

The oracle outputs σ.

• Eventually, the adversary outputs an identity ID∗. The game aborts if K[ID∗] ̸= ⊥.
Otherwise, the game samples a bit b←$ {0, 1} and proceeds as follows:

– If b = 0: Compute pk ID
∗

0 ← DTW.RandPK(mpk , ID∗,St) and sk ID
∗

i,0 ← DTW.RandSK(i,

msk i, ID
∗,St) for i ∈ [n] and set K[ID∗]← (pk ID

∗
0 , {sk ID∗

i,0 }i∈[n]).

– If b = 1: Sample (m̃pk , {m̃sk1, · · · , m̃skn}, S̃t)← DTW.KGen(1λ, t, n) and compute

pk ID
∗

1 ← DTW.RandPK(m̃pk , ID∗, S̃t)

sk ID
∗

i,1 ← DTW.RandSK(i, m̃sk i, ID
∗, S̃t)

for i ∈ [n]. Finally, set K[ID∗]← (pk ID
∗

1 , {sk ID∗
i,1 }i∈[n]).

• The game outputs public key pk ID
∗

b to A. The adversary then obtains access to oracles
PK and Sign as described above and eventually outputs a bit b′.

• The adversary wins the game if b = b′.

Definition 11 (Unforgeability). A (t, n)-deterministic threshold wallet scheme DTW is unforge-
able if no efficient adversary A wins game WUF as described below with more than negligible
probability in the security parameter λ.

Game WUF:

• The adversary A outputs a list of corrupted parties C, such that |C| ≤ t and for all i ∈ C
it holds that i ∈ [n].

• The game computes

(mpk , {msk1, · · · ,mskn},St)←$ DTW.KGen(1λ, t, n)

and initializes a list S ← ∅. Then A is run on input mpk , {msk i}i∈C, and St .

13

• The adversary obtains access to the following signing oracle Sign: On input message m
and an identity ID , the oracle derives the secret key shares sk IDi ← DTW.RandSK(i,msk i,
ID ,St) for parties Pi with i ∈ {1, . . . , n}\C and the public key pk ID ← DTW.RandPK(mpk ,
ID ,St). The oracle and the adversary then jointly execute the procedure DTW.TSign,
where the oracle runs all honest parties Pi on input (sk IDi ,m). The oracle then stores
the tuple (pk ID ,m) in S.

• Eventually, the adversary outputs a forgery σ∗, a message m∗ and an identity ID∗. The
game computes

pk ID
∗
← DTW.RandPK(mpk , ID∗,St)

and the adversary wins the game, if the following conditions hold: (1) (pk ID
∗
,m∗) /∈ S,

and (2) DTW.Verify(pk ID
∗
,m∗, σ∗) = 1.

4.2 Construction

We now provide our generic construction of a deterministic threshold wallet scheme from any
interactive threshold signature scheme with rerandomizable keys TRSig. The description of
our construction appears in Figure 2.

DTW.KGen(λ, t, n)

(mpk , {msk1, · · · ,mskn})←$ TRSig.KGen(1λ, t, n)

St ←$ {0, 1}λ

return (mpk , {msk1, · · · ,mskn},St)

DTW.TSign(sk IDi ,m)

return TRSig.TSign(sk ID
i ,m)

DTW.Verify(pk ID ,m, σ)

return TRSig.Ver(pk ID ,m, σ)

DTW.RandSK(i,msk i,St , ID)

ρ← H(St , ID)

return TRSig.RandSK(i,msk i, ρ)

DTW.RandPK(mpk ,St , ID)

ρ← H(St , ID)

return TRSig.RandPK(mpk , ρ)

Figure 2: Generic construction of a threshold deterministic wallet from any threshold signature
scheme with rerandomizable keys TRSig.

4.3 Security

In this section we state the security properties of threshold wallet unlinkability and unforge-
ability in the respective Theorems 3 and 2 for our deterministic threshold wallet construction
from Fig. 2. The proof for the former follows essentially from [ADE+20] as the threshold
property affects only the secret key and signing algorithm. While the proof idea of the later,
although similar to [ADE+20], contains subtle changes dealing with the threshold setting
and the changes in the construction, e.g., keeping a fixed, randomly chosen state rather than
updating it. We present the full proof below.

Theorem 2. Let DTW be the deterministic threshold wallet scheme according to Fig. 2. Assume
TRSig is an interactive threshold signature scheme with rerandomizable public keys according
to Definition 3 that is unforgeable according to Definition 7, and H is a (quantum) random
oracle, then DTW is unforgeable (cf. Definition 11).

14

Proof. Let game G0 be WUF instantiated with the generic construction from Fig. 2. Assume,
for sake of contradiction, that there is an efficient quantum adversary A which has non-
negligible advantage ϵ in game WUF, i.e., there exists a polynomial p = p(λ) such that
p(λ) > 1

ϵ(λ) and Pr[A wins G0] = ϵ.
Now consider game G1, where the random oracle H is sampled according to a small-range

distribution. More precisely, let C be the constant from Lemma 1, q being the random oracle
queries by A, and p be the polynomial described above, then G1 samples H from a small-
range distribution using l = 2Cpq3 samples. By Lemma 1, A can distinguish between the
random oracles (and hence G0 and G1) with probability at most Cq3

l = Cq3

2Cq3p
= 1

2p . Thus
Pr[A wins G1] = ϵ− 1

2p .
As the final step, we show—assuming the underlying interactive threshold signature scheme

with rerandomizable keys TRSig to be unforgeable as per Definition 7—that the advantage of
A in winning G1 is negligible, thus yielding a contradiction. For this we construct a reduction
B against TRSig. First B samples a random state St . Then it runs A who will provide a
set of corrupted parties C with |C| < t. B will use the same set of corrupted parties in its
game T-EUF-CMA-HRK and receives the public key pk along with the corrupted secret key
shares {msk i}i∈C which, together with the randomly chosen state St , B gives to A. Before the
first query of A, B makes l = 2Cpq3 to its oracle Rand. From the l responses, B will sample
a random oracle H drawn from a small-range distribution. For every query (m, ID) to Sign
by A, B proceeds as follows: It computes ρ = H(St , ID) and jointly executes the procedure
DTW.TSign with its own signing oracle in game T-EUF-CMA-HRK, where B lets A control the
corrupted parties. Note that every ρ that B computes results in a response from Rand to the
l queries that B made at the beginning of the game. Thus all of B’s queries are permitted as
ρ was added to list L in game T-EUF-CMA-HRK.

Once A outputs its forgery (m∗, σ∗, ID∗), B computes ρ∗ ← H(St , ID∗), pk∗ID∗ ←
TRSig.RandPK(pk , ρ∗), and outputs (m∗, σ∗, ρ∗) as its forgery. For this to be a valid forgery ac-
cording to T-EUF-CMA-HRK, three properties have to be satisfied: (1) ρ∗ ∈ L, (2) (pk∗ID∗ ,m∗) /∈
S, and (3) TRSig.Ver(pk∗ID∗ ,m∗, σ∗) = 1. The first condition follows simply from the fact
that B sampled H from a small-range distribution using only samples that are in L. If A
is successful, it has never queried (m∗, ID∗) to its signing oracle, hence B has not queried
(m∗, ρ∗) = (m∗,H(St , ID∗)) to its signing oracle. Finally, validity of the signature output by
A implies validity of the signature output by B. Assuming TRSig to be T-EUF-CMA-HRK
secure yields Pr[A wins G1] ≤ Pr[B wins T-EUF-CMA-HRK] ≤ negl(λ). Thus we obtain
1
2p = 1

p −
1
2p ≤ ϵ − 1

2p ≤ negl(λ), which yields the desired contradiction to the initial as-
sumption that ϵ is non-negligible.

Theorem 3. Let DTW be the deterministic threshold wallet scheme according to Fig. 2. Assume
TRSig is an interactive threshold signature scheme with rerandomizable public keys according
to Definition 3) and H is a random oracle, then DTW is unlinkable (cf. Definition 10).

As mentioned before, the proof of the above theorem follows essentially from [ADE+20] as
the threshold property affects only the secret key and signing algorithm.

5 Rerandomization of Threshold CSI-FiSh Keys

In this section, we present an interactive threshold signature scheme with rerandomizable keys
that is based on the threshold version of CSI-FiSh from [DM20].

15

5.1 Key Generation and Shamir Secret Sharing

As in [DM20] we assume for brevity that there is a trusted dealer, who performs the key
generation and distributes key shares to the n involved participants P1, . . . , Pn via a secure
channel. However, we note that key generation can also be performed in a distributed and
actively secure way, as described in [BDPV21].

Let s ∈ Z/NZ be a CSI-FiSh secret key sampled as above. We use (t + 1)-out-of-n
Shamir secret sharing [Sha79] to generate key shares for t < n. The trusted dealer samples a
polynomial f(x) of degree t with coefficients in Z/NZ, such that f(0) = s. Participant Pi then
receives the secret share si = f(i) from the dealer. A set S of participants Pi of cardinality
at least t+ 1 with S ⊂ {1, . . . , n} and i ∈ S can then recover s through Lagrange polynomial
interpolation:

s = f(0) =
∑
i∈S

f(i) · LS
0,i, with LS

l,i =
∏
j∈S
j ̸=i

j − l

j − i
mod N.

Note that for composite N , the differences j − i must be invertible in the ring Z/NZ for
all pairs (i, j), which means that the number of participants is restricted to n < p1 for the
smallest prime factor p1 of N , see [DM20].

5.2 Threshold CSI-FiSh Signing

We briefly describe the threshold signing procedure from [DM20], which we will use for the
rerandomized scheme. We assume that the private key s is shared as described above, such
that participant Pi holds si. For simplicity, we assume that the set of participants taking part
in signing is S = {1, . . . , t+ 1}.

For generating the commitment curves, participant Pi samples λ integers bi,j for 1 ≤ j ≤ λ,
where λ is the security level resp. the number of rounds of the identification scheme we need
to perform. The signing process uses bj =

∑
i∈S bi,j for generating the commitment curves

E(j) = [bj]E0 in the following way. We set E
(j)
0 = E0 and compute E(j) in a round-robin

fashion: Pi receives E
(j)
i−1, and outputs E

(j)
i = [bi,j]E

(j)
i−1. Therefore, at the end of the process

participant Pt+1 outputs E
(j)
t+1 =

[∑
i∈S bi,j

]
E0 = [bj]E0 = E(j). Each party can then obtain

the challenges (c1, . . . , cλ) = H(E(1), . . . , E(λ),m) as above.
For generating the response rj , each participant Pi outputs ri,j = bi,j − cj · si ·LS

0,i. Thus,
we can compute rj =

∑
i∈S ri,j =

∑
i∈S bi,j − cj ·

∑
i∈S si · LS

0,i = bj − cj · s. The signature
then is (c1, . . . , cλ, r1, . . . , rλ). Note that running this with for arbitrary participant sets S of
cardinality k+1 requires to fix S at the beginning of the procedure, such that each participant
can compute LS

0,i.
A transcript of the full signing process therefore contains the following communication

between participants: the intermediate curves E
(j)
i for each commitment curve E(j), and the

partial responses ri,j for each rj , where i ∈ S.

5.3 Rerandomization of Threshold CSI-FiSh Keys

We now show how to transform the interactive threshold signature scheme based on CSI-
FiSh as described in the previous section into an interactive threshold signature scheme with

16

rerandomizable keys. In order to do so, we must instantiate the key rerandomization al-
gorithms RandSK and RandPK. Indeed, we use the same instantiation for these algorithms
as Das et al. [DEF+23] for their interactive threshold ECDSA scheme with rerandomizable
keys. Importantly, the two algorithms must be deterministic. Therefore, the RandSK algo-
rithm computes the polynomial F , which shares randomness ρ, in a deterministic way using
a cryptographic hash function G. TSign follows the same approach as described above, using
the rerandomized key shares and public key. The following theorem shows the security of the
scheme accompanied with a proof below. The properties of public key rerandomizability and
simulatability follow similarly to the corresponding properties of our CSI-FiSh scheme with
rerandomizable keys from Section 3.

RandSK(i, sk i, ρ)

parse sk i as si

for j ∈ [t] : aj ← G(ρ, j)

F (x) := at · xt + · · ·+ a1 · x+ ρ

s′i ← si + F (i)

return s′i

RandPK(pk , ρ)

parse pk as E1

E1,ρ ← [ρ]E1

return E1,ρ

Figure 3: Key rerandomization algorithms for the threshold CSI-FiSh signature scheme. These
algorithms are identical to the ones introduced by Das et al. [DEF+23] for the construction of
an interactive threshold ECDSA scheme with rerandomizable keys. The RandSK algorithm uses
a cryptographic hash function G, which allows to deterministically compute the polynomial
F .

Theorem 4. Let Σ be the threshold CSI-FiSh signature scheme (cf. Fig. 3). Assuming that
Σ is unforgeable, the rerandomizable threshold CSI-FiSh signature scheme Σ′ (cf. Fig. 3) is
unforgeable.

Proof. Let A be an efficient quantum adversary breaking unforgeability of Σ′. We construct
the following PPT adversary B against the unforgeability of Σ. Adversary B receives the
public key pk which it provides as input to A. Prior to making any signature queries, A
declares a set of indices C, which defines the set of users that it wants to corrupt. B uses
the same set C in its game T-EUF-CMA for which it obtains the corresponding secret key
shares. These shares are then given to A. Whenever A makes a signature query on a message
m, a randomization value ρ, B makes a signature query on the same message m. Adversary
B then obtains the signature σ and the transcript Tr. Wlog we assume that parties with
indices {1, . . . , t + 1} participate in the signature generation and we denote the set of these
parties by S in the following. The transcript Tr that B obtains is (E(j)

i , ri,j)i,j∈[t+1]×[λ], where
E

(j)
i = [bi,j]E

(j)
i−1 and ri,j = bi,j − cj · si · LS

0,i. To provide a matching transcript for A, B first
computes F (x) = atx

t + · · · + a1x + ρ, which allows to recover the shares ρi = F (i) of the
different participants. Subsequently, B computes r′i,j = ri,j − cj · ρi · LS

0,i. Finally, B sends A
the signature σ along with the transcript Tr′ = (E

(j)
i , r′i,j)i,j∈[t+1]×[λ]. Whenever A outputs

a forgery (m, σ′, ρ), B proceeds as follows. It parses σ′ = (c1, . . . , cλ, r
′
1, . . . , r

′
λ), computes

ri ← r′i + ciρ, sets σ = (c1, . . . , cλ, r1, . . . , rλ), and outputs (m, σ).
It remains to argue the simulation of the signing oracle by B is correct and that that

it outputs a valid forgery conditioning that A does. We start by arguing that every valid

17

forgery by A results in a valid forgery by B. The output by A being a valid forgery implies
that (c1, . . . , cλ) = H([r′1]E

′
c1 , . . . , [r

′
λ]E

′
cλ
,m). By construction B outputs (m, σ), where σ =

(r1, . . . , rλ, c1, . . . , cλ). It holds that

H([r1]Ec1 , . . . , [rλ]Ecλ ,m)

= H([r′1 + c1ρ]Ec1 , . . . , [r
′
λ + cλρ]Ecλ ,m)

= H([r′1][c1ρ]Ec1 , . . . , [r
′
λ][cλρ]Ecλ ,m)

= H([r′1]E
′
c1 , . . . , [r

′
λ]E

′
cλ
,m) = (c1, . . . , cλ) ,

where we distinguished between two cases: (1) if ci = 0, then [ciρ]Eci = [0]E0 = E0 = E′
0 and

(2) if ci = 1, then [ciρ]Eci = [ρ]E1 = E′
1. This yields that (m, σ) is a valid forgery against Σ.

Finally, we argue that B perfectly simulates oracle Sign for A. When A makes a query
for a message m together with some randomness ρ to its signing oracle, B obtains σ =
(r1, . . . , rλ, c1, . . . , cλ) from its own signing oracle Sign. By correctness of Σ, it holds that
(c1, . . . , cλ) = H([r1]Ec1 , . . . , [rλ]Ecλ ,m). We have to show that the modified signature σ′ =
(r′1, . . . , r

′
λ, c1, . . . , cλ) computed by B is a valid signature under the rerandomized public key.

By construction, we have that pk ′ = E′
1 = [ρ]E1 = [ρ][s]E0 = [ρ + s]E0, where ρ is the

randomness thatA obtain from querying its oracle Rand. For the sake of simplicity of notation,
let E′

0 = E0 denote the public starting curve for a rerandomized key. We then get

H([r′1]E
′
c1 , . . . , [r

′
λ]E

′
cλ
,m)

= H([r1 − c1ρ]E
′
c1 , . . . , [rλ − cλρ]E

′
cλ
,m)

= H([r1][−c1ρ]E′
c1 , . . . , [rλ][−cλρ]E

′
cλ
,m)

= H([r1]Ec1 , . . . , [rλ]Ecλ ,m) = (c1, . . . , cλ) ,

where we have again distinguished between two cases: (1) if ci = 0, then [−ciρ]E′
ci = [0]E′

0 =
E′

0 = E0 and (2) if ci = 1, then [−ciρ]E′
ci = [−ρ]E′

1 = [−ρ][ρ]E1 = [0]E1 = E1. Thus, σ′ is a
valid signature under the rerandomized public key.

It is left to argue that B provides a valid transcript for A. The mere difference in the
transcript is the computation of the ri,j . It is easy to see that B can generate the correct
shares ρi for the participants which allows to provide a matching transcript by subtracting
cj · ρi · LS

0,i from the response ri,j .

By dropping the threshold part of the proof, we obtain a proof for Theorem 1.

6 Practical Instantiation

6.1 Blockchain Application.

A transaction in a cryptocurrency system typically transfers values from one user to another.
To verify that the sender is eligible to conduct such a transaction, the sender adds a signature
and its public key to the transaction. As transactions are collected in blocks of limited
size, created at a roughly constant rate, the transaction throughput heavily depends on the
signature and public key sizes.

Alkeilani Alkadri et al. [ADE+20] instantiate a post-quantum secure deterministic wallet
with the lattice-based signature scheme qTESLA [ABB+20], leading to a size of roughly
17.5 KB per transaction for the combined size of the relatively large public keys (14,880B)

18

and signatures (2,592B) at NIST security level I. Similarly, Hu [Hu23] recently presented a
post-quantum secure deterministic wallet that is instantiated with the lattice-based signature
scheme Falcon [FHK+18] which achieves a significantly better transaction size of around 1.66
KB. In contrast, our instantiations based on CSI-FiSh allow for even more compact transaction
sizes. Following [BKV19, Table 3], the optimal parameter choice for CSI-FiSh in our case
leads to public keys and signatures of 512B resp. 956B, and thus a combined size of 1,486B
per transaction. That is, our instantiation with the CSI-FiSh scheme reduces the transaction
size compared to the work of Alkeilani Alkadri et al. [ADE+20] by a factor of roughly 11
and compared to the work of Hu [Hu23] by roughly 174B. Importantly, the main focus of
our work is to provide a post-quantum secure instantiation of a deterministic threshold wallet
which does not rely on the assumption of incorruptible cold wallets. Neither of the two prior
works considers threshold wallets and indeed, it seems hard to extend the previous schemes
to the threshold setting, as thresholdizing lattice-based schemes is known to be inherently
difficult [CS19].

In the context of blockchain applications, the running time of 1.48s for signing resp. ver-
ifying in the single-user setting is less relevant due to the longer block rate in the order of
seconds or even minutes. We note that the runtime of CSI-FiSh can be significantly reduced
using [MR18, MCR19, CCC+19].

6.2 Instantiating Threshold CSI-FiSh.

For instantiating our passively secure threshold wallet scheme based on CSI-FiSh, the first step
is the key generation that distributes key shares to participants. In [DM20], this is done by a
trusted dealer. However, if necessary one can use the actively secure key generation approach
CSI-RAShi [BDPV21]. Although this involves significantly more computational effort, it is a
one-time computation, and may thus be interesting in practice. Using sharing-friendly keys
from CSI-SharK [ABCP23], this effort can be reduced.

Since the class group in CSI-FiSh using CSIDH-512 has cardinality N with 3, 37, and
1407181 as smallest prime factors, we would be limited to two participants as described in
Section 5.1. Following [DM20], we can instead use subgroups of of cardinality N ′ = N/3 resp.
N ′′ = N/(3 · 37), allowing for up to 36 resp. more than a million participants at the cost of a
slightly reduced bit security.

In terms of performance, the round-robin approach of threshold CSI-FiSh appears to have
a negative impact on the runtime. However, we can layer the computations, such that partici-
pants can run computations in parallel. In particular, ignoring latency, the optimal parameter
set from above allows for thresholds up to 28 without increasing the runtime of signing of
1.48s.

The exact quantum security of CSIDH-512 is debated [Pei20, BLMP19], and CSI-FiSh is
limited to this parameter set. A potential alternative is SCALLOP [DFK+23], which allows
for larger parameter sets equivalent to CSIDH-1024 with the same threshold construction.
However, this comes at significant overhead in the runtime.

We note that our threshold scheme is only passively secure. There are actively secure
variants such as [CS20, MC22], which are expected to be rerandomizable as well. Thus,
these alternatives could be used, again at the cost of significant overhead in signing time
without impacting the signature sizes. If the additional overhead and communication between
participants of the signing process is tolerable in specific blockchain settings, this might be a
viable option to increase security even further.

19

Acknowledgments

This work was funded in part by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under SFB 1119 – 236615297, by the Hector Foundation II, by the Ger-
man Federal Ministry of Education and Research (BMBF) projects iBlockchain (grant nr.
16KIS0902) and 6G-RIC (grant nr. 6KISK033), and by the German Federal Ministry of Ed-
ucation and Research and the Hessen State Ministry for Higher Education, Research and the
Arts within their joint support of the National Research Center for Applied Cybersecurity
ATHENE.

References

[ABB+20] Erdem Alkim, Paulo S. L. M. Barreto, Nina Bindel, Juliane Krämer, Patrick
Longa, and Jefferson E. Ricardini. The lattice-based digital signature scheme
qTESLA. In Mauro Conti, Jianying Zhou, Emiliano Casalicchio, and Angelo
Spognardi, editors, ACNS 20, Part I, volume 12146 of LNCS, pages 441–460.
Springer, Heidelberg, October 2020.

[ABCP23] Shahla Atapoor, Karim Baghery, Daniele Cozzo, and Robi Pedersen. CSI-SharK:
CSI-FiSh with Sharing-friendly Keys. In Leonie Simpson and Mir Ali Rezazadeh
Baee, editors, Information Security and Privacy - 28th Australasian Conference,
ACISP 2023, Brisbane, QLD, Australia, July 5-7, 2023, Proceedings, volume
13915 of Lecture Notes in Computer Science, pages 471–502. Springer, 2023.

[ACdMT05] Giuseppe Ateniese, Daniel H. Chou, Breno de Medeiros, and Gene Tsudik. San-
itizable signatures. In Sabrina De Capitani di Vimercati, Paul F. Syverson, and
Dieter Gollmann, editors, ESORICS 2005, volume 3679 of LNCS, pages 159–177.
Springer, Heidelberg, September 2005.

[ADE+20] Nabil Alkeilani Alkadri, Poulami Das, Andreas Erwig, Sebastian Faust, Juliane
Krämer, Siavash Riahi, and Patrick Struck. Deterministic wallets in a quantum
world. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors,
ACM CCS 2020, pages 1017–1031. ACM Press, November 2020.

[AGKK19] Myrto Arapinis, Andriana Gkaniatsou, Dimitris Karakostas, and Aggelos Ki-
ayias. A formal treatment of hardware wallets. In Ian Goldberg and Tyler Moore,
editors, FC 2019, volume 11598 of LNCS, pages 426–445. Springer, Heidelberg,
February 2019.

[ASY22] Shweta Agrawal, Damien Stehlé, and Anshu Yadav. Round-optimal lattice-based
threshold signatures, revisited. In Mikolaj Bojanczyk, Emanuela Merelli, and
David P. Woodruff, editors, 49th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume
229 of LIPIcs, pages 8:1–8:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022.

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner,
and Mark Zhandry. Random oracles in a quantum world. In Dong Hoon Lee

20

and Xiaoyun Wang, editors, ASIACRYPT, volume 7073 of LNCS, pages 41–69.
Springer, Heidelberg, December 2011.

[BDPV21] Ward Beullens, Lucas Disson, Robi Pedersen, and Frederik Vercauteren. CSI-
RAShi: Distributed key generation for CSIDH. In Jung Hee Cheon and Jean-
Pierre Tillich, editors, PQCrypto 2021, pages 257–276. Springer, Heidelberg,
2021.

[Bit] Bitcoin post-quantum. https://bitcoinpq.org/.

[BKV19] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh: Effi-
cient isogeny based signatures through class group computations. In Steven D.
Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part I, volume 11921
of LNCS, pages 227–247. Springer, Heidelberg, December 2019.

[BLMP19] Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny. Quan-
tum circuits for the CSIDH: Optimizing quantum evaluation of isogenies. In
Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume
11477 of LNCS, pages 409–441. Springer, Heidelberg, May 2019.

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures
based on the gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor,
PKC 2003, volume 2567 of LNCS, pages 31–46. Springer, Heidelberg, January
2003.

[CCC+19] Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier Chi-Domínguez, Luca
De Feo, Francisco Rodríguez-Henríquez, and Benjamin Smith. Stronger and
faster side-channel protections for CSIDH. In Peter Schwabe and Nicolas Théri-
ault, editors, LATINCRYPT 2019, volume 11774 of LNCS, pages 173–193.
Springer, Heidelberg, October 2019.

[CGJ+99] Ran Canetti, Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Ra-
bin. Adaptive security for threshold cryptosystems. In Michael J. Wiener, editor,
CRYPTO’99, volume 1666 of LNCS, pages 98–115. Springer, Heidelberg, August
1999.

[CS19] Daniele Cozzo and Nigel P. Smart. Sharing the LUOV: Threshold post-quantum
signatures. In Martin Albrecht, editor, 17th IMA International Conference on
Cryptography and Coding, volume 11929 of LNCS, pages 128–153. Springer, Hei-
delberg, December 2019.

[CS20] Daniele Cozzo and Nigel P. Smart. Sashimi: Cutting up CSI-FiSh secret keys
to produce an actively secure distributed signing protocol. In Jintai Ding and
Jean-Pierre Tillich, editors, PQCrypto 2020, pages 169–186. Springer, Heidel-
berg, 2020.

[DEF+21] Poulami Das, Andreas Erwig, Sebastian Faust, Julian Loss, and Siavash Riahi.
The exact security of BIP32 wallets. In Giovanni Vigna and Elaine Shi, editors,
ACM CCS 2021, pages 1020–1042. ACM Press, November 2021.

21

https://bitcoinpq.org/

[DEF+23] Poulami Das, Andreas Erwig, Sebastian Faust, Julian Loss, and Siavash Riahi.
Bip32-compatible threshold wallets. Cryptology ePrint Archive, 2023.

[DFK+23] Luca De Feo, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux, Simon-Philipp
Merz, Lorenz Panny, and Benjamin Wesolowski. SCALLOP: scaling the CSI-
FiSh. In Alexandra Boldyreva and Vladimir Kolesnikov, editors, Public-Key
Cryptography - PKC 2023 - 26th IACR International Conference on Practice
and Theory of Public-Key Cryptography, Atlanta, GA, USA, May 7-10, 2023,
Proceedings, Part I, volume 13940 of Lecture Notes in Computer Science, pages
345–375. Springer, 2023.

[DFL19] Poulami Das, Sebastian Faust, and Julian Loss. A formal treatment of deter-
ministic wallets. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and
Jonathan Katz, editors, ACM CCS 2019, pages 651–668. ACM Press, November
2019.

[DG19] Luca De Feo and Steven D. Galbraith. SeaSign: Compact isogeny signatures
from class group actions. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part III, volume 11478 of LNCS, pages 759–789. Springer, Hei-
delberg, May 2019.

[DM20] Luca De Feo and Michael Meyer. Threshold schemes from isogeny assumptions.
In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, edi-
tors, PKC 2020, Part II, volume 12111 of LNCS, pages 187–212. Springer, Hei-
delberg, May 2020.

[EEE20] Muhammed F. Esgin, Oguzhan Ersoy, and Zekeriya Erkin. Post-quantum adap-
tor signatures and payment channel networks. In Liqun Chen, Ninghui Li, Kaitai
Liang, and Steve A. Schneider, editors, ESORICS 2020, Part II, volume 12309
of LNCS, pages 378–397. Springer, Heidelberg, September 2020.

[ER22] Andreas Erwig and Siavash Riahi. Deterministic wallets for adaptor signatures.
In Vijayalakshmi Atluri, Roberto Di Pietro, Christian Damsgaard Jensen, and
Weizhi Meng, editors, ESORICS 2022 , Part II, volume 13555 of LNCS, pages
487–506. Springer, Heidelberg, September 2022.

[ESS21] Edward Eaton, Douglas Stebila, and Roy Stracovsky. Post-quantum key-blinding
for authentication in anonymity networks. In Patrick Longa and Carla Ràfols,
editors, LATINCRYPT 2021, volume 12912 of LNCS, pages 67–87. Springer,
Heidelberg, October 2021.

[ESZ22] Muhammed F. Esgin, Ron Steinfeld, and Raymond K. Zhao. Matrict+: More
efficient post-quantum private blockchain payments. In 2022 IEEE SP, 2022.

[EZS+19] Muhammed F. Esgin, Raymond K. Zhao, Ron Steinfeld, Joseph K. Liu, and
Dongxi Liu. MatRiCT: Efficient, scalable and post-quantum blockchain confi-
dential transactions protocol. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 567–584. ACM Press,
November 2019.

22

[FHK+18] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte,
Zhenfei Zhang, et al. Falcon: Fast-fourier lattice-based compact signatures over
NTRU. Submission to the NISTs PQC standardization process, 36(5), 2018.

[FKM+16] Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider, Do-
minique Schröder, and Mark Simkin. Efficient unlinkable sanitizable signatures
from signatures with re-randomizable keys. In Chen-Mou Cheng, Kai-Min Chung,
Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part I, volume 9614
of LNCS, pages 301–330. Springer, Heidelberg, March 2016.

[FTS+18] Chun-I Fan, Yi-Fan Tseng, Hui-Po Su, Ruei-Hau Hsu, and Hiroaki Kikuchi.
Secure hierarchical bitcoin wallet scheme against privilege escalation attacks. In
2018 IEEE Conference on Dependable and Secure Computing (DSC), pages 1–8,
2018.

[GJKR96] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Robust
threshold DSS signatures. In Ueli M. Maurer, editor, EUROCRYPT’96, volume
1070 of LNCS, pages 354–371. Springer, Heidelberg, May 1996.

[GS15] Gus Gutoski and Douglas Stebila. Hierarchical deterministic bitcoin wallets that
tolerate key leakage. In Rainer Böhme and Tatsuaki Okamoto, editors, FC 2015,
volume 8975 of LNCS, pages 497–504. Springer, Heidelberg, January 2015.

[Hu23] Mingxing Hu. Post-quantum secure deterministic wallet: Stateless, hot/cold
setting, and more secure. Cryptology ePrint Archive, Paper 2023/062, 2023.

[KMOS21] Yashvanth Kondi, Bernardo Magri, Claudio Orlandi, and Omer Shlomovits. Re-
fresh when you wake up: Proactive threshold wallets with offline devices. In 2021
IEEE Symposium on Security and Privacy, pages 608–625. IEEE Computer So-
ciety Press, May 2021.

[LFA20] Adriano Di Luzio, Danilo Francati, and Giuseppe Ateniese. Arcula: A secure
hierarchical deterministic wallet for multi-asset blockchains. In Stephan Krenn,
Haya Shulman, and Serge Vaudenay, editors, CANS 20, volume 12579 of LNCS,
pages 323–343. Springer, Heidelberg, December 2020.

[LJY14] Benoît Libert, Marc Joye, and Moti Yung. Born and raised distributively: fully
distributed non-interactive adaptively-secure threshold signatures with short
shares. In Magnús M. Halldórsson and Shlomi Dolev, editors, 33rd ACM PODC,
pages 303–312. ACM, July 2014.

[Max11] Gregory Maxwell. Deterministic wallets, 2011. https://bitcointalk.org/
index.php?topic=19137.msg239768.

[MC22] Philipp Muth and Fabio Campos. On actively secure fine-grained access struc-
tures from isogeny assumptions. In Jung Hee Cheon and Thomas Johansson,
editors, Post-Quantum Cryptography - 13th International Workshop, PQCrypto
2022, Virtual Event, September 28-30, 2022, Proceedings, volume 13512 of Lec-
ture Notes in Computer Science, pages 375–398. Springer, 2022.

23

https://bitcointalk.org/index.php?topic=19137.msg239768
https://bitcointalk.org/index.php?topic=19137.msg239768

[MCR19] Michael Meyer, Fabio Campos, and Steffen Reith. On lions and elligators: An
efficient constant-time implementation of CSIDH. In Jintai Ding and Rainer
Steinwandt, editors, PQCrypto 2019, pages 307–325. Springer, Heidelberg, 2019.

[Moc] Mochimo. https://mochimo.org/.

[MPs19] Antonio Marcedone, Rafael Pass, and abhi shelat. Minimizing trust in hardware
wallets with two factor signatures. In Ian Goldberg and Tyler Moore, editors,
FC 2019, volume 11598 of LNCS, pages 407–425. Springer, Heidelberg, February
2019.

[MR18] Michael Meyer and Steffen Reith. A faster way to the CSIDH. In Debrup
Chakraborty and Tetsu Iwata, editors, INDOCRYPT 2018, volume 11356 of
LNCS, pages 137–152. Springer, Heidelberg, December 2018.

[Pei20] Chris Peikert. He gives C-sieves on the CSIDH. In Anne Canteaut and Yuval
Ishai, editors, EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 463–
492. Springer, Heidelberg, May 2020.

[QRL] Quantum resistant ledger (qrl). https://github.com/theQRL/Whitepaper/
blob/master/QRL_whitepaper.pdf.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 239–252.
Springer, Heidelberg, August 1990.

[SD23] Surbhi Shaw and Ratna Dutta. Compact stateful deterministic wallet from
isogeny-based signature featuring uniquely rerandomizable public keys. In CANS
2023, Lecture Notes in Computer Science. Springer, 2023.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11), 1979.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In 35th FOCS, pages 124–134. IEEE Computer Society Press, Novem-
ber 1994.

[TMSM21] Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei. Post-quantum adaptor
signature for privacy-preserving off-chain payments. In FC 2021, 2021.

[Wui12] Pieter Wuille. BIP32 Proposal. https://en.bitcoin.it/wiki/BIP_0032, 2012.

[YLY+22] Xin Yin, Zhen Liu, Guomin Yang, Guoxing Chen, and Haojin Zhu. Secure
hierarchical deterministic wallet supporting stealth address. In Vijayalakshmi
Atluri, Roberto Di Pietro, Christian Damsgaard Jensen, and Weizhi Meng, edi-
tors, ESORICS 2022, volume 13554 of LNCS, pages 89–109. Springer, Heidelberg,
September 2022.

[Zha12] Mark Zhandry. How to construct quantum random functions. In FOCS, pages
679–687. IEEE Computer Society Press, October 2012.

24

https://mochimo.org/
https://github.com/theQRL/Whitepaper/blob/master/QRL_whitepaper.pdf
https://github.com/theQRL/Whitepaper/blob/master/QRL_whitepaper.pdf
https://en.bitcoin.it/wiki/BIP_0032

	Introduction
	Our Contribution.
	Related Work
	Related Work on Deterministic Wallets.
	Related Work on Rerandomizable and Threshold Signatures.

	Preliminaries
	Notation
	Adversary Model
	Small-Range Distributions
	Signatures (with Rerandomizable Keys)
	Interactive Threshold Signatures (with Rerandomizable Keys)
	Isogeny Group Action
	CSI-FiSh Signature Scheme

	Rerandomization of CSI-FiSh Keys
	Deterministic Threshold Wallets
	Model
	Construction
	Security

	Rerandomization of Threshold CSI-FiSh Keys
	Key Generation and Shamir Secret Sharing
	Threshold CSI-FiSh Signing
	Rerandomization of Threshold CSI-FiSh Keys

	Practical Instantiation
	Blockchain Application.
	Instantiating Threshold CSI-FiSh.

