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Abstract

Recent advances in SNARK recursion and incrementally-verifiable
computation are vast, but most of the efforts seem to be focused on
a particular design goal - proving the result of a large computation
known completely in advance.

There are other possible applications, requiring different design
tradeoffs. Particularly interesting direction is a case with a swarm
of collaborating provers, communicating over a peer-to-peer network -
which requires to also optimize the amount of data exchanged between
the participants of the swarm.

One notable such application is Ethereum’s consensus, which re-
quires to aggregate millions of signatures of individual validators.

In this technical note, we propose an informal notion of an end-to-
end IVC scheme, which means that the amount of data that the prover
needs exchange with the previous prover to continue the computation
is small.

We explore the existing design space from this point of view, and
suggest an approach to constructing such a scheme by combining the
PlonK proof system [8] with the recent Cyclefold construction [11].

1 Purpose and organization of the text

As an opening, author wants to state the purpose of this technical note.
This text is mainly written in order to compile already existing approaches
into a single tool tailored for a particular design goal.

It seems that most ideas which are brought together in this text are
already present in a collective consciousness of zk researchers - either scat-
tered between different articles, buried in github issues, or as folklore. In
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this paper, we will only gather these ideas to realise efficient end-to-end
IVC. Author’s own fundamental contribution is limited by a relatively effi-
cient design of a Cyclefold circuit; and spelling explicitly on how to exactly
combine plonk with Cyclefold.

Our note is organized as follows. First, we will propose an (informal)
notion of an end-to-end IVC scheme, and analyze how various popular IVC
schemes - both recursion and folding based fit into this framework. Then, we
suggest a method of combining PlonK and Cyclefold to achieve an efficient
end-to-end IVC. In a final part of the paper, we suggest a concrete design
of a Cyclefold circuit.

Author wants to thank Yar Rebenko and Amir Ismailov for useful dis-
cussions and ongoing development of protostar-works library.

2 End-to-end accumulation context

2.1 Incrementally Verifiable Computation

Let us first recall the notion of an IVC scheme [15] (we use common mod-
ification of the original notion assuming potential non-determinism). For
a potentially non-deterministic step function F , consider the sequence of
iterations (x0, x1, x2, ...) such that F (xk) = xk+1.

Definition 1. An IVC scheme is a new step function PF , operating on
pairs of the form (xi, πi), where πi-s must be computationally sound proofs
of knowledge for F i(x0) = xi - which means there exists the verifier program
V (i, x0, xi, πi), complete and computationally sound in a normal sense; i.e.
always accepting the iterative output of PF , and negligible probability to come
up with a passing proof for incorrect output xi.

Original definition is formulated for Turing machines, but here we will
strongly insist on both F being represented as a circuit (with potentially
small i/o and relatively large internal space), and non-determinism.

The standard approach to building IVC is accumulation schemes (which
is a more relaxed notion introduced in [6], covering the spectrum from direct
recursive schemes to folding schemes).

2.2 End-to-end accumulation schemes

Definition 2. (Informal, taken from [5])
Accumulation scheme is a triple of algorithms P, V,D, called prover,

verifier, and decider respectively.
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Prover takes as an input sequence of words q0, q1, q2, ... of the same lan-
guage Φ and recursively outputs a sequence of accumulators:

acci+1 = P (acci, qi)

Verifier is a step check function, i.e. it has the form

V (acci, acci+1, qi)

Decider is a final check function, i.e. it accepts the final accumulator

D(accn)

and this triple satisfies the trivial completeness guarantee:

(D(acci) = 1) ∧ (Φ(qi) = 1) ⇒ D(acci+1) = 1

and the soundness guarantee that for any efficiently generated accumulator
acci, input qi, new accumulator acci+1 and proof πi, with 1 - negl probability

(D(acci) = 1) ∧ (V (acci+1, acci, qi) = 1) ⇒ D(acci+1) = 1

Any direct recursion scheme is evidently also an accumulation scheme,
with accumulators being recursive proofs, q-s being the proofs of the separate
statements, and decider coinciding with the recursive verifier.

Another example of accumulation scheme is Halo2 [3] - while each indi-
vidual Halo2 proof requires linear aggregation time, their aggregation can
be checked in logarithmic time.

However, this approach has its limitations - notably, sometimes the state-
ment aggregation can be done if prover receives some additional advice string
(that verifier does not need). This is captured by a notion of the split accu-
mulation scheme, introduced in [5], and it differs only in a sense that qi-s
and, importantly, acci-s now have ”instance” parts, accessible to everybody,
and ”witness” parts, accessible only to prover and decider.

Split accumulation schemes capture all known IVC constructions, in par-
ticular, folding. Without going into much details here, we say that in folding
q-s are now not proofs, but witnesses to our original NP-statement that we
are trying to aggregate + commitments to them, and accumulators are ”re-
laxed” versions of these.

Sometimes, accumulation schemes with slow deciders are appended with
additional ”final step” proof, which is applied to accn and can be verified
quickly. Normal recursion schemes are also not exempt from it, because for

3



STARKs there is a tradeoff between recursion speed and the size of the final
proof.

As evident, the idea of having large witness part of acci goes against our
end goal - as this requires large amount of communication.

Definition 3. (Informal)
In an end-to-end accumulation scheme, the total size of acci (both

instance and witness) must be small. We do not require the scheme to be
atomic, only that the total exchange of accumulator data is limited.

Note 1. We could call these schemes ”succinct” or ”laconic”, by analogy
with NARKs with corresponding properties. However, we want to stress that
we are less concerned with asymptotic analysis, and more concerned with
concrete efficiency - for example STARKs total size can be constant for a
given security parameter, but that does not mean that exchanging megabyte-
sized proofs over P2P network is acceptable. So what we are actually trying
to say is that for a reasonable security parameter, like 128 bit, the size of acci
should not be larger than 10-20 Kb - i.e. it should be concretely, practically
small.

2.3 Possible applications

We envision that any application that requires coordination of multiple prov-
ing parties over P2P network will be bandwidth-constrained, and thus re-
quires end-to-end IVC (or, more generally, end-to-end PCD).

One such application is Ethereum’s consensus, which needs to aggregate
millions of individual validator votes in a relatively short timespan.

Author also envisions distributed networks in which nodes will continu-
ously create proofs of validity of their activity, which seems like a good fit
for Mutual Credit Networks and decentralized CDNs.

3 Overview of existing IVCs

3.1 Compression step

As we will soon see, most of the schemes realising IVC require some sort of
a final compression SNARK to get to both the small size (let’s say no more
than few kilobytes), and short verification time.

We call it a ”hard step”, because it typically takes much more effort to
compute the compression SNARK, than to do a single step of IVC.

4



Moreover, it seems there is a spectrum of tradeoffs - on one side are
direct recursion schemes over succinct SNARKs, which do not feature any
additional compression, but are relatively slow. On the other hand, IVC can
be made relatively fast (achieved both by STARKs [1] and modern folding
schemes [13][12][4]), but do require a relatively hard additional step.

3.2 Currently existing approaches

Currently existing approaches fall into 3 broad categories - direct recursion
over SNARKs, recursion over STARKs, and other folding and accumulation
schemes.

3.2.1 SNARK recursion.

The most successful instantiation of direct recursion over SNARKs is Coda
protocol [2], which was used in the first version of a Mina blockchain. The
main drawback is the necessity to use a cycle of curves with both of them
having pairings. Of known constructions, this leaves us with MNT curves,
which have an embedding degree 2 and so require large field size to prevent
Weil descent attack.

This makes this IVC relatively inefficient compared to other construc-
tions, though it is, of course, end-to-end.

There are also recursion schemes directly emulating non-native arith-
metic of the verifier. They are not efficient.

3.2.2 STARK recursion.

STARKs are particular kind of SNARKs, using Merkle trees and Reed-
Solomon proofs of proximity for polynomial commitments. They have log-
arithmic proof size and verification time, and, because they do not require
elliptic curve arithmetic, can validate themselves over a native field (if in-
stantiated with algebraic hash such as commonly used Poseidon hash [9]).

However, the proofs are concretely large. Moreover, there exists a trade-
off between the size of a proof and the proving time, so STARK recursion
is typically done over proofs of few megabytes in size, and then features
not one, but two compression steps - first into a smaller STARK proof
(still roughly 100Kb in size in practical instantiations targeting 80-100 bits
of security), and second into a constant-sized proof using pairing, such as
Groth16 [10] or PlonK [8].

Therefore, they are hardly feasible for P2P applications we are consid-
ering, and do not count as end-to-end.

5



3.2.3 Accumulation and folding schemes.

Most notable accumulation scheme, is, arguably, Halo2 [3] and its versions.
Recently, folding schemes such as Nova [13], Hypernova [12] and Protostar
[4] came into spotlight as providing recursion potentially competetive with
STARKs.

Halo2, technically, is end-to-end, but it is limited by a relatively large
decider, and non-friendliness to pairings (as it must be instantiated over a
cycle of curves with high 2-adicity). In combination, these things severely
limit the size of the step-circuit that Halo2 can conveniently support, as well
as interoperability with individual pairing-based proofs.

While it likely has somewhat larger overhead than the proposed scheme,
Reverie, it should both be a good baseline, and is a nice choice if a (universal)
trusted setup is undesirable.

Folding schemes share a common theme - they propagate a lot of accu-
mulator witness data into the next step, but only use commitments to this
data in an actual recursive verification circuit. This is, evidently, very good
for recursion speed, but very bad for end-to-endness.

Nova (even enhanced with Cyclefold [11]), in particular, has a recursive
overhead with witness size ∼ 10k, which is 320 Kb of data - not including
the actual step circuit, which has at least comparable or significantly larger
size.

Therefore, folding schemes are not end-to-end.

4 Reverie - an end-to-end recursion using PlonK
and Cyclefold

4.1 Dealing with pairings

In an attempt of emulating PlonK verifier inside of a PlonK circuit over the
same field, one needs to do a significant amount of non-native arithmetic.
Importantly, one needs to process some non-native elliptic curve scalar mul-
tiplications, and a single pairing of a form

e(A,H0) = e(B,H1)

where H0 and H1 are fixed elements of CRS, living in a pairing group G2.
Notably, multiple such statements can be combined into a single one by using
a random linear combination (originally, each polynomial opening reduces
to a single such statement, but then they are combined to a single one).
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As pairing is an extremely heavy operation, we need to deal with it. The
following construction seems to be folklore (which means that the author
does not know the exact reference):

Definition 4. Pairing-enhanced PlonK (PEP) circuit is a normal
PlonK circuit, with first few public inputs encoding a pair of elliptic curve
points A,B. Verifier accepts the proof if and only if in addition to normal
PlonK checks, e(A,H0) = e(B,H1).

PEP circuit should be thought of as a normal PlonK setting, in which
the prover is allowed to use a single pairing operation for ”free” - i.e., require
the verifier to check it directly. We will say that such pairing was ”deferred”.

Lemma 1. PEP verifier still requires a single pairing.

Proof. Essentially trivial - normal PlonK checks require multiple pairings
which are combined together using a random linear combinations. Addi-
tional deferred pairing e(A,H0) = e(B,H1) is just batched together with
them.

Lemma 2. Direct recursion scheme over PEP circuits does not require in-
circuit pairings.

Proof. From previous lemma, PEP verifier only does a single pairing. There-
fore, PEP prover can defer it.

Similarly to normal PlonK proofs, multiple PEP proofs can be batched
and still require a single pairing.

Therefore, we only need to deal with non-native scalar multiplications.
In order to do it, we need to introduce folding schemes and Cyclefold.

4.2 Protostar / protogalaxy folding scheme

4.2.1 Folding

Here, we present the folding scheme that we will use in our explicit con-
struction. Normal Cyclefold is formulated for Nova paradigm, but Protostar
arithmetization seems like a better fit.

Specifically, we use a scheme which is a middleground between Protostar
[4] and Protogalaxy [7], and describe it in a simplified, 1-round version.

Let us consider a (single-round) arithmetic circuit of degree d over a
large field F - which means a witness space W , public input space P , and a
system of m constraints fi(w, p) = 0 of degree at most d. Let k = ⌈log2(m)⌉.
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Definition 5. Consider the following 2-round algebraic protocol (called the
protostar transform) of an original circuit:

1. Prover sends w ∈ W , p ∈ P .

2. Verifier picks a random value α, computes and outputs a string of
challenges a0, a1, ..., ak−1, with ai = α2i . (here, verifier can actually
just send α, but it is important that computation of this string is
treated as public computation happening outside of the circuit).

3. Verifier checks that ∑
i=j0+2j1+...+ak−12k−1

aj00 aj11 ...a
jk−1

k−1 fi(w, p) = 0

Lemma 3. This 2-round algebraic protocol is statistically sound with sound-
ness error m

|F|

Proof. Evident from the fact that the sum actually reduces to
∑
j
αjfj(w, p)

and Schwartz-Zippel lemma.

Note 2. In what follows, let us denote

f̃(w, p, a) =
∑

i=j0+2j1+...+ak−12k−1

aj00 aj11 ...a
jk−1

k−1 fi(w, p)

Now, we define committed instance of the protocol, and a relaxed com-
mitted instance. The folding scheme operates on relaxed instances, so we
will have an additional relaxation verifier.

Note 3. This is a somewhat non-standard point of view. Typically, fold-
ing schemes are considered to reduce two potentially relaxed instances to a
single relaxed instance. We, however, separate relaxation into a step which
”reduces” non-relaxed instance to a relaxed one, and find this point of view
particularly illuminating.

Note 4. We also avoid requiring homogeneity in any of our definitions. Our
relaxed instance only incurs error-term, but not a relaxation factor.

Let us denote by Hash a hash function used in Fiat-Shamir heuristic, and
let us denote C(w) a homomorphically linear collision-resistant commitment
scheme from W to an elliptic curve.
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Definition 6. Committed instance is a pair (p, c), with c being a point
of elliptic curve. Satisfying witness to this committed instance is a pair
(p, w), which satisfies fi(w, p) = 0, and C(w) = c.

Definition 7. Committed relaxed instance is a quadruple (p, c, a, e) with
c being a point of elliptic curve, a = (a0, ..., ak−1) - challenge vector and e -
a single field value called error.

Satisfying witness to this instance is a quadruple (p, w, a, e) such that
C(w) = c, and the following ”relaxed” equation holds:

f̃(w, p, a) = e

Definition 8. Relaxer protocol takes as an input a committed instance,
and outputs a committed relaxed instance: given a pair (p, c), sample random
α, set ai = α2i and e = 0, output R(p, c) = (p, c, a, e).

Lemma 4. It is knowledge-extractable in a following standard sense - for
any prover program that, for some distribution of instances, correctly runs
the protocol and then outputs a witness to relaxed instance R(p, c) there exists
an extractor - program running on its code and memory state that outputs
either witnesses to the original instances, or a commitment break.

Proof. Clearly, we can set witness to the outputted relaxed witness w. If
it also satisfies the original system of equations, we are done. Assume the
contrary - i.e. that not all equations fi(w, p) are 0, but α is a root of a
polynomial with coefficients fi(w, p).

Replay the relaxer with a different challenge α (randomly chosen one
will be a non-root with 1-negl probability). By assumption, adversary man-
ages to output relaxed witness to R(p, c) with non-negligible probability -
therefore, it must output a different witness.

Two witnesses to the same commitment is a commitment break.

Note 5. In practice, we will use Fiat-Shamir heuristic, which will set a
challenge to α = Hash(p, c)

Therefore, relaxer reduces a normal committed instance to a relaxed one.

Definition 9. Folding protocol takes as an input two relaxed instances
(p0, c0, a0, e0) and (p1, c1, a1, e1) and reduces them to a single accumulated
instance:

1. Prover: sends instances, and a univariate polynomial e(t) of degree
d+ k.
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2. Verifier: checks that e(0) = e0, e(1) = e1, outputs:

pacc = p0+t(p1−p0), cacc = c0+t(c1−c0), aacc = a0+t(a1−a0), eacc = e(t)

Lemma 5. This protocol is complete and knowledge-extractable (this is
known as forking lemma).

Proof. Completeness is clear - any honest prover just sends the restriction
on a line:

e(t) = f̃(w(t), p(t), a(t))

where w(t) = w0 + t(w1 −w0), p(t) = p0 + t(p1 − p0), a(t) = a0 + t(a1 − a0).
Extractability holds in a same sense:
By forking the adversary 2 times and passing it different t-s we recover

the (alleged) linear polynomial w(t). Either it satisfies f̃(a(t), w(t), p(t)) =
e(t) in t = 0, t = 1 (in which case we have succeeded in our extraction),
or it doesn’t (and then it does not satisfy it in a random point too, by
Schwartz-Zippel).

In this case, fork the prover once again, and pass it another random t -
with 1-negl probability we will land in a point in which our claimed w(t) is
not satisfying. However, adversary will output a different value w′(t), which
is satisfying.

Considering they are both commitments to c(t), this is a commitment
break.

Definition 10. Similar to relaxer, we will use Fiat-Shamir heuristic version
of the folding protocol. Both of these bundled together will be referred as
NIFS - Non-interactive folding scheme.

4.2.2 Design choices

Arguably, the choice of this folding scheme requires some justification (and
of course what follows will be largely independent of this explicit choice).

We are planning to use high-degree operations (in order to decrease the
witness size) - therefore, it must be something like Protostar (Hypernova
would likely also qualify).

We borrow the idea of using k ”independent” challenges instead of 2
from Protogalaxy - this is very desirable, because in NIFS it trades off two
elliptic curve operations for a k additional hashes. k in our case will be
around 8 − 10, which is a great deal, as high-rate hashing with Poseidon
is very efficient in-circuit (a very large advantage compared to sequential
hashing in Hypernova).
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On the other hand, Protogalaxy’s rerandomization technique is not re-
quired (as we are not doing multifolding), so we end up with a strange
middleground solution.

Decision to use affine combination instead of linear is purely an aesthetic
one, as it removes the need for the relaxation factor. It does not lead to
any significant differences neither in proving, nor verification cost; while
decreasing the cognitive load.

4.3 Reverie: dealing with non-native scalar multiplications.

All the content in this section is completely parallel to Cyclefold [11] paper -
though in a different context (as our main IVC scheme is a recursion instead
of a folding).

Assume that our main PlonK proof system is instantiated over a prime
curve C with the base field Fq, and scalar field Fr. Assume also the existence
of a dual curve C ′, with base and scalar field places switched.

Definition 11. Cyclefold circuit is defined over Fq. It has public i/o s,X, Y, Z,
with X,Y, Z themselves being encodings of points of C, and attests to the
following requirements:

1. X,Y, Z are valid encodings of points of C.

2. sX + Y = Z.

3. s is range-checked to live in some range (we will set them to ∼ 128
bit).

Concrete design of such circuit will be presented in further sections.

Definition 12. PEPC (PEP + Cyclefold) proof accumulator instance is
the following data: normal PEP proof with additional public input allocated
for the hash of relaxed Cyclefold instance.

PEPC (PEP + Cyclefold) proof accumulator witness is the instance,
plus a satisfying relaxed Cyclefold witness (note that it is a proof witness in
split accumulation paradigm - the original circuit witness is still hidden).

We say that such proof witness verifies if

1. Normal PEP conditions hold (i.e. it is a valid PlonK proof and de-
ferred pairing claim also holds).

2. Provided relaxed Cyclefold witness both commits to the additional ex-
posed public input, and is a valid relaxed witness for the Cyclefold
circuit.
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This, as we will see, allows circuit builder to use non-native scalar mul-
tiplications.

Theorem 1. Reverie: there is an efficient end-to-end split accumulation
scheme with total communication SP +SC where SP is the size of our PlonK
proof (which depends on the exact layout), and SC is the total size of a
Cyclefold circuit.

Proof. To accumulate any number of PEPC proofs inside of a PEPC circuit,
we shall do the following:

1. Defer pairings as in normal PEP proof.

2. Verify plonk proofs directly, and for each non-native scalar multiplica-
tion, spawn a Cyclefold instance with corresponding inputs.

3. Repeatedly fold all present Cyclefold instances (both coming from
PEPC proofs that we are accumulating and from all Cyclefold in-
stances for individual non-native escalarmuls).

4. Output the obtained folding relaxed instance.

In order to perform this, it is enough to know all witnesses to the corre-
sponding Cyclefold instances - the deferred ones are known from witness
parts of the PEPC proofs, and others are known by construction.

The rest of the paper is a proposed design of a Cyclefold circuit, and dis-
cussion on the expected recursive overhead and communication complexity.

5 Construction

5.1 Complete addition

While developing a library for Protostar, the author has written a circuit for
scalar multiplication requiring ∼ 500 witness size for a 128-bit scalar. This
approach requires offset points, which are extremely annoying in a multi-
prover case (as each prover should be given an opportunity to switch an
offset point, or this would be a DoS vector).

It turned out that the complete addition formulas from [14] not only solve
this problem, but actually are far more efficient from the degree standpoint.
This justifies redesigning the circuit, and decreasing the size even further.
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Theorem 2. (Renes, Costello, Batina)
An an odd-order curve with projective equation Y 2Z = X3+aXZ2+bZ3

has a complete addition law of bidegree (2,2).

This will be our basic tool in what follows. Notably, affine coordinates
for our curve will be chosen as an affine chart Y = 1, so 0 is not at infinity
and can be represented as a normal affine point.

To proceed further, we need to decide on the maximal degree of our
circuit. From author’s experience, Protostar prover costs seem to switch
from commitment-dominated regime to cross-term dominated regime at the
degree ∼ 10− 12, though it largely depends on constraints in question and
savings provided by making them higher degree.

The additional costs from PEPC circuit doing more hashing also need
to be taken into account.

If the obtained witness sizes are still too large (because the application
is really constrained in terms of bandwidth), we might either increase the
degree further, or try to cut it into pieces and emulate a single 128-bit scalar
multiplication by a pair of circuits. Both of these options are undesirable,
and it is hard to say which is worse, and how much exactly. In case such a
need arises, we leave this as an opportunity for future research.

5.2 Cyclefold circuit

We start by computing a short array of multiples of the point X. As we will
be using base-3 decomposition, it will only consist of 3 points:

X[ ] = [0, X, 2X]

.
Now, for any array of length n we define choice polynomial (basically a

short table scan):

Choice(y,Arr[ ]) =
∑
i

Li(y)Arr[i]

where Li is a collection of Lagrange polynomials, with Li(i) = 1 vanishing
in all points 0..(n− 1) except i. Clearly, for 0 ≤ y < n this outputs Arr[y].

Now, we can define our iteration constraint (which we will apply to
accumulated point A in the affine form, expected result Anext in the affine
form, array of multiples X[ ], ternary digit y, and a projective scale factor

λ). We denote by
λ
= the equality between two projective points up to a scale

factor λ.
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Iter(A,X[ ], y) : 3A
λ
= Anext − Choice(y,X[ ])

This constraint attests that Anext was obtained from A by tripling it and
adding the next ternary digit multiplied by A. The degree of this constraint
is 9:

Left hand side has degree 9 - while naively it is represented as A + 2A,
which for addition law of bidegree (2,2) gives 2 × 1 + 2 × 4 = 10, actually
all three coordinates of the result are divisible by y. As the formula receives
the affine point with y = 1, the result has degree 9.

Right hand side is bidegree (2,2) subtraction of a polynomial of degree
1 and a polynomial of degree 3, so it has degree 8. Scale factor, thus, can
be incorporated into right hand side, increasing its degree to 9.

The full Cyclefold circuit, works as follows:

1. Split scalar s into 81 ternary digit. Constrain them to be digits (deg
3 checks), and their linear combination to be s.

2. Compute array X[ ]. This only requires a witness of size 2, as 2X can
be directly constrained to be a multiple of X.

3. Applying Iter repeatedly, constrain execution of triple-and-add method.
Each invocation of Iter costs 3 additional witness elements (2 for the
new point, and 1 for λ). This requires 3× 81 witness elements.

4. Constrain the result sX, Y and Z to satisfy sX + Y = Z. This does
not require additional witnesses.

Therefore, we obtain a circuit with 326 private witness size, and degree
9. This is the best we have managed to obtain for reasonable degree.

The amount of non-linear constraints is also similar.

5.3 Performance analysis.

326 witness size is our communication overhead (over a normal PlonK proof).
For 256-bit field, this amounts to 10 Kb. We believe it is a good practical
balance for a lot of scenarios (outperforming even the high-rate STARKs by
a decimal order of magnitude and low-rate by 2.5 orders).

Considering prover performance, it is hard to evaluate without knowing
the exact layout of the PlonK circuit. Clearly, for aggregation we should
prefer very narrow layouts to minimize amount of elliptic curve operations.

We can try to very roughly estimate total prover work for a single non-
native 128-bit MSM:
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1. Prover needs to range-check inputs to the Cyclefold (let’s only count
range check on inputs, because output will typically be used in another
Cyclefold). Assuming 16-bit lookup each rangecheck requires 16 wit-
ness elements (and for Halo2 lookup additional columns will increase
total MSM imprint to 48). Considering that our inputs are 2 points
and a 128 bit scalar, we get something around 48×4+24 = 216 witness
imprint.

2. When folding Cyclefold instances, prover needs to do non-native linear
combination. However, inside of a single circuit we can sidestep the
necessity of doing modular reduction (by splitting each scalar into
3 limbs of bitsize ≤ 100, we can ensure that multiplying reasonable
amount of such limbs by 128-bit scalars and adding them together
still does not overflow). So, modular reduction is only done once in
the end, and we ignore it in this analysis. To roughly account for
native arithmetic on 15 (total) 100-bit limbs, we add 30 to the our
(once again, very rough) estimate.

3. Main work, of course, comes from hashing. Let us estimate how many
elements do we need to hash in total.

Non-interactive relaxation: Public inputs fit into 7 elements (3× 2 for
points, and 1 more for the scalar), the commitment point itself is 2
more, to obtain α. All other data is bound deterministically to α, so
no more hashing required. Total tally is 9 parallel hashing work.

Non-interactive folding: we use in Fiat-Shamir the running hash of the
accumulated instance, α, and cross-terms (as our circuit is of degree
9, and amount of protostar challenges is ⌈log2(326)⌉ = 9 there are 17
cross-terms). This gives 19 more hashing work.

Notably, Poseidon hash is very efficient in-circuit in cases where hash-
ing is parallel - standard circom implementation of Poseidon(1) has
213 constraints, and Poseidon(10) has 470.

Sadly, this heavily uses the R1CS structure, and the fact that a big
part of partial rounds computations unroll to a single, large linear con-
straint. In PlonK, linear combinations are not free, but the same prin-
ciple can be exploited (compare with Neptune strategy https://github.com/lurk-
lab/neptune). We are unaware of any current in-circuit implementa-
tion using this trick, so we can only guess what the witness imprint
will be. Assuming pessimistically that Poseidon requires 700 witness
elements per 10 inputs in parallel, we obtain ∼ 2100 witness imprint.
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4. Finally, we need to perform a native scalar multiplication operation.
Once again, it largely depends on tricks used, degree of the circuit
and other unknowns (we can not just naively use our Cyclefold circuit
as a reference, because PlonK circuit might be of much lower degree).
Let’s make a pessimistic assumption of roughly 1500 witness size (naive
double-and-add without any lookup optimizations).

This seems to indicate that even in the most pessimistic scenario, a single
non-native scalar multiplication using this method will require no more than
∼ 4000 witness elements, which shows that using it for PlonK verification
is going to be entirely feasible on client-side devices.
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