
Quarantined-TreeKEM: a Continuous Group Key Agreement for MLS,
Secure in Presence of Inactive Users

Céline Chevalier
DIENS, École normale supérieure,

CNRS, PSL University, Inria, France
CRED, Paris-Panthéon-Assas University

celine.chevalier@ens.fr

Guirec Lebrun
DIENS, École normale supérieure,

CNRS, PSL University, Inria, France
ANSSI, France

guirec.lebrun@ens.fr

Ange Martinelli
ANSSI, France

ange.martinelli@ssi.gouv.fr

Abstract—The recently standardized secure group messaging
protocol “Messaging Layer Security” (MLS) is designed to
ensure asynchronous communications within large groups,
with an almost-optimal communication cost and the same
security level as point-to-point secure messaging protocols such
as “Signal”. In particular, the core sub-protocol of MLS, a
Continuous Group Key Agreement (CGKA) called TreeKEM,
must generate a common group key that respects the funda-
mental security properties of “post-compromise security” and
“forward secrecy” which mitigate the effects of user corruption
over time.

Most research on CGKAs has focused on how to improve
these two security properties. However, post-compromise se-
curity and forward secrecy require the active participation of
respectively all compromised users and all users within the
group. Inactive users – who remain offline for long periods –
do not update anymore their encryption keys and therefore
represent a vulnerability for the entire group. This issue
has already been identified in the MLS standard, but no
solution, other than expelling these inactive users after some
disconnection time, has been found.

We propose here a CGKA protocol based on TreeKEM
and fully compatible with the MLS standard, that implements
a “quarantine” mechanism for the inactive users in order to
mitigate the risk induced by these users without removing
them from the group. That mechanism indeed updates the
inactive users’ encryption keys on their behalf and secures
these keys with a secret sharing scheme. If some of the inactive
users eventually reconnect, their quarantine stops and they are
able to recover all the messages that were exchanged during
their offline period. Our “Quarantined-TreeKEM” protocol
thus offers a good trade-off between security and functionality,
with a very limited – and sometimes negative – communication
overhead.

1. Introduction

While point-to-point secure communications have
reached a high degree of maturity with the development of
end-to-end secure messaging (SM) protocols that have been
thoroughly studied, group communications have suffered

until recently from a lack of dedicated research. In practice,
secure messaging applications that offer a functionality of
group communication rely on ad-hoc protocols that are
either less secure than their point-to-point counterpart (e.g.
the sender-key protocol, used by WhatsApp [1]) or that
are quite inefficient, especially with a communication cost
scaling linearly with the number n of group members.

To remedy this situation, the IETF has released in July
2023, after a five-year study, RFC 9420 [2] that standardizes
“Messaging Layer Security” (MLS). This state-of-the-art
Secure Group Messaging (SGM) protocol is designed to
enable secure communications in large groups of users –
up to tens of thousands members – with an almost-optimal
communication cost.

The core component of MLS is its mechanism of authen-
ticated key exchange between all members of a group, called
a “Continuous Group Key Agreement” (CGKA) [3], which
needs to be run continuously for security considerations.

The CGKA protocol that has been most thoroughly
studied, and that was adopted in the final IETF standard,
is TreeKEM [4]. Its architecture, close to the original ART
protocol [5], relies on binary trees in order to exchange
handshake data between n users with an almost-optimal
complexity of Ω(log(n)).

1.1. Security properties of a CGKA

Among all the security properties that a CGKA
must fulfill (cf. section 2.4.1), two in particular – Post-
Compromise Security (PCS) and Forward Secrecy (FS)
– require an active participation of respectively all
compromised users and all group members, who must
update their keying material and the one of the tree’s
internal nodes above them. These properties are especially
hard to ensure in a CGKA, due to the asynchronicity of
the protocol and the fact that within a potentially large
group, it appears unlikely that all users behave correctly by
updating regularly their keying material.

1.1.1. Post-Compromise Security (PCS). This property
represents the ability of a protocol to heal from the
corruption of a group member that occurred at some time
(provided that the adversary remains passive after the
end of that compromise). This user corruption consists in
the leak of the user’s private state, but it can also cover
– depending on the security model considered – a user
impersonation using a leaked signing key and/or an illegal
registration on a weak public-key infrastructure.

Most papers aiming to improve the security of CGKA
protocols focus on post-compromise security and try to
minimize the original number n of rounds (n being the
number of group members) necessary to heal a fully-
compromised tree. For instance, the CoCOA protocol
[6] allows concurrent updates in a single round, with a
mechanism of prioritization between them, that permits to
reach PCS in only ⌈log(n)⌉ + 1 rounds. Going further,
the alternate DeCAF protocol [7] reduces this healing
complexity to ⌊log(t)⌋ + 1 rounds when only t users
among n are compromised.

But the most efficient method to ensure PCS is the
“propose & commit” paradigm, which is part of the MLS
IETF working draft since version 8 [8]. This protocol allows
a full healing of the binary tree in only two rounds, whatever
the number of compromised users, yet at the cost of a non-
negligible communication overhead (since the binary tree is
temporarily destructured).

1.1.2. Forward Secrecy (FS). This fundamental security
property states that non-compromised past communications
cannot be jeopardized in the future by any user corruption.
This property can be ensured at the scale of a session (in
the case of a CGKA, by securing past epochs) or of a
message, using symmetric ratchet to make the symmetric
encryption key evolve after sending each encrypted message.

Similarly to PCS, FS at the scale of an epoch relies
on the fresh randomness brought by the key agreements
performed by the CGKA. However, it suffers from the need
to update all encryption keys in the tree (not only all users’
keys but also the ones of all internal nodes).

To the best of our knowledge, the only work improving
the original FS of TreeKEM is the RTreeKEM protocol
of [9]. It provides a stronger forward secrecy than other
CGKAs, by automatically updating – using a non-standard
“updatable public-key encryption scheme”1 – the encryption
keys of all internal nodes and leaves that receive or emit any
encrypted message.

1.1.3. Dealing with inactive users. However, none of these
works deals with the issue of user behavior, which is yet at
the root of a major security flaw. Indeed, even if a protocol
can force online users to regularly update their keys and if

1. This scheme is derived from the secretly key-updatable PKE from
[10], that is used in a variant of our QTK protocol and is described in
section 2.3.

the question of updating the internal nodes has already been
addressed in various ways (e.g. by blanking entire “direct
paths”, from users to the root, in the “propose & commit”
model or by somehow merging several concurrent path up-
dates in [11], [6] or [7]), the case of users remaining offline
for long periods is not addressed, as it is considered intrinsic
to the asynchronicity of the protocol. As these inactive users
no longer update their encryption keys, it only takes one
of them to compromise the forward secrecy of the entire
group. Similarly, a single corrupted inactive user is enough
to undermine the whole group’s post-compromise security.
RFC 9420 identifies this problem but only recommends that
users who have been offline for too long be removed from
the group.

1.2. Our contribution

We propose in this paper Quarantined-TreeKEM (QTK),
a treeKEM-based CGKA protocol which mitigates the
effects, both on forward secrecy and post-compromise
security, of inactive group members (here called “ghost
users”) who no longer update their keying material and the
one of their direct path (i.e. the internal nodes above them).

Instead of simply expelling from the group such
“ghosts”, our protocol temporarily put them aside, in what
we call a “quarantine”. The randomly-chosen user who
initiates this procedure (cf. section 3.3 for details on the
selection of this “quarantine initiator”) for a certain ghost is
responsible for blanking the latter’s direct path and updating
its encryption keys on its behalf, so that future handshake
messages delivered by the Delivery Service are not en-
crypted with an old and potentially compromised encryption
key known by this ghost, but with fresh keying material.

This approach is quite similar to the mechanism of
“tainted nodes” that is used by the Tainted TreeKEM
protocol [12] to add or remove users without blanking their
direct paths: in that protocol, the nodes from the new (in
case of an Add) or former (in case of a Remove) user’s
direct path are updated by another member of the group
who is temporarily in charge of them.

However, unlike Tainted TreeKEM, Quarantined-
TreeKEM does not allow the quarantine initiator to retain the
(secret) decryption key belonging to the ghost user. Instead,
the secret seed that was used to deterministically generate
the ghost’s encryption key pair is split up using a secret
sharing scheme and distributed to all group members. The
ghost’s secret seed and private key are then deleted from
the initiator’s internal state. In this way, the confidentiality
of the ghost’s secret key no longer relies on the security of
a single user (the quarantine initiator) but on that of several
active group members (the number of which depends on the
secret sharing parameters).

When a ghost finally reconnects and updates its keying
material, its quarantine automatically stops and the users
that kept shares related to that ghost send them to it. The
former ghost is therefore able to reconstruct the secret

2

seeds corresponding to its quarantine keys and to eventually
decrypt the handshake messages that it missed during its
offline time and that remained buffered by the Delivery
Service.

This quarantine mechanism strongly strengthens
TreeKEM’s post-compromise security by enabling this
property at the beginning of a ghost’s quarantine – after a
period of inactivity that is fully controlled by the protocol
– instead of after some hypothetical update of that inactive
user, that may never happen until its eviction from the
group.

Regarding forward secrecy, our protocol does not change
the period during which an inactive user disables that prop-
erty for a given group key – this period remains upper
bounded by that user’s update following the generation of
that group key, which, in the case of a quarantined ghost,
corresponds to the update associated with its post-quarantine
reconnection. Nevertheless, it greatly decreases, within these
bounds, the chances that an adversary has to successfully
attack past communications by some user corruption2.

QTK consequently offers a compromise between keep-
ing ghost users within a group, at the expense of security,
and quickly removing these users from the group, which can
deeply affect the functionalities of such an asynchronous
protocol3.

The security of QTK is analyzed in this paper by con-
sidering a partially active adversary that is able to corrupt
any user and leak all of its private state except for its
private signing key, and consequently cannot impersonate
these compromised users. All users are therefore expected
to behave legitimately. The main consequences of a fully
active adversary on our quarantine mechanism are briefly
discussed in appendix A.2.

1.3. Outline of the paper

We describe in section 3 how our QTK protocol works,
and in particular, how a quarantine is carried out from start
to end and how a secret sharing scheme is used to distribute
secret information among the group.

Security is studied in section 4 in a game-based model
inspired from [12]. We show that our protocol is CGKA-
secure in this framework and that the main differences
with standard TreeKEM are the periods during which users
are vulnerable to corruption, through the aforementioned
concept of critical window (cf. section 4.2).

Section 5 details the performances of our protocol in
terms of communication cost. After theoretical computa-
tions, the communication overhead induced by a ghost’s
quarantine, for realistic parameters, is given at the end of this

2. These chances are captured by the concept of “critical window”,
issued from [12] and detailed in section 4.2.

3. Indeed, removing inactive users from the group, even temporarily,
make them miss the content that was exchanged within that group during
that period. If this action is taken too quickly, it contradicts the asynchronic-
ity of the CGKA, that must allow users to disconnect for a certain period
of time without consequences.

section in order to show the feasibility of our QTK CGKA
in real-life use cases. Indeed, it appears that the overhead
of a quarantine is very limited and is sometimes less costly
than the regular updates performed by an active user.

Finally, we present in appendix B an enhancement to our
basic QTK protocol, called “jointly-implemented quaran-
tine”, that further increases the security offered by QTK by
using several users instead of a single one for each operation
of quarantine initialization or update.

2. Preliminaries

2.1. Notations and Terminology

The output of a probabilistic algorithm is represented by
“←” and the one of a deterministic algorithm is given by
“:=”.

“.||.” is used for the concatenation operation. |S| de-
notes the cardinality of a set S. ⌊ ⌉ and ⌈ ⌉ respectively
denote the rounding and ceiling values of a decimal number.
log() denotes the logarithm in base 2.

In the context of a secret sharing scheme, [x]i de-
notes the specific share i associated to the value x;
[x] = ([x]i)i∈J0,n−1K represents the entire collection of
n shares associated with x.

In order to dissociate internal nodes from leaves in the
Ratchet Tree of a CGKA, we note xvi the value x associated
to an internal node vi whereas the value x related to a leaf ℓi
(a.k.a a user ui) is simply noted xi.

2.2. Secret Sharing [13]

Let us recall the definition of a secret sharing scheme,
issued from [14].
Definition 1 (Threshold Secret Sharing Scheme). A (t,m)-

(threshold) secret sharing scheme over a finite set Z is
a pair of efficient algorithms (Distr, Comb) that respec-
tively perform the following tasks:

• Distributing the secret: Distr is a probabilistic algo-
rithm that splits up a secret α ∈ Z , according to pa-
rameters t, m (which respectively denote the recovery
threshold and the total number of shares to emit), into
a collection of m shares ([α]i)i∈J0,m−1K such that at
least t of them are necessary to reconstruct the shared
secret α.

[α] = ([α]0, · · · , [α]m−1)← Distr
(
α, t,m

)
• Reconstructing the secret: Comb is a deterministic

combination algorithm that reconstructs the shared se-
cret α with a subset ([α]i)i∈I⊆J0,m−1K of the share
collection, of size at least t.

α := Comb
(
([α]i)i∈I , I

)
A secret sharing scheme must abide by the correctness
property, which states that for every secret α ∈ Z , for

3

every possible output [α] of the distributing algorithm
Distr(α, t, m) and every subset I of J0,m− 1K of size
at least t, we have:

Comb
(
([α]i)i∈I , I

)
= α

Nota: We only consider in this paper:
• Perfect secret sharing schemes, for which any col-

lection of t − 1 shares related to a secret α ∈ Z
gives strictly no information about that shared secret.
Consequently, for any unbounded adversary A trying
to recover α given a subset ([α]i)i∈I′⊆J0,m−1K of size
strictly smaller than t, we have:

Pr
[
α← A

(
([α]i)i∈I′ , I ′

)]
=

1

|Z|

• Ideal secret sharing schemes: these are perfect schemes
that additionally generate shares belonging to the same
set Z as the shared secret, thus with identical sizes.

2.3. Secretly Key-Updatable Public Key Encryption

Informally, a secretly key-updatable public key
encryption scheme (skuPKE) (originally defined in [10])
is a PKE whose public and private keys can be updated
by independently generated update elements (Θ, θ). The
update element Θ for the public encryption key pk can be
publicly disclosed, whereas the update element θ for the
private decryption key sk must remain secret.

Definition 2 (Secretly Key-Updatable Public Key Encryp-
tion [10]). A secretly key-updatable public key encryp-
tion scheme (skuPKE) consists of six polynomial-time
algorithms:

• KeyGen takes as input the security parameter λ and
probabilistically outputs a couple of public and private
keys (pk, sk).

• Enc takes as input a public key pk ∈ PK and a plain-
text m ∈M and probabilistically yields a ciphertext c.

• Dec takes as input a secret key sk ∈ SK and a
ciphertext c ∈ C and deterministically generates a
plaintext m. As for a regular PKE, a skuPKE scheme
is correct if we have: ∀(pk, sk) ← KeyGen(1λ),
∀m ∈M,Dec(sk,Enc(pk,m)) = m.

• UpdGen takes as input the security parameter λ and
probabilistically outputs a couple of public and private
update elements (Θ, θ).

• UpdPk takes as input a public key pk ∈ PK and a
public update element Θ and yields an updated public
key pk′.

• UpdSk takes as input a private key sk ∈ SK and a
private update element θ and outputs an updated private
key sk′.
(pk, sk)← KeyGen(1λ) (Θ, θ)← UpdGen(1λ)

c← Enc(pk,m) pk′ := UpdPk(pk,Θ)

m := Dec(sk, c) sk′ := UpdSk(sk, θ)

2.4. TreeKEM CGKA protocol

We give hereunder a brief description of how TreeKEM
– as standardized in RFC 9420 [2] – works as a Continuous
Group Key Agreement (CGKA) protocol.

2.4.1. Continuous Group Key Agreement. A CGKA is a
sub-protocol of a “secure group messaging” protocol, that
aims to securely generate a group key which is common
to all group members and evolves over time in order to
provide the security properties of forward secrecy and
post-compromise security.

Definition 3 (CGKA (adapted from [9])).
A CGKA is a tuple of the following algorithms:

• Initialization: user ui creates its initial state γi:
γi ← init(ui) .

• Group Creation: user ui, with state γi, creates a
new group that must include users from the list
G = (ui)i∈J1,nK. A message welcome W is sent to
all members from G, with the information necessary
to join the group: (γ′

i,W) := create(γi, G) .

• Add: user ui adds user uj in the group. ui updates
accordingly its own state into γ′

i and sends a control
message T to warn all group members of the changes
as well as a welcome message W to the joining user uj :
(γ′

i,W, T) := add(γi, uj)

• Remove: user ui removes user uj from the
group. ui updates accordingly its own state into
γ′
i and sends a control message T to the group:
(γ′

i, T) := remove(γi, uj) .

• Update: user ui updates all the encryption keying
material it has knowledge of, generating its updated
state γ′

i and a control message T for the group:
(γ′

i, T) := update(γi) .

• Process: user ui processes a control message
T it has received from another group member,
updates accordingly its own state and computes
the new group key k resulting from these changes:
(γ′

i, k) := process(γi, T) .

Nota: The state γi of any user ui is composed of a
public part pγi, known by every group member, and a
private part sγi, that this user keeps secret and that is
needed to recover the group keys generated by other
members.

A CGKA must fulfill the following properties, stated
informally below and which are evaluated in the security
game of section 4.1.2.

• Correctness: every user in the group must compute the
same group key.

4

• Privacy: a group key is indistinguishable from a ran-
dom value for an adversary who has access to the
transcript of handshake messages exchanged within the
group until the generation of that group key.

• Forward secrecy and post-compromise security, as
described in section 1.1.

2.4.2. Ratchet Tree. In order to optimize the communi-
cation cost between group members, TreeKEM implements
an architecture based on a binary tree called “Ratchet Tree”,
where users are at the leaves and the group key is elaborated
at the root. Similarly to TreeKEM, we consider in this paper
a descending full binary tree, where the two nodes beneath
another node are called its “children” and the one above is
its “parent”.

We explain beneath some tree notions that are used
in TreeKEM to perform dynamic tree operations such as
updates.

Nodes’ state. Each node of this Ratchet Tree, except
for the root, is associated with a local state whose public
component pγ comprises, among other elements4:

• for an internal node v: its public encryption key pkv;
• for a user (leaf) ui: its public encryption and signature

keys pki and spki, with the related credentials. It
also includes the signature, under the user’s private
signature key, of the other fields of that public state.

Blank nodes. Deleted nodes from TreeKEM’s Ratchet
Tree are not removed – since the latter must remain a full
binary tree, with two children for each internal node – but
their state is deleted instead. Such empty nodes are called
“blank” and do not take part in TreeKEM’s processes until
they are filled again.

Resolution of a node. The resolution of a node v from
a binary tree is a set of nodes defined as follows:

• if v is a non-blank node, then Res(v) = {v};
• if v is a blank leaf, then Res(v) = ∅;
• if v is a blank internal node, then
Res(v) = ∪v′∈Children(v)Res(v′).

(Filtered) direct path and co-path of a leaf. A user ui’s
direct path is composed of all the ancestors of the leaf
associated with that user, up to the root. Its filtered direct
path, written Pi, is its direct path whose nodes that have a
child with an empty resolution are removed. A user’s co-
path, CPi, contains the siblings of the direct path’s nodes.

2.4.3. Updates with TreeKEM. The update of the encryp-
tion keying material is implemented differently in TreeKEM
whether it belongs to a user (i.e. a leaf) or an internal node.

Indeed, with the “Propose & Commit” paradigm from
TreeKEM, all tree operations are performed in two rounds:

4. In RFC 9420, such a public state is named “Parent Node” (for internal
nodes) and “Leaf Node” (for the leaves).

• a first one where any user is free to submit proposals
(adding new users, removing current group members,
updating its own keying material...);

• a second one where the valid proposals are grouped
together and implemented within a commit by a single
user, called “committer”.

Update of the committer’s filtered direct path. During a
“commit” process, the committer randomly draws a secret
seed called “leaf secret” and deterministically generates a
fresh encryption key pair from this leaf secret.

This seed is also derived with a key derivation function
to generate another secret (called a “path secret”) psv1
associated with this leaf’s parent v1. This path secret psv1
is itself used to deterministically generate an encryption key
pair for the benefit of that leaf’s parent v1. It is then derived
once again into a new path secret psv2 , related to another
node v2, higher in the leaf’s filtered direct path, and so on,
up to the tree root.

The group key k is then computed by deriving the root’s
path secret psroot.

Broadcast of a commit message to the Ratchet Tree.
After updating its encryption key pair, its filtered direct path
and the group key, the committer uc must transmit to the
other group members the information they need to compute
the new group key. To do so, the committer generates a
commit message that is broadcasted to the whole group
(through a central server that simply plays a role of an
untrusted Delivery Service).

This commit message consists of:
• the list of proposals that the commit implements

(propList);

• the updated (signed) public local state pγ′
c of the com-

mitter;

• the new public encryption keys (pk′vp)vp∈Pc
from the

committer’s filtered direct path;

• the path secrets of the nodes vp ∈ Pc from the com-
mitter’s filtered direct path, encrypted under the public
keys of the nodes vr belonging to the resolution Rvp
of vp’s child on the committer’s co-path.

commitMsg(uc) =propList || pγ′
c ||

(
pk′vp

)
vp∈Pc

||
(
Enc(pkvr , psvp)

)vr∈Rvp

vp∈Pc

2.4.4. Tree evolution and epochs. The evolution of the
group over time is represented by the notion of “epoch”.
Each epoch corresponds to a given state of the user group,
with a certain group key. Each time this group state is
modified by a commit, the group key evolves and the epoch
is incremented of one unit.

We now describe our QTK protocol, with its associated
mechanism of “quarantine” applied on inactive users.

5

3. QTK protocol

Definition 4 (Quarantine TreeKEM (QTK)). The Quar-
antine TreeKEM protocol is a TreeKEM-based CGKA,
associated with a (t,m)-perfect secret sharing scheme5,
that implements a mechanism of quarantine for inactive
users – called “ghost users” – within the group.
This quarantine process updates the ghosts’ keying ma-
terial on their behalf and uses the secret sharing scheme
to collectively secure the secret information related to
these updates.

In this paper, we describe QTK with processes from
the TreeKEM protocol standardized by IETF [2]. However,
our protocol remains compatible with most – if not all –
TreeKEM-derived CGKAs that are proposed in the literature
([6], [7], [9], [11], [12]. . .).

3.1. Message Delivery Mode

We detail two variants of our QTK protocol, that depend
on the ability of the Central Server’s Delivery Service to
perform fine-grained message-delivery:

• broadcast-only setting: all handshake messages are
broadcasted to the entire group;

• server-aided setting: the regular TreeKEM messages
(proposals, commits...) are broadcasted, but two
types of messages3 specific to our protocol (“Share
Distribution Message” and “Share Recovery Message”,
cf. below) are only sent to the adequate recipients.

The server-aided setting, already studied in the CGKA
literature [15], [16], [17], permits to greatly improve the
communication cost, especially in large groups, but it is not
as generalizable as a broadcast-only protocol – such as the
standardized MLS – where no assumption is made on the
Central Server’s capacities.

3.2. QTK Public States

In TreeKEM, each user keeps an updated view of the
whole Ratchet Tree, and in particular, of all other group
members, through their public states pγ (a.k.a “leaf nodes”).

In our QTK protocol, this public state includes two
additional fields necessary to conduct a quarantine:

• The first one (epk) corresponds to the epoch of last
update of the user’s encryption key pair, that the
committer of every epoch checks when creating its
commit, in order to detect inactive users that are to
be quarantined (cf. section 3.3).

• The second one (equar) is the epoch corresponding to
the start of the quarantine. This field permits commit-
ters to check whether a ghost reaches the maximum
quarantine duration δquar that is parametrized at the
application level. For active users, this field remains
empty.

5. Cf. section 2.2 for additional details on that primitive.

3.3. Start of a Quarantine

3.3.1. Initialization Process. At each commit, the unique
committer6 checks that the encryption keys of all other
active users in the tree have not exceeded a maximum age
defined by the parameter δinact. If, at a given epoch ei, cer-
tain users have keys that are too old (ei−epk ≥ δinact), they
are declared “ghost users” and the committer is responsible
for quarantining them.

We note Gi the set of ghost users at epoch ei, and
NG

i ⊆ Gi the subset of ghost users starting their quarantine
at epoch ei.

The quarantine initialization process, at epoch ei, con-
sists of the following steps:

1) The committer uc for that epoch, as “quarantine ini-
tiator”, updates the ghost list Gi+1 for the epoch ei+1

that will follow the commit, by adding new ghosts and
removing ghosts that are to stop their quarantine or be
removed from the group at epoch ei+1.

2) The committer blanks the direct paths of the new ghosts
so that they are (functionally) directly linked to the tree
root.

3) For each of the new ghosts, the committer randomly
draws a seed from a seed space S, that is used to
deterministically generate a fresh encryption key pair:

∀ug ∈ NG
i+1, si+1

g
$← S

(pki+1
g , ski+1

g) := KeyGen(1λ; si+1
g)

4) With a (t,m)-perfect secret sharing scheme, the com-
mitter splits up the seeds into m shares (the number of
shares being defined by the share distribution method),
with a threshold t < m whose choice is a trade-off
between security and availability of the protocol7:

∀ug ∈ NG
i+1, [si+1

g]← Distr(si+1
g , t,m)

with [si+1
g] := {[si+1

g]0, · · · , [si+1
g]m−1}.

5) The committer records in its private state sγc the first
share [si+1

g]0 of each new ghost and distributes the
remaining m−1 shares in the tree, according to a share
distribution process detailed below.

6) The committer includes in its pending commit message
the new ghosts’ public keys, along with its own new
key and the new ones from its direct path Pi+1

c .
7) The committer deletes from its private state the

ghosts’ secret keys ski+1
g , seeds si+1

g and shares
([si+1

g]i)i∈J1,m−1K.

6. TreeKEM selects the committer for a given epoch as the first group
member trying to exchange content data after a proposal has been issued
by another user and has not yet been taken into account in a commit.

7. Indeed, with a high threshold, the secret sharing scheme needs most of
the shares in order to reconstruct the secret. It is therefore more secure than
with a low threshold; however the probability to be unable to legitimately
recover that secret increases, at the expense of the scheme’s availability.

6

3.3.2. Share Distribution in the Ratchet Tree. The dis-
tribution within the tree of the shares previously emitted
depends on the message delivery mode (cf. section 3.1) and
on the share distribution method.

In the broadcast-only setting, the default share distri-
bution method is adapted to the architecture of a binary
tree, and therefore optimizes the communication cost of this
exchange. We however propose an alternate method, called
“horizontal share distribution” that must be used when the
conditions are not conducive to that default method.

In the server-aided setting, on the other hand, only the
horizontal share distribution method can be implemented.

Default Method: Shares with Path Secrets. By default,
shares are joined to the path secrets created by the com-
mitter’s path update, which implies that they are sent to the
same recipients as these ones8. Consequently, the same share
is distributed to all users9 beneath each node belonging to
the resolution of the nodes in the committer’s co-path.

Consequently, the number of users who keep a same
share strongly varies, according to their relative positions
in the tree with respect to the committer. Indeed, the
committer and its sibling – if any – are the only keepers
of the first two shares [si+1

g]0 and [si+1
g]1 associated with

a new ghost ug, whereas on the other end of the tree, the
whole opposite subtree at the root of the tree (filled with
up to n

2 users for a full binary tree) is given the same share
[si+1

g]m−1.

When the structure of the Ratchet Tree differs from a
full, blank-node-free, binary tree, the number of nodes in
the committer’s filtered direct path may vary from 1 to
n−1 (depending on the tree balance and on the committer’s
location in this tree). As this value also represents the
number of path secrets, and therefore the number of shares
to transmit, in a worst-case scenario where this path only
comprises one node10, the default share distribution method
only generates two shares: one corresponding to that single
node in the committer’s filtered direct path, and one for the
committer itself. Clearly, this number of shares is too low to
be acceptable, especially in order to implement a recovery
threshold for the secret sharing scheme.

Consequently, an alternative share distribution method
must be used when the number of shares emitted with the
default method falls below a minimum value mmin > 2,
defined at the application level.

Alternate Method: the Horizontal Share Distribution. In
this case, the committer no longer tries to include the shares

8. The only exception is if the only recipient of an encrypted path secret
is the ghost user itself. In this case, the path secret is sent anyway, but
without any share attached, which decreases by one the total number of
emitted shares.

9. Active group members and ghost users as well, except for the ghost
associated with the shares.

10. This scenario may happen even with a large number of users and
even for a left-balanced binary tree, if we have a group of 2x+1 users and
if the committer happens to be the single leaf of the right root’s subtree.

Figure 1: Compared share distribution methods, with the
default method (top) and the horizontal share distribution
(bottom). The latter must be used when the number of
emitted shares m falls under the minimum allowed value
mmin.

in the encrypted path secrets. Instead, shares are encrypted
with the public keys of the internal nodes belonging to a
same (horizontal) level. This level L is chosen so that its
number of nodes is greater than or equal to the minimum
value mmin. In the end, a share is received by all active
users under the same node from that level.

With a broadcast-only protocol, these encrypted shares
are joined to the commit message, which saves the cost
of additional signatures. In the server-aided paradigm, each
share is sent in a separate “Share Distribution Message”,
which comprises:

• the encrypted share;
• the index of the internal node under whose key the

share is encrypted;
• the sender’s signature.

Figure 1 compares the two share distribution methods for
an unbalanced Ratchet Tree.

3.3.3. Commit Message. A commit message with a quar-
antine initialization, in the broadcast-only setting, therefore
comprises the following parts (in blue: additional elements
compared to a classical commit message from TreeKEM):

• The committer’s new signed public state pγi+1
c , which

includes the committer’s updated public encryption key
pki+1

c .
• The updated public encryption keys of the committer’s

filtered direct path vp ∈ Pi+1
c and of the new ghosts

ug ∈ NG
i+1:
(pki+1

vp)vp∈Pi+1
c
|| (pki+1

g)ug∈NGi+1

7

• The leaf indices of the new ghosts whose shares are
sent – in the same order – in this commit message:

(ℓg)ug∈NGi+1

• With the default share distribution method:
For each node vr ∈ Ri+1

vp from the resolution of the
committer’s co-path, the encryption, under vr’s public
key, of:
– the adequate path secret psi+1

vp (which is the seed of
node vp ∈ Pi+1

c , the closest ancestor of vr on the
committer’s direct path);

– a share – dedicated to vr – for
the secret seed si+1

g of each of the
ν =

∣∣NG
i+1

∣∣ new ghosts ug ∈ NG
i+1:(

Enc
(
pkivr

, psi+1
vp || [s

i+1
1]vr || · · · || [si+1

ν]vr
))vp∈Pi+1

c

vr∈Ri+1
vp

• With the horizontal share distribution method:
The encryptions of path secrets and shares are dis-
sociated. Consequently, for each node vr from the
resolution of the committer’s co-path and each node
vℓ of the tree level Li+1 chosen for the horizontal
distribution, we have:
– the encryption, under vr’s public key, of the corre-

sponding path secret psi+1
vp ;

– the encryption, under vℓ’s public key, of one share
associated with each new ghost ug ∈ NG

i+1.

((
Enc

(
pkivr , ps

i+1
vp

))vp∈Pi+1
c

vr∈Ri+1
vp

,(
Enc

(
pkivℓ , [s

i+1
1]vℓ || · · · || [si+1

ν]vℓ

))
vℓ∈Li+1

)
3.3.4. Shareholder Rank. In order to avoid redundancy at
the stage of share recovery, at the end of the ghost’s quaran-
tine, we implement a process to prioritize shareholders that
keep the same share, through the concept of “shareholder
rank”.

An active user who receives shares related to one or sev-
eral ghosts’ quarantine(s) is called a “shareholder”. A group
of shareholders that have received the same share is called
a “shareholder family” with respect to that share. As every
user has a complete view of the Ratchet Tree, including the
location of every other group member, a shareholder is able
to determine its shareholder family related to the share it
has received, and its own position within this family.

The shareholder rank corresponds to a shareholder’s
location in its shareholder family, starting from left to right.

3.3.5. Shareholder Share Recording. A shareholder us

records in its private state sγs information about the share(s)
it has received, as a list of tuples of the following form:

• the ghost’s leaf index: ℓg;
• the ghost’s share received: [si+1

g]ind;
• its shareholder rank related to this share: rk;
• the index associated with the share: ind;

• the creation epoch of this share: ei+1.

All these fields, except the ghost’s leaf index and the share
itself, are locally computed by the shareholder thanks to its
complete view of the Ratchet Tree.

Every time a ghost quarantine expires (either with a
successful reconnection or with a removal from the group
– after reaching the maximum quarantine duration δquar),
shareholders delete from their share recording all the data
associated to this ghost.

A shareholder considers a successful ghost reconnection
at the second Update proposal11 received from the former
ghost. A ghost removal is notified by a formal Remove
operation carried out by a Committer12.

3.4. Course of a Quarantine

During its quarantine, a ghost remains part of the group,
and as such, receives all handshake and application mes-
sages that are exchanged within the group – except for its
own shares.

Quarantine Key Update. When preparing a commit, a
committer checks the age of the ghosts’ quarantine keys
thanks to the “quarantine start epoch” field of the ghosts’
public state (cf. section 3.2). When a quarantine key gets
older than a limit given by a parameter called δquar−upd, a
process of “quarantine key update” is initiated.

This process is similar to the initialization of a quar-
antine, except that the committer in charge of the update
may not be the one who started the quarantine. As in a
quarantine initialization, the committer (called an updater)
draws a random secret seed on behalf of the ghost, generates
an encryption key pair, splits up the seed into shares that
are distributed to the online users. Once again, these new
shareholders may not be the same as the one from the
quarantine start. Consequently, depending on their activity
in the group, active users may record zero, one or several
shares associated to the quarantine of a given ghost.

3.5. End of a Quarantine

When a ghost user ug finally reconnects at epoch erec,
its quarantine automatically ends.

1) The former ghost ug – which, at this stage, does not
know yet that it was quarantined – asks the Delivery
Service of the central server to provide it with the
messages that were buffered during its offline period.
Instead, the server notifies it its “quarantined” status.

11. The reconnecting ghost updates a first time when going back online,
and a second time after receiving all its shares and recovering the associated
quarantine keys.

12. Committers not only check the seniority of all users’ encryption
keys, they also verify that ghosts do not exceed the maximum quarantine
duration δquar , thanks to the “quarantine start epoch” field in the public
state of the latter.

8

Figure 2: Timeline of a quarantine with QTK protocol.
(pkig, sk

i
g)x denotes a ghost’s encryption key pair of gen-

eration i, updated by user x. δinact is the duration, after
the last key update, before initiating a quarantine; δquar is
the length of this quarantine before removing the ghost, and
δquar−upd is the period of quarantine key update.

2) ug refreshes its keying material into
(pkrec+1

g , skrec+1
g). Following this, it transmits

to the group a “Quarantine End” proposal, which
is an “Update” proposal – used to refresh a user’s
encryption key pair – that additionally indicates that
its sender has come back online and needs to carry
out a reconnection process.

3) Upon receiving the “Quarantine End” proposal, each
active user within the group verifies whether it pos-
sesses, in its private state, one or several quarantine
shares linked to the former ghost and checks its asso-
ciated shareholder rank(s).
If such shares exist and if the associated shareholder
rank is rk = 1 , the user, called a primary shareholder,
encrypts them – along with their associated indices
– under ug’s new encryption key and dispatches the
ciphertext in a “Share Recovery Message”.

4) In parallel, the committer for the epoch erec+1, that
has received the “Quarantine End” proposal, includes
in its commit message the encryption, under the former
ghost’s fresh encryption key, of the new group key
induced by the current commit. The idea is that even if
the former ghost has troubles recovering its quarantine
history (because of missing shares that prevent it from
reconstructing the quarantine keys), it remains able to
join the group from now on.

5) The Delivery Service forwards to the former ghost all
pending messages that were buffered by the server,
much like when an active user reconnects.

6) After receiving a sufficient number of Share Recovery
Messages sent by the online users at epoch erec+1, the
former ghost reconstructs the initial quarantine seed
sq1g that was split up at the beginning of its quarantine
and recovers the related quarantine encryption key pair.
If needed, the former ghost proceeds similarly with
intermediate quarantine encryption keys, whose seeds
are also reconstructed with shares sent at epoch erec+1:

∀i ∈ J1, kK , sqig := Comb
(
([sqig]j)j∈I′ , I ′

)
(pkqig , skqig) := KeyGen(1λ; sqig)

With its quarantine key pair(s), the former ghost can
now decrypt all the handshake and content messages
that were exchanged during its quarantine period.

7) If the number of shares received at the previous stage
is not enough to reconstruct one of its quarantine
seeds13, the former ghost sends to the group a “Share
Resend” proposal, identifying the missing shares with
their indices and creation epochs.
When receiving this proposal, secondary shareholders
(with shareholder rank rk = 2) for the missing shares
send the appropriate Share Recovery Messages, either
in broadcast or straightly to the former ghost if the
Delivery Service allows it.

If the new batch of Share Recovery Messages is still not
enough to reconstruct the associated seed, this process
is iterated until the seed is reconstructed or the number
of Share Resend proposals reaches a maximum value
nmax
resend that is part of the parameters set.

If, despite these attempts, some quarantine seeds can-
not be reconstructed, the content related to the period
they cover is considered lost for the former ghost.
The parameter nmax

resend therefore represents a necessary
tradeoff between communication cost and availability
of the CGKA.

4. Security of QTK protocol

4.1. Security Model

We use the security model from [12], which considers
a game-based “CGKA security” with a partially active and
fully adaptive adversary. This model also defines the concept
of “safe predicate” that is used to rule out, in that security
game, trivial attacks such as the compromise of a group key
for a given epoch by corrupting one of the group members
at that same epoch.

4.1.1. Adversarial Model. In this model, the adversary
has full control over the Delivery Service from the server:
therefore it can arbitrarily block messages and change their
delivery order. Furthermore, the adversary is able to corrupt
any group member at any time for a limited period of time
defined by the predicates start-corrupt and end-corrupt.
In this case, the private state of the corrupted users is leaked.

However, we restrict the ability of the adversary to
impersonate group members, even in case of corruption.
The Authentication Service provided by the server is con-
sequently assumed secure and the corruption of a group
member does not leak its private signature key.

13. This may happen if too many of the primary shareholders are un-
responsive (e.g. because they are themselves quarantined or even removed
from the group) at the time of the ghost’s reconnection.

9

4.1.2. CGKA Security Game. We state below the
definition of CGKA security, issued from [12] and adapted
to include the Propose & Commit paradigm of TreeKEM
and the concept of quarantine from QTK.

Definition 5 (Asynchronous CGKA Security). The security
for CGKA is modelled using a game between a
challenger C and an adversary A. At the beginning
of the game, the challenger creates a group G with
identities (u1, · · · , un). The adversary A can then
make a sequence of the queries enumerated below,
in any arbitrary order14. On a high level, prop-add
and prop-remove allow the adversary to control the
structure of the group, whereas the query process
allows it to control the message scheduling.

1) prop-add(ui, uj): proposal of a user ui to add another
user uj to the group.

2) prop-remove(ui, uj): proposal of a user ui to remove
another user uj from the group.

3) prop-update(ui): proposal of a user ui to refresh its
current local state γi.

4) commit(uc): user uc implements all proposals that
were queried since the last commit or start-
quarantine queries and updates its state γc and its
filtered direct path.

5) start-upd-quarantine(uc, ug): user uc is charged to
start a quarantine for user ug, or update ug’s quarantine
keys if the latter is already quarantined. This query is
necessarily grouped with a commit query associated
with user uc, where this user distributes the secret
shares for ug’s quarantine key.

6) end-quarantine(uc, ug): the quarantine of the ghost
user ug ends. ug then updates its state γg and recovers
the shares of all its quarantine seeds. This query is
also associated with a commit performed by user uc.
This query necessarily follows a start-upd-quarantine
request for that user. It is also always followed by
a prop-update query where the secret key used to
recover the shares is refreshed.

7) process(q, ui): if the query q belongs to one of the pre-
vious categories, this action forwards the welcome (W)
or control (T) message to user ui which immediately
processes it.

8) start-corrupt(ui): from now on the entire state and
randomness of ui are leaked to the adversary.

9) end-corrupt(ui): ends the leakage of user ui’s state
and randomness to the adversary. This query necessar-
ily follows a start-corrupt request for that user.

10) challenge(q∗): A picks a query q∗ corresponding to an
action a∗ ∈ {commit, start-quarantine} or the group
initialization (if q∗ = 0). Let k0 denote the group key

14. Except for some natural constraints on the queries order, such as
ending a corruption or a quarantine after the start of the process, which
are explicitly indicated.

that is sampled during this operation and k1 be a fresh
random key. The challenger tosses a coin b and – if
the safe predicate below is satisfied – the key kb is
given to the adversary (if the predicate is not satisfied
the adversary gets nothing).

At the end of the game, the adversary outputs a bit b̂
and wins if b̂ = b. We call a CGKA scheme (Q, ϵ, t)-
CGKA-secure if for any adversary A making at most
Q queries of the form prop-add, prop-remove, prop-
update, commit, start-quarantine and end-quarantine
and running in time t, it holds:

AdvCGKA(A) :=| Pr[1← A | b = 0]

− Pr[1← A | b = 1] | ≤ ϵ

Nota: As the group only evolves, in the security game,
by queries made by the adversary, we designate time points
by the queries associated with them. No adequation can be
made between epochs and queries in the Propose & Commit
paradigm, since some of the latter induce a change of epoch
(commit, start-quarantine) and the others do not.

4.2. Safe Predicate

The safe predicate defines the trivial situations where a
challenge group key cannot be protected from an adversary,
in particular when the adversary corrupts a user that pos-
sesses that challenge group key. Therefore, these situations
must be identified and excluded from the security game that
defines the CGKA security.

4.2.1. Proper Critical Window. The first component of
the safe predicate is the “(proper) critical window” of a
user ui, in the view of another user u∗ at a time point
represented by a query q∗. This concept from [12] defines
the period during which a group key k∗ issued by user u∗

at time q∗ can possibly be leaked by user ui if the latter is
corrupted at that time.

Definition 6 (Proper critical window). Let Π be
a CGKA protocol, G∗ the set of users after
processing a query q∗ corresponding to an ac-
tion a∗ ∈ {create-group, commit} of a user
u∗ ∈ G∗, that ends up in generating a new group key k∗.
The (proper) critical window of a group member
ui ∈ G∗ – possibly u∗ itself – in the view of u∗ at time
q∗ is the period of time during which the corruption of
ui compromises the group key k∗.

TreeKEM Critical Window. Figure 3 illustrates the notion
of critical window with a generic TreeKEM-based protocol.
This window is wrapped around the group key creation time
and is bounded, in the general case15, by:

15. Specificities of CGKAs may slightly modify these bounds, like in
Tainted TreeKEM [12] where the critical window is not bounded by the
update times but by the confirmation or rejection time of these updates.

10

• a lower bound q−: ui’s last update before q∗.
• an upper bound q+: its first last update after q∗.

QTK Critical Windows. For the QTK protocol, we con-
sider separately the cases where the query q∗ occurs before
or during a ghost’s quarantine. We also distinguish four
types of users related to that ghost, with different (proper)
critical windows that are detailed in figure 6 in appendix A:

• the ghost user itself;
• the quarantine updater: this is the committer who

last updated the ghost’s quarantine keys before the
challenge query q∗. If q∗ occurs before any quaran-
tine update, the quarantine updater is the quarantine
initiator;

• the ghost’s shareholders: users who detain a share of
the ghost’s quarantine encryption key used at time q∗;

• the other active users. These group members are not
shareholders because they were not part of the group
yet when the ghost’s quarantine key was last updated
before q∗.

Figure 4 compares the critical windows of QTK and
TreeKEM. The significant reduction, in QTK, of an inactive
user’s proper critical window (in red) casts the light on
the security improvement brought by QTK protocol. Indeed,
even if, with our protocol, a single inactive user may still
prevent the group from reaching forward secrecy and post-
compromise security, the period during which a corruption
of that inactive user jeopardizes a group key – which is
precisely what its critical window refers to – is greatly
reduced. The only other way for the adversary to leak the
group key is to corrupt a sufficient number of shareholders
associated with that ghost; this risk is evaluated by the
concept of shared critical window (cf. below).

Case 1: q∗ precedes the ghost’s quarantine. In that case,
there are no changes from the standard TreeKEM protocol.
Active users have a regular critical window around the
challenge query q∗, as in figure 3.

A ghost’s critical window extends from its last key
update before q∗ to the one following this query, which
occurs at its reconnection time at the end of its quarantine;
in this case, this long critical window is similar to the one of
an inactive user with TreeKEM. This issue can be partially
solved by forcing the messaging application of the inactive
user to locally delete, after some time, the secret elements
stored in its local state16.

Case 2: q∗ occurs within the ghost’s quarantine. The
critical windows of the users related to the ghost ug are
defined as follows:

16. This operation does not require the inactive user to log in, but its
messaging application must at least run in the background, which cannot
be imposed to all inactive users.

Figure 3: Critical window, for a TreeKEM-based CGKA, of
a user ui in the view of a user u∗ issuing a challenge group
key k∗ at time q∗.

• Ghost user: the only critical window of a ghost starts
at its reconnection after a quarantine (query qghostrec),
when it recovers all the shares associated with its
encryption key used at time q∗. This window closes at
the former ghost’s following update (qghostupd−after−rec),
which overwrites the sensible former ghost’s local state.
As the share recovery may last for several epochs,
depending on the activity status of the shareholders
during this reconnection stage, the window size may
vary between one and several epochs.
However, if a ghost never reconnects until its reaches its
quarantine maximum period δquar and is removed from
the group, the aforementioned critical window does not
exist.

• Shareholders: beside their proper critical window that
steams from their status of active user, these users have
a “shared critical window” defined and detailed below.

• Quarantine updater: its critical window only lasts
during the preparation of the Commit that is joined
with the quarantine key update (from time qupdaterquar−upd to
qupdatercommit−after−quar−upd). Once the Commit message
is sent, the quarantine updater deletes all sensitive
information from its state.

• Active users: non-shareholder active users at time q∗

have a critical window similar to any TreeKEM-based
CGKA protocol, centered around q∗ and bounded
by the prop-update queries preceding and following
that time point. These active users may include the
quarantine updater related to q∗ as well as most of the
shareholders.

Nota: To improve the security of QTK regarding the
quarantine updater, we present in appendix B an enhance-
ment called “jointly-implemented quarantine”, where the
ghost’s quarantine keys are commonly generated by several
users that only have a partial knowledge of these sensitive
data. Consequently, the proper window of a single quaran-
tine updater is replaced by several shared windows, much
more secure.

4.2.2. Shared Critical Window. In the context of QTK pro-
tocol, which is associated to a secret sharing scheme which
protects the secret information by splitting it into shares,
the notion of proper critical window appears insufficient to
implement the safe predicate.

11

Figure 4: Compared critical windows, between TreeKEM
and QTK, for the different types of users in a group, in
the view of user u∗ issuing a group key k∗ at time q∗. The
crosshatched brown box represents a shared critical window,
more secure than a proper one.

We therefore define hereunder the concept of “shared
critical window”, that represents the period during which a
user (shareholder) possesses shares of a secret information
that can compromise the group key k∗. Hence, the security
cannot be evaluated anymore with the safety of a single
user; instead we must determine whether a sufficient
number of shareholders associated with the same secret
have remained uncorrupted as long as they held these shares.

Definition 7 (Shared Critical Window). Let Π be the QTK
protocol associated with a (t,m)-perfect secret sharing
scheme, G∗ the set of users after processing a query
q∗ corresponding to an action a∗ ∈ {create-group,
commit} of a user u∗ ∈ G∗, that ends up in generating
a new group key k∗.
The shared critical window of a shareholder us ∈ G∗

(possibly u∗ itself) related to a ghost user ug in the view
of u∗ at time q∗, is the period of time during which ui

holds a share of a quarantine secret key that leads to the
challenge group key k∗.
Consequently, the corruption of at least t shareholders
(from different shareholder families w.r.t that share col-
lection) related to a ghost ug results in the compromise
of the group key k∗ generated by u∗ at time q∗.

In the case of our QTK protocol, a shareholder of a
ghost ug has a shared critical window that:

• starts at the commit associated with ug’s last quarantine
key update before q∗: qupdatercommit−after−quar−upd;

• ends at the shareholder’s update following ug’s quar-
antine end: qshareholderupd−after−rec.

4.2.3. Safe Group Key. We adapt for the QTK protocol
the safe predicate concept from [12], that states the
conditions needed for a group key to be safe, by including

in these conditions the shared security implied by the
above-mentioned shared critical window.

Definition 8 (Safe Predicate with a Shared Critical Win-
dow). Let Π be a QTK protocol associated with a (t,m)-
perfect secret sharing scheme. Let k∗ be a group key
generated in an action a∗ ∈ {create-group, commit}
at time q∗ ∈ Jq1, qQK and let G∗ be the set of users
ending up in the group after processing query q∗, as
viewed by the generating user u∗.
Moreover, let us consider an arbitrary number of ghost
users (ug ∈ G∗) quarantined at time q∗, with their
associated shareholders.
Then the challenge group key k∗ is considered safe if
the following two statements are fulfilled:

• No user from the group (including u∗ itself) has been
corrupted in its proper critical window at time q∗ in
the view of u∗;

• For each ghost ugi quarantined at time q∗, strictly less
than t of its shareholders from different shareholder
families, i.e. with different shares, have been corrupted
in their shared critical windows at time q∗ in the view
of u∗.

4.3. CGKA Security Proof for QTK

4.3.1. Overview. The security proof of our protocol relies
on the one from Tainted TreeKEM in [12]. This work
defines the safe predicate and the challenge graph (cf. below)
associated with their protocol and proves in a lemma –
similar to our lemma 1 beneath – that the respect of the safe
predicate implies no leakage of any secret element from that
challenge graph. Finally, it uses the concept of “Generalized
Selective Decryption” (GSD), adapted from [18], to turn
the selective CGKA security of Tainted TreeKEM into an
adaptive security in the Random Oracle Model.

As stated in [12], the part of that proof which uses
GSD can be generalized to other CGKAs, such as TreeKEM
or QTK, since the demonstration does not depend on the
structure of the protocol challenge graph but only on its
maximum number of nodes.

Consequently, our security proof for QTK consists in
determining the safe predicate (already done in section 4.2)
and the challenge graph corresponding to our protocol, and
proving in lemma 1 that no secret information from the
challenge graph can lead to the leakage of the challenge
group key. These stages are sufficient to prove the CGKA
security of our protocol.

4.3.2. Challenge Graph. We must firstly define the CGKA
graph, adapted from [12], which represents the evolution
of the CGKA’s Ratchet Tree throughout the security exper-
iment. This graph is therefore the juxtaposition of different
generations of nodes from the Ratchet Tree, partially super-
posed when some nodes remain unchanged from one epoch
– i.e. one query in the security experiment – to another.

12

The edges of the CGKA graph are either the derivations
of the nodes’ secret seeds or the public-key encryption of
these seeds.

The challenge graph related to a challenge group key k∗,
also issued from [12], is the sub-graph of the CGKA graph
composed of all nodes – internal or leaves – that contain
secret information permitting to recover that challenge group
key.

With a standard CGKA such as TreeKEM, the challenge
graph for a group in a consistent state17 (at time q∗ of the
group key creation) simply consists in the Ratchet Tree at
time q∗. When the group view is in inconsistent state, the
challenge graph is the Ratchet Tree at time q∗ in the view
of committer u∗

c which generated the challenge group key
(cf. [12]).

The challenge graph for QTK, detailed in figure 5,
differs from that of TreeKEM by:

• the addition of two nodes, corresponding to the quar-
antine updater and to the reconnecting ghost;

• the particular case of the “challenge ghost node”, which
corresponds to the last updated ghost’s quarantine keys
before q∗. This node cannot be corrupted directly by
the adversary in the CGKA security experiment. In-
stead, its corruption occurs if a sufficient number of its
associated shareholders are themselves corrupted.

To illustrate the latter point, we define another sub-graph
of the CGKA graph called the “Quarantine Graph”, related
to a challenge group key k∗. That graph comprises all the
nodes from the CGKA graph that record a share related to
the challenge ghost node.

Lemma 1. For any safe challenge group key in QTK, i.e.
for which the safe predicate is respected, it holds that
none of the seeds and secret keys in the challenge graph
are leaked to the adversary via user corruptions.

Proof. We proceed with a proof by contradiction, by
showing – with a separate analysis for each user type – that
the leakage of the challenge key, resulting from the leakage
of a secret element from its challenge graph, implies the
violation of the safe predicate for the concerned user.

The case of active users from the challenge graph and
internal nodes ancestors of these active users is similar to
that of TreeKEM: as the critical window of these users for
the challenge group key k∗ is centered on the challenge
query q∗ and bounded by these users’ key updates – which
refresh the leaves and blank their paths –, a secret key or
seed that may lead to the challenge group key is recorded in
these users’ private states only during their critical window.
Consequently, a leakage of such sensitive elements can be
generated only by corrupting one of these users during its
critical window, which is possible only by contradicting the
safe predicate.

17. Consistency means that all users in the group have the same view
of the Ratchet Tree at precise moment

Figure 5: CGKA, challenge and quarantine graphs for QTK
protocol.

Similarly, a ghost user only records secret elements
associated with the challenge group key at its reconnection
time, which also corresponds to its critical window. This
is also the case for the quarantine updater, which has
knowledge of the ghost’s secret key associated with the
challenge group key only when creating the commit in
which the shares are sent, which also corresponds to its
critical window.

A specific feature of QTK is the case of the share-
holding nodes. Regarding the shareholders (i.e. the share-
holding leaves), their shared critical window extends from
the moment they receive the shares to their (leaf) update
following the ghost reconnection – where they delete these
shares. A leakage of the challenge group key would imply
to corrupt a sufficient number of them (with respect to the
secret sharing recovery threshold) during their shared critical
window, which is also a violation of the safe predicate.

As a leaf update is always associated with the blanking
of the leaf’s direct path, the shareholders’ update that
constitutes the upper bound of their critical window deletes
in their internal state the private keys and seeds of the
share-holding internal nodes above them. Consequently,
the sensitive elements in these internal nodes cannot be
reached by the adversary unless by corrupting one of their
descendant shareholders during its critical window, which
also contradicts the safe predicate.

Theorem 1 (QTK CGKA security). If the encryption scheme
in QTK is (ϵ̃, t)-IND-CPA-secure and if the crypto-
graphic hash functions used to derive the seeds are
modelled as random oracles, then this CGKA is (Q, ϵ, t)-
CGKA-secure, with Q the number of queries in the
security game, n the number of users in the group and
ϵ = ϵ̃ · 8(nQ)2 + negl.

Proof. We rely on Theorem 3 and Theorem 4 from [12]
to prove the CGKA security of QTK based on lemma 1.

The security bound ϵ̃ derives from the results of Theo-
rem 3 of [12], which gives ϵ = 2N2ϵ̃+ mN

2ℓ−1 = 2N2ϵ̃+negl,
with N the number of nodes in the GSD graph (which is,

13

in this case, the CGKA graph18), m the number of oracle
queries to the random oracle and ℓ the length of the secret
seeds in the CGKA graph.

For Q queries in the CGKA security experiment, the
CGKA graph is of size at most Nmax = 2nQ (since the
Ratchet Tree for n users has at most 2n− 1 nodes and the
CGKA in the worst case is the juxtaposition of Q separate
Ratchet Trees). This upper bound determines the security
factor ϵ̃ described above.

5. Performances

We study here the communication cost per user induced
by a single ghost’s quarantine, in the broadcast-only and the
server-aided settings.

This cost is measured as the size of the exchanged
messages, counted once between the sender and the Delivery
Service, and either n − 1 times (in case of a broadcasted
message) or once (in case of a message sent individually
to its recipient) between the Delivery Service and the other
users, the total being finally divided by the number n of
users.

5.1. Broadcast-Only Regular Quarantine

5.1.1. Initialization and Updates. A ghost ug quarantined
for a period tquar ≤ δquar uses a number of quarantine
encryption keys defined as: nqkey :=

⌈
tquar

δquar−upd

⌉
.

We recall that each quarantine initialization or update
is associated with a commit. The additional information
related to the quarantine, that is comprised in a commit
message sent at epoch ei, is:

• the ghost’s leaf index ℓg;
• the ghost’s fresh quarantine public key pki+1

g ;
• the encrypted shares related to the quarantine secret

seed si+1
g .

We consider here the most-likely case where an ideal
secret sharing scheme, such as the one from Shamir [13],
is used in QTK. In this case, each one of the m shares
has a size equal to the seed from which they originate.
Therefore, ∀j ∈ J0,m− 1K ,

∣∣[si+1
g]j

∣∣ = ∣∣si+1
g

∣∣ = |s|.
The number of shares to distribute depends on the

number n of users, on the tree structure and on the share
distribution method. Furthermore, the size of an encrypted
share differs according to the share distribution method:

• With the default share distribution method,
m ∈ Jlog(n), n− 1K. These two bounds correspond
respectively to a perfect binary tree and to an unbal-
anced tree with a committer at the most unfavorable
location in the tree.
In this case, the encryption of the shares does not
increase their size, since they are joined to a path

18. With additional edges corresponding to the hierarchical seed deriva-
tion, but with no incidence on the GSD security of the protocol, cf. [12].

secret already encrypted with HPKE [19] (so that
the encryption cost is linear with its content size):
∀i ∈ J0,m− 1K ,

∣∣Enchpke([s]i)
∣∣ = |s|.

• With the horizontal share distribution method,
m ≤ 2dL ≥ mmin, with dL the distance of the selected
tree level L with the tree root.
As all shares are encrypted separately, the
communication cost of the HPKE encryption of a single
share is: ∀i ∈ J0,m− 1K ,

∣∣Enchpke([s]i)
∣∣ = |ct|+ |s|,

with ct the ciphertext of a symmetric key encrypted
with a PKE.

Consequently, we have an initialization and update cost
bounded as follows:

ccbdctinit−upd ∈
[
nqkey

(
|pk|+ |int|+m |s|

)
,

nqkey

(
|pk|+ |int|+m(|ct|+ |s|+ |int|)

)]
5.1.2. Quarantine End. As stated in section 3.5, the re-
connecting ghost sends to the group a “Quarantine End”
proposal and – in the worst case – a number ρ of “Share
Resend” proposals. In return, its associated shareholders
forward him the shares of its quarantine keys.

Quarantine End Proposal. This message is based on an
Update proposal and has a size equal to the latter:
|quar − end| = |upd| = |sig|+ |pk|+ |spk|+ |cred|
with “spk” and “cred” the former ghost’s public signature
key and associated credentials.

“Share Resend” Queries. These messages only comprise
the creation epochs and the indices of the nmissing missing
shares at that time, encrypted under the current group key.
Let us note |int| the size of an integer used to represent
an epoch or a leaf index and let us consider a ith “Share
Resend” query (i ∈ J1, nmax

resendK) with nmissingi
missing

shares:

|resendi| = |sig|+ 2nmissingi |int|
≤ |sig|+ 2nmissing0 |int|
≤ |sig|+ 2nqkeyt |int|

Consequently, the communication cost of ρ “Share Re-
send” messages is bounded by:

ccresend ≤ ρ
(
|sig|+ 2nqkeyt |int|

)
Share Recovery Messages. In response to its Quarantine

End proposal or its ith Resend query, the reconnecting ghost
receives from the shareholders a number nshmsgi ≤ m
of initial Share Recovery Messages for each of its nqkey

quarantine keys.
This number depends on the number of active users

within the group at epoch erec. If nshmsg0 ∈ Jt,mK, the
former ghost does not need to receive additional shares
(ρ = 0). On the contrary, if nshmsg0 < t, a number

14

ρ ∈ J1, nmax
resendK of “Share Resend” queries appears

necessary.
The best case appears when a number t of shareholders

send all the nqkey generations of shares to the reconnecting
ghost. The worst case, on the other hand, occurs when m
shareholders send a Share Recovery Message with only
one share inside, which implies in total nqkey.m distinct
messages.

Reconnection Communication Cost. Consequently, the
communication cost induced by the a quarantine end is
bounded as follows:

ccbdctend ∈
[
|upd|+ t

(
|sig|+ |ct|+ nqkey(|s|+ 2 |int|)

)
,

|upd|+ nmax
resend

(
|sig|+ 2nqkeyt |int|

)
+mnqkey

(
|sig|+ |ct|+ |s|+ 2 |int|

)]
5.2. Server-Aided Regular Quarantine

5.2.1. Initialization and Updates. As only the horizontal
share distribution method is used in this paradigm, the com-
munication cost of a quarantine initialization and updates is:

ccserv−aided
init−upd = nqkey

(
|pk|+ |int|+(

1 + m−1
n

)(
|sig|+ |ct|+ |s|+ |int|

))
5.2.2. Quarantine End. Similarly to the broadcast-only
setting, the range of values depends on the shareholders’
responsiveness to the reconnecting ghost’s Quarantine End
proposal and on the way these shareholders group the shares
inside the Share Recovery Messages.

ccserv−aided
end ∈

[
|upd|+ 2

n t
(
|sig|+ |ct|+ |int|+

nqkey(|s|+ 2 |int|)
)
,

|upd|+ nmax
resend

(
|sig|+ 2nqkeyt |int|

)
+ 2

nmnqkey

(
|sig|+ |ct|+ |s|+ 3 |int|

)]
5.3. Practical Efficiency

To give a broad idea of the overhead induced by a ghost’s
quarantine, table 1 details its communication cost under
several settings. The factors influencing this communication
cost can be sorted as follows:

• the algorithms used to ensure the HPKE and digital
signature functionalities;

• the features of the user group (number of users and
structure of the Ratchet Tree), issued from the group
history;

• the quarantine parameters (maximum duration of a
quarantine, frequency of quarantine key update, secret
sharing scheme recovery threshold...);

• some encoding settings (integer encoding).
In our instance, we consider two main paradigms that

influence the choice of algorithms: the classical frame-
work, where our protocol only implements pre-quantum

encryption and signature algorithms, and the post-quantum
framework which uses post-quantum encryption but keeps
a classical signature primitive.

5.3.1. Parameter Choice. Encryption and Signature Prim-
itives. In the classical framework, the encryption is carried
out by the HPKE paradigm [19], with an ECDH-KEM such
as X25519 [20] to ensure the key transport functionality
and a symmetric encryption scheme like AES-256 for the
data encryption. In the post-quantum framework, the Data
Encapsulation Mechanism (DEM) remains unchanged but
the classical KEM is replaced by a post-quantum one. We
choose to instantiate Crystals Kyber [21], standardized by
the NIST as ML-KEM, as our post-quantum KEM.

In both frameworks, ECDSA [22] with an elliptic curve
on a 256-bit prime field is selected as the digital signature
algorithm19.

Quarantine Parameters. Given a key renewal period δupd
for active users, we study the case of short, medium and
long quarantines of respective durations tquars = 7.δupd,
tquarm = 14.δupd, tquarℓ = 28.δupd, with a quarantine key
renewal period of δquar−upd = 2.δupd.

The original parameter δupd is itself likely to vary
greatly depending on the settings of the applications using
the CGKA protocol. However, if we take for instance a
daily key renewal, our settings correspond to a quarantine
key refreshment every couple of days and quarantines that
last one, two and four weeks, which seems consistent with
realistic use cases of these quarantines.

As for the secret sharing parameters, the number of
emitted shares is computed as m = ⌈log(n)⌉ + 1, which
corresponds to the number of shares needed by the de-
fault share distribution within a well structured binary tree,
knowing that even with an horizontal share distribution, the
number of emitted shares is roughly the same. The recovery
threshold is chosen as t =

⌈
m
2

⌉
, in order to have a good

trade-off between security and efficiency.

Group Parameters. We consider groups of various sizes,
up to 216 = 65, 536 users, as the MLS protocol specifica-
tions indicate the need to scale up to this order of mag-
nitude. We point out that the number of users has various
– and potentially opposite – consequences on a quarantine
communication cost in the broadcast-only setting:

• Regarding the initialization and update cost, the
larger the group, the higher the number of shares that
have to be distributed within the group. However, as
this number grows logarithmically with the number of
users (for a perfect binary tree), the consequences on
the communication cost are quite negligible.
On the other side, large groups ensure that the default
share distribution method, far more efficient than the

19. We choose not to adopt post-quantum signatures in our PQ frame-
work, as we consider that it remains difficult to instantly forge a classical
signature, even for a quantum adversary.

15

horizontal one, can be implemented. With that default
method, the communication cost reaches the “best
case” of the communication cost range provided in
table 1 (i.e. the smallest value within that range).

• The quarantine end cost is more subtle: a high num-
ber of users makes it unlikely that additional Share
Recovery Messages need to be requested.
However, it is also unlikely that shareholders keep
severals shares for the ghost with the same shareholder
rank20. Consequently, it increases the number of sepa-
rate Share Recovery Messages, which – especially due
to the particularly important post-quantum encryption
cost – impacts all the more the communication cost.
The second factor being prominent over the first
one, large groups tend to have a quarantine end
communication cost close to the worst case (i.e. the
highest value) of the range displayed in table 1.

We compare this communication cost with the one of a
user remained active at the same period and who updates
its keying materiel (by sending Update proposals of size
|upd|) with a renewal period of δupd.

Table 1 and table 2 detail the practical overhead per
user of a quarantine, respectively in the classical and post-
quantum framework, with the above-chosen parameters.

Quar. Group Quarantine Communication Cost per User (kB)
Length Size Broadcast-Only Server-Aided Active

Best Average Worst Best Worst User

7.δupd

8 1.66 – 2.24 – 4.13 1.30 – 2.15
1.67128 2.69 – 6.43 – 7.58 0.96 – 1.68

65,536 4.86 – 12.86 – 15.31 0.91 – 1.97

14.δupd

8 2.51 – 3.52 – 6.90 2.05 – 3.44
3.33128 4.16 – 10.93 – 12.95 1,49 – 2.62

65,536 7.68 – 22.19 – 26.47 1.41 – 3.12

28.δupd

8 4.50 – 6.52 – 13.37 3.78 – 6.44
6.66128 7.61 – 21.43 – 25.46 2.74 – 4.81

65,536 14.26 – 43.94 – 52.51 2.59 – 5.81

TABLE 1: Practical communication cost per user, in kilo-
bytes, induced by a ghost’s quarantine in the classical frame-
work. The “average” column in the “broadcast-only” setting
represents the most-likely case.

As expected, that PQ cost largely exceeds the one in
the classical framework (cf. table 1). However, even in the
worst case, the overhead of around 500 kB does not sound
unrealistic given the important communication cost that a
CGKA already has.

20. Indeed, the bigger the group, the more unlikely it is that a given
user keeps the same relative position (i.e. shareholder rank) w.r.t. different
quarantine updaters chosen at random among all users.

Quar. Group Quarantine Communication Cost per User (kB)
Length Size Broadcast-Only Server-Aided Active

Best Average Worst Best Worst User

7.δupd

8 10.6 – 28.1 – 43.7 13.7 – 17.9
9.7128 13.7 – 46.0 – 80.9 11.3 – 12.4

65,536 20.1 – 90.4 – 164.7 10.9 – 12.0

14.δupd

8 14.9 – 45.5 – 75.3 22.2 – 30.2
19.5128 18,7 – 79.3 – 140.4 18.6 – 20.6

65,536 26.4 – 157.1 – 287.0 18.0 – 19.7

28.δupd

8 25.0 – 86.1 – 148.9 42.2 – 58.8
38.9128 30.2 – 157.0 – 279.3 35,7 – 39.5

65,536 41.0 – 312.6 – 572.4 34.7 – 37.9

TABLE 2: Practical communication cost per user, in kilo-
bytes, induced by a ghost’s quarantine in the post-quantum
framework.

16

References

[1] “WhatsApp Encryption Overview,” WhatsApp Inc., Technical White
Paper, January 2023. [Online]. Available: https://www.whatsapp.
com/security/WhatsApp-Security-Whitepaper.pdf

[2] R. Barnes, B. Beurdouche, R. Robert, J. Millican, E. Omara,
and K. Cohn-Gordon, “The Messaging Layer Security (MLS)
Protocol,” RFC 9420, Jul. 2023. [Online]. Available: https:
//www.rfc-editor.org/info/rfc9420

[3] J. Alwen, S. Coretti, Y. Dodis, and Y. Tselekounis, “Modular design
of secure group messaging protocols and the security of MLS,”
Cryptology ePrint Archive, Report 2021/1083, 2021, https://eprint.
iacr.org/2021/1083.

[4] K. Bhargavan, R. Barnes, and E. Rescorla, “TreeKEM: Asynchronous
Decentralized Key Management for Large Dynamic Groups
A protocol proposal for Messaging Layer Security (MLS),”
Inria Paris, Research Report, May 2018. [Online]. Available:
https://inria.hal.science/hal-02425247

[5] K. Cohn-Gordon, C. Cremers, L. Garratt, J. Millican, and K. Milner,
“On ends-to-ends encryption: Asynchronous group messaging with
strong security guarantees,” in ACM CCS 2018, D. Lie, M. Mannan,
M. Backes, and X. Wang, Eds. ACM Press, Oct. 2018, pp. 1802–
1819.

[6] J. Alwen, B. Auerbach, M. C. Noval, K. Klein, G. Pascual-
Perez, K. Pietrzak, and M. Walter, “CoCoA: Concurrent continuous
group key agreement,” in EUROCRYPT 2022, Part II, ser. LNCS,
O. Dunkelman and S. Dziembowski, Eds., vol. 13276. Springer,
Heidelberg, May / Jun. 2022, pp. 815–844.

[7] J. Alwen, B. Auerbach, M. C. Noval, K. Klein, G. Pascual-Perez,
and K. Pietrzak, “DeCAF: Decentralizable continuous group key
agreement with fast healing,” Cryptology ePrint Archive, Report
2022/559, 2022, https://eprint.iacr.org/2022/559.

[8] R. Barnes, B. Beurdouche, J. Millican, E. Omara, K. Cohn-
Gordon, and R. Robert, “The Messaging Layer Security (MLS)
Protocol,” Internet Engineering Task Force, Internet-Draft draft-ietf-
mls-protocol-08, Nov. 2019, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/08/

[9] J. Alwen, S. Coretti, Y. Dodis, and Y. Tselekounis, “Security analysis
and improvements for the IETF MLS standard for group messaging,”
in CRYPTO 2020, Part I, ser. LNCS, D. Micciancio and T. Ristenpart,
Eds., vol. 12170. Springer, Heidelberg, Aug. 2020, pp. 248–277.

[10] D. Jost, U. Maurer, and M. Mularczyk, “Efficient ratcheting: Almost-
optimal guarantees for secure messaging,” in EUROCRYPT 2019,
Part I, ser. LNCS, Y. Ishai and V. Rijmen, Eds., vol. 11476. Springer,
Heidelberg, May 2019, pp. 159–188.

[11] M. Weidner, “Group messaging for secure asynchronous
collaboration,” 2019. [Online]. Available: https://mattweidner.com/
acs-dissertation.pdf

[12] K. Klein, G. Pascual-Perez, M. Walter, C. Kamath, M. Capretto,
M. Cueto, I. Markov, M. Yeo, J. Alwen, and K. Pietrzak, “Keep
the dirt: Tainted TreeKEM, adaptively and actively secure continuous
group key agreement,” in 2021 IEEE Symposium on Security and
Privacy. IEEE Computer Society Press, May 2021, pp. 268–284.

[13] A. Shamir, “How to share a secret.” Communications of the
ACM, vol. 22, no. 11, pp. 612–613, 1979. [Online]. Available:
http://dblp.uni-trier.de/db/journals/cacm/cacm22.html#Shamir79

[14] D. Boneh and V. Shoup, A Graduate Course in Applied Cryptography,
January 2023. [Online]. Available: http://toc.cryptobook.us/

[15] J. Devigne, C. Duguey, and P.-A. Fouque, “MLS group messaging:
How zero-knowledge can secure updates,” in ESORICS 2021, Part II,
ser. LNCS, E. Bertino, H. Shulman, and M. Waidner, Eds., vol. 12973.
Springer, Heidelberg, Oct. 2021, pp. 587–607.

[16] K. Hashimoto, S. Katsumata, E. Postlethwaite, T. Prest, and B. West-
erbaan, “A concrete treatment of efficient continuous group key
agreement via multi-recipient PKEs,” in ACM CCS 2021, G. Vigna
and E. Shi, Eds. ACM Press, Nov. 2021, pp. 1441–1462.

[17] J. Alwen, D. Hartmann, E. Kiltz, and M. Mularczyk, “Server-aided
continuous group key agreement,” in ACM CCS 2022, H. Yin,
A. Stavrou, C. Cremers, and E. Shi, Eds. ACM Press, Nov. 2022,
pp. 69–82.

[18] Z. Jafargholi, C. Kamath, K. Klein, I. Komargodski, K. Pietrzak, and
D. Wichs, “Be adaptive, avoid overcommitting,” in CRYPTO 2017,
Part I, ser. LNCS, J. Katz and H. Shacham, Eds., vol. 10401.
Springer, Heidelberg, Aug. 2017, pp. 133–163.

[19] R. Barnes, K. Bhargavan, B. Lipp, and C. A. Wood, “Hybrid
public key encryption,” RFC 9180, Feb. 2022. [Online]. Available:
https://www.rfc-editor.org/info/rfc9180

[20] D. J. Bernstein, “Curve25519: New Diffie-Hellman speed records,” in
PKC 2006, ser. LNCS, M. Yung, Y. Dodis, A. Kiayias, and T. Malkin,
Eds., vol. 3958. Springer, Heidelberg, Apr. 2006, pp. 207–228.

[21] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.
Schanck, P. Schwabe, and D. Stehlé, “CRYSTALS – Kyber: a CCA-
secure module-lattice-based KEM,” Cryptology ePrint Archive, Re-
port 2017/634, 2017, https://eprint.iacr.org/2017/634.

[22] N. I. of Standards and Technology, “Digital signature standard,”
FIPS 186-5, feb 2023. [Online]. Available: https://doi.org/10.6028/
NIST.FIPS.186-5

Appendix A.
Additional Security Considerations

A.1. Detailed Critical Windows of QTK

In addition to figure 4 from section 4.2.1, figure 6
hereunder details the critical windows induced by our QTK
protocol by considering separately the different types of
users in a group.

A.2. Considerations on a Fully Active Adversary

As aforementioned, the formal security analysis of this
paper deals with a partially active adversary unable to
impersonate any user, even in case of corruption. In that
framework, all user messages are thus considered legitimate.

In case of a fully active attacker, what would be the
main security issues with QTK, that would not occur with
TreeKEM? We consider separately the cases of an imper-
sonation of a shareholder and of a quarantine initiator or
updater21:

• Shareholder impersonation: The only action that the
protocol requires shareholders to carry out is to send
to a reconnecting ghost the share(s) that correspond(s)
to its quarantine keys. An impersonated shareholder
would therefore either voluntarily retain the shares that
it was supposed to transmit, send invalid shares or
even send wrong shares with bad indices22, in order
to additionally collide with legitimate shares sent by
other shareholders. However, all these attacks only

21. The impersonation of a ghost or of a non-shareholding active user
does not appear useful for the adversary in the framework of an attack
against the quarantine mechanism of QTK.

22. The share indices allow the reconstructing algorithm of the secret
sharing scheme to select a valid set of shares. Each “Share Recovery
Message” therefore comprises one or several shares, along with their
associated indices (cf. section 3.5).

17

https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.rfc-editor.org/info/rfc9420
https://www.rfc-editor.org/info/rfc9420
https://eprint.iacr.org/2021/1083
https://eprint.iacr.org/2021/1083
https://inria.hal.science/hal-02425247
https://eprint.iacr.org/2022/559
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/08/
https://mattweidner.com/acs-dissertation.pdf
https://mattweidner.com/acs-dissertation.pdf
http://dblp.uni-trier.de/db/journals/cacm/cacm22.html#Shamir79
http://toc.cryptobook.us/
https://www.rfc-editor.org/info/rfc9180
https://eprint.iacr.org/2017/634
https://doi.org/10.6028/NIST.FIPS.186-5
https://doi.org/10.6028/NIST.FIPS.186-5

Figure 6: Critical windows, for our QTK protocol, of various
types of users in the view of a user u∗ issuing a group key
k∗ at time q∗. Brown crosshatched boxes represent “shared
critical windows”, specific to QTK protocol.

impact the ability of the former ghost to reconstruct its
quarantine keys, and, as a consequence, the availability
of the protocol – which can never be ensured against an
active adversary, especially when the Delivery Service
is controlled by this adversary.

• Quarantine initiator/updater impersonation: in this
case, the adversary can also impact the availability of
the protocol by sending invalid shares to all sharehold-
ers. The major flaw here is that the unavailability issue
only appears at the end of the quarantine, when the
ghost reconnects.
The adversary can also arbitrarily quarantine any user,
even an active one. If it is coupled with the distribution
of invalid shares, it eventually comes to temporarily
expelling a user from the group, since that user will
not be able to recover its message history when recon-
necting. Nevertheless, such an attack does not exceed
the capacity of an active adversary in TreeKEM, who
can also arbitrarily remove any user23. Furthermore, it
is easy to trace a malicious user that performs this type

23. With TreeKEM, any user can remove any other one without justifica-
tion. Even if the application level restricts this right to some administrators
within the group, impersonating these administrators gives the adversary a
full control over the group composition.

of attack, as any user in the group is able to check that
a new quarantined ghost indeed had encryption keys
whose seniority exceeded the maximum authorized
limit δinact.

Appendix B.
Jointly-Implemented Quarantine

We present here an improvement of the original QTK
CGKA, called jointly-implemented quarantine, that up-
grades the security of QTK by replacing the initial proper
critical window of a ghost’s quarantine updater by ℓ more
secure shared critical windows related to ℓ updaters. This
method, which uses a secretly key-updatable PKE (cf. sec-
tion 2.3) to generate the ghost’s quarantine encryption key
pair, has a communication cost increased by a factor ℓ for the
initialization and each update of the quarantine. However,
this communication overhead is mitigated by the fact that
the higher security provided by this tweak permits to space
out the intermediate updates of the quarantine keys.

B.1. Overview

As recalled in figure 7, a quarantine updater24 has –
beside the classical critical window centered around q∗ that
every active user has in any CGKA protocol – a critical
window that corresponds to the generation of the ghost’s
quarantine key pair by this updater. Therefore, until this
window closes when the updater deletes the secret key
and seed (after sharing that seed), any corruption of this
particular user compromises the newly generated ghost’s
encryption key, which severely impacts both forward secrecy
and post-compromise security.

A ℓ-jointly-implemented quarantine reduces this
vulnerability by having ℓ several users (generally two)
generate in common the ghost’s quarantine keys, in a way
such that none of these users knows the secret keys or seeds.

B.1.1. Initialization and Update. The initialization or the
update of a ℓ-jointly-implemented quarantine is effective
after ℓ epochs of preparation, using a secretly key-updatable
PKE instead of a regular PKE. We describe below the
process of a quarantine initialization, knowing that a
quarantine key update is processed similarly.

1) At epoch ei, the committer ui
c = uinit0 that decides

to quarantine a new ghost ug proceeds to a regular
quarantine initialization as described in section 3.3,
except that the quarantine does not start at the following
epoch but ℓ epochs after (at epoch ei+ℓ).
• uinit0 generates a temporary fresh encryption key

pair (p̂k
i

g, ŝk
i

g) for the new ghost ug ∈ NG
i+ℓ:

24. The term “quarantine updater” also comprises the “quarantine ini-
tiator”.

18

Figure 7: Compared critical windows for the initialization
of a regular quarantine and a 2-jointly-implemented quar-
antine. In the latter case, the single updater’s proper critical
window is replaced by the shared critical windows of the
two updaters uinit0 and uinit1 .

ŝig
$← S

(p̂k
i

g, ŝk
i

g) := KeyGen(1λ; ŝig)

• It distributes to all group members the temporary
public key p̂k

i

g.
• It also sends to the group the shares issued from the

secret seeds at the origin of the ghost’s key pair:

[ŝig]← Distr(ŝig, t,m)

• Right after, it deletes from its local state the ghost’s
quarantine secret seed and private key.

2) At epochs ei+1 to ei+ℓ−1, the committers ui+j
c = uinitj

(j ∈ J1, ℓ− 1K) – which must be different from uinit0
and from each other – continue the process of quaran-
tine initialization:
• uinitj generates fresh update elements from a ran-

domly drawn seed.

ŝi+j
g

$← S
(Θi+j

g , θi+j
g) := UpdGen(1λ; ŝi+j

g)

• It updates, with the public update element Θi+j
g , the

ghost’s temporary public key sent by the previous
initiator uinitj−1 :

p̂k
i+j

g := UpdPk(p̂k
i+j−1

g ,Θi+j
g)

• It distributes to all group members the new tempo-
rary quarantine public key p̂k

i+j

g .

• It shares within the group the seed ŝi+j
g used to

generate the update elements (Θi+j
g , θi+j

g):

[ŝi+j
g]← Distr(ŝi+j

g , t,m)

• It deletes from its local state the seed ŝi+j
g and the

private update element θi+j
g .

3) The quarantine is then effective at epoch ei+ℓ, with a
ghost’s quarantine encryption key pair corresponding
to the temporary key pair of epoch ei+ℓ−1:

(pki+ℓ
g , ski+ℓ

g) := (p̂k
i+ℓ−1

g , ŝk
i+ℓ−1

g)

Nota: If a ghost comes back online before epoch ei+ℓ, its
quarantine initialization process instantly aborts and it can
immediately recover its offline history as with TreeKEM.

B.1.2. Quarantine End. At the end of the quarantine, the
reconnecting ghost recovers a sufficient number of shares
associated to its quarantine:

• shares of the seed ŝig that was used to generate the first

temporary key pair (p̂k
i

g, ŝk
i

g).

• shares of the seeds (ŝi+j
g)j∈J1,ℓ−1K associated with all

the update elements (Θi+j
g , θi+j

g)j∈J1,ℓ−1K.

It reconstructs the secret seeds (si+j
g)j∈J0,ℓ−1K associ-

ated with these share collections. Then, it recomputes the
initial temporary private key ŝk

i

g from the secret seed ŝig and
updates it ℓ − 1 times with the reconstructed secret update
elements θi+1

g , · · · , θi+ℓ−1
g , in order to get the final private

key ski+ℓ
g :

ŝig := Comb([ŝig])

(p̂k
i

g, ŝk
i

g) := KeyGen(1λ; ŝig)

∀j ∈ J1, ℓ− 1K :
ŝi+j
g := Comb([ŝi+j

g])

(Θi+j
g , θi+j

g) := UpdGen(1λ; ŝi+j
g)

ŝk
i+j

g := UpdSk(ŝk
i+j−1

g , θi+j
g)

ski+ℓ
g := ŝk

i+ℓ−1

g

B.2. Security

As none of the quarantine updaters has access to the
ghost’s quarantine secret key ski+ℓ

g but only to intermediate
elements (indeed, uinit0 only knows the first temporary
private key ŝk

i

g and (uinitj)j∈J1,ℓ−1K know nothing but their
associated secret update element θi+j

g), the corruption of all
but one of them does not give the adversary any clue to
recover the quarantine private key. The only way for the
adversary to recover this private key is to corrupt each one of
these updaters uinitj precisely during their critical window
at epoch ei+j .

19

We consequently consider that these updaters do not
have anymore a proper critical window related to the quar-
antine initialization or update, but a shared critical window
with a full recovery threshold25.

B.3. Performances

In this jointly-implemented quarantine variant, the com-
munication costs of the quarantine initialization, of each
update and of the “Share Recovery Messages” in the re-
connection process scale almost linearly with the number
of co-initiators and co-updaters involved.

Consequently, the communication cost of a ℓ-jointly-
implemented quarantine is increased as follows, compared
to a regular broadcast-only26 quarantine:

ccℓ−joint
init−upd = ℓ.ccinit−upd

ccℓ−joint
end ∈

[
|upd|+ ℓ.t.

(
|sig|+ |ct|+ nqkey.(|s|+ 2. |int|)

)
,

|upd|+ nmax
resend.

(
|sig|+ 2.ℓ.nqkey.t. |int|

)
+ ℓ.m.nqkey.

(
|sig|+ |ct|+ |s|+ 2. |int|

)]
However, as stated above, this overhead is mitigated

by the possibility to decrease the quarantine key update
frequency, due to the higher security brought by the jointly-
implemented quarantine variant.

25. Which means that all these users without exception must be cor-
rupted during their critical window so that the adversary recovers the
ghost’s quarantine key.

26. The improvement is similar with the server-aided variant.

20

	Introduction
	Security properties of a CGKA
	Post-Compromise Security (PCS)
	Forward Secrecy (FS)
	Dealing with inactive users

	Our contribution
	Outline of the paper

	Preliminaries
	Notations and Terminology
	Secret Sharing shamirsecretsharing
	Secretly Key-Updatable Public Key Encryption
	TreeKEM CGKA protocol
	Continuous Group Key Agreement
	Ratchet Tree
	Updates with TreeKEM
	Tree evolution and epochs

	QTK protocol
	Message Delivery Mode
	QTK Public States
	Start of a Quarantine
	Initialization Process
	Share Distribution in the Ratchet Tree
	Commit Message
	Shareholder Rank
	Shareholder Share Recording

	Course of a Quarantine
	End of a Quarantine

	Security of QTK protocol
	Security Model
	Adversarial Model
	CGKA Security Game

	Safe Predicate
	Proper Critical Window
	Shared Critical Window
	Safe Group Key

	CGKA Security Proof for QTK
	Overview
	Challenge Graph

	Performances
	Broadcast-Only Regular Quarantine
	Initialization and Updates
	Quarantine End

	Server-Aided Regular Quarantine
	Initialization and Updates
	Quarantine End

	Practical Efficiency
	Parameter Choice

	References
	Appendix A: Additional Security Considerations
	Detailed Critical Windows of QTK
	Considerations on a Fully Active Adversary

	Appendix B: Jointly-Implemented Quarantine
	Overview
	Initialization and Update
	Quarantine End

	Security
	Performances

