
Efficient Low-Latency Masking of Ascon without Fresh Randomness

Srinidhi Hari Prasad
Infineon Technologies, Germany

Florian Mendel
Infineon Technologies, Germany

Martin Schläffer
Infineon Technologies, Germany

Rishub Nagpal
Graz University of Technology, Austria

Abstract
In this work, we present the first low-latency, second-order

masked hardware implementation of Ascon that requires no
fresh randomness using only d+1 shares. Our results signifi-
cantly outperform any publicly known second-order masked
implementations of AES and Ascon in terms of combined
area, latency and randomness requirements. Ascon is a family
of lightweight authenticated encryption and hashing schemes
selected by NIST for standardization. Ascon is tailored for
small form factors. It requires less power and energy while
attaining the same or even better performance than current
NIST standards.

We achieve the reduction of latency by rearranging the
linear layers of the Ascon permutation in a round-based im-
plementation. We provide an improved technique to achieve
implementations without the need for fresh randomness. It is
based on the concept of changing of the guards extended to
the second-order case. Together with the reduction of latency,
we need to consider a large set of additional conditions which
we propose to solve using a SAT solver.

We have formally verified both, our first- and second-order
implementations of Ascon using CocoAlma for the first two
rounds. Additionally, we have performed a leakage assess-
ment using t-tests on all 12 rounds of the initial permutation.
Finally, we provide a comparison of our second-order masked
Ascon implementation with other results.

1 Introduction

Motivation. In 1999, Paul Kocher published differential
power analysis (DPA) that allows to extract the secret key
of a block cipher from a device’s physical properties, if the
device is not properly protected [38]. Many attempts have
been made to provide techniques to counteract such attacks.
For symmetric ciphers, a typical countermeasure is Boolean
masking, which splits computations on the secret into several
shares [11, 26]. While Boolean masking is relatively easy
for linear (Boolean) functions, it is not straight-forward for

the non-linear parts of a cipher. This is especially the case
for hardware implementations of high-degree S-boxes like
in the AES [17]. The low-degree S-boxes of SHA-3 [5] or
Ascon [21] seem to be easier to mask.

Several attempts have been made to protect non-linear func-
tions in hardware. Many have failed in practice or have high
costs in terms of area, latency or fresh randomness. Threshold
implementations (TI) [43] is the first approach to provide
a general framework but requires more shares and is diffi-
cult to generalize for higher orders [47]. While it is possible
to mask non-linear functions using the minimum number of
shares [48], this has the drawback of high randomness require-
ments. The high randomness requirements can be drastically
reduced using the changing of the guards technique [15] in
the first order case. However, a generalization to the higher-
order case seems difficult since the randomness requirements
typically increases quadratic with the number of shares.

Domain-oriented masking (DOM) is a seemingly easy ap-
proach to mask simple non-linear functions like AND gates
using d + 1 shares [29] for an arbitrary number of shares.
However, implementing DOM for a complete cipher can be
difficult and several flaws have been shown in practice. This
ranges from violating the independence assumption [1] to in-
sufficient refreshing, especially in the higher-order case [40].

Implementations of masking schemes like TI and DOM
introduce additional latency and pose a requirement for fresh
randomness every cycle to securely operate on the shares. For
instance, a DOM AND-gate would require d(d+1)/2 fresh
random bits where d is the order of masking [29]. Generation
of such fresh randomness requires dedicated RNG circuits
which consume additional chip area and power, resulting in a
large overhead, particularly for higher-order implementations.

Related work. Over the last couple of years, significant
research has been conducted in the area of optimizing fresh
randomness requirements for various masked implementa-
tions. One line of research is to define low-level gadgets and
optimize or reuse the randomness among them while main-
taining the security of the masked circuit [24, 25, 35, 36, 50].



Ideally, this would result in a generic method to convert an
unprotected implementation into a side-channel robust im-
plementation with the desired order of masking. The main
drawback of such generic methods is usually a higher cost in
terms of area, latency or the required number of shares.

Another study [41] aims to reduce latency and improve
performance by introducing a generic approach for design-
ing single-cycle, glitch-resistant hardware. This is done by
incorporating a partial dual-rail encoding of masked signals
that replace register stages. The introduction of this technique
provides synchronization within the circuit. While this work
optimized the latency and reduces the randomness require-
ments, the area requirements are still quite high.

On the other hand, several state-of-the-art publications try
to directly reduce the latency and randomness requirements
for complete encryption schemes. One approach by [27] pro-
vides a generic concept for low-latency masking in hardware
and successfully demonstrates its application to Ascon. With
this approach, it becomes feasible to eliminate the need for
additional register stages which reduces the latency. However,
this approach exponentially increases the number of required
shares, randomness and domains when consecutive non-linear
layers are used.

Another idea is to minimize the latency of a masked ci-
pher by unrolling several rounds of an implementation. A
first-order SCA-protected implementation of Keccak with
two unrolled rounds has been published in [1]. The authors
propose a method using TI in unrolled implementations with-
out violating the non-completeness property. This method
increases the required number of shares to 6, still resulting in
high area costs.

In the case of AES, a first-order robust AES implementation
using TI and changing of the guards has been shown in [54].
This implementation requires no fresh randomness at the cost
of high latency and using 4 shares. Similarly, [52] show a
first-order protected 3-share TI of the AES S-box without
fresh randomness. A second-order protected 4-share AES
implementation with low-randomness requirements has been
published in [6]. Recently, the second-order low-randomness
implementation of AES has been improved to 3-shares in [19].
All these masked AES implementations have a high latency
due to the high-degree S-box.

Our Contribution. In this work, we present first- and
second-order protected implementations of Ascon [21] us-
ing d + 1 shares, with two cycles of latency per round and
zero online randomness. Most notably, these results signifi-
cantly outperform any publicly known second-order masked
implementations of AES and Ascon in terms of combined
area, latency and randomness requirements. The technique is
generic but requires a dedicated adaptation for each cipher. It
works best for algorithms containing S-boxes of low algebraic
degree. Our technique allows to efficiently higher-order mask
complete ciphers with d+1 shares and zero online random-

ness, while maintaining a low-latency implementation.
We start from a d + 1 masked hardware implementation

of Ascon with three cycles of latency and d(d+1)/2 bits of
randomness per round [46]. This implementation requires 320
bits of randomness for the first-order and 960 bits of random-
ness for the second order case per cycle. Using our technique,
we are able to reduce the online randomness to zero and the
latency to two cycles in both, the first- and second-order case,
with minimal area overhead. We have verified two rounds of
the first- and second-order implementations of Ascon using
the formal side-channel verification tool CocoAlma [30]. Ad-
ditionally, we have performed a leakage assessment of our
implementations using uni- and bivariate t-tests. We plan to
publish the source code of our implementations and the scripts
to obtain the randomness assignment.

To achieve these results, we use a first- and second-order
probing secure AND gate based on domain-oriented masking
(DOM). Our main idea is to extend the changing of the guards
technique and systematically reuse randomness to refresh the
shares in the non-linear functions. In a DOM AND gate, we
need to take care that the fresh randomness is independent
of its masked inputs. However, especially in the higher-order
case bits from neighboring S-boxes may not be independent
anymore. We show that the linear layer plays a crucial role in
reusing the randomness and provide a method based on SAT
solvers to find valid assignments.

Our findings on reducing the randomness requirements
have versatile applications. With some modifications, this
technique might also be used in algorithms like SHA-3,
Xoodyak, but also AES. Furthermore, it can be seamlessly in-
corporated into the single-cycle glitch-resistant masked hard-
ware of cryptographic S-boxes, which was previously intro-
duced in [41]. This integration can lead to significant gains
by reducing the fresh randomness requirements to zero for
the implementations.

2 Background

2.1 Side-channel Analysis
Side-channel analysis (SCA) targets the device specific im-
plementation of a cryptographic algorithm, rather than the
algorithm itself. An attacker aims to obtain information about
the secret data being processed by monitoring various side-
channels such as power consumption, timing, or electromag-
netic radiation.

It was first shown by [37], that differences in execution
time can be exploited to successfully retrieve RSA keys. This
was later followed by [38] who demonstrated that differential
power analysis reveals even more information about secret
keys by exploiting the correlation between multiple power
traces.

Numerous research works, such as those mentioned
in [44], [31], [33], [13] have demonstrated how inexpensive



and highly effective these attacks are in compromising the
security of cryptographic implementations. In order to protect
the implementation against such side-channel attacks, coun-
termeasures such as masking [26], shuffling [32], and random
delay insertion [12] have been proposed.

2.2 Masking
One fundamental countermeasure against DPA attacks is
masking. In principle, the idea is to make the intermediate
data independent of any sensitive information that is being
processed. The most common masking schemes are Boolean
masking and arithmetic masking. Boolean masking uses an
XOR operation over a binary field in contrast to arithmetic
masking, which utilizes addition or multiplication in a modu-
lar ring. Using Boolean masking, d-th order security can be
achieved by splitting the secret data into s = d+1 shares using
an XOR operation over a binary field:

x = x1⊕x2⊕⋅⋅ ⋅⊕xs

Ideally, each share is then processed individually throughout
the computation in a device. The fundamental principle of
domain oriented masking (DOM) introduced by [29] is based
on shared domains. Here, the objective is to keep the shares
of each domain separate from the shares of other domains.
For instance, a DOM implementation with d +1 shares for
each variable will result in d+1 domains and should provide
dth-order security. However, it is essential to note that im-
plementing linear and non-linear operations in this setup is
different. While it is relatively easy to separate domains in
linear operations, non-linear operations require special con-
siderations. To handle terms crossing the domains, additional
fresh random shares and register stages are needed to prevent
glitches from crossing the domains.

The authors present two types of multipliers called DOM-
indep and DOM-dep. The DOM-indep multiplier operates
on independently shared inputs, which has the advantage of
requiring less fresh randomness and has a smaller size. The
DOM-dep multiplier does not require the inputs to be shared
independently but is more costly to implement. Moreover, the
authors of [40] observed a specific vulnerability of the DOM-
dep multiplier. They found out that the DOM-dep multiplier
does not offer adequate protection against probing attacks for
masking orders of two or higher.

Within the scope of our work, we only consider the DOM-
indep multiplier. Therefore, we need to make sure that the
input shares are independently shared in our implementation.
We focus on the 1-bit DOM-indep multiplier with two in-
puts, realizing a masked AND operation or AND gate. This
DOM-indep AND gate consists of the DOM calculation phase,
resharing phase, and integration phase, that generates the final
shared outputs in d+1 domains. The resharing phase requires
d(d+1)/2 fresh random bits, at least d(d+1) registers and
adds additional latency due to the register stage. The 2nd-order

Figure 1: 2nd-order DOM-indep multiplier [29]

DOM-indep multiplier is shown on Figure 1. It is evident that
the cost of implementing masking significantly increases due
to this processing of shares. For the sake of simplicity, from
this point forward we will use the term "DOM AND gate" to
refer to the "DOM-indep AND gate".

2.3 Changing of the Guards
Changing of the Guards [15] is a technique that suggests
using shares of neighboring S-boxes as additional random-
ness to arrive at a correct, incomplete, and uniform sharing in
a Threshold Implementation (TI) [43]. The authors demon-
strate the successful implementation of this concept on the
TI masked implementation of Keccak. The method has also
been effective in implementing first-order TI of KETJE, a
CAESAR finalist, without the need for fresh randomness [3].
Additionally, it has been used to realize a first-order robust
TI masked implementation of the AES with zero randomness
per-round [54].

Changing of the guards works very well for first-order
implementations. Extending it to second- or higher-order
masked implementations has not been extensively investi-
gated. One reason is the need for d(d +1)/2 additional ran-
domness, which cannot easily be provided using only shares
of neighboring S-boxes. In our work, we will discuss chal-
lenges and methodologies for extending the concept of Chang-
ing of the Guards to second-order masked implementations.

2.4 Formal Side-channel Verification
Formal side-channel verification techniques offer several ad-
vantages over traditional simulation-based verification ap-
proaches. They thoroughly examine all possible leakage sce-
narios using mathematical models to find potential vulnera-
bilities or, alternatively provide proof of security often based
on the (robust) d-probing models [23, 34]. In addition, they
take into consideration hardware effects such as glitches. This
makes them particularly suitable for scenarios where hard-
ware designs change frequently and require frequent verifica-



tion, as they outperform traditional methods that use statistical
analysis of leakage traces to identify vulnerabilities, which
can be time-consuming and may not cover all scenarios.

Despite these advantages, formal side-channel analysis
tools have a significant drawback in the form of complex-
ity issue that arises during the verification of larger designs.
Ongoing research is focused on developing formal side-
channel verification tools that cover all security properties and
still manage to verify reasonably large designs. VerMI [2],
MaskVerif [4], REBECCA [9], CocoAlma [30] are some of
the available state-of-the-art formal side-channel verification
tools. Within the premise of this paper, we use CocoAlma to
verify our implementations.

2.5 Ascon
Ascon is a family of authenticated encryption and hashing
schemes [21, 22]. Ascon was selected as a winner in the
CAESAR competition [14] and was recently chosen by NIST
for standardization [42]. While Ascon was designed to enable
efficient SCA-resistant implementations in hardware and soft-
ware, implementing such countermeasures typically requires
a lot of area, fresh randomness and increases latency affecting
the overall performance.

All Ascon schemes use the same 320-bit permutation, only
parameterized by a different umber of rounds. In our masked
implementations of Ascon, we focus on the permutation and
more specifically, on the round operations of the permutations.
In Ascon, the 320-bit state S is split into five 64-bit registers
words xi, which we refer to throughout the paper:.

S = x0 ∣∣ x1 ∣∣ x2 ∣∣ x3 ∣∣ x4.

The permutations pa and pb apply the round transforma-
tion p iteratively for a or b rounds. Each round consists of a
round constant addition (pC), a substitution layer (pS), and a
linear diffusion layer (pL). In the constant addition, the round
constant cr is xored to the register word x2 of the state. The
specific value of the round constant depends on the round i of
pa and pb.

The substitution layer pS is the only non-linear compo-
nent of the round transformation. It updates the state S with
a parallel application of 64 5-bit S-boxes. The S-box is con-
structed by applying a lightweight linear transformations to
the input and an affine layer to the output of the χ mapping
of Keccak [5]. It operates on those five bits with the same
bit position in the five state words. The S-box is illustrated
in Figure 2, together with the three mentioned components
S-box linear layer, non-linear χ mapping of Keccak and S-box
affine layer. The S-box has an algebraic degree of 2, a linear
and differential branch number of 3 and can be implemented
efficiently in hardware and software.

The linear diffusion layer pL operates on 64-bit register
word xi and applies the linear function Σi(xi) to each state
word. It rotates each register xi by fixed rotation constants and

Figure 2: Ascon’s 5-bit S-box S(x) with different components
highlighted [21]

xors the results to the input register. The linear layer provides
a high diffusion within state words and is defined as follows:

x0 = Σ0(x0) = x0⊕(x0⋙ 19)⊕(x0⋙ 28)

x1 = Σ1(x1) = x1⊕(x1⋙ 61)⊕(x1⋙ 39)

x2 = Σ2(x2) = x2⊕(x2⋙ 1)⊕(x2⋙ 6)

x3 = Σ3(x3) = x3⊕(x3⋙ 10)⊕(x3⋙ 17)

x4 = Σ4(x4) = x4⊕(x4⋙ 7)⊕(x4⋙ 41)

3 Minimizing the Latency in Masked Imple-
mentations

The latency of a cipher depends on the number of registers
stages needed. While plain implementations can be imple-
mented even within one cycle, this is in general not the case
for masked implementations. Although it is possible to min-
imize the latency at a high cost in area (number of shares)
or high randomness requirements, this is not the goal of our
work. In our case, we use the DOM-indep multiplier or DOM
AND gate, which requires at least one register stage for each
function of algebraic degree 2.

Additionally, the inputs of the DOM-indep multiplier need
to be independent. This is in general not the case, since the
inputs are mixed by the linear functions preceeding the DOM-
indep multipliers. Especially in high-diffusion linear layers
like in Ascon, inputs cannot be considered independent any-
more. To prevent data-dependent glitches propagating into
the DOM-indep multiplier, we require an additional register
stage at its input.

To summarize, we would need two register stages con-
sidering the permutation structure of Ascon. However, we
propose to use just one register stage within the permuta-
tion structure and hence reduce the latency, while also im-
proving the randomness requirements. In the following, we



apply this technique to the cipher Ascon. However, the pro-
posed method has the significant advantage of being generic
and can be employed in other ciphers as well. It works best
for lightweight ciphers with low algebraic degree such as
ISAP [20], Xoodyak [16] or Keccak-based designs, but can
also be applied to AES.

3.1 Masking the Ascon S-box

The Ascon S-box is designed by adding a lightweight linear
and affine transformations to the input and the output of the χ

mapping of Keccak. These transformations are illustrated in
Figure 2 as S-box linear layer and S-box affine layer. These
linear transformations can simply be masked by duplicating
the operation for each share.

The χ mapping xors each bit with a non-linear AND
of two other input bits. This 3-bit function is given by
xi+(xi+1+1) ⋅xi+2. This is basically an AND-XOR opera-
tion with one inverted input bit. In order to apply masking to
the χ mapping, we use the DOM AND gate to mask the non-
linear operation. Additionally, we include the XOR operation,
to get a DOM AND-XOR function.

The structure of the DOM AND-XOR gate to mask one
component of xi+(xi+1+1) ⋅xi+2 is shown in Figure 3. Here,
the shares of xi+1 and xi+2 are multiplied with each other.
The corresponding shares of xi are added to the inner-domain
terms prior to the DOM register stage. This is highlighted in
green colour in the Figure 3.

For the sake of simplicity, the figure shows the first-order
DOM scheme applied to the AND-XOR operation. The same
approach can be applied to the second-order case as well. This
masking approach results in a functionally correct operation
of the χ mapping as the XORs are only moved via the linear
DOM integration layer into the resharing layer.

This approach offers several advantages. It reduces the
depth of the logic between the register stages, as well as min-
imizes the glitch propagation. Including the XOR into the
resharing layer has the advantage of reducing the randomness,
which we will show in the subsequent sections.

3.2 Rearranging Linear Functions

To mask the linear diffusion layer, we essentially duplicate
the XOR operations for each share, which allows us to mask
a single round of permutation once the Ascon S-box has been
masked.

We propose a method of reducing latency by rearranging
the linear layers among different rounds of the Ascon per-
mutation. For the sake of simplicity, let’s consider an imple-
mentation of Ascon [46] with three cycles of latency for one
round of permutation as shown in Figure 4a. The reason for
the three cycles of latency is that one round of the permutation
requires three register stages.

Figure 3: DOM AND gate structure to mask the AND-XOR
operation based on [29]

As shown in Figure 4a, we see a state register to register
the output of multiple rounds of permutation, register stage 1
is required to provide independence of the inputs to the DOM
AND gates, and register stage 2 comes from the DOM AND
gate implementation itself. As mentioned before, the register
stages 1 and 2 are crucial for the security of the masking
implementation and thus cannot be avoided.

In order to reduce latency, we restructure the round, as
shown in Figure 4b. Here we reorder the linear layers by
moving the S-box affine layer after the linear diffusion layer
to obtain the new low-latency permutation. The resulting
permutation layer just has two register stages: register stage 2
for the DOM implementation and the stage register. This
restructuring effectively reduces the latency by one cycle.

It is worth noting that the optimization technique proposed
in [46] can also be applied here by clocking one of the reg-
ister stages in the permutation with a falling-edge clock. By
using this technique in our reduced latency implementation,
we can achieve a 1-cycle latency for a single round of the
permutation.

4 Reducing Fresh Randomness Requirements

To reduce PRNG/TRNG circuit costs and energy consumption
associated with hardware, it is essential to decrease random-
ness requirements for constraint devices. Although various
methods have been explored extensively to achieve first-order
robust masked implementations, second-order scenarios still
pose a challenge, with no apparent easy solutions.

While changing of the guards offers a generic way to select
guard offsets from neighboring S-boxes, this method may not
be suitable for all permutation structures, such as in Ascon.
This is because the linear diffusion layer in Ascon combines
the outputs of different S-boxes and subsequent neighboring S-
boxes may not be independent anymore. Any generic method
for selecting guards could compromise the security of the



(a) 3 cycles per round

(b) 2 cycles per round

Figure 4: Round-based implementation of Ascon.

masked implementation. As a result, choosing guards must
be done carefully, and it may present a significantly greater
challenge for higher-order scenarios.

This section delves into the difficulties of choosing guards
for first and second-order cases in Ascon permutation and
outlines the criteria for selecting guards. The goal is to achieve
masked implementations of Ascon that do not require fresh
randomness.

Selection of the guards. The changing of the guards tech-
nique proposes to select the guards from neighbouring S-
boxes. When selecting guards, it’s important to keep in mind
that they are the input shares of different S-boxes. In our
particular implementation of Ascon, there are 64 S-boxes im-
plemented in parallel and each S-box has 5 DOM AND gates
requiring 5 guards.

We define two types of offsets to refer to the position from
where we select the guard. The first one is the column-offset
(c) where we select the S-box position from where we want
to use the guard. The next one is the row-offset (r) where

we select which of the 5 bits (xi) of the S-box at position c
will be used as the guard. For example, for every AND gate
i in an S-box j generating the result for xi j, we use xi+r, j+c
as the guard. Here, c and r are the column and row-offsets,
respectively, with 0 ≤ j ≤ 63 and 0 ≤ i ≤ 5. Traditional guard
selection would simply use c = 1 and r = 0.

After defining the two types of offsets, we proceed to es-
tablish rules for selecting them for the first and second-order
cases. Our goal is to define rules and select offsets while
keeping dth-order probing security in mind [23]. This entails
picking guards from S-boxes that do not interact with each
other.

Due to Ascon’s rotation symmetry, the guard selection is
also rotation symmetric regarding columns. We can simplify
the selection process by formulating and applying column-
and row-offset conditions for one column. Note that this is not
the case for rows since the linear layer differs for each row.

4.1 First-order Masked Implementation with-
out Fresh Randomness

The first-order implementation of the DOM AND gate only
requires a single fresh random bit. This means that we require
only one guard with one row and column-offset per AND gate.
It is intriguing to explore how we can choose these offsets by
only considering the Ascon S-box itself. However, we also
need to consider the impact of the reorganized Ascon linear
layer we have implemented to minimize the latency.

To achieve first-order probing security, we must select
guard positions in a way that avoids information leakage due
to glitches in the linear layer as well. With this in mind, we
simplify the offset selection process by fixing the row-offset to
0. In a second step, we determine the conditions for selecting
the column-offset of the guard. It’s essential to note that if we
choose different row-offsets instead of 0, the conditions for
column-offsets and corresponding solutions would differ.

Conditions to obtain guard column-offsets. Let Ri be the
set containing the two rotation constants ri0 and ri1 of row xi.
Let G be the set containing the guard column-offsets.

First, we must avoid using rotation offsets as guard column-
offsets. This is because the linear diffusion layer rotates xi
using the rotation constants ri1 and ri2 and xors them together.
Therefore, we need to avoid positions that combine in the lin-
ear diffusion layer of Ascon. To fulfill this rule, the following
condition applies for Ri where i ∈ {0, 1, 2, 3, 4} and ri j ∈ Ri
where j ∈ {0, 1}.

∀g ∈G, ri j ∈ Ri, g ≠ ri j (C1)

Likewise, we have to avoid the differences in rotation con-
stants used in the linear diffusion layer for the same reason as
mentioned before. Hence, the following condition applies for



Table 1: 1st-order column offsets using row offset 0.

Column offsets for 1 guard

First-order

{2},{4},{8},{11},{14},
{15}, {16},{18},{20},{24},{26},
{27},{29},{31},{32},{33},{35},
{37}, {38},{40},{44},{46},{48},
{49},{50},{53},{56},{60},{62}

Ri with i ∈ {0, 1, 2, 3, 4} and ri j ∈ Ri with j ∈ {0, 1}:

∀g ∈G, ∀ri j ∈ Ri

g ≠ ri0− ri1 (mod 64)
g ≠ ri1− ri0 (mod 64)

(C2)

Furthermore, we have to also avoid the difference between
the rotation constants of x0 and x4. These bits are xored in
the s-box linear layer after the linear diffusion layer, which is
added to achieve the low latency implementation as explained
in Section 3.2. It is important to note that this condition may
change depending on the selected row-offset Hence, the fol-
lowing condition applies for Ri with i ∈ {0, 4} and ri j ∈ Ri
with j ∈ {0, 1}:

∀g ∈G, ∀ri j ∈ Ri, ∀ j ∈ {0,1}
g ≠ r0 j − r4 j (mod 64)
g ≠ r4 j − r0 j (mod 64)

(C3)

After applying all the aforementioned conditions (C1)–(C3)
and fixing the row-offset to 0, we are left with 29 positions
that can be selected as a guard column-offset. All these posi-
tions are provided in Table 1. These guard constraints were
exclusively derived due to interactions in one round of the
permutation. In practice, we also avoid values which are not
co-prime to 64, since these values may line up when evaluat-
ing multiple rounds of the permutation. For example we avoid
using {32}, as there is a possibility of a leak in the second
round for this offset value. Hence, for the implementation we
select the first column-offset that is co-prime to 64, in out case
{11} as highlighted in the Table 1.

4.2 Second-order Masked Implementation
without Fresh Randomness

At a first glance, incorporating guards for the second-order
scenario may seem straightforward. However, there has been
a lack of discussion on expanding and selecting guards in
a generic manner for second-order protected implementa-
tions. This is primarily due to the increased complexity of the
second-order case, which is characterized by d = 2 probing lo-
cations and d(d+1)/2 = 3 fresh random bits per DOM AND
gate (see Figure 1). As we intend to avoid using any fresh
randomness, we would need guards from three distinct offsets.

This significantly increases the complexity of selecting proper
guards.

For example, in the second-order implementation of Ascon,
we need 3 sets of row and column-offsets for each DOM AND
gate. However, one cannot simply choose a random set out
of the offsets obtained in the first-order case. This would ne-
glect the interactions between the selected guards itself. The
additional dependency between guards significantly compli-
cates the selection process. In the following, we discuss this
interaction of guards in more detail.

To select the guards, we start from the same approach as
in the first-order case, where we set the row-offset to 0 and
solve for the column-offset for a single S-box. Once we have
obtained the column-offset, we again apply the same offsets
to all the S-boxes. This will preserve the rotation symmetry
in the design and will help to reduce the complexity in the
verification later on (see Section 6).

For the row-offset, we define two distinct sets of conditions.
The first applies independently for all row-offset values. The
second depend on the selected row-offset value. In the follow-
ing, we limit the discussion to conditions for a fixed row-offset
value of 0. Similar conditions arise when the row-offset value
is to a different value.

Due to the significant number of conditions involved, a
simple selection of offsets is not trivial anymore. Therefore,
we use a constraint formulation approach and employ a SAT
solver to find the appropriate offsets based the the defined
constraints. We will discuss some of the constraints for each
scenario in the following.

Generic Constraints. Here, we discuss the generic con-
straints that should be applied to obtain the guard column
offsets given by the set G = {g1,g2,g3} for each DOM AND
gate of the S-box in position 0.

First two constraints (C1) and (C2) of the first-order sce-
nario discussed before are also needed for the second-order
case ∀gi ∈ G, where G is the set of containing the column-
offsets of the guards. When dealing with a second-order sce-
nario where multiple guards are necessary, it’s crucial to con-
sider the interaction between these guards. Therefore, we
define the following conditions to ensure proper selection:

Any combination of two guards, when combined together
should not result in the position that we are solving for, in this
case, position 0.

∀g ∈G, ∀k, l ∈ 0,1,2, k ≠ l

gk +gl ≠ 0 (mod 64)
(G1)

When any guards gk combine with the rotation value ri j of
any row xi should not generate any other guard offset gl .

∀g ∈G, ∀ri j ∈ Ri, ∀k, l ∈ 0,1,2, k ≠ l

gk + ri j ≠ gl (mod 64)
(G2)



The combination of any two column-offsets, gk and gl where
0 ≤ k, l ≤ 2 with the rotation values ri j of the row xi should not
generate the same value. This constraint is applied for all xi
where i ∈ {0,1,2,3,4}.

∀g ∈G, ∀ri j ∈ Ri, k ≠ l

gk + ri0 ≠ gl + ri1 (mod 64)
(G3)

Constraints that change with the row-offset. Here, we dis-
cuss the constraints that are specific to the chosen row-offset,
in this case 0. The third and last constraint (C3) discussed
in the first-order scenario, applies here as well. Along with
that we need to also include the constraints which considers
the differences between the rotation constants of {x1,x2} and
{x3,x4}.

∀g ∈G, ∀ri j ∈ Ri, ∀ j ∈ {0,1}
g ≠ r1 j − r2 j (mod 64)
g ≠ r3 j − r4 j (mod 64)

(R1)

To clarify, the constraints explained are a simplified version
and not the complete set used for encoding. The full set of
constraints will be provided for all possible row-offsets from
0 to 4.

Solving. After defining all the constraints, we input them
into a SAT solver to obtain the assignment of guards. Any
solver can be used, but in our case, we utilized the z3
solver [18] to solve the constraints.

The solver generates all possible combinations of column-
offsets that satisfy the previously defined constraints. The
list of column-offsets obtained by setting the row-offset to
0 is illustrated in Table 2. By using these offsets, we can
successfully make guard connections to the DOM AND gate,
thereby obtaining a second-order implementation with no
additional randomness required. As previously mentioned,
selecting a different row-offset may result in a different set of
solutions.

Shifted domain trick. In our previous discussion, we noted
that in the second-order case, we have the advantage of using
three different domains for each column-offset that is obtained.
Additionally, it is beneficial to consider how to connect these
distinct domains in a DOM AND gate. For this, we introduce a
technique we refer to as the shifted domain trick that provides
a means of connecting the shares of the guards from the
relevant domain to the location of the random bits in a second-
order DOM-AND gate. Specifically, we propose to connect
a guard from domain A (G1

a) to Z0, a guard from domain B
(G2

b) to Z2, and a guard from domain C (G3
c) to Z1, using the

notation of Figure 1. This approach helps to create symmetry
in the design and reduces some of the constraints related to
guard selection. Because of the symmetry introduced by this

Table 2: 2nd-order column offsets using row offset 0.

Column offsets for 3 guards

Second-order

{2,16,18},{2,20,46},{2,46,48},
{2,46,50},{2,48,50},{4,18,44},
{8,24,26},{8,24,35},{8,24,48},

{11,35,37},{14,16,18},{14,16,32},
{14,18,32},{15,31,35},{16,18,32},
{16,18,62},{16,27,53},{24,26,53},
{24,32,48},{24,48,62},{27,29,53},
{31,35,49},{31,46,62},{32,46,48},
{32,46,50},{32,48,50},{46,48,50},

{46,48,62}

connection technique, any permutation of the solution pair
from Table 2 can be used for implementation, which increases
the number of solutions for the guard offsets.

5 Implementation Results

The small state size and simple permutation layer of Ascon
enable efficient SCA protected implementations with high
throughput and low area. We explored multiple secured open-
source implementations of Ascon to find suitable ones to
improve using our technique.

We first looked into the implementation published by Pri-
mas et al. [46]. This implementation is based on the work of
Gross et al. in [28, 29] and provides several first and second-
order protected implementation of Ascon. It is compliant with
the LWC Hardware API [53] and has been evaluated during
the course of the NIST LWC project [39]. However, this im-
plementation and the LWC Hardware API did not support
hashing functionality along with authenticated encryption.
We also considered the corresponding Verilog implementa-
tion [45]. This implementation is similar to the previous, a
simpler interface and significantly reduces the code size. How-
ever, it does not include any SCA protected implementation.
Despite this, we have chosen this implementation and extend
it using an SCA-protected version using domain-oriented
masking.

In line with the recommendations presented in [53] for
SCA-protected implementations of Lightweight Cryptogra-
phy candidates, we employ a technique involving processing
inputs and outputs as shares, expanding the BUS width at the
interface to handle them, and incorporating an extra random
data input port to supply the SCA-protected implementation
with fresh randomness. The resulting Ascon core interface,
as depicted in Figure 5, is used to enable our improved SCA
protected implementation.

Next, we have applied the latency reduction technique de-
scribed in Section 3.2 two reduce the latency for one round
of the permutation by one cycle. Finally, we implement the
guard connections based on the results from Section 4 which



Figure 5: Lightweight Cryptography Ascon Core Implemen-
tation with SCA protection based on [53]

results in an implementation of Ascon with improved latency
requiring no fresh randomness.

5.1 Latency Reduction

In our implementation, the Ascon Core module contains a
state machine responsible for performing the authenticated
encryption and hashing calculations. Additionally, the mod-
ule includes an instance of the permutation module, Asconp,
which implements the permutation that runs through multi-
ple rounds. Now we will discuss the modifications to both
the Asconp and Ascon Core module to implement the the
previously mentioned latency reduction technique. Further-
more, it’s worth noting that we have utilized this optimization
technique for both the first-order and second-order implemen-
tations.

Changes in Asconp module. To achieve a permutation
with a 2-cycle latency, the implementation of the Asconp
module has been modified. The S-box linear layer has been
moved and placed after the Linear diffusion layer, and the
permutation starts from the χ mapping of the S-box. The
round constant of the next round is also calculated and added
to the S-box linear layer. Furthermore, we have added specific
logic to prevent the integration of the next S-box linear layer
during the final round of the permutation.

Changes in Ascon Core module. To achieve functional cor-
rectness, we redesign the Ascon Core module to include the
S-box linear layer before initiating the first round of permuta-
tion. This is due to the modified structure of the low-latency
Asconp module. Since each phase of the algorithm, such as

initialization, processing associated data, processing plain-
text/ciphertext, and finalization, triggers a specific number of
permutation rounds, each phase requires some modifications
to integrate the S-box linear layer.

5.2 Implementing the Guards
After incorporating the low-latency permutation, we proceed
to add guards that allow us to obtain the masked implementa-
tion of Ascon without the need for fresh randomness. From the
options available in Table 1 and Table 2, we choose one of the
column-offset possibilities and substitute it for the d(d+1)/2
random bits in the DOM AND gate. The connections are
made according to the shifted domain technique described in
Figure 1.

For the purpose of verification, we have implemented all
possible options for both first-order and second-order sce-
narios from Table 1 and Table 2. In our implementation, we
simply select the first column-offset that is co-prime to 64,
which is {11} in the first-order case and {11, 35, 37} in the
second-order case to implement the guard connections ac-
cordingly. We use this co-prime selection as it provides better
security considering multiple rounds.

5.3 Performance and Area
To reduce latency, our proposed method entails restructuring
the permutation layer and introducing additional control logic
to maintain functional correctness, which results in lower
overhead in terms of area cost as the linear layers are just
moved around. Since, the latency is reduced by one cycle,
we remove one register stage which also helps to reduce the
area cost. Importantly for randomness optimization, imple-
menting guards will not require additional area overhead as
they are simply connections from different S-box inputs. It’s
worth noting that this approach won’t require any additional
modifications to the interface.

After comparing our implementation with other available
implementations, we can say that we have achieved lower
latency and no requirement for fresh randomness at a compar-
atively lesser area overhead which can be seen in Table 3. The
Synopsys Design Compiler Version T-2022.03-SP2, along
with the lsi_10k library, was used to synthesize the design
and compute the area numbers displayed for our module. Al-
though we acknowledge that the area numbers referenced in
the table are obtained from diverse synthesis tools utilizing
different technologies, we attempt to make a rough compari-
son.

6 Formal Verification

The benefits of formal verification techniques are already out-
lined in Section 2.4. This section focuses on the specific tool
we use for verification, CocoAlma [30], and elaborates on the



Table 3: Ascon Permuation Synthesis Result

Masking
Order

Cycles
/round

Randomness
(bits/round)

Area
(kGE) Ref.

1

3 320 28.89 [28, 29]
2* - 26.10 ours
1 320 50.40 [41]
1 2048 42.75 [27]

2

3 960 53.00 [28, 29]
2* - 52.63 ours
1 960 102.39 [41]
1 4608 90.94 [27]

* Latency can be reduced to 1 cycle using rising and falling edge clock.

verification results for first and second-order implementations
with reduced latency requiring no fresh randomness.

CocoAlma is a formal verification tool that verifies the side-
channel resistance of masked implementations. It is designed
to verify masked hardware implementations while taking into
account hardware effects such as glitches.

The workflow of CocoAlma includes Yosys [55], an open-
source synthesis tool for obtaining the synthesized netlist from
the design files. It provides a parsing script, for obtaining the
circuit graph of the netlist and additionally creates a labeling
template that can be used to label the inputs as secrets or
randomness. An execution trace is generated by utilizing
Verilator [51] and the user-provided testbench. This provides
a value change dump of the internal signal variations during
the execution of the implementation. The data gathered from
the circuit graph, execution trace, and labeling file is encoded
by a verification script into a SAT problem, which is then
solved using a SAT solver like CaDiCaL [7] or Kissat [8]. The
unsatisfiability of the problem shows that the observation of
any intermediate computation would not leak any information
about the secret for a given security level and the respective
protection order.

6.1 Setup

Our verification setup is designed to verify the Ascon per-
mutation for both first and second-order implementations. To
simplify the process, we exclude the interface and the Ascon
Core and create a wrapper around the permutation module,
Asconp that runs it for a selected number of rounds. We then
verify the permutation for single and multiple rounds, while
maintaining a consistent verification setup for all of our im-
plementations.

We start by providing the hardware design files of the se-
lected implementation into the parsing script. This script syn-
thesizes the design and generates the netlist and label template.
In the label template, all 320×(d+1) input bits to the Ascon
permutation, are labeled as secrets. As the implementation

does not use any random bits, there is no need to label them.
To generate an execution trace, a C++ testbench is created

by assigning values to the inputs and control signals. The
trace generation script uses this testbench to generate the
execution trace. The resulting netlist and execution trace are
then provided to the verification script, along with the label
definitions. This script can take additional parameters, such
as the protection order to be verified, the number of cycles
of verification, and the mode of verification. Two modes of
verification are available: stable case and transient case. The
transient case is particularly interesting to verify because it
covers glitches. As a result, we have used this mode to verify
all of our masked implementations of the Ascon permutation.

Apart from the aforementioned parameters, the user can
also specify the checking mode and probing model when us-
ing the tool. The tool offers two checking modes: per-location
and per-secret. For first-order designs, per-location is rec-
ommended because it builds a formula for every potentially
leaking location, which is faster in the first-order case. On
the other hand, per-secret is faster for higher-order designs,
because it builds a formula for every secret. Since the primary
objective is to validate second-order design, the per-secret
checking mode is chosen specifically for our implementation.

6.2 Verification of a Single Round
First, we verify the low-latency implementation using Co-
coAlma, without any randomness optimization, to ensure that
the latency-reducing restructuring of the linear layers does
not introduce any security issues. Subsequently, we proceed
to verify a single round of our first and second-order Ascon
permutation implementations without any fresh randomness.

First-order masked implementation. We utilize the same
CocoAlma setup as described earlier to verify the first-order
implementation with guards, which requires no fresh random-
ness. We label all 320 secrets, while random bits need not be
labeled. The verification is performed for three cycles, as the
permutation necessitates two cycles, and the wrapper adds
an extra cycle. We verify all the 29 candidates from Table 1
for the first-order case. Our analysis shows that all these first-
order implementation with guards are considered secure for a
single round of permutation. It took less than a minute to ver-
ify each implementation with CocoAlma on a core of AMD
EPYC 74F3 with a 3.2GHz base clock.

Second-order masked implementation. In the case of
second-order designs, the complexity of formal side-channel
verification increases significantly. This is mainly because, in
the case of Ascon, which has a state size of 320 bits, every bit
must be verified for each cycle. This adds to the complexity
of building the correlation sets and formulating the conditions
required to check the leakage of each secret bit, taking into ac-
count multiple probing locations across all cycles. Moreover,



in our implementation, the use of guards, which are essentially
the secrets from a different S-boxes, further increases the com-
plexity by introducing interactions between the secrets and
making the overall SAT formula more complex.

To test the second-order case, there are 28 candidates that
need to be implemented and verified as indicated in Table 2.
Due to the verification complexity involved, symmetry in the
Ascon implementation is exploited to reduce the runtime, and
only five secrets belonging to a single S-box are verified. Our
proposal for guard assignment for each S-box also preserves
the symmetry because of the offset-based selection method.
However, all 320 secrets are labeled and the verification is
run again for 3 cycles. As we verified only 5 secret bits, the
verification took only about 100s on a core of AMD EPYC
74F3 with a 3.2GHz base clock. Despite exploiting symmetry
and verifying only 5 secrets, the runtime of the verification
process for the second-order case significantly increases, high-
lighting the complexity involved in verifying second-order
implementations.

6.3 Verification of Multiple Rounds
While prior research has primarily focused on formally verify-
ing a single round, it is worthwhile to extend the verification
process to multiple rounds of the Ascon permutation, partic-
ularly because of its simple structure and heavily optimized
randomness requirements. Although some recent work in-
vestigates the security of multiple rounds of masked AES
with reduced randomness, they only provide a pen-and-paper
approach to argue about the multi-round leakage [19].

In our work, we extended the formal verification of side-
channel security to the second round of the permutation. This
is particularly relevant for our implementation, where the
guards offsets are obtained by encoding constraints that con-
sider only the interactions during the first round of permuta-
tion. On the other hand, it’s worth highlighting that exploiting
the leakage after the second round is extremely challenging
due to the high diffusion of the Ascon permutation. In this
section, we discuss the verification of two rounds of both
first and second-order masked implementation of the Ascon
permutation.

First-order masked implementation. In this section, we
present the verification results of the first-order masked im-
plementation of Ascon without fresh randomness. We repeat
the verification using a similar setup as before but increase
the number of cycles for which the CocoAlma is executed to
cover the two rounds of permutation.

The results demonstrate that the all the 29 first-order imple-
mentations with the guards from Table 1 requiring no fresh
randomness are considered secure for the first two rounds of
permutation except for the value {32} as expected. For each
implementation with the guard, we verified all the 320 secrets,
and the verification takes about 108 minutes on an average for

each candidate on an AMD EPYC 74F3 24-Core Processor
with a 3.2GHz base clock.

It is also essential to note the significant increase in veri-
fication time when extending the first-order implementation
to two rounds. While verifying the first-order designs for
one round only took a few seconds to minutes, verifying the
two complete rounds took almost an hour. This observation
already suggests potential complexity issues that will be en-
countered in the second-order case, which we will discuss in
the next section.

Second-order masked implementation. The complexity
involved in second-order verification is considerable, and ex-
tending it to multiple rounds only exacerbates the issue, as it
requires considering an increased number of cycles for verifi-
cation purposes. We have noticed that it can take two to four
days for CocoAlma to verify each secret for two rounds in a
second-order case when running on a core of AMD EPYC
74F3 with a 3.2GHz base clock. Since CocoAlma checks
the secrets sequentially, verifying the entire implementation
would take a considerable amount of time. To address this,
as mentioned before, we take advantage of the symmetry in
the Ascon permutation, and verify just one S-box which has
5 secrets.

Furthermore, since the formulas are built separately for
each secret, we can build the formula for each secret and
run them in parallel to reduce the verification time even fur-
ther. To select the secrets from a specific S-box or column,
the labeling file provided to CocoAlma needs to be altered
accordingly. Additionally, we apply a local patch to the Co-
coAlma code to enable the selection of a set of secrets from a
given S-box for verification. It’s important to highlight that
even though we select only one S-box for verification, all
the secrets are labeled, and the formula is built considering
the entire implementation. Only a selected set of secrets are
verified, but they are done so in parallel, reducing the overall
verification time.

By taking advantage of symmetry in the design and veri-
fying the secrets concurrently, the second-order implementa-
tion was verified for one of the column-offset combinations
from Table 2. Here we selected the set of guard offsets that are
co-prime to 64 and the first occurrence of such a combination
in our list is {11,35,17}. This verification process took about
two to four days. Additionally, for comprehensive verifica-
tion, we also verified all 320 secrets for this particular design
implementing the highlighted guard offset from Table 2. This
was achieved by running a larger number of secrets in parallel
on multiple machines for a couple of weeks. After verifying
all the 320 secrets, the implementation was seen to show no
second-order leakage for two rounds of permutation.

We anticipate that all the guard offset possibilities men-
tioned in Table 2 do not show leakage for two rounds, but
we cannot claim it since we could not verify all of them for
two rounds due to the time-consuming nature of the verifica-



0 1,000 2,000
−6

−4

−2

0

2

4

6

(a) 1st-order t-test

0 1,000 2,000
−6

−4

−2

0

2

4

6

(b) 2nd-order t-test

Figure 6: First-order implementation showing no leakage in
the 1st-order t-test and expected leakage in the 2nd-order t-
test.

0 1,000 2,000
−6

−4

−2

0

2

4

6

(a) 1st-order t-test

0 1,000 2,000
−6

−4

−2

0

2

4

6

(b) 2nd-order t-test

Figure 7: Second-order implementations showing no leakage.

tion process, despite having verified them for one round of
permutation. Also, it’s challenging to argue the security for
two rounds because the constraints were derived based on the
structure of the linear layers in the first round.

7 Experimental Evaluation

To further assess the security of our designs, we employ a sta-
tistical analysis based on the leakage assessment methodology
of [49] on both of our first and second-order implementations.
Concretely, we performed the non-specific fixed vs. random
Welch’s t-test over 10 million traces for both designs. For both
first and second-order designs, we report the univariate analy-
sis of the 1st and 2nd statistical moments. For the second-order
design, we additionally report the result of bivariate analysis.

Experimental setup and results. We measured the first 12
permutation rounds of an encryption, corresponding to the
initialization of the Ascon sponge prior to encryption. We
limit our analysis to this operation as this function directly
operates on the secret key and is the most suitable target for
an attack by an adversary.

We performed our measurements on the CW305 Artix-7
target board from NewAE and recorded the traces with a Pico-
scope 6000-series. The FPGA is clocked at 1.5625MHz which
is provided to the Picoscope as a reference clock. We measure
100 samples of each clock cycle on the FPGA, correspond-
ing to 156.25M samples per second. For each recorded trace,

Figure 8: Bivariate t-test on the second-order implementation
showing no significant leakage.

a fixed or random key is selected and shared with random
masks. The plaintext (or nonce) is fixed to a masked vector
of zeros. We compute the t-scores online using SCALib [10].
For the first-order implementation, the 1st-order t-test given in
Figure 6a is below the accepted ±4.5-sigma bound, whereas
the 2nd-order t-test exhibits expected leakage in Figure 6b.
For the bivariate analysis of the second-order implementation
(Figure 8), we compute the bivariate t-score over every pair-
wise combination of sample points in a trace and report the
absolute value. The second-order implementation does not
show any leakage for both the 1st and 2nd-order t-tests.

8 Conclusion

Our implementation of Ascon outperforms other implemen-
tations in several aspects. Specifically, it has lower latency,
requires no fresh randomness, and has low area overhead com-
pared to existing implementations, making it an interesting
choice for use in constrained IoT devices. We have formally
verified both first and second-order implementations using
CocoAlma for two rounds of permutation, and conducted sta-
tistical t-tests on the hardware which indicated no leakage for
either implementation. The technique suggested for select-
ing guards can be modified and adapted for use with other
cryptographic schemes like SHA-3 and Xoodyak.

References

[1] Victor Arribas, Begül Bilgin, George Petrides, Svetla
Nikova, and Vincent Rijmen. Rhythmic Keccak: SCA
Security and Low Latency in HW. IACR Transactions
on Cryptographic Hardware and Embedded Systems,
2018(1):269–290, 2018.



[2] Victor Arribas, Svetla Nikova, and Vincent Rijmen.
Vermi: Verification tool for masked implementations.
In ICECS, pages 381–384. IEEE, 2018.

[3] Victor Arribas, Svetla Nikova, and Vincent Rijmen.
Guards in action: First-order SCA secure implemen-
tations of KETJE without additional randomness. Mi-
croprocess. Microsystems, 71, 2019.

[4] Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-
Alain Fouque, Benjamin Grégoire, and François-Xavier
Standaert. maskverif: Automated verification of higher-
order masking in presence of physical defaults. In ES-
ORICS (1), volume 11735 of LNCS, pages 300–318.
Springer, 2019.

[5] Guido Bertoni, Joan Daemen, Michaël Peeters, and
Gilles Van Assche. Keccak. In EUROCRYPT, volume
7881 of LNCS, pages 313–314. Springer, 2013.

[6] Tim Beyne, Siemen Dhooghe, Adrián Ranea, and Danilo
Sijacic. A low-randomness second-order masked AES.
In SAC, volume 13203 of LNCS, pages 87–110. Springer,
2021.

[7] Armin Biere. CADICAL at the SAT Race 2019. 2019.

[8] Armin Biere, Katalin Fazekas, Mathias Fleury, and Max-
imilian Heisinger. CADICAL, KISSAT, PARACOOBA,
PLINGELING and TREENGELING Entering the SAT
Competition 2020. 2020.

[9] Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina
Könighofer, Stefan Mangard, and Johannes Winter. For-
mal verification of masked hardware implementations
in the presence of glitches. In EUROCRYPT (2), volume
10821 of LNCS, pages 321–353. Springer, 2018.

[10] Gaëtan Cassiers and Olivier Bronchain. Scalib: A side-
channel analysis library. Journal of Open Source Soft-
ware, 8(86):5196, 2023.

[11] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and
Pankaj Rohatgi. Towards sound approaches to counter-
act power-analysis attacks. In CRYPTO, volume 1666
of LNCS, pages 398–412. Springer, 1999.

[12] Christophe Clavier, Jean-Sébastien Coron, and Nora
Dabbous. Differential power analysis in the presence of
hardware countermeasures. In CHES, volume 1965 of
LNCS, pages 252–263. Springer, 2000.

[13] Christophe Clavier, Jean-Luc Danger, Guillaume Duc,
M. Abdelaziz Elaabid, Benoît Gérard, Sylvain Guilley,
Annelie Heuser, Michael Kasper, Yang Li, Victor Lomné,
Daisuke Nakatsu, Kazuo Ohta, Kazuo Sakiyama, Lau-
rent Sauvage, Werner Schindler, Marc Stöttinger, Nico-
las Veyrat-Charvillon, Matthieu Walle, and Antoine Wur-
cker. Practical improvements of side-channel attacks on

AES: feedback from the 2nd DPA contest. Journal of
Cryptographic Engineering, 4(4):259–274, 2014.

[14] D. J. Bernstein. The CAESAR competition: CAESAR
submission format. https://competitions.cr.yp.
to/caesar-submissions.htm, 2017. Accessed: May
25, 2023.

[15] Joan Daemen. Changing of the guards: A simple and
efficient method for achieving uniformity in threshold
sharing. In CHES, volume 10529 of LNCS, pages 137–
153. Springer, 2017.

[16] Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van
Assche, and Ronny Van Keer. Xoodyak, a lightweight
cryptographic scheme. IACR Transactions on Symmet-
ric Cryptology, 2020(S1):60–87, 2020.

[17] Joan Daemen and Vincent Rijmen. The Design of Rijn-
dael - The Advanced Encryption Standard (AES), Sec-
ond Edition. Information Security and Cryptography.
Springer, 2020.

[18] Leonardo Mendonça de Moura and Nikolaj S. Bjørner.
Z3: an efficient SMT solver. In TACAS, volume 4963 of
LNCS, pages 337–340. Springer, 2008.

[19] Siemen Dhooghe, Aein Rezaei Shahmirzadi, and Amir
Moradi. Second-order low-randomness d + 1 hardware
sharing of the AES. In CCS, pages 815–828. ACM,
2022.

[20] Christoph Dobraunig, Maria Eichlseder, Stefan Man-
gard, Florian Mendel, Bart Mennink, Robert Primas, and
Thomas Unterluggauer. ISAP v2.0. IACR Transactions
on Symmetric Cryptology, 2020(S1):390–416, 2020.

[21] Christoph Dobraunig, Maria Eichlseder, Florian Mendel,
and Martin Schläffer. Ascon v1.2. Submission to the
NIST Lightweight Cryptography project, 2019. https:
//ascon.iaik.tugraz.at.

[22] Christoph Dobraunig, Maria Eichlseder, Florian Mendel,
and Martin Schläffer. Ascon v1.2: Lightweight authen-
ticated encryption and hashing. journal of Cryptology,
34(3):33, 2021.

[23] Sebastian Faust, Vincent Grosso, Santos Merino Del
Pozo, Clara Paglialonga, and François-Xavier Standaert.
Composable masking schemes in the presence of physi-
cal defaults & the robust probing model. IACR Transac-
tions on Cryptographic Hardware and Embedded Sys-
tems, 2018(3):89–120, 2018.

[24] Sebastian Faust, Clara Paglialonga, and Tobias Schnei-
der. Amortizing randomness complexity in private cir-
cuits. In ASIACRYPT (1), volume 10624 of LNCS, pages
781–810. Springer, 2017.

https://competitions.cr.yp.to/caesar-submissions.htm
https://competitions.cr.yp.to/caesar-submissions.htm
https://ascon.iaik.tugraz.at
https://ascon.iaik.tugraz.at


[25] Jakob Feldtkeller, David Knichel, Pascal Sasdrich, Amir
Moradi, and Tim Güneysu. Randomness optimization
for gadget compositions in higher-order masking. IACR
Transactions on Cryptographic Hardware and Embed-
ded Systems, 2022(4):188–227, 2022.

[26] Louis Goubin and Jacques Patarin. DES and differential
power analysis (the "duplication" method). In CHES,
volume 1717 of LNCS, pages 158–172. Springer, 1999.

[27] Hannes Groß, Rinat Iusupov, and Roderick Bloem.
Generic low-latency masking in hardware. IACR Trans-
actions on Cryptographic Hardware and Embedded Sys-
tems, 2018(2):1–21, 2018.

[28] Hannes Gross and Stefan Mangard. Reconciling d+1
Masking in Hardware and Software. Cryptology ePrint
Archive, Paper 2017/103, 2017. https://eprint.
iacr.org/2017/103.

[29] Hannes Gross, Stefan Mangard, and Thomas Korak.
Domain-oriented masking: Compact masked hardware
implementations with arbitrary protection order. Cryp-
tology ePrint Archive, Paper 2016/486, 2016. https:
//eprint.iacr.org/2016/486.

[30] Vedad Hadzic and Roderick Bloem. COCOALMA:
A versatile masking verifier. In FMCAD, pages 1–10.
IEEE, 2021.

[31] Yu Han, Xuecheng Zou, Zhenglin Liu, and Yi-Cheng
Chen. Efficient DPA attacks on AES hardware imple-
mentations. International Journal of Communications,
Network and System Sciences, 1(1):68–73, 2008.

[32] Christoph Herbst, Elisabeth Oswald, and Stefan Man-
gard. An AES smart card implementation resistant to
power analysis attacks. In ACNS, volume 3989 of LNCS,
pages 239–252, 2006.

[33] Ralf Hund, Carsten Willems, and Thorsten Holz. Prac-
tical timing side channel attacks against kernel space
ASLR. In IEEE Symposium on Security and Privacy,
pages 191–205. IEEE Computer Society, 2013.

[34] Yuval Ishai, Amit Sahai, and David A. Wagner. Pri-
vate circuits: Securing hardware against probing attacks.
In CRYPTO, volume 2729 of LNCS, pages 463–481.
Springer, 2003.

[35] David Knichel and Amir Moradi. Composable gad-
gets with reused fresh masks - first-order probing-secure
hardware circuits with only 6 fresh masks. IACR Trans-
actions on Cryptographic Hardware and Embedded Sys-
tems, 2022(3):114–140, 2022.

[36] David Knichel, Pascal Sasdrich, and Amir Moradi.
Generic hardware private circuits towards automated

generation of composable secure gadgets. IACR Trans-
actions on Cryptographic Hardware and Embedded Sys-
tems, 2022(1):323–344, 2022.

[37] Paul C. Kocher. Timing attacks on implementations of
diffie-hellman, rsa, dss, and other systems. In CRYPTO,
volume 1109 of LNCS, pages 104–113. Springer, 1996.

[38] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Dif-
ferential power analysis. In CRYPTO, volume 1666 of
LNCS, pages 388–397. Springer, 1999.

[39] Kamyar Mohajerani, Luke Beckwith, Abubakr Abdul-
gadir, Eduardo Ferrufino, Jens-Peter Kaps, and Kris
Gaj. SCA evaluation and benchmarking of finalists
in the NIST lightweight cryptography standardization
process. Cryptology ePrint Archive, Paper 2023/484,
2023. https://eprint.iacr.org/2023/484.

[40] Thorben Moos, Amir Moradi, Tobias Schneider, and
François-Xavier Standaert. Glitch-resistant masking
revisited or why proofs in the robust probing model are
needed. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2019(2):256–292, 2019.

[41] Rishub Nagpal, Barbara Gigerl, Robert Primas, and
Stefan Mangard. Riding the waves towards generic
single-cycle masking in hardware. IACR Transactions
on Cryptographic Hardware and Embedded Systems,
2022(4):693–717, 2022.

[42] National Institute of Standards and Technology.
Lightweight Cryptography. https://csrc.nist.
gov/projects/lightweight-cryptography. Ac-
cessed: May 25, 2023.

[43] Svetla Nikova, Vincent Rijmen, and Martin Schläffer.
Secure hardware implementation of nonlinear functions
in the presence of glitches. Journal of Cryptology,
24(2):292–321, 2011.

[44] Elisabeth Oswald, Stefan Mangard, Christoph Herbst,
and Stefan Tillich. Practical second-order DPA attacks
for masked smart card implementations of block ci-
phers. In CT-RSA, volume 3860 of LNCS, pages 192–
207. Springer, 2006.

[45] Robert Primas. ascon-verilog. GitHub repository, 2023.

[46] Robert Primas and Rishub Nagpal. ascon-hardware-sca.
GitHub repository, 2022.

[47] Oscar Reparaz. A note on the security of higher-order
threshold implementations. Cryptology ePrint Archive,
Paper 2015/001, 2015. https://eprint.iacr.org/
2015/001.

https://eprint.iacr.org/2017/103
https://eprint.iacr.org/2017/103
https://eprint.iacr.org/2016/486
https://eprint.iacr.org/2016/486
https://eprint.iacr.org/2023/484
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://eprint.iacr.org/2015/001
https://eprint.iacr.org/2015/001


[48] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt
Gierlichs, and Ingrid Verbauwhede. Consolidating mask-
ing schemes. In CRYPTO (1), volume 9215 of LNCS,
pages 764–783. Springer, 2015.

[49] Tobias Schneider and Amir Moradi. Leakage assess-
ment methodology - extended version. Journal of Cryp-
tographic Engineering, 6(2):85–99, 2016.

[50] Aein Rezaei Shahmirzadi, Siemen Dhooghe, and Amir
Moradi. Low-latency and low-randomness second-order
masked cubic functions. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2023(1):113–
152, 2023.

[51] Wilson Snyder. Veripool — veripool.org. https://
www.veripool.org/verilator/. [Accessed 09-Oct-
2022].

[52] Takeshi Sugawara. 3-share threshold implementation of
AES s-box without fresh randomness. IACR Transac-
tions on Cryptographic Hardware and Embedded Sys-
tems, 2019(1):123–145, 2019.

[53] Michael Tempelmeier, Farnoud Farahmand, Ekawat
Homsirikamol, William Diehl, Jens-Peter Kaps, and Kris
Gaj. Implementer’s guide to hardware implementations
compliant with the hardware API for lightweight cryp-
tography. 2019.

[54] Felix Wegener and Amir Moradi. A first-order SCA
resistant AES without fresh randomness. In COSADE,
volume 10815 of LNCS, pages 245–262. Springer, 2018.

[55] Claire Wolf. Yosys Open SYnthesis Suite. https:
//yosyshq.net/yosys/.

https://www.veripool.org/verilator/
https://www.veripool.org/verilator/
https://yosyshq.net/yosys/
https://yosyshq.net/yosys/

	Introduction
	Background
	Side-channel Analysis
	Masking
	Changing of the Guards
	Formal Side-channel Verification
	Ascon

	Minimizing the Latency in Masked Implementations
	Masking the Ascon S-box 
	Rearranging Linear Functions

	Reducing Fresh Randomness Requirements
	First-order Masked Implementation without Fresh Randomness
	Second-order Masked Implementation without Fresh Randomness

	Implementation Results
	Latency Reduction
	Implementing the Guards
	Performance and Area

	Formal Verification
	Setup
	Verification of a Single Round
	Verification of Multiple Rounds

	Experimental Evaluation
	Conclusion

