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Abstract

After the Kotov-Ushakov attack on the tropical implementation of Stickel protocol, various
attempts have been made to create a secure variant of such implementation. Some of these
attempts used a special class of commuting matrices resembling tropical circulants, and they
have been proposed with claims of resilience against the Kotov-Ushakov attack, and even being
potential post-quantum candidates. This paper, however, reveals that a form of the Kotov-
Ushakov attack remains applicable and, moreover, there is a heuristic implementation of that
attack which has a polynomial time complexity and shows an overwhelmingly good success
rate.
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1 Introduction

Tropical cryptography, a relatively new and promising area in cryptography, is aiming to use var-
ious structures of tropical mathematics to redefine the classical public key exchange protocols in
cryptography, such as those put forward by Diffie and Hellman, and Stickel. Grigoriev and Shpil-
rain were pioneers in introducing the tropical algebra as an alternative framework for cryptographic
protocols [5]. Their work involved developing a tropical implementation of the Stickel key exchange
protocol, replacing the initial classical version suggested by Stickel since it was shown to be suscepti-
ble to the conventional linear algebraic attacks. This was motivated by the generally non-invertible
nature of matrices in tropical algebra providing resistance against any obvious analogue of the linear
algebraic attack on the original Stickel protocol.

Kotov and Ushakov later suggested an attack on Grigoriev and Shpilrain’s tropical implementa-
tion of the Stickel protocol [9]. They managed to transform the underlying mathematical problem
into the problem of solving a tropical linear equation of the form A⊗ x = b where x should have a
special structure. This enabled them to employ the tropical linear system solvability theory (see,
e.g., Theorem 3.1.1 and Corollary 3.1.2 [3]).

Subsequently [11] proposed several modifications to the original Stickel protocol in an attempt
to make it resistant against the Kotov-Ushakov attack. Their work involved suggesting different
classes of commuting matrices instead of tropical polynomials. For example, they suggested a
modification where they used a commutative property of tropical matrix roots, and some other
variations hoping to enhance the resistance of the key exchange protocols compared to the original
Stickel protocol. Unfortunately, they also observed that all these modifications appear to exhibit a
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vulnerability to a form of Kotov-Ushakov attack. Specifically, they proposed a generalized version
of Kotov-Ushakov attack and proved that it applies to all their new protocols.

Grigoriev and Shpilrain [6] also proposed two tropical implementations of the Diffie-Hellman
protocols based on the semi-direct product, but one of them was shown to be invalid by Isaac and
Kahrobaei [8] and the other successfully attacked by the same authors as well as in [12]. See also
a recent survey of Ahmed et al. [1] for a number of other interesting protocols based on tropical
matrix algebra and the cryptanalysis of such protocols.

The main idea of this paper is to present an attack on variants of the Stickel protocol that
are based on modified tropical circulants. We attack the proposed protocols using the generalized
Kotov-Ushakov attack similar to the one described in [11], and we also make an observation that
there is a heuristic implementation of this attack which is much faster and shows an overwhelming
success rate. More specifically, the paper is organized as follows. In Section 2 we start with some
preliminaries and basic definitions of tropical matrix algebra. In Section 3 we define the tropical
circulants and the different forms of modified tropical circulants and present the previously pro-
posed key exchange protocols based on them. In Section 4 we cryptanalyze the proposed protocols
using the generalized Kotov-Ushakov attack, and present some numerical experiments showing the
attack’s efficiency and performance. In Section 5 we construct a heuristic efficient implementation
of the generalized Kotov-Ushakov attack, employing it to attack the protocols based on modified
circulants as well as the tropical Stickel protocol of [5] and present some numerical experiments
showing that this heuristic implementation is indeed much faster and has a very good (and, in the
case of modified circulants, excellent) success rate. Our codes have been uploaded to GitHub 1.

2 Preliminaries

In this section, we present fundamental definitions in tropical algebra that will be utilized in the
subsequent sections.

Definition 2.1. (Tropical Semiring). We define the tropical/max-plus semiring as Rmax = (R ∪
{−∞},⊕,⊗), where traditional addition + and multiplication × are replaced by tropical addition
⊕ and tropical multiplication ⊗ respectively. These new arithmetical operations are defined by
x⊕ y = max{x, y} and x⊗ y = x+ y for all x, y ∈ Rmax

The tropical operations can also be extended to include matrices and vectors. In particular, the
operation A⊗ α = α⊗A, where α ∈ Rmax, A ∈ Rm×n

max and (A)ij = aij is defined by

(A⊗ α)ij = (α⊗A)ij = α⊗ aij ∀i ∈ [m] and ∀j ∈ [n].

The tropical addition A ⊕ B of two matrices A ∈ Rmxn
max and B ∈ Rm×n

max , where (A)ij = aij and
(B)ij = bij is defined by

(A⊕B)ij = aij ⊕ bij ∀i ∈ [m] and ∀j ∈ [n].

The multiplication of two matrices is also similar to the “traditional” algebra. Namely, we define
A⊗B for two matrices, where A ∈ Rmxp

max and B ∈ Rp×n
max , as follows:

(A⊗B)ij =

p⊕
k=1

aik ⊗ bkj = (ai1 ⊗ b1j ⊕ ai2 ⊗ b2j ⊕ . . .⊕ ain ⊗ bnj) ∀i ∈ [m] and ∀j ∈ [n].

1https://github.com/suliman1n/Generalized-KotovUshakov-Attack-on-Tropical-Stickel-Protocol-Based-on-
Modified-Circulants
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Definition 2.2. (Matrix Power). For M ∈ Rn×n
max , the n-th tropical power of M is denoted by

M⊗n, and expressed as,
M⊗n = M ⊗M ⊗ . . .⊗M︸ ︷︷ ︸

n times

By definition, any tropical square matrix to the power 0 is the tropical identity.

Definition 2.3. (Tropical Identity). The tropical identity matrix I ∈ Rn×n
max is of the form (I)ij = δij

where

δij =

{
0 if i = j

−∞ otherwise

Subsequently, we define the tropical matrix polynomials.

Definition 2.4. (Tropical Matrix Polynomials). Tropical matrix polynomial is a function of the
form

A 7→ p(A) =
d⊕

k=0

ak ⊗A⊗k.

where ak ∈ Rmax for k = 0, 1, . . . , d. Here A is a square matrix of any dimension.

Notice that any two tropical matrix polynomials of the same matrix commute as in the classical
algebra, and this fact was utilized by Grigoriev and Shpilrain [5] to construct the following tropical
implementation of the Stickel protocol.

Protocol 1. Original Tropical Stickel Protocol

1. Alice and Bob agree on public matrices A,B,W ∈ Rn×n
max .

2. Alice chooses two random tropical polynomials p1(x) and p2(x) and sends U = p1(A)⊗W ⊗
p2(B) to Bob.

3. Bob chooses two random tropical polynomials q1(x) and q2(x) and sends V = q1(A) ⊗W ⊗
q2(B) to Alice.

4. Alice computes her secret key using a public key V obtained from Bob, and she has Ka =
p1(A)⊗ V ⊗ p2(A).

5. Bob also computes his secret key using Alice’s public key U , and he obtains Kb = q1(A) ⊗
U ⊗ q2(B).

We notice that the protocol utilizes the commutativity of tropical polynomials of the same
matrix, and this is why the two parties end up with an identical key.

3 Public-Key Cryptography Using Modified Tropical Circu-
lant Matrices

In this section, we introduce the definition of tropical circulant matrices and their various modified
forms. We also present the key exchange protocols based on these modified circulants.
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3.1 Modified Tropical Circulant Matrices

Modified tropical circulants, as suggested by their name, are modifications of circulant matrices,
which are well known in “traditional” algebra over fields as well as in tropical algebra, where some
of their properties were studied in [4], [13] and [14]. Here is a formal definition of tropical circulants.

Definition 3.1. (Tropical Circulants). Let C ∈ Rn×n
max . We say that C is a circulant matrix with

entries c0, c1, . . . , cn−1 if it is of the form
c0 cn−1 cn−2 · · · c1
c1 c0 cn−1 · · · c2
c2 c1 c0 · · · c3
...

...
...

. . . · · ·
cn−1 cn−2 cn−3 · · · c0


where c0, c1, c2 . . . , cn−1 ∈ Rmax.

We now present the modified forms of tropical circulants introduced in [7],[2] and [15].

Definition 3.2. (Upper s-Circulants [7]). Let T ∈ Rn×n
max . We say that T is an upper-s-circulant if

it is of the form 
c0 cn−1 ⊗ s cn−2 ⊗ s · · · c1 ⊗ s
c1 c0 cn−1 ⊗ s · · · c2 ⊗ s
c2 c1 c0 · · · c3 ⊗ s
...

...
...

. . . · · ·
cn−1 cn−2 cn−3 · · · c0


where c0, c1, c2 . . . , cn−1, s ∈ Rmax.

Definition 3.3. (Lower s-Circulants [2]). Let T ∈ Rn×n
max . We say that T is a lower s-circulant if it

is of the form 
c0 cn−1 cn−2 · · · c1

c1 ⊗ s c0 cn−1 · · · c2
c2 ⊗ s c1 ⊗ s c0 · · · c3

...
...

...
. . . · · ·

cn−1 ⊗ s cn−2 ⊗ s cn−3 ⊗ s · · · c0


where c0, c1, c2 . . . , cn−1, s ∈ Rmax.

Definition 3.4. Denote the set of all tropical upper or lower s-circulant matrices of dimension
(n× n) as Cs

n. Thus C
s
n = {A ∈ Rn×n

max | A is an upper s-circulant matrix} or Cs
n = {A ∈ Rn×n

max | A
is a lower s-circulant matrix}. We will use the same notation for both matrix classes, distinguishing
between them based on the context when necessary.

Proposition 3.1. ([2]) The set of all tropical upper or lower s-circulant matrices Cs
n of Rn×n

max is a
commutative tropical subsemiring of Rn×n

max.

Proposition 3.1 was proved in [2] only for lower s-circulant matrices, but the same claim for
upper s-circulnat matrices easily follows by transposition.
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Definition 3.5. (Anti-s-Circulants [2]). Let T ∈ Rn×n
max . We say that T is an anti-s-circulant if it

is of the form 

c0 ⊗ s cn−1 ⊗ s · · · c2 ⊗ s c1
c1 ⊗ s c0 ⊗ s · · · c3 c2 ⊗ s
c2 ⊗ s c1 ⊗ s · · · c4 ⊗ s c3 ⊗ s

...
...

...
. . .

...
cn−2 ⊗ s cn−3 · · · c0 ⊗ s cn−1 ⊗ s
cn−1 cn−2 ⊗ s · · · c1 ⊗ s c0 ⊗ s


where c0, c1, c2 . . . , cn−1, s ∈ Rmax.

Note that anti-s-circulants do not generally commute and hence they can not be directly used
to construct a variant of tropical Stickel protocol. They,however, commute in a special case which
will be described soon.

We now recall the definitions of upper triangular and lower triangular Toeplitz matrices which
were used for the Stickel protocol in [15].

Definition 3.6. (Upper Triangular Toeplitz Matrices [15]). Let T ∈ Rn×n
max . We say that T is an

upper triangular Toeplitz matrix if the matrix is of the form
c0 cn−1 cn−2 · · · c1
−∞ c0 cn−1 · · · c2
−∞ −∞ c0 · · · c3
...

...
...

. . . · · ·
−∞ −∞ −∞ · · · c0


where c0, c1, c2 . . . , cn−1 ∈ Rmax.

Definition 3.7. (Lower Triangular Toeplitz Matrices [15]). Let T ∈ Rn×n
max . We say that T is a

lower triangular Toeplitz matrix if the matrix is of the form
c0 −∞ −∞ · · · −∞
c1 c0 −∞ · · · −∞
c2 c1 c0 · · · −∞
...

...
...

. . . · · ·
cn−1 cn−2 cn−3 · · · c0


where c0, c1, c2 . . . , cn−1 ∈ Rmax.

Note that the Toeplitz matrices also already appeared in the tropical context before, see, e.g.,
[4] and [10]. For our purpose, it is sufficient to observe, however, that lower triangular Toeplitz
matrices and, respectively, upper triangular Toeplitz matrices are upper s-circulants and, respec-
tively, lower s-circulants with s = −∞. This also implies, in view of Proposition 3.1, that any two
lower triangular Toeplitz matrices as well as any two upper triangular Toeplitz matrices commute.
One could also prove this by representing lower and upper triangular Toeplitz matrices as matrix
polynomials.

The following example illustrates the commutativity properties of the modified tropical circu-
lants.
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Example 3.1. Let A1 ∈ C3
3 be an upper 3-circulant matrix with parameters c0 = 1, c1 = −1, c2 = 2

and s = 3:

A1 =

 1 2⊗ 3 −1⊗ 3
−1 1 2⊗ 3
2 −1 1

 =

 1 5 2
−1 1 5
2 −1 1

 .

Let B1 be an upper 3-circulant matrix with parameters c0 = 5, c1 = 6, c2 = 0 and s = 3:

B1 =

 5 0⊗ 3 6⊗ 3
6 5 0⊗ 3
0 6 5

 =

 5 3 9
6 5 3
0 6 5


We have

A1 ⊗B1 =

 11 10 10
7 11 10
7 7 11

 = B1 ⊗A1.

Similarly, let A2 ∈ C3
3 be a lower 3-circulant matrix with parameters c0 = 1, c1 = −1, c2 = 2 and

s = 3:

A2 =

 1 2 −1
−1⊗ 3 1 2
2⊗ 3 −1⊗ 3 1

 =

 1 2 −1
2 1 2
5 2 1

 .

Let B2 be a lower 3-circulant matrix with parameters c0 = 5, c1 = 6, c2 = 0 and s = 3:

B2 =

 5 0 6
6⊗ 3 5 0
0⊗ 3 6⊗ 3 5

 =

 5 0 6
9 5 0
3 9 5

 .

We have

A2 ⊗B2 =

 11 8 7
10 11 8
11 10 11

 = B2 ⊗A2.

Now let A3 be an anti-2-circulant with parameters c0 = 1, c1 = 2, c2 = 3 and s = 2:

A3 =

 1⊗ 2 3⊗ 2 2
2⊗ 2 1 3⊗ 2
3 2⊗ 2 1⊗ 2

 =

 3 5 2
4 1 5
3 4 3

 .

Let B3 be an anti-2-circulant with parameters c0 = 5, c1 = 7, c2 = 4 and s = 2:

B3 =

 5⊗ 2 4⊗ 2 7
7⊗ 2 5 4⊗ 2
4 7⊗ 2 5⊗ 2

 =

 7 6 7
9 5 6
4 9 7

 .

Then

A3 ⊗B3 =

 14 11 11
11 14 12
13 12 10

 ̸= B3 ⊗A3 =

 10 12 11
12 14 11
13 11 14

 .

We see that upper or lower s-circulant matrices and upper or lower triangular Toeplitz matrices
can be used in cryptographic protocols in order to compute shared keys, while anti-s-circulants can
not be generally used.
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3.2 Stickel Protocols Based on Modified Tropical Circulants

We now recall the tropical cryptographic Stickel protocols based on the different forms of modified
tropical circulants introduced in the previous section. The commutativity property of these modi-
fied circulants ensures the success of the protocols.

Protocol 2. Stickel Protocol Based on Tropical Upper or Lower s-Circulant Matrices

1. Alice and Bob agree on s, t ∈ Rmax and a publicly known matrix M ∈ Rn×n
max \ (Cs

n ∪ Ct
n).

2. Alice generates two matrices A1 ∈ Cs
n and A2 ∈ Ct

n.

3. Bob generates two matrices B1 ∈ Cs
n and B2 ∈ Ct

n.

4. Alice calculates U = A1 ⊗M ⊗A2 and sends it to Bob.

5. Bob calculates V = B1 ⊗M ⊗B2 and sends it to Alice.

6. Alice calculates Ka = A1 ⊗ V ⊗A2.

7. Bob calculates Kb = B1 ⊗ U ⊗B2.

8. They both have the same key, Ka = K = Kb.

We notice that the keys are identical due to the property of A1 ⊗B1 = B1 ⊗A1 and B2 ⊗A2 =
A2 ⊗B2 from Proposition 3.1:

Ka = A1 ⊗ V ⊗A2 = A1 ⊗B1 ⊗M ⊗B2 ⊗A2

= B1 ⊗A1 ⊗M ⊗A2 ⊗B2 = B1 ⊗ U ⊗B2 = Kb.

In [2], the authors proposed a key exchange protocol based on a specific class of matrices
known as anti-s-p-circulant matrices. These matrices are anti-s-circulants with the property that
ci − ci−1 = p ∀i ∈ {1, 2, · · ·n − 1} where p ∈ N and c0, c1, c2 . . . , cn−1 are the parameters of the
underlying circulant matrix. It is proved in [2] that any two anti-s-p-circulant matrices commute,
and therefore one can consider a Stickel protocol based on such matrices.

However, such protocol is easy to attack as it essentially reduces to the two parties choosing a
single random integer for each generated matrix. More precisely, the matrices generated by Alice
or Bob are of the form

c0 ⊗ s c0 + (n− 1)p⊗ s · · · c0 + 2p⊗ s c0 + p
c0 + p⊗ s c0 ⊗ s · · · c0 + 3p c0 + 2p⊗ s
c0 + 2p⊗ s c0 + p⊗ s · · · c0 + 4p⊗ s c0 + 3p⊗ s

...
...

...
. . .

...
c0 + (n− 2)p⊗ s c0 + (n− 3)p · · · c0 ⊗ s c0 + (n− 1)p⊗ s
c0 + (n− 1)p c0 + (n− 2)p⊗ s · · · c0 + p⊗ s c0 ⊗ s


This implies that Alice and Bob each choose only one secret integer c0 for their respective matrices,
as s and p must be publicly known or sent by a transmission that can be intercepted (since both
Alice and Bob have to use these parameters). The attacker can then easily find the sum of the
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two integers used by Alice by intercepting Alice’s message U , and use it to reconstruct the secret
shared key. Hence, there is no need to apply any form of Kotov-Ushakov attack or other advanced
methods, and we will not discuss the Stickel protocol based on tropical anti-s-p-circulants in what
follows.

Let us also present the following protocol from [15], although it can be seen as a special case of
the previous protocol.

Protocol 3. Stickel Protocol Based on Tropical Upper and Lower Triangular Toeplitz Matrices

1. Alice and Bob agree on a publicly known matrix M ∈ Rn×n
max .

2. Alice generates an upper triangular Toeplitz matrix A1 and a lower triangular Toeplitz matrix
A2.

3. Bob generates an upper triangular Toeplitz matrix B1 and a lower triangular Toeplitz matrix
B2.

4. Alice calculates U = A1 ⊗M ⊗A2 and sends it to Bob.

5. Bob calculates V = B1 ⊗M ⊗B2 and sends it to Alice.

6. Alice calculates Ka = A1 ⊗ V ⊗A2.

7. Bob calculates Kb = B1 ⊗ U ⊗B2.

8. They both have the same key, Ka = K = Kb.

Alice and Bob end up with the same shared key due to the commutativity properties of the
upper and lower triangular Toeplitz matrices. Note that the authors of this protocol [15] proposed
it using the max-times semiring, while we present it here using the max-plus semiring. The two
approaches are equivalent due to the following remark.

Remark 3.1. Both the max-times and min-plus semirings are isomorphic to the max-plus semiring
(see, e.g., [3] Section 1.4), and therefore the claim that the max-times semiring is not a tropical
semiring is false.

4 Cryptanalysis of The Proposed Protocols Using The Gen-
eralized Kotov-Ushakov Attack

In this section, we present our attacks on the protocols introduced in the previous section. Subse-
quently, we implement the attacks showing their efficiency and performance.

4.1 Generalized Kotov-Ushakov Attack on Modified Tropical Circulant
Stickel Protocols

It is claimed in [7],[2] and [15] that these protocols are resistant to the Kotov-Ushakov attack
since the modified tropical circulants cannot be represented as tropical polynomials of any matrix.
However we aim to show that, while this claim is true, we can in fact represent these matrices in
a nice algebraic manner as seen in the upcoming example, and therefore (similarly to how it is
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done in [11]) we can implement a form of the generalized Kotov-Ushakov attack to cryptanalyze all
existing Stickel protocols based on modified tropical circulants.

Example 4.1. Consider the set of upper s-circulant matrices of size 3, in particular Cs
3 . Let A ∈ Cs

3

with parameters c0, c1, c2 and s. We can express A as

A =

 c0 c2 ⊗ s c1 ⊗ s
c1 c0 c2 ⊗ s
c2 c1 c0

 = c0 ⊗

 0 −∞ −∞
−∞ 0 −∞
−∞ −∞ 0

⊕

c1 ⊗

−∞ −∞ s
0 −∞ −∞

−∞ 0 −∞

⊕ c2 ⊗

−∞ s −∞
−∞ −∞ s
0 −∞ −∞

 .

Proposition 4.1. We can express any modified tropical circulant matrix of dimension n× n with
entries c0, c1, . . . , cn−1 as

A =

n−1⊕
α=0

(cα ⊗ Γs
α) ,

where we have the following definition for the upper circulant case

(Γs
α)ij =


0 if α ≡ (i− j)(modn) and i ≥ j

s if α ≡ (i− j)(modn) and i < j

−∞ otherwise

(1)

and the following definition for the lower circulant case

(Γs
α)ij =


0 if α ≡ (i− j)(modn) and i ≤ j

s if α ≡ (i− j)(modn) and i > j

−∞ otherwise

(2)

We are going to use these formulas to generate a form of Kotov-Ushakov attack on the proposed
protocols.

Let Ds and Dt be arbitrary modified tropical circulants, assuming different forms of the modified
circulants depending on the specific protocol targeted by the attack. Similarly to the original
Kotov-Ushakov attack [9], we are aiming to find modified tropical circulants X and Y that solve

X ⊗Ds = Ds ⊗X

Y ⊗Dt = Dt ⊗ Y

X ⊗M ⊗ Y = U

(3)

Using Proposition 4.1 we can express X and Y as

X =

n−1⊕
α=0

(xα ⊗ Γs
α) , Y =

n−1⊕
β=0

(
yβ ⊗ Γt

β

)
.
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We now substitute these into the third equation of (3) to obtain

U =

n−1⊕
α=0

(xα ⊗ Γs
α)⊗M ⊗

n−1⊕
β=0

(
yβ ⊗ Γt

β

)
.

Combining the tropical summations, we obtain

U =

n−1⊕
α,β=0

(xα ⊗ Γs
α)⊗M ⊗

(
yβ ⊗ Γt

β

)
.

Rearranging those using the distributivity law will give

n−1⊕
α,β=0

xα ⊗ yβ ⊗
(
Γs
α ⊗M ⊗ Γt

β − U
)
= E,

where E is a matrix of the correct dimension with zeros in all entries. We denote Tαβ = Γs
α ⊗M ⊗

Γt
β − U and therefore we can write

n−1⊕
α,β=0

xα ⊗ yβ ⊗
(
Tαβ

)
γδ

= 0 ∀γ, δ ∈ [n].

If we additionally denote zαβ = xα ⊗ yβ , we have

n−1⊕
α,β=0

zαβ ⊗
(
Tαβ

)
γδ

= 0 ∀γ, δ ∈ [n]. (4)

We have arrived at a system of tropical linear one-sided equations with coefficients
(
Tαβ

)
γδ

and

unknowns zαβ .
Now we describe a generalized form of the Kotov-Ushakov attack similar to [11]. Here and below,

argminγ,δ∈[n]

(
−Tαβ

γδ

)
denotes the set of pairs (γ, δ) at which the minimum of −Tαβ

γδ is attained.

Attack 4.1. Generalized Kotov-Ushakov attack against the tropical Stickel protocol based on
modified circulants.

1. Compute

cαβ = min
γ,δ∈[n]

(
−Tαβ

γδ

)
Sαβ = arg min

γ,δ∈[n]

(
−Tαβ

γδ

)
.

2. Among all minimal covers of [n] × [n] by Sαβ , that is, all minimal subsets C ⊆ {0, . . . , n −
1} × {0, . . . , n− 1} such that ⋃

(α,β)∈C

Sαβ = [n]× [n],
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find a cover for which the system

xα + yβ = cαβ , if (α, β) ∈ C,
xα + yβ ⩽ cαβ , if otherwise.

(5)

is solvable.

We now prove that this attack works, due to it producing X and Y that satisfy equations (3).
(The proof is quite similar to the proof of [11], Theorem 5.1, but we include it here for reader’s
convenience.)

Proposition 4.2. Let U be the message that Alice sent to Bob in Protocol 2 or Protocol 4. Then
Attack 4.1 yields

X =

n−1⊕
α=0

(xα ⊗ Γs
α) , Y =

n−1⊕
β=0

(
yβ ⊗ Γt

β

)
,

where Γs
α and Γt

β are the generators of X and Y defined in (1) or (2) depending on which modified
circulants are used in the protocol, such that X and Y satisfy X ⊗M ⊗ Y = U .

Proof. Since U = X ⊗ M ⊗ Y where X and Y are modified circulants, it is clear that Equa-
tion (4) is solvable with zαβ = xα ⊗ yβ and xα and yβ such that X =

⊕n−1
α=0 (xα ⊗ Γs

α) and

Y =
⊕n−1

β=0

(
yβ ⊗ Γt

β

)
. We are now left to show that the method described in Attack 4.1 does find

a solution.

We utilize the following results from the theory of tropical linear equation of the shape A⊗ x = b
(see [3] Theorem 3.1.1 and Corollary 3.1.2):

1. We have that cαβ = min
(
−Tαβ

γδ

)
= −max

(
Tαβ
γδ

)
is the greatest solution.

2. We recall that Sαβ = argminαβ

(
−Tαβ

γδ

)
= argmax

(
Tαβ
γβ

)
. Therefore, Z = (zαβ) is a

solution if and only if there exists a set C ⊆ {0, . . . , n− 1} × {0, . . . , n− 1} such that⋃
(α,β)∈C

Sαβ = [n]× [n]

and also
zαβ = cαβ for all (α, β) ∈ C and zαβ ≤ cαβ for all (α, β) /∈ C,
zαβ = xα ⊗ yβ ∀α, β.

If there is a solution (x, y) that satisfies these set of equalities and inequalities, then there is a
minimal cover C ′ ⊆ C of [n] × [n] for which it is of this form with C being replaced with C ′.
Therefore, the solvability is checked by finding at least one linear system (5) that is solvable with
C being a minimal cover (i.e a set satisfying

⋃
(α,β)∈C Sαβ = [n]× [n] that is minimal with respect

to inclusion). As Attack 4.1 performs this procedure, it will break the proposed protocol, provided
that a solution exists (which in the case that the protocol has been applied is true).
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Figure 1: Attacking vs. performing Protocol 2

4.2 Implementation of The Attack With a Comparison Between The
Modified Circulant Protocols And The Original Stickel Protocol

We implemented Attack 4.1 and applied it to the Stickel protocols based on modified circulants
and performed the experiments for a matrix size ranging from 2 to 50 and the entries of the matrix
in the interval [-1000,1000]. We have computed the time taken for the attack to recover the secret
shared key for each matrix size. We also computed the time taken to generate the key between the
two authorized parties (Alice and Bob) in order to compare it with the attacker’s time. Each point
in the figures corresponds to attacking or generating a single instance by the protocols.

Firstly, we performed the attack on Protocol 2 and compared its time with the key generation
time as seen in Figure 1.

As expected, the attacker takes more time to recover the shared secret as the dimension of the
matrix increases. This is due to a high number of generators (i.e., Γ matrices) in the generalized
Kotov-Ushakov attack, leading to a big number of minimal covers to be checked. Note that all
of these minimal covers are generated by the attack, as it also was in the case of the original
implementation by Kotov and Ushakov [9].

Thus, on the one hand, generating these covers and then sorting them and looking for an
appropriate cover can be very time-consuming. On the other hand, generating the shared key
between the authorized parties is obviously very fast, since it only requires generating random
matrices and multiplying them. For example, it only takes Alice and Bob 1.6 sec to exchange a
shared key for a matrix size of 100.

We also applied the same attack to Protocol 3 and compared its time with the generation of
the shared key, and we obtained very similar results in the performance of the triangular Toeplitz
protocol against the attack when compared with the s-circulants protocol, with the Toeplitz protocol
requiring less time to attack (23 minutes for 50× 50 Toeplitz matrices compared to 40 minutes for
s-circulant matrices of the same dimension).
Since both the modified circulants protocols and the original Stickel protocol are susceptible to a
form of Kotov-Ushakov attack, it makes sense to compare their resilience and performance against
their attacks. Figure 2 shows the performance of the tropical Stickel protocol of [5] against the
Kotov-Ushakov attack and the time required for the generation of the shared key. Similarly, the
matrix entries and polynomial coefficients are from the interval [−1000, 1000] and each point in the
figures corresponds to attacking or generating a single instance of the protocol.
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Figure 2: Attacking vs. performing Protocol 1

We observe that both the modified circualant protocols and the original Stickel protocol exhibit
comparable resistance to the Kotov-Ushakov attacks, with an advantage of the original Stickel
protocol. For example, original Stickel protocol required the Kotov-Ushakov attack 44.188 minutes
to successfully recover the shared key for a 50-sized polynomial, whereas the generalized Kotov-
Ushakov attack on the s-circulant and the traingular Toeplitz protocols took 40.203 and 25.83
minutes respectively for a 50-dimensional matrix. Notably, enhancing the security of original Stickel
protocol is achievable by employing larger matrices, as we employed only a 10-dimensional matrix
in this experiment, as suggested by the authors of the protocol [5].
Note that the process of key generation between authorized parties proves to be more efficient in
the modified circulant protocols, as they do not require the evaluation of polynomials and matrix
powers. However, the difference in efficiency is relatively subtle and might not be noticeable to users.
Consequently, the proposed modified circulant protocols do not provide any significant additional
advantages over the original Stickel protocol.

5 A More Efficient Implementation of the Kotov-Ushakov
Attack

In this section, we present an alternative implementation of the Kotov-Ushakov attack that requires
less time to attack the proposed modified circulant protocols as well as the tropical Stickel protocol
of [5].

5.1 Details of The Attack

The number of enumerated covers in Kotov-Ushakov attack appears to grow exponentially with
the polynomial degree in the original Stickel protocol and similarly with the matrix size in the
modified circulant protocols. This makes the attack highly time-consuming for large values of these
parameters, as illustrated in the preceding figures. Consequently, there is a compelling need to
seek a more efficient implementation of the attack. In their work [9], Kotov and Ushakov observed
that smaller-sized covers are more likely to be appropriate and lead to a consistent solvable linear
system. In their experiment they only had to test for at most 2 covers after sorting all covers by size
and then another criteria. This inspired us to implement an efficient version of the attack where
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we only try to find the smallest cover instead of enumerating all possible covers.
We firstly compute cαβ and Sαβ as in the original Kotov-Ushakov attack. Then, for every pair (γ, δ)
in [n] × [n], we have (γ, δ) ∈ Sαβ for some (α, β) pairs. We identify the largest sized set among
them and add the associated (α, β) to our cover. We then repeat the process for all possible (γ, δ)
pairs in [n]× [n]. In practice, this procedure quite often yields the smallest sized cover. The process
is described in the following algorithm.

Algorithm 1 Efficient Heuristic Implementation of Kotov-Ushakov Attack

1: Initialize Final Cover = [ ]

2: Compute cαβ = min
γ,δ∈[n]

(
−Tαβ

γδ

)
and Sαβ = arg min

γ,δ∈[n]

(
−Tαβ

γδ

)
3: for (γ, δ) ∈ [n]× [n] : do
4: Initialize Possible Covers = [ ]
5: for (α, β) ∈ {0, 1, . . . , n− 1} × {0, 1, . . . , n− 1} do
6: if (γ, δ) ∈ Sαβ then
7: Append (α, β) to Possible Covers

8: for (α, β) ∈ Possible Covers do
9: find largest sized Sαβ and assign (α′, β′)=(α, β)

10: Append (α′, β′) to Final Cover

11: Solve the system
xα + yβ = cαβ , if (α, β) ∈ Final Cover,

xα + yβ ⩽ cαβ , if otherwise.

Remark 5.1. Algorithm 1 has polynomial complexity. Indeed, the initialization in line 2 takes
O(n4) operations. It can be also seen that the loops in lines 3-10 take at most O(n6) operations.
Lastly, the system in line 11 can be formulated as a linear programming problem, which is known
to be polynomially solvable.

5.2 Implementation of The Attack With Success Rate and Efficiency
Analysis

We expect this attack to have a high success rate since the smallest cover almost always succeeds
in the original implementation of the Kotov-Ushakov attack. Figure 3 shows the success rate of
the attack against the s-circulants protocol as a function of the matrix dimension. The parameters
used in the experiment are:
- The matrix entries are chosen randomly from -10000 to 10000 in every trail.
- The protocol parameters s and t are chosen randomly from -10000 to 10000 in every trail.
- 1000 trails are performed for every matrix dimension.

We observe that the algorithm maintains a perfect success rate even for higher dimensions,
which are the most important cases since the original implementation tends to be less efficient. The
following figure illustrates the average time for the attack to recover the secret key as a function
of matrix dimension. Comparing this with Figure 1, this attack implementation is over 500 times
faster for the matrices of dimension 50 × 50 than the original implementation. We also applied
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Figure 3: Algorithm 1 attacking Protocol 2: success rate and efficiency

Figure 4: Algorithm 1 attacking Protocol 1 : success rate and efficiency

the attack on the triangular Toeplitz matrices protocol, and similarly the attack achieved a perfect
success rate and a much faster execution time compared to the original implementation of the
generalized Kotov-Ushakov attack.

We also applied our heuristic attack to the original Stickel protocol by replacing (α, β) ∈
{0, 1, . . . , n − 1} × {0, 1, . . . , n − 1} in the 5th line of the algorithm by (α, β) ∈ {0, 1, . . . , D} ×
{0, 1, . . . , D} where D is the maximum polynomial degree that can be used by Alice and Bob.
Figure 4 illustrates the success rate and the time consumption of this attack on the original Stickel
protocol, in which we similarly notice a high success rate with a faster computation compared to
the original implementation by Kotov and Ushakov.
The parameters used in the experiment are:
- The matrix dimension is 10 for all trails.
- The matrix entries are chosen randomly from -10000 to 10000 in every trail.
- The polynomial coefficients are chosen randomly from -10000 to 10000 in every trail.
- 1000 trails are performed for every polynomial degree.

We note that this heuristic implementation achieved a high success rate and much less computa-
tional time when applied to the original Stickel protocol. Thus it is outperforming the computational
efficiency of the original attack implementation by Kotov and Ushakov, but losing a bit in terms of
success rate.
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6 Conclusions

In this paper, we analyzed some versions of the tropical Stickel protocol that are based on the
modified tropical circulant matrices. We showed that a form of Kotov-Ushakov attack applies
to these protocols and is able to successfully recover the shared secret key. Since the matrix
dimension in these protocols is equivalent to the polynomial degree in the original Stickel protocol,
Kotov-Ushakov attack becomes less efficient as the matrix dimension increases. To address this, we
implemented a heuristic form of the attack, demonstrating both exceptional speed and a remarkably
high success rate. The attack achieved a supreme success rate when applied to the Stickel protocols
based on modified circulants, and an extremely high success rate when applied to the tropical Stickel
protocol of [5].

Therefore, our findings lead to the conclusion that the proposed protocols do not confer any
advantage over the original version of tropical Stickel protocol. All protocols are vulnerable to a
form of Kotov-Ushakov attack. The original tropical Stickel protocol, however, enjoys the advantage
of having two user-controllable parameters (matrix dimension and polynomial degree), enhancing
its resistance. In contrast, the proposed protocols feature only one parameter (matrix dimension),
implying that the Kotov-Ushakov attack would require less time to compromise it under extreme
parameter values.
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