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Encrypted search schemes have been proposed to address growing privacy concerns. However, several leakage-abuse attacks have

highlighted the shortcomings of these schemes. The literature remains vague about the consequences of these attacks for real-world

applications: are these attacks dangerous in practice? Is it safe to use these schemes? Do we even need countermeasures?

This paper introduces a novel mathematical model for attackers’ knowledge using statistical estimators. Our model reveals that any

attacker’s knowledge is inherently noisy, which limits attack effectiveness. This inherent noise can be considered a security guarantee,

a natural attack mitigation. Capitalizing on this insight, we develop a risk assessment protocol to guide real-world deployments. Our

findings demonstrate that limiting the index size is an efficient leverage to bound attack accuracy. Finally, we employ similar statistical

methods to enhance attack analysis methodology. Hence, our work offers a fresh perspective on SSE attacks and provides practitioners

and researchers with novel methodological tools.

CCS Concepts: • Security and privacy→ Cryptanalysis and other attacks; Management and querying of encrypted data.

Additional Key Words and Phrases: Searchable Encryption, Attacks, Risk assessment, Statistics

1 INTRODUCTION

With the increasing popularity of cloud data storage services, there is a growing concern about the privacy and

confidentiality issues induced by such practices. Song et al. [49] proposed the first construction to search on encrypted

data. Curtmola et al. [11] later used this result to build a Searchable Symmetric Encryption (SSE) scheme. This scheme

enables an efficient keyword search across encrypted documents.

Such SSE schemes build an encrypted index that can be queried to obtain the (encrypted) documents containing a

given keyword. These schemes leak information exploitable by an attacker to recover the plaintext query. Our work

studies the single-keyword search SSE schemes leaking access and search patterns. Our focus will be on the type of attack

that received the most attention: passive attacks assuming attacker-known documents [6, 12, 14, 21, 26, 36, 42, 43, 46, 57].

These attacks build a co-occurrence matrix from the leakage and compare it to a keyword co-occurrence matrix

computed on an attacker-known document set.

Passive query-recovery attacks. There are two types of passive query-recovery attacks against SSE: similar-data

attacks and known-data attacks. The known-data attacks assume that the attacker-known documents are indexed, while

similar-data attacks only require an attacker’s knowledge “similar but different” from the indexed data [1, 12]. Hence,

similar-data attacks cover a more general setting. The first attack papers [6, 26, 46] proposed attacks theoretically usable

as similar-data attacks but accurate only as known-data attacks. Several works [1, 36, 40, 41, 44] later proposed attacks

that are only usable as known-data attacks. Damie et al. [12] and Oya and Kerschbaum [43] respectively presented the
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2 Damie et al.

refined score attack and the IHOP attack, which both achieved high recovery rates as a similar-data attack. Recently, Gui

et al. [21] introduced another similar-data attack robust to several attack countermeasures.

Other types of attacks exist, but they are out of scope: active attacks [58, 59], attacks exploiting the query frequency

[37, 42], attacks against other encrypted search schemes [20, 30, 35].

Security assessment of SSE schemes. All the attack papers successively improved state-of-the-art. The attack analysis

methodology is the same in all attack papers: the authors simulate multiple attacks with varying numbers of attacker-

known documents. Then, the accuracy is represented as a function of the number of attacker-known documents.

However, the literature gives no tool to evaluate their efficiency in real-world scenarios.

On the one hand, the literature does not explain whether the simulation parameters used in attack papers are realistic.

For example, all papers generate the (attacker-known and indexed) document sets by uniformly splitting a research

dataset (e.g., Enron [31]). We do not know whether this default choice leads to over- or under-estimated attack results

compared to a real-world attacker.

On the other hand, simulations (even using a research dataset from real-world activity) do not tell whether an SSE

deployment over another not-previously-analyzed dataset is at risk. For example, Damie et al. [12] showed that attack

simulations on different datasets can provide different attack accuracies. Hence, the existence of a risk on specific

research datasets does not imply that the attacks are dangerous for all possible datasets/use cases.

Therefore, estimating the real-world risk induced by the existing attacks represents a significant gap in SSE literature.

The attacker must know a “similar enough” dataset to achieve a successful attack. We must understand the difficulty of

finding such datasets to properly assess the real-world potential of SSE attacks.

Related works. Kamara et al. [27] developed a Python framework to standardize the attack simulation commonly used

in attack papers. Their standardization is essential to have a consistent attack comparison. However, it does not provide

more information about the practicality of the attacks than the existing papers. Kornaropoulos et al. [34] proposed

a “privacy quantification”, which quantifies the size of the attacker reconstruction space for a given leakage. Their

approach has two main shortcomings. First, the reconstruction space size does not provide much information about

the attack accuracy. A small reconstruction space mechanically induces more successful attacks. However, an attack

can also be successful with a large reconstruction space: within this space, some solutions might be more likely than

others. Second, their work only considered “exact knowledge” (e.g., the attacker knows perfectly the keyword frequency

in the indexed document set), which is an unrealistic assumption. Indeed, recent attacker papers [1, 6, 12, 21, 43, 46]

all considered an “approximate knowledge” (e.g., an attacker-known document set). The extension to “approximate

knowledge” is listed as future work in [34]. Concurrently to our work, Kamara and Moataz [28] used (different) statistical

tools to analyze the leakage in encrypted search. While our work studies commonly implemented schemes (i.e., with

access and search pattern leakage), they focus on schemes with less leakage. Moreover, our work builds upon a novel

model representing the attacker’s knowledge as statistical estimators. Dittert et al. [15] is another concurrent work.

They explore experimentally the link between document set similarity and attack accuracy, already highlighted by [12].

We share the same initial intuition as Dittert et al. [15]: having similar datasets is non-trivial. However, they neither

provide a mathematical model to analyze this phenomenon nor provide actionable results.

Our contributions. Our paper presents a novel statistical approach to understand SSE leakage. Our analysis reveals that

the attacker’s knowledge, including the scheme leakage itself, is inherently noisy, which limits the attack’s effectiveness.

This statistical perspective provides valuable insights into the conditions necessary for a successful attack. Furthermore,
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Table 1. Summary of recurring notations

Notation Meaning Size

𝐷
atk

Attacker-known documents 𝑛
atk

𝐷
ind

Indexed documents 𝑛
ind

W Keyword universe 𝑚

𝐶𝑋
Co-occurrence matrix built from 𝐷𝑋 𝑚 ×𝑚

𝑝𝑋
𝑖 𝑗

P(keywords (𝑖, 𝑗 ) appear in 𝑑 𝑅←− 𝐷𝑋 ) N.A.

our mathematical model bridges the gap between simulation-based attack results and the real-world impact of these

attacks. Concretely, our paper contains three main contributions:

(1) A novel mathematical model for the attacker’s knowledge based on statistical estimators (Section 3). This model

highlights that the SSE security is conditioned by the hardness of estimating precisely some statistics on the

indexed data.

(2) A statistical method to assess the risk of deploying an SSE scheme in an organization, assuming the knowledge of

a sample dataset (Section 4). This method can estimate a maximum index size under which the attack accuracy

is negligible. This contribution aims to help practitioners deploy SSE schemes with a controlled risk.

(3) A framework based on a similarity metric to provide a consistent and more interpretable attack analysis and

comparison (Section 5). We provide several conclusions about the parameters influencing attack accuracy.

We develop our analysis for similar-data attacks against static SSE schemes with access and search pattern leakage.

Section 6 discusses the extensions of our analysis to other schemes (e.g., schemes with less leakage) and attacks.

2 PRELIMINARIES

Table 1 summarizes the most used notations of the paper. Our notations take inspiration from [12] as our setting (i.e.,

similar-data attacks) is closely related to their setting.

2.1 Searchable symmetric encryption (SSE)

From a high-level point of view, SSE schemes are based on the design described in [11]. The client owns a document set

𝐷
ind

. For each 𝑑 ∈ 𝐷
ind

, we denote id(𝑑) its identifier. We assume that id(·) leaks no information about 𝑑 . The client

generates an inverted index and encrypts it using her secret key 𝐾 . Then, this encrypted index is uploaded to the server.

A query token is an output of the query function (denoted as Query𝐾 (𝑤)) taking as input the keyword𝑤 and the secret

key 𝐾 . This index associates query tokens with the identifiers of the documents containing the underlying keyword. To

query the keyword𝑤 , the client computes Query𝐾 (𝑤) and sends this token to the server. The server sends back the

matching encrypted documents.

This work focuses on efficient SSE constructions [3, 5, 7, 8, 11, 17, 50, 51] that leak the search and access patterns.

Blackstone et al. [1] proposed the avoidance of access pattern leakage, but its instantiation is inefficient. Hence, our

paper only studies SSE schemes leaking search and access patterns. This leakage profile has been the target of many

passive attacks over the last decade [6, 12, 14, 21, 26, 36, 42, 43, 46, 57].
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2.2 Threat model

A passive attacker can observe and link each query to its response. Thus, the attacker can create (Query, DocIDs) pairs

for each query observed. The access pattern leakage corresponds to the list of the matching (encrypted) documents

leaked by each query. The search pattern leakage lets an attacker identify if a query has been issued twice. Hence, each

keyword𝑤 has a unique query token Query𝐾 (𝑤).
We study the case of an honest-but-curious server storing the encrypted index and following the protocol while

trying to recover the keywords being queried. Such an attacker can record and analyze the protocol transcript. Nearly

all attack papers used this setting; only [58, 59] proposed active attacks. Finally, the attacker can use leaked data as long

as she is not actively involved in the leak (e.g., a leaked dataset published by hackers).

Almost all papers presenting passive attacks studied SSE schemes supporting single-keyword search in a static setting

(i.e., no update operation). On the one hand, only Dijkslag et al. [14] studied attacks on (static) schemes supporting

conjunctive keyword search. On the other hand, only Xu et al. [57] presented a passive attack in a dynamic setting.

Therefore, our paper focuses on static schemes with single-keyword search because we inherit the assumptions of

state-of-the-art attacks. Section 6 discusses the extensions of our work to different settings.

2.3 Attacker’s knowledge

Let Coocc(𝐷,𝑤𝑎,𝑤𝑏 ) be the function returning the number of documents from 𝐷 in which both𝑤𝑎 and𝑤𝑏 appear (i.e.,

the number of co-occurrences).

Keyword universe. The keyword universeW = {𝑤1, . . . ,𝑤𝑚} is the set of keywords that the user can query. Like

most papers, we assume that the attacker knows the keyword universe.

Similar document set. The attacker knows a document set 𝐷
atk

= {𝑑1, . . . , 𝑑𝑛atk }. The documents are “similar but

different” from the indexed documents. Similar documents can be, for example, documents that have been leaked (then

removed from the index). From 𝐷
atk

, the attacker obtains the𝑚 ×𝑚 keyword co-occurrence matrix defined as follows:

𝐶atk

𝑖 𝑗
= Coocc(𝐷

atk
,𝑤𝑖 ,𝑤 𝑗 ).

Observed queries. The attacker has observed 𝑙 unique queries Q = {𝑞1, . . . , 𝑞𝑙 } and their respective results. We denote

as 𝑅(𝑞) = {𝑖𝑑 (𝑑) |𝑑 ∈ 𝐷
ind
∧ 𝑞 = Query𝐾 (𝑤) ∧𝑤 ∈ 𝑑} the list of document identifiers returned for the query 𝑞. The

attacker can then compute the 𝑙 × 𝑙 query co-occurrence matrix 𝐶
query

𝑖 𝑗
=

��𝑅(𝑞𝑖 ) ∩ 𝑅(𝑞 𝑗 )��.
Known queries. In [6, 12, 26], the attacker has some known queries. In other words, for 𝑘 different queries, she knows

the underlying keyword of the query.

Number of indexed documents. Finally, the attacker knows the number of documents indexed 𝑛
ind

. An honest-but-

curious server storing the index can infer this metadata.

2.4 Attacks

This paper demonstrates statistical methods on state-of-the-art attacks (i.e., the Score, Refined Score [12], and IHOP

[43] attacks), but our insights hold for all passive query-recovery attacks on SSE. Any future attack could be analyzed

analogously. Our results concern the attack analysis methodology but not directly the attacks themselves. The attack

algorithm takes as input the attacker’s knowledge presented in Subsection 2.3. The algorithm outputs a predicted

keyword for each observed query. The attack accuracy is the proportion of correctly predicted keywords.
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Refined score attack. This attack [12] uses the co-occurrence matrices and the known queries to extract a vector

characterizing each keyword and each query. Each keyword vector is characterized by its co-occurrence with the

keywords from the known queries. Each query vector is characterized by its co-occurrence with the queries from the

known queries. In this vectorization, a keyword pair should be close to its corresponding query vector. The score attack

identifies, for each query, the keyword minimizing the keyword-query distance (based on their respective vectors). The

refined score attack improves this naive idea via an iterative process to improve the query recovery.

IHOP attack. The IHOP (Iteration Heuristic for quadratic Optimization Problems) attack [43] also uses the co-

occurence matrices but does not require known queries contrary to [12]. This paper formulates the attack problem as an

assignment problem (i.e., assigning queries to keywords). The objective function to minimize is a sum of cost functions

(i.e., one per query). The problem is NP-Complete because it is a quadratic optimization problem. The main contribution

of [43] is to solve this problem using an efficient iterative algorithm based on linear assignment. While the refined score

attack uses a vector distance to quantify the cost of an assignment, IHOP relies on log-likelihood functions.

2.5 Experimental setup

We perform our experiments on Debian Bullseye with a 4-core processor and 8 GB of memory. We use three datasets:

the commonly used Enron email dataset [31] (30,109 emails contained from _sent_mail folders), the Apache mailing

dataset
1
(the 50,878 emails from the “java-user” mailing list from the Lucene project for 2002-2011), and the Blog

Authorship dataset
2
[48] (681,288 blog posts written by 19,320 authors), never used in an existing attack paper. Due to

hardware constraints, we only use 200K posts simultaneously (picked uniformly at random) from this last dataset.

Since we are studying similar-data attacks, the dataset is split into two disjoint subsets of varying sizes to create 𝐷
atk

and 𝐷
ind

. By default, we perform this split uniformly at random, but in Subsection 3.5, we present several results using

a split based on the email timestamp.

We only extract keywords from the document content. The keyword list is then obtained after having stemmed

the words using the Porter stemmer [45] and removed the stop words (e.g., “the” or “and”). In the Apache dataset,

we remove the mailing list signature from each email. To generate the keyword universeW, we choose the𝑚 most

frequent keywords in the complete dataset. We use keyword universes of varying sizes from𝑚 = 500 to𝑚 = 4𝐾 .

We measure the attack accuracy as the proportion of correct keyword recovery among a set of unique observed

queries. In other words, we do not consider duplicate queries.

Our Python codebase is publicly available here: https://github.com/MarcT0K/Statistical-Leakage-SSE-attacks. We

refactored the source code of the attacks published by [12, 43]
3
.

3 THE ATTACKER’S KNOWLEDGE, A NOISY KNOWLEDGE

This section describes the statistical nature of leakage and highlights the direct consequences on attack success.

Subsection 3.2 model the attacker’s knowledge using statistical estimators, while Subsections 3.3 and 3.4 leverage this

mathematical model to explore the influence of document set sizes (especially the index size) on knowledge quality and

attack accuracy. Finally, Subsection 3.5 questions the attacker’s knowledge generation commonly used in attack papers.

In particular, we show that the commonly used algorithm simulates an unrealistic attack scenario, but highlight its

interest for conservative risk assessment.

1
http://mail-archives.apache.org/mod_mbox/lucene-java-user/

2
Dataset archive: https://web.archive.org/web/20200121222642/http://u.cs.biu.ac.il/~koppel/blogs/blogs.zip

3
Source code: https://github.com/MarcT0K/Refined-score-atk-SSE, https://github.com/simon-oya/ihop-code

2023-12-07 10:45. Page 5 of 1–31.

https://github.com/MarcT0K/Statistical-Leakage-SSE-attacks
http://mail-archives.apache.org/mod_mbox/lucene-java-user/
https://web.archive.org/web/20200121222642/http://u.cs.biu.ac.il/~koppel/blogs/blogs.zip
https://github.com/MarcT0K/Refined-score-atk-SSE
https://github.com/simon-oya/ihop-code


6 Damie et al.

3.1 Document set similarity

Damie et al. [12] introduced the notion of document set similarity to quantify the divergence between the attacker-known

data and the indexed data.

Let 𝐶atk
(resp. 𝐶 ind

) be an𝑚 ×𝑚 co-occurrence matrix defined as follows: 𝐶atk

𝑖 𝑗
= Coocc(𝐷

atk
,𝑤𝑖 ,𝑤 𝑗 ) (resp. 𝐶 ind

𝑖 𝑗
=

Coocc(𝐷
ind
,𝑤𝑖 ,𝑤 𝑗 )) for all keywords𝑤𝑖 ,𝑤 𝑗 ∈ W. The query co-occurrence matrix 𝐶query

is a restriction of 𝐶 ind
with

an unknown rotation (the goal of the attacks is to find the rotation): if 𝑞𝑎 = Query𝐾 (𝑤𝑖 ) and 𝑞𝑏 = Query𝐾 (𝑤 𝑗 ) then
𝐶
query

𝑎𝑏
= 𝐶 ind

𝑖 𝑗
. Damie et al. [12] define the𝑚 ×𝑚 similarity matrix of 𝐷

ind
and 𝐷

atk
over the keyword universeW as

follows:

SimMat =
𝐶 ind

𝑛
ind

− 𝐶
atk

𝑛
atk

(1)

Definition 1. The document sets 𝐷ind and 𝐷atk are 𝜖-similar if | |SimMat| | ≤ 𝜖

Definition 1 uses the Frobenius norm (i.e., the equivalent of Euclidean norm for matrices) as matrix norm. In the rest

of the paper, we refer to 𝜖 as the smallest value that satisfies this inequality (i.e., 𝜖 = ∥SimMat∥).

Alternative metrics. Gui et al. [21] introduced two other similarity metrics: “absolute distance” and “Modified

Probability Score”. The absolute distance has the same formula as the 𝜖-similarity but uses the infinity norm instead of

the Frobenius norm. The Modified Probability Score relies on conditional probabilities.

Metric choice. There is no universally better metric; the choice of metric is subjective. Our paper uses the 𝜖-similarity

because its formula is convenient for mathematical analysis. In other contexts, the Modified Probability Score might be

preferable: e.g., if the link between the metric and conditional probability is necessary for mathematical analysis.

Attacker similarity assumption. All passive attacks using attacker-known data make (at least implicitly) a similarity

assumption concerning the attacker’s knowledge. The attacker assumes that there exists a sufficiently small 𝜖 such that

𝐷
ind

and 𝐷
atk

are 𝜖-similar. If we assume no similarity, the attacker could use random data.

Dissecting this assumption and its implications is necessary to assess the practicality of SSE attacks. More precisely,

we want to answer the question: how likely is it to obtain a “sufficiently similar” document set for a given use
case? This question represents a fundamental starting point for this paper.

3.2 Revisiting the notion of similar data

As in machine learning, we consider a dataset as a sample of a random distribution. The properties of the underlying

probability distribution could bring more or less uncertainty depending on the use case. We will model this uncertainty

and show how it contributes to SSE security.

Mathematical model. The first step toward understanding the similarity assumption is establishing a proper math-

ematical model for the co-occurrence matrices. Let 𝑥
𝑅←− X denote the sampling of 𝑥 from the random probability

distribution X.
Let 𝐷

atk
and 𝐷

ind
be two document sets composed of documents that are represented as binary vectors of length

𝑚. Each vector component 𝑖 indicates whether the keyword 𝑤𝑖 is contained in the document. Furthermore, let X
atk

denote the random variable that describes the experiment of sampling a document (i.e., a binary vector of length𝑚)

from the same probability distribution as given by the documents in 𝐷
atk

. In other words, X
atk

is a vector of dependent
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Bernoulli random variables. It implies that the co-occurrence matrix 𝐶atk
is composed of realizations of dependent

Binomial variables, where 𝐶atk

𝑖 𝑗

𝑅←− C𝑛atk,𝑝atk
𝑖 𝑗

= B(𝑛
atk
, 𝑝atk
𝑖 𝑗
). The probability 𝑝atk

𝑖 𝑗
corresponds to the probability that

the keywords 𝑖 and 𝑗 both appear in a document from 𝐷
atk

. Acknowledging the dependence between the Binomial

variables is essential because it significantly complicates the mathematical analysis. To be convinced of the dependence,

let us consider the probabilities 𝑝𝑖 𝑗 and 𝑝𝑖𝑖 (i.e., the probability of keyword 𝑖 appearing in a document). We have

𝑝𝑖 𝑗 ≤ 𝑝𝑖𝑖 because the event “keyword 𝑖 appears in a document” contains the event “keywords 𝑖 and 𝑗 appears in the

same document”.

LetX
ind

be the random variable for document set𝐷
ind

defined with the same procedure asX
atk

for document set𝐷
atk

.

Similarly, we deduce that the co-occurrence matrix 𝐶 ind
is composed of realizations of dependent Binomial variables,

where 𝐶 ind

𝑖 𝑗

𝑅←− C𝑛ind,𝑝ind
𝑖 𝑗

= B(𝑛
ind
, 𝑝 ind
𝑖 𝑗
).

To sum up, C𝑛ind,𝑝ind and C𝑛atk,𝑝atk are two random matrix probability distributions from which 𝐶 ind
and 𝐶atk

are

respectively drawn. We assume the two distributions to be independent because, in similar-data attacks, the attacker

document set is considered “different”: implicitly, it means obtained from independent sources.

Statistical estimators. The previously defined random distribution (C𝑛ind,𝑝ind and C𝑛atk,𝑝atk ) are unknown to the

attacker (or even the researcher). We are in a classic statistics problem: we do not have access to the exact probabilities,

but we know a dataset drawn from an unknown probability distribution. We can use the dataset to compute an estimation

of an unknown probability. The interest of statistical estimation is then to approximate these unknown probabilities.

Finding a similar document set is close to the problem of representative sampling for surveying: the results are not

the probabilities themselves (e.g., political opinions) but an estimation of this probability. The larger the sample is,

the more precise the estimation. If one compares two samples obtained from populations with different probabilities,

their respective estimators may be close to each other, but it is unlikely. For example, a survey on professors might

provide similar results to the same survey on students. However, one understands that it is unlikely, especially when

the number of questions in the survey grows (i.e., high-dimensional data).

Analogously, our attacker only observes experiments (i.e., documents) but not the probabilities themselves. She can

estimate the co-probabilities 𝑝atk
𝑖 𝑗

(resp. 𝑝 ind
𝑖 𝑗

) by computing the co-frequencies

𝐶atk

𝑖 𝑗

𝑛atk
= 𝑝atk

𝑖 𝑗
(resp.

𝐶 ind

𝑖 𝑗

𝑛ind
= 𝑝 ind

𝑖 𝑗
)
4
. The

co-frequency is the maximum likelihood estimator of 𝑝𝑖 𝑗 . The maximum likelihood estimator is an efficient estimator
5

for 𝑝𝑖 𝑗 and converges toward this (unknown) value. The larger 𝐷
atk

(resp. 𝐷
ind

) is, the more precise the estimation will

be. Finally, like for survey samples, the co-occurrence matrices can be obtained from different distributions. We have

a particularly complex probability distribution (i.e., multivariate random variables with dependent components), so

having close estimations without close distributions is unlikely.

Statistical hardness. This difficult estimation problem may serve as a security guarantee. While in classic encryption

schemes, the complexity of breaking an encryption key serves as a security guarantee. The unlikelihood of finding

a similar dataset could be seen as an analogous security guarantee for encrypted search. Instead of an algorithmic

problem, we could base the SSE security on the complexity of a statistical problem. Hence, we are more or less in front

of a statistical hardness assumption (opposed to the computational hardness assumptions common in cryptography).

This statistical hardness also makes sense as the attacks against SSE are not computationally hard. Hence, the

security of an SSE scheme is not guaranteed because an attacker has a bounded computational power. The security of

4
The notation 𝑥 refers to the estimation of the unknown value 𝑥 .
5
In statistics, the efficiency [16] measures the quality of an estimator. Here, the maximum likelihood estimator reaches the Cramér-Rao lower bound

[10, 47] which bounds the variance of an unbiased estimator.
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an SSE scheme should be guaranteed because an attacker has a knowledge of “bounded quality”. This quality bound

corresponds to the convergence of the statistical estimators composing the attacker knowledge. In parallel with this

statistical hardness, the security of SSE also leverage computational hardness assumptions as SSE schemes rely on

classic cryptographic primitives.

3.3 Document set sizes and attacker’s knowledge quality

A key property of statistical estimators is the convergence when the sample size tends to infinity. The sample size has

then a direct impact on the estimation quality. In our case, the sample size corresponds to the number of documents in

the set. This subsection investigates analytically and experimentally how the document set sizes influence the attacker’s

knowledge quality. To measure the knowledge quality, we rely on the 𝜖-similarity.

Equality of co-probabilities To simplify our analysis, we make the following assumptions: ∀𝑖, 𝑗 ∈ [𝑚], 𝑝 ind
𝑖 𝑗

= 𝑝atk
𝑖 𝑗

.

In other words, for all pairs of keywords𝑤𝑖 and𝑤 𝑗 fromW, the probability of their joint appearance in 𝐷
atk

is equal

to the probability of the same event in 𝐷
ind

6
.

As shown in Appendix A.2, this assumption is the most advantageous setup for an attacker because it induces smaller

𝜖-similarity (i.e., more similar document sets). Since our security conclusions hold for the most advantaged attacker,

they hold for any attacker.

Analysis of the 𝜖-similarity Let us start from the co-probability estimators (i.e., 𝑝 ind
𝑖 𝑗

=
𝐶 ind

𝑖 𝑗

𝑛ind
and 𝑝atk

𝑖 𝑗
=
𝐶atk

𝑖 𝑗

𝑛atk
) which

are central in the attacks. Since they are maximum likelihood estimators, we have asymptotic normality of estimators

([18] Chapter 36, Theorem 3.3). Considering 𝑛𝑎𝑡𝑘 and 𝑛𝑖𝑛𝑑 are sufficiently large, we can approximate the distribution at

finite distance by the normal distribution. Under the equality of co-probabilities, we have:

𝑝 ind𝑖 𝑗 = 𝑝𝑖 𝑗 +
1

√
𝑛
ind

𝑍 ind

𝑖 𝑗 , 𝑍
ind

𝑖 𝑗 ∼ N(0, 𝜎
2

ind,𝑖 𝑗
), and 𝑝atk𝑖 𝑗 = 𝑝𝑖 𝑗 +

1

√
𝑛
atk

𝑍 atk

𝑖 𝑗 , 𝑍
atk

𝑖 𝑗 ∼ N(0, 𝜎
2

atk,𝑖 𝑗
) (2)

It implies that (𝑝 ind
𝑖 𝑗
− 𝑝atk

𝑖 𝑗
) =

√︃
1

𝑛ind
+ 1

𝑛atk
𝑍𝑖 𝑗 , 𝑍𝑖 𝑗 ∼ N(0, 𝜎2𝑖 𝑗 ). We can reuse this result in the expression of 𝜖 :

𝜖 = ∥SimMat∥ =

√√√√∑︁
𝑖, 𝑗

(
𝐶 ind

𝑖 𝑗

𝑛
ind

−
𝐶atk

𝑖 𝑗

𝑛
atk

)2 =
√︄∑︁

𝑖, 𝑗

(𝑝 ind
𝑖 𝑗
− 𝑝atk

𝑖 𝑗
)2 =

√︄∑︁
𝑖, 𝑗

( 1

𝑛
ind

+ 1

𝑛
atk

) (𝑍𝑖 𝑗 )2 (3)

=⇒ 𝜖 =

√︂
( 1

𝑛
ind

+ 1

𝑛
atk

)
√
𝐾,𝐾 a random variable (4)

We can draw two conclusions from Equation (4). First, the size of the attacker document set matters as much as the

size of the indexed document set. It seems evident that the more documents the attacker knows, the better the attack is.

However, thinking that a bigger indexed document set helps the attacker could seem counterintuitive. To understand

this intuition, we must remember that the attacks rely on comparing two estimators (i.e., the co-occurrence matrices).

The attack is unsuccessful if any of them is poorly estimated.

Second, fixing a document set size creates a threshold for similarity. For example, let us fix 𝑛
ind

and observe the

effect on Equation (4): we have lim𝑛atk→∞ 𝜖 =
√︃

1

𝑛ind
𝐾 . Hence, even with an infinite-sized attacker document set, the

probability of having an 𝜖-similarity below a certain threshold (proportional to

√︃
1

𝑛ind
) is negligible.

6
Assuming the equality of co-probabilities does not imply that the document set distributions are entirely equal (i.e., Xind ∼ Xatk

) because it only fixes

𝑚 (𝑚+1)
2

parameters out of the 2
𝑚−1

parameters of these random vectors.
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(a) Varying 𝑛atk and 𝑛ind (b) Varying 𝑛atk, Fixed 𝑛ind

Fig. 1. Influence of the document set size on the similarity (Dataset: Apache)

Experimental confirmation. Figure 1a illustrates this theoretical result. To generate attack results over a wide range

of similarities, we use attacker and indexed document sets, whose sizes vary between 5% and 95% of the Apache

dataset. This plot comprises 2500 points with varying 𝑛
ind

and 𝑛
atk

. On the one hand, the linear relationship between√︃
1

𝑛ind
+ 1

𝑛atk
and 𝜖 confirms the symmetric influence of these variables. On the other hand, Figure 1b shows the similarity

threshold created when 𝑛
ind

is fixed. Indeed, the linear relationship in Figure 1a has an intercept tending to zero, while

the linear relationship in Figure 1b has an intercept equal to 1. This non-zero intercept highlights the existence of

a similarity threshold since, even with an infinite-sized attacker document set, the average 𝜖-similarity would be 1.

This threshold is specific to the document set (i.e., Apache), so each would have a different threshold depending on the

document distribution.

3.4 Limits of distribution-independent approaches

In cryptographic schemes, security guarantees traditionally hold for any data distribution. Such distribution-independent

guarantees are precious because they ensure security even in the worst case scenarios. Contrary to other cryptographic

schemes, data distribution has amajor influence on the attack success in SSE. Hence, distribution-independent approaches

could lead to extremely conservative results due to edge-case distributions. This subsection shows why distribution-

independent approaches in SSE security lead to uninformative results. To do so, we propose the following (almost)

obvious theorem linking document set sizes and attack accuracy:

Theorem 1. For any document set distribution D (with 𝐷ind and 𝐷atk drawn from D), for any keyword universeW,

there exists a maximum index size 𝑛max ∈ N such that:

For any 𝑛atk ∈ N, if the number of indexed documents 𝑛ind ≤ 𝑛max, the average accuracy of any passive query-recovery

attack is lower than or equal to 1

𝑚 .

Proof. We show that with 𝑛max = 0, the statement in the theorem is always satisfied: the index contains no

document, so all the queries return an empty set. Hence, an attacker can only randomly guess the queried keyword.

The average accuracy is then
1

𝑚 (with𝑚 the number of keywords inW). □
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Theorem 1 shows that the size of the indexed document set induces a bound on the attack accuracy. The intuition

behind this theorem is simple: since the document set sizes influence the knowledge quality and the knowledge quality

influences the attack accuracy, the document set sizes then influence the attack accuracy.

Our proof relies on a trivial case (i.e., 𝑛max = 0). Many data distributions could verify the theorem with a strictly

positive 𝑛max. However, some distributions cannot. Let us consider the keyword universeW = {𝑤1,𝑤2} and a

distribution D such that PD (𝑤1) = 1 and PD (𝑤2) = 0. If 𝐷
ind

contains even a single document, the query leakage

would be sufficient to recover the queries perfectly: if the result is empty, it is𝑤2; otherwise, it is𝑤1. Moreover, there

exist other distributions for which Theorem 1 holds for all 𝑛max ∈ N. For example, if each indexed document contains

all the keywords fromW, each query returns all the documents, so the leakage is useless (i.e., no attack is better than a

random guess). Even with an infinite-sized indexed document set, the best average attack accuracy would be
1

𝑚 . In

practice, real-world use cases would have an 𝑛max between these two edge cases.

In the previous paragraph, the first data distribution (i.e., for which the attacker has perfect accuracy) highlights the

problem with distribution-independent approach. Any distribution-independent result should also hold for this specific

data distribution. This would lead to uninformative/trivial results: the scheme is perfectly unsecure and we must rely

on expensive attack countermeasures to ensure security. These countermeasures induce overhead that can make the

SSE schemes impractical. Moreover, we also highlight a data distribution for which we have perfect security; even with

no attack countermeasure. The gap between these two distribution (i.e., one with no security and one with perfect

security) shows the major influence of data distributions in SSE security. We argue data-dependent approaches are

preferable to obtain meaningful security assessments.

Finally, Theorem 1 emphasizes that limiting the index size can be a strong countermeasure since it guarantees a

bounded accuracy. This limit depends on the keyword universeW and the document set distribution D. Section 4

leverages this result to build a risk assessment protocol useful to practitioners willing to control the risk of real-world

SSE deployments. The risk assessment enables estimating a non-trivial 𝑛max (i.e., 𝑛max > 0) for specific use cases.

3.5 How to generate a realistic attacker document set?

Theorem 1 highlighted the impact of the document set distribution on attack accuracy. An attack can be dangerous or

harmless, depending on the document distribution. This observation implies that attack papers must carefully choose

their document set generation to provide realistic attack results. The subsection discusses how attack papers should

generate the document sets.

Document set generation. Attack papers generate indexed and attacker document sets by splitting a real-world dataset

(e.g., Apache emails) into two disjoint sets. By default, all papers split the dataset uniformly at random. We propose to

compare this splitting method to a more realistic alternative: the temporal split. The temporal split consists in splitting

the document set based on the document timestamp. With email datasets such as Apache, the attacker knows all the

emails before a given date, and the index contains all emails sent after this date. This method simulates the recurrent

motivation for the attacker’s knowledge in SSE papers: data breaches. Indeed, the attacker would have access to all data

before the breach date.

Accuracy discrepancy. Table 2a presents the accuracy (of the refined score attack [12]) and the 𝜖-similarity obtained

using the temporal split with four different splitting dates. Table 2b presents the accuracy and the 𝜖-similarity obtained

over 100 repetitions of the uniform split. With the temporal split, the attack accuracy is always below 5%, while it is

always above 94% with the uniform split. The 𝜖-similarity results confirm this observation since the 𝜖 is much higher
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Table 2. Accuracy of the refined score attack [12] and 𝜖-similarity on the Apache dataset (with |W| = 1𝐾 )

Year 2003 2005 2007 2009

𝜖-similarity 4.90 4.07 4.52 4.62

Attack acc. (%) 0.70 2.81 2.81 1.75

(a) Temporal split

Average Min. Max.

𝜖-similarity 0.62 0.59 0.71

Attack acc. (%) 98.20 94.39 99.65

(b) Uniformly random split (100 repetitions).

with the temporal split. The low accuracy with the temporal split is not due to the document set size since the split on

the year 2007 provides sizes equivalent to those used for the uniform split (i.e., around 25K documents per document

set). Therefore, the uniform split used in all attack papers can simulate an overly powerful attacker compared to a more

realistic method.

The temporal split decreases the similarity (and the accuracy) compared to the uniform split because the distribution

of the Apache dataset shifts over time. Appendix B rigorously identifies the origin of this discrepancy using statistical

tests. Our observations regarding the temporal split do not hold for all possible datasets. If a data stream is not subject

to a distribution shift over time, the uniform and the temporal split should provide the same results.

However, this distribution shift (also referred to “concept shift” in the literature) is common in many data-processing

applications, especially in machine learning [52, 60]. Hence, this phenomenon could hinder attackers relying on data

breaches from building similar document sets.

Concluding remarks. Damie et al. [12] had shown that Enron could not be used as a similar dataset to attack

successfully (with their score attack) an encrypted indexed storing with the Apache dataset. Our experiments on the

temporal split go one step further by showing that a subset of Apache can be insufficiently similar to a disjoint subset

of Apache (due to a distribution shift).

Data breaches can provide insufficiently similar data to attack an encrypted index successfully. This observation

weakens the motivation of many attack papers [1, 12, 26] justifying the existence of a similar dataset thanks to possible

data breaches. Hence, finding a similar dataset is a complex task in practice. The existence of a “similar enough” attacker

document set is then a strong assumption.

Our experiments also showed that the uniform split (used in attack papers) simulates a powerful attacker compared

to a more realistic temporal split. However, we argue researchers must keep using a uniform split for attack analysis. On

the one hand, it provides a conservative attack analysis. Indeed, a real-world attacker would not have better conditions

since the uniform splitting simulates a best-case scenario for the attacker (as detailed in Appendix A). On the other hand,

uniform split enables generating many document sets to repeat an attack simulation and obtain precise experimental

results. Temporal splitting can only provide one dataset partitioning for a given date. It is then complex to repeat an

experiment to obtain precise average results. Hence, we should use the uniform split in attack analysis but keep in

mind its properties when making claims about attack practicality.

4 STATISTICAL RISK ASSESSMENT

This section shows how to assess the risk for a real-world SSE deployment. Subsection 4.1 describes a simple protocol

to estimate an accuracy upper bound specific to a use case and discusses how to exploit this upper bound. Subsection 4.2

executes this protocol on the Enron dataset and shows what kind of conclusions a practitioner can draw. Concretely, we
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demonstrate how to estimate a maximum index size guaranteeing the attack accuracy remains negligible. Subsection 4.3

shows how to use our protocol during other steps of the deployment process, especially to tune attack countermeasures.

The gap in the literature. To highlight the current gap in the literature, consider the following deployment problem: a

company wants to deploy encrypted mailboxes for its employees. Each employee would have her own storage space

encrypted (i.e., one SSE index per employee mailbox). The company wants to use SSE so employees can search efficiently

in their encrypted emails. The system administrator wants to deploy a state-of-the-art SSE scheme but has no clue

whether it is risky considering the recent attack papers [12, 21, 43].

A naive solution would be to consider Enron and Apache datasets as representative of all email use cases and study

the experiment results obtained on these research datasets. Damie et al. [12] already showed that Enron is not similar

to Apache in our attack context. Thus, these datasets cannot represent all email use cases.

An alternative solution would be to assume that the system administrator has a dedicated sample dataset for attack

simulations. This approach has one main limitation: the size of the sample document set. For example, the sample

document set can be smaller than the expected index size. In other words, its size would prevent testing realistic

deployment parameters. More generally, relying only on attack simulations does not provide information about the

attack accuracy with extremely large attacker knowledge. Hence, rigorous extrapolation techniques are necessary to

exploit such a sample dataset efficiently.

Towards an empirical bound. We want an upper bound on the attack accuracy. Ideally, one may want to obtain a

theoretical bound frommathematical analysis. Such an approach has two significant limitations. First, the attack problem

is complex, which makes the analysis challenging. Islam et al. [26] proved the attack problem is NP-complete. Second, a

theoretical bound could be non-informative. Subsection 3.4 already highlighted the weakness of distribution-independent

approaches. Hence, a purely theoretical bound could be too loose due to the edge cases.

To avoid these issues, we propose to rely on empirical bounds. This empirical approach would consider the specificities

of a use case (represented by a sample dataset) to obtain tight bounds. We can use statistical tools to estimate an

upper bound with high probability. This upper bound should not be absolute but simply statistical: it is not impossible

to be above this threshold; it is only unlikely. A successful attack is always possible, but this chance must be as small as

possible. Finally, we can also leverage this bound to deduce the maximum index size 𝑛max introduced in the Theorem 1.

4.1 Estimating the risk

We call risk the maximum attack accuracy with probability 𝛼 . We want to estimate this upper bound using simulation

results (obtained on a representative sample dataset).

Subsections 3.3 and 3.4 highlighted the central role of the document set sizes in the attack success. Hence, we want

to estimate our bound in function of 𝑛
ind

and 𝑛
atk

. Then, we fix the rest of the simulation parameters to ensure a

conservative risk assessment; real-world attackers cannot benefit from better conditions . Thus, our simulations rely on

four assumptions: (1) the attacker knows the whole keyword universe, (2) the attacker observed all possible queries, (3)

the attacker knows 𝑘 known queries, (4) we use uniform splitting for document set generation.

The first two assumptions are simple: we assume maximum attacker knowledge. Then, we assume a limited number

of known queries; otherwise, there are no unknown queries to attack. This threshold should correspond to the number

of queries under which a (passive or active) attack is considered unsuccessful by the practitioner. Finally, Appendix A

details why uniform splitting simulates a best-case scenario for the attacker. These assumptions can give the impression

that we consider an overly powerful adversary. However, these assumptions are standard in the attack literature. A side
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contribution of our paper is also to highlight the unexpected strength of these assumptions, especially the uniform

splitting analyzed in Section 3.5.

Quantile regression. Our bound estimation is based on quantile regression [23, 32, 33]. In a quantile regression,

the resulting estimated function describes the quantile of a data distribution
7
instead of the average case (as linear

regression does). A quantile regression computes the parameters (𝑏, 𝑎) such that 𝑄𝑌 (𝛼) = 𝑏 · 𝑋 + 𝑎, for (𝑋,𝑌 ) two data

distributions and 𝛼 a quantile level. We refer to [23, 32, 33] for details about the computation. This quantile regression

is ideal for representing a maximum accuracy bound with high probability.

Estimation protocol. We want to estimate the quantile function describing the quantile 𝛼 of accuracy for a given

attack, with the document sizes as input parameters:𝑄Acc (𝛼 ;𝑛ind, 𝑛atk). Section 5 presents a similar estimation protocol

to estimate the average accuracy. The current subsection presents briefly the intuitions behind our estimation protocol,

but a reader can refer to Section 5 for a more incremental approach with supporting plots.

We cannot run the quantile regression on the raw simulation results. The quantile regression outputs an affine

function, so we must compute this regression in a space where our variables have a linear relationship. The raw variables

cannot have a linear relationship because the accuracy is in [0, 1], and the document sizes are in N. To solve this kind

of regression problem, the logit function (and its inverse expit) is traditionally used in statistics
8
. The logit function

maps the space (0, 1) onto R. With this logarithmic transformation, having a linear relationship is possible since we

have a variable in R (i.e., logit(Acc)) and two variables in N (i.e., the document set sizes). In practice, we process the

document set sizes as real numbers.

However, this logarithmic transformation is not enough to have a linear function to estimate. Subsection 3.3

highlighted the linear relationship between

√︃
1

𝑛ind
+ 1

𝑛atk
and the similarity metric 𝜖 . Hence, we take inspiration from

this linear relationship to solve our current quantile regression problem. We end up computing the quantile regression

between logit(Acc) and log( 1

𝑛ind
+ 1

𝑛atk
). To sum up, our quantile regression (at level 𝛼 ∈ (0, 1)) outputs the parameter

𝑎 and 𝑏 such that𝑄
logit(Acc) (𝛼 ;𝑛ind, 𝑛atk) = 𝑏 log( 1

𝑛ind
+ 1

𝑛atk
) + 𝑎. Once we have the parameters 𝑎 and 𝑏, we deduce the

accuracy upper bound: 𝑄Acc (𝛼 ;𝑛ind, 𝑛atk) = expit(𝑏 log( 1

𝑛ind
+ 1

𝑛atk
) + 𝑎).

Now that we have a satisfying estimation protocol, we only need to generate simulation results (using a sample

dataset representative of the use case) with varying document set sizes and compute the quantile regression. Figure 11

of Appendix D details our simulation loop. This algorithm is straightforward, and it leverages the symmetrical influence

of 𝑛
atk

and 𝑛
ind

(highlighted in Subsection 3.3) to optimize the simulation process.

Exploiting the regression model. Using this estimated function, we can compute the maximum index size introduced in

Theorem 1: 𝑛max is such that lim𝑛atk→∞𝑄Acc (𝛼 ;𝑛max, 𝑛atk) ≤ 1

𝑚 . We can generalize this formula and consider a generic

maximum accuracy threshold 𝛽max (in [0, 1]) instead of
1

𝑚 . To obtain a higher 𝑛max, we can also relax an assumption

by bounding the attacker’s document set size.

Defining SSE security requirements. We can define SSE security requirements using a pair (𝛽max, 𝑛max), with 𝛽max

the maximum attack accuracy and 𝑛max the maximum index size. On the hand, 𝛽max should be a commonly agreed

threshold (e.g., 5%). On the other hand, 𝛽max should be set based on the use case properties. Our risk assessment enables

estimating pairs guaranteeing security for a given use case. A use case is insecure if no pair satisfies the practitioners

7
The quantile of level 𝛼 for distribution 𝑌 is defined as follows:𝑄𝑌 (𝛼 ) = inf {𝑦 : 𝐹𝑌 (𝑦) ≥ 𝛼 }, with 𝐹𝑌 the cumulative distribution function of 𝑌 .
8
logit(𝑝 ) = log( 𝑝

1−𝑝 ) with 𝑝 ∈ (0, 1) , with a known inverse function expit.
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(a) With the logarithmic transformation (IHOP attack [43])
(b) Estimated function mapped in the initial space (IHOP
attack [43])

(c) Comparison of estimated upper bounds of three attacks
[12, 43] with the quantile 0.95

Fig. 2. Estimated upper bounds (Keyword universe size: 500 / Dataset: Enron)

expectations (e.g., the maximum index size is too low). This maximum index size is then a precious tool for practitioners

to deploy SSE with security guarantees.

Divergence from Theorem 1. Our estimated 𝑛max slightly differs from Theorem 1. On the one hand, our risk assessment

protocol studies a special case of the theorem where 𝐷sim and 𝐷
atk

are drawn independently because we focus on

similar-data attacks. On the other hand, we do not consider the average accuracy contrary to the theorem. Our bound

holds for the attack accuracy in general with high probability.

Theorem 1 focuses on the average case differs because it has a shorter formulation. However, we could prove a

variant providing an upper bound with high probability using a similar proof. To understand the difference between

the “average” and “high probability” cases, we can see the accuracy results as a Gaussian distribution. The average case

fixes the threshold at the middle of the bell curve, while the high probability case fixes the threshold “far enough on the

right” so only a negligible proportion of points are above the threshold. Hence, both cases rely on the same intuitions

about the staistical nature of the attacker’s knowledge.
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(a) Score attack (b) Refined Score attack

Fig. 3. Estimated upper bounds for different attacks [12, 43] (Keyword universe size: 500 / Dataset: Enron)

4.2 Concrete example

This subsection performs our risk assessment on the example given at the beginning of the section (i.e., deployment of

SSE for company mailboxes). This example uses the Enron dataset as a sample dataset. Hence, the conclusions only hold

for the Enron company. Any other company must gather a representative dataset of its internal emails and execute the

risk assessment protocol on this sample. This example only aims to demonstrate the potential of our risk assessment.

Upper bound estimation. The company has a keyword universe composed of the 500 most frequent keywords. The

system administrator considers that discovering more than 15 queries would already be a successful attack, so we set

the number of 15 known queries
9
. Figure 2 shows the estimation result for the IHOP attack. We observe a smooth and

coherent upper bound (with regard to the simulation results). Figure 3 provides equivalent results for two other attacks:

score and refined score attacks [12]. We plot the 0.95 quantiles of all three attacks in Figure 2c. Figure 2c shows that

IHOP outperforms the refined score attack so we use IHOP as our reference upper bound for risk assessment.

Maximum index size estimation. Taking inspiration from Theorem 1, we can use the upper bound to deduce a

maximum index size. Figure 4 shows the maximum index size for varying maximum accuracies. The top curve (in

blue) depicts the most conservative setup: adversary with infinite-sized similar document set. For example, a maximum

accuracy of 5% requires a maximum size of 218 documents per index. This constraint would contribute to keeping small

indices (e.g., via mandatory regular cleaning of mailboxes) or subdividing indices (e.g., one per email folder). However,

200 might be too limiting for our example use case.

A solution to this problem would be to relax our assumptions and consider an attacker with finite-sized document

set. The three bottom curves of Figure 4 shows the estimation with three different bounds on the attacker document set

size: 1000, 500, 200. These curves show a clear decrease of the maximum attack accuracy.

Feasability. Finally, we must explain whether our hypothetical system administrator with limited knowledge of

cryptography can execute it. Let us skim through the parameters to explain why a system administrator can set them.

In Figure 11 of Appendix D, the simulation algorithm takes as input some “fixed parameters.” They correspond to the

9
Most experiments in [12] assumed between 10 and 20 known queries.
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Fig. 4. Maximum index size for varying maximum accuracies and maximum attacker document set sizes (quantile regression with
𝛼 = 0.95 / Dataset: Enron / Attack: IHOP [43])

deployment parameters (e.g., keyword universe size) that must be set by the system administrator even if she deploys

SSE without a prior risk assessment. Moreover, one can set the number of experiments depending on the time available.

The more experiments one performs, the more accurate the quantile regression will be.

We have two non-trivial parameters left: the attack and the quantile. We argue that these two parameters should be

set with the help of the research community. We would refer to software such as LEAKER [27] to provide up-to-date

attack lists. This risk assessment is comparable to concrete security approaches where the security is re-estimated

every time a new attack is released. We recommend using the thresholds 0.1%, 1%, and 5%, recurrent in statistics for the

quantile parameter. The 5% threshold could be sufficient because our simulation parameters are so conservative (e.g.,

uniform splitting) that a realistic attacker should not approach it.

4.3 Strengthening SSE deployments

Suppose the system administrator is unsatisfied with the previously estimated security guarantees (i.e., the maximum

index size is too small). We can use our risk assessment to choose the best index parameters and to tune countermeasures

(also referred to as “attack mitigations” in some papers). These additional steps strengthen the security and enable

deployment with a satisfying security guarantees.

Choosing the best parameters. The first strengthening strategy is to choose adequate parameters for the index. As

shown in [12], some index parameters (e.g., the distribution or the size of the keyword universe) influence the attacker’s

success. The risk assessment can help choose the parameters minimizing the attack success. To test this idea, we focus

on the keyword universe. In Section 4, we use the top 500 most frequent keywords as keyword universe, but it could be

a poor choice from a security point of view. The most frequent keywords have a more distinguishable distribution,

hence, are easier to recover [12]. Comparing the estimated function obtained using different keyword universes is then

a solution to make a wise decision. Figure 5a compares the maximum accuracy bounds estimated respectively with our

baseline (i.e., the most frequent 500 keywords) and with a truncated keyword universe (i.e., we keep from the 101st

most frequent keyword to the 500th most frequent keyword). It shows an apparent decrease in accuracy when the

vocabulary is truncated. This approach can be generalized to any “tuneable” index parameter.
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(a) With two different keyword universes. (b) With varying countermeasure parameters [6]

Fig. 5. Maximum accuracy estimation applied to parameter tuning (Attack: Refined Score attack [12] / Conservative estimation:
𝑛atk →∞ / Dataset: Enron)

How much mitigation is needed? A second problem related to the parameter choice is the countermeasure

choice. In the literature, several countermeasures have been proposed [6, 13, 19, 56]. These solutions reduce the attack

accuracy in exchange for some overhead. However, it is unclear whether they are needed in practice and, if so, how

much mitigation is needed. To answer the first part of the question, we can run our risk assessment without attack

mitigation, and if the risk is too high, a countermeasure is needed. Once the need is established, we need to tune the

countermeasure, and the statistical risk assessment is again helpful.

The countermeasure tuning is similar to the parameter tuning: we compare maximum attack accuracy with varying

parameters. The goal is to find the countermeasure parameter minimizing the overhead while satisfying the security

expectations of the administrator. We focus on the straightforward padding countermeasure proposed in [6]: it randomly

adds false positive results to the index so that all the queries return a number of documents multiple of 𝑡 , a padding

threshold. The bigger 𝑡 is, the more effective the countermeasure and the more overhead there is. Figure 5b shows the

maximum accuracy bounds (in function of the maximum index size) with varying padding thresholds. We observe

that the maximum accuracy decreases while the padding threshold increases. A system administrator can leverage

this observation to find the minimum padding threshold 𝑡 fulfilling its security expectations, especially to reach an

acceptable maximum index size.

Besides parameter tuning, we can also compare several countermeasures to choose the most efficient technique for a

given use case. The approach would be identical to the parameter tuning: estimate and compare upper bounds.

5 ATTACK ANALYSIS BASED ON A SIMILARITY METRIC

Attack papers usually represent the attack accuracy for varying document set sizes. As highlighted in Subsection 3.3,

these parameters directly impact the quality of the attacker’s knowledge. However, they do not measure knowledge

quality contrary to similarity metrics. Hence, observing the attack accuracy with varying similarity would provide

more meaningful figures representing the link between knowledge quality and attack success.

Moreover, the existing attack papers often induce a bias when they fix one of the document set sizes (usually 𝑛
ind

).

Indeed, Subsection 3.3 also showed that a fixed document set size creates a threshold on the attack accuracy. To avoid
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this phenomenon, one may try to represent the attack accuracy with varying 𝑛
ind

and 𝑛
atk

, which would lead to poorly

readable results. Basing an attack analysis on a similarity metric solves this issue, because there are only two dimensions

to observe: similarity and accuracy.

This section provides tools and results to improve the attack analysis methodology using a similarity metric. As in

Section 3, we rely on 𝜖-similarity. This section answers three open questions:

• Subsection 5.1: How to analyze attack success using a similarity metric?

• Subsection 5.2: Is similarity the only parameter influencing the accuracy of an attack?

• Subsection 5.3: How can similarity metrics improve attack comparison?

5.1 How to analyze attack success using a similarity metric?

This subsection analyzes the accuracy of an attack by estimating its average accuracy function. As motivated previously,

we propose to use 𝜖-similarity instead of document set sizes to represent our results. In other words, we want to

estimate a function 𝑓Acc such that 𝑓Acc (𝜖) = E(Acc)10, we are in front of a regression problem. A continuous function

provides a more detailed understanding of the attack’s strengths and weaknesses. Such functions enable extrapolating

the simulation results and precisely identify gaps in the literature. Attack papers usually represent the accuracy on a

finite set of points, which gives a poor understanding of the complete attack behavior. Subsections 5.2 and 5.3 will show

how we can use these functions to provide novel insights about the existing attacks.

Estimating the accuracy function. First, we can point out that the function cannot be linear since the accuracy is in

[0, 1]. Hence, we cannot directly use linear regression on the raw data. To circumvent this difficulty, we estimate a

function 𝑓 ′
Acc
(𝜖) = logit(Acc). The logit function is defined as logit(𝑝) = log( 𝑝

1−𝑝 ) with 𝑝 ∈ (0, 1) and has a known

inverse function expit. This logit functionmaps a (0, 1) space into the real number space. This logarithmic transformation

is common in statistics.

Figure 6a represents the simulation results with the logit transformation. We observe two problems in this figure: we

do not have apparent linearity between the variables, and there is a “heteroscedasticity of the noises”. The first problem

is simple: the distribution of the points seems flattened when 𝜖 grows. The second issue concerns the assumption made

when computing a linear regression. A fundamental assumption in linear regression is that the noise distribution is the

same at each point of the space. Then, the data should have the same noise distribution for small and high 𝜖 , which is not

the case in Figure 6a. A recurrent solution in ML to the linearity problem is to apply a logarithm transformation on the

𝑥 axis. Figure 6b presents the results of a linear regression between logit(Accuracy) and log(𝜖). Combining these two

logarithmic transformations makes the linear relationship more apparent. Moreover, the logarithmic transformation

slightly corrected the heteroscedasticity. Scaling methods (where a data point is modified by a scaling factor depending

on its 𝜖) exist to perfectly fix heteroscedasticity. However, they add more complexity for equivalent results.

To sumup, wemap the attack simulation results in a logit− log space to compute a linear regression (i.e., logit(E(Acc)) =
𝑏 log(𝜖) + 𝑎). We then deduce the average accuracy function 𝑓Acc (𝜖) = expit(𝑏 · log(𝜖) + 𝑎) with (𝑏, 𝑎) the regression
parameters. We represent the estimated function for the Enron dataset in Figure 6. We demonstrate this protocol using

the refined score attack, but it can be performed with any other attack (see Subsection 5.3).

Alternative regression methods. Several theoretical considerations support our regression model, and it produces

convincing results. However, we cannot formally prove that it is the best model to represent the relationship between

10E [𝑋 ] is the expected value of the random variable 𝑋 .
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(a) With logit transformation (b) With logit − log transformation

(c) In the initial space

Fig. 6. Analysis of the refined score attack on Enron dataset (𝑚 = 1𝐾 )

accuracy and similarity. The machine learning literature has described many other regression models, but our method is

simple and provides interpretable results despite an initial non-linear problem. A model is “interpretable” if an observer

can understand the cause of a decision [39] (e.g., predict the impact of an input variation). This interpretability is absent

in many popular models, such as neural networks and random forests. These models can solve non-linear problems

efficiently, but are often referred to as “black boxes” due to their lack of interpretability. Our model is interpretable

because it combines linear models with simple logarithmic transformations. Interpretability is a crucial property in our

case to foresee the security limits. The second strength of our model is its extension to risk assessment (see Section 4)

via the replacement of linear regression by quantile regression.

During our study, we observed a particular behavior on the “tail results”; i.e., the results with extreme 𝜖 . Appendix C

presents minor tweaks to deal with these extreme cases.
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(a) Apache dataset (b) Blogs dataset

Fig. 7. Regression results on others datasets (𝑚 = 1𝐾 )

5.2 The role of similarity in attack success

We can now use our average accuracy functions to answer the following question: is similarity the only factor influencing

the attack success? We can reformulate it as follows: for each attack, is there a unique accuracy function 𝑓Acc (𝜖) valid
for all document sets?

We reproduced the average accuracy estimation for two other datasets: Apache and Blogs (see Figure 7). The linear

regression parameters are (−4.54, 1.87) for the Blogs dataset, (−3.63,−1.09) for Apache, and (−4.47, 0.417) for Enron.
These parameters significantly differ, so no unique function links the similarity to the attack accuracy. Hence, similarity

is not the only parameter influencing attack accuracy.

We can explain this phenomenon using keyword distribution. Consider a hypothetical dataset with𝑚 keywords

with equal probabilities and co-probabilities (e.g., all keywords appear in all documents). Even with perfect knowledge

of the probabilities (i.e., 𝜖 = 0), we cannot distinguish the keywords with an accuracy better than a random guess (i.e.,

E(Acc) = 1

𝑚 ). Hence, each dataset has a keyword distribution, resulting in more or less distinguishable keywords. This

observation is in line with our claims about distribution-independent approaches in Subsection 3.4.

Understanding the intent of countermeasures. The dependence of the attack accuracy on keyword distribution is

also interesting to put into perspective the works on countermeasures. Indistinguishability is not a new notion in

SSE [4, 11, 55], but we can revisit it thanks to our results. Countermeasures usually aim at some keyword/query

indistinguishability. The intuition is to have all queries leaking the same information, so the leakage induced by SSE

schemes becomes useless to an attacker.

For example, the countermeasures based on the injection of false-positive results [4, 6, 56] (used in SSE implementa-

tions such as ShieldDB [53]) produces “undistinguishable” queries by “smoothing” the keyword frequencies. We argue

that these countermeasures do not produce indistinguishability but simply noisy statistics. Indeed, the frequencies might

be indistinguishable, but the co-frequencies do not automatically inherit this property. To produce an indistinguishable

leakage, we would need to smooth all the statistics, from the keyword frequencies to the co-frequencies of𝑚 keywords

(i.e., the 2
𝑚 − 1 parameters of the random binary vectors defined in Subsection 3.2).
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However, the good performances of the countermeasures show that noisy statistics are enough to prevent attacks. We

do not need indistinguishable leakages; we must only ensure they are realistically unusable. For example, two queries

can leak distinct co-frequency information; the attacks will be unsuccessful if this information leakage is too noisy.

Hence, it is unnecessary to perfectly protect the queries by enforcing them to have the same co-frequency leakage. To

reach a satisfying noise level, we suggest using our risk assessment variant for countermeasure tuning (Subsection 4.3).

We identify as an open problem the composition of our co-occurrence mathematical representation with the

countermeasure mathematical model of [21]. Such an analysis may lead to improvements in attack countermeasures.

5.3 Comparison framework

Finally, we can use the average accuracy functions to improve the attack comparison methodology. Our comparison

protocol can be summarized as follows: (1) generate simulation results for each attack, (2) estimate the average accuracy

function of each attack, (3) compare the average accuracy functions.

Figure 8 compares the accuracy functions of three recent similar-data attacks (on Apache dataset): Score, Refined

score, and IHOP attacks. This experiment uses the (straightforward) Algorithm 10 of Appendix 10 to generate results

with varying 𝜖 .

The IHOP and refined score attacks outperform the score attack. IHOP seems to obtain slightly better results for

smaller 𝜖 while for higher 𝜖 , the refined score attack has a small advantage. In the context of risk assessment, the

IHOP risk function was always above the refined score risk function in Figure 2c. These observations mean that IHOP

occasionally reaches very high accuracies, while refined score results have a smaller variance. Despite these minor

differences, both attacks are accurate in similar scenarios, but IHOP is better because it requires no known queries.

This comparison framework simplifies the identification of game-changing attacks. The existing attack papers

typically compare attacks over a set of parameters, emphasizing a clear accuracy difference between a novel attack and

the state-of-the-art. While this approach identifies improvements, it does not give a full picture of the situation. In our

case, a traditional attack comparison between IHOP and Refined Score attack would “zoom in” between 𝜖 = 0.5 and

𝜖 = 1.0 to focus on the most considerable improvements. This “zoom” ignores subtle phenomena, such as the slight

advantage of the Refined Score attack on highly dissimilar document sets. Systematically comparing accuracy functions

would guarantee attack papers thoroughly analyze the attack behaviors and avoid focusing on a convenient set of

parameters. Moreover, the linear regression estimates an average distribution, smoothing the noise over the curve.

Noisy experimental results are a recurrent concern that often questions whether an accuracy difference is significant.

Linear regression remains a statistical estimation, so some uncertainty remains. We can model this uncertainty using

confidence intervals.

As for individual experimental results, we can run simple statistical tests to prove a difference to be statistically

significant. While performing statistical tests on a large set of individual experimental results is tedious, performing a

statistical test on linear regression parameters [9] is much easier. In other words, we can statistically prove that an

estimated function is significantly higher than another function instead of proving a significant difference on individual

points. Hence, this simplicity should encourage future attack papers to rigorously prove accuracy improvements using

statistical tests on accuracy functions.

Countermeasure efficiency. Finally, the comparison framework can be extended to countermeasure comparison.

The idea would be to compare accuracy functions obtained with and without countermeasures. The impact of the
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Fig. 8. Comparison of the average accuracy functions of the Score, Refined Score, and IHOP attacks (𝑚 = 500)

countermeasure on the accuracy function would then quantify the efficiency of a countermeasure. We do not provide

experimental results, but Section 4 presents an analogous extension to countermeasures for risk assessment.

6 EXTENSIONS TO OTHER SCHEMES AND ATTACKS

Our work focuses on similar-data attacks against SSE schemes with access and search pattern leakage. This section

widens our scope and discusses the extension of our results to different settings.

6.1 Extension to schemes with less leakage

Our results naturally extend to SSE schemes with less leakage. For example, we can consider with volume pattern

leakage instead of access pattern leakage. While access pattern leakage reveals the list of document identifiers matching

a query, the volume pattern leakage only reveals the number of document identifiers. The volume pattern leakage

corresponds to the diagonal of the co-occurrence matrices described in Section 3. Hence, our analysis and results hold

for these schemes. This setting simply reduces the amount of (noisy) information available to the attacker.

6.2 Extension to schemes supporting conjunctive-keyword search

Dijkslag et al. [14] described a generic technique to attack schemes supporting conjunctive-keyword search using

the attacks against schemes with single-keyword search. Our results naturally extend to these schemes. The only

modification is the similarity metric: instead of building a similarity matrix from the co-occurrence matrices, we build

co-occurrence tensors because these attacks exploit the co-occurrences of 𝑘 different keywords, and then the 𝜖-similarity

metric is the tensor norm. Hence, we have two arrays of statistical estimators and the attack success is conditioned by

the statistical estimation quality. Our insights regarding document set sizes and data distribution still hold.

6.3 Extension to known-data attacks

The first direct extension is known-data attacks. These attacks are tightly related to similar-data attacks because only a

small parameter changes: the attacker-known documents are indexed. Hence, our insights hold for known-data attacks.

However, the mathematical model of Section 3 must be adapted because the attacker and indexed document sets are

two dependent random variables. Some additional work is necessary to extend all our results to known-data attacks.
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Road to new attacks. This extension also raises new research questions for attacks. Until now, all attack papers

presented either similar-data or known-data attacks. We may see a continuum between these attacks and conceive

hybrid attacks with an attacker’s knowledge composed of indexed and non-indexed documents. Such attacks may reach

even higher accuracies.

6.4 Extension to attacks using query frequency

Liu et al. [37] proposed an attack against SSE using query frequency. In this attack, the attacker has access to a reference

dataset with keyword query frequencies and tries to match the reference frequencies to the frequency of the observed

queries. Our results do not extend to these attacks; as they rely on different statistical information.

However, we can reuse our statistical approach to analyze these attacks. The query frequency is also a statistical

estimator, so the attack relies once again on the comparison of two statistical estimators. Hence, the attack success will

also be influenced by the statistical estimation quality. While our analysis highlighted the importance of the document

set sizes, these attacks are influenced by the number of queries. Indeed, the query frequency estimation converges with

the number of queries observed.

For attacks relying on access pattern, our paper set a maximum index size guaranteeing an appropriate security level.

For attacks relying on query frequency, we can set a maximum number of queries: below this threshold, the adversary’s

knowledge is too noisy to successfully attack the encrypted index. Evertyime this number of query is reached, the user

could refresh the encrypted index in order to mitigate attacks.

CONCLUSION

Our work provided a novel understanding of the attacker’s knowledge in passive attacks on encrypted search. We

modeled the attacker’s knowledge using statistical estimators and highlighted the noise naturally contained in this

knowledge. We leveraged this model to provide several novel insights about SSE attacks, especially the weakness of

distribution-independent security assessment. Then, we built upon this intuition a statistical framework to assess the

risk of specific real-world use cases. Finally, we improved the attack analysis methodology using analogous statistical

methods. Hence, our results promoted new practices for practitioners and researchers. In particular, our risk assessment

protocol supports real-world deployments with controlled risk.

These results raise new questions about the security approach for privacy-preserving technologies with information

leakage, such as SSE. This leakage is problematic from a theoretical perspective because it prevents any theoretical

security proof. However, the noisy nature of leakage can act as a natural attack mitigation. Statistical approaches such

as ours can provide a novel form of security guarantees for these technologies.
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A UNIFORM DOCUMENT SET SPLITTING, A FAVORED ATTACKER SIMULATION

This appendix shows that the classic attack simulation using uniform splitting for document set generation creates

the best-case scenario for the attacker. Hence, any result obtained with uniform splitting is, on average, greater than

or equal to the accuracy of a real-world attacker. We prove it in three steps: (1) uniform splitting produces dataset

distributions with equal co-probabilities, (2) equal co-probabilities lead to smaller 𝜖-similarity, (3) smaller 𝜖 leads to

higher accuracy. This appendix focuses on proving analytically the second step, and we rely on auxiliary results for

steps 1 and 3.

Appendix B covers the first step using a statistical test. Indeed, the experiments show that the equality of co-

probabilities is not rejected using uniform splitting. This statement could also be proven analytically using basic

probability notions, but it is not the focus of this appendix.

Previous works [12, 15] experimentally proved the third step for the refined score attack. Since the 𝜖 measures the

quality of the attacker knowledge, we can interpret the statement as follows: more precise attacker knowledge leads to

higher accuracy. We can be convinced this statement is true for all attacks because the opposite sounds non-sensical.

A.1 Definitions

Notation. Let E [𝑋 ] be the expected value of the random variable 𝑋 , and Var(𝑋 ) be its variance. The sign P−→ denotes

the convergence in probability, and the sign

(𝑑 )
−−−→ the convergence in distribution. We use the notation 𝛿𝑎 for the Dirac

distribution on point 𝑎 ∈ R.

Stochastic dominance definition. Our mathematical analysis relies on “stochastic dominance” [22], a partial order

between random variables. Let the sign ≼ define this partial order:

Definition 2. A random variable 𝐴 has first-order stochastic dominance over random variable B if ∀𝑥, P(𝐴 ≤ 𝑥) ≥
P(𝐵 ≤ 𝑥).

Our analysis focuses only on first-order stochastic dominance. We rely on the alternative definition presented in

Definition 3 to prove the stochastic dominance.

Definition 3. A random variable𝐴 has first-order stochastic dominance over random variable B if, for a utility function

𝑢 continuous, bounded, and increasing, we have E[𝑢 (𝐴)] ≥ E[𝑢 (𝐵)].

𝜖-similarity distribution Let E𝑝ind,𝑝atk define the random probability distribution of the 𝜖-similarity. Since 𝜖 =

∥SimMat∥, we have E𝑝ind,𝑝atk =

 C𝑛ind,𝑝ind𝑛ind
− C𝑛atk,𝑝atk𝑛atk

.11 The parameters 𝑝
ind

and 𝑝
atk

are the parameters of the

probability distributions from which 𝐷
ind

and 𝐷
atk

are drawn.

11
This equation manipulates random probability distributions C𝑛atk,𝑝atk and C𝑛ind,𝑝ind contrary to Equation (1) that manipulates classic matrices.
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A.2 Stochastic advantage

We want to show that having equal co-probabilities on the attacker and the indexed document sets leads to smaller 𝜖 .

Mathematically, we want to compare the following random distributions: E𝑝ind,𝑝ind (i.e., equality of co-probabilities)

and E𝑝ind,𝑝atk . Appendix A.3 proves that asymptotically (when the document set sizes tend to infinity):

E𝑝ind,𝑝ind ≼ E𝑝ind,𝑝atk (5)

This dominance result implies that it is more likely to reach lower 𝜖 values when the attacker document set is drawn

from a distribution with the same probabilities 𝑝𝑖 𝑗 as the distribution from which the indexed document set has been

drawn.

A.3 Stochastic dominance proof

The previous notations were simplified, so we redefine them more precisely here. First, the document set sizes are now

considered random variables
12
. Let

(
𝑛ind𝑛

)
𝑛
be a sequence of random variables such that lim𝑛→+∞ 𝑛ind𝑛 = +∞. Analogu-

ously, we have a sequence of random variables

(
𝑛atk𝑛

)
𝑛
be a sequence of random variables such that lim𝑛→+∞ 𝑛atk𝑛 = +∞.

We can redefine the distribution of the co-occurrence matrices from these variables: ∀𝑖, 𝑗 ∈ {1 . . .𝑚}, let Cind,𝑝
ind

𝑖 𝑗,𝑛
∼

B
(
𝑛ind𝑛 , 𝑝 ind

𝑖 𝑗

)
(resp. Catk,𝑝

atk

𝑖 𝑗,𝑛
∼ B

(
𝑛atk𝑛 , 𝑝atk

𝑖 𝑗

)
) be the random probability distribution of the co-occurrence matrix of the

indexed (resp. attacker) document set. We note Cind,𝑝
ind

·,𝑛 (resp. Catk,𝑝
atk

·,𝑛 ) the complete matrix distribution (i.e., Cind,𝑝
ind

𝑖 𝑗,𝑛

is the distribution of the 𝑖, 𝑗 variable of Cind,𝑝
ind

·,𝑛 ). We assume that Cind,𝑝
ind

𝑖 𝑗,𝑛
and Catk,𝑝

atk

𝑖 𝑗,𝑛
are independent, but we do

not suppose independence for Cind,𝑝
ind

𝑖 𝑗,𝑛
and Cind,𝑝

ind

𝑖′ 𝑗 ′,𝑛 (same for Catk,𝑝
atk

𝑖 𝑗,𝑛
and Catk,𝑝

atk

𝑖′ 𝑗 ′,𝑛 ). The 𝜖-similarity probability

distribution is then:

E𝑝
ind,𝑝atk

𝑛 =

C
ind,𝑝 ind

·,𝑛
𝑛ind𝑛

−
Catk,𝑝

atk

·,𝑛
𝑛atk𝑛


2

Using this notation, we can write Theorem 2 (equivalent to Equation (5)).

Theorem 2. Asymptotically, we have E𝑝
ind,𝑝 ind

𝑛 ≼ E𝑝
ind,𝑝atk

𝑛 .

Proof. We have E

[
Cind,𝑝

ind

𝑖 𝑗,𝑛

𝑛ind𝑛

]
= 𝑝 ind

𝑖 𝑗
and𝑉𝑎𝑟

(
Cind,𝑝

ind

𝑖 𝑗,𝑛

𝑛ind𝑛

)
→ 0 when 𝑛 →∞. Using Chebyshev’s inequality, we deduce

that

Cind,𝑝
ind

𝑖 𝑗,𝑛

𝑛ind𝑛

P−−−−−→
𝑛→∞

𝑝 ind𝑖 𝑗 (6)

Analogously, we obtain:

Catk,𝑝
atk

𝑖 𝑗,𝑛

𝑛atk𝑛

P−−−−−→
𝑛→∞

𝑝atk𝑖 𝑗 (7)

Then, we use the continuous mapping theorem with the continuous function 𝑓 (𝑥,𝑦) = (𝑥 − 𝑦)2 on Equations (6) and

(7) to obtain: ©«
Catk,𝑝

atk

𝑖 𝑗,𝑛

𝑛atk𝑛
−
Cind,𝑝

ind

𝑖 𝑗,𝑛

𝑛ind𝑛

ª®®¬
2

P−−−−−→
𝑛→∞

(
𝑝atk𝑖 𝑗 − 𝑝

ind

𝑖 𝑗

)
2

(8)

12
This hypothesis is not restrictive: a deterministic sequence is a special case of a sequence of random variables.
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We reuse the continuous mapping on this result but with the continuous function 𝑔(𝑧) =
√︁∑

𝑘=1 𝑧𝑘 to obtain:√√√√√√ ∑︁
(𝑖, 𝑗 ) ∈{1...𝑚}2

©«
Catk,𝑝

atk

𝑖 𝑗,𝑛

𝑛atk𝑛
−
Cind,𝑝

ind

𝑖 𝑗,𝑛

𝑛ind𝑛

ª®¬
2

P−−−−−→
𝑛→∞

√√ ∑︁
(𝑖, 𝑗 ) ∈{1...𝑚}2

(
𝑝atk
𝑖 𝑗
− 𝑝 ind

𝑖 𝑗

)
2

(9)

⇐⇒ E𝑝
atk,𝑝 ind

𝑛
P−−−−−→

𝑛→∞

𝑝atk − 𝑝 ind (10)

=⇒ E𝑝
atk,𝑝 ind

𝑛

(𝑑 )
−−−−−→
𝑛→∞

𝛿∥𝑝atk−𝑝 ind∥ (11)

Let 𝑢 be a utility function 𝑢 continuous, bounded, and increasing. From the definition of the convergence in

distribution, we deduce that:

lim

𝑛→∞
E
[
𝑢

(
E𝑝

atk,𝑝 ind

𝑛

)]
=

∫
𝑢𝑑𝛿∥𝑝atk−𝑝 ind∥ (12)

= 𝑢 (
𝑝atk − 𝑝 ind) (13)

We remark that lim𝑛→∞ E
[
𝑢

(
E𝑝

ind,𝑝 ind

𝑛

)]
= 𝑢 (0) and that 𝑢 is increasing so:

𝑢 (0) ≤ 𝑢 (
𝑝atk − 𝑝 ind) (14)

⇐⇒ lim

𝑛→∞
E
[
𝑢

(
E𝑝

ind,𝑝 ind

𝑛

)]
≤ lim

𝑛→∞
E
[
𝑢

(
E𝑝

atk,𝑝 ind

𝑛

)]
(15)

From Equation (15), we use the Definition 3 of stochastic dominance to conclude that asymptotically: E𝑝
ind,𝑝 ind

𝑛 ≼

E𝑝
ind,𝑝atk

𝑛 □

B DOCUMENT SET SPLITTING AND EQUALITY OF CO-PROBABILITIES

Subsection 3.5 highlighted that uniform splitting could lead to more powerful attackers than temporal splitting. We

want to deepen this result and highlight the difference between these two setups: the equality of co-probabilities. This

appendix builds a statistical test to show that, contrary to the uniform split, the temporal split (on the Apache dataset)

does not generate a document set distribution verifying the equality of co-probabilities. In other words, we rigorously

prove the distribution shift over time in the Apache dataset.

Statistics background. Statistical tests help verify a hypothesis using observed data. When a statistical test is “rejected”,

the hypothesis is then false with high probability. These statistical tools are standard in medical research to prove

various statements (e.g., vaccine efficacy).

Our goal is then to conceive a test for our equality assumption. When performing a statistical test, the analysis is

focused on the 𝑝-value (with 𝑝 ∈ [0, 1]). A 𝑝-value corresponds to the probability of obtaining our observed data under

a certain null hypothesis (e.g., the equality in our case), referred to as 𝐻0. The opposite hypothesis is referred to as 𝐻1:

the inequality of at least one of the co-probabilities in our case. The lower 𝑝 is, the more confident we are that the

hypothesis 𝐻0 is false. If 𝑝 is considered negligible, the null hypothesis is rejected. The negligibility threshold can be

0.01, 0.001, or even lower, depending on the research field.

The Z-test for the equality of two proportions [29] is the standard statistical test to check the equality of two

probabilities. In our case, we need to test the equality of
𝑚 (𝑚+1)

2
pair of probabilities (i.e., 𝑝 ind

𝑖 𝑗
and 𝑝atk

𝑖 𝑗
). To build our

2023-12-07 10:45. Page 28 of 1–31.



The statistical nature of leakage in SSE schemes and its role in passive attacks 29

Table 3. Statistical tests of the equality of co-probabilities on the Apache dataset using two splitting methods.

Year 2003 2005 2007 2009

𝑝𝑣 0.0 0.0 0.0 0.0

(a) Temporal split

Avg. Min. Max.

𝑝𝑣 2.40 0.02 11.03

(b) Uniformly random split (100 repetitions).

test, we propose first to test all the pairs of co-probabilities individually and then combine the result of these tests into

a unique 𝑝-value.

Individual Z-tests. We use the Z-test to individually test the equality of each co-probability 𝑝𝑖 𝑗 . Each Z-test has as

hypothesis 𝐻0 : 𝑝
ind

𝑖 𝑗
= 𝑝atk

𝑖 𝑗
(and 𝐻1 : 𝑝

ind

𝑖 𝑗
≠ 𝑝atk

𝑖 𝑗
). For details about the Z-test, we refer to Kanji [29]. The Z-test for

proportions is widely implemented in many languages, including R
13
.

For clarity, we refer to the 𝑝-values as 𝑝𝑣 to avoid confusion with the co-probabilities already using the notation 𝑝𝑖 𝑗 .

Then, for each pair of keyword (𝑤𝑖 ,𝑤 𝑗 ), we obtain a 𝑝-value 𝑝𝑣𝑖 𝑗 (for all 𝑖, 𝑗 ∈ [𝑚]). Note that 𝑝𝑣𝑖 𝑗 = 𝑝𝑣 𝑗𝑖 so we have

𝑚 (𝑚+1)
2

unique 𝑝-values.

Combining multiple 𝑝-values. We now have
𝑚 (𝑚+1)

2
dependent 𝑝-values, and we need to combine all of them to

create a test for our complete hypothesis stated in the equality of co-probabilities. In other words, we want a test

verifying whether all the sub-hypotheses are true simultaneously, sub-hypotheses for which we have individual tests.

This problem is known as the multiple comparisons problem [38]. It is non-trivial because these 𝑝-values are dependent.

The simplest solution to this problem is the Bonferroni correction [2, 54].

The Bonferroni correction takes as an input𝑀 (possibly dependent) 𝑝-values and outputs a 𝑝-value for the combination

of all hypotheses. The “corrected” 𝑝-value corresponds to the minimum 𝑝-value in the input set multiplied by𝑀 . We

call this a corrected 𝑝-value because it is not formally a 𝑝-value (e.g., it can be above 1). However, it is common to

interpret the output of a Bonferroni correction as a 𝑝-value. In our case, we can write the corrected 𝑝-value as follows:

𝑝𝑣 =
𝑚(𝑚 + 1)

2

× min

(𝑖, 𝑗 ) ∈{1...𝑚}2
𝑝𝑣𝑖 𝑗 (16)

The corrected 𝑝-value is proportional to the minimum of the𝑀 initial 𝑝-values, so this test is highly sensitive. The

risk of sensitive test metrics is constantly rejecting the null hypothesis for any dataset. In such a case, we could not

draw any conclusions. Other solutions to the multiple comparisons problem are less sensitive than the Bonferroni

correction [24, 25, 38]. However, we limited our analysis to this simple Bonferroni correction, sufficient to observe the

phenomenon we want to highlight: an equality and a non-equality case.

Experimental results. To verify our distribution shift claim, we compute 𝑝𝑣 using the temporal split (Table 3a) and

the uniform split (Table 3b) .

With the temporal split (Table 3a), the corrected 𝑝-values are extremely small, so the equality of co-probabilities is

strongly rejected. Theoretically, the 𝑝-values should never be equal to zero. The values of the first experiment are so

low (i.e., below machine epsilon) that they were automatically rounded to zero. This result proves the distribution shift

in the Apache dataset.

Using the uniform split (Table 3b), the equality of co-probabilities is not rejected because the 𝑝-values are generally

high. While we can obtain this equality result from basic mathematical analysis, this non-rejection also proves that

13
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/prop.test
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(a) With logit − log transformation (b) In the initial space

Fig. 9. Estimation average accuracy function on the Enron dataset with a large keyword universe (𝑚 = 4𝐾 )

the rejection for the temporal split is due to the splitting method properties and not the test sensitivity. We repeat the

uniform split 100 times to show the temporal split was not somehow “unlucky”: even the uniform split with the worst

𝑝𝑣 (denoted as Min. 𝑝𝑣 in Table 3b) has a 𝑝-value way above all the results obtained using the temporal split.

C TAIL DISTRIBUTION AND AVERAGE ACCURACY REGRESSION

During our study, we observed unexpected results when estimating the accuracy function on “extreme cases”. In Figure

9, we present the regression results for the Enron dataset with a particularly large 𝜖-similarity (obtained using larger

keyword universes). Contrary to the rest of the experiments, the logit− log transformation does not produce a linear

relationship between the dimensions. In Figure 9a, we observe for log(𝜖) in [−0.2, 0.5] the linear relationship observed

in the other experiments. However, this linearity stops on the tail (i.e., 𝜖 ∈ [0.5,∞)).
This phenomenon is caused by the fact that the average accuracy cannot be below

1

𝑚 , the success probability of a

random guess. Hence, we should represent the average accuracy function in two pieces: one for the “small” 𝜖-similarities

and one for the large 𝜖-similarities (i.e., the tail distribution). As the average accuracy cannot be below
1

𝑚 , the average

accuracy should always be
1

𝑚 for such extreme 𝜖-similarities.

To deal with this phenomenon, we propose two solutions. First, we can use a regression model that is more complex

than linear regression. Figure 9 compares the estimation done with the linear regression to a B-spline. B-splines are

regression models that separate the space into several chunks and estimate a distinct polynomial function (in our case,

linear) for each chunk. Second, we can remove the tail results from the training dataset. Indeed, the tail corresponds to

negligibly small attack results. The error made by ignoring these points can seem large in the logit− log space, but in
our initial space, Figure 9b shows the difference is negligible (i.e., below 1%).

D SAMPLING ALGORITHMS

Figure 10 presents the optimized document size sampling used in Section 5. This optimization aims to minimize the

number of simulations while maximizing the space our simulation results cover. This optimized variant assumes that

𝑛
atk

= 𝑛
ind

because Subsection 3.3 showed that they have a symmetrical influence on 𝜖 . Our algorithm introduces two

new parameters influencing the coverage of the 𝜖 domain: the number of experiments NB_EXP and the minimum
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Require: 𝐷 : simulation document set with 𝑛 = |𝐷 |; 𝑝𝑎𝑟𝑎𝑚𝑠 : fixed attack parameters (e.g., keyword universe or query

set size); NB_EXP: number of experiments; min_docs: minimum number of documents.

Ensure: 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 , a list of tuples (𝜖,Acc).
𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ← []
𝑠min = 4

𝑛

𝑠max = 2

min_docs

for 𝑘 ∈ {1 . . .NB_EXP} do
𝑠curr = (𝑠max − 𝑠min) × 2𝑖

100
+ 𝑠min

𝑛curr =

⌊
2

𝑠curr

⌋
𝐷
ind

= UnifSample(𝐷,𝑛curr)
𝐷
atk

= UnifSample(𝐷\𝐷
ind
, 𝑛curr)

𝜖 = Similarity(𝐷
atk
, 𝐷

ind
)

Acc = SimulateAtk(𝐷
ind
, 𝐷

atk
, 𝑝𝑎𝑟𝑎𝑚𝑠)

Append (𝜖,Acc) to 𝑟𝑒𝑠𝑢𝑙𝑡𝑠
end for

Fig. 10. Optimized procedure to generate results with varying 𝜖-similarity

Require: 𝐷ex: sample document set with 𝑛 = |𝐷ex |; 𝑝𝑎𝑟𝑎𝑚𝑠 : fixed index parameters (e.g. keyword universe); NB_EXP:

number of experiments; A similar-data attack 𝑎𝑡𝑘 to be simulated; A quantile level 𝛼 .

Ensure: Parameters of the quantile regression model (𝑎, 𝑏)
Minimum size of a document set: min_size = 0.05 ∗ 𝑛
max_sum = 2/min_size

min_sum = 1/𝑛 {Minimum value of the sum
1

𝑛atk
+ 1

𝑛ind
}

Initialize 𝑥𝑦 as an empty list

for 𝑖 ∈ {1 . . .NB_EXP} do
curr_sum = (max_sum −min_sum) × 2𝑖

100
+min_sum

𝑛curr = ⌊2/curr_sum⌋
𝐷
ind

= UnifSample(𝐷ex, 𝑛curr)
𝐷
atk

= UnifSample(𝐷ex\𝐷ind
, 𝑛curr)

curr_acc = SimulateAttack(𝑎𝑡𝑘, 𝐷
ind
, 𝐷

atk
, 𝑝𝑎𝑟𝑎𝑚𝑠)

Append (log(2/𝑛curr), logit(curr_acc)) to 𝑥𝑦
end for
(𝑎, 𝑏) ← QuantileRegression(𝑥𝑦, 𝛼)

Fig. 11. Procedure to estimate the quantile function of an attack usingQuantile Regression

number of documents min_docs. The uniform sampling of the 𝜖 space is visible in Figure 2b contrary to the non-uniform

sampling obtained in Figure 6c (i.e., there are more results for smaller similarities). We also use this optimization in the

risk assessment protocol of Figure 11.

We detail the quantile estimation procedure in Figure 11. This straightforward algorithm takes as inputs the sample

document set, the index parameters, a quantile level, the number of experiments NB_EXP, and the attack. In this

algorithm, a loop picks NB_EXP different document sizes and simulates the attack with randomly sampled document

sets of such size. We then use the results of the attack simulations to compute the quantile regression described in the

previous paragraph. Our algorithm uses the same optimized sampling strategy as Figure 10.
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