
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Fully Parallel, One-Cycle Random Shuffling for Efficient
Countermeasure in Post-Quantum Cryptography

Jong-Yeon Park, Dongsoo Lee, Seonggyeom Kim, Wonil Lee, Bo Gyeong Kang, and Kouichi Sakurai Member, IEEE

Abstract—Hiding countermeasures are the most widely utilized techniques for thwarting side-channel attacks, and their significance
has been further emphasized with the advent of Post Quantum Cryptography (PQC) algorithms, owing to the extensive use of vector
operations. Commonly, the Fisher-Yates algorithm is adopted in hiding countermeasures with permuted operation for its security and
efficiency in implementation, yet the inherently sequential nature of the algorithm imposes limitations on hardware acceleration. In this
work, we propose a novel method named Addition Round Rotation (ARR), which can introduce a time-area trade-off with block-based
permutation. Our findings indicate that this approach can achieve a permutation complexity level commensurate with or exceeding 2128

in a single clock cycle while maintaining substantial resistance against second-order analysis. To substantiate the security of our
proposed method, we introduce a new validation technique – Identity Verification. This technique allows theoretical validation of the
proposed algorithm’s security and is consistent with the experimental results. Finally, we introduce an actual hardware design and
provide the implementation results on Application-Specific Integrated Circuit (ASIC). The measured performance demonstrates that
our proposal fully supports the practical applicability.

Index Terms—Permutation, Shuffling, Side-channel attack, Post Quantum Cryptography

✦

1 INTRODUCTION

1.1 Background and Motivation

IN the post-quantum era, all the currently used public key
encryption algorithms, such as RSA [1], Elliptic Curve Cryp-

tography (ECC), and Digital Signature Algorithm (DSA) [2],
could be potentially broken by Shor’s algorithm [3]. Because
these public key algorithms are primitives for digital signatures,
message and user authentication in most security applications,
it is necessary to standardize alternatives that are resistant to
Shor’s algorithm.

The algorithms selected for Post Quantum Cryptography
(PQC) are based on lattice, hash, and code-based problems [4],
[5], [6], [7]. Main operations for these algorithms include a
significant amount of vector operations that allow for parallel
processing. This implies the parallelizable structures of most
PQC algorithms are more advantage for applying countermea-
sures against side channel attack compared to RSA and ECC,
where the integer operations are the basic structures.

Hiding countermeasures are basically defined as techniques
to reduce correlation between side channel leakages and inter-
mediate values processed by the executed device [8]. The tech-
nical coverage of hiding countermeasure has many branches;
from cell level to algorithm level. Most widely used technique
is the operation shuffling that can be applied by both software
and hardware in algorithm level. Our research focuses on the
operation shuffling for hiding countermeasure.

Shuffling has been applied as supplementary countermea-
sures to masking countermeasures in symmetric key encryption
like Advanced Encryption Standard (AES [9], [10]). The reason
why shuffling is hardly used as the main countermeasure is
the small number of parallel operations; for example, there
are only 16 Sboxes that can perform a randomly permuted
operation in AES. However, the polynomial dimension of PQC
algorithms can range from 32 to several thousands. In this

• Jong-Yeon Park, Dongsoo Lee, Seonggyeom Kim, Wonil Lee, Bo-Gyeong
Kang are engineers in Samsung electronics System LSI Business
E-mail: jonyeon.park@samsung.com

• Kouichi Sakurai is in Kyushu University

case, solely used shuffling countermeasure can provide enough
resistance against side channel attack even in really powerful
assumption of attackers. Also, while masking countermeasures
can theoretically be neutralized by single trace attacks, shuffling
is considered an effective countermeasure against them.

Although shuffling for PQC algorithms seems to be easily
adopted as the countermeasures, there are two issues to be
resolved – the efficient way of mixing a sequence and the
easy security evaluation. In this regard, we address both issues
and present a novel technique allowing an optimal trade-off
between the security level and performance.

1.2 Related Works and Challenging Issues
The most common method of mixing a sequence of a certain
size is to shuffle the sequence randomly using a random
permutation. The most widely used algorithm for the random
permutation generation is the Fisher-Yates (F-Y shuffling) al-
gorithm, also commonly known as Knuth shuffling [11], [12].
The greatest advantage of F-Y shuffling is that it provides fully
factorial complexity with simple operations.

However, F-Y shuffling has the following disadvantages.
Firstly, a permutation must be sequentially generated. This
makes hardware parallel acceleration impossible. Secondly, pre-
sequence must be stored in advance, so it necessarily occupies
a certain amount of memory. Lastly, due to the algorithmic fea-
ture that N elements must be mixed with independent rule, it
needs a relatively large amount of random numbers. Moreover,
this high randomness cost for a large amount of indices can be a
significant loss when implementing it in hardware. Therefore, a
more efficient shuffling method for a hardware implementation
is required. Z. Chen et al. [13] provide a case where high-
efficiency shuffling is applied using addition and 1-bit swap
for an unit on number theoretic transformation (NTT) against
side channel attack. Such shuffling expresses a most 2128 × 128
distinct sequences on 256 indices. However, it is not secure from
the perspective of side-channel analysis, because each index is
completely interconnected. This approach has limitations in the
security against certain attacks such as Soft Analytical Side-
Channel Attacks (SASCA) [14], [15], [16], [17]. According to

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

H.Julius et al. [17], all layers in operations in NTT need to be
shuffled for the optimal security.

Small domain encryption can also be understood as a per-
mutation. The most extensively studied topic in this area is
Format Preserving Encryption (FPE), and the research focuses
on encryption schemes where input size is operated flexibly.
Prior to the standardization of FPE with FFX [18], various
studies were conducted, including encryption operating with
a card shuffling, block ciphers [19], [20], fixed ciphers utilizing
table lookups [21], and methods that flexibly use input and
output by using modes of operations of block ciphers [18].
However, research for the provable security of FPE focuses on
distinguishability from a random permutation for a specific size
of query. This approach provides security from the perspective
of encryption and decryption rather than the entropy from
the entire permutation complexity perspective. It is different
from the direction of our study, which must discuss the entire
entropy or complexity of the permutation. Furthermore, for
very small permutations for shuffling where the total number of
indices is less than or equal to 212, to the best of our knowledge,
all suggested algorithms of FPE require too many operations.

As an independent research topic, the study of generating
random permutations in parallel has also been approached
in various ways [22], [23], [24], [25], [26]. This field of re-
search exhibits two main characteristics. Firstly, it combines
parallelism with sequentiality, failing to maximally leverage
hardware efficiency based on complete parallelism. Secondly,
all these approaches aim solely to generate entirely uniform
permutations (with the complexity of N !), meaning that if the
algorithm is stopped midway, there will be some indices that
are not shuffled at all (or complexity is not proven). Therefore,
it has the limitation using the trade-off between complexity and
efficiency. As a result, it is inefficient for use in security contexts
and excessive random numbers required.

Closest to our work is a permutation based parallel algo-
rithm operated on GPU (graphics processing unit) with bijec-
tion with Feistel network [27], [28]. The suggested algorithm
has a similar approach to our fully parallel random shuffling.
This research shows the block bijection can generate uniform
random permutations which pass their own statistical test
criteria; however, it does not accurately represent complexity.
Additionally, because their research cannot compute the actual
complexity of permutations, and passing their test does not
mean it has the attack complexity of a factorial.

Alternatively, shuffling can be implemented using the Rout-
ing Network such as Benes network [29], [30] with a little
variation. The advantages of the network-based approach are
its ability to execute parallel operations at high speeds and
its capability to generate entire permutations. However, a sig-
nificant drawback is the excessive random numbers required.
Also, for the decoding implementation without ”Encoding and
Decoding” and parallel operation, the size of hardware must be
even larger than general Benes Network. Also, it needs more
research parallel operation without ”Encoding and Decoding”
step [31]. We will discuss this topic in section 6.

Hence, we need to research an efficient scheme that oper-
ates within the required complexity bounds in a cryptography
industry and provides the security level against exhaustive
permutation investigation and countermeasures against side
channel attack.

1.3 Our Contributions with New Shuffling Techniques

We propose an efficient and secure permutation generator,
namely ARR, and a new security evaluation method, namely

identity verification to ensure that the proposed approach
is secure. According to our evaluation method, ARR can
achieve the sufficient attack complexity, and can be efficiently
implemented in hardware. ARR iterates Add-Rotate-XOR
(ARX) block cipher-like round functions [32]. Thus, it can be
considered to be a Markov process with a transition matrix. The
diffusion speed can be analyzed through mixing time, spectral
gap [33], etc. However, constructing the transition matrix to
analyze Markov process is an extremely difficult task since
the sample size is too large. Therefore, we propose a method
called Identity Verification, which allows for measuring the
entropy at a specific round of the permutation. Also, Identity
Verification can be generalized to the estimation of entropy for
every permutation with symmetric structures.

The contributions of this paper are as follows:

• We introduce a shuffling method ARR and theoretically
analyze it. Also, we introduce important theoretical
properties.

• We propose a novel technique termed Identity Verification
to compute attack complexity. Through actual experi-
ments implementing this technique, we can calculate
the theoretical complexity of the proposed algorithm.
Furthermore, we prove the efficacy of this approach
through rigorous mathematical proof.

• We propose a hardware design on ASIC for a single
clock cycle operation ARR and analyze its area and
performance. Moreover, we provide a variation of ARR
with practical security against side channel attack.

2 PREREQUISITE

2.1 Side Channel Attack and Hiding countermeasure

The basic implementation for the hiding countermeasure with
shuffling is as follows:

1) Identify operations that can be shuffled. For instance,
AES Sbox operations can be performed in arbitrary
order, making them eligible for shuffling.

2) Generate a non-repetitive random sequence as large as
the number of the operations to be shuffled.

3) Perform the operations in the according order to the
generated sequence.

The security of hidden operations in Step 3 totally depends
on the complexity of shuffled sequence generated in Step 2. This
paper verifies whether the proposed permutation function has
‘full complexity or total entropy’ of permutation under a single
trace attack which can have N ! as the number of cases. For
multiple trace attacks, it checks the quality of the permutation
through the entropy of ‘First-order’ and ‘Second-order’ attacks,
it is also known as first-order and second-order permuta-
tion [34]. First-order attacks are the initial considerations in
the context of shuffling countermeasures against adversaries
with single location target, and second-order attacks serve
as a primary indicator to verify the shuffling in obfuscating
the relationships among each index against adversaries with
multiple location targets.

2.2 Fisher-Yates Shuffling

Algorithm 1 illustrates the most widely used method to
generate a shuffled sequence, F-Y shuffling. The most preva-
lent reason for its usage is its ability to create permutations
following a uniform distribution, with a complexity of N !. This

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Algorithm 1 Fisher-Yates Shuffling

Input: A ordered Set
X = {0, 1, ..., N − 1} = {X0, X1, ..., XN−1}.

Output: A ordered Set
Y = {Y0, Y1, ..., YN−1} where Yi ∈ ZN .

1: for j = N to 2 do
2: Choose a random integer k such that 0 ≤ k < j.
3: Exchange the values of Xk−1 and Xj−1

4: Yj−1 ← Xj−1

5: end for
6: return Y

technique involves storing the sequence in advance and con-
ducting a step-by-step transposition (c.f., line 3 of Algorithm 1).
The outcome of each step then determines the operations in the
next phase. Consequently, this method cannot be represented
by a fixed permutation function for each index, and it’s not
possible to generate the entire sequence in parallel all at once.

Once the shuffled sequence has been produced, operations
OP(·) can proceed in the generated order. In order words, this
changes the order of N operations as

{OP(0),OP(1), . . . ,OP(N − 1)} 7→
{OP(Y0),OP(Y1), . . . ,OP(Y(N−1))},

where (Y0, Y1, . . . , Y(N−1)) is a random sequence.

2.3 Notations and Background of Permutation

For convenience, we first define notations for the following
sections.

A permutation is a function that is one-to-one correspon-
dence. Moreover, we limit the domain as integer space ZN .
Thus, by the definition of permutation, the range of output is
also ZN .

Perm : K × ZN → ZN

refers to a family of permutations transforming integers.
Therefore, Perm has the property that, for each k ∈ K, the
projection Perm(k, ·) is a permutation on ZN . The realizations
of Perm will appear as ϕ, δ, or ARR. The set K represents a
key set which determines the diversity of the permutation with
given method Perm. Thus, Perm(K,x) = y denotes a set of
pseudo random permutations that are determined by a key set
K including random numbers {ki}. If we just say Perm(x)
without K, then it assumes that K is a randomly chosen. In
this paper the term random permutation means a pseudo random
permutation. ‘I’ is the identity permutation, I(x) = x for all x,
Perm(K, ·) can be the identity permutation probably.

Additionally, we will employ the cyclic notation for permu-
tations, which is one of the ways to represent permutations in
Algebra. The notation is expressed as (A,B,C), signifying that
through the given function, A is transformed to B, B to C, and
C back to A. In the same way, a transposition (A,B) means, A is
transformed B, and B back to A.

We will denote the probability of an event E occurring as
Pr(E). Also, in this paper, all references to ‘log’ denote the
logarithm base 2. This is used for a computation for entropy,
we say H(X) with a random variable X [35]. An entropy is
computed as,

H(X) = −
∑
x∈X

Pr(x) log(Pr(x)) (1)

H(X) is the computational time complexity for the guessing
secret information with log scale, as 2H(X).

In this paper, we intend to use the following symbols. A
function representation ⊞k(t) signifies modular addition (k+ t)
mod N with k, t ∈ ZN , where the number used for the modulus
will be defined at the point of usage of this symbol. However,
if we implement the algorithm in a real system, N is defined
as 2n, we do not need to operate modular but only remove the
final carry bits.

(≪ (t)) or (≫ (t)) represent a 1-bit left rotation and right
rotation (not shift) of a value t, respectively. Rotation refers to
the process of moving the overflowed bit to the opposite side
after the shift. Above operations, ⊞, (≪), (≫) can be used as
binary operation symbol, A ⊞ B = (A + B) mod N , (A ≪ 1)
is the same meaning to (≪ (A)).

3 BLOCK-BASED PERMUTATION : ADDITION-ROTATION
ROUND (ARR)
3.1 Structure description
In this section, we explain the proposed method; Addition-
Rotation Round (ARR) . Our design principle for good struc-
tures is based on the following five conditions:

1) Efficiency. To maximize operational speed, processing
should be possible in fully parallel, and each index
should be able to operate independently.

2) Simple and Low Cost. In order to optimize the im-
plementation area, it should be combined using the
simplest operations.

3) Divergence. It can generate all permutations, and is
well diffused.

4) Provability. To determine the level of security, the
complexity should be provable.

5) Ease. To prevent hardware or software developers from
making mistakes in implementation, the design should
be easy to understand.

To maximize diffusion in each round, at least two require-
ments need to be met, first, a variation interval dependent
on the key is necessary, akin to the AddRoundKey phase in
AES. Second, there should be a combination of at least two
operations. If not, an internal subgroup may be formed in
the permutation group, thereby reducing the number of cases.
For example, with only AddRoundKey, hundreds of rounds
of operations are equivalent to just one. Third, these two or
more operations should neither commute nor combine. If the
operations are commutative, the number of rounds can be
eliminated mathematically. If they can be combined, there could
be fewer cases than the size of the input key due to linearity.

In light of five conditions, we propose the ARR (Addition
(⊞) Rotation (≪) Round) method, which operates in the
manner shown in Algorithm 2. We identify the following key
features:

1) Round Function. To maximize area efficiency through
the repetition of certain operations, we have applied
a round function, a common methodology in Block
Cipher.

2) Fixed Rotation. Efficiently designing a ‘variable rota-
tion’ necessitates an additional area for each rotation.
From a hardware design perspective, fixed rotations
can be regarded as having no operations since they
can be implemented by re-wiring. Also, no random
numbers are needed for variability.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

3) Modular Addition. It is a simple operation which
makes variations depending on the key value.

There are various methods of operation depending on the
keys; such as exclusive-or (⊕) or modular addition (⊞). These
operations are widely employed in the block cipher design [9],
[32], [36]. Among various options, we have selected fixed 1-
bit rotation and modular addition as our operations for the
following reasons: First, these operations allow for a unified
structure of operations regardless of bit size. Second, they
do not obey commutativity and linearity. For example, if the
operations were composed of exclusive-or and 1-bit rotation,
they would have a linearity relationship, which is to say,
(A≪ 1)⊕ (B ≪ 1) = (A⊕B)≪ 1.

Another option would be a combination of exclusive-or
and modular Addition operations. In this case, while having
a remarkably simple structure. Furthermore, the modular ad-
dition and exclusive-or operations do not exhibit a linearity
relationship. However, the combination cannot generate full
permutation, but a sub-group of group of all permutations Sn.
For example, in 2 bits operation, N = 4 has 4! = 24 cases
for permutations, but ⊕ and ⊞ combination can generate only
8 elements which is a sub-group of Sn which is known as
dihedral group D8 [37].

Algorithm 2 Addition-Rotation Round (ARRR) - Generalized
form with Round R

Input: An integer x ∈ ZN , Key set K = {k0, k1, ..., kR}, ki ∈
ZN , and the even number Round R

Output: y = ARRR(K,x).
1: t← x
2: for i = 0 to (R/2)− 1 do
3: t← ⊞ki(t)
4: t← (≪ (t))
5: end for
6: for i = (R/2) to R− 1 do
7: t← ⊞ki(t)
8: t← (≫ (t))
9: end for

10: y ← ⊞kR(t)
11: return y

Algorithm 3 Generating a full sequence with ARR (Can be
Executed in Parallel)

Input: Key set K = {k0, k1, ..., kR}, Round R.
Output: A random sequence Y = {y0, y1, y2, ..., yN−1)}, yi ̸=

yj where i ̸= j, denote ARRR(K, ·)
1: for i = 0 to N − 1 do
2: yi ← ARRR(K, i)
3: end for
4: return Y

Finally, we choose modular addition (⊞) and (≪) and (≫)
combination and we call it Addition-Rotation Round (ARR).
The operation of the entire algorithm is described in Algo-
rithm 2. The fundamental structure is characterized by the
simple repetition of modular addition and a fixed rotation, with
a distinctive mid-round reversal of the shift direction (Line 6),
as well as an additional final addition (Line 10). This structure is
intentionally designed for its symmetric properties. The theo-
retical advantages of such symmetry for validation purposes
will be discussed in the following section. The generation
function for creating a permutation over the entire input can be
formulated as shown in Algorithm 3, allowing for the creation

Algorithm 4 Addition-Rotation Round (ARRHR) - Generalized
form with the Half-Round HR

Input: An integer x ∈ ZN , Key set K = {k0, k1, ..., kR/2}, the
even number Round R

Output: y = ARRHR(K,x)
1: for i = 0 to (R/2)− 1 do
2: t← ⊞ki(t)
3: t← (≪ (t))
4: end for
5: y ← ⊞kR/2

(t)
6: return y

of one element at a time. Of course, because each operation
is independent, it is also possible to execute them in parallel.
Ultimately, we propose the adoption of a structure that only
carries out the operation of a half round, see Algorithm 4. To
avoid confusion, we will refer to the ARR operation for the full
R round as ARRR, and the ARR operating for only half rounds
as ARRHR.

3.2 Stationary distribution and Divergence of ARR
ARR should possess diversity, which is an essential characteris-
tic required for security.

1) Divergence. It generates all permutations. (Theorem 1)
2) Uniformness. When it is repeated, it arrives at a sta-

tionary distribution as the uniform distribution. This
necessitates the fulfillment of the following properties
which described in Proposition 1, according to ergodic
theory in Markov chain [38].

3) Fast Diffusion. It must rapidly diffuse in proportion to
the size of the input random numbers. (Section 4).

To prove Proposition 1, the following three conditions are
met. Firstly, the operation should be capable of generating all
possible permutations with repeated rounds. This capability is
identified as the property of irreducibility. Secondly, the opera-
tion should exhibit ‘returning to itself’, namely symmetric, see
Definition 1. Lastly, the operation should possess an aperiodic
property, implying that transitions to each state should not be
periodic. This is a naturally occurring property when every
statement can return to its initial state. In our structure, ape-
riodicity is naturally seen to be true, since ARR becomes an
identity function with zero keys.

Definition 1. A random function ϕ is said to be symmetric if
Pr(ϕ(x) = y) = Pr(ϕ(y) = x)

Proposition 1. The stationary distribution of ARR performed
repeatedly converges uniform distribution.

Proof. The random permutation ARR is symmetric, aperiodic
and irreducible. Then, the stationary distribution of the Markov
chain converges uniform distribution.

The symmetry can also be observed as a structural char-
acteristic of ARR, as only the shift direction is reversed after
the half-round, see Algorithm 4. We will address a variety of
properties related to symmetry in a Section 3.3.

Now, we only need to show the irreducibility. Before
demonstrating the capability of the ARR to generate all permu-
tations, we would like to mention an widely accepted statement
(Fact 1) concerning permutations and transpositions [37].

Fact 1. Every permutation can be transformed into a combi-
nation of transpositions. A transposition is a permutation that
exchanges two indices.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

In other words, every permutation is a composition of trans-
positions. If all transpositions can be generated, it is equivalent
to being able to generate all permutations. We will prove that
ARR can generate all transpositions.

Lemma 1. For any given random permutation ϕ that generates
a transposition (x, x+1) for a particular x ∈ ZN . Let δ = ⊞k◦ϕ◦
⊞k−1 for arbitrary random number k ∈ ZN , then δ can generate
every transposition of the form (y, y + 1) for any y ∈ ZN .

Proof. Let’s consider a transposition τ = (x, x + 1) such that
τ(x) = x + 1 and τ(x + 1) = x. Now, we observe that (⊞k ◦
τ ◦ ⊞k−1)(⊞k(x)) = (⊞k ◦ τ(x)) = ⊞k(x + 1) and (⊞k ◦ τ ◦
⊞k−1)(⊞k(x+ 1)) = ⊞k(x). Also, (⊞k ◦ τ ◦ ⊞k−1)(ω) = ω such
that ω is not ⊞k(x+ 1) and ⊞k(x).

Consequently, (⊞k◦τ ◦⊞k−1) can be represented in the cyclic
form of the transposition (⊞k(x),⊞k(x + 1)). By the definition
of ⊞k, (⊞k(x),⊞k(x+1)) = ((x+k), (x+1+k)). Let x+k be y.
Since k can be any values, (⊞k ◦ τ ◦⊞k−1) = (⊞k(x),⊞k(x+1))
is able to be any transposition (y, y + 1).

Lemma 2. Let n be a bit size of input and R ≥ 2n, ARRR(K, ·)
generates the transposition (0, 1) for any input bits.

Proof. First, let’s define define a permutation Ω. It sets the all
keys are zero up to (n−1)th-rounds, and then add (−1) in n-th
round. Finally, output value is the result of after (+2) which is
last key. In other words, Ω is written as (n−1) times left rotation,
addition (−1), one time left rotation, and (+2) with modular
reduction by 2n. We show that Ω derive the transposition (0, 1)
with the key set-up.

Ω(0) is (−1) after n rounds. After the final addition, it is (1).
Thus, Ω(0) = 1. Also, Ω(1) is (2n−1) after (n − 1) rounds. At
the n-th round addition, the value is (2n−1 − 1). After the last
left rotation of (2n−1 − 1) is (2n − 2). Finally, the last addition
make the value 2n − 2 + 2 = 2n = 0 mod 2n. Thus Ω(1) = 0.

Now, we need to Ω(x) = x for all x ∈ Z2n , where x ̸= 0 and
x ̸= 1. Assume that x is even. Left (n − 1) rotation is the same
to one right rotation. Thus, it is (x/2) after left (n− 1) rotation.
At the last round addition (−1), it becomes (x/2− 1). After last
left rotation and it becomes (x − 2), because MSB of (x/2 − 1)
is zero. Finally, Ω(x) = x− 2 + 2 = x when x is even.
Assume that x is odd, it is 2n−1 + (x − 1)/2 after left (n − 1)
rotation. At the last round addition (−1), it becomes 2n−1+(x−
1)/2−1. After last left rotation, it becomes 2((x−1)/2+2n−1−1)
mod (2n − 1). (Remark, left rotation can be described modular
reduction by (2n − 1)).

2((x− 1)/2 + 2n−1 − 1) mod (2n − 1)

= ((x− 1) + 2n − 2) mod (2n − 1)

= {(x− 1) mod (2n − 1) + 2n mod (2n − 1)+

(−2) mod (2n − 1)} mod (2n − 1)

We will check the three parts,
(x− 1) mod (2n − 1) = (x− 1) since (x− 1) < 2n − 1.
(2n) mod (2n−1) is 1. (−2) mod (2n−1) = 2n−3. Therefore,

((x− 1) + 1 + 2n − 3) mod (2n − 1)

= (x+ 2n − 3) mod (2n − 1)

= (x+ 1− 3) mod (2n − 1) = (x− 2) mod (2n − 1)

= (x− 2)

After the last addition (+2), then Ω(x) = x − 2 + 2 = x. In
conclusion, Ω(0) = 1, Ω(1) = 0, and Ω(x) = x for all x where
x ̸= 0 and x ̸= 1. Thus, Ω is the transposition (0, 1). Now, we

can say ARRR can generate the transposition (0, 1) for all input
bit length n.

Lemma 3. Given a permutation ϕ represented by ARRR(K0, ·)
for some K0 ∈ ZN , there exists a K1 ∈ ZN such that ⊞k◦ϕ◦⊞−1

k

is represented by ARRR(K1, ·) for all k ∈ ZN , provided that R
is sufficiently large.

Proof. By the definition of ARRR(K, ·), it generate ⊞k only
before and after ϕ with log(N) round. Thus, ⊞k ◦ δ ◦ ⊞−k

is generated. Since ⊞−k is equivalent to ⊞−1
k , the proof is

done.

Theorem 1. The random permutation ARRR(K, ·) represents all
possible permutations with sufficiently large R.

Proof. By Lemma 1, 2, and 3, ARRR(K, ·) generates all trans-
positions (y, y + 1), where y ∈ ZN . By composition of trans-
positions (y, y + 1) ◦ (y + 1, y + 2) ◦ (y, y + 1) = (y, y + 2)
with the transposition (y, y + 1) and (y + 1, y + 2) which
are generated by ARRR(K, ·). Now, we have (y, y + 2). We
can generate another transposition with the same manner,
(y, y + 2) ◦ (y + 2, y + 3) ◦ (y, y + 2) = (y, y + 3). In this way,
ARRR(K, ·) generate (y, y+k), where k ∈ ZN . Thus, ARRR(K, ·)
represents any transposition. By Fact 1, the proof is done.

By Theorem 1, we can confirm that ARR satisfies irreducibil-
ity. Thus, it fulfills all three properties mentioned in Propo-
sition 1 - irreducibility, aperiodicity, and symmetry. In other
words, given that the proposed structure carries a uniform
distribution in the long run and can possess all permutations,
we recognize it as a viable structure for security purposes, as-
suming the cost of increasing rounds is the only consideration.

3.3 Identity verification for Complexity evaluation
To evaluate the speed at which ARR disperses to encompass all
possible permutations, we propose a novel approach accompa-
nied by experimental validation. The number of permutations
significantly surpasses intuitive estimates. For instance, there
are 40, 320 permutations (8!) for just 3 bits (8 input indices),
and the number of permutations (16!) exceeds 244 for 4 bits (16
input indices).

In light of these considerations, conducting a conventional
statistical analysis for situations with more than 4 bits is im-
practical. For a comprehensive statistical analysis, for example
χ2-test, a minimum required size of storage is approximately
83×c TB (assuming each case requires 4 bytes, although it is
generally expected to be more). Moreover, a minimum of 16!
test iterations implies a requirement of 80× c days (assuming a
3GHz CPU, 1000 clock cycles per test loop, with mandatory file
input/output which is also expected to consume more time, c is
the constant for statistical power). Thus, we propose an efficient
approach for statistical analysis.

According to our method,

• No storage space is required at all.
• The analysis time is much shorter.

Furthermore, for cases of lower complexity with small
rounds, testing can be terminated quickly. For this, we define a
new concept called Identity Verification which estimate Identity
Probability (Definition 2) and will prove mathematically why
this analysis is feasible. Due to the symmetric structure, there
must exist a case where it becomes an identity function, as
described in Section 3.2.

Definition 2. Identity Probability for a given random permuta-
tion, denoted by Pr(Perm(X, ·) = I) with random variable X , is

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

I

s

s

s

s

s

.

.

.

I

Initial
state

Initial
state

p0 p1

pt-1

s

s

s

s

s

p0p1

pt-1

Fig. 1: Probabilities and Statements of a symmetric permutation

defined as the probability that the permutation of the identity
results in the identity itself. Identity Verification is a statistical
test to estimate Identity Probability.

Our ultimate finding is that if there exists a symmetric
random permutation, the lower bound of computational com-
plexity can be determined using Identity Probability when only
half rounds are performed. In conclusion, we will calculate
the actual Identity Probability through experimentation, and
combining the results of this experiment with theory. Finally,
we will propose the final algorithm necessary to achieve the
desired complexity. We will start from Proposition 2 that is
based on the concept of Figure 1.

Proposition 2. For two random permutations ϕ and δ satisfying
Pr(ϕ(x) = y) = Pr(δ(y) = x), and given all potential output
permutations ϕ = {s0, s1, s2, ..., st−1}, we define Pr(ϕ = si) as
pi. Then, the identity probability of ((δ ◦ ϕ) = I) is

∑t−1
i=0 p

2
i ,

denote, Pr((δ ◦ ϕ) = I) =
∑t−1

i=0 p
2
i , where ◦ represents function

composition.

Proof. Given ϕ = {s0, s1, s2, ..., st−1}, we can express the prob-
ability Pr((δ ◦ ϕ) = I) as follows:

Pr((δ ◦ ϕ) = I) =

t−1∑
i=0

Pr(δ = si
−1|ϕ = si)

Since ϕ = si and δ = si
−1 are independent, and Pr(ϕ(x) = y) =

Pr(δ(y) = x) = Pr(δ−1(x) = y),
Pr(δ = si

−1|ϕ = si) = Pr(δ−1 = si|ϕ = si) = Pr(ϕ = si|ϕ = si)
simplifies to p2i . Therefore, we obtain

Pr((δ ◦ ϕ) = I) =

t−1∑
i=0

p2i (2)

Corollary 1. All possible output permutations of ARRHR as
{s0, s1, s2, ..., st−1}. If Pr(ARRHR = si) = pi, then Pr(ARRR =
I) =

∑t−1
i=0 p

2
i .

Proof. Let’s consider the two parts of the ARRR operation:
ARRHR and the operations outside of ARRHR in ARRR, which
we will call ARRER. Hence, we can describe the operation

flow of ARRR as ARRHR → ARRER. The overlapping addition
is cancelled out by the initial step of ARRER since two re-
dundant additions are merged to a single addition. Therefore,
ARRR = ARRER ◦ ARRHR. Given the definitions of ARRHR and
ARRR, it follows that ARRER is the reverse of ARRHR. Conse-
quently, Pr(ARRER(x) = y) equals Pr(ARRHR(y) = x), which is
proven by Proposition 2.

The following Corollary 1 naturally derives from the propo-
sition 2, and it can be seen that our proposed structure, ARR
also satisfies Equation 2. Now, we will prove Theorem 2, which
enable us to calculate the complexity of every permutation with
symmetric structures by Identity Verification.

Theorem 2. Let ϕ and δ be two random permutations such that
Pr(ϕ(x) = y) = Pr(δ(y) = x), and let q = Pr((δ ◦ ϕ) = I). Then,
the entropy H(X) of the random variable X that follows the
distribution ϕ(x) satisfies the inequality

H(X) ≥ − log(q) (3)

Proof. Let’s denote the key space (the number of random keys)
of ϕ as T , and let the set of all possible states with T random
keys, ϕ = {s0, s1, ..., st−1}, where t ≤ T . Suppose that each
state si occurs xi times, which yields:

Pr(ϕ = si) =
xi

T
(4)

and

t−1∑
i=0

xi = T (5)

By Proposition 2, it follows that the sum of squared
probabilities equals the probability of identity, i.e., (x0/T)

2 +
(x1/T)

2 + (x2/T)
2 + ...+ (xt−1/T)

2 = Pr(ϕ = I) = q. This can
be rewritten as:

t−1∑
i=0

x2
i = T 2q (6)

Let’s calculate the entropy, H(X) = −
∑

Pr(x) log(Pr(x)) with
Equation 4 and 5. It can be computed as follows:

H(x) = −
t−1∑
i=0

xi

T
log((xi/T))

= −1/T
t−1∑
i=0

xi(log(xi)− log(T))

= − 1

T

t−1∑
i=0

xi(log(xi)) +
1

T

t−1∑
i=0

xi log(T)

= − 1

T

t−1∑
i=0

xi(log(xi)) +
log(T)

T
× T

= log(T)−
t−1∑
i=0

xi

T
(log(xi))

The logarithm function is concave, and by Jensen’s inequal-
ity [39] and Equation 6, we have:

t−1∑
i=0

xi

T
(log(xi)) ≤ log

t−1∑
i=0

x2
i

T
= log(Tq)

Thus, we get:

− log(Tq) ≤ −
t−1∑
i=0

xi

T
(log(xi))

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Finally, we can derive the lower bound for the entropy:

H(x) = log(T)−
t−1∑
i=0

xi

T
(log(xi)) ≥ log(T)− log(Tq)

= − log(q)

Theorem 2 can be naturally applied to our structure, ARR,
as shown in Corollary 2, and we can see from Corollary 3 that it
can be generally applied to all symmetric permutations. We will
use Theorem 2 to compute the complexity with experiments in
Section 4.1.

Corollary 2. Suppose ARRR is a random permutation such that
Pr(ARRR = I) = q and let X be a random variable following
the distribution of ARRHR. Then, the entropy of ARRHR is at
least − log(q).

Proof. This is consequently proven by Theorem 2 and Corol-
lary 1.

Corollary 3. Assume ϕ is a symmetric permutation as defined
in Definition 1, and Pr((ϕ ◦ ϕ) = I) = q. Then, the entropy of ϕ
is at least − log(q).

Proof. This is consequently proven by Theorem 2 and Defini-
tion 1.

This means that the theory we propose is not only useful
for testing the initial complexity of our structure but also of
all types of permutations with a symmetric form, indicating
potential for wide-ranging applications in various fields.

Remark 1. By the Corollary 2, once the lower bound of the
attack complexity verified up to ‘Half Round’ is determined,
it is sufficient for us to apply operations only up to ARRHR to
generate permutations satisfying this complexity.

Also, we can get the final fact Remark 1. From now on,
we will use practically only the Half-round algorithm. Full
round algorithm is only used for verification of the Half-Round
algorithm.

3.4 Small Units Aggregation (SUA)
Although Identity Verification is much better tool than standard
statistical tests, approximately 40 bits is practical limit with
lab-level PC. Consequently, we chose a practical strategy of
verifying our structure up to 40 bits and then extending it,
rather than generalizing our structure.

Algorithm 5 displays examples of Small Unit Aggregation im-
plemented in four parts, denote 4-SUA. The reason for dividing
into four is as follows.

Firstly, it is possible to increase the entropy diffusion rate
with more key size. Secondly, Identity Verification allows us
to test up to around 40 bits. For example, if a complexity of
more than 32 bits is guaranteed with the four independently
permuted blocks, the complexity of exhaustive search is 128
bits (32× 4). This is equivalent to the complexity of brute force
searching for master key of AES 128 [9], which is considered
cryptographically secure of 2023.

The mathematical explanation for the complexity of one
part being raised to the fourth power when divided into four
parts will be omitted here; we show intuitive description with
Figure 2. It shows 4 bits example (16 balls), it is separated by
two Most Significant Bits (MSB) and two Least Significant Bits
(LSB). By the selection of MSB, LSB extra bits out of MSB 2 bits

Algorithm 5 Addition-Rotation Round (ARR) - Generalized
form with Half-Round HR with four Small Units Aggregation
(4-SUA)

Input: An integer x ∈ ZN , s = log(N)
Key set K0 = {k0,0, k0,1, ..., k0,R/2},
Key set K1 = {k1,0, k1,1, ..., k1,R/2},
Key set K2 = {k2,0, k2,1, ..., k2,R/2},
Key set K3 = {k3,0, k3,1, ..., k3,R/2},
every ki,j is (s− 2) bits size.
the even number Round R,

Output: y = ARRHR(K,x) with 4-SUA
1: C ←Most Significant 2 bits of x
2: t← x
3: for i = 0 to (R/2)− 1 do
4: t← ⊞kC,i(t) /*(mod 2s−2)*/
5: t← (≪ (t)) /*(rotation LSB (s− 2) bits)*/
6: end for
7: y ← ⊞kC,R/2

(t)
8: return y

LSB Block 0

2

Key Set0 Key Set3Key Set1 Key Set2

MSB

Key Set(MSB)

Key Set0 Key Set1 Key Set1 Key Set1

LSB block 2 LSB block 2 LSB block 3

Fig. 2: Permutation with Four Small Unit Aggregation (4-SUA)

is only computed by ARR iteration with the selected key set.
(While we may not compute in this way with 4-bit examples,
it serves merely for illustrative purposes). In reality, we would
begin from 6 bits, subdividing into four groups based on the
top 2 bits MSB. We were to generate a 10-bit permutation with
partitioning 8 bits into four groups. The variable C (Line 1)
in Algorithm 5 leads to division into four separate parts of
the same size, and it can be seen that the shuffling occurs
independently in these four separated spaces.

Therefore, we have managed to generate a permutation, ap-
plicable to any bit size, that ensures at least the total complexity
of AES 128, and this can be accomplished at a relatively low
cost.

3.5 Second-Order Diffusion (SOD) for Security

Critical aspects of the permutation used in side-channel
analysis is the complexity of the first-order and second-order
multiple trace attacks. In the case of first-order attack, it can be
easily solved by the initial addition for the entire size. There-
fore, applying only initial addition alone guarantees sufficient
security against first-order Differential Power Analysis [40].
However, after utilizing 4-SUA against second-order attack,
second-order complexity is reduced to a quarter, see the 4-
separated balls in Figure 2.

Algorithm 6 shows ARR with Second-Order attack Diffusion
(SOD) applied. This algorithm represents our final proposed
form, incorporating first-order diffusion (Line 1, 2) and enhanc-
ing second-order resistance. By varying the approach with the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Algorithm 6 Addition-Rotation Round (ARR) - Generalized
form with Half-Round HR with 4-SUA for Second-order dif-
fusion (SOD)

Input: An integer x ∈ ZN , s = log(N),
Key set K0 = {k0,0, k0,1, ..., k0,R/2},
Key set K1 = {k1,0, k1,1, ..., k1,R/2},
Key set K2 = {k2,0, k2,1, ..., k2,R/2},
Key set K3 = {k3,0, k3,1, ..., k3,R/2},
every ki,j is (s− 2) bits size,
Initial Key λ ∈ ZN .
the even number Round R,

Output: y = ARRHR(K,x) with 4-SUA and SOD
1: t← ⊞λ(t), (mod N)
2: r ← a random number s bits
3: t← Left rotation r bits of t
4: C ←Most Significant 2 bits of t
5: for i = 0 to (R/2)− 1 do
6: t← ⊞kC,i(t) /*(mod 2s−2)*/
7: t← (≪ (t)) /*(rotation LSB (s− 2) bits)*/
8: end for
9: t← ⊞kC,R/2

(t)
10: y ← Right rotation r bits of t.
11: return y

4-SUA method each time, SOD complicates the relationships
between each permuted index. This can be effective in counter-
ing attacks that employ techniques such as SASCA [17].

4 SECURITY

4.1 Total Permutation Complexity
In this section, we discuss the attack complexity of the per-
mutation. We used Identity Verification presented in Section 3.3
for full rounds Algorithm 2, to compute the lower bound of
entropy for the half round. Complexity calculations of our final
structure are based on the application of 4-SUA and SOD.

Our experimental procedure is as follows:

1) We count the number of instances where ARRR = I
for each round without SUA and SOD, which is de-
scribed in Algorithm 3. We stop the test when this
count reaches 30 (N-Hits = 30) and then compute
the probability, Pr(ARRR = I) = (N-Hits)/(N-Trials)
with the total number of trials (N-Trials) required to
reach this number. However, if (N-Hits < 224) when
(N-Hits = 30), the test continues until (N-Hits = 224).

2) Given that the highest attack complexity that we need
to know is 236, we halt the experiment if the number
of trials exceeds 238 and count the number of instances
where ARRR = I , even if (N-Hits ≤ 30).

3) To compute the complexity, we calculate q =
(N-Hits)/(N-Trials), and the reciprocal of this value
is the attack complexity up to half rounds ARRHR by
Theorem 2, denote, 1/q.

4) The complexity of ARR with 4-SUA and SOD is (1/q)×
4 + n, where n is the bit size of input domain (+n due
to SOD, ×4 due to 4-SUA).

We present the actual experimental values for Identity Veri-
fication of ARR. All the experimental results in this paper have
been presented based on this data in Table 1. The random keys
in our experiments are derived from AES256. The input of AES
operation is previous output block. The key is generated by
LFSR with time seed that is built-in rand() function from Mi-
crosoft Visual C’s standard library [41]. Once the key is selected,

all experiments are performed by the fixed key. Ultimately, the
goal of our research is to determine the number of rounds
required to achieve the targeted entropy for a given input bit
size.

Proposition 3. Let ϕ and δ be a set of random permutations,
ϕ = ϕ−1 = {ϕ0 = I, ϕ1, ϕ2, ..., ϕM−1} such that ϕi · ϕj ∈ ϕ,
and δ = {δ0 = I, δ1, δ2, ..., δL−1} such that δ−1

i ◦ δj ̸= ϕk for
all index i, j and k(̸= 0). If the entropy of ϕ and δ is X and Y ,
respectively, entropy of δ ◦ ϕ is X + Y .

Proof. Assume that δi ◦ ϕj = δk ◦ ϕl for some i, j, k, l. Then,
δ−1
k ◦ δi = ϕl ◦ ϕ−1

j = ϕu. By the fact δ−1
i ◦ δj ̸= ϕk for all index

i, j and k(̸= 0), δ−1
k · δi = ϕ0 = I . Since δ−1

k · δi = I , δk = δi
and ϕj = ϕl. Thus, every δj ◦ϕi is distinguished, and ϕ and δ is
independent as sample spaces of probability distribution. The
concludes the proof, as it is a known fact that the entropy of the
product of two independent random variables equals the sum
of their individual entropies.

The reason for simply adding an initial key (λ in Algo-
rithm 6) equal to the size of the input bits in the Initial Addition
operation is that the addition in this stage cannot be generated
through the small round unit operations in the subsequent
4-SUA. From the perspective of the entire permutation, the
initial addition and small round unit can be considered to
act entirely independently. The independence of these two
operation blocks is straightforward and will not be further
discussed in the paper. When the two blocks are independent,
the overall complexity (Entropy value) is calculated by simply
adding the complexities of the two, based on Proposition 3. In
Proposition 3, we can regard ϕ as the initial addition and δ as
small unit operations with round units. The entropy of initial
addition ϕ is the same to the size of input.

Table 2 displays the number of necessary required half
rounds and total random bits which are used for key set to
reach attack complexities of 112-bit, 128-bit, and 144-bit for
input domain sizes ranging from 6-bit to 12-bit when ARRHR is
applied with 4-SUA and SOA. Surprisingly, as shown in Table 2,
to ensure an attack complexity of a certain bit size reaching the
desired attack complexity, requires using only a nearly similar
level of random bits to the attack complexity. This serves as an
indicator of how much entropy scalability our method provides
while performing rounds.

4.2 Second-Order Attack Complexity
The complexity of second-order attack allows us to check the
relationship between indices after shuffling. We proceeded with
our experiment as follows:

1) Classify each index according to the possible distance
between each index. For instance, in the case of a 5-bit
input, the distance between each index can range from
1 to 31. The number of possible distance is 31 cases.

2) Input a random number as a key and perform the
ARRHR operation 10,000 times using the algorithm with
4-SUA and SOD.

3) For a fixed index (2n cases) and the second index
classified by a distance ranging from 1 to 2n − 1,
reclassify the modified distance after ARRHR for 10,000
cases. The total number of operations for the statistical
test is 2n × T × 10000.

The classification results can be summarized as follows:

1) Worst case entropy : This calculates the probability
of the distance after the permutation. For instance, in

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE 1: Estimated Entropy (H(X) = 1/q) of Pure ARR (without SUA, SOD) for the rounds from 4 bits to 10 bits input,
HR : Required half rounds, R-bits : Used key size (bits), Entropy : Entropy of ARR after half Rounds, N-Trials : The number of Trials
(hex-representation), N-Hits : The number of hit (|ARRR(K, ·) = I|) with full round (HR×2), The symbol ‘-’ is not experimented
or not computed. (38 ≦) means the entropy is larger than 38.

HR 4 bits 5 bits 6 bits 7 bits 8 bits 9 bits 10 bits

2

N-Trials (Hex) 1000000 1000000 1000000 3c24381 2ab95af8 ba98d319 7b21cdaa9
N-Hits (Decimal) 4122 493 51 30 30 30 30

Entropy 11.99 15.05 18.32 21.00 24.51 26.63 30.03
R-bits 12 15 18 21 24 27 30

3

N-Trials (Hex) 1000000 19cb750 1b98e110 233475616 22a80bd055 4000000000 4000000000
N-Hits (Decimal) 239 30 30 30 30 1 0

Entropy 16.09 19.78 23.87 28.23 32.20 38 38 ≦
R-bits 16 20 24 28 32 36

4

N-Trials (Hex) 1cf472b 4922cec8 96c81312f 4000000000 4000000000 - -
N-Hits (Decimal) 30 30 30 9 0 -

Entropy 19.94 25.28 30.32 34.83 38 ≦ - -
R-bits 20 25 30 35 - - -

5

N-Trials (Hex) f8d5bce 5b677059e 4000000000 4000000000 - - -
N-Hits (Decimal) 30 30 5 0 - - -

Entropy 23.05 29.60 35.67 38 ≦ - - -
R-bits 24 30 36 42 48 54 60

6

N-Trials (Hex) 877908be 4000000000 - - - - -
N-Hits (Decimal) 30 8 - - - - -

Entropy 26.17 35 - - - - -
R-bits 28 35 42 49 56 63 70

7

N-Trials (Hex) 2f4b74ecd 4000000000 - - - - -
N-Hits (Decimal) 30 0 - - - - -

Entropy 28.65 38 ≦ - - - - -
R-bits 32 40 48 56 64 72 80

8

N-Trials (Hex) 1340da717a - - - - - -
N-Hits (Decimal) 30 - - - - - -

Entropy 31.36 - - - - - -
R-bits 36 45 54 63 72 81 90

9

N-Trials (Hex) 36c58eb0da - - - - - -
N-Hits (Decimal) 30 - - - - - -

Entropy 32.86 - - - - - -
R-bits 40 50 60 70 80 90 100

10

N-Trials (Hex) 4000000000 - - - - - -
N-Hits (Decimal) 7 - - - - - -

Entropy 35.19 - - - - - -
R-bits 44 55 66 77 88 99 110

11

N-Trials (Hex) 4000000000 - - - - - -
N-Hits (Decimal) 0 - - - - - -

Entropy 38 ≦ - - - - - -
R-bits 48 60 72 84 96 108 120

0 2 4 6 8 10 12
2

4

6

8

10

12

E
nt

ro
py

Round

 4 bits
 5 bits
 6 bits
 7 bits
 8 bits
 9 bits
 10 bits
 11 bits
 12 bits

0 2 4 6 8 10 12
1

2

3

4

5

6

7

8

E
nt

ro
py

Round

 4 bits
 5 bits
 6 bits
 7 bits
 8 bits
 9 bits
 10 bits
 11 bits
 12 bits

(a) (b)

Fig. 3: (a) Average entropy for all two-point relations (b) The worst case entropy for all two-point relations

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 2: Required Random bits for ARRHR to reach H(X) =
2112, 2128 and 2144 where 4-SUA and SOA (Unit : Bits)

Input size(bits) 6 7 8 9 10 11 12
H(X) = 2112 134 127 128 121 138 119 132

Required Rounds 7 5 4 3 3 2 2
H(X) = 2128 150 147 128 149 138 155 132

Required Rounds 8 6 4 4 3 3 2
H(X) = 2144 182 147 152 149 170 155 172

Required Rounds 10 6 5 4 4 3 3

1

k

n

n

Input OutputADD
n n

Fig. 4: Round Unit (Forward)

a 2-bit input, if the first input is 0 and the second
input is 1 (distance between them is 1), and possible
outputs are {0, 1, 2, 3} each with a uniform probability
of {0, 0.33, 0.33, 0.33} (as 0 cannot occur), the entropy
is H(X) = −

∑
Pr(x) log(Pr(x)) = 0 + 0.528 + 0.528 +

0.528 = 1.58. Worst case entropy calculates the en-
tropy for each possible distance and selects the smallest
value.

2) Average entropy : We calculate the entropy for each
possible distance and compute the arithmetic mean of
these entropies. This metric indirectly predicts second-
order attack complexity.

Figure 3 (a) and (b) present the results for second-order.
Looking at Figure 3 (a) Average entropy, the result converges
towards the ideal entropy for each bit as the number of rounds
increases. The maximum entropy theoretically possible is equal
to the bit size. Figure 3 (b) shows the Worst case Entropy,
which is generally smaller than Average entropy. However, it
exhibits an overall upward trend, implying that there are no bits
that stagnate and fail to increase, even with repeated rounds.
Therefore, we can conclude that our permutation effectively
disperses the second-order entropy.

5 HARDWARE DESIGN

Our approach has been designed for the simplest computation
at the smallest unit level, with the basic unit composed of
addition and 1-bit shift, as already presented in the algorithm.
From a hardware operation perspective, because 1-bit fixed
rotation is just a re-wiring, the operation delay can be regarded
as zero. Therefore, the factors affecting actual computational
performance can be seen as the size of the addition unit and
the number of rounds. Figure 4 shows the basic unit. The size of
the addition in the basic unit is affected by the input size, and a
different key is added in each round. The computation delay of
a round unit is very short, allowing multiple operations within
a single cycle, as shown in Figure 5.

Figure 6 shows the design working in a single clock cycle.
The 4-SUA requires an extra multiplexer for key selection. SOD
includes an initial addition and rotation, with a reverse rotation

Round Unit ...Input OutputRound Unit Round Unit ADD

Fig. 5: Round Chaining in a single clock cycle with Round Unit

TABLE 3: Maximum number of round units operated in one
clock cycle with SOD in ASIC 1GHz, 4nm Process

Input (bits) Maximum Number of Rounds in one clock cycle
4 19
5 18
6 17
7 16
8 15
9 14
10 14
11 13
12 13

at the end, as shown in Algorithm 6. The design enables the
integration of the maximum possible number of round units
within a single clock cycle. Table 3 summarizes the maximum
number of round units that can be included in a single clock
cycle.

Adopting a different approach, instead of maximizing the
number of round units within a single clock cycle, we configure
the number of units to align with the required security strength.
This strategy allows for an increase in operational frequency.
Table 4 reports the anticipated frequencies for this configura-
tion. The round counts used in Table 4 are based on the data
reported in Table 2.

5.1 Brief summary of the result

In summary, Table 5 offers a comprehensive overview of our
design result for hardware designers to effectively implement
the proposed methods. To fully leverage our results, the fol-
lowing aspects need to be holistically evaluated: the size of
the input domain, the required size of the random numbers,
area of sequential and combinational logic constraints of the
product under development, the performance of the required
permutation, the type of pseudo-random number generator
available, the complexity of attacks in a fully permutation and
second-order assumption.

According to our research findings, permutations with the
required attack complexity can be generated within one clock
cycle. This can be remarkably efficiently utilized in hardware
and software co-design scenarios [42]. When a permutation is
needed during a computation, the proposed hardware architec-
ture does not require deterministic input. It solely takes random
numbers as input, which means software developers do not

TABLE 4: Maximum Operation Frequency with given complex-
ity and SOD for a single clock cycle operation in ASIC, 4nm
Process (Unit : GHz)

Input (bits) 112 bits 128 bits 144 bits
6 2.11 1.90 1.58
7 2.57 2.25 2.25
8 2.83 2.83 2.43
9 3.20 2.67 2.67
10 3.00 3.00 2.50
11 3.75 3.00 3.00
12 3.75 3.75 3.00

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Round Unit Round Unit Round Unit Round Unit Round Unit...

4 46 4 4 4
ADD

IK

6
Input

6 4

4 4 4 4 4

ss

k00 k10 k20 k30 k01 k11 k21 k31 k02 k12 k22 k32 k0x k1x k2x k3x k0y k1y k2y k3y

2

4

2

2 2 2 2 2

3

s

6

s

6

Output

ARR

ADD

k0z k1z k2z k3z

2

4

4

Fig. 6: Round unit Chaining 6 bits model with four 4 bits SUA (4-SUA) and SOD with Round unit - a single clock cycle operation,
key indices determined by the number of rounds

TABLE 5: Brief summary of the result (ASIC, 4nm Process)
(Unit : AREA(µm2))

112 bits complexity 128 bits complexity 144 bits complexity
Domain
size
(bits)

AREA
comb.

AREA
seq.

AREA
Total

RNG
bits

Req.
Round

2nd
order
Avg.
En-
tropy

AREA
comb.

AREA
seq.

AREA
Total

RNG
bits

Req.
Round

2nd
order
Avg.
En-
tropy

AREA
comb.

AREA
seq.

AREA
Total

RNG
bits

Req.
Round

2nd
order
Avg.
En-
tropy

6 24.46 41.00 65.46 134 7 5.70 26.91 45.49 72.40 150 8 5.65 31.78 54.48 86.26 182 10 5.71
7 23.88 39.59 63.47 127 5 6.56 26.89 45.21 72.10 147 6 6.70 26.89 45.21 72.10 147 6 6.70
8 24.99 24.99 49.98 128 4 7.54 24.99 24.99 49.98 128 4 7.54 28.58 47.17 75.75 152 5 7.62
9 25.63 39.03 64.66 121 3 8.35 29.83 29.83 59.66 149 4 8.46 29.83 29.83 59.66 149 4 8.46
10 28.84 44.37 73.20 138 3 9.23 28.84 44.37 73.20 138 3 9.23 33.65 33.65 67.31 170 4 9.35
11 26.72 39.59 66.31 119 2 9.94 26.72 39.59 66.31 119 2 9.94 32.19 49.70 81.90 155 3 10.10
12 30.24 43.80 74.04 132 2 10.78 30.24 43.80 74.04 132 2 10.78 36.33 55.04 91.37 172 3 10.94

need to provide additional input. It allows highly efficient
generation of permutation implementations.

Additionally, we can consider reducing the number of
rounds executed per clock cycle. The algorithm presented in
this paper is based on performing all operations within one
clock cycle, depending on the required attack complexity. How-
ever, the operations can be modified to function across 2 or
3 clock cycles by dividing the number of rounds in one clock
cycle. The results in Table 5 allow for an approximate prediction
of the area required for this modified implementation. This
offers an additional advantage of being able to manipulate the
implementation based on the resources.

6 DISCUSSION AND LIMITATION

6.1 4-bit, 5-bit complexity of ARR

The 4-bit complexity refers to the shuffling of the AES S-box,
and it is likely to be one of the most widely used application
sizes. In this case, the 4-bit ARR structure from Algorithm 4
can be directly employed, without the need to apply SOD and
SUA. For the 5-bit scenario, the application of 2-SUA with 4
bits ensures 72-bit complexity after 11 rounds that is computed
in one clock cycle. Since a security strength of over 76 bits
is relatively small compared to 32! (which equals 117 bits)
complexity, it is a limitation to our structure.

6.2 Towards Higher Complexity

To achieve greater security than the 144-bit complexity, we can
use more keys and break down the data into smaller chunks.
As mentioned in Section 3.4, 4-SUA splits a 6-bit section into
four parts of 4 bits each, or a 7-bit section into four parts of 5
bits each. We can refine this approach: for instance, divide 7 bits
into eight parts of 4 bits, or 8 bits into eight parts of 5 bits. By

applying this strategy to even larger bit sizes (8-SUA), we can
double the security complexity up to 288 bits.

Our approach is flexible and can be scaled up, allowing us to
enhance the system by using larger key sizes. When compared
to 4-SUA, 8-SUA the required space for the hardware’s combi-
nation logic will be about the same, but the space for sequential
logic will double due to the key space with a single clock cycles.
To improve the complexity of ARR effectively, we only need to
consider using more keys and the additional space needed for
the larger flip-flops.

6.3 Comparison to a Structure with Feistel-based bijection

Our approach is similar to the Feistel-based structure by
Mitchell et al. [27], but their structure is more complicated than
ARR. This does not align with our design principle introduced
in Section 3, but we will compare the results in area and per-
formance considering the structural characteristics. The Philox
base structure, using constant M and splitting inputs into left
and right n/2 bits, is defined as:

L′ = Fk(L)⊕R

(R′, b′) = G(Bk(L), b).

where

Fk(R) = (M ×R)/2W ⊕ k

Bk(L) = (M × L) mod 2W

Actually, the constant M exceeds 32 bits in size, but com-
paring it with a 32-bits M , the difference in performance and
area with ARR is so significant that such a comparison is not
meaningful. Therefore, for our comparison, we assume M to
be n/2-bit size (ranging 3 bits to 6 bits) for our comparison.
However, since we adjusted the algorithm to be smaller than

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TABLE 6: Comparison of size of random bits between ARR and Benes Network

Domain size(bits) 6 7 8 9 10 11 12
Addition Rotation Round (ARR) up to Total Entropy 2128

Applied Random bits 150 147 128 149 138 155 132
Second-Order Entropy 5.65 6.70 7.54 8.45 9.23 9.95 10.77

Reduced Benes Network up to Total Entropy 2128

Applied Random bits 128 128 128 256 512 1024 2048
Operated Depth 4 2 1 1 1 1 1

Second-Order Entropy 3.96 1.98 0.99 0.99 0.99 0.99 0.99
Full depth Benes Network

Applied Random bits 352 832 1920 4352 9728 21504 47104
Operated Depth 11 13 15 17 19 21 23

Second-Order Entropy 5.976 6.98 7.99 8.91 9.74 10.70 11.66

6 7 8 9 10 11 12
0

2

4

6

8

10

12

E
nt

ro
py

Bits

 Benes Network (128 bits and more)
 ARR
 Benes Network(full depth)

Fig. 7: Average second-order entropy of ARR, Reduced Benes
Network, and Full-depth Benes network with random bits
shown in Table 6

the M proposed by them, it will not satisfy their diffusion
statistical test results.

Operationally, the distinction boils down to an n-bit adder
in ARR versus an n/2-bit multiplier in Philox. For ASIC im-
plementation, ARR is more area-efficient, about 1.5 to 2 times
smaller, and operates 3 to 5 times faster than Philox. Although
this varies depending on the hardware design method and
synthesis results, it is very clear that our results are superior in
terms of area and performance, due to the general operational
characteristics of multiplication and addition. Moreover, as
Table 2 shows, our method directly translates the size of input
random bits into entropy, making it more effective than Philox’s
diffusion method in reducing the number of rounds for the
target complexity.

6.4 Comparison to Routing Network

Known as one of the most efficient hardware shufflers, Routing
Network, e.g., the Benes Network [29], [30] has the advantage
of generating a full permutation using only flip-flops, a mul-
tiplexer, and basic wiring. It facilitates the parallel execution
of the entire index. However, this approach requires a large
amount of random bits. If the input size is larger than 5 bits,
the size of input randomness needs to be excessively large.
Therefore, the method is premised on the need for a large
quantity of random bits, which significantly impacts overall
performance.

To use this approach with high efficiency, the amount of
random bits must be reduced. A possible approach is using
partial depth operation. Despite reducing depth, the complexity
of exhaustive search is still sufficiently high. For example, in the
case of Z. Chen et al. [13], the Benes Network is used at only one
depth, and the permutation has 128-bit complexity. However,
this method reveals limitations of swap-based-method since
interrelationships exist between indices.

Table 6 displays three results of second-order average en-
tropy; the Benes Network using the minimum randomness at
the level of 128 bits of entropy, the full depth Benes Network,
and ARR with input size 6-bit to 12-bit. The contents of the table
are summarized in Figure 7. Although the reduced-depth Benes
Network actually uses much more random bits than ARR, it is
found that second-order entropy is much lower than that of
ARR. The noteworthy result is that ARR shows entropy results
comparable to the Full depth Benes Network. However, in the
case of a maximum of 12 bits, the full-depth Benes Network
requires 47,104 bits. On the other hand, 132 bits are sufficient
for a remarkable result in ARR.

6.5 Limitations and Future works

The limitation of our research is below,

• Area Requirement for a single clock cycle operation:
The ARR approach requires a substantial area for gener-
ating one clock cycle, necessitating flexible specification
choices based on individual requirements and the usage
environment.

• Identity Verification: The proposed Identity Verification
method lacks a generalized complexity formula applica-
ble to any given round.

• Performance Limitations of Test PCs for verification:
The performance limitations of the test PCs restrict the
complexity that can be verified in the experiments. This
limitation shows that theory alone is not enough; we
also need statistical experiments to fully estimate the
overall complexity.

In response to these limitations, our future work will focus
on the following areas,

• Research on Area-Efficient Strategies: There is a need
for research into more area-efficient strategies to over-
come the substantial area requirement for clock cycle
generation.

• Implementation on GPUs: Similar to the approach
implemented by Mitchell et al. [27], we can consider
software optimization using GPUs to generalize our
results in a software environment. While it may not
be as extremely fast as a single clock cycle in ASIC, it

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

is anticipated that our approach could generalize the
implementation results in software environments with
parallel computing.

• Developing a General Entropy Measurement Formula:
Plans to study and develop a formula capable of mea-
suring general entropy up to a certain loop across all
Markov chain structures.

7 CONCLUSION

In our study, we proposed a single clock cycle permutation
generation technique ARR which is essential for the shuffling
countermeasure in PQC algorithms. We verified the attack com-
plexity for an exhaustive search perspective using our newly
proposed permutation verification method, Identity Verification.
Also, we provided logical validity of the method through the-
oretical proofs. To demonstrate the relationships between each
shuffled index, we experimentally presented second-order en-
tropy. Both complexity of exhaustive search and second-order
relations have been proven theoretically and experimentally to
exhibit excellent scalability with small amount of randomness.

Based on our research result, it is possible to study subjects
of theoretical and practical expansion. It is expected to provide
significant utility to hardware designers and developers in the
field of hardware & software co-design. Therefore, we hope that
it can serve as a starting point for the proposal of even better
structures. In future work, we intend to continue research to
propose more efficient and higher-performing algorithms and
better verification methods.

REFERENCES

[1] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Communications
of the ACM, vol. 21, no. 2, pp. 120–126, 1978.

[2] FIPS, “Digital signature standard (dss),” FIPS PUB, Tech. Rep. 186-
192, 2000.

[3] P. W. Shor, “Algorithms for quantum computation: discrete log-
arithms and factoring,” in Proceedings 35th annual symposium on
foundations of computer science. IEEE, 1994, pp. 124–134.

[4] NIST, “Nist round 4 submission,” 2022, [Online] Available:
https://csrc.nist.gov/Projects/post-quantum-cryptography/
round-4-submissions. Accessed on: Sep 2022.

[5] ——, “Fips 203 ”module-lattice-based key-encapsulation mech-
anism standard”,” https://doi.org/10.6028/NIST.FIPS.203.ipd,
Tech. Rep.

[6] ——, “Fips 204 ”module-lattice-based digital signature stan-
dard”,” https://doi.org/10.6028/NIST.FIPS.204.ipd, Tech. Rep.

[7] ——, “Fips 205 ”stateless hash-based digital signature standard”,”
https://doi.org/10.6028/NIST.FIPS.205.ipd, Tech. Rep.

[8] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks: Reveal-
ing the secrets of smart cards. Springer Science Business Media,
2008, vol. 31.

[9] N.-F. Standard, “Announcing the advanced encryption standard
(aes),” Federal Information Processing Standards Publication, pp.
1–51, 2001.

[10] S. Tillich, C. Herbst, and S. Mangard, “Protecting aes software
implementations on 32-bit processors against power analysis,” in
Applied Cryptography and Network Security: 5th International Con-
ference, ACNS 2007. Zhuhai, China: Springer Berlin Heidelberg,
2007.

[11] R. A. Fisher and F. Yates, Statistical tables for biological, agricultural
and medical research. Edinburgh and London, 1957.

[12] D. E. Knuth, Art of computer programming, volume 2: Seminumerical
algorithms. Addison-Wesley Professional, 2014.

[13] Z. Chen, Y. Ma, and J. Jing, “Low-cost shuffling countermeasures
against side-channel attacks for ntt-based post-quantum cryptog-
raphy,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 42, no. 1, pp. 322–326, 2022.

[14] N. Veyrat-Charvillon, B. Gérard, and F.-X. Standaert, “Soft analyt-
ical side-channel attacks,” in Advances in Cryptology–ASIACRYPT
2014: 20th International Conference on the Theory and Application of
Cryptology and Information Security. Springer Berlin Heidelberg,
2014, pp. 282–296.

[15] P. Pessl and R. Primas, “More practical single-trace attacks
on the number theoretic transform,” in Progress in Cryptology–
LATINCRYPT 2019: 6th International Conference on Cryptology and
Information Security in Latin America. Springer International
Publishing, 2019, pp. 130–149.

[16] R. Primas, P. Pessl, and S. Mangard, “Single-trace side-channel
attacks on masked lattice-based encryption,” in Cryptographic
Hardware and Embedded Systems–CHES 2017: 19th International Con-
ference. Springer International Publishing, 2017, pp. 513–533.

[17] J. Hermelink, S. Streit, E. Strieder, and K. Thieme, “Adapting belief
propagation to counter shuffling of ntts,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, pp. 60–88, 2023.

[18] M. Dworkin, “Recommendation for block cipher modes of opera-
tion,” NIST special publication, 2016, 38G.

[19] V. T. Hoang, B. Morris, and P. Rogaway, “An enciphering scheme
based on a card shuffle,” in Advances in Cryptology–CRYPTO 2012:
32nd Annual Cryptology Conference. Springer Berlin Heidelberg,
2012, pp. 1–13.

[20] T. Ristenpart and S. Yilek, “The mix-and-cut shuffle: small-domain
encryption secure against n queries,” in Advances in Cryptol-
ogy–CRYPTO 2013: 33rd Annual Cryptology Conference. Springer
Berlin Heidelberg, 2013, pp. 392–409.

[21] J. Black and P. Rogaway, “Ciphers with arbitrary finite domains,”
in Topics in Cryptology—CT-RSA 2002: The Cryptographers’ Track at
the RSA Conference 2002. Springer Berlin Heidelberg, 2002, pp.
114–130.

[22] A. Bacher, O. Bodini, A. Hollender, and J. Lumbroso, “Mergeshuf-
fle: A very fast, parallel random permutation algorithm,” arXiv
preprint arXiv:1508.03167, 2015.

[23] J. Gustedt, “Engineering parallel in-place random generation of
integer permutations,” in International Workshop on Experimental
and Efficient Algorithms. Springer, 2008, pp. 129–141.

[24] J. Shun, Y. Gu, G. E. Blelloch, J. T. Fineman, and P. B. Gibbons, “Se-
quential random permutation, list contraction and tree contraction
are highly parallel,” in Proceedings of the twenty-sixth annual ACM-
SIAM symposium on Discrete algorithms. SIAM, 2014, pp. 431–448.

[25] G. Cong and D. A. Bader, “An empirical analysis of parallel
random permutation algorithms on smps.” in PDCS, 2005, pp. 27–
34.

[26] D. Langr, P. Tvrdı́k, T. Dytrych, and J. P. Draayer, “Algorithm
947: Paraperm—parallel generation of random permutations with
mpi,” ACM Transactions on Mathematical Software (TOMS), vol. 41,
no. 1, pp. 1–26, 2014.

[27] R. Mitchell, D. Stokes, E. Frank, and G. Holmes, “Bandwidth-
optimal random shuffling for gpus,” ACM Transactions on Parallel
Computing, vol. 9, no. 1, pp. 1–20, 2022.

[28] J. K. Salmon, M. A. Moraes, R. O. Dror, and D. E. Shaw, “Parallel
random numbers: as easy as 1, 2, 3,” in Proceedings of 2011
international conference for high performance computing, networking,
storage and analysis, 2011, pp. 1–12.

[29] V. Benes, “Optimal rearrangeable multistage connecting net-
works,” Bell System Technical Journal, 1964.

[30] A. Shabani and B. Alizadeh, “Enhancing hardware trojan detection
sensitivity using partition-based shuffling scheme,” IEEE Transac-
tions on Circuits and Systems II: Express Briefs, vol. 68, no. 1, pp.
266–270, 2020.

[31] Lenfant, “Parallel permutations of data: A benes network control
algorithm for frequently used permutations,” IEEE Transactions on
Computers, vol. 100, no. 7, pp. 637–647, 1978.

[32] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and
L. Wingers, “Simon and speck: Block ciphers for the internet of
things,” Cryptology ePrint Archive, 2015.

[33] D. Aldous and J. Fill, “Reversible markov chains and random
walks on graphs,” 2002, unpublished manuscript.

[34] J.-Y. Park, J.-W. Ju, W. Lee, B.-G. Kang, Y. Kachi, and K. Sakurai, “A
statistical verification method of random permutations for hiding
countermeasure against side-channel attacks,” arXiv, 2311.08625,
2023. [Online]. Available: https://arxiv.org/abs/2311.08625

[35] C. E. Shannon, “A mathematical theory of communication,” The
Bell System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[36] NIST, “Data encryption standard (des),” FIPS PUB, Tech. Rep. 46-
3, 1999.

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.6028/NIST.FIPS.204.ipd
https://doi.org/10.6028/NIST.FIPS.205.ipd
https://arxiv.org/abs/2311.08625

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[37] D. S. Dummit and R. M. Foote, Abstract algebra. Hoboken: Wiley,
2004, vol. 3, part 1 - Group Theory.

[38] D. A. Levin and Y. Peres, Markov chains and mixing times. Ameri-
can Mathematical Soc., 2017, vol. 107.

[39] J. L. W. V. Jensen, “Sur les fonctions convexes et les inégalités entre
les valeurs moyennes,” Acta Mathematica, vol. 30, no. 1, pp. 175–
193, 1906.

[40] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,”
in Advances in Cryptology—CRYPTO’99: 19th Annual International
Cryptology Conference. Springer Berlin Heidelberg, 1999, pp. 388–
397.

[41] Microsoft learn, “Microsoft developer network,” https://learn.
microsoft.com/en-us/previous-versions/398ax69y(v=vs.140).

[42] J.-Y. Park, Y.-H. Moon, W. Lee, S.-H. Kim, and K. Sakurai, “A
survey of polynomial multiplication with rsa-ecc coprocessors
and implementations of nist pqc round3 kem algorithms in
exynos2100,” IEEE Access, vol. 10, pp. 2546–2563, 2021.

Jong-Yeon Park holds the position of Staff En-
gineer at Samsung Electronics, System LSI, and
is currently enrolled as a Ph.D. candidate at
Kyushu University. He received his Master’s de-
gree in Mathematics from Kookmin University in
2012. Subsequently, he served as a Researcher
at the Electronics and Telecommunications Re-
search Institute (ETRI) in Daejeon, South Ko-
rea, from 2012 to 2014. His professional ex-
perience also includes a Research Engineer at
Korea Telecom’s (KT) Convergence Laboratory

in Seoul, South Korea, from 2015 to 2017. His research interests span
a wide range of cryptographic topics, particularly those involving mathe-
matical structures, secure algorithms, and Side-Channel Attacks (SCA).

Dongsoo Lee received the B.S degree in
Electronic and Electrical Engineering from
Sungkyunkwan University in 2012. He received
the M.S degree in Electrical Engineering from
KAIST in 2015. He joined the Telechips, Inc., in
2015, where he worked on system-on-chip and
cryptographic IP design for conditional access
system. He joined the Samsung Electronics, in
2020. From 2020, he focuses cryptographic ac-
celerator design and robust design against side
channel attack and fault injection attack. His re-

search interests are IP design of cryptographic algorithm accelerator,
and technique and methodologies for digital circuit resistant to side
channel attack and fault injection attack.

Seonggyeom Kim received M.S. and Ph.D. de-
grees in Information Security from Korea Univer-
sity in 2018 and 2023, respectively. He currently
serves as a staff engineer at Samsung Electron-
ics, System LSI. His research interests encom-
pass cryptanalysis, IP design of cryptographic
algorithm accelerators, passive and active phys-
ical attacks, along with the corresponding coun-
termeasures.

Wonil Lee received the B.S and M.S degrees in
mathematics from Korea University in 1998 and
2000, respectively. He also received the Ph.D.
degree in mathematics from Korea University in
2004. From 2004 to 2005, he was a researcher
studying provable security of cryptographic hash
function in Kyushu University, Fukuoka, Japan.
Since 2005, he has worked as principal engineer
for Smart card and Security industry in Samsung
Electronic Ltd. His research interests are Secu-
rity IC silicon security, Near Field Communica-

tion technology and system security for Mobile and IoT.

Bo-Gyeong Kang received the B.S Degrees in
mathematics education from Seoul national uni-
versity, south Korea, in 1999, and the M.A. Ph.D
degrees in mathematics from Korea advanced
institute of science and technology, KAIST in
2001 and 2005, respectively. She is currently a
security group leader of Design Platform devel-
opment team, Samsung S.LSI division. Her re-
search interests include device security system
with software and hardware, secure processor
design integrated in SoC which satisfy security

certification CC (Common Criteria), and new security algorithm imple-
mentation.

KOUICHI SAKURAI (Member, IEEE) received
the B.S. degree in mathematics from the Faculty
of Science, Kyushu University, in 1986, the M.S.
degree in applied science and the Ph.D. degree
in engineering from the Faculty of Engineering,
Kyushu University, in 1988, and 1993, respec-
tively. From 1988 to 1994, he was engaged in
research and development on cryptography and
information security at the Computer and Infor-
mation Systems Laboratory, Mitsubishi Electric
Corporation. Since 1994, he has been working

with the Department of Computer Science, Kyushu University, as an
Associate Professor, where he became a Full Professor, in 2002. He cur-
rently directs the Laboratory for Information Technology and Multimedia
Security and is working with the CyberSecurity Center, Kyushu Univer-
sity. He is also with the Department of Advanced Security, Advanced
Telecommunications Research Institute International. He has published
about 450 academic articles in cryptography and cybersecurity.

https://learn.microsoft.com/en-us/previous-versions/398ax69y(v=vs.140)
https://learn.microsoft.com/en-us/previous-versions/398ax69y(v=vs.140)

	Introduction
	Background and Motivation
	Related Works and Challenging Issues
	Our Contributions with New Shuffling Techniques

	Prerequisite
	Side Channel Attack and Hiding countermeasure
	Fisher-Yates Shuffling
	Notations and Background of Permutation

	Block-based Permutation : Addition-Rotation Round (ARR)
	Structure description
	Stationary distribution and Divergence of ARR
	Identity verification for Complexity evaluation
	Small Units Aggregation (SUA)
	Second-Order Diffusion (SOD) for Security

	Security
	Total Permutation Complexity
	Second-Order Attack Complexity

	Hardware Design
	Brief summary of the result

	Discussion and Limitation
	4-bit, 5-bit complexity of ARR
	Towards Higher Complexity
	Comparison to a Structure with Feistel-based bijection
	Comparison to Routing Network
	Limitations and Future works

	Conclusion
	References
	Biographies
	Jong-Yeon Park
	Dongsoo Lee
	Seonggyeom Kim
	Wonil Lee
	Bo-Gyeong Kang
	KOUICHI SAKURAI (Member, IEEE)

