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Abstract. Isogeny-based cryptography is an instance of post-quantum
cryptography whose fundamental problem consists of finding an isogeny
between two (isogenous) elliptic curves E and E′. This problem is closely
related to that of computing the endomorphism ring of an elliptic curve.
Therefore, many isogeny-based protocols require the endomorphism ring of
at least one of the curves involved to be unknown. In this paper, we explore
the design of isogeny based protocols in a scenario where one assumes
that the endomorphism ring of all the curves are public. In particular,
we identify digital signatures based on proof of isogeny knowledge from
SIDH squares as such a candidate. We explore the design choices for such
constructions and propose two variants with practical instantiations. We
analyze their security according to three lines, the first consists of attacks
based on KLPT with both polynomial and superpolynomial adversary, the
second consists of attacks derived from the SIDH attacks and finally we
study the zero-knowledge property of the underlying proof of knowledge.

1 Introduction

Isogeny-based cryptography is a promising candidate to develop quantum-secure
protocols. At its core, lies the fundamental assumption that it is computationally
hard to find an isogeny between two isogenous elliptic curves. When the curves
are supersingular, the setting of nearly all modern constructions [18, 41, 16, 27,
38, 25, 21, 33, 10], the isogeny problem is strictly linked to the endomorphism
ring problem. The latter asks to find a basis of the ring of all the endomorphisms
of a supersingular elliptic curve, i.e. all the isogenies from the curve to itself.
The problem of finding an isogeny between two elliptic curves reduces to the
endomorphism-ring problem: given two curves and a representation of their
endomorphism rings, it is possible to compute an isogeny connecting them in
polynomial time [42, 55].

Due to this connection, the endomorphism ring problem and its relationship
to the security of many isogeny-based protocols have been extensively studied.
The best known algorithm to compute endomorphism rings is due to Eisenträger,
Hallgren, Leonardi, Morrison, and Park [29], and it runs in Õ(p1/2) time, where p is



the characteristic of the underlying finite field (the result relies on some heuristics
which were removed in [35]). Given a curve E0 with known endomorphism ring
End(E0), and an isogeny ϕ : E0 → E, one can push the endomorphism ring
End(E0) of E0 through ϕ to recover End(E) [42, 55]. Thus, finding an isogeny
between a curve E0 with known endomorphism ring, and a given curve E solves
the endomorphism ring problem for the curve E. Since the characteristic p is
exponential in the security parameter in practice, the general endomorphism ring
problem remains hard.

It remains of interest to understand how the security of isogeny-based protocols
is affected when an attacker has knowledge of the endomorphism rings. In
several protocols, such as the GPS signature [37], SÉTA [21], SQISign [25]
and SQISignHD [20], the secret keys are directly linked to a description of the
endomorphism ring. Thus, solving the endomorphism ring problem trivially
breaks such protocols. In other schemes, such as SIDH [41], CSIDH [16] and
SCALLOP [23], CSI-FiSh–[13], SeaSign [24] , the secret isogenies have specific
properties: if the endomorphisms of all curves were known, a direct application
of [42, 55] would prevent obtaining the correct isogeny. Nonetheless, it has
been shown that the additional information that such protocols reveal, such as
short degrees, torsion images or orientations, is sufficient to recover the secret
isogeny [36, 17, 54, 32]. More recently proposed schemes, such as M-SIDH/MD-
SIDH [33], FESTA [10] and binSIDH/terSIDH [8] compute isogenies of degree
roughly √p or even smaller, hence the attack in [36] trivially extends to those
cases when endomorphism rings of curves are public. Moreover, many other
protocols are insecure when the starting curves have known endomorphism ring.
This is the case, for instance, for the CGL hash function [18, 28], the CSIDH-based
oblivious transfer protocols [43, 5], the commitment scheme by Sterner [50], the
SIDH-based oblivious pseudorandom functions [14, 9, 6], and the hash proof
systems and dual-mode PKEs based on group actions [3].

The relevance of endomorphism rings in isogeny-based cryptography and the
consequences of their knowledge on security raises the following natural question:

Can we construct a secure cryptographic protocol where
the endomorphism rings of all curves are public?

One has to remark that one of the most natural algorithmic problems, namely
finding an isogeny of a fixed degree d between supersingular elliptic curves, is not
known to be equivalent to the endomorphism ring problem. An efficient classical
equivalence between finding fixed degree isogenies and computing endomorphism
rings would have important consequences, e.g., a significant speed-up of SQIsign.
Understanding whether we can build protocols which are secure even if endomor-
phism rings of all curves is public has both theoretical and practical consequences.
On the theoretical side, a protocol that remains secure when the endomorphism
rings of all curves are known shows that, even if the endomorphism ring problem
is efficiently solvable, some isogeny-based constructions are still possible, and
retain some security. On the practical side, the complexity of the endomorphism-
recovering attacks generally imposes primes p with p > 22λ; without requiring
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endomorphism rings to remain secret, it is possible to design protocols with
smaller primes, leading to more efficient and more compact protocols.

Contributions. In this paper, we develop two protocols that appear to be
secure, even if the endomorphism rings of all elliptic curves are public. This
suggests an affirmative response to the question set out in the introduction (even
though further cryptanalysis is necessary).

Both protocols are digital signatures, based on a proof of isogeny knowledge
built on top of SIDH squares. In this work, we focus on digital signatures since
it is the primitive that is most likely to be secure when endomorphism rings
are known: the SIDH-based constructions generally reveal little information
besides the degrees and the end curves of secret isogenies. Indeed, it is possible to
construct SIDH-based signatures that do not reveal any torsion information [22]
or that are statistically independent from the secret key [7].

In this work, we analyze existing constructions of proofs of isogeny knowledge
and identify three main design choices (Section 3). We also propose two practical
instantiations, which are plausibly secure despite the underlying prime field
having characteristic smaller than 22λ.

To analyze the security of the proposed constructions, we identify and study
three main lines of attacks. The first approach relies on the knowledge of endomor-
phism rings and the KLPT algorithm [42]. We analyze these attacks extensively
in Section 4. Moreover, the KLPT algorithm has always been considered for
constructive applications, and thus its analysis in the literature is bounded to
polynomial running times. In this work, we study the output of the KLPT al-
gorithm when running in superpolynomial time, which may be of independent
interest. The method used is a variation of [45, Section 3.4.].

We also consider attacks based on the recent attacks on SIDH (Section 5.1) and
based on the lack of zero-knowledge of the underlying sigma protocol (Section 5.2).
The results of these analyses shows that it is possible to design signatures based
on proofs of isogeny knowledge with binary challenges, which are more efficient
and compact than those based on proofs with ternary challenges (see (?? for
an estimate of the concrete sizes). Combined with the previous analysis of
KLPT-based attacks, this provides an argument for the security of the proposed
constructions.

2 Preliminaries

2.1 Σ protocols and digital signatures

Definition 1 (Sigma Protocol). A sigma protocol is a three-move proof system
for a language L consisting of oracle-calling PPT algorithms (P = (P1, P2),
V = (V1, V2)), where V2 is deterministic. We assume P1 and P2 share states
and so do V1 and V2. Let ChallSet denote the challenge set. Then, the protocol
proceeds as follows.
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– The prover, on input (st,wt) ∈ L, computes com←− P1(st,wt) and sends the
commitment com to the verifier.

– The verifier computes chall ←− V1(1
λ), drawing a random challenge from

ChallSet, and sends it to the prover.
– The prover, given chall, computes resp ←− P2(st,wt, chall) and returns a

response resp to the verifier.
– The verifier runs V2(st, com, chall, resp) and outputs ⊤ (accept) or ⊥ (reject).

A sigma protocol is said to be correct if knowing wt is enough for the prover
to convince the verifier that they indeed know the witness; it is said to be n-
special sound if being able to produce n valid transcripts (st, com, challi, respi), i ∈
{1, 2, . . . , n} for the same statement and commitment but for different challenges
implies being able to compute a witness for this given statement st; it is zero-
knowledge if anyone can simulate it and produce a valid transcript computationally
indistinguishable from one obtained by actually running the protocol. If the
soundness error of the protocol is too high, one can reduce it is using repetition.

If the statement is a public key and the witness is the corresponding secret
key, we call such a protocol an identification scheme. It is typically used to
give, as its name indicates, a proof of identity. Furthermore, a sigma protocol
can be turned into a digital signature in the Random Oracle Model using the
Fiat-Shamir transform [31].

2.2 Supersingular isogenies

Let E1 and E2 be two supersingular curves defined over a finite field Fp2 . An
isogeny ϕ : E1 → E2 is a non-constant rational map which is also a group
morphism with respect to the group structure of the elliptic curves. The degree
of an isogeny is its degree as a rational map. It is always of the form d = prd′,
and when r = 0 (that is d = d′ is coprime to p) we say the isogeny ϕ is separable
and we have d = #kerϕ. The isogenies considered in this work are all separable,
unless stated otherwise. An isogeny of small prime degree can be efficiently
computed (and evaluated on torsion points) from a description of its kernel using
Vélu formulas [52] or the square root Vélu formulas [11]. Isogenies of smooth
degree can also be efficiently computed by writing them as a composition of
isogenies of small prime degrees. For any isogeny ϕ : E1 → E2, there exists a
unique isogeny ϕ̂ : E2 → E1 such that ϕ̂ ◦ ϕ = [deg ϕ]E1 and ϕ ◦ ϕ̂ = [deg ϕ]E2 .
The isogeny ϕ̂ is called the dual of ϕ. An endomorphism of an elliptic curve
E is an isogeny from E to E. The set of all the endomorphisms of E forms a
ring under addition and composition. It is denoted by End(E) and its called the
endomorphism ring of E. Over finite fields, the endomorphism ring of an elliptic
curve is either an order in an imaginary quadratic field or a maximal order in a
quaternion algebra. The earlier case occurs for ordinary curves while the later
occurs for supersingular curves, which are the ones used in this paper.
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2.3 Quaternion Algebra

Let p be a prime. We write Bp,∞ for the quaternion algebra ramified only at p
and ∞, which is defined by

Bp,∞ =

(
−q,−p

Q

)
= Q+ iQ+ jQ+ kQ

where 0 ̸= q ∈ N, i2 = −q, j2 = −p, and k = ij = −ji.
A p-extremal maximal order is a maximal order containing j. Examples of

p-extremal maximal order are those containing Z⟨i, j⟩ = Z + iZ + jZ + kZ as
subring. For such a maximal order O, if R = O ∩Q[i] is the ring of integers Z[ω]
of Q[i], then the restriction of the norm to R+Rj is given by

Nrd(x1 + y1ω + (x2 + y2ω)j) = f(x1, y1) + pf(x2, y2)

where f is a principal quadratic form of discriminant disc(R) [42]. We have

f(x, y) = x2 +Trd(ω)xy +Nrd(ω)y2

We give below a few examples of the structure of Bp,∞, together with p-
extremal order O, R and f(x, y) as defined above for different values of p.

Example 2. 1. For p ≡ 3 mod 4: Bp,∞ =
(

−1,−p
Q

)
;O = ⟨1, i, 1+k

2 , i+j
2 ⟩; R = Z[i];

f(x, y) = x2 + y2.
2. For p ≡ 5 mod 8: Bp,∞ =

(
−2,−p

Q

)
; O = ⟨1, i, 1+j+k

2 , i+2j+k
4 ⟩; R = Z[i];

f(x, y) = x2 + 2y2.
3. For p ≡ 3 mod 4: Bp,∞ =

(
−q,−p

Q

)
, where q ≡ 1 mod 4 is a prime such

that
(

−p
q

)
= 1; O = ⟨1, 1+i

2 , j, ci+k
q ⟩, where c2 ≡ −p mod q; R = Z[ 1+i

2 ];

f(x, y) = x2 − xy + 1+q
4 y2.

2.4 SIDH

The Supersingular Isogeny Diffie-Hellman (SIDH) protocol was introduced in
2011 by Jao and De Feo [41]. It is a Diffie-Hellman type key exchange that
uses supersingular isogenies. Supersingular isogenies do not commute in general.
In order to get a commutative diagram that will help compute the shared
secret in SIDH, the images of some torsion points basis through the secret
isogenies are included in the public keys (see Figure Fig. 1). Moreover, in order to
achieve the best possible efficiency, one uses isogenies of degree 2a or 3b between
supersingular elliptic curves defined over Fp2 where the characteristic p is of
the form p = 2a3bf − 1, with f being a small co-factor. Primes of the form
p = 2a3bf − 1 (or p = ℓe11 ℓ

e2
2 f − 1 more generally) are usually referred to as SIDH

primes.
The detailed description of SIDH is as follows.

Setup. Let p = 2a3bf −1 be an SIDH prime and let E0 be a supersingular elliptic
curve defined over Fp2 . Let E0[2

a] = ⟨Pa, Qa⟩ and E0[3
b] = ⟨Pb, Qb⟩.
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(Eb, ϕb(Pa), ϕb(Qa))

(E0, Pa, Qa, Pb, Qb)

Eab
∼= Eba

(Ea, ϕa(Pb), ϕa(Qb))
ϕa

ϕb

ϕ′
a

ϕ′
b

Fig. 1: The SIDH key exchange protocol

Key generation. Alice samples a random scalar ka ∈ Z/2aZ, and computes the
isogeny ϕa : E0 → EA whose kernel is ⟨Pa + [ka]Qa⟩. Her secret key is ka and
her public key is (Ea, ϕa(Pb), ϕa(Qb)). Similarly, Bob samples a random scalar
kb ∈ Z/3bZ, and computes the isogeny ϕb : E0 → EB whose kernel is ⟨Pb+[kb]Qb⟩.
His secret key is kb and his public key is (Eb, ϕb(Pa), ϕb(Qa)).

Shared secret. Given Bob’s public key (Eb, ϕb(Pa), ϕb(Qa)), Alice computes the
isogeny ϕ′a : Eb → Eba whose kernel is generated by ϕb(Pa) + [ka]ϕb(Qa). Given
Alice’s public key (Ea, ϕa(Pb), ϕa(Qb)), Bob computes the isogeny ϕ′b : Ea → Eab

whose kernel is generated by ϕa(Pb) + [kb]ϕa(Qb). The shared secret is j(Eab) =
j(Eba).

In SIDH, the isogenies ϕA and ϕ′A (resp. ϕB and ϕ′B) are said to be parallel
isogenies. In general, two isogenies ϕ : E0 → E1 and ϕ′ : E2 → E3 are said to
be parallel if there exists an isogeny ψ : E0 → E2 such that kerϕ′ = ψ(kerϕ).
Note that if ϕ : E0 → E1 and ϕ′ : E2 → E3 are parallel, then ϕ̂ : E1 → E0 and
ϕ̂′ : E3 → E2 are also parallel since ker ϕ̂′ = ψ′(ker ϕ̂) where ψ′ is the isogeny
whose kernel is given by kerψ′ = ϕ(kerψ). We hence obtain a square (Eq. (1))
which is called an SIDH square.

E2

E0

E3

E1

ϕ

ψ

ϕ′

ψ′

(1)

2.5 Algorithms for computing isogenies

We discuss some existing algorithms for computing isogenies that will be of
interest in this paper. The main problem, which is that of finding an isogeny
connecting two isogenous supersingular curves is believed to be hard. Nevertheless,
it may not be the case when more information is provided: the endomorphism
rings of the curves and/or some torsion point information and/or the degree of
the isogeny.

When the endomorphism rings of the curves are public, then a result of [36]
shows that the secret isogeny ϕ : E1 → E2 can be recovered whenever it is
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the shortest isogeny connecting E1 to E2. This result is formally given by the
following theorem.

Theorem 3. Let E1 and E2 be two supersingular curves, and let ϕ : E1 → E2 be
the shortest isogeny connecting E1 and E2. Given a description the endomorphism
rings O1 ≃ End(E1) and O2 ≃ End(E2), there exists an efficient algorithm that
computes the isogeny ϕ.

Note that Theorem 3 is a straightforward generalization of [36, Theorem 1]
where the degree of the isogeny ϕ is a prime power to the case where there is
no restriction on the degree of the isogeny. Two uniformly random supersingular
curves are always connected by an isogeny of degree at most O(

√
p). Hence the

attack in Theorem 3 does not help to recover isogenies of degree d ≫ √p. In
[32], it is shown that if some reasonable amount of torsion point information is
provided beside the endomorphism rings, then the secret isogeny can be efficiently
recovered. More precisely, we have the following theorem which can be found
in [32, Theorem 3.8].

Theorem 4. Let E1 and E2 be two supersingular curves, and let d be the degree
of the shortest isogeny connecting E1 and E2. Let ϕ : E1 → E2 be an isogeny of
degree N1 ≥ d. Let N2 be a smooth integer, set E1[N2] = ⟨P,Q⟩. Given ϕ(P ), ϕ(Q)
and a description the endomorphism rings O1 ≃ End(E1) and O2 ≃ End(E2),
there exists an efficient algorithm that computes the isogeny ϕ provided that
N1 ≤ dN2

16 .

In practice, the endomorphism ring of the co-domain curve of the isogeny is
not provided. In 2017, Petit [47] described an attack that only requires the
knowledge of a special endomorphism on the starting curve, and a large amount
of torsion point information. This attack was later improved in [48] but still
required torsion point images of large order. In 2022, a series of three papers [15,
44, 49] consecutively improved the state of art to reach a point where no known
endomorphism is required and the amount of torsion point needed is way smaller
than the degree of the isogeny: a supersingular isogeny of degree N1 can be
efficiently recovered from its action on torsion points of smooth order N2 where
N1 < N2

2 . These results led to a complete break of SIDH and are summarized in
Theorem 5, which is based on [49, Theorem 1].

Theorem 5. Let E1 and E2 be two supersingular curves, let N2 be a smooth
integer and let E1[N2] = ⟨P,Q⟩. Let ϕ : E1 → E2 be an isogeny of degree N1.
Given ϕ(P ), ϕ(Q) there exists an efficient algorithm that computes the isogeny ϕ
provided that N1 < N2

2 .

It may happen that when attempting to recover the secret isogeny, one does not
directly have access to torsion point images, but to images of some cyclic groups
of the same order N . In [9, 34], it is proven that if N has O(log log p) prime
factors, then one can efficiently recover the torsion point information from the
images of three disjoint cyclic groups of order N . This implies that the secret
isogeny can in fact be recovered from the images of three disjoint cyclic groups
of order N .
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3 Signatures based on SIDH squares

In this section, we recall various constructions of proofs of isogeny knowledge
from the literature and we highlight the main design options. We also introduce
the potential lines of attack against some constructions, which are analyzed in
detail in the following sections. For a comprehensive survey of proofs of isogeny,
we refer the reader to [12], [40].

Let us assume that a prover wants to demonstrate knowledge of a cyclic
isogeny ϕ : E0 → E1 of smooth degree d. The main framework, on which the
following proofs are based on, is a sigma protocol due to De Feo, Jao, and Plût [30].
The prover generates the SIDH square in Eq. (1) where ψ has degree ℓn for some
ℓ coprime with d, and they commit to E2 and E3. The verifier sends a challenge
bit c ∈ {0, 1}: if c = 0, the prover responds with the horizontal isogeny ϕ′, and
if c = 1, the prover reveals the vertical isogenies ψ and ψ′. The verifier accepts
if the response isogenies have the correct domain and codomain. The protocol
has soundness error of 1/2, and thus it needs to be repeated λ times to obtain a
negligible soundness error of 2−λ. As pointed out in [39, 22] , a malicious prover
may not necessarily know ϕ (such an isogeny might not exist at all); the proof
in [30] is thus sound with respect to the weaker relation

Rweak =

{
((E0, E1), ϕ)

∣∣∣∣ ϕ : E0 → E1 is a cyclic ℓ2id-isogeny,
for some integer i and ℓ coprime with d

}
. (2)

In the case of an honest prover, this proof also reveals the action of ϕ on the
torsion E[degψ] since the isogenies ψ and ψ′ are parallel. This makes it potentially
vulnerable to the recent attacks on SIDH [15, 44, 49].

The authors of [22] showed that it is possible to have a proof that is sound
with respect to the strong relation

Rstrg = {((E0, E1), ϕ) | ϕ : E0 → E1 is a cyclic d-isogeny} (3)

by ensuring that ψ and ψ′ are parallel. However, to avoid the SIDH attacks
and a technical issue with zero-knowledge7, they have to resort to a proof with
ternary challenges. Thus, to prove parallelness, the prover constructs the same
SIDH square as in Eq. (1), but additionally commits to P2, Q2

8, a basis of E2[d],
its image P3 := ϕ′(P2), Q3 := ϕ′(Q2) on E3, and the coefficients a, b such that
ker ψ̂ = ⟨[a]P2 + [b]Q2⟩ and ker ψ̂′ = ⟨[a]P3 + [b]Q3⟩. The curves E2 and E3 are
also committed with a hiding commitment scheme. Then, the challenges are
ternary, i.e. c ∈ {−1, 0, 1}. When c = ±1, the verifier reveals a, b and either
(E2, (P2, Q2)) or (E3, (P3, Q3)); the verifier reconstructs ψ or ψ′ and ensures
they have the correct codomain. In the case of c = 0, the verifier receives
(ϕ′, (E2, P2, Q2), (E3, P3, Q3)) and checks that the points P3, Q3 are the images

7 The Σ protocol with binary challenges does not satisfy the common definitions of
zero-knowledge. This, however, does not constitute a problem when it is transformed
into a signature scheme, as shown in Section 5.2.

8 This basis can be generated canonically, which avoids the need of its commitment.
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of P2, Q2 under ϕ′. In all cases, the verifier also ensures the revealed values match
the previously committed ones.

More recently, [7] introduced the concept of an SIDH ladder, which is obtained
by gluing multiple SIDH squares together. This removes the requirement on the
prime being an SIDH prime. It is thus possible to prove knowledge of an isogeny
ϕ in any characteristic and even if ϕ and ψ have kernels that are not defined
over Fp2 .

This historical overview suggests there are three main design choices that
determine how a proof of isogeny knowledge works:
1. The soundness relation: strong vs weak,
2. The challenge space: binary vs ternary,
3. The characteristic p and the degrees of ϕ and ψ.

Note that not all combinations are possible. For instance, when the kernels of
ψ and ψ′ are not rational over Fp2 , which requires using the SIDH ladder method
proposed by [7], there is no known technique to prove the strong relation.

3.1 Proposed constructions

We now discuss some promising combinations and study their securities in later
sections. Let E0 be a random supersingular elliptic curve, ℓ1 be a small prime
and e1 be a positive integer. Our goal is to prove the knowledge of a secret
isogeny ϕ : E0 → E1 of degree ℓe11 in Rstrg.

Variant 1. This variant proves the knowledge of the strong relation, and uses
a binary challenge space. Let public parameters pp = (p, ℓ1, ℓ2, e1, e2, E0) be
such that #E0(Fp2) = (ℓ1ℓ

e2
2 f)

2, for ℓe22 of roughly the same size as in SIDH
([2]) and d = ℓe11 ≫ ℓe22 , or d = ℓe11 ≈ 2λ(ℓe22 )2. Note that in this setting,
p = ℓ1ℓ

e2
2 f − 1 ≈ ℓe22 and thus it is smaller than 22λ. Note also that E0 is not a

special curve and can in fact be generated by taking a long enough walk from
j = 1728.
Intuitively, the protocol is as described earlier in this section and the rigorous
version is given in [22, Figure 2]. The only difference is, the horizontal isogeny ϕ′
is represented by a sequence of isogenies of degree ℓ1 instead of a kernel point of
order ℓe11 . As noted in [22], this sigma protocol has 2-special soundness, but does
not satisfy the zero-knowledge (ZK) property if the distinguisher used in the ZK
definition has access to the witness. We explore in Section 5.2 how we can still
retain the security of the derived signature.

Variant 2. This variant also proves the knowledge of the strong relation, but
uses a ternary challenge space. The requirements on the public parameters
are similar to Variant 1, with p ≈ ℓe11 ℓ

e2
2 as in SIDH, so p ≈ 2216 for λ = 128.

The description of the protocol is as given in [22, Figure 3]. Note again that we
represent ϕ′ by a sequence of isogenies of degree ℓ1. This sigma protocol has
3-special soundness and zero-knowledge. Note that in this variant, E0 does not
need to be a random supersingular elliptic curve, and rather can be taken to be
a special curve with an extremal order as endomorphism ring.
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4 Analysis of KLPT-based attacks

In this section, we analyze KLPT-based attacks that break the security of
SIDH-based signatures and proofs of knowledge. The attacks follow two main
approaches: they can either recover the secret key from the public information,
or they can forge a valid signature even if they fail to recover the secret key.

In the first approach, the attacker recovers a d-isogeny ϕ : E0 → E1, given
the domain and codomain curves E0, E1 and their endomorphism rings.

This problem is linked to the problem of finding an ideal of norm d, connecting
the maximal orders O0

∼= End(E0) and O1
∼= End(E1) through the computational

Deuring correspondence [37, 26]. In [42, 37], the authors propose polynomial
algorithms to find such ideal of smooth norm. A strategy to find a witness for
the above relations could then be as follows:

1. Find an ideal I connecting O0 to O1;
2. Use the KLPT algorithm to compute an ideal J of norm d equivalent to I;
3. Use the computational Deuring correspondence to compute an isogeny corre-

sponding to J .

The KLPT algorithm produces ideals of norm in O(3 log(p)) if either O0 or O1 is
a special extremal order [46, 42, 37], and O( 92 log(p)) in the general case [46, 25].
Hence, this strategy potentially fails for some d ≤ p3 or d ≤ p

9
2 , depending on

the curves E0 and E1.
A second attack strategy sidesteps these limitations and can possibly break

the security of the protocol even when the secret isogeny is shorter than p3. When
the underlying sigma protocol is sound with respect to the weak relation Rweak,
the prover demonstrates knowledge of an isogeny between E0 and E1 of degree
ℓ2id, for some integer i and ℓ coprime with d. An attacker can thus attempt
to forge a proof, even without knowing the witness, by using the KLPT-based
approach described above to compute an isogeny of degree ℓ2id. Such an isogeny
can then be written as the composition ψ̂′ ◦ ϕ′ ◦ ψ, where ϕ′ is a d isogeny and
ψ,ψ′ have degree ℓi; the attacker can then correctly reply to any challenge. This
attack can be avoided if the composition isogeny is shorter than the shortest
isogeny returned by KLPT, or if the Sigma protocol is sound with respect to
Rstrg: in that case, this approach would fail to produce isogenies ψ̂′ and ψ that
are parallel, because the isogenies ϕ′ and parallel isogenies ψ̂′ and ψ uniquely
determine ϕ, which is too short to be determined by a KLPT-based attack.

In this section, we analyze the minimal norm of the ideal that KLPT can
return. We extend the previous results by studying exponential-time algorithms
and showing that there is a trade-off between KLPT’s running time and the
norm of the smallest ideal it can produce.

4.1 The KLPT algorithm for extremal order

We recall the following lemma from [42].

10



Lemma 6 ([42]). Let I be a left O-ideal and α ∈ I. Then I ᾱ
Nrd(I) is a left

O-ideal of norm Nrd(α)
Nrd(I) .

As consequence of this lemma, finding an equivalent O-ideal of I which has a
norm in a certain set N consists of finding an element in I of norm nNrd(I),
for some n ∈ N . Let O be one of the special extremal maximal orders given
in Example 2; I an O-left ideal and ℓ a small prime. KLPT algorithm can be
summarized as follows:
1. Compute an ideal J of prime norm equivalent to I, such that ℓ is a quadratic

non-residue modulo N ;
2. Find an element γ ∈ O of norm Nℓe1 for some e1 ∈ N;
3. Find an element α ∈ J such that J = Oα+NO;
4. Compute µ0 ∈ Rj such that γµ0 ≡ α mod NO;
5. Compute λ ∈ Z/NZ∗ and µ1 ∈ O such that µ = λµ0 +Nµ1 has norm ℓe2 ,

for some e2 ∈ N
6. Return J β̄

N , where β = γµ.
In Step 1, one computes a reduced basis of I and generates a small set of

short elements until an element of norm N Nrd(I) is found for which N is prime.
Experimentally, this algorithm returns an ideal of prime norm N , where N ≃ √p.

In Step 2, one solves the norm equation

f(x1, y1) = Nℓe1 − pf(x2, y2). (4)

In Step 3, it is enough to find an element α ∈ J such that gcd(N2,Nrd(α)) = N .
For such α, we have J = Oα+NO i.e J/NO = Oα/NO.

The idea of Step 4 is that O/NO is isomorphic to M2(Z/NZ) (an explicit
isomorphism can be computed using [53, Proposition 7.6.2]) and thus every left
ideal only differs by a quaternion whose reduced norm is coprime to N and such
an element can actually be chosen from Rj. Step 5 consists of finding µ ≡ λµ0

mod NO of norm ℓe2 . One has to look for µ1 = x+ yω+ (z+ tω)j ∈ R+Rj and
λ ∈ Z/NZ such that Nrd(µ) = ℓe2 where µ = λµ0 +Nµ1. For such µ, we have

µ = N(x+ yω) + [Nz + λC + (Nt+ λD)ω]j.

Hence Nrd(µ) = ℓe2 is equivalent to

N2f(x, y) + pf(Nz + λC,Nt+ λD) = ℓe2 . (5)

Modulo N , the previous equation becomes

λ2pf(C,D) ≡ ℓe2 mod N.

Since l is a quadratic non-residue modulo N , the parity of e2 should be adjusted
so that

(
pf(C,D)

N

)
=

(
ℓe2

N

)
. We then have λ =

√
ℓe2

pf(C,D) mod N .
Furthermore, we also have

f(Nz + λC,Nt+ λD) = N2f(z, t) + λ2f(C,D) +NλL((C,D), (z, t)),

where

L((C,D), (z, t)) = 2Cz +Trd(ω)(Dz + Ct) + 2Nrd(ω)Dt = ⟨C +Dω, z + tω⟩.
Hence, Eq. (5) is equivalent to

11



λpL((C,D), (z, t)) =
ℓe2 − λ2pf(C,D)

N
−N(f(x, y) + pf(z, t)). (6)

(We recall that λ is chosen so that N divides ℓe2 − λ2pf(C,D)). Modulo N ,
Eq. (6) yields the linear equation

λpL((C,D), (z, t)) =
ℓe2 − λ2pf(C,D)

N
mod N. (7)

This linear equation has N solutions (z, t) [42].
To find (x, y), one takes a random solution (z, t) and tries to solve the following

equation, which is equivalent to Eq. (5):

f(x, y) =
ℓe2 − pf(Nz + λC,Nt+ λD)

N2
=: r (8)

Remark 7. In this step, there are two ways to proceed:
1. Take e2 large enough so that r is always positive, and randomly take (z, t) so

that r is a norm in R (as done in [42]);
2. Adjust e2 for each value of (z, t) so that Eq. (8) has a solution. This method

gives an exponential approach that is studied next.
We summarize our discussion about the KLPT algorithm in the following

lemma. Note that this result is already implied in [46].

Lemma 8. Let O0 be a special extremal maximal order in Bp,∞, where p ≡ 3
mod 4 or p ≡ 5 mod 8. Let I be a O0-left ideal. Using KLPT algorithm, we can
compute an ideal of smooth norm d equivalent to I, where d = ℓe ≈ p 5

2 .

Proof. In Step 1, the ideal J can be found such that N is split in R. For such N ,
the equation f(x, y) = N has a solution since h∆ = 1, where ∆ = disc(R). Hence,
we can take e1 = 0 in Step 2 and Eq. (5) has a solution for x2 = y2 = 0. Using
the strategy in [46] in Step 5, we have e2 ≈ 5

2 logℓ(p). Thus, e = e2 ≈ 5
2 logℓ(p),

and the result follows.

Remark 9. For a general value of p, this approach work with probability 1
h∆

.

Superpolynomial-time KLPT

We now analyze the second strategy discussed in Remark 7, with a particular
focus on superpolynomial-time algorithms. Note that the ideas of the strategy
we present here first appeared in [45, Section 3.4], and we give a variant of it.

Given C,D ∈ Z, we look for solutions (z, t) ∈ Z2 such that Eq. (7) holds.
In [46], it was shown that the solutions (z, t) for Eq. (7) can be viewed as a
translated lattice as follows. We let Φ = pλ(2C + tr(ω)D), Ψ = pλ(tr(ω)C +

2n(ω)D), and χ := le2−λ2pf(C,D)
N , then (z, t) satisfies

Ψz + Ψt ≡ χ mod N.

Let (z0, t0) denote one solution of this equation, then all solutions (z, t) ∈
Z2 are contained in the translated lattice L = (z0, t0)

T + L0, where L0 =
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Z(Φ,−Ψ)T + Z(0, N)T . To reduce the output length of KLPT, we aim to reduce
pf(Nz+ λC,Nt+ λD). In [46], this is reduced to a closest-vector problem where
the involved lattice L is a deformation of L0. For our purpose, we do not recall the
concrete basis of L0 here, but only note that this lattice is determined by C and
D, and it has volume pN3

√
∆Q(ω). By the Gaussian heuristic, we estimate that

the lattice contains a basis of size √pN 3
2∆

1
4

Q(ω). This gives rise to the estimation
that one can find (z, t) such that pf(Nz + λC,Nt+ λD) ≈ pN3

√
∆Q(ω). Hence,

ℓe2 ≈ pN3
√
∆Q(ω) ≈ p

5
2 . Below is a theorem that estimates the expected shortest

vector of n independent random matrices from [4, Section 4.1].

Theorem 10. Let Z1, ...Zn be the length of the shortest vectors in n independent
random matrices of unit volume and Zmin := min{Z1, ..., Zn}, then E(Zmin) ≤
O( 1√

n
) for n ≥ 2.

If we can generate n pairs of C,D that gives rise to n independent random
lattices, then according to Theorem 10, the expected shortest vector among these

n lattices has length
√
pN

3
2 ∆

1
4
Q(ω)√

n
. Therefore, pf(Nz + λC,Nt + λD) would be

pN3
√

∆Q(ω)

n . Let n ≈ Ne3 , then
pN3
√

∆Q(ω)

n ≈ pN3−e3
√
∆Q(ω) ≈ p

5
2−

e3
2 .

Hence, the length of the path returned using this approach reaches e =
5−e3
2 log(p). The number n is exactly the number of solutions provided by the

modular constrain Step 4 that we want to analyze.

On the modular constraint

In a general context, the modular constraint step consists of finding an element
[µ] ∈ (O/NO)∗ ≡ GL2(Z/NZ) such that (Oγ/NO)[µ] = J/NO. The existence
of such element is justified by the transitivity of the action of GL2(Z/NZ) on
P1(Z/NZ). We recall the following lemma:

Lemma 11 ([42]). Let N be a prime and A =M2(Z/NZ). The set of proper
nontrivial left A-ideals is in bijection with the set{

P1(Z/NZ)× {(x : y)}; (x : y) ∈ P1(Z/NZ)
}
,

and the right action of PGL2((Z/NZ) on left A-ideals is transitive and induced
by the natural action on P1(Z/NZ).

We recall that the action of PGL2((Z/NZ) on P1(Z/NZ) is induced by the
action of GL2(Z/NZ) which has kernel (Z/NZ)∗. Using an explicit isomorphism
between O/NO and M2(Z/NZ) we have an action of (O/NO)∗ on the left
O/NO-ideals. In the context of the KLPT algorithm, this action is restricted
to the action of Rj/NO. That is why Step 4 just consists to find a pair (C,D).
Hence, the number n is upper bounded by the number of [µ]. The number of
such [µ] is exactly #Stab([x : y]) (where Stab([x : y]) denotes the stabilizer of
[x : y]) for some [x : y] ∈ P1(Z/NZ), since the action is transitive. Furthermore,
we have #Stab([x : y]) = #PLG2(Z/NZ)

#P1(Z/NZ) = N(N + 1). Hence, we have n ≈ N2.
We summarize the discussion into the following theorem.
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Theorem 12. Let I be a left O-ideal for an extremal order O. Then applying
the KLPT algorithm to I one could find an equivalent left O-ideal J such that
n(J) is an ℓ-power and is of length 5−e

2 log p in time Õ(n) where n is any positive
integer less than p and e is a rational number such that (√p)e ≈ n, for p ≡ 3
mod 4 or p ≡ 5 mod 8.

Proof. We set n(J) = ℓe1+e2 where e1 and e2 are given respectively by Step 2 and
Step 5. Following the arguments in the proof of Lemma 8, we have e1 = 0. Let e
be such that Ne ≈ (

√
p)e is the number of solutions we generate in the modular

constrain step, then based on the discussions above, we have that e2 ≈ 5−e
2 logℓ(p).

This approach then has complexity in Õ(
√
pe). The number of solutions that can

be generated in the modular constrain step is bounded above by N2 ≈ p.

The shortest path returned by this approach has length 3
2 log p which takes time

Õ(p). Note that in both our variants p is a slightly smaller than 22λ. The cost
of this attack to generate a path of length 3

2 log p is thus far greater than the
security parameter. On the other hand, if we choose the runtime to be √p ≈ 2λ,
then the output path length from this approach is 2 log p.

4.2 KLPT algorithm for non-extremal order

Let E and E1 be two supersingular elliptic curve defined over Fp2 , of known
endomorphism rings O and O1. Let I be a connecting ideal of O and O1. Let O0

be a special extremal order, and I0 = I(O0,O). The problem is to find an O-left
ideal of smooth norm equivalent to I.

Approach from [42] The idea in [42] is as follows:

1. Compute I1 = I0
γ̄1

Nrd(I0)
where Nrd(γ1) = n1 Nrd(I0);

2. Compute I2 = I0I
γ̄2

Nrd(I0I)
where Nrd(γ2) = n2 Nrd(I0I);

3. Return I γ̄
Nrd(I) , where γ = γ̄1γ2.

With this approach, the length of the shortest path is greater than 4 log(p).

The SQISign approach The idea in SQISign [25] is to transfer the problem in
the special case using pullback and push forward through I0

.

O0

K=[I0]
∗IχK(β′)

I0 O

I [I0]∗χK(β′)

OR(K) O1

Where χK(β′) = K β̄′

Nrd(K) . To obtain this, one must have β′ ∈ K ∩ D, where
D = O0∩O = Z+I0 [25, Corollary 1]. For n = ℓe, the algorithm can be described
as follows: We suppose that Nrd(I0) = N0 is prime inert in R such that ℓ is a
quadratic non residue modulo N0.

14



1. Compute K = [I0]
∗I;

2. Compute an ideal L of prime norm N equivalent to K, such that ℓ is a
quadratic non-residue modulo N . Let δ such that L = χK(δ);

3. Find an element γ ∈ O of norm Nℓe1 for some e1 ∈ N;
4. Find an element α ∈ O such that L = Oα+NO;
5. Compute µ0 = (C0 + ωD0)j ∈ Rj such that γµ0 ≡ α mod NO;
6. Compute µ1 = (C1 + ωD1)j ∈ Rj such that γµ0δ ∈ O ∩O0;
7. Compute C = CRTN0,N (C0, C1) and D = CRTN0,N (D0, D1) and let µ′ =

(C + ωD)j
8. Compute λ ∈ Z/NN0Z∗ and µ′

1 ∈ O0 such that µ = λµ′ +NN0µ
′
1 has norm

le2 , for some e2 ∈ N.
9. Return χL(β), where β = γµ.

The main difference between this algorithm and the algorithm from [42]
described in Section 4.1 is Step 8. Here the approximation is done modulo NN0

and then the computation of λ becomes more delicate than what we have in Step
5, Section 4.1. In the present context, the approximation equation is Eq. (9),
which corresponds to Eq. (5), replacing N by NN0.

N2N2
0 f(x, y) + pf(NN0z + λC,NN0t+ λD) = ℓe2 . (9)

Modulo NN0, this equation becomes
λ2pf(C,D) ≡ ℓe2 mod NN0.

For this equation to have a solution, we need the following equality:(
pf(C,D)

N

)
=

(
ℓe2

N

)
and

(
pf(C,D)

N0

)
=

(
ℓe2

N0

)
.

Since ℓ is a quadratic non residue modulo N and N0, we always have
(
ℓe2

N

)
=(

ℓe2

N0

)
. Hence, we need (

pf(C,D)

N

)
=

(
pf(C,D)

N0

)
. (10)

This last equality has a probability 3
4 to fail, for given γ from Step 3 and δ

from Step 2 [25]. To minimize this failure probability, the authors of [25] take
e1 large enough so that there are many possibilities for γ (we recall that γ is
computed by solving Eq. (4)). The advantage of this method is that it only
modifies the parameters (C,D), and N remains fixed. Since we need e1 to be as
small as possible and Eq. (4) has a solution for e1 = 0 when N is split in R, we
would like to take e1 = 0. We summarize the result in the following lemma.

Lemma 13. Let O and O1 be two non extremal maximal orders in Bp,∞ where
p ≡ 3 mod 4 or p ≡ 5 mod 8. Given a connecting ideal I of O and O1, there is a
probabilistic polynomial time algorithm which find an equivalent ideal of norm ℓe,
for some small prime ℓ and e ≈ 4 log(p).

Proof. Following the idea in Lemma 8, we can obtain e1 = 0 in step 3 in which
case Equation 4 is solved by setting x1 = x2 = 0. Eq. (4) become f(x1, x2) = N ,
which has at most 4 solutions leading to different values of [C : D] ∈ P1(Z/NZ).
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Hence, the success probability is 1 −
(
3
4

)4 ≈ 68.4%. In the failure case we can
either go back to Step 2 and compute an other L, or compute an other I0. In
Step 8, we can use the strategy of [46] to obtain e2 ≈ 4 logl p and the result
follows.

Remark 14. The exponential approach of Section 4.1 can be applied here. Using
similar analysis, we see that the output length is (4−e) log p in time Õ(n) where n
is any positive integer less than p and e is a rational number such that (√p)e ≈ n,
for p ≡ 3 mod 4 or p ≡ 5 mod 8. And in this case, if we bound the runtime by√
p, then the shortest path returned is of length 3 log p.

4.3 Parameters secure against KLPT-based attacks

Combining the analysis presented so far, we obtain the following limitations for
an attacker of complexity 2λ. Since O(p) = O(2ϵ) and λ < ϵ ≤ 2λ, we use O(

√
p)

as an upper bound for the runtime of exponential KLPT, and we summarize the
output length here.

Takeaway 1 Consider an isogeny ϕ : E0 → E1 of degree d. Given the
endomorphism rings of E0 and E1, KLPT-based methods cannot recover ϕ
in time Õ(

√
p) < Õ(2λ) if:

1. E0 is a special curve, p ∈ {3, 5, 7} mod 8, and log d < 2 log p;
2. E0 is a special curve, p ̸∈ {3, 5, 7} mod 8, and log d < 5

2 log p;
3. E0 is not a special curve, p ∈ {3, 5, 7} mod 8, and log d < 3 log p;
4. E0 is not a special curve, p ̸∈ {3, 5, 7} mod 8, and log d < 7

2 log p.

Given these results, we obtain that the two protocols proposed in Section 3
are secure against KLPT-based attacks. In both instances, E0 is chosen to not
be a special curve, hence the limits 3 and 4 apply. In the first variant, from
Takeaway 2, the isogeny ϕ has degree d ≈ 2λp2 and ψ has degree ≈ p, Variant 1
is secure according to the summary above. Similarly, Variant 2 relies on isogenies
of degree ≈ p, and thus KLPT-based attacks do not apply. In both instantiations,
the signatures rely on the stronger relation, and thus the attack that recovers
the composition ψ̂ ◦ ϕ′ ◦ ψ′ cannot be used.

5 Analysis of other attacks

5.1 Attacks based on the SIDH attacks

The SIDH attacks [15, 44, 49] recover an isogeny ϕ : E0 → E1 of degree d given:
– The curves E0 and E1;
– The degree d;
– The image of a torsion basis of smooth order n with n ≥

√
d.

However, it is possible to brute-force part of an unknown isogeny (which
is always cheaper than brute-forcing torsion point information), thus we need
d ≥ 2λ

√
ℓ to avoid the attacks.
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Binary challenges. The proofs of isogeny knowledge with binary challenges are
potentially vulnerable to the SIDH attacks.

Consider the following diagram:
E0 E1

E2 E3

ϕ

ψ ψ′

ϕ′

When the proof has binary challenges, the isogenies ψ and ψ′ are revealed
together. If the prover is honest, we have

kerψ′ = ϕ(kerψ),

which allows an attacker to recover the image of the subgroup kerψ under the
secret isogeny ϕ. After three such challenges, the attacker has recovered enough
information to apply the SIDH attacks. In fact, as shown in [9, 34] this allows the
attacker to recover the image of a torsion basis on E0 under ϕ, up to the same
scalar. The square of this scalar can be computed through Weil pairing. If the
degrees of ψ and ψ′ are prime powers, as in SIDH, there are only two possible
square roots. It is easy to apply the SIDH attacks each time deg ϕ < (degψ)2,
assuming the degree of ψ is not much smaller than that of ϕ, and recover ϕ. In
practice, it is enough to have 2λ(degψ)2 ≤ deg ϕ, so that one needs to first guess
an isogeny of degree at least 2λ before being able to apply the SIDH attacks.

Takeaway 2 Binary challenges require 2λ(degψ)2 ≤ deg ϕ.

Remark 15. An alternative idea could be to use commitment isogenies ψ and
ψ′ with non-rational torsion as the torsion point images are defined over large
extensions fields and thus the SIDH attacks do not apply directly. However, in our
case we know endomorphism rings and can go on a different route. As described in
[19], one has that (End(E)/NEnd(E))∗ acts on the set of degree N isogenies. In
general without any extra information this action is hard to compute when only
the codomain of the isogeny is known. In our case however, this action is exactly
provided by the parallel isogenies. Thus one can compute the stabilizer of this
action as in [19] using a polynomial-time quantum algorithm which essentially
reveals the connecting ideal corresponding to the secret isogeny. Since the secret
isogeny here is smooth, one can recover the isogeny itself step by step. Note that
just knowing the codomain of the parallel isogeny would not always have been
enough (as it does not determine the action precisely as one might have several
degree N isogenies between two supersingular elliptic curves). However, knowing
the second vertical isogeny already is enough information to evaluate the group
action (assuming that the torsion is large enough to ensure unicity).

5.2 Attacks on the zero-knowledge property

In this section, we explore the zero-knowledge property of the underlying sigma
protocol for the binary challenge variant as described in Section 3.
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We set ourselves in the setting of Variant 1, from Section 3.1, since the others
variants use ternary challenges and are provably (honest-verifier) zero-knowledge.
The question we explore is whether we can address the zero-knowledge issue that
arises in Variant 1 in the context where we only use the identification protocol
for the purpose of turning it into a signature scheme.

This turns out to be a key observation: we turn the Sigma protocol into a
signature scheme via the Fiat-Shamir transform [31], and a natural question that
arises is whether we can allow a relaxation of the zero-knowledge property of the
underlying Sigma protocol whilst still retaining the security of the Fiat-Shamir
transform. In other words, what are the minimal assumptions for the security of
the Fiat-Shamir transform and can we achieve them? In [1], they introduce a new
notion of security for sigma-protocols, namely security against impersonation
under passive attacks. They show that this is a minimal assumption for the
Fiat-Shamir transform to be secure. We define this notion formally below:

Definition 16 ([1]). We say that a sigma protocol is secure against imperson-
ation under passive attacks if for any polynomial time adversary A the advantage
AdvImpersonate(A) of A in the Impersonate game is negligible, where

AdvImpersonate(A) = Pr[Impersonate(A)→ 1] = negl(λ)

The Impersonate game is described below.

Impersonate(A)
1: Setup(1λ)→ pp
2: KeyGen(pp)→ (sk, pk)
3: AOTG(pk)→ com, st
4: ch

$←− C
5: A(st, ch)→ resp
6: return V(pk, com, ch, resp)

OTG
1: Rp

$←− R (generate randomness)
2: com← P(sk;Rp)

3: ch
$←− C

4: resp← P(sk, com, ch;Rp)
5: return (com, ch, resp)

Theorem 17 ([1], Theorem 3.3). Let ΠΣ be a non-trivial sigma-protocol,
and DSΣ be the associated digital signature scheme obtained via the Fiat-Shamir
transform, then DSΣ is secure against existential forgery under chosen-message
attacks if and only if ΠΣ is secure against impersonation under passive attacks.

Remark 18. Note that non-triviality here requires the challenge space to be
super-polynomial. Otherwise, a trivial winning strategy would be to replay a
transcript obtained from the oracle and then one gets a probably 1/|C| of winning.
So if the size of the challenge space is polynomial, we have a winning strategy
with probability that is not negligible.

We claim that this relaxed security notion is achieved by the parallel repetition
of the binary challenge version under some conditions, and we hence get a secure
signature scheme by applying the Fiat-Shamir transform. Let us formulate this
more formally.
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Problem 19. Consider two supersingular elliptic curves E0, E1 and an isogeny
ϕ : E0 → E1 of degree D = ℓe11 in Rstrg such that #E0(Fp2) = (ℓ1ℓ

e2
2 f)

2 as
defined in Variant 1 . Given access to an oracle that outputs either :
– two isogenies E0 → E2, E1 → E3 and the images of the torsion basis on the

codomain curves;
– an isogeny E2 → E3 of degree D;

then the adversary must recover the secret isogeny ϕ.

Theorem 20. Under the hardness of Problem 19, the λ parallel repetition of the
sigma protocol is secure against impersonation under passive attacks.

Proof. Problem 19 is the translation of the impersonate game to our setting.

This problem has already been discussed in the previous subsections. Notably
if we ensure that the takeaways from Sections 4 and 5.1 are respected then we
can reasonably assume its hardness.

Takeaway 3 Under reasonable assumptions, a digital signature derived
from a proof of isogeny knowledge with binary challenges via the Fiat-Shamir
transform is secure.

6 Concrete instantiations and parameters size

In this section, we analyze the size of the signatures derived from the sigma
protocols described in Section 3.1 using the Fiat-Shamir transform [31]. We rely
on a hash function H : {0, 1}∗ → {0, 1}2λ, where λ is the security parameter.

Variant 1. We first fix ℓ1 = 2, ℓ2 = 3 for efficiency reasons. Then, we choose
the value e2 such that isogenies of degree 3e2 are hard to recover via meet-in-the-
middle or van Oorschot-Wiener attacks [51] (e.g., we have e2 = 137 for λ = 128).
The exponent e1 is chosen such that the isogenies of degree 2e2 are hard to recover,
even when their action on the 3e2 torsion is known, i.e. e1 = λ+ ⌈2e2 log 3⌉. We
define the prime p to be of the form p = 2·3e2f−1, where f is a small cofactor. The
public parameters of the signature are then pp = (p, e1, e2, E0, T0, P0, Q0), where
E0 is a random supersingular elliptic curve defined over Fp2 . The point T0 ∈ E0

is an auxiliary point of order 2, used in the CGL hash function computations [18],
and and {P0, Q0} is a basis of E0[3

e2 ].
By the definition of p, any point of order 2e1 is defined over a large extension

of Fp2 . We then represent the secret isogeny ϕ : E0 → E1 (of degree 2e1) by a
sequence of 2-isogenies. To do that, we represent it as a seed s ∈ {0, 1}e1 that has
to be hashed using CGL hash function [18], with the first step chosen between
the 2-torsion points that are not T0. The secret key can then be represented by
e1 ≈ λ+ 2 log p ≈ 5λ bits. The public key is (E1, P1, Q1) where P1 = ϕ(P0) and
Q1 = ϕ(Q0). This requires 6 log p ≈ 12λ bits.

In this variant, the soundness error is 1
2 : this means the signature needs to

repeat the sigma protocol k = λ times to obtain a negligible soundness error.
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Since we are in the binary case, the response to both challenges includes all the
committed values; thus, we rely on hashed commitments only for compression, but
we do not require any hiding property. Using some of the compression techniques
from [40], the size of the response for the horizontal challenge is 3 log p + 2λ,
while the vertical challenge is log p. Repeating λ times and including the hashed
commitment sizes of 2×2λ, we obtain an asymptotic size of λ(5λ+2 log p) ≈ 9λ2

bits. Note that this is asymptotic and based on the assumption that e3 ≈ 2λ/ log 3,
but we can choose smaller parameters based on the cost of the van Oorschoot-
Wiener attack, as done in SIDH. For λ = 128, this results in a 218-bit prime and
a signature of about 17 kB, which may be reduced even further by relying on
seed trees [40].

Variant 2. The second variant relies on ternary challenges, and thus torsion
images under the secret isogeny is not revealed. The public key hence consists of
a single curve, which then requires 2 log p bits.

In this variant, we need to rely on a computationally binding and statis-
tically hiding commitment scheme C: we construct one from a hash function
H : {0, 1}∗ → {0, 1}2λ by defining C(m) = H(m|r), for some random string r of
λ bits. For each execution of the sigma protocol, we need 6λ bits to represent
the three commitments (following the commitment algorithm in [22, Figure 3]),
λ+ log p for the responses to the vertical isogeny challenges, and λ+ 3 log p for
the response to the horizontal isogeny challenge. The soundness error of the
underlying sigma protocol is 2

3 , which means the signature needs to repeat the
sigma protocol k = ⌈−λ/ log 2/3⌉ times to obtain a negligible soundness error.
This results in an average signature of asymptotic size 31

3 λ⌈−λ/ log 2/3⌉ bits.

7 Conclusion

In this paper, we explore the feasibility of SIDH-based signatures when the
endomorphism ring of all curves are public. We identify two variants of the
construction that are secure in this setting, where the difference resides in the
use of binary or ternary challenges and give concrete parameters. We provide a
thorough security analysis of our proposals notably in terms of attacks based on
KLPT, with both a polynomial and superpolynomial adversary, attacks derived
from the recent SIDH-attacks and analyze the zero-knowledge property of the
binary challenge variant. Note that the results we derive from the KLPT attacks
could be affected by improvements on the output size of KLPT but this would
only require to adjust the parameters to retain the security.
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