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Abstract

We introduce protocols for classical verification of quantum depth (CVQD). These protocols
enable a classical verifier to differentiate between devices of varying quantum circuit depths,
even in the presence of classical computation. The goal is to demonstrate that a classical verifier
can reject a device with a quantum circuit depth of no more than d, even if the prover employs
additional polynomial-time classical computation to deceive. Conversely, the verifier accepts a
device with a quantum circuit depth of d′ > d.

Previous results for separating hybrid quantum-classical computers with various quantum
depths require either quantum access to oracles or interactions between the classical verifier
and the quantum prover. However, instantiating oracle separations can significantly increase
the quantum depth in general, and interaction challenges the quantum device to keep the
qubits coherent while waiting for the verifier’s messages. These requirements pose barriers to
implementing the protocols on near-term devices.

In this work, we present a two-message protocol under the quantum hardness of learning
with errors and the random oracle heuristic. An honest prover only needs classical access to
the random oracle, and therefore any instantiation of the oracle does not increase the quantum
depth. To our knowledge, our protocol is the first non-interactive CVQD, the instantiation of
which using concrete hash functions, e.g., SHA-3, does not require additional quantum depth.

Our second protocol seeks to explore the minimality of cryptographic assumptions and the
tightness of the separations. To accomplish this, we introduce an untrusted quantum machine
that shares entanglements with the target machine. Utilizing a robust self-test, our protocol
certifies the depth of the target machine with information-theoretic security and nearly optimal
separation.
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1 Introduction

Quantum circuit depth is a crucial factor when assessing the capabilities of near-term quantum
devices. While quantum computers with many qubits have been recently implemented by companies
such as IBM, Google, IonQ, and Rigetti [26, 27, 11, 31], their limited quantum circuit depth poses a
challenge to demonstrate quantum advantages due to the presence of noisy gates and short coherence
times. Hence, finding ways to harness the power of these small-depth quantum devices is not only a
practical challenge but also an intriguing problem in quantum complexity theory.

Indeed, Aaronson and Chen showed that small-depth quantum computers can demonstrate
so-called “Quantum Supremacy” [1] on the random circuit sampling problem, which means that
quantum computers can efficiently solve the problem that is intractable for classical machines.
Google [5] reported the results of experiments on demonstrating quantum supremacy by using
superconducting quantum computers.1 In the near term, the coherence time seriously limits the
usable lifespan of quantum states. Thus, information processing with a small and noisy quantum
device has become a central topic in the field of quantum computing.

Hybrid quantum-classical computing, which combines classical computers with quantum devices,
is a promising approach to leveraging the power of small-depth quantum circuits. This computational
model has recently gained significant attention and has the potential to outperform classical machines
on real-world problems such as molecular simulation [29] and optimization problems [21]. Notably,
Cleve and Watrous [16] demonstrated that the quantum Fourier transform can be implemented
with logarithmic quantum depth in this model. This result implies that quantum algorithms for
Abelian hidden subgroup problems, including Shor’s factoring algorithm, can also be implemented
with logarithmic quantum circuit depth.

The results above suggest that quantum devices with circuit depths beyond certain thresholds
can demonstrate quantum advantages. With the potential applications of small-depth quantum
devices in mind, one may begin to wonder:

Can we verify whether a device has sufficient quantum depth to demonstrate quantum advantages?

An answer to the question is to find some problem, give an efficient algorithm that only requires
small-depth quantum circuits, and prove that no algorithm using strictly smaller quantum depth
achieves the same time complexity. For instance, the aforementioned results [1, 16] showed separations
between small-depth quantum circuits and classical computers under plausible computational
assumptions. In other words, assuming a problem is classically hard, a device that can solve it
efficiently must have quantum power.

Another possible approach is designing cryptographic protocols that demonstrate the quantumness
of a quantum device [8, 9, 25, 28]. In these protocols, the classical verifier sends the description of
a cryptogrpahic hash function f and random coins to challenge the prover to answer information
about f . It is guaranteed that only a prover which performs quantum computation will successfully
answer these challenges with high probability. While these protocols seem to be satisfying proposals
for demonstrating quantumness, there is a caveat: for a quantum prover to succeed, it is required to
evaluate f coherently, and thus the implementation of f with quantum gates sets a lower bound on
the resource requirement. To address the issue, in subsquent works, Hirahara and Le Gall [25] and Liu

1New classical algorithms are found for solving the problem in few days (by estimation) [30], which implies that
random circuit sampling of the size in the experiment in [5] might not be classically intractable. However, even these
new classical algorithms are slower than the quantum one (that solves the problem in 200 seconds); therefore, the
experiments showed quantum advantages on the problem.
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and Gheorghiu [28] independently showed that these protocols only requires a hybrid computation
that only uses a constant-depth quantum circuit using different approaches.

It is important to note that the current state-of-the-art approaches focus on distinguishing
quantum computers from classical computers and do not directly address separating quantum
computers with different quantum resources. It remains an open question whether these protocols or
problems cannot be efficiently solved by quantum devices with smaller quantum depth.

In this work, we provide a “fine-grained” solution to the question in the following scenario: Alice
wants to verify if Bob’s computer has a quantum circuit depth larger than d. However, Bob might
cheat using additional classical machines. We aim to design protocols that allow Alice to detect
such cheating, which we call Classical Verification of Quantum Depth (CVQD) protocols. Note that
our approach focuses on distinguishing quantum computers with different quantum resources rather
than simply distinguishing them from classical computers.

1.1 Main results

In this work, we give an affirmative answer to the question by presenting three CVQD protocols
capable of distinguishing quantum circuits with different depths in the presence of polynomial-time
classical computation. We start by giving the informal definition of CVQD.

Definition 1.1 (CVQD(d, d′), informal). Let d, d′ ∈ N and d′ > d. Let PA be a bounded-depth quan-
tum circuit with classical polynomial-time computation. Let V be a classical verifier. A CVQD(d, d′)
protocol that separates quantum circuit depth d from d′ satisfies the following properties:

• Completeness: There exists a prover PA of quantum circuit depth at least d′ such that 〈V, PA〉
accepts with probability at least 2/3.

• Soundness: For every prover PA of quantum circuit depth at most d, 〈V, PA〉 accepts with
probability at most 1/3.

In Definition 1.1, the verifier accepts if PA has a quantum circuit with depth at least d′, and
rejects any dishonest prover which might interleave its small-depth quantum circuit (depth at most
d) with a polynomial-time classical algorithm.

Chia, Chung, and Lai [12] defined two hybrid approaches for interleaving a quantum machine
with a classical one, namely the d-CQ and d-QC schemes. In the d-CQ scheme, a classical algorithm
can query a d-depth quantum circuit a polynomial number of times. On the other hand, the d-QC
scheme allows a d-depth quantum circuit to access polynomial-time classical algorithms after each
layer of 1-depth circuit. Our goal is to design protocols that can effectively detect and prevent
cheating provers from exploiting either scheme.

In this work, we present two CVQD protocols.

Theorem 1.2 (Informal). Let d ∈ N.

1. For polynomially bounded function d(·), there exists a d(n)-round CVQD(d(n), d(n) + df )
protocol under the QLWE assumption, where df is a fixed constant.

2. For any constants d and df , there exists a 2-message CVQD(d, d + df ) protocol under the
QLWE assumption and the random oracle heuristic. Especially, an honest prover only needs
classical access to the random oracle, and one can instantiate the random oracle using the
random oracle heuristic.
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Figure 1: A quantum circuit of linear depth.

Here, the QLWE assumption assumes that the Learning With Error (LWE) problems are hard
for any quantum polynomial-time algorithms.2 The constant df is the quantum circuit depths for
implementing particular functions that will be specified later.

What is quantum depth, and why do we care about it on near-term quantum devices?
The depth of a quantum circuit is defined as the length of the longest directed path from an input
qubit to the output qubit. Note that this is different from the number of gates operating on qubits.
For example, consider a quantum circuit computing d controlled-Hadamard gates on adjacent qubits
following a quantum circuit implementing U of depth df in Figure 1. The depth of the circuit
is df + d since the longest path in the circuit is df + d. One of the main reasons that near-term
quantum devices can only implement small-depth quantum circuits is that the gates are noisy, and
the noise will accumulate along the longest path. For instance, suppose that each gate in Figure 1
incurs a depolarizing noise of probability p. The probability that the last qubit is correct is roughly
(1− p)df+d.

What do CVQD protocols certify? The CVQD protocol aims to identify whether a “near-term
quantum device” can implement a quantum circuit with a specific depth and ensure that a near-term
quantum device with a strictly smaller quantum depth cannot cheat even in the presence of classical
computation. Therefore, CVQD(d, d′) focuses on being secure against BPPQNCd and QNCd

BPP (see
Section 2.1 for formal definitions). Basically, one can view the first model as a classical computer
having access to a d-depth quantum circuit, and the second model is a d-depth quantum circuit
allowing intermediate measurements and classical computation.

Arora, Coladangelo, Coudron, Gheorghiu, Singh, and Waldner considered a generalization

BPPQNCBPPQNCd···
d of the multi-level hybrid schemes and claimed that CVQD should consider attacks

from such powerful adversary [4, Section 1.3]. While we agree that considering class of multi-level
hybrid schemes may be an interesting topic in computational complexity theory, we notice that this
class includes extremely long computations. Thus, results about this class can be very detached
from “practical” hybrid schemes. To see why, let us first consider the quantum circuit for computing
the parity of n-bit strings. It is a well-known fact that computing the parity requires a quantum
circuit of depth Θ(log n) (for example, see Figure 2). Computing the parity can be computed using

a QNC
QNC

QNC2···
2

2 scheme of log n layers:3 For the base case, the parity of two bits can be computed
2In fact, it is sufficient to assume that QLWE is hard for a d-depth hybrid machine.
3Indeed, even an NC

NC
NC2···
2

2 circuit of logn levels can compute the parity of n-bit strings.
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Figure 2: A quantum circuit for computing the parity, which may be viewed as a depth-2 circuit
with access to an oracle (the dashed boxes) computing the parity of half-sized inputs.

using a CNOT gate. The parity of n-bit strings can be recursively computed by making two queries
to a circuit for computing the parity of (n/2)-bit strings in parallel, followed by an application of a
CNOT gate (see Figure 2). Since each query can be thought of as an application of a special gate
simulated in the associated model, each inductive step only requires a depth-2 computation. By

the same argument, an r-level QNCQNC
QNCd···
d

d computation can compute a recursively defined family

of quantum circuits of depth Ω(dr). More generally, an r-level QNCQNC
QNCd···
d

d computation is even

allowed to keep qubits in coherence when making queries, and thus the depth of QNCQNC
QNCd···
d

d shall
be viewed as dr after instantiating the oracles instead of d. While we do not know if the circuit
families can be compressed into short computations in general, it seems unlikely that the class
defined by enumerating polynomially many levels is contained in BQP.

In terms of near-term quantum computation, the error propagation heavily depends on the
position in the hierarchy. For example, in the rth level, suppose that a depolarizing noise of constant
probability p is applied to each gate; the probability with no error is roughly (1− p)dr in the worst
case. More concretely, for r > 1 and d = Ω(log n), the fraction of “good signal” is only negligibly
small.

Instantiability of CVQD protocols. This paper aims to give instantiable protocols for quantum
depth, i.e., when the oracles are implemented concretely, any scheme succeeding with sufficient
quantum depth in the query model can also pass the verification in any instantiation. To our
knowledge, prior to our results, we were not aware of any existing protocol that is also instantiable
without blowups in depth. Previously, Chia, Chung, and Lai [12] and Coudron and Menda [18]
first independently gave oracle separations between hybrid schemes with different quantum depths.
Subsequently, Hasegawa and Le Gall [23] and Chia and Hung [14] independently gave shaper oracle
separations based on the problem in [12] but in different query models. More recently, Arora,
Coladangelo, Coudron, Gheorghiu, Singh, and Waldner gave a new separation in the quantum
random oracle model [4]. All aforementioned results require the algorithm or the honest prover to
have quantum access to the oracle. Therefore, replacing the oracle with an instantiation significantly
increases the algorithm’s quantum depth, resulting in a very loose separation (e.g., polynomial
versus constant depth) of quantum depth between devices. In particular, suppose instantiating
the oracle requires ` quantum depth, then the original d-depth quantum oracle circuit will become
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a (d · `)-depth quantum circuit. This implies that an honest prover requires d · ` quantum depth
to convince the verifier. On the other hand, an honest prover in Theorem 1.2 only needs df + d
quantum depth, where df is a fixed constant to implement a specific function, While these results
using quantum oracles justify that schemes with more quantum depth are more powerful from a
complexity-theoretic perspective, whether they yield practical protocols for certifying quantum depth
has remained unclear.

Construction of non-interactive CVQD protocols Our first protocol in Theorem 1.2 achieves
CVQD(d(n), d(n) + df ) for any polynomially bounded function d(·), where df is a fixed constant.
However, one potential drawback is that the round complexity is linear in d(n), which raises concerns
about the prover’s qubits potentially decohering during communication despite the communication
being classical. To address this issue, we present a two-message protocol (the second result in
Theorem 1.2) that significantly reduces the communication in the random oracle model such that an
honest prover does not need to keep the qubits coherent during the communication. Additionally,
an honest prover does not require quantum access to the random oracle, and thus, we can use the
random oracle heuristic to instantiate the random oracle without increasing the quantum circuit
depth of an honest prover. However, it is worth noting that the second protocol has a weaker
separation compared to the first one and can only certify constant-depth quantum circuits.

The CVQD protocols presented in Theorem 1.2 require the QLWE assumption, and the second
protocol also requires the random oracle heuristic. Furthermore, the tightness of the depth separation
in both protocols is unknown. These observations motivate us to explore the following question:

Can we develop CVQD protocols with optimal depth separation under weaker assumptions?

Our findings suggest that it is possible to achieve nearly optimal depth separation unconditionally
with the help of an additional untrusted prover. Specifically, we investigate protocols involving two
provers who cannot communicate with each other but can share entanglements. In this setting, one
prover (PA) represents the target machine being tested, while the other prover (PO) helps certify
the quantum depth. However, neither of the provers can be trusted by the classical verifier.

Definition 1.3 (CVQD2(d, d′), informal). Let d, d′ ∈ N and d′ > d. Let PA be a bounded-depth
quantum circuit with classical polynomial-time computation. Let PO be an unbounded quantum prover
and V be a classical verifier. A CVQD2(d, d′) protocol that separates quantum circuit depth d from d′

satisfies the following properties:

• Non-locality: PO and PA share arbitrarily many EPR pairs and are not allowed to communi-
cate with each other once the protocol starts.

• Completeness: If PA has quantum circuit depth at least d′, then there exists PO and PA such
that 〈V, PO, PA〉 accepts with probability at least 2/3.

• Soundness: If PA has quantum circuit depth at most d, then for any PO and polynomial-time
PA, 〈V, PO, PA〉 accepts with probability at most 1/3.

We then prove the following theorem.

Theorem 1.4 (Informal). Let d ∈ N. There exists a two-prover CVQD2(d, d+3) protocol 〈V, PA, PO〉
that is unconditionally secure with inefficient PO and V . Moreover, an honest PO and V can be
efficient, assuming the existence of quantum-secure pseudorandom permutation (qPRP).
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To prove the result in Theorem 1.4, we provide a framework that transforms a quantum oracle
separation into a two-prover protocol.

Theorem 1.5 (Informal). Let C and C′ be two complexity classes. Let LO be an oracle problem such
that LO ∈ CO and LO /∈ C′O. Then, there exists a two-prover protocol 〈V, PA, PO〉 two real numbers
c, s ∈ [0, 1] satisfying c− s = 1/poly(n) for size n of input such that the following conditions hold.

• Completeness: If PA can solve problems in C, then there exists PO such that 〈V, PA, PO〉
accepts with probability at least c.

• Soundness: If PA can only solve problems in C′, then for any PO, 〈V, PA, PO〉 accepts with
probability at most s.

• Classical verification: V is classical, and the runtimes of V and the honest PO depend on
the number of queries for solving LO and the complexity for implementing O.

We start by transforming d-SSP, a quantum oracle problem introduced by Chia, Chung and
Lai [12] for separating quantum depth, into a CVQD2 protocol using the framework outlined in
Theorem 1.5. However, this transformation alone does not yield the desired separation outlined in
Theorem 1.4. To address this issue, we modify the original d-SSP to create the “in-place d-SSP,”
which achieves a separation of d versus d+ 1 and enables us to obtain the required separation in
Theorem 1.4.

Theorem 1.6. For any d, in-place d-SSP∗ ∈ BPPBQNCd+1
⋂
BQNCd+1

BPP but in-place d-SSP is not
in BPPBQNCd

⋃
BQNCd

BPP 4

1.2 Technical overview

1.2.1 d-round CVQD from QLWE

The second protocol relies on the assumption that the Learning-with-Errors (LWE) problem is
hard for quantum computers (also called the QLWE assumption). In a breakthrough [8], Brakerski,
Christiano, Mahadev, Vazirani and Vidick showed that the QLWE assumption implies the existence
of a noisy trapdoor claw-free function (NTCF). A function f is trapdoor claw-free if it is 2-to-1, and
given a pair (x, y) such that f(x) = y, it is computationally intractable to find the other preimage
of y. Furthermore, the function f is also equipped with a strong property called the adaptive
hardcore bit property. In a nutshell, the property states that no quantum adversary given access
to a description of f can output (y, x, e) such that x is a preimage of y and e · (x0 + x1) = 0 with
probability non-negligibly better than 1/2, where x0, x1 are the preimages of y. In contrast, there
exist quantum processes which allow an efficient quantum device to output either (y, x) or (y, e).

This observation leads to a proof-of-quantumness protocol: the verifier on receiving y requests
the prover to present a preimage x or an equation e. An efficient quantum prover can succeed with
nearly perfect probability. For proving classical hardness, the idea is that one can rewind a classical
prover which succeeds with probability non-negligibly more than 1/2 to extract both x and e with
non-negligibly probability: For every prover A, let the state before receiving the challenge be a
random variable σy. The adversary challenges A to use the same state σy to output both a preimage
and an equation. Any prover A that wins the test with a non-negligible advantage would imply that
the adversary breaks the property.

4Atsuya Hasegawa and Francois Le Gall also found an oracle problem with similar ideas to improve the separation.
See related work.
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In subsequent works, Hirahara and Le Gall [25] and Liu and Gheorghiu [28] showed that the same
protocol only requires a quantum prover of constant depth. The ideas behind these constructions
basically follow from presenting NTCFs that can be evaluated with constant quantum depth.

A proof-of-quantumness protocol can be viewed as a protocol which separates a prover of non-zero
quantum depth from one of zero quantum depth (i.e., a classical device). It seems natural to rely on
the same hardness assumption to separate a high-depth quantum device from a low-depth one with
the following protocol:

1. The verifier samples the functions f1, . . . , fd and sends these functions to the prover.

2. The prover outputs y1, . . . , yd.

3. For i = 1 . . . d, the verifier sequentially samples a random bit ci which indicates the request to
send a preimage xi or a equation ei for yi. The verifier rejects if, in any of the rounds, the
prover fails.

In this protocol, the prover must increase its quantum depth by 1 in each round of Step 3, since
the operation the prover performs depends on the challenge bit ci, which depends on the previous
message from the prover. It is straightforward to see a (df + d)-depth prover succeeds with nearly
perfect probability, where df is the depth required for the evaluation of f . However, to show the
hardness for any small-depth device, since the device is no longer purely classical, the same rewinding
argument does not directly apply.

We formalize an observation that a (d− 1)-depth prover cannot stay coherent throughout the
protocol, and has to “reset” (i.e., to destroy all its coherence and to continue with a purely classical
state) in an intermediate round j. Thus from round i = j . . . d, the prover begins with an intermediate
classical state σ, and responds with its quantum power. To break the adaptive hardcore bit property,
the reduction simulates the protocol to compute the state σ, and rewinds on σ to compute both a
preimage and an equation for fd.

1.2.2 Two-message CVQD under QLWE and the random oracle heuristic

One potential way to obtain a two-message CVQD protocol is to use the quantum Fiat-Shamir
transformation introduced by Don, Fehr, and Majenz [19]. This transformation can convert an
O(1)-round public-coin interactive protocol into a non-interactive protocol in the random oracle
model. Intuitively, we can apply this approach to the first CVQD protocol since it is a public-coin
protocol.

There are a few challenges when it comes to applying the quantum Fiat-Shamir transformation
to the current CVQD protocol. First, the protocol does not currently have negligible soundness,
which is a requirement for the transformation to work. The standard approach to address this is to
prove the parallel repetition theorem for the protocol, but it remains an open challenge to achieve
negligible soundness for post-quantum multi-round public-coin protocols via parallel repetition (see,
e.g., the discussions in [13, 2]).

Second, even if we can achieve negligible soundness, the quantum Fiat-Shamir transformation
might not preserve quantum circuit depth. In particular, the reduction in [19] constructs a simulator
that needs to implement a q(n)-wise independent hash to simulate the random oracle and an
additional operation to reprogram the hash function. These operations have large quantum depths,
and directly using the simulator in [19] would lead to a meaningless separation for quantum circuit
depth. These two issues present a significant challenge to applying the quantum Fiat-Shamir
transformation to our CVQD protocol.
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Parallel repetition of CVQD. To address the first issue, we apply parallel repetition to the
protocol in Section 1.2.1. More concretely, for super-logarithmic m, the verifier and the prover run
an m-copy parallel repetition:

1. The verifier samples d · m functions f1,1, . . . , f1,m, . . . , fd,1, . . . , fd,m, which are sent to the
prover.

2. For each i ∈ [d] and j ∈ [m], the prover samples an image yi,j for fi,j , and send all the images
to the verifier.

3. For i = 1, . . . , d, the verifier samples m coins ci,1, . . . , ci,m ∈ {0, 1}, and rejects if the prover
does not respond with a preimage or a valid equation.

While the protocol is simply a parallel repetition applied to the previous protocol, proving
that the soundness error reduces to negligible for sufficiently large m seems to require new ideas.
Specifically, parallel repetition for a quantum prover interactive argument is currently known to
only work in special cases such as four-message protocols with a special structure [2, 13]. Even
for a constant-round protocol with more than four message exchanges, currently we do not know
if classical techniques, e.g., the random termination transformation [22, 24], can help amplify the
hardness. Furthermore, the standard approach to prove a direct product theorem is to give a
reduction, i.e., suppose that there is a prover which succeeds with non-negligible probability for
sufficiently large m, then we can use it to construct a prover that breaks the soundness in a one-copy
protocol. In our context, when it comes to a prover with limited quantum depth, it is unclear
whether the reduction incurs no (or small) depth overhead.

We give new ideas to prove a new direct product theorem for a special type of quantum prover
interactive arguments in the following steps: To start, we consider a restricted quantum prover
in the proof-of-quantumness protocol, described as follows. Without loss of generality for any
four-message quantum prover interactive arguments, we view the two moves of the prover in the
four-message protocol as two quantum algorithms P1,P2. The prover is restricted in the sense that
the side information from P1 to P2 is purely classical. We show that when the prover is restricted
to only pass along a purely classical side information, it only wins the proof-of-quantumness protocol
with success probability bounded away from 1 by a constant.

With the same restriction, the key step is to show parallel repetition reduces the success probability
exponentially in the number of copies using an argument similar to Haitner’s approach in purely
classical settings [22]. For our purpose, it then suffices to show give a reduction that breaks the
soundness of this four-message protocol: When the prover has limited quantum depth, in some
intermediate step, it has to destroy all the coherence to obtain a purely classical intermediate state.
Thus the reduction of the first move fast forwards the protocol to this intermediate state, and embeds
the external verifier’s challenge to to the last round.

Preserving quantum circuit depth in the quantum Fiat-Shamir transformation. In
the last step, we apply multi-round Fiat-Shamir by Don, Fehr, and Majenz [20] to reduce the
round complexity to two messages, thereby achieving a non-interactive CVQD, in the random oracle
model. To prove the security, suppose that there is a low-depth adversary A which succeeds with
non-negligible probability. Our goal is to use A to construct a reduction SA which responds to the
verifier in a d-round protocol and wins with non-negligible success probability. The key observation
is that the simulator randomly chooses d queries and measures the query register, and therefore the
reduction itself does not increase the quantum depth.
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We note that on the completeness side, the prover evaluates the random oracle classically. This
implies that when the oracle is instantiated using a concrete hash function. e.g., SHA-3, it does not
require additional quantum depth from the prover. Previously, there have been a few constructions
for separation of quantum depth [12, 18, 4] in query models. Unfortunately, none of them seems
to be instantiable with a quantum circuit of the same depth as the query algorithm, since they all
require coherent evaluations of the oracle. A coherent evaluation of the oracle takes quantum depth
one, but any instantiation incurs a blow-up in quantum depth for any function that is not known to
have a depth-one implementation. By contrast, the evaluation of the hash function in our protocol
is purely classical, and takes no additional quantum depth using any instantiation.

1.2.3 A two-prover protocol with optimal depth separation

The problem d-SSP for separating quantum depth. Our protocol can be seen as a two-player
instantiation of the algorithms for solving d-SSP in [12], an oracle problem that distinguishes d- from
(2d+ 1)-depth quantum circuits.

The problem is a shuffled version of the Simon’s problem. Recall that for the “plain” Simon’s
problem, a constant-depth algorithm is sufficient to output the hidden shift. To turn the problem
into one that certifies large quantum query depth, Chia, Chung, and Lai proposed the d-Shuffling
Simon’s problem (d-SSP) [12]. The algorithm is given oracle access to d + 1 functions f0, . . . , fd,
where f1, . . . , fd−1 are random permutations on an exponentially larger set, and the last function
fd is a 2-to-1 function such that fd ◦ · · · ◦ f2 ◦ f1(x) = f(x) for a Simon’s function f . We call the
functions f0, . . . , fd to be a d-shuffling of a Simon’s function f . The task is to find the hidden shift.

It is obvious that d-SSP remains easy for a (2d+ 1)-depth quantum algorithm which simulates
a query to f using two queries to each function in {f0, . . . , fd−1} and one query to fd: first query
f0, . . . , fd in sequence to get

|x, y〉 7→ |x, f0(x), f1 ◦ f0(x), . . . , fd−1 ◦ · · · ◦ f0(x), f(x)⊕ y〉, (1)

and then query the first d functions in the reverse order to reset the intermediate registers to back zero
states. On the other hand, any polynomial-time algorithm with quantum depth at most d cannot solve
d-SSP. This follows from the intuitions that one needs to make (d+ 1)-sequential quantum queries
to f0, . . . , fd in order for evaluating f on a uniform superposition, and only fd in an exponentially
small random subset of the domain has information about f . Thus, any polynomial-time algorithm
without sufficient quantum depth cannot even evaluate f in superposition.

To turn the problem into a protocol that certifies quantum depth, an idea is to have the verifier V
play the role of the oracle, and checks if prover PA outputs the hidden shift. The resulting protocol is
quite straightforward: the prover PA is allowed to perform arbitrary quantum computation (subject
to its quantum resources) between message exchanges with the verifier. In the intermediate rounds,
V computes the quantum circuits of the oracles on the state given by PA, and sends the resulting
quantum state back. At the end, the verifier accepts if PA outputs the hidden shift. The analysis
of the protocol is also straightforward. As long as the verifier implements the quantum-accessible
oracles f0, . . . , fd reliably between the computation performed by the prover, the completeness and
soundness directly follows from the result of Chia, Chung, and Lai [12].

However, this approach has two drawbacks: First, the verifier needs to reliably implement a
large QRAM to support quantum access to the oracle. This requires a reliable large-scale quantum
computer that can solve problems in quantum polynomial time. Moreover, it requires reliable
quantum communication between the prover and the verifier. None of the requirements seems to be
within the reach in the near future.
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In this paper, we give constructions that allows a purely classical veriifer to certify quantum
depth. Our first protocol is to rely on the technique of self-testing to certify the untrusted quantum
servers sharing entanglements. In particular, we apply a sequence of transformations from the
aforementioned straightforward approach into one that has a weak requirement on the verifier, i.e.,
it runs in probabilistic polynomial time. We briefly introduce the techniques as follows.

Delegating the oracle to another quantum prover. To achieve purely classical verification,
we introduce another untrusted prover, denoted PO, which may share entanglements with PA but
they are not allowed to communicate with each other once the protocol starts. The verifier delegates
the oracle computations to PO, and checks if PA outputs the hidden shift in the end. To make
“queries,” PA forwards a quantum state by quantum teleportation.

To ensure that PO behaves honestly, we modify the EPR protocol by Broadbent [10] to verify
the computation of PO. To understand how this works, let us recall some idea of the protocol. The
original Broadbent protocol allows a weakly quantum verifier to delegate a quantum computation to
the prover. To show that the prover has to be honest, the computation is made indistinguishable
from two tests (X-test and Z-test). These tests are used to check if the prover’s attack is trivial on
the single bit the verifier aims to learn from the prover.

However, to apply the protocol to our problem, there are two caveats that remain to solve. First,
the Broadbent protocol is designed for verifying a BQP-complete language. An instance in the
language is a classical description of a unitary U with the promise that sampling the first qubit of
U |0〉 by performing a standard basis measurement yields a 0 with probability at least 2/3, or at
most 1/3. In our setting, we do not have such a promise. Secondly, the protocol only guarantees
that the output b is an encryption of the random variable close to sampling U |0〉 by performing
a standard basis measurement on the first qubit, provided the prover passes the tests with high
probability. For our purposes, we would need to show if PO’s output state ρi on each query |ψi〉 is
close to O|ψi〉 for each query i ∈ {0, 1, . . . , d} in a reasonable metric.

We show that with a modification, our variant of the Broadbent protocol is rigid in the sense
that every prover that is accepted in our variant with probability 1 − ε must output a state ρi
which is O(ε)-close the ideal state O|ψi〉 in trace distance. The modification requires a quantum
channel which allows a transmission of poly(n) qubits between PO and V , but the requirement is
not necessary when we turn the protocol into a purely classical verification.

Dequantizing the verification. We further dequantize the quantum verification and communica-
tion by applying the Verifier-on-a-Leash protocol (also called the Leash protocol) by Coladangelo,
Grilo, Jeffery and Vidick [17]. In a high level, the idea is to add another prover to perform the
measurements by the quantum verifier in the Broadbent protocol, and check if the added prover
behaves honestly.

To transform an oracle separation into purely classical verification, one possible approach is to
add a third prover PV to help certify that PO behaves as intended. More concretely, the classical
verifier asks PA to perform the computation between queries, and PO to apply the quantum circuit of
the oracle. To check PO behaves as intended, a third player PV is added to perform the measurements
in the bases determined from the rules of the Broadbent protocol. In our settings, none of the
provers are assumed to be trusted. Thus it is necessary to verify PV performs the measurements in
the correct bases. Thus the verifier challenges PV and PO to run either the protocol for verifying PO
or a rigidity test to certify PV , and the two choices are made indistinguishable to PV ’s viewpoint.

However, this approach does not work directly. More specifically, for the security to hold, it is
crucial that PO does not distinguish the computational round and the test rounds. In this approach,
PO interacts with PA via quantum teleportation to implement the original query algorithms in the
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computation round, whereas to certify PO’s behavior, the classical verifier must ask PO to interact
with PV in the test round. Hence, PO can determine the round type and cheat. Moreover, another
drawback with this approach is that it requires three provers.

We can fix the issues about the aforementioned two-prover protocol by asking PA to play the
role of PV simultaneously. To explain how this works, we consider the following protocol for a
single-query algorithm: Initially, the verifier chooses to run the computation, X-test, Z-test or rigidity
test. The prover PA prepares an (arbitrary) initial n-bit quantum state |ψ0〉 and teleports three
states |ψ0〉, |0n〉, |+n〉 to disjoint random subsets of PO’s halves of EPR pairs (the other halves are
held by PA). Note that the subsets are chosen by the verifier, but it does not reveal the underlying
states. If any of the first three tests is chosen, the prover PO performs the computation O on one of
the subsets specified by the verifier. Note that since these three states are encrypted with quantum
one-time pad, PO cannot distinguish them and thus the round type. To perform the computation O,
a set S of EPR pairs shared by PO and PA is used to implement gadgets for computing O. To be
more specific, the verifier asks PA to perform measurements on S in random bases, and chooses a
subset (of S) on which PA is specified to perform measurements in desirable bases determined by
the rules of the Broadbent protocol according to the round type. The verifier then tells PO to use
the subset in S to compute O. The random-basis measurement on S is to certify the behavior of PA
in the rigidity test. Roughly speaking, when the rigidity test is chosen, the verifier can check (with
help of PO) if PA performs the measurements on the EPR pairs in the random bases chosen by the
verifier. Since PA’s behavior for all four tests are measurements in random bases, whether a rigidity
test is executed is unknown to PA. Note that although PO can learn if a rigidity test is executed, it
does not affect the security since PO has no chance to reveal this to PA.

However, there are a couple of issues that remain to address when considering multiple rounds of
interaction between PO and PA. First, some tests running on more than one query can potentially
reveal the type of the test. More specifically, if the verifier chooses to run the rigidity test, then PO
would certainly learn an application of the oracle unitary O is not necessary for this round. The
prover PA can possibly detect the choice of the test by observing the input state and the resulting
state using, say, a swap test. Furthermore, to reflect the actual performance of the query algorithm,
it is crucial that with sufficiently large probability, no test has been applied throughout the protocol.
This is because when the computation is not performed in this round, computation applied in the
following rounds will not yield a useful result (e.g., outputting the hidden shift for d-SSP), even
when the provers opt to follow the protocol honestly. If the tests are nevertheless executed with very
low probability, the provers may deviate from the protocol seriously.

We show that it suffices that the verifier randomly selects to certify one random query and trusts
all the other queries, and with probability Θ(1/q), no test is executed for a q-query protocol. For
the selected query, the verifier either asks PO to certify PA’s measurements, or PA to certify PO
performs the oracle unitary O by running the test phases in our variant of the Broadbent protocol.
If the provers pass the test, the verifier accepts and terminates the protocol. Since the knowledge of
the round type for certifying a query can only lead to an attack on the following queries, verification
on a random query can prevent these issues from breaking the soundness of the protocol.

Putting things together. We then combine our aforementioned tests to turn an oracle separation
problem into a two-player protocol. In particular, we show that with a suitable choice of the weights
of entering each test, the completeness-soundness gap shrinks by at most an inverse polynomial
multiplicative factor in the number of queries. More formally, we prove the implication by reduction.
Suppose that in the protocol, there are provers PA, PO such that PA is subject to its quantum
resources and they break the soundness. Then we construct a query algorithm which succeeds with
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sufficiently large probability to break the soundness guarantee in the associated relativized world.
Since the oracle separation problem distinguishes the quantum complexity classes, the resulting
protocol yields a completeness-soundness gap 1/ poly(q) for a q-query algorithm.

Given that d-SSP is a oracle separation problem between a hybrid d-depth and a hybrid (2d+ 1)-
depth computation, we conclude that our transformation yields a construction of CVQD2(d, 2d+ 1)
with gap 1/ poly(d). We apply a sequential repetition to amplify the gap to constant. The repetition
itself does not require an increase of the quantum depth of PA since the same hybrid computation
can be reused.

Efficient instantiation. We have shown that an oracle separation problem implies a two-player
protocol that distinguishes hybrid quantum computation with different quantum depth. However,
to succeed in the protocol honestly, V must sample an oracle from a distribution D which is not
known to be efficiently samplable, and PO must perform a quantum circuit that implements O. In
the problem d-SSP, the oracles consist of random permutations. By a counting argument, most of
the permutations does not have an efficient implementation.

To address the issue, we leverage oracle indistinguishability in the associated relativized world.
More concretely, suppose that for the distribution D of random d-shuffling of a random Simon’s
function, there is an efficiently samplable distribution D′ which is indistinguishable from D. Then in
the two-player protocol, when the efficient verifier samples the oracle according to D′, the soundness
error is increased negligibly. The idea for showing this directly follows from our proof for showing an
oracle separation implies a two-player protocol. For every query algorithm A that has small quantum
depth, it succeeds with probability at most p when the oracle is sampled from D. Then replacing D
with D′, by the oracle indistinguishability, A succeeds with probability at most negligibly close to p.
Applying the transformation with D′ yields a sound two-player protocol with efficient PO and V .

We show how to give a distribution D′ using quantum-secure pseudorandom permutations
(qPRP) against adversaries making queries to the permutation and its inverse. In particular,
to sample a pseudorandom d-shuffling of a Simon’s function, first sample d independent keys
k0, . . . , kd−1 from the key space of the pseudorandom permutation P and let fi = P (ki, ·) for
i ∈ {0, 1, . . . , d− 1}. For the last function, again by a counting argument, not every Simon’s function
has an efficient implementation. We observe that every Simon’s function can be computed by
composing a permutation and an efficiently computable function that is constant on every one
dimensional affine subspace of the form {x, x⊕ s}. This implies that sampling a random Simon’s
function can be done by sampling a random shift and a random permutation. Replacing the random
permutation with a pseudorandom permutation yields a pseudorandom Simon’s function.

A nearly optimal separation. As mentioned previously, the problem d-SSP provides an oracle
separation between d- and (2d + 1)-depth quantum circuits in the presence of polynomial-time
classical computation. Next we further improve the separation to distinguish d- from (d+ 3)-depth
hybrid quantum computation. In particular, we modify the problem to allow a (d + 3)-depth
algorithm to succeed with high probability, while at the same time, it remains hard for a d-depth
prover to learn the hidden shift.

First we recall that a (2d+1)-depth quantum algorithm is needed because to simulate a query to f ,
the algorithm queries f0, f1, . . . , fd followed by queries to fd−1, . . . , f0 to uncompute the intermediate
values. To avoid the need of extra depth for uncomputation, our idea is to replace the standard access
to f0, . . . , fd with “in-place oracles.” In this model, the algorithm is given access to |x〉 fi7−→ |fi(x)〉,
and thus the intermediate queries have been erased automatically. While in-place oracle access to an
arbitrary is not a unitary in general, in our case, perhaps fortunately, the functions f0, . . . , fd are
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either permutations or 2-to-1 functions. It is clear that the in-place oracle access for permutations
is a unitary. Furthermore, we modify the last function fd such that fd is bijective, but a depth
(d+ 1)-depth algorithm can simulate a query to the underlying Simon’s function f with constant
probability. We call the same problem with in-place oracle access the in-place d-Shuffling Simons
Problem (in-place d-SSP, see Definition 7.10). Finally, we show that that the in-place d-SSP cannot
be solved by any hybrid quantum-classical computers with quantum circuit depth at most d.

Related work. To our knowledge, all the existing works for separation between hybrid schemes
are given relative to classical oracles. First, Chia, Chung, and Lai [12] and Coudron and Menda
[18] independently gave separation between hybrid schemes of different quantum depth, relative to
different classical oracles. In the former, Chia, Chung, and Lai uses the Simon’s problem with a
shuffling of the Simon’s function. Coudron and Menda uses the Welded Tree Problem, defined by
Childs, Cleve, Deotto, Farhi, Gutmann, and Spielman [15].

More recently, in an independent work [23], Atsuya Hasegawa and François Le Gall defined
the d-Bijective Shuffling Simon’s Problem that improves the quantum depth separation in [12] to
d versus d + 1 using the similar idea as in-place d-SSP (Definition 7.10). For in-place d-SSP, the
gap is d versus d+ 1 if we consider the same models as in Definition 3.8 and Definition 3.10 in [12].
However, the models in [12] count the depth of quantum queries to the oracle. In this work, we also
count the two layers of Hadamard transforms at the beginning and the end of Simon’s algorithm.
This results in the gap d versus d + 3 in our first result in Theorem 1.2 (see Theorem 7.11 and
Corollary 7.12 for formal statements).

In a subsequent work, Arora, Coladangelo, Coudron, Gheorghiu, Singh, and Waldner [4] took ideas
from Chia, Chung, and Lai [12] and the previous version of this work to show an oracle separation as
in [12] in the quantum random oracle model and can directly convert it to a non-interactive CVQD
protocol with the corresponding depth separation (d versus 2d+ 3) relative to a quantum random
oracle. However, their result cannot be instantiated under the random oracle heuristic, which follows
from the fact that the instantiation does not preserve quantum depth. In particular, an honest
prover in their protocol requires quantum access to the oracle, and instantiating the oracle using
known heuristics (such as SHA-3) requires a large circuit depth; hence, the separation will be d
versus 2d× poly(n), where poly(n) is used to implement the random oracle heuristic. This makes
the protocol hard to be implemented. On the other hand, our two-message protocol only needs
classical access to the random oracle and thus can keep the depth separation when instantiating
the random oracle. Also, our other CVQD and CVQD2 protocols have a tighter separation under
different cryptographic assumptions.

1.3 Organization

The rest of the paper is organized as follows. Section 2 includes the required technical background
knowledge for this paper, and our modifications of the previous protocols which will be useful for our
contributions. In Section 3, we present a new single-prover protocol from QLWE. In Section 4, we
reduce the round complexity of the protocol in Section 3 via the multi-round Fiat-Shamir transform.

The second part of this work describes two-player protocols for certifying quantum depth.
Section 5 defines a transformation from a quantum oracle separation to a two-prover protocol that
preserves completeness and soundness. Section 6 presents a framework that transforms a quantum
oracle separation to a two-prover protocol with a classical verifier. Section 7 shows a protocol for
classical verification of quantum depth under the framework developed in Section 5 and Section 6.
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2 Preliminaries

For finite set X , we denote x←R X the process of sampling a random variable x uniformly from X .
For distribution D over a finite set X , we denote x←R D the process of sampling a random variable
x ∈ X according to D. For a classical or quantum process A, we denote y ← A(x) to specify that A
on input x outputs y. A function f : N→ R is negligible, denoted f(n) = negl(n), if there exists an
integer n0 such that for n ≥ n0, f(n) ≤ n−c for every constant c. In other words, f if negligible if
f(n) = n−ω(1). We use the notation 1P to denote 1 if P is true and 0 if P is false.

2.1 Oracle separation for quantum depth

We first introduce the two models for interleaving d-depth quantum circuits and classical polynomial-
time computation.

Definition 2.1 (d-CQ scheme [12]). Let k = poly(n). Let A1
c , . . . ,Akc be a sequence of classical

polynomial-time algorithms and A1
q , . . . ,Akq be a sequence of d-depth quantum circuits. A d-CQ

scheme can be represented as following:

Akc ◦ (Π0/1 ◦ Akq ) ◦ · · · ◦ A2
c ◦ (Π0/1 ◦ A2

q) ◦ A1
c ◦ (Π0/1 ◦ A1

q),

where, Π0/1 is a measurement on all qubits in the computational basis.

Definition 2.2 (d-QC scheme [12]). Let k = poly(n). Let A0
c ,A1

c . . . ,Adc be a sequence of classical
polynomial-time algorithms and A1

q , . . . ,Adq be a sequence of 1-depth quantum circuits. A d-CQ
scheme can be represented as following:

Adc ◦ (Π0/1 ⊗ I) ◦ Adq ◦ · · · ◦ A2
c ◦ (Π0/1 ⊗ I) ◦ A2

q ◦ A1
c ◦ (Π0/1 ⊗ I) ◦ A1

q ◦ A0
c ,

where, Π0/1 ⊗ I is a computational basis measurement that only operates on part of the qubits. The
input of Aiq includes the output quantum state of Ai−1

q for i = 2, . . . , d and the classical information
from Ajc and the measurement outcome of Ajq for j < i. The input of Aic includes the measurement
outcome of Aiq and other classical information from Ajc and Ajq for j < i for all i ∈ [d].

Remark 2.3. In this work, we generally choose the universal gateset to be all one- and two-qubit
gates. In particular, the impossibility results in Theorem 1.2 showing all d-CQ and d-QC schemes
fail the CVQD protocols hold for any universal gateset with bounded fan-in gates.

Roughly speaking, d-CQ schemes allow a classical algorithm to access a d-depth quantum circuit
polynomially many times; however, all the qubits of the quantum circuit need to be measured after
each access (and thus no quantum state can be passed to following d-depth quantum circuits). On
the other hand, d-QC schemes let a quantum circuit to access classical algorithms after each depth
and pass quantum states to the rest of the circuits for at most d depths.
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In [12], the class of problems that can be solved by d-CQ schemes is defined as BPPBQNCd , and
the class of problems that can be solved by d-QC schemes is defined as BQNCBPP

d .
Chia, Chung and Lai [12] presented an oracle problem that can separate schemes in Definition 2.1

and Definition 2.2 with different quantum circuit depths. We briefly introduce the oracle separation
in the following.

Definition 2.4 (d-shuffling [12, Definition 4.1]). Let f : {0, 1}n → {0, 1}n be any function. A
d-shuffling of f is defined by F := (f0, . . . , fd), where f0, . . . , fd−1 are random permutations over
{0, 1}(d+2)n. The last function fd is a fixed function satisfying the following properties: let Sd :=
{fd−1 ◦ · · · ◦ f0(x′) : x′ ∈ {0, 1}n}.

• For x ∈ Sd, let fd−1 ◦ · · · ◦ f0(x′) = x, and choose the function fd : Sd → [0, 2n − 1] such that
fd ◦ fd−1 ◦ · · · ◦ f0(x′) = f(x′).

• For x /∈ Sd, fd(x) =⊥.

Then, we recall the definition of Simon’s function.

Definition 2.5 (Simon’s function). For a finite set S and s ∈ {0, 1}n (also called the hidden shift),
the Simon’s function f : {0, 1}n → S satisfies that f(x) = f(x′) if and only if x′ = {x, x⊕ s}.

The Simon’s problem is to compute the hidden shift s given oracle access to a Simon’s function
f . The quantum algorithm for Simon’s problem uses one quantum query to sample a random
vector y satisfying y · s = 0. Making O(n) queries suffices to find a generating set of the subspace
H = {y : y · s = 0} with overwhelming probability, and thus the hidden shift is uniquely determined
from the generators. It is worth noting that any classical algorithm that finds s with high probability
requires Ω(

√
2n) queries even if the Simon’s function is given uniformly randomly. A random Simon’s

function is defined as a function drawn uniformly from the set of Simon’s functions from {0, 1}n to
S and we choose S = {0, 1}n.

We now define the d-Shuffling Simon’s problem (d-SSP) that separates BPPBQNC2d+3 ∩BQNCBPP
2d+3

from BPPBQNCd ∪ BQNCBPP
d relative to an oracle.

Problem 1 (d-shuffling Simon’s problem (d-SSP) [12, Definition 4.9]). Let n ∈ N and f : {0, 1}n →
{0, 1}n be a random Simon’s function. Given oracle access to the d-shuffling F := {f0, f1, . . . , fd} of
f , the problem is to find the hidden shift s of f .

Chia, Chung and Lai showed the following theorem [12].

Theorem 2.6 ([12]). Let d = poly(n). The d-SSP problem can be solved by (2d + 3)-CQ and
(2d+ 3)-QC schemes with oracle access to the d-shuffling oracle of f . Furthermore, for any d′-CQ
and d′-QC schemes A with with oracle access to the d-shuffling oracle of f and d′ ≤ d, the probability
that A solves the problem is negligible.

Remark 2.7. In [12], it said that d-SSP can be solved by (2d+ 1)-CQ and -QC schemes because the
models defined in Definition 3.8 and Definition 3.10 in [12] mainly considered the depth for querying
the oracle. Here, for our purpose, we count the two Hadamard transforms at the beginning and the
end of Simon’s algorithm, which gives additional two depths.

This means that when there is a quantum algorithm of (2d+ 3) quantum circuit depth (including
access to the oracle) succeeding with probability at least 2/3 (in fact the success probability is
1 − negl(n)). The second part of Theorem 2.6 shows that every quantum algorithm of quantum
circuit depth at most d outputs the hidden shift with negligible probability, even if it makes an
arbitrary polynomial number of queries.
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2.2 Quantum-secure pseudorandom permutations

For our task, we also want the oracle can be implemented efficiently. However, by a counting
argument, a random permutation cannot be computed efficiently with overwhelming probability. We
use pseudorandom permutations to address this issue. In a query model, we can replace a random
permutation with a pseudorandom one without decreasing the performance of a query algorithm by
non-negligible difference.

Definition 2.8 (Quantum-secure pseudorandom permutations (qPRP) [32]). For security parameter
λ and a polynomial m = m(λ), a pseudorandom permutation P over {0, 1}m is a keyed function
K × {0, 1}m → {0, 1}m such that there exists a negligible function ε such that for every quantum
adversary A, it holds that∣∣∣ Pr

F←RP
[AOF ,OF−1 = 1]− Pr

k←RK
[AOP (k,·),OP−1(k,·) = 1]

∣∣∣ ≤ ε(λ), (2)

where P is the set of permutations over {0, 1}m and OQ : |x, y〉 7→ |x, y ⊕ Q(x)〉 for permutation
Q : {0, 1}m → {0, 1}m and x, y ∈ {0, 1}m.

2.3 Proof of quantumness

Our protocol in the plain model will be based on a construction of noisy trapdoor claw-free function
(NTCF) function family [8], based on QLWE.

Definition 2.9 (NTCF family [8, Definition 3.1]). Let λ be a security parameter and X ,Y be finite
sets. Let KF be a finite set of keys. A family of functions

F = {fk,b : X → DY}k∈KF ,b∈{0,1} (3)

is called a noisy trapdoor claw free (NTCF) family if the following conditions hold:

1. Efficient function generation. There exists an efficient probabilistic algorithm GenF which
generates a key k ∈ KF together with a trapdoor t: (k, t)← GenF (1λ).

2. Trapdoor injective pair. For all keys k ∈ KF , the following conditions hold.

(a) Trapdoor: There exists an efficient deterministic algorithm InvF such that for all b ∈
{0, 1}, x ∈ X and y ∈ Supp(fk,b(x)), InvF(t, b, y) = x. Note that this implies that for
all b ∈ {0, 1} and x 6= x′, Supp(fk,b(x)) ∩ Supp(fk,b(x

′)) = ∅.
(b) Injective pair: there exists a perfect matching Rk ⊆ X ×X such that fk,0(x0) = fk,1(x1)

if and only if (x0, x1) ∈ Rk.

3. Efficient range superposition. For all key k ∈ KF and b ∈ {0, 1}, there exists a function
f ′k,b : X → DY such that the following hold.

(a) For all (x0, x1) ∈ Rk and y ∈ Supp(f ′k,b(xb)), InvF (t, 0, y) = x0 and InvF (t, 1, y) = x1.

(b) There exists an efficient deterministic procedure ChkF that, on input k, b ∈ {0, 1}, x ∈ X
and y ∈ Y, returns 1 if y ∈ Supp(f ′k,b(x)) and 0 otherwise. Note that ChkF is not
provided the trapdoor t.
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(c) For every k and b ∈ {0, 1},

E
x←RX

[H2(fk,b(x), f ′k,b(x))] ≤ µ(λ), (4)

for some negligible function µ. Here H2 is the Hellinger distance. Moreover, there exists
an efficient procedure SampF that on input k and b ∈ {0, 1}, prepares the state

|X |−1/2
∑

x∈X ,y∈Y

√
f ′k,b(x)(y)|x〉|y〉. (5)

4. Adaptive hardcore bit. For all keys k ∈ KF , the following conditions hold for some integer w
that is a polynomially bounded function of λ.

(a) For all b ∈ {0, 1} and x ∈ X , there exists a set Gk,b,x ⊆ {0, 1}w such that Prd←R{0,1}w [d /∈
Gk,b,x] is negligible, and moreover there exists an efficient algorithm that checks for
membership in Gk,b,x given k, b, x and the trapdoor t.

(b) There is an efficiently computable injection J : X → {0, 1}w such that J can be inverted
efficiently on its range, and such that the following holds. If

Hk = {(b, xb, d, d · (J(x0)⊕ J(x1)))|b ∈ {0, 1}, (x0, x1) ∈ Rk, d ∈ Gk,0,x0 ∩Gk,1,x1},
H̄k = {(b, xb, d, c)|(d, x, d, c⊕ 1) ∈ Hk},

then for any quantum polynomial-time procedure A, there exists a negligible function µ
such that ∣∣∣∣ Pr

(k,t)←GenF (1λ)
[A(k) ∈ Hk]− Pr

(k,t)←GenF (1λ)
[A(k) ∈ H̄k]

∣∣∣∣ ≤ µ(λ). (6)

In a breakthrough, Brakerski, Christiano, Mahadev, Vazirani and Vidick give a proof-of-
quantumness protocol (the BCMVV protocol) based on NTCFs [8]. The protocol proceeds in
the following steps.

1. The verifier samples (k, t)← Gen(1λ) and sends k to the prover.

2. The prover performs SampF on the input state |+〉 and measures the image register to yield
an outcome y.

3. The verifier samples a random coin c←R {0, 1} and sends c to the prover.

4. If c = 0, the prover performs a standard basis measurement; otherwise the prover performs a
Hadamard basis measurement. The outcome w is then sent to the verifier.

5. The verifier outputs V (t, c, w), which is defined as

V (t, y, c, w) :=


1 if c = 0 and ChkF (k, y, b, x) = 1, w = (b, x)
1 if c = 1, d ∈ Gk,y and d · (J(x0)⊕ J(x1)) = u, w = (u, d)
0 otherwise,

(7)

where Gk,y := Gk,0,x0 ∩ Gk,1,x1 . Here we note that for c = 0, ChkF does not require the
trapdoor t, but the bit can be determined using the trapdoor.
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The adaptive hardcore bit property (see (6)) implies that every adversary A given access to k,
outputs y, w0, w1 such that V (y, 0, w0) = V (y, 1, w1) = 1 with probability at most 1/2 + negl(λ).
On the other hand, there exist efficient quantum processes to output valid (y, w0) or (y, w1) with
probability 1− negl(λ).

Hirahara and Le Gall [25] and Liu and Gheorghiu [28] independently proposed two different
methods of transforming the BCMVV protocol [8] into one that can be computed using only constant
quantum depth (interleaving with classical computation). In our second protocol for certifying
quantum depth based on LWE, we will be using the theorem which states that there exists a
construction of NTCF family for which the function evaluation takes constant depth, based on
randomized encoding, defined as follows.

Definition 2.10 (Randomized encoding [3, 28]). Let f : {0, 1}n → {0, 1}` be a function and
r ←R {0, 1}m. A function f̂ : {0, 1}n × {0, 1}m → {0, 1}s is a δ-correct, ε-private randomized
encoding of f if it satisfies the following properties:

• Efficient generation: there exists a deterministic polynomial-time algorithm that, given a
description of the circuit implementing f , outputs a description of a circuit implementing f̂ .

• δ-correctness: there exists a deterministic polynomial-time algorithm Dec, called the decoder,
such that for every input x ∈ {0, 1}n, Prr[Dec(f̂(x, r)) 6= f(x)] ≤ δ.

• ε-privacy: there exists a PPT algorithm S, called the simulator, such that for every x ∈ {0, 1}n,
the total variation distance between S(f(x)) and f̂(x, r) is at most ε.

Furthermore, a perfect randomized encoding is one for which ε = δ = 0.

Theorem 2.11 ([28, Section 3.1]). There exists an efficient quantum process which uses gates of
bounded fan-out in constant quantum depth and prepares the state∑

b,x

|b〉|x〉|f̂k(b, x)〉, (8)

where f̂ is a perfect randomized encoding of an NTCF f .

In particular, as shown in the same paper [28, Section 3.3], the proof-of-quantumness protocol
takes total quantum depth 14 and three quantum-classical interleavings.

Theorem 2.12 ([28, Theorem 3.1]). There exists a perfect randomized encoding of an NTCF, which
satisfies the randomness reconstruction property and is an NTCF.

In particular, Theorem 2.12 implies that with the new construction, the adaptive hardcore bit
property holds.

2.4 The Broadbent protocol

In this section, we briefly introduce the Broadbent protocol for verifying quantum computation [10].
The protocol consists of two parties, the prover P which is untrusted but can perform arbitrary
quantum computation, and the verifier V which is almost classical. In particular, V can perform
measurements in certain bases. The prover and the verifier interact, and at the end of the protocol,
the verifier outputs a bit which is either “accept” or “reject.” The protocol can be used to verify a
complete language in BQP (more precisely, PromiseBQP):
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XaZb|ψ〉 c

|0〉 H • • P z Xa′Zb
′ |ψ′〉

|0〉 W e

Figure 3: The quantum circuit of the T gadget. The dashed box prepares an EPR pair. The first
two qubits are held by the prover and the third qubit is held by the verifier. The bit z ←R {0, 1} is
sampled independently for each T gadget by the verifier. For the choice of W , see Table 1.

Round type Unitary W
Computation HP a

′+c+zT
Even parity 1

Odd parity HP z

Table 1: The choice of unitary W in a T gadget. The table is modified from [17, Table 3].

• Completeness: if the computation U satisfies ‖Π0U |0〉‖2 ≥ 2/3, then there exists a quantum
prover which makes V accept with probability at least c.

• Soundness: if the computation U satisfies ‖Π0U |0〉‖2 ≤ 1/3, then for every prover, the verifier
accepts with probability no more than s.

Here the projector Π0 = |0〉〈0| ⊗ 1 refers to the event that measuring the first qubit of the state
U |0〉 in the standard basis yields an outcome 0. The parameters c, s are called the completeness and
soundness respectively.

In the Broadbent protocol, the prover and the verifier share (n+ t) EPR pairs, where n is the
number of qubits the computation U acts on, and t is the number of T gadgets in U . The quantum
circuit for the T gadget is shown in Figure 3. The computation U is a quantum circuit consisting of
gates in {CNOT,H, T} (which is a universal gate set), performed on a quantum state encrypted by
quantum one-time pad. The prover is designated to perform the following operations for each gate.

• For each CNOT gate, the prover is designated to perform the gate on the associated qubits.

• For each T gate, the prover performs a T gadget using a half of an EPR pair as an ancilla
qubit.

• Each Hadamard gate is compiled into the sequence HTTHTTHTTH of single-qubit gates.
For each T gate in the sequence, they run a T gadget. For each Hadamard gate in the sequence,
the prover applies a Hadamard gate. We will also refer to the implementation as a Hadamard
gadget (or an H gadget for short).

The verifier V chooses to run one of the following rounds, and performs the operations on the other
halves of the (n+ t) EPR pairs depending on the choice of rounds. More specifically, V performs
measurements on the EPR pairs to create the initial state and the states required for each T gadget,
and the actions for each round type is specified as follows.

• Computation round (with constant probability p): the computation is delegated to the prover
P . If P behaves honestly, the result can be recovered by V . In the beginning of the protocol,
V measures the first n EPR pairs in the standard basis. The half held by the prover collapses
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Gate/Gadget Key update rule
T gadget, computation (a+ c, b+ e+ a+ c+ (a+ c)z)
T gadget, even parity (e, 0)
T gadget, odd parity (0, b+ e+ z)

H gate (b, a)
CNOT gate (a, b+ b′, a+ a′, b′)

Table 2: Rules for updating the one-time-pad keys after applying each gate in the protocol. The bit
z is chosen uniformly by the verifier, and the measurement outcomes e, c are obtained by the prover
(see Figure 3). For the T gadget and the Hadamard gate, before updating the key is (a, b). For a
CNOT gate, the keys are (a, b) on the control qubit and (a′, b′) on the target.

to a quantum one-time pad of the zero state. Then the (honest) prover performs the quantum
computation on this state. For each T -gadget (used to apply a T gate or a Hadamard gate),
the prover uses the a half of the EPR pair associated with the T -gadget as an ancilla qubit,
and the verifier performs the associated measurement so the T -gadget implements a T gate,
up to a key update (Table 2).

• Test round (with probability 1− p): V tests if P behaves honestly, and rejects if any error is
detected. A test round has two types, each of which is executed with probability 1/2, outlined
as follows.

– An X-test round is used to detect if there is a bit flip error. In an X-test round, the
verifier measures the first n EPR half in the standard basis to create a quantum one-time
pad of the zero state |0〉⊗n. For each T -gadget, the verifier performs the measurement
in the basis such that the T -gadget acts trivially (as the identity operation) up to a key
update (Table 2). In the end, the verifier applies the key update rule to compute the key,
and decrypts the first qubit. The verifier accepts if the bit is 0 and rejects otherwise.

– A Z-test round is used to detect if there is a phase flip error. The operations are the same
as the X-test round except that they are performed in the Hadamard basis. The verifier
measures the first n EPR pairs in the Hadamard basis to create a quantum one-time pad
of the plus state |+〉⊗n. For each T gadget, the verifier performs the measurement in
some basis such that the T gadget acts trivially up to a key update (Table 2). In the end,
the verifier applies the key update rule to compute the key, and decrypts the first qubit.
The verifier disregards the result and rejects only if any error was detected throughout
the computation.

The protocol performs quantum computation on encrypted data by quantum one-time pad. Depending
on the round type, different key update rules are adopted. For a Hadamard gadget, six T -gadgets
are performed. Recall that in an X-test round, a T -gadget acts trivially on the zero state. Passing
an odd number of Hadamard gates yields an encrypted plus state, and thus the T -gadget used in
this case will be the same as a T gate application in a Z-test round. Thus for convenience, we
may define the parity of a T -gadget as follows. A T -gadget is of even parity if it is not part of an
Hadamard gadget, or an even (resp. odd) number of Hadamard gates has been applied before in an
Hadamard gadget in an X-test (resp. a Z-test) round; otherwise it is of odd parity. The key update
rules are formally defined in Table 2.

The original Broadbent protocol is used to verify BQP languages (more precisely PromiseBQP).
Now we consider the following modification to show a rigidity result: the last message from the
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prover to the verifier is an n-qubit quantum state ρ. The verifier computes the key according to the
key update rule (Table 2), and applies one-time pad decryption on ρ, with the following modification
after the last message from the prover is sent.

• In an X-test round, the verifier accepts if measuring the state in the standard basis yields 0n.

• In a Z-test round, the verifier accepts if measuring the state in the Hadamard basis yields 0n.

The differences are instead of checking only the first qubit, the verifier determines, in a test round, if
an attack has been applied on any of the qubits. The new verification procedure requires a larger
quantum channel for the prover to send the entire state to the verifier. As we will see, the extra cost
is not necessary when the protocol is made purely classical with two provers.

Our rigidity statement is formally stated as follows: if the prover is accepted with probability
1 − ε in test rounds, the prover in computation run implements a quantum channel EC that is
O(ε)-close to the honest computation. First recall the following fact about Pauli twirls.

Lemma 2.13 (Pauli twirls). Let Pa := Xa1Za2 denote a Pauli operator for a = (a1, a2) where
a1, a2 ∈ {0, 1}n. For any quantum state ρ and quantum channel Φ, it holds that∑

a∈{0,1}2n
P †aΦ(PaρP

†
a )Pa =

∑
a

raPaρP
†
a , (9)

for some distribution r over Pauli matrices.

Broadbent shows that without loss of generality, any attack performed by the prover can be
written as a honest execution C followed by a quantum channel Φ. The prover first performs C and
yields a quantum state ρ = C|ψ〉〈ψ|C†, one-time padded with key Q. The prover then applies any
quantum channel Φ, followed by decryption performed by the verifier. By Lemma 2.13, the prover’s
attack can be written as a probabilistic mixture of Pauli unitaries. We prove the following theorem.

Theorem 2.14. For ε ∈ [0, 1/2], any prover who succeeds with probability 1− ε in the test rounds if
and only if it implements a quantum channel EC satisfying ‖EC − C‖� ≤ 4ε where C(ρ) := CρC† in
the computational round.

Proof. Without loss of generality, we may express the action of any prover given access to circuit
description C and the verifier’s decryption as a quantum channel

EC,i = E
k
(Ok ◦ Φ ◦ Ok) ◦ Ci = P ◦ Ci, (10)

for some Pauli channel P with Kraus form {r1/2
a Pa : a ∈ {0, 1}2n} by Lemma 2.13 and round type

i. Also recall that here we denote Pa = Xa1Za2 for a = (a1, a2) and a1, a2 ∈ {0, 1}n. Since these
rounds look completely identical to the prover, the quantum channel Φ must be identical among the
choices of round type.

Let the success probability of the prover in an X- and a Z-test round be 1 − εX and 1 − εZ
respectively. If the prover succeeds with probability 1− ε conditioned on the event that a test round
is chosen, it must hold that εX , εZ ≤ 2ε since otherwise 1

2(1− εX) + 1
2(1− εZ) = 1− εX+εZ

2 < 1− ε.
In an X-test round, CX = I, the identity channel, and

1− εX = 〈0n|P(|0n〉〈0n|)|0n〉

=
∑
a

ra|〈0n|Pa|0n〉|2

=
∑
a:a1=0

ra ≥ 1− 2ε. (11)
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Similarly, in a Z-test round,
∑

a:a2=0 ra ≥ 1 − 2ε. Combining the inequalities, we conclude that
r0 ≥ 1 − 4ε. Therefore, for any prover who succeeds with probability 1 − ε, it holds that in the
computation round

‖P ◦ C − C‖� ≤ ‖P − I‖�

= max
ρ:trρ=1

tr

∣∣∣∣∣∑
a

ra(PaρP
†
a − ρ)

∣∣∣∣∣
≤
∑
a6=0

ra‖Pa − I‖�

≤ 4ε, (12)

where Pa(ρ) = PaρP
†
a . The above reasoning shows the “only if” direction.

If the prover implements EC = P ◦ C which is δ-close to C in the computation round. Then in the
X-test round, we have ‖P(|0n〉〈0n|)− |0n〉〈0n|‖tr ≤ ‖EC −C‖� ≤ δ. Similarly, in the Z-test round, we
have ‖P(|+n〉〈+n|)− |+n〉〈+n|‖tr ≤ ‖EC −C‖� ≤ δ. Then we conclude that the success probability is
at 1− δ when a X-test or a Z-test round is chosen. This implies that the success probability in a
test round is at least 1− δ.

2.5 The Verifier-on-a-Leash protocol

The Broadbent protocol can be used to verify arbitrary quantum computation, but it requires the
verifier to have the capability to perform measurements in the bases listed in Table 1. To achieve
purely classical verification, Coladangelo, Grilo, Jeffery and Vidick presented a new protocol called the
Verifier-on-a-Leash protocol (or the Leash protocol). In the Leash protocol, two provers called PP and
PV share entanglement, but are not allowed to communicate with each other after the protocol starts.
PP plays the role of the prover in the Broadbent protocol, and PV performs the measurements by
the verifier in the Broadbent protocol. To certify PV plays honestly, a new rigidity test is introduced
to verify Clifford measurements, in particular, the observables in Σ = {X,Y, Z, F,G} where X,Y, Z
are Pauli matrices, F = 1√

2
(−X + Y ) and G = 1√

2
(X + Y ). The idea is to use a non-local game

for certifying the standard basis measurement (i.e., the observable X) and the Hadamard basis
measurement (the observable Z). We will modify a test called RIGID′(Σ,m) which certifies Clifford
measurements by Coladangelo, Grilo, Jeffery and Vidick [17] to only act on a subset of qubits. In
particular, the following theorem holds with the test.

Theorem 2.15 ([17, Theorem 4]). There exists a test RIGID′(Σ,m) such that the following holds:
suppose a strategy for the players succeeds in test RIGID′(Σ,m) with probability at least 1− ε. Then
for D ∈ {A,B}, there exists an isometry VD such that

‖(VA ⊗ VB)|ψ〉AB − |EPR〉⊗mA′B′ |AUX〉ÂB̂‖
2 ≤ O(

√
ε), (13)

and

E
W∈Σm

∑
u∈{±}m

∥∥∥∥∥∥VAtrB((1A ⊗W u
B)|ψ〉〈ψ|AB(1A ⊗W u

B))V †A −
∑
λ∈{±}

(
m⊗
i=1

σuiWi,λ

2
⊗ τλ

)∥∥∥∥∥∥
1

= O(poly(ε)).

(14)

Moreover, players employing the honest strategy succeed with probability 1− e−Ω(m) in the test.

24



Theorem 2.15 shows that a strategy that succeeds in RIGID′(Σ,m) with probability at least 1− ε
must satisfy the following conditions: The players’ joint state is O(

√
ε)-close to a tensor product

of m EPR pairs together with an arbitrary ancilla register. Moreover, on average over uniformly
chosen basis W ←R Σm, the provers’ measurement is poly(ε)-close to a probabilistic mixture of
ideal measurements and their conjugates. More specifically, the probabilistic mixture can be realized
as follows: performing a measurement on the ancilla register yields a post-measurement state τλ
and a single bit outcome λ ∈ {±} that specifies whether the ideal measurement associated with
the observable σWi,+ or that with its conjugate σWi,− is performed.5 Then applying σWi,λ yields a
post-measurement state σuiWi,λ

and an outcome ui ∈ {±} for each index i ∈ [m]. We can only hope
to certify that the strategy is close a probabilisitc mixture of the ideal strategy and its conjugate
because a protocol with classical communication does not distinguish a strategy from its conjugate
(more concretely, replacing i =

√
−1 with −i for any strategy by the prover does not change the

score).
In Section 6, we will modify RIGID′(Σ,m) to only apply on a random subset of indices in [m],

chosen by the verifier. It is clear that for the subset, Theorem 2.15 holds.

3 Certifying quantum depth from learning with errors

In this section, we describe a protocol for certifying quantum depth using NTCFs. First we define a
single-prover protocol for certifying quantum depth.

Definition 3.1. Let d, d′ ∈ N and d′ > d. A single-prover protocol CVQD(d, d′) that separates
quantum circuit depth d from d′ consists of a classical verifier V and a prover P such that the
following properties hold:

• Completeness: There exist an integer d̂ ≥ d and a d̂-QC or d̂-CQ scheme P such that
Pr[〈V, P 〉] ≥ 2/3.

• Soundness: For integer d̂ ≤ d and any P that are d̂-CQ or d̂-QC schemes, Pr[〈V, P 〉 =
accept] ≤ 1/3.

We give a prototocol based on a randomized encoding of NTCFs, and include the honest behavior
of the prover in the description of the protocol (but the prover does not necessarily follow the
instructions).

Protocol 1. [CVQD(d, d+ d0)]

1. The verifier samples {(ki, ti)← Gen(1λ) : i ∈ [d+ 1]} and sends (k1, . . . , kd+1).

2. (Honest prover’s behavior) The prover performs the quantum process in Theorem 2.11 and
prepares the state

1

(2|X |)(d+1)/2

d+1⊗
i=1

 ∑
bi∈{0,1},xi∈X

|bi〉Bi |xi〉Xi |f̂ki(bi, xi)〉Yi

, (15)

and performs a standard basis measurement on the registers Y1, . . . , Yd+1 to yield y1, . . . , yd+1,
which is sent to the verifier.

5The conjugate of a matrix A is obtained by taking the complex conjugate of each element of A.
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•
|ψ1〉 H h1(·) •

|ψ2〉 H h2(·) •

|ψ3〉 H h3(·)

Figure 4: The quantum circuit for d = 2. In each layer i ∈ [3], the verifier’s action can be
viewed as a classical computation hi, which takes the measurement outcome as input. If the
measurement outcome is accepted, then it outputs a random string ci ←R {0, 1}`(λ); otherwise it
outputs ⊥ indicating rejection. Each |ψi〉 is the post-measurement state of (15) after a standard
basis measurement on Y1, Y2, Y3 is performed. By Theorem 2.11, the state |ψ1〉 ⊗ |ψ2〉 ⊗ |ψ3〉 can be
prepared in constant depth.

3. For i = 1 . . . d+ 1, the verifier and the prover proceed as follows.

(a) The verifier samples a random bit ci ∈ {0, 1} and sends ci to the verifier.

(b) (Honest prover’s behavior) If ci = 0, the prover performs a standard basis measurement
on BiXi; otherwise the prover performs a Hadamard basis measurement on BiXi. The
prover then sends the outcome wi to the verifier.

(c) The verifier computes a = V (ti, yi, ci, wi), where V is defined in (7). If a = 0, then the
verifier rejects and aborts.

If the verifier does not reject for each i ∈ [d], then it accepts.

Theorem 3.2 (Completeness). There exists a constant d0 such that for security parameter λ and
polynomially bounded function d, a negligible function ε, there is a prover which is a (d0 + d(λ))-QC
scheme and succeeds with probability 1− ε(λ).

Proof. By Theorem 2.11, the preparation of the state in (15) can be done in constant depth d′.
Let d0 = d′ + 1. The prover performs standard basis measurement on the registers Y1, . . . , Yd+1 to
sample y1, . . . , yd+1. For every i ∈ [d+ 1], the prover measures the state in the ith coordinate in the
standard basis if ci = 0 and in the Hadamard basis otherwise. There exists a negligible function µ
such that if ci = 0, with probability at least 1− negl(λ), performing a standard basis on BiXi yields
a preimage; if ci = 1, with probability at least 1− µ(λ), performing a Hadamard basis measurement
on BiXi yields an outcome that passes the equation test V (ti, yi, 1, ·). By the union bound, the
prover succeeds with probability

Pr[success] ≥ 1−
∑
i

Pr[Prover fails the ith round]

≥ 1− d(λ) · µ(λ) = 1− negl(λ) (16)

for polynomially bounded function d.

As an example, we present the quantum circuit for d = 2 in Figure 4.
Next we show a lower bound on the quantum depth. In each round i, let the prover’s action on

receiving challenge ci = c be an isometry Ui,c acting on the quantum state |ψi,T 〉, which depends on
the previous transcript T , followed by a standard basis measurement. We show that if there exists i
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such that the quantum depth does not increase by 1 for round i, then there is a quantum adversary
which breaks the adaptive hardcore bit property.

Theorem 3.3 (Soundness). There exists a negligible function µ such that for sufficiently large λ,
for any prover that is either a d-CQ or d-QC scheme succeeds with probability at most 3

4 + µ(λ).

Proof. Suppose toward contradiction that there exists a prover P which succeeds with probability
3/4 + ε for non-negligible ε. First we show that the operation in each round must have non-zero
quantum depth. If this is not the case for some round i ∈ [d+ 1], then without loss of generality,
P ’s operation consists of

1. a standard basis measurement on some intermediate quantum state ρi to yield an outcome vi,
followed by

2. a classical algorithm Ai which on input vi and the challenge ci = c, outputs the response
wi ← Ai(ci, vi, T ) for previous transcript T .

Then there is a reduction A which uses P to break the adaptive hardcore bit property. Since the
probability of passing d rounds is at least 3/4 + ε(λ), the probability of winning the first ith round
is at least 3/4 + ε. Thus A, on input challenge key k, samples k1, . . . , ki−1, ki+1, . . . , kd+1 and sets
ki = k and computes vi. Using vi, A runs Ai on wb ← Ai(b, vi, T ) for each b ∈ {0, 1}. Let the
probability that wb is a valid response be pb. By the assumption, p0 + p1 ≥ 3/2 + 2ε. This implies
that with probability 1 − (1 − p0) − (1 − p1) = p0 + p1 − 1 ≥ 1/2 + 2ε both w0 and w1 are valid.
Thus with probability at least 1/2 + 2ε, w0 is a valid preimage and wi is a valid equation, and thus
the adaptive hardcore bit is broken.

Since P must have non-zero quantum depth in each round and it has total quantum depth d,
there must exist a round j ∈ [d+ 1] such that P must destroy all its coherence after receiving cj ,
and continue answering the remaining rounds with an intermediate classical information σj . Now
the reduction A′ samples c1, . . . , cd+1 ←R {0, 1} and simulates the verifier in the protocol, and runs
the following steps to break the adaptive hardcore bit property:

1. A′, on receiving k, samples k1, . . . , kd and sets kd+1 = k, and runs P to get y1, . . . , yd+1 and
some quantum information ρ.

2. A′ continues running P on input ρ and c1, . . . , cj to compute σj .

3. A′ continues running P on input σj , cj , . . . , cd, cd+1 = b, to yield a response w′b in round d for
each b ∈ {0, 1}.

4. A′ outputs (yd+1, w
′
0, w

′
1) as the response.

To analyze the performance of A′, we apply the same idea as that for calculating the performance of A.
Let the probability that w′b be a valid response for round d be p′d. By the assumption, p′0+p′1 ≥ 3/2+2ε.
Thus both w′0 and w′1 are valid with probability at least 1− (1− p′0)− (1− p′1) ≥ 1/2 + 2ε. This
implies that the adaptive hardcore bit property is broken.

Theorem 3.2 and Theorem 3.3 immediately imply the following theorem.

Theorem 3.4. Assuming that LWE is hard for any d-CQ and d-QC schemes, Protocol 1 satisfies
the following conditions.
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• Completeness: There exists a prover which is a (d0 + d)-QC scheme and succeeds with
probability at least 1− negl(λ).

• Soundness: Every prover that are d-CQ and d-QC schemes succeed with probability at most
3
4 + negl(λ).

By sequential repetition, the completeness-soundness gap can be amplified to 1− negl(λ). We
note that we do not know if the function evaluation can be done by using (d0 + d)-CQ schemes and
leave it as an open question.

4 Non-interactive classical verification of quantum depth

In this section, we prove that there is a non-interactive classical verification of quantum depth, in
the quantum-accessible random oracle model. Recall that in Theorem 3.3, we have shown that
there exists a verification protocol with constant soundness error for the same purpose. By parallel
repetition, in Section 4.1, we prove that the soundness error can be amplified to negligible. To
justify our claim, we follow the same proof idea as in the previous section: First we show that in a
four-message protocol, if the side information is restricted to classical, any quantum adversary can
only succeed in a parallel repetition of the proof-of-quantumness protocol with negligible probability.
Then, in a multi-round protocol, if the quantum device does not have sufficient quantum depth, then
it must destroy its coherence to yield a purely classical intermediate state. If it further succeeds in
the protocol with non-negligible probability, we can construct a reduction that violates the negligible
soundness error in a four-message protocol. This implies the soundness of a multi-round verification,
with round complexity dependent on the depth threshold.

The multi-round protocol has nice structure, allowing us to achieve round reduction by Fiat-
Shamir: Recall that Don, Fehr, and Majenz showed that in the quantum random oracle model,
constant-round Σ-protocol (i.e., computationally sound public-coin protocols) can compressed to a
single-message one by Fiat-Shamir tranform [20]. In our protocol, the verifier’s moves are tosses
of public coins except that in the first round, it generates a key pair and keeps the private key
secret. This protocol can be characterized as a generalized Σ-protocol [2]. Applying the extension
to generalized Σ-protocols shown independently by Alagic, Childs, Grilo, and Hung [2] and Chia,
Chung, and Lai [13], in the random oracle model, the interaction can be reduced to two messages. In
Section 4.2, we summarize our proof ideas and prove the soundness of the non-interactive protocol.

4.1 Interactive verification with negligible soundness error

We start with a four message protocol in the following characterization: Let the prover in the first
move and the second denote P1 and P2, respectively. Initially, P1, on receiving the message from the
verifier, outputs its first message y to the verifier, and a classical side information σ to P2. Then
P2, on receiving the challenge coin c from the verifier and the side information σ from P1, outputs
the second message z. Finally the verifier outputs a bit indicating acceptance or rejection on input
(k, t, y, c, z). Now we show that when the side information σ is classical, by the adaptive hardcore
bit property, every prover must succeed with probability 3/4 + negl(λ).

Theorem 4.1. Every efficient P1 and P2 succeed with probability 3/4 + negl(λ).

Proof. The proof is similar to the soundness proof in the previous section. Let the success probability
of the prover on c ∈ {0, 1} be pc. If p0 + p1 ≥ 3/2 + ε(λ) for some non-negligible function ε, we
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construct a reduction that breaks the adaptive hardcore bit property: The reduction B first runs P1

to yield y and a classical side information σ. Then using the same side information, the prover runs
P2(σ, c = 0) and P2(σ, c = 1) to yield two messages z0 and z1 respectively. By the assumption we
make,

Pr
k,t,σ

[V0 accepts P2(σ, 0) ∧ V1 accepts P2(σ, 1)] ≥ p0 + p1 − 1 ≥ 1/2 + ε(λ). (17)

This implies that the reduction breaks the adaptive hardcore bit property.

The above reasoning only uses the fact that classical information is clonable. Thus the same
argument would also apply if σ is a clonable quantum state.

The protocol has a soundness error 3/4+negl(λ). To reduce the error, we apply parallel repetition
to get negligible soundness error. Our direct product theorem is closely related to the approaches by
a series of works by Håstad, Pass, Wikström, and Pietrzak [24], by Haitner [22], and by Berman,
Haitner, and Tsfadia [7]. The main caveat we will address here is that the prover’s algorithms in
each move is a quantum algorithm (as opposed to deterministic ones).

Theorem 4.2. For m = ω(log λ), let Pm = (Pm1 ,Pm2 ) be any quantum prover in an m-fold parallel
repetition of the protocol such that the side information from Pm1 to Pm2 is classical. Then Pm wins
the protocol with probability at most negl(λ).

We consider the following reduction P∗ that works in a single-copy protocol: P∗ samples a
random coordinate i ∈ [m], and embeds the external verifier as the ith verifier in the simulated m-fold
parallel repetition protocol. Furthermore, P∗ simulates the other m−1 verifiers. To generate the first
move of the prover, P∗ first generates the simulated verifiers’ key pairs for [−i] := {j ∈ [m] : j 6= i}
using the following strategy: First P∗(ki) sets ci = 0 and repeat the following steps for at most w
times, where w is to be determined later, or b = 1:

1. Sample (k−i, t−i) and run Pm1 (k), which outputs (y, σ).

2. Sample c−i, run z ← Pm2 (y, c, σ), and compute b← Vm(k, t, y, c, z).

Since for ci = 0, the verifier’s final verdict is simulable, and the decision can be computed. The
rejection sampling above is used to sample good key pairs (k−i, t−i) and y. Upon success, P∗ sends
yi to the external verifier.

In the second move, P∗ on receiving ci from the external verifier, runs the following rejection
sampling process for at most w times or b = 1:

1. Sample c−i and run z ← Pm2 (y, σ, c).

2. P∗ checks if z−i are accepted by the simulated verifier by running b−i ← Vm−1(k−i, t−i, y−i, c−i, z−i).
If so, the verifier terminates and sends zi to the external verifier.

For strings with lowercase labels, let their uppercase labels denote the random variable (as opposed
to samples). Our goal is to show that

(K,T, Y,Σ, C, Z)real ≈ (K,T, Y,Σ, C, Z)ideal, (18)

where the real distribution can be sampled from the above process, and the ideal case is obtained by
simulating all m verifiers and rejection sampling all the transcripts for infinitely many times until
success. To this end, we rely on the lemmas provided in Haitner’s paper. Let W denote the event of

success, i.e., b = 1, and α :=

√
log(1/Pr[W ])

m .
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Lemma 4.3. Let Y,X1, . . . , Xm be independent random variables over some probability spaces and
W be an event in the same subspace. Then

1. Pri∼[m],xi←Xi [Pr[W |Xi = xi] /∈ (1± εPr[W ])] ≤ 2α/ε for ε > 0,

2. Ei←[m][SD((i, (X̄|W )), (i, (X|W,Xi)))] ≤ α where X̄ = (X1, . . . , Xm), and

3. Ei←[m][SD((i, (Y,Xi|W )), (i, (Y |W ), Xi))] ≤ α.

We will be using the following lemma.

Lemma 4.4. Let X0, X1 be two random variables over the same finite set X and W be an event. If
Pr[X0 ∈W ] = δ, then

SD(X0|W,X1|W ) ≤ 2 · SD(X1, X2)

Pr[X0 ∈W ]
. (19)

We include a proof for completeness.

Proof. Let pb be the distribution of Xb for b ∈ {0, 1} and pb|W denote the conditional distribution.
By definition,

SD(X0|W,X1|W ) =
1

2

∑
x∈W
|p0|W (x)− p1|W (x)| = 1

2
· E
x∼p0|W

[|1− F (X)|] (20)

where F (x) :=
p1|W (x)

p0|W (x) · 1[p0|W (x) > 0] denote a random variable for X distributed according to
p0|W . By definition, Ex∼p0|W [F (x)] = 1, and thus the expectation

E
x∼p0|W

[|1− F (x)|] ≤ 2 · E
[∣∣∣∣1− Pr[X1 ∈W ]

Pr[X0 ∈W ]
· F (x)

∣∣∣∣] (21)

≤ 2

Pr[X0 ∈W ]

∑
x∈W
|p0(x)− p1(x)| (22)

≤ 4 · SD(X0, X1)

Pr[X0 ∈W ]
. (23)

The first inequality comes from the fact that for non-negative random variable Z satisfying E[Z] = 1,
then E[1−Z] ≤ E[|1− sZ|] for every s > 0 (see Lemma 5 of [24] for a detailed proof of this fact).

Let’s consider a variant of real, denoted real′, in which the rejection sampling processes can
repeat infinite times, i.e., w is set to infinity. In the following analysis, we first show the closeness
between real′ and ideal, and we will handle the difference between real and real′ later.

4.1.1 Closeness between real′ and ideal

In the first step, our goal is to show that

I, (K,T, Y,Σ)|(W,KI , TI , CI = 1) ≈O(α) I, (K,T, Y,Σ)|W. (24)

That is, sampling the internal key pairs and the output of Pm1 conditioned on the event of acceptance,
the external key pair embedded into the Ith coordinate for uniform I and the random challenge
CI = 1 is δ-close to simulating all key pairs and the output of Pm1 .
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Lemma 4.5. For δ ∈ [0, 1], let C1, . . . , Cm be identical and independent binary random variables

such that Pr[Ci = 1] = δ. For α = 1
δ

√
log(1/Pr[W ])

m , (I, (K,T, Y,Σ)|(W,KI , TI , CI = 1)) and
I, (K,T, Y,Σ)|W are O(α)-close in total variation distance.

Proof. We consider a hybrid in which the reduction gets to choose the Ith key pair. In this case, the
marginal distribution of the Ith key pair is no longer uniform. Our first step is to show that

I, (K,T, Y,Σ)|(W,CI = 1) ≈2α I, (K,T, Y,Σ)|W (25)

Let the distance be D1. Since in each world, the random variables (Y,Σ) are output by an efficient
quantum algorithm (prior to the conditioning on W ), we can approximate the distribution to
exponential precision using a randomized algorithm given access to exponentially many random bits
and running in exponential time. Thus let (Y,Σ) = F (K,R) for internal randomness R and F be
the function describing the approximation. By the data-processing inequality,

D1 ≤ SD((I, (K,T,R, Y,Σ)|(W,CI = 1)), (I, (K,T,R, Y,Σ)|W ))

= SD((I, (K,T,R)|(W,CI = 1)), (I, (K,T,R)|W )). (26)

Now we notice that by the third inequality of Lemma 4.3,

SD((I, (K,T,R,CI)|W ), (I, (K,T,R)|W,CI)) ≤
√

log(1/Pr[W ])

m
. (27)

Conditioning both sides on the event that CI = 1, the left side becomes (I, (K,T,R)|(W,CI = 1))
and the right side becomes (I, (K,T,R)|W ), and by Lemma 4.4 and (26), we have

D1 ≤ SD((I, (K,T,R)|(W,CI = 1)), (I, (K,T,R)|W )) ≤ 2

δ

√
log(1/Pr[W ])

m
. (28)

In the second step, we aim to bound the distance

D2 := SD((I, (K,T, Y,Σ)|(W,KI , TI , CI = 1)), (I, (K,T, Y,Σ)|(W,CI = 1))). (29)

Applying the same idea to remove the dependence of Y,Σ, we have

D2 ≤ SD((I, (K,T,R)|(W,KI , TI , CI = 1)), (I, (K,T,R)|(W,CI = 1))) (30)
≤ SD((I, (K,T,R,C)|(W,KI , TI , CI = 1)), (I, (K,T,R,C)|(W,CI = 1))). (31)

When on each side, CI is sampled according to the original distribution, it holds that

SD((I, (K,T,R,C)|(W,KI , TI , CI)), (I, (K,T,R,C)|(W,CI))) ≤
√

log(1/Pr[W ])

m
. (32)

Then conditioning both sides on CI = 1, we have D2 ≤ 2α. Finally we conclude the proof by triangle
inequality of trace distance and D1 +D2 ≤ 4α.

In summary for the first step, we have explained that the distance between ideal and real′ is
O(α)-close in total variation distance.

31



4.1.2 Closeness between real and real′

Now we show that when w = c0
εα for a sufficiently large constant c0 to be determined later, real and

real′ are O(α)-close in total variation distance. The idea follows from [22].
We consider the hybrid game, denoted hybrid, as follows. In the first step, the reduction samples

the first message via rejection sampling for infinite times, and in the second step, the rejection
sampling has at most w iterations. To clarify, let (w1, w2) denote the game in which the first step
rejection samples w1 times and the second step rejection sample w2 times. By the definition of each
game introduced above, we have real′ = (∞,∞), hybrid = (∞, w) and real = (w,w).

To see why (∞,∞) ≈O(α) (∞, w) for sufficiently large w, note the marginal distributions of
(K,T, Y,Σ) in both games are identical. For a fixed tuple π1 = (K = k, T = t, Y = y,Σ = σ), let
the success probability of Pm2 be ε(π1). Consider the following sampling process over two random
variables (Π1,Π2) where Π1 := (K,T, Y,Σ) and Π2 := (C,Z). We have the following lemma.

Lemma 4.6 ([22, Proposition 2.5]). Eπ1∼Π1|W

[
1

ε(π1)

]
= 1

ε , where π1 is obtained by infinite rejection
sampling.

Lemma 4.7. For every reduction that succeeds in real′ with probability p, in hybrid it succeeds with
probability at least p− 2α.

Proof. The idea is as follows: By Lemma 4.6 and Markov’s inequality, c0
ε(π1) ≤

c0
εα with probability

at most α. For each π1 such that c0
ε(π1) ≤ w = c0

εα , w iterations are sufficient for real′ to terminate
except with probability at most (1− ε(π1))w. Thus overall ′ does not terminate with probability at
most Eπ1 [(1− ε(π1))w] ≤ α+ (1− α)e−c0/α ≤ 2α for sufficiently large constant c0. Then for every
adversary which succeeds with probability p in real′, its variant in hybrid succeeds with probability
at least p− 2α.

The following lemma holds by applying the same proof idea for Lemma 4.7 and setting π1 to
empty.

Lemma 4.8. For every reduction that succeeds in hybrid with probability p, in real it succeeds with
probability at least p− 2α.

By Lemma 4.7 and Lemma 4.8, we conclude this section with the following corollary.

Corollary 4.9. For every reduction that succeeds in real′ with probability p, in real it succeeds with
probability probability at least p− 4α.

4.1.3 The parallel repetition theorem

In this section, we complete the proof of Theorem 4.2.

Proof of Theorem 4.2. In Lemma 4.5, we have shown that ideal and real′ are O(α)-close in total
variation distance. Since in ideal, the reduction succeeds with probability 1, the reduction in real′

succeeds with probability at least 1−O(α). Then by Corollary 4.9, the reduction in real succeeds
with probability 1−O(α). Now let c0 be a constant such that the reduction in real succeeds with
probability at least 1− c0α. By Theorem 4.1, 1− c0α ≤ 3/4 + negl(λ) ≤ 7/8. This implies that
Pr[W ] ≤ exp

(
− 1

64c20
m
)

= 2−Ω(m) = negl(λ) for m = ω(log λ).
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In the proof, we apply the argument that any quantum polynomial-time algorithm with classical
inputs and outputs can be simulated to exponential precision in total variation distance by a classical
algorithm running in exponential time. To justify the validity, abstractly, we can view our bound on
the total variation distance as two classical algorithms A,B given access to a quantum algorithm O
which takes classical input and output classical strings. We bound the distance D = SD(AO,BO)
by considering a classical exponential-time simulator S which simulates O to exponential precision
in total variation distance. Then we show that SD(AS ,BS) has a desired upper bound, which in
turn implies that D has the same upper bound up to an exponentially small additive loss.

We emphasize that this argument has its limitations. In particular, the argument does not
extend to prove a direct product theorem when the side information from P1 to P2 is a (unclonable)
quantum state. We note that the constraint on the prover is sufficient for the problem we study here
(i.e., the soundness of a CVQD protocol).

4.1.4 An interactive protocol with negligible soundness error

We formally describe our protocol with negligible completeness and soundness errors in Protocol 2.

Protocol 2. [CVQD(d, d+ d0)]

1. The verifier samples {(kij , tij) ← Gen(1λ) : i ∈ [d + 1], j ∈ [m]}, and sends k = (kij : i ∈
[d+ 1], j ∈ [m]) to the prover.

2. (Honest prover’s behavior) The prover performs the quantum process in Theorem 2.11 and
prepares the state

1

(2|X |)(d+1)m/2

d+1⊗
i=1

 ∑
bi∈{0,1}m,xi∈Xm

|bi〉Bi |xi〉Xi |f̂ki(bi, xi)〉Yi

, (33)

and performs a standard basis measurement on the registers Y1, . . . , Yd+1 to yield y1, . . . , yd+1 ∈
Ym, which is sent to the verifier. Here f̂ki(bi, xi) := (f̂kij (bij , xij) : j ∈ [m]) is the function
obtained by querying f̂kij for j ∈ [m] in parallel. For each i, Bi :=

⊗m
j=1Bij , and Xi and Yi

are defined similarly.

3. For i = 1 . . . d+ 1, the verifier and the prover proceed as follows.

(a) The verifier samples a random bit ci ∈ {0, 1}m and sends ci to the verifier.

(b) (Honest prover’s behavior) For each j ∈ [m], if cij = 0, the honest prover performs a
standard basis measurement on BijXij ; otherwise the prover performs a Hadamard
basis measurement on BijXij . The prover then sends the outcome wi = (wij : j ∈ [m])
to the verifier.

(c) The verifier computes a :=
∏m
j=1 V (tij , yij , cij , wij), where V is defined in (7). If a = 0,

then the verifier rejects and aborts.

If the verifier does not reject for each i ∈ [d], then it accepts.

By the same reasoning as in the proof of Theorem 3.2, the protocol has negligible completeness
error. We state the theorem and omit the proof.
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Theorem 4.10 (Completeness). There exists a constant d0 such that for security parameter λ and
polynomially bounded function d, a negligible function ε, there is a prover which is a (d0 + d(λ))-QC
scheme and succeeds with probability 1− ε(λ).

This section is devoted to proving that the protocol has negligible soundness error.

Theorem 4.11 (Soundness). Assuming that LWE is hard for d-CQ and d-QC schemes, every
depth-(d+ df − 1) prover succeeds in Protocol 2 with probability negl(λ),

Proof. Suppose toward contradiction that there exists a prover P which succeeds with non-negligible
probability ε. Since the prover has depth d+ df − 1, there exists an index i ∈ [d+ 1] such that P ’s
operation consists of

1. a quantum operation depending on ith challenge string ci ∈ {0, 1}m followed by a standard
basis measurement to yield a classical state σci ,

2. a quantum algorithm that takes σci and the previous transcript as input to output a quantum
state, forwarded as in input to the prover’s algorithm in (i+ 1)st round.

Without loss of generality, let σ denote the joint classical state (ci, σci) for uniform ci.
We now describe the reduction. In a high level, the reduction simulates the verifier’s behavior

for the first d rounds, and embed the external’s challenge string in the (d + 1)st round. More
specifically, the reduction, on input the public key k, samples the key pairs (ki, ti) for i ∈ [d] and
sets kd+1 = k. It then simulates P (k1, . . . , kd+1) to yield y = (yij : i ∈ [d+ 1], j ∈ [m]) and forwards
yd+1. Then it “fast forwards” P to the ith round to yield a classical side information σ. Now upon
finishing the first move, the reduction is left with a classical side information σ.

In the second move, the reduction takes as input the challenge coin c and the classical state σ.
The reduction continues running P to the (i+ 1)st round, and forwards c to P . By the assumption,
the prover yields a valid transcript with non-negligible probability ε and violates Theorem 4.2.

4.2 Non-interactive classical verification of quantum depth

Applying multi-round Fiat-Shamir transform, we prove the following theorem.

Theorem 4.12. Assuming LWE is hard, in the random oracle model, every depth-(d+df −1) prover
succeeds in the 2-message protocol with probability negl(λ).

Proof. Let m be large enough such that the m-parallel repetition of the d-round CVQD protocol
has negligible soundness as shown in Theorem 4.11. For simplicity, we use Vi and Pi to denote the
algorithms that the verifier and prover apply in each round i and Vfinal to denote the verifier’s
algorithm when receiving the last message from the prover. Consider a hash function H : [d+ 1]×
X ×W → {0, 1}m idealized as a random oracle, where W is the space of the message sent from
the prover and X is the space of the message sent from the verifier in Protocol 2. We describe the
two-round protocol as follows:

Protocol 3. [CVQD(d, d+ d0)]

1. The verifier applies Gen(1λ) to generate k = {kij : i ∈ [d + 1], j ∈ [m]} and t = {tij : i ∈
[d+ 1], j ∈ [m]} and sends k to the prover.

2. The prover applies P0 on input k to generate y = {yij : i ∈ [d + 1], j ∈ [m]} and some
internal side information σ0. Then, the prover sets c1 = H(1, k, y) and runs P1 on (c1, y, k, σ)
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to generate w1 = {w11, . . . , w1m}. For i = 2, . . . , d+ 1, the prover sets ci = H(i, ci−1, wi−1)
and applies Pi on (ci, y, k, σi−1) to generate wi where wi := (wi1, wi2, . . . , wim). Finally, the
prover sends (y, w) to the verifier, where w := (w1, . . . , wd+1).

3. The verifier computes c := c1, . . . , cd+1 from (y, w) and H, runs Vfinal on (k, t, y, c, w), and
output whatever Vfinal outputs.

Completeness. The completeness of the protocol directly follows from the completeness of Proto-
col 2. One caveat is that an honest prover can use the classical machine to query H to generate the
random challenge c, which does not increase the quantum depth.

Soundness. To prove the soundness, we reduce the task of breaking the soundness of Protocol 2
to breaking the non-interactive protocol via quantum Fiat-Shamir transformation. We use the
measure-and-reprogram lemma with enforced extraction order in [19].

Lemma 4.13 (Adapted from [19, Theorem 7]). Let m be a positive integer, and let X0, X and
Y be finite non-empty sets. There exists a black-box polynomial-time (m+1)-stage algorithm S,
satisfying the following property: Let A be an arbitrary oracle quantum algorithm making q queries to
a uniformly random H : (X0 ∪ Y)×X → Y and that outputs a tuple x = {x0, . . . , xd} ∈ {X0 ×X d}
and z such that for any xo without duplicate entries and for any predicate V ,

Pr
c

[x = xo ∧ V (x, c, z) : (x, z)← (SA, c)]

≥
(

d!

2q + d+ 1

)2d

Pr
H

[
x = xo ∧ V (x,hH,x, z) : x, z ← AH

]
− εxo .

Here, εxo is equal to m!
|Y| when summed over all xo and (x, z)← (SA, c) means that SA outputs the

message (x, z) on inputs c. hH,x := (hH,x1 , . . . , hH,xd ) is a hash chain with respect to H and x, where
hH,x1 = H(x0, x1) and hH,xi = H(hH,xi−1 , xi) for i = 2, . . . , d.

To break the soundness of Protocol 2, we suppose that there is a d-depth quantum polynomial-
time algorithm A that breaks the two-round protocol. Then, by an averaging argument over the key
pairs, we apply Lemma 4.13 to construct a simulator SA with respect to the verifier such that

Pr
c,k,t

[
Vfinal(k, t, y, c, w) : (y, w)← (SA, c)

]
(34)

≥
(

(d+ 1)!

2q + d+ 2

)2(d+1)

Pr
H,k,t

[
Vfinal(k, t, y, cH , w) : y, w ← AH

]
− (d+ 1)!

2m
, (35)

where cH = (c1, . . . , cd+1) with c1 = H(1, k, y) and ci = H(i, ci−1, wi−1) for i = 2, . . . , d+ 1.
Note that the inputs to H must have no duplicated entries as required by Lemma 4.13 since the

message index i is included in the input of the H. Furthermore, SA has the same quantum depth as A
since SA follows A except that it randomly chooses [d+ 1] queries of A and “measure-and-reprogram”
the oracle H after these queries, which does not increase the quantum circuit depth. Therefore, when
A wins with noticeable probability, d = O(1), and q = poly(n), Prc,k,t[Vfinal(k, t, y, c, w) : (y, w)←
(SA, c)] is also noticeable following (35).

Then, we can construct an adversary A′ for Protocol 2 as follows: a) Given k, A′ runs the first
part of SA to obtain y and send y to the verifier. b) For each round i = 1, . . . , d+ 1, on input ci and
the side information of previous round, A′ applies SA to obtain wi and sends wi to the verifier.
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Obviously, the probability thatA′ wins is noticeable following from the fact that Prc[Vfinal(k, t, y, c, w) :
(y, w) ← (SA, c)] is noticeable. This contradicts the soundness of Protocol 2. Hence, there does
not exist a d-CQ or d-QC algorithm A that succeeds in the two-round protocol with noticeable
probability in the random oracle model.

Finally, we can obtain a CVQD(d, d+ d0) in the pain model under QLWE assumption and the
random oracle heuristic.

Corollary 4.14. Assuming LWE is hard and the random oracle heuristic, for constants d and df ,
every depth-(d+ df − 1) prover succeeds in the 2-message protocol with probability negl(λ).

Proof. This corollary mainly follows from Theorem 4.12. It remains to show that an honest prover
can win with 1− negl(λ) probability without increasing the quantum circuit depth when initiating
the random oracle by hash functions. Since the two-message protocol only requires an honest prover
to use the random oracle to generate the classical challenge c, the prover only needs to use a classical
machine to query the oracle, which does not increase any quantum depth. This also holds when we
instantiate the random oracle by hash functions.

While our protocol is private-coin, Lemma 4.13 can be applied since for any fixed key pair (k, t),
we can view the verifier and the prover running a protocol in which each move of the verifier is a
public coin toss. The protocol is not a public-coin protocol since the final verdict Vfinal cannot be
computed by the prover without access to t. But this is not a problem for applying Lemma 4.13
since running the simulator SA does not require information about t. Instead, we only use the fact
that each verifier’s move is a coin toss. This observation has been made independently by Alagic,
Childs, Grilo, and Hung [2] and by Chia, Chung, and Yamakawa [13] for the round reduction of
classical verification of quantum computation. Here we apply the same idea to our multi-round
protocol.

5 Certifying a query algorithm

A q-query algorithmA given access to O, denotedAO, without loss of generality, consists of a sequence
of unitary maps UqO . . . U1OU0 acting on the zero state, followed by a standard basis measurement
to extract the information about the oracle. In the real world, information is transmitted in a
non-black-box way, and therefore one must instantiate the oracle with an efficient quantum process.
However, any instantiation in the plain model would in general leak the information about the oracle,
even based on computational assumptions [6]. Thus, the analysis or the conclusions obtained in a
query model does not apply when the oracle is replaced with an instantiation.

On the other hand, the impossibility result does not apply when the oracle is implemented by an
external device to which the algorithm has limited access. In this setting, another device, denoted
PO, is added to implement the oracle O, and the secret encoded in the oracle may be transparent to
PO. An equivalent two-player protocol that mimics the query computation can be described as the
following protocol:

1. A player PA performs U0 on the zero state, and teleports the state to the other player PO.

2. PO performs O on the quantum state and teleport the output state back.

3. A performs U1 on the input state and teleports the state.
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4. Repeat the last two steps (q − 1) times with unitaries U2, . . . , Uq and outputs w.

5. The verifier accepts if the oracle O and w satisfies some relation R and rejects otherwise.

When the players behave honestly, i.e., PO performs O in each iteration, and PA performs
U0, . . . , Uq in order, the verifier accepts with probability exactly the same as the query algorithm A
solving R. When neither of the players is trusted, we ask the question: given a query algorithm
A, can we construct an equivalent protocol against untrusted players? To answer the question, we
specify the classes of problems which we consider in this work, and the equivalence between a query
algorithm and a two-player protocol.

Oracle separation problems. For quantum complexity classes Cyes, Cno, an oracle separation
problem R is a relation between the oracle O (drawn from a public distribution) and a binary string
w such that

• there is a quantum query algorithm A that is given access to O and runs in Cyes, outputs w
such that R(O,w) = 1 with probability at least p, and

• no quantum algorithm that is given access to O and runs in Cno, outputs w such that
R(O,w) = 1 with probability at most p′.

Here, the probabilities p and p′ are defined by Cyes and Cno, e.g., if Cyes = PP and Cno = BPP,
p = 1/2 and p′ = 1/3.

Two-player protocol for separation. A two-player protocol distinguishes Cyes6 from Cno if there
exists a classical verifier V interacting with two provers PO and PA such that the following conditions
hold.

• Non-locality. PO and PA share an arbitrary quantum state and there is no quantum and
classical channel between once the protocol starts.

• Completeness. There exists PO and PA that runs in Cyes such that Pr[〈V, PO, PA〉 = accept] ≥
c.

• Soundness. For every PA that runs in Cno and any PO, Pr[〈V, PO, PA〉 = accept] ≤ s. Note
that the protocol is sound for unbounded PO.

Transforming oracle separation into two-player protocols. Our goal is to transform an
oracle separation problem R into a two-player protocol that distinguishes Cyes from Cno. In this
work, we focus on the cases where the oracle O is quantum accessible, and the predicate R can
be computed deterministically. For real numbers s ≥ 0 and c ≥ s + n−O(1), we say a two-player
protocol is (c, s)-equivalent to a problem R if there exists a classical verifier V such that the following
conditions hold.

• Completeness. For every AO that runs in COyes and solves R with probability 2/3, there exist
PA that runs in Cyes and a quantum prover PO, such that V accepts with probability at least
c.

6In this work, we only focus on the machines that can at least teleport quantum states.
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• Soundness. For every PA that runs in Cno, if V accepts with probability more than s, there
exists an oracle algorithm AO that runs in COno and solves R with probability more than 1/3.

The completness statemenet together with the contrapositive of the soundness statement implies that
if there is an oracle separation problem between Cyes and Cno, then there is a two-player protocol
that separates Cyes and Cno. We note the thresholds 2/3 and 1/3 are unimportant for our analysis;
they can be replaced for giving a contradiction.

6 A two-player non-local game for oracle separation

In this section, we show how to classically verify a query algorithm. More specifically, we show how
to turn a query algorithm into a two-player protocol that preserves the completeness and soundness,
up to an inverse polynomial multiplicative factor. Our protocol consists of two quantum provers PA
and PO sharing entanglements and interacting with a purely classical verifier V . The prover PO is
designated to perform quantum computation O, and the prover PA performs arbitrary quantum
computation to learn the information about O.

The protocol consists of two phases: in a query phase, PO receives a teleported quantum state
from PA. An honest PO performs the unitary map of the oracle O and teleports the resulting state
to PA. Next, in the computation phase, PA may perform any quantum computation, subject to its
resource constraints.

To classically verify whether PA, PO instantiates a query algorithm in the two-player model, it is
crucial that the verifier V can classically verify the PO behaves as intended. To this end, we rely on
the Leash protocol by Coladangelo, Grilo, Jeffery and Vidick [17], as introduced in Section 2.5. In
this protocol, the classical verifier interacts with two entangled provers PP and PV. PP is designated
to perform a quantum computation U on encrypted classical input |x〉 (using quantum one-time pad).
The Leash protocol relies on the Broadbent protocol to verify that PP performs U , conditioned on
PV performing the correct single-qubit measurement for each T -gadget. To classically verify PV’s
measurements, the verifier chooses either to run either a rigidity test to verify PV, or to execute
the Broadbent protocol. It is crucial that a rigidity test looks indistinguishable to PV from the real
execution of the Broadbent protocol, while at the same time PP needs to play differently for these
two tests. On the other hand, when running the Broadbent protocol, PP and PV are required to
perform one of three indistinguishable tests introduced in the previous sections. This allows the
verifier to make sure PP behaves as intended.

To verify a query algorithm, a naive approach is to run the Leash protocol to check in every query,
PO honestly run the unitary O, and PA performs the correct measurements (for the T -gadgets).
However, note that in the Leash protocol, the tests hide the round type from the provers, and only
one “query” to PP is made. Between the queries, PA performs any computation on the plaintext
(which can be done by applying the Pauli correction on the teleported state from PO). When
integrating the Leash protocol for multiple queries, the round type could possibly be leaked, at least
to PO: imagine that PA teleports its quantum state |ψ〉 to PO. When the verifier chooses to run a
rigidity test, PO actually performs corresponding measurements on fresh EPR pairs, and leaves the
state |ψ〉 unchanged. Thus PO on receiving the teleported quantum state, can run a swap test to
check if the returned state has been changed.

To overcome the issue, our approach is to run the tests in the Leash protocol only once: in
the beginning of the protocol, the verifier tosses a biased coin γ such that Pr[γ = 0] = O(1/q). If
γ = 1, the verifier chooses a uniformly random index ` ∈ {1, . . . , q}, and performs a random test. In
particular, when γ = 1, the verifier chooses a random iteration i ∈ [q], and runs the Leash protocol
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for the ith query, i.e., running a X-test, a Z-test, or a rigidity test with probability determined later.
If the provers pass the test, then the verifier simply accepts and terminates (i.e., ignores the rest of
the queries). If γ = 0, the verifier only performs the same check as in the original query algorithm,
i.e., it checks whether PA’s final output w satisfies R(O,w) = 1.

We describe the protocol in the following steps. Note that though the provers do not necessarily
follow the steps, we include the honest behavior for concreteness and clarity.

Protocol 4. [QUERY(q,O, V )] Let p = 1/3 and α = Θ(1/q).

1. The verifier V samples a oracle O ←R O for oracle ensemble O and a bit γ with Pr[γ = 0] = α.
If γ = 1, then V samples a random index `←R [q].

2. If γ = 1, for i ∈ {1, . . . , `− 1}, run COMP(Σ, O,m). For i = `,

(a) V chooses a random protocol from {X-TEST(Σ, O,m),Z-TEST(Σ, O,m),RIGID(Σ,m)}
with probability pX = p, pZ = p, pR = 1− 2p respectively.

(b) If the test succeeds then the verifier accepts and terminates; otherwise it rejects.

Otherwise, γ = 0, for i ∈ {1, . . . , q}, run COMP(Σ, O,m). Finally PA sends an answer w,
and the verifier outputs 1 if V (O,w) = 1 and 0 otherwise.

The protocol QUERY (Protocol 4) describes V ’s behavior to initiate the protocol. More specifically,
V randomly decides to do computation or tests first. If V decides to do tests, it randomly picks
one iteration ` from [q] and randomly selects a test (X, Z, or rigidity) with probability pX , pZ , pR
respectively. Then V applies corresponding protocols X-TEST (Protocol 6), Z-TEST (Protocol 7),
and RIGID (Protocol 8) at iteration ` and always applies COMP (Protocol 5) to other rounds.

Steps 1 to 4 in these four protocols are the same. In particular, the verifier V divides the EPR
pairs shared between PO and PA into subsets NC , NX , and NZ for running COMP (Protocol 5),
X-TEST (Protocol 6), and Z-TEST (Protocol 7) with corresponding measurements (chosen from
the set Σ for each EPR pair). The registers B1, . . . , Bd are used for applying the T gadgets. Then,
the verifier asks PA to measure its halves of the EPR pairs according to W , to teleport his queries
to PO, and to send the corresponding Pauli correction to the V . The verifier V sets N according
to the round type and reveals N only to PO, but the underlying state remains unknown to PO
since it is encrypted by a quantum one-time pad. On the other hand, PA cannot distinguish COMP
(Protocol 5), X-TEST (Protocol 6) or Z-TEST (Protocol 7) since it does not know N . Moreover,
from PA’s view, RIGID (Protocol 8) looks the same as the other tests. This implies that PA cannot
know if V is chooses to run RIGID (Protocol 8) to check its behavior.

Protocol 5. [COMP(Σ, O,m)]

1. Setup:

(a) V samples a random subset NC ⊆ [m] of size n, where n is the number of qubits O acts
on.

(b) For each i ∈ N̄C , V samples Wi ←R Σ.

(c) Then V samples two random subsets NX ⊆ {i : Wi = X} and NZ ⊆ {i : Wi = Z}, both
of size n.

(d) V sets N = NC .
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(e) V partitions [m]\(NC ∪NX ∪NZ) into subsets of equal size B1, . . . , Bd, where d is the
number of T layers in O.

2. (V → PA) V sends NC ,WN̄C
to PA sequentially.

3. (PA → V ) PA teleports its quantum state |ψ〉 using EPR pairs with indices in N , and sends
the Pauli correction (aNC , bNC ). For each i ∈ N̄C , perform measurements on the ith EPR
pair in basis Wi. Finally PA sends the outcomes eN̄C .

4. (V → PO): V sends N to PO.

5. For each ` = 1, . . . , d,

(a) (V → PO) V chooses a random subset T` ⊆ {i ∈ B` : Wi ∈ {G,F}}, and sends T` to
PO. For each Clifford gate in the `-th layer, perform the appropriate key update.

(b) (PO → V ): P performs the Clifford operations in the `-th layer. For each T -gadget in
the `-th layer, PO runs the T -gadget on (i, j) ∈ T` ×N , and sends the measurement
outcome cT` to V .

(c) (V → PO) For each i ∈ T`, set zi = aj + 1Wi=F + ci. V sends zT` to PO.

6. (PO → V ) Let |φ〉 be the resulting state after the evaluation of O is done. PO teleports |φ〉
to PA and sends the Pauli correction a′, b′ to V .

In the following steps in Protocol 5, V basically guides PO to apply the oracle on |ψ〉 using
corresponding gadgets and updates the keys according to the measurement outcomes of PO and PA.

Protocol 6. [X-TEST(Σ, O,m)]

1. Setup:

(a) V samples a random subset NC ⊆ [m] of size n.

(b) For each i ∈ N̄C , V samples Wi ←R Σ.

(c) Then V samples two random subsets NX ⊆ {i : Wi = X} and NZ ⊆ {i : Wi = Z}, both
of size n.

(d) V sets N = NX .

(e) V partitions [m]\(NC ∪NX ∪NZ) into subsets of equal size B1, . . . , Bd, where d is the
number of T layers in O.

2. (V → PA) V sends NC ,WN̄C
to PA sequentially.

3. (PA → V ) PA teleports its quantum state |ψ〉 using EPR pairs with indices in N , and sends
the Pauli correction (aNC , bNC ). For each i ∈ N̄C , perform measurements on the ith EPR
pair in basis Wi. Finally PA sends the outcomes eN̄C .

4. (V → PO): V sends N to PO.

5. For each ` = 1, . . . , d,

(a) (V → PO) V chooses a random subset T` = T 0
` ∪ T 1

` such that T 0
` is a random subset of

{i : Wi = Z}, and T 1
` is a random subset of {i : Wi ∈ {X,Y }}. V sends T` to PO. For

each Clifford gate in the `-th layer, perform the appropriate key update.
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(b) (PO → V ): PO performs the Clifford operations in the `-th layer. For each T -gadget in
the `-th layer, PO runs the T -gadget on (i, j) ∈ T` ×N , and sends the measurement
outcome cT` to V .

(c) (V → PO) For each i ∈ T 0
` , set zi ←R {0, 1}; if i ∈ T 1

` , zi = 1Wi=Y . V sends zT` to PO.
PO teleports |φ〉 to PA and sends the Pauli correction a′, b′ to V .

6. (PO → V ) Let |φ〉 be the resulting state after the evaluation of O is done. PO teleports |φ〉
to PA and sends the Pauli correction a′, b′ to V .

7. (V → PA) V requests PA to perform a standard basis measurement on every qubit of the
teleported state.

8. (PA → V ) PA performs a standard basis measurement on every qubit of the teleported state
and sends the outcome d. V accepts if and only if d⊕ a′ ⊕ a′′ = 0, where a′′ is calculated by
the key update rule.

Protocol 7. [Z-TEST(Σ, O,m)]

1. Setup:

(a) V samples a random subset NC ⊆ [m] of size n.

(b) For each i ∈ N̄C , V samples Wi ←R Σ.

(c) Then V samples two random subsets NX ⊆ {i : Wi = X} and NZ ⊆ {i : Wi = Z}, both
of size n.

(d) V sets N = NZ .

(e) V partitions [m]\(NC ∪NX ∪NZ) into subsets of equal size B1, . . . , Bd, where d is the
number of T layers in O.

2. (V → PA) V sends NC ,WN̄C
to PA sequentially.

3. (PA → V ) PA teleports its quantum state |ψ〉 using EPR pairs with indices in N , and sends
the Pauli correction (aNC , bNC ). For each i ∈ N̄C , perform measurements on the ith EPR
pair in basis Wi. Finally PA sends the outcomes eN̄C .

4. (V → PO): V sends N to PO.

5. For each ` = 1, . . . , d,

(a) (V → PO) V chooses a random subset T` = T 0
` ∪ T 1

` such that T 0
` is a random subset of

{i : Wi = {X,Y }}, and T 1
` is a random subset of {i : Wi ∈ Z}. V sends T` to PO. For

each Clifford gate in the `-th layer, perform the appropriate key update.

(b) (PO → V ): PO performs the Clifford operations in the `-th layer. For each T -gadget in
the `-th layer, PO runs the T -gadget on (i, j) ∈ T` ×N , and sends the measurement
outcome cT` to V .

(c) (V → PO) For each i ∈ T 1
` , set zi ←R {0, 1}; if i ∈ T 0

` , zi = 1Wi=Y . V sends zT` to PO.
PO teleports |φ〉 to PA and sends the Pauli correction a′, b′ to V .
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6. (PO → V ) Let |φ〉 be the resulting state after the evaluation of O is done. PO teleports |φ〉
to PA and sends the Pauli correction a′, b′ to V .

7. (V → PA) V requests PA to perform a Hadamard basis measurement on every qubit of the
teleported state.

8. (PA → V ) PA performs a Hadamard basis measurement on every qubit of the teleported
state and sends the outcome d. V accepts if and only if d⊕ b′⊕ b′′ = 0, where b′′ is calculated
by the key update rule.

Protocol 6 and Protocol 7 originate from the Broadbent protocol to check if PO is consistent with
O. The crucial idea, as introduced in Section 2.4, is that PO acts as applying identity on an all-zero
or an all-plus state up to key update. Therefore, the verifier can detect if there is an attack applied
to the computation: First V asks PA to perform a standard basis or a Hadamard basis measurement
on the state received from PO. Then it applies the key update rules to compute the decryption key,
and check if the measurement outcomes from PA decrypts to zero.

Since the above steps relies on reliable measurements performed by PA, it is essential to enforce
PA to perform the measurements correctly. We include our modification RIGID(Σ,m) of the rigidity
test in Section 2.5. The test is the same as RIGID′(Σ, |N̄ |) on a random subset N̄ of [m]. The
purpose of RIGID (Protocol 8) is to check if PA measures its EPR pairs in bases W ′. From the
collection of measurement outcomes for questions W to PA and W ′ to PO, V checks if the outcomes
follows the relation specified in Protocol 8. By Theorem 2.15, passing with probability 1− ε ensures
PA’s output is poly(ε)-close in total variation distance to a measurement performed on EPR pairs
in the correct bases W . Note that PO knows that V chooses to execute RIGID (Protocol 8) after
receiving W from V . However, PA does not know this since it only receives random partitions and
W , indistinguishable from the messages he obtained in other protocols.

Protocol 8. [RIGID(Σ,m)]

1. Setup:

(a) V samples a random subset NC ⊆ [m] of size n.

(b) For each i ∈ N̄C , V samples Wi ←R Σ.

(c) Then V samples two random subsets NX ⊂ {i : Wi = X} and NZ ⊆ {i : Wi = Z}, both
of size n.

(d) V sets N = NC .

(e) V partitions [m]\(NC ∪NX ∪NZ) into subsets of equal size B1, . . . , Bd, where d is the
number of T layers in O.

2. Execute RIGID′(Σ, |N̄ |) on the subset N̄ and output the outcome.

6.1 Completeness

The completeness immediately follows: for algorithm A, the provers PO performs O and PA performs
Ui in each iteration i. Then the provers with probability 1 if X-TEST or Z-TEST is chosen. By
Theorem 2.15, when RIGID is chosen, they succeeds with probability 1− exp(−Ω(n+ t)). We give a
proof as follows.

42



Theorem 6.1 (Completeness). For every q-query algorithm AO which outputs w satisfying R(O,w) =
1 with probability at least 2/3, there exist provers PO, PA which succeed with probability at least
1− α

3 − exp(−Ω(n+ t)).

Proof. For every algorithm A that succeeds with probability at least c′ ≥ 2/3, in each iteration
i, PO runs O and PA runs Ui. The provers passes X-TEST and Z-TEST, when they are chosen,
with probability 1. By Theorem 2.15, when the verifier chooses to execute RIGID (with probability
(1− α)/3), honest provers succeed with probability 1− exp(−Ω(n+ t)) since CHSH games are run
in sequential repetition. Thus the success probability of the provers is

α · c′ + 2(1− α)

3
+

1− α
3

(1− exp(−Ω(n+ t))) = 1− α(1− c′)− 1− α
3

exp(−Ω(n+ t))

≥ 1− α

3
− exp(−Ω(n+ t)). (36)

6.2 Soundness

To show the soundness, recall that it suffices to show that if the provers succeed with probability
more than s, then there exists a query algorithm which is accepted with probability more than 1/3.
First we show a simpler case in which PA behaves honestly.

Lemma 6.2 (Soundness with honest PA). There exists α = Θ(1/q) such that, for every provers PO
that succeeds with success probability s > 1− 2α

3 , there exists a query algorithm that is given access
to O and outputs w satisfying R(O,w) = 1 with probability more than 1/3.

Proof. Let the success probability be 1− εi conditioned on γ = 1 and the chosen index is i. The the
probability of failing X-TEST or Z-TEST is at most p−1εi. Then the quantum channel Ei that PA
implements at iteration i satisfies ‖Ei −O‖� ≤ 2p−1εi.

Then let A be Uq ◦ O ◦ Uq−1 ◦ · · · ◦ U1 ◦ O ◦ U0. By union bound,

‖A − Uq ◦ Eq ◦ Uq−1 ◦ · · · ◦ U1 ◦ E1 ◦ U0‖� ≤
2

p

t∑
i=1

εi = 2qp−1ε, (37)

where ε := 1
q

∑
i εi ∈ [0, 1]. Then the success probability of PO is

s = (1− α)(1− ε) + αδ ≤ (1− α)(1− ε) + α(pA + 2qε/p), (38)

where δ is the probability that the provers output w such that such that R(O,w) = 1 conditioned
on γ = 0 (i.e., the second quantum channel in (37)), and pA is the success probability of A. This
implies that

pA ≥
s

α
−
( 1

α
− 1
)

(1− ε)− 2qε/p = 1− 1− s
α

+ ε
( 1

α
− 1− 2q

p

)
. (39)

Setting α = 1
1+2q·c/p for any constant c > 0, we conclude that pA ≥ 1 − 1−s

α . If s > 1 − 2α
3 ,

pA > 1/3.
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Now we consider the effect of a cheating PA. The crucial idea is if PA chooses to deviate
non-trivially from the protocol by ε in total variation distance, then the probability it is accepted
when RIGID (Protocol 8) is chosen is then at most 1− ε. As argued previously, since PA does not
learn whether RIGID is selected, the same strategy must have been applied for other tests. This
implies that in the delegation game (where X-TEST, Z-TEST or COMP is chosen), the score can be
at most increased by at most poly(ε). This is because as shown in Theorem 2.15, the rigidity test
guarantees that for every pair of provers succeeds with probability 1− ε, the output transcript must
be poly(ε)-close to the that from an honest strategy in total variance distance. More formally, for
every pair of provers PO and PA such that they succeed in the rigidity test with probability 1− ε and
in the delegation game with probability q, there exist P ′O and P ′A such that P ′A plays honestly (i.e.,
performs a correct measurement on a half of every EPR pairs) and they succeed in the delegation
game with probability q − poly(ε). We use the result to prove the following theorem.

Theorem 6.3 (Soundness). For constant p, there exists α = 1/ poly(q), such that for every pair of
provers that succeeds with probability s > 1− 2α

3 , there exists a query algorithm that is given access
to O and outputs w satisfying R(O,w) = 1 with probability more than 1/3.

Proof. Let the success probability be 1− εi conditioned on γ = 1 and the chosen index being i ∈ [q].
Thus the failure probabilities are at most εi

p ,
εi
p and εi

1−2p respectively conditioned on the events that
an X-TEST, an Z-TEST and an rigidity test RIGID is chosen. Also note that when an X-TEST or a
Z-TEST is chosen, the provers do not distinguish the test from COMP until V asks a measurement
from PA. When RIGID is chosen, PA does not distinguish it from COMP,X-TEST,Z-TEST until V
accepts or rejects.

By Theorem 2.15, there exist P ′A, P
′
O such that P ′A plays honestly, and P ′O successfully passes

X-TEST and Z-TEST with probability at least 1− δi = 1− εi
p − poly

(
εi

1−2p

)
. Thus by Theorem 2.14,

P ′O implements a quantum channel Ei such that ‖Ei −O‖� ≤ 1− 2δi.

Conditioned on γ = 0, let the process of P ′A on receiving a teleported state ρ(i)
in , produces the

output state ρ(i)
out be Ui : ρ

(i)
in 7→ ρ

(i)
out. Now let the algorithm A := Uq ◦ Oq ◦ · · · ◦ U1 ◦ O1 ◦ U0. By

union bound,

‖A − Uq ◦ Eq ◦ Uq−1 ◦ · · · ◦ U1 ◦ E1 ◦ U0‖� ≤ 2

q∑
i=1

δi,= 2qδ, (40)

where δ = 1
q

∑q
i=1 δi = ε/p + poly( ε

1−2p) ≤ g(ε) = poly(ε) for some monotonically increasing g in
[0,∞) (e.g., c · εa for constants a ≤ 1 and c). Since g is monotonically increasing for ε ≥ 0, we note
that the inverse g−1 exists. The success probability of the provers is upper bounded by

s ≤ (1− α)(1− ε) + α ·max{(pA + 2q · g(ε)), 1} (41)

where ε = 1
q

∑
i εi and pA is the probability that measuring the associated qubits on A’s output state

yields an outcome w satisfying R(O,w) = 1. Since g(ε) is monotonically increasing, there exists
ε∗ ≥ 0 such that 2qδ(ε∗) = 1− pA ≤ 2q · g(ε∗). This implies that

s ≤ (1− α)(1− ε∗) + α = 1− (1− α)ε∗ ≤ 1− (1− α) · g−1
(1− pA

2q

)
, (42)

and

pA ≥ 1− 2q · g
(

1− s
1− α

)
. (43)
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By (43), if s > 1−(1−α)·g−1( 1
3q ), pA > 1/3. For α >

g−1( 1
3q

)
2
3

+g−1( 1
3q

)
, we have 1−(1−α)·g−1( 1

3q ) > 1− 2α
3 .

It suffices to choose α =
2·g−1( 1

3q
)

2
3

+g−1( 1
3q

)
= 1/ poly(q).

Setting p = 1/3, we conclude with the following corollary, a direct consequence of Theorem 6.1
and Theorem 6.3.

Corollary 6.4. Let Cyes, Cno be two complexity classes. If there exists an oracle O and a relation R
such that R is solvable in COyes using q queries but not in COno. Then, there exists α = 1/ poly(q) and
a protocol 〈V, PO, PA〉 such that the following statements hold.

• There exist PO that runs in O(q ·CC(O)) + poly(n) and PA runs in Cyes such that the verifier
accepts with proability at least 1− α

3 − e
−Ω(n).

• For any PA that runs in Cno and any unbounded PO, the verifier accepts with probability at
most 1− 2α

3 .

Here, CC(O) is the quantum circuit complexity for implementing O.

7 Classical verification of quantum depth from oracle separation

In this section, we will prove the existence of CVQD2(d, d′) for integers d′ > d. First we give the
formal definition as follows.

Definition 7.1 (CVQD2(d, d′)). Let d, d′ ∈ N and d′ > d. A two-prover protocol CVQD2(d, d′) that
separates quantum circuit depth d from d′ consists of a classical verifier V and two provers PO, PA
such that the following properties hold:

• Non-locality: PO and PA share an arbitrary quantum state, and there is no quantum and
classical channel between them once the protocol starts.

• Completeness: There exist an integer d̂ ≥ d′, a quantum prover PO and a d̂-QC or d̂-CQ
scheme PA such that Pr[〈V, PO, PA〉 = accept] ≥ 2/3.

• Soundness: For integer d̂ ≤ d and any d̂-QC or d̂-CQ scheme PA and any PO, Pr[〈V, PO, PA〉 =
accept] ≤ 1/3.

We prove the following theorem by Corollary 6.4 and the oracle separation in [12]. Note that
Definition 7.1 does not specify the power of V and honest PO except that V is a classical algorithm
and PO is a quantum machine that can store EPR pairs. we first show the existence of an information-
theoretically secure CVQD2(d, 2d+ 3) for any d = poly(n) with inefficient verification, i.e., V and
honest PO need to run in exponential time. Then, we show a CVQD2(d, 2d+ 3) for any d = poly(n)
with efficient verification under the assumption that qPRP (Definition 2.8) exists.

Theorem 7.2. Let d = poly(n).

1. There exist α = 1/ poly(d) and an unconditionally secure CVQD2(d, 2d+ 3) (Definition 7.1),
in which the verifier V runs in probabilistic O(2n) time such that the following holds.

• Completeness: There exist PA which has quantum depth at least 2d+ 3 and PO which
runs in quantum O(2n) time such that Pr[〈V, PO, PA〉 = accept] ≥ 1− α

3 .
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• Soundness: For any unbounded PO and PA that are d-CQ or d-QC schemes, Pr[〈V, PO, PA〉 =
accept] ≤ 1− 2α

3 .

2. Assume that there exist quantum-secure pseudorandom permutations (qPRP) as defined in
Definition 2.8. There exist α = 1/ poly(d) and CVQD2(d, 2d+ 3) (Definition 7.1), in which V
runs in probabilistic polynomial time such that the following holds.

• Completeness: There exist PA that has quantum depth at least 2d+ 3 and PO that runs
in quantum polynomial time such that Pr[〈V, PO, PA〉 = accept] ≥ 1− α

3 .

• Soundness: For any unbounded PO and PA that are d-CQ or d-QC schemes, Pr[〈V, PO, PA〉 =
accept] ≤ 1− 2α

3 .

For efficient instantiations, it is required that the functions f0, . . . , fd are efficiently samplable and
computable. Any construction of qPRP satisfying Definition 2.8 (e.g., [32]) can be used to construct
a pseudorandom d-shuffling of a pseudorandom Simon’s function. We now give constructions.

In the problem d-SSP, the functions f0, . . . , fd−1 are random permutations. These functions can
be replaced with pseudorandom permutations. For the last function fd, we note that fd can be
written as f ◦ f−1

0 ◦ · · · ◦ f−1
d−1, where f is a random Simon’s function, when the domain is restricted

to a hidden subset. It then suffices to show a construction of a pseudorandom Simon’s function.

Definition 7.3 (Pseudorandom Simon’s function). For finite set Y, let S be the set of Simon’s
function from {0, 1}n to Y, i.e., f ∈ S if there exists s ∈ {0, 1}n such that f(x) = f(x′) if
and only if x = x′ ⊕ s. For key space K, a pseudorandom Simon’s function is a keyed function
F : K × {0, 1}n → {0, 1}m such that for every quantum adversary A, it holds that∣∣∣∣ Pr

F←RS
[AF () = 1]− Pr

k←RK
[AFk() = 1]

∣∣∣∣ ≤ negl(n). (44)

We note that by the definition of Simon’s function, it must be the case that m ≥ n− 1. Next we
prove that there exists a pseudorandom Simon’s function from qPRP.

Claim 7.4. Assume that qPRP exists as defined in Definition 2.8. Then there exists a pseudorandom
Simon’s function as defined in Definition 7.3.

Proof. We first show that a random Simon’s function can be constructed from a random permutation,
and thus replacing a random permutation with a qPRP, we obtain a pseudorandom Simon’s function.

Let H := {x ∈ {0, 1}n : x < x ⊕ s} for total ordering < over {0, 1}n defined as follows: For
x, y ∈ {0, 1}n, x < y if the smallest index i ∈ [n] where xi 6= yi satisfies xi = 0 and yi = 1.

The subset H forms a subgroup of {0, 1}n for group operation ⊕: It is clear that 0 ∈ H since 0 is
smaller than any string in {0, 1}n. Let i ∈ [n] be the smallest index such that si = 1. For x, y ∈ H,
xi = yi = 0, and thus (x⊕ y)i = 0. This implies that x⊕ y ∈ H. Since H is a subgroup, the cosets
{H, s⊕H} forms a partition of {0, 1}n.

Now we show that for codomain Y = {0, 1}m where m ≥ n − 1, every Simon’s function
f : {0, 1}n → Y can be constructed from a permutation and a hidden shift s. We then define the
following function Ts : {0, 1}n → H, Ts(x) = x for x ∈ H, and Ts(x) = x⊕ s for x ∈ s⊕H. Let the
mapping Ws : H → {0, 1}m,

Ws(x1, . . . , xn) = (x1, . . . , xi−1, xi+1, . . . , xn, 0, . . . , 0), (45)
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where i is the smallest index such that si = 1. The padding has m− n+ 1 zeros. For every Simon’s
function f with shift s, we know that f = f ◦ Ts. When the domain is restricted to H, f is injective,
and thus there exist (2m − |H|)! permutations P : {0, 1}m → {0, 1}m such that f = P ◦Ws ◦ Ts (we
use the convention that 0! = 1). On the other hand, by definition, for every P , P ◦Ws ◦ Ts is a
Simon’s function. These facts imply that (P, s) 7→ P ◦Ws ◦ Ts is a well-defined mapping from a pair
of permutation and shift to a Simon’s function and is (2m − |H|)!-to-1.

Thus a random Simon’s function can be sampled (inefficiently) as follows: First sample a uniform
shift s ←R {0, 1}n and a random permutation P : {0, 1}m → {0, 1}m and output P ◦Ws ◦ Ts. A
pseudorandom Simon’s function can be sampled efficiently using a qPRP F : K×{0, 1}m → {0, 1}m:
Sample a random shift s←R {0, 1}n and k ←R K and output gk,s := Fk ◦Ws ◦ Ts.

To show that gk,s indeed yields a pseudorandom Simon’s function, suppose toward contradiction
there exists an adversary A which distinguishes gk,s for uniform k, s from a random Simon’s function
with non-negligible probability ε. Then the reduction B given oracle access to a permutation Q,
samples s←R {0, 1}n and outputs b← AQ◦Ws◦Ts . If Q is random, Q ◦Ws ◦ Ts is a random Simon’s
function; otherwise let the key be k, and the Simon’s function is gk,s. By the assumption, B
distinguishes a random permutation from a qPRP with non-negligible advantage.

We then define the pseudorandom d-shuffling of a function f , which can be implemented in
quantum polynomial time.

Definition 7.5 (Pseudorandom d-shuffling (cf. Definition 2.4)). For f : {0, 1}n → {0, 1}n, pseu-
dorandom d-shuffling of f is a tuple of functions (f0, . . . , fd), where f0, . . . , fd−1 are pseudorandom
permutations over {0, 1}(d+2)n, and the last function fd is a fixed function satisfying the following
properties: Let Sd := {fd−1 ◦ · · · ◦ f0(x′) : x′ ∈ {0, 1}n}.

• For x ∈ Sd, let fd−1 ◦ · · · ◦ f0(x′) = x, and choose the function fd : Sd → [0, 2n − 1] such that
fd ◦ fd−1 ◦ · · · f0(x′) = f(x′).

• For x /∈ Sd, fd(x) = ⊥.

Now we are ready to define a pseudorandom d-shuffling Simon’s problem.

Problem 2 (Pseudorandom d-SSP (cf. Problem 1)). Given oracle access to a pseudorandom d-
shuffling (Definition 7.5) of a pesudorandom Simon’s function (Definition 7.3), the problem is to
find the hidden shift.

By a simple hybrid argument, pseudorandom d-SSP separates a depth-(2d+ 3) quantum compu-
tation from a depth-d one.

Corollary 7.6. Let d = poly(n). Pseudorandom d-SSP (Problem 2) can be solved by a QNC2d+3

circuit with classical post-processing. Furthermore, for any d̂-CQ and d̂d-QC schemes A with d̂ ≤ d,
the probability that A solves the problem is negligible.

Now, we can prove Theorem 7.2.

Proof of Theorem 7.2. By Theorem 2.6, d-SSP separates the complexity classes BPPBQNCd∪BQNCBPP
d

and BPPBQNC2d+3 ∩BQNCBPP
2d+3 relative to the d-shuffling oracle of f . Furthermore, teleporting quan-

tum states only takes one circuit depth by choosing the gateset properly or considering the gateset
including all one- and two-qubit gates as in Remark 2.3. Therefore, by setting q = 2d+ 1, O to be
the shuffling oracle, and R to be d-SSP, Protocol 4 separates depth-(2d+ 3) quantum computation
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from depth-d and the relation R(O,w) = 1 if and only if O is the shuffling oracle and w is the hidden
shift according (see Corollary 6.4). Here, V and PO are inefficient since describing and implementing
the shuffling oracle are inefficient.

Following the same proof, we can also show that Protocol 4 separates depth-(2d+ 3) quantum
computation from depth-d by replacing d-SSP by pseudorandom d-SSP. This follows from the fact
that pseudorandom d-SSP also separates depth-(2d + 3) quantum computation from depth-d by
Corollary 7.6. Then, we follow the same proof for d-SSP by using Corollary 6.4 except that we set
O to be a pseudorandom-shuffling oracle that can be described and implemented efficiently, and
thus both V and PO are efficient.

Note that the algorithm is allowed to make parallel queries which do not increase the query
depth. It is straightforward to adapt Protocol 4 to allow parallel queries: let t denote the largest
number of parallel queries. For any query algorithm A of depth q, there is a query algorithm A′
that is given access to O⊗t and achieves the same performance as A. The equivalent two-player
protocol to A′ is QUERY(2d+ 3, O′, R), where sampling O′ can be performed by sampling O ←R O
and outputting O′ = O⊗t.

Furthermore, we emphasize that while the protocol only has a small completeness-soundness gap
α/3 = 1/poly(d), by sequential repetition for O(α−2 · log2 λ) times it suffices to amplify the gap to
1− negl(λ).

7.1 A nearly optimal separation

In this section, we modify the original d-SSP to give an oracle separation that reduces the gap from
d versus 2d+ 3 to d versus d+ 3.

First, instead of considering the standard quantum query model, we define d-shuffling in the
“in-place” quantum oracle model.

Definition 7.7 (In-place d-shuffling). Let f : {0, 1}n → {0, 1}n be a Simon’s function with shift s.
Let F := {f0, . . . , fd} be a d-shuffling of f . We define the in-place (d, f)-shuffling U := {Uf0 , . . . , Ufd}
as follows:

1. For i = 0, let Uf0 be a unitary such that for all x ∈ {0, 1}(d+2)n, Uf0 |x〉|0〉 = |x〉|f0(x)〉.

2. For i = 1, . . . , d− 1, let Ufi be a unitary in C2(d+2)n×2(d+2)n such that for all x ∈ {0, 1}(d+2)n,
Ufi |x〉 = |fi(x)〉.

3. Let Ufd be a unitary in C2(d+2)n+1×2(d+2)n+1 such that for all x ∈ {0, 1}(d+2)n and b ∈ {0, 1},
Ufd |x, b〉 = |fd(x)〉|b ⊕ b′〉, where b′ = 1 if x ∈ H (see the definition of H in the proof of
Claim 7.4).

We note that an in-place pseudorandom permutation exists if there exists a qPRP defined in
Definition 2.8. First we give the definition of in-place qPRPs.

Definition 7.8 (In-place qPRP (cf. Definition 2.8)). For security parameter λ and polynomial
m = m(λ), a pseudorandom permutation P over {0, 1}m is a keyed function K × {0, 1}m → {0, 1}m
such that there exists a negligible function such that for every quantum adversary A, it holds that∣∣∣ Pr

F←RP
[AIF ,IF−1 = 1]− Pr

k←RK
[AIP (k,·),IP−1(k,·) = 1]

∣∣∣ ≤ negl(λ), (46)

where IQ : |x〉 7→ |Q(x)〉 for x ∈ {0, 1}m and permutation Q : {0, 1}m → {0, 1}m.
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Theorem 7.9. If there exists a qPRP as defined in Definition 2.8, then an in-place qPRP defined in
Definition 7.8 exists.

Proof. It suffices to show that an in-place oracle of a permutation P can be implemented using two
queries to the standard oracles OP : |x, y〉 7→ |x, y ⊕ P (x)〉 and OP−1 . A query to the in-place oracle
of P can be computed in the following steps:

|x, 0〉 OP7−−→ |x, P (x)〉
OP−17−−−→ |x⊕ P−1(P (x)), P (x)〉 = |0, P (x)〉. (47)

Swapping the registers and removing the ancilla yields a mapping |x〉 7→ |P (x)〉.
Now we show that if F : K × {0, 1}n → {0, 1}n is a qPRP as defined in Definition 2.8, then F is

an in-place qPRP. Suppose toward contradiction that a quantum adversary A which distinguishes
|x〉 7→ |Fk(x)〉 for k ←R K and |x〉 7→ |P (x)〉 for uniform permutation P with advantage ε. Then we
show there exists an adversary B which distinguishes OFk , OF−1

k
from OP , OP−1 . The adversary B

simulates the mapping in (47) using two queries to either OFk , OF−1
k

or OP , OP−1 and runs A. By
the assumption, B distinguishes the oracles with advantage ε.

We define in-place d-SSP as follows:

Definition 7.10 (In-place d-SSP). Let n ∈ N and f : {0, 1}n → {0, 1}n be a random Simon’s
function. Given access to the in-place d-shuffling oracle of f , the problem is to find the hidden shift
of f .

Theorem 7.11. Let d = poly(n). In-place d-SSP can be solved using (d+ 3)-CQ and (d+ 3)-QC
schemes with access to the in-place d-shuffling oracle of f . Furthermore, for any d′-CQ or d′-QC
schemes A with access to the in-place d-shuffling oracle of f and d′ ≤ d, the probability that A solves
the problem is negligible.

Note that if we consider the models defined in Definition 3.8 and Definition 3.10 in [12], the
quantum depth separation will be d versus d+ 1. See Remark 2.7 for the detailed discussion.

We present the proof of Theorem 7.11 in Appendix A. By Corollary 6.4 and Theorem 7.11, we
have a construction of CVQD2(d, d+ 3).

Corollary 7.12. For d = poly(n), there exists an unconditionally secure CVQD2(d, d + 3) which
is sound as in Theorem 7.2, 1 and complete with PO and V running in O(2n) time. Moreover, if
qPRP (Definition 2.8) exists, then there exists CVQD2(d, d+ 3) which is sound as in Theorem 7.2, 2
and complete with PO and V running in polynomial time.

Proof. Following the same idea, we set q = d + 1, and we choose O to be the in-place shuffling
oracle and R to be in-place d-SSP. Then, Protocol 4 separates d+ 3-depth quantum circuit from
d-depth quantum circuit in the presence of polynomial-time classical computation by Corollary 6.4
and Theorem 7.11.

Again, V and PO are not efficient since implementing random permutations is expensive. Following
the same idea for proving the second result of Theorem 7.2, we can make both V and PO efficient
using qPRP in the in-place oracle model.
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A Proof of Theorem 7.11

Lemma A.1. In-place d-SSP can be solved by a (d + 3)-depth quantum circuit with classical
post-processing.

Proof. The algorithm is as follows:∑
x∈Zn2

|x〉|0〉|0〉
Uf0−−→

∑
x∈Zn2

|x〉|f0(x)〉|0〉

Uf1−−→
∑
x∈Zn2

|x〉|f1(x)〉|0〉

Ufd−−→
∑
x∈Zn2

|x〉|f(x)〉|b(x)〉

measure the second register−−−−−−−−−−−−−−−−−−−−−→ 1√
2

(|x〉|b(x)〉+ |x⊕ s〉|b(x⊕ s)〉)

Apply H on the last qubit and measure−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 1√
2

(|x〉+ |x⊕ s〉) with probability 1/2.

H⊗n−−−→ 1√
2n

∑
j∈Zn2

((−1)x·j + (−1)(x+s)j)|j〉

Then, the rest of the algorithm follows from Simon’s algorithm. The additional two depths come
from the Hadamard gates an the beginning and at the end of the above algorithm.

We sketch a proof for the lower bound in the following.
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Lemma A.2. For any d-CQ or d-QC schemes A, the probability that A solves in-place d-SSP is
negligible.

To prove that in-place d-SSP is hard for d-depth quantum circuit, we need to prove the oneway-
to-hiding lemma (Lemma 5.7 in [12]) for in-place shuffling oracle.

Claim A.3 (in-place oracle version of Lemma 5.7 in [12]). Let F be a d-shuffling of a random Simon’s
function f and U := {Uf0 , . . . , Ufd} be the corresponding in-place d-shuffling. Let S = {S̄(0), . . . , S̄(d)}
be a sequence of hidden sets as defined in Definition 5.2 in [12]. Then, for all k = 0, . . . , d, there
exists a shadow G of F in S̄(k) such that for any single-depth quantum circuit Uc, initial state ρ, and
any binary string t,

|Pr[Π0/1 ◦ UFUc(ρ) = t]− Pr[Π0/1 ◦ UGUc(ρ) = t]| ≤ B(UFUc(ρ),UGUc(ρ))

≤
√

2 Pr[find S̄(k) : UF\S̄
(k)
, ρ].

Here, B(·, ·) is the Bures distance between quantum states, and UF\S̄(k) is defined in Definition 5.6
in [12]. UG is the in-place oracle for G.

Proof. We first define the shadow G of F in S̄(k). The definition follows the same spirit of the
shadow in [12]. In the original definition, the shadow G maps x ∈ S̄(k) to a special symbol ⊥ and
is consistent with F for x /∈ S̄(k). This definition of shadow does not work in the in-place oracle
setting since the corresponding oracle is not a unitary.

So, here, we define G as a random function satisfying the following: If x /∈ S̄(k), we let G(x) = F(x);
else if x ∈ S̄(k), we let G(x) to be independent of F(x), and the in-place oracle of G, UG , is still a
unitary. In particular, for shadows corresponding to f1, . . . , fd−1 in S̄(k), we pick another random
permutation that is independent of f1, . . . , fd−1 in S̄(k) and is consistent with f1, . . . , fd−1 for
x /∈ S̄(k); for fd, we can pick another 2-to-1 function that results in no hidden shift or a different
hidden shift.

Then, the rest of the proof directly follows from the proof for Lemma 5.7 in [12].

The rest of the analysis to show that in-place d-SSP is hard for d-depth quantum circuit in the
presence of classical computation follows the proof in [12] by using the new shadow we construct in
the proof for Claim A.3.
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