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Abstract. The efficiency of blockchain systems is often compared to
popular credit card networks with respect to the transactions per second
rate. This seems to be an unfair comparison since these networks do not
complete a transaction from beginning to end. Rather they buy the risk
and settle it much later. Typically transactions have only two players,
the payer and the payee, and the settlement of this transaction requires
time since it depends on basic properties of the consensus protocol. In
practice, the payee, very often, needs to wait for confirmation in order
to ship the traded goods. Alternatively, the payee, or merchant, can ship
it in faith that the transaction will be confirmed. Our contribution, the
Maraved́ı Protocol, introduces a third player to minimize the risk of the
payee to be left without the payment even without the consensus layer
confirmation. The main idea is that the third player can work similarly
to a credit card company. That is, it buys the risk from the merchant, by
a small discount, and allows the third player to pay it instantaneously
via a payment-channel like protocol. In parallel, the third player receives
the regular payment transaction from the payer that can be settled on
the chain, thus, after waiting the consensus/blockchain required time.
Moreover, the on-chain transaction pays the full amount, allowing the
third player to cash in the discount. Hence, on the side of the merchant,
our protocol puts forth instantaneous finality in a novel way to the best
of our knowledge.

1 Introduction

The most widely known application for blockchain based systems is cryptocur-
rency. One of the main bottlenecks for mass adoption boils down to the number
of transactions per second (TPS) rate such systems can process. New transac-
tions are confirmed by the system as new blocks are added to the blockchain,
and the same chain is agreed among all the honest nodes of the network via a
Nakamoto style consensus protocol. The design and security of the consensus
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protocol plays a major role in the transaction validation process because it dic-
tates the rate of block creation either in Proof of Stake (PoS) or Proof of Work
(PoW) systems. Different protocols implement different refresh rates. Therefore,
in order to confirm a transaction, i.e., beyond the non-negligible probability of
disappearing from the blockchain, it is necessary to wait a few blocks. At the end
of this confirmation period, the systems offer finality, i.e., informally, a period
of time that a user needs to wait in order to be sure the transaction cannot
be reversed. The time requirement for such desirable property varies depending
on the system, for example, Bitcoin [20] needs on average every 60 minutes (or
6 blocks), Ethereum [27] requires 2,5 min (or 10 blocks), Cardano/Ouroboros
theoretically requires one time-slot which is 20 seconds (however for true im-
mutability of the chain according to the newest setting can be 36 hours) [4,8].
In general, pure blockchain based consensus protocols are slower than BFT sys-
tems, e.g., PBFT [3]. Therefore, in order to circumvent this crucial limitation in
distributed systems, hybrid protocols, i.e., combination of blockchain and BFT
approaches, were suggested, e.g., Algorand [9] and Thunder [21]. However the
proposed protocols still require some waiting for the confirmation time in order
to achieve finality.

Concretely, the confirmation time for the transferred funds can be particu-
larly risky to settle a transaction. Namely, after the Customer performs a pay-
ment, i.e., the payer, how to assure, quickly, to the Merchant, i.e., the payee,
that it is safe to deliver the purchased goods. In practice, within a distributed
environment with confirmation time, the Merchant can deliver the goods in the
optimistic case, i.e., on faith that the transaction will be finalized, after the issue
of the payment. Technically, in this scenario, the Merchant is under the risk that
the transaction will not be finalized given the waiting time of the consensus pro-
tocol. In other words, the Merchant is left without any guarantees of receiving
the payment. Researchers and practitioners have allocated effort, which has not
yet produced a clear definitive solution to the described limitation. In particular,
businesses that rely on cryptocurrency are keen to know whether transactions
can be securely confirmed much faster.

An earlier attempt to improve the TPS ratio is based on protocols that do
not perform most of its transactions on the chain, i.e., an off-chain protocol.
The most widely used is the Lightning Protocol [24] which establishes a channel
between two parties and limits the interaction with the blockchain. While the
work in [24] does offer a way to issue instantaneous, and verifiable, transactions
between the two parties, the initial establishment of the channel requires the
interaction with the blockchain, and, therefore, it is necessary to wait for the
confirmation time. Thus it is not suitable to the case of several parties, as every
new payment should trigger the creation of a new channel.

An Unfair Comparison. It is well known that centralized payment methods
like debit cards, Paypal or Payment Hubs [11] are orders of magnitude faster than
blockchain based systems, and they do offer instantaneous (with the disclaimer
we do not consider card information checking, receipt issuing, etc, which in fact
make it not strictly “instantaneous”). However, when discussing the transaction
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throughput of cryptocurrencies, a very common comparison often appears be-
tween the decentralized ledger technology and credit card networks. Whereas the
former most known example, i.e., Bitcoin, carries 7 TPS [25], the latter handles
tens of thousands per second [25]. This alarming difference can be explained by
the centralized nature of the network of the credit card company. Since decen-
tralized ledger technology is mostly decentralized, it imposes significant overhead
in the processing speed. To the best of our knowledge, another often overlooked
difference is that credit card companies do not only intermediate the transac-
tion between Customer and Merchant, they, in fact, buy the risk, i.e., the credit
risk, from the Merchant by a profit. In the light of this description, this credit
card model does not seem to have a counterpart in the cryptocurrency realm.
More concretely, in the physical world, a Customer would ask for the credit card
company, which we denote Risk Buyer, to pay the Merchant, while in a future
date the Customer pays the Risk Buyer back.

In this setting, the Merchant is assured, given the prior deal with the Risk
Buyer, that it will receive the funds even if the Customer does not fulfill its part
of the deal. In the real world, the Risk Buyer would require extra information
from the Customer to build confidence and, therefore, buy the risk. Concrete
examples of extra information are typically background check, spending history,
reputation, etc. Moreover Risk Buyer would also require some discount from the
Merchant. By paying the Merchant in advance, the Risk Buyer receives a profit
in order to engage in the deal in the first place. The crucial term is “in advance”.
That is, how quick, and guaranteed, this payment should be performed in order
to satisfy the finality property in the eyes of the Merchant.

Instantaneous Payment over Blockchain. Not all types of payments re-
quire confirmation time in the blockchain realm. In fact, several protocols put
forth instantaneous confirmation payments via payment/state channels [6,13],
i.e., depend virtually on the network speed, and the already mentioned [24].
Typically, these protocols need an initial phase which indeed requires confirma-
tion time. Subsequent payments, under certain values, are instantaneous between
payer and payee, albeit they are not reflected in the consensus protocol immedi-
ately. The result of these payments are reflected in the underlying ledger when
the channel is closed which requires, again, the confirmation time in order to
persist the final state of the channel.

Our approach takes this natural property of payment channels, i.e., instan-
taneous payments, and combines it with blockchain aided transaction, in order
to provide instantaneous settlement, i.e., finality, to the receiver of the funds,
i.e., the Merchant, in an ad-hoc transaction, i.e., without prior interaction to
the Costumer. Our approach is in sharp contrast to the existing protocols as we
put forth a novel approach: a hybrid design for protocols, and a relaxed notion
of finality, i.e., only applies for the Merchant.
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Related Work. As already outlined, early attempts to increase the TPS rate of
blockchain based systems rely on the establishment of payment channels. Such
protocols, in general, work by locking funds from two participants, i.e., the ca-
pacity of the channel, by standard transactions registered in the ledger, after
the confirmation of such a transactions, they interact directly, i.e., without the
ledger. Such an approach, effectively allows these participants to carry out nu-
merous direct transactions without time limitations from the consensus protocol.
Such transactions are settled instantaneously, although they are not registered
in the blockchain/ledger until the channel is closed. It is important to notice
that, although the transaction is not present in the ledger, by the time of its
settlement, the participants cannot revert it due to mechanisms of the typical
payment channel protocol, e.g., [24]. Such a class of protocols, named layer-2
(layer-1 being the consensus layer), has already a large body of work [12].

The protocol in [24] had received a formal treatment by Kiayias et al. [16],
which also showed evidence that common ledger functionalities (in the UC sense)
introduced in the literature do not seem to be realizable (for instantaneous final-
ity) under realistic network assumptions. In particular, they remark that [6,7,17]
presents a model that settles every submitted transaction immediately which
does not seem to be realistic for existing network models. A significant reminder
of the need for protocols that offer quick finality which motivates our novel ap-
proach and suggested protocol. A later work by Dinsdale-Younget al. [5] tackles
the slow consensus drawback by introducing a concrete finality layer. The work
relies on the formal properties of blockchain, i.e., common-prefix, chain-growth
and chain-quality. Despite its ingenuity, it cannot offer quick finality.

On a similar topic, Miller et al. [18] introduced Sprites, a variant of payment-
channels, which reduces the worst-case “collateral cost” that each hop in the
payment network may incur. In a nutshell, this work leverages on the use of
smart contracts, hence their use is restricted to “state channels”, to reduce the
attack surface and speed up the closing of the channel. More recently, Jourenko et
al. [14] improved on the technique to close multi-hop payment channels, but
without the use of smart-contracts, making it compatible with systems without
smart contract capabilities, such as the Bitcoin. In comparison, although our
work has three participants, we do not consider a multi-hop payment channel.
In fact, our setting is simpler, given that only the Merchant and the Risk Buyer
maintain the channel, making it an “almost” regular channel in the sense of [24].
The only difference is the change we introduce to the construction of the channel,
which we describe next. This change virtually makes no significant difference in
the efficiency of concrete implementation of [24], but allows us to introduce the
third player as our model requires.

Our Contribution. This work introduces the study of finality via risk trade.
To the best of our knowledge, it is the first time this approach is suggested. We
discuss the desiderata for such an approach. Furthermore, we present the Mar-
aved́ı Protocol which takes this fundamentally different approach to implement
finality. Namely, it puts forth instantaneous finality to the receiver of the funds
(which in our jargon is the “Merchant”). Our design sidesteps the drawback of
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distributed systems, i.e., the confirmation time of the blockchain systems, by
allowing a “pre-processing” phase which is mainly the establishment of a pair-
wise payment channel. The channel bridges the Merchant and the participant
who pays in advance, therefore buying the risk, (which in our model is the “Risk
Buyer”). Hence the payment to the Merchant is timely performed via the al-
ready established payment channel, taking advantage of the existing property
of the cited protocol [16,24], i.e., instantaneous payment. Note that the chan-
nel creation requires the confirmation time from the ledger. However, made in
advance, the required time does not interfere in the instantaneous interaction
between the Risk Buyer and the Merchant.

Our design allows any Customer to approach the Merchant in an ad hoc man-
ner, i.e., without any previous interaction, a desirable property. The Customer
issues a regular transaction to the Merchant, i.e., “regular” means it requires
time to settle in the ledger, however it is assigned to the Risk Buyer. The Mer-
chant forwards the transaction to the Risk Buyer conditioned with a payment
under its jointly created payment channel. A technical issue we solve in our con-
struction is conditionally fixing the regular payment and the payment channel
transferring of funds, without requiring trust between the two participants, i.e.,
Risk Buyer and Merchant. We adapted the Hash Time Lock Contract (HTLC)
technique used in the Lightning Network [24,16] by allowing the Risk Buyer to
keep the value x while delivering y = H(x) to the Merchant (which forwards it to
the Costumer), for a hash function H. The transaction issued by the Customer
is conditioned to the disclosing of x, which happens when the final payment is
done via the payment channel or the ledger.

More concretely, in our construction the HTLC technique is leveraged to
provide atomicity between the transaction to be published in the ledger and the
one performed in the payment-channel. Anytime the Risk Buyer publishes the
received blockchain transaction, it also discloses x which allows the Merchant to
also cash in the funds in the channel. We remark that the instantaneous finality
provided by our protocol relies on the combination of the ledger transaction and
the payment-channel transferring of funds. Despite the funds being locked in the
channel, the Merchant is assured to receive it given that the “pre-processing”
phase within the channel was established. The guarantee provided by the channel
construction is more desirable than solely relying on the optimistic heuristic that
nodes will reach an eventual consensus in the blockchain based system. Note,
for example, that a naive construction would be requiring Risk Buyer to pay the
Merchant right away, via the payment channel, and just wait for the transaction
(from the Customer) to be confirmed. However, in this case, there is no guarantee
that the Merchant would cooperate by, for example, publishing the transaction or
sending it to the Risk Buyer. it may be the case, that the Risk Buyer, relying on
some reputation registry, may no longer want to do business with the Merchant,
however, our construction does not need to rely on such strategy. It enforces
payment by design.
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In summary our contributions are

– We start by a discussion of the desiderata for risk trade in order to obtain
finality for the point of view of the Merchant. A notion we introduce in this
work in the best of our knowledge;

– We propose the Maraved́ı Protocol which concretely illustrates this novel
approach to put forth instantaneous finality for the Merchant;

– Finally, we describe the main property of our protocol, namely, the Merchant
and the Risk Buyer redeem the respective payment securely.

We remark our protocol is quite practical since we adapted an already ex-
isting construction, the Lighting Protocol [16,24]. We also show chase that our
approach does not require any sort of collateral, smart-contract capability or
checkpoints, e.g., [15]. Furthermore, we believe that the adaptation we propose
for the HTLC can be easily implemented taking the original source [24] code as
a blueprint for the construction.

Roadmap. One of our main contributions is presented in Section 3, i.e., the
desiderata of a three-participant trade risk. Section 4 outlines the main phases
of our construction, and provides an intuition for the approach, while Section 5.2
describes the concrete construction. We provide the security analysis in Section 6
along with a discussion with respect to the early introduced desiderata. The last
section, i.e., Section 7, presents our final comments.

2 Preliminaries

Our protocol relies on the payment-channel protocol for the risk trade for the
payment to the Risk Buyer. It is convenient to review the UTXO Model and the
Lighting Network design. In addition, for completeness, it is necessary to recall
the digital signature primitives used in our construction. However we first start
by the primitive which allows us to derive new keys. From now, let λ be the
security parameter, while negl(λ) is the standard negligible function and x

r← X
is the sampling algorithm for x from a uniform distribution X .

2.1 Pseudorandom Function

Each payment performed within the channel, a new set of keys are generated
from the original set of master keys. From now, we present a formal definition
for the Pseudorandom Function (PRF) and its security notion.

Definition 1 (PRF). Let λ ∈ N, an index, which defines the family, s ∈
{0, 1}∗,p : N→ N and fs be a family of functions from {0, 1}p(|s|) to {0, 1}p(|s|).
Furthermore, let Funcλ be the uniform distribution over the set of all {0, 1}λ →
{0, 1}λ functions. We say that fs is a pseudorandom function family if:

– ∀s ∈ {0, 1}∗,∀x ∈ {0, 1}p(|s|), ∃ PPT algorithm, denoted PRF(x, s), that
computes fs(x) for the input x
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– ∀λ ∈ N, ∀ PPT A,∣∣∣ Pr
s
r←{0,1}λ

A’s coins

[Afs(·)(1λ) = 1]− Pr
PRF

r←Funcλ

A’s coins

[APRF(·)(1λ) = 1]
∣∣∣ = negl(λ),

where A is given oracle access to fs(·) and PRF in each of the probability ex-
pressions above respectively.
2.2 Digital Signature Schemes

Typically, the standard digital signature scheme is the main cryptographic prim-
itive for transaction frameworks. Furthermore, payment channel [24,16] relies on
two extra signature schemes, namely, Identity Based Signature and Combined
Signature. It is convenient to review the three schemes.

Definition 2 (The Digital Signature Scheme [10]). It is the triple of algo-
rithms S = 〈Gen,VerDS,SignDS〉, such that
– Gen(1λ)→: The generation procedure, given the security parameter λ, and

outputs the key pair, i.e., verification and secret keys, respectively vk and sk;
– SignDS(sk,m)→ σ: The sign procedure takes as input the secret key sk and

the message m to output the signature σ;
– VerDS(vk,m, σ) → {0, 1}: The verification procedure takes the verification

key vk, the message m and the signature σ to output 1 if the signature is
valid, or 0 otherwise.

Moreover, the scheme is said to be resistant to Existential Unforgeable under
Adaptive Chosen Message Attacks (EUF-CMA) if, with respect to the security pa-
rameter λ, for any PPT algorithm Aforger, which can query the signature oracle
SignDS(sk, ·) for signatures on a polynomial number of messages mi, it holds

Pr[(vk, sk) ← Gen(1λ) : (m,σ) ← ASignDS(sk,·)
forger ∧m 6= mi] < negl(λ), where all

the probabilities are computed over the random coins of the adversary and the sig-
nature algorithms. Furthermore, Pr[(vk, sk)← Gen(1λ) : VerDS(SignDS(sk,m),
vk,m) = 1] = 1 for every m.
Definition 3 (Identity Based Signature (IBS) [26,22]). The IBS scheme
is a 5-algorithm tuple IBS = 〈Gen, KeyDer, PubKeyDer, SignIBS,
VerifyIBS〉, which is an augmented version used in [16] of the originals pro-
posed in [10]. Each algorithm is used as follows:
– Gen(1λ) → (mvk,msk): The setup algorithm takes the security parameter

and outputs the master key pair;
– KeyDer(mvk,msk, `) → (vk`, sk`): The regular signing key pair is derived

with respect to the label `;
– PubKeyDer(mvk`) → vk`: It is possible derive only the verification key

PubKeyDer with only the label ` and the master verification key mvk;
– SignIBS(m, sk`) → σ: This is the regular signing algorithm. That is, it

requires only the message m and the secret key sk;
– VerifyIBS(σ,m, vk`) → {0, 1}: The verification 3 is performed, as usual,

using the vk, m and σ.
3 Note that here, despite of being an Identity Based Signature, it requires vk` as input

as it is defined in [16][Section 5].
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Given the space constraints and the loose connection with our proposed con-
struction, we skip a full description of the security properties of the scheme. We
refer the reader [16][Section 5] for a full description of them.

Definition 4 (Combined Signature (CS) [16]). The CS scheme is a 7-
algorithm tuple CS = 〈MasterKeyGen, KeyShareGen, CombinePubKey,
CombineKey, TestKey, SignCS,VerifyCS〉 which was introduced informally
in [24] and formally analized [16]. Each algorithm is used as follows:
– MasterKeyGen(1λ)→ (mvk,msk): The key generation algorithm takes the

security parameter and outputs the master key pair;
– KeyShareGen(1λ) → (vk, sk): The key generation algorithm takes the se-

curity parameter and outputs a regular key pair;
– CombinePubKey(mvk, vk) → cvk: The combination algorithm combines

both master and regular verification keys into a new verification key;
– CombineKey(mvk,msk, vk, sk)→ (cvk, csk): The combination algorithm re-

ceives both master and regular key pairs into a new combined key pair;
– TestKey(vk, sk) → {0, 1}: The test algorithm verifies if both keys are a

regular key pair;
– SignCS(m, csk) → σ: It works as a regular signature generation algorithm

which receives as input the message and the combined verification key;
– VerifyCS(σ,m, cvk) → {0, 1}: The algorithm works as a regular verifica-

tion signature algorithm which receives signature, message and the combined
verification key.

For similar reasons we refrain to describe the security properties of Defi-
nition 3, we also skip the the properties of Definition 4. Again, we refer the
interested reader to [16][Section 9] for a full description of them. Later in Sec-
tion 2.4, instances of these signature schemes are used in the payment-channel
state and payment. Each participant of our protocol keeps one instance of the
regular digital signature and three of the IBS (for payment, delay payment and
HTLC) and one of the CS (for revocation of the old payment channel state).

2.3 The UTXO Model

Transactions in the Unspent Transactions Output (UTXO) Model, popularized
by the Bitcoin Whitepaper [20], are composed by two parts: the set of Inputs
I, and the (ordered) list of outputs O. A single output o ∈ O contains (1) the
value of the output and (2) the condition to redeem that value, e.g., [k : v, vk] for
which k is the index number of the output the value v, and the witness for public
key vk, meaning it requires the signature σ corresponding to vk. The condition
could also include time constraints with respect the height of the latest block in
the blockchain or the preimage of a hash value as in the HTLC. Furthermore,
an input references existing output by pointing its index number in a transac-
tion, that is Tx.O[1] refers to the first output of transaction Tx. This mechanism
of numbering the outputs is useful because I contains references of individual
outputs in previous (settled) transactions. Settled transactions can be straight-
forwardly found in the distributed ledger, along with the witness (typically, a
signature issued by the correct secret key) that allows a party to redeem the
value of the original input.
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Transaction Notation Assume a participant A has the pair of public and
secret key (vk, sk), if the pair controls a set of outputs (o1, o2, o3, . . . ), respectively
in Tx1, Tx2 and Tx3, then it is said that the state of A contains the mentioned
outputs, i.e., ΣA = (o1, o2, o3, . . . ). Thus, for example, a transaction Txtransfer
redeeming o2, therefore transferring v/2 to participant B and v/2 to C is given
by Txtransfer ← Tx{I : (Tx2.o2);O : [1 : v/2, vkB ], [2 : v/2, vkC ]} and it requires,
in order to be redeemed, the signature σA, as it contains Tx2.o2 in its input set
I. Figure 1 illustrates this example.

Fig. 1. In order to publish Txtransfer and therefore redeem the output from Tx2 and
transfer values to B and C, A needs to provide a signature σA. In the multisig setting, it
may also be possible that two signatures are necessary to redeem the output. Lightning
Networks (later) relies on such a setting.

2.4 The Lightning Network

The Lightning Network (LN) [24] takes full advantage of the above model to
move transactions outside of the ledger into the so-called Layer-2. Moreover LN
was thoroughly described in [16], which shed light on some of the inner workings
of the deployed protocol. In particular, it investigated the interplay between the
different signature schemes and the HTLC hash value when funds are exchanged
between more than two participants, i.e., a payment network. Briefly, in order
to illustrate it, consider the existing channel between two players A and B.
Without loss of generality, assume that only A has transferred some funds cA to
the channel AB. Assume also that another channel, say BC, exists between B
and C, and similarly only B has funded it with cB .

The main goal of the construction is to offer a way to transfer values from
A to C without the creation of the channel AC. For that purpose, C picks a
random value x and sends its hash value y = H(x) directly to A. The protocol
initiates by A triggering B in order to send the amount v to C, and the overall
dynamics is inverted. That is, B, after being triggered by A, pays C the same
amount to be transferred, i.e., v, and receives x in exchange. At this point, B
is in deficit, because it did not received v yet. Then B exchanges x for v with A
which can verify the equality y = H(x).

Remark 1. In comparison to [24,16] our design for the channel has also two
players: the Merchant and the Risk Buyer (as in [24,16]), however its use of
the HTLC differs. The latter picks the HTLC pre-image x, keeps it secret while
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disclosing y = H(x) to the Merchant. This design contrasts with [24,16] because
in our case the provider of y, i.e., Risk Buyer, is also the one receiving the
payment. Later, in our construction, it is shown that the HTLC value x is used
to both the delayed release of the payment, when Risk Buyer discloses x to
the Merchant, and receiving the funds via the blockchain when publishing the
transaction in the ledger.

Initial Setting. The above outlined protocol is a simplification, given that the
actual implementation of a payment channel protocol is involved and requires a
careful change of states between all the participants. In fact, the creation proce-
dure of each pairwise channel, e.g., between A and B, requires each participant
to issue (1) a single Funding Transaction TxF and (2) a pair of Commit Trans-
actions Txcommit; one denoted local and the other remote. They differ for the
signature used, A’s or B’s, to redeem the funding transactions.

Each participant keeps its key pairs: the regular signature key pair (vk, sk),
the IBS key pairs (vkdpay, skdpay), (vkpay, skpay), and (vkhtlc, skhtlc) for the
HTLC, and the CS (vkrev, skrev) as outlined in Section 2.2. It also keeps track
of the counterpart’s IBS verification keys vkdpay, vkpay and vkhtlc. Series of pay-
ments are performed as series of Commit Transaction exchanges between the two
participants (with the first Commit Transaction pair being n = 1 for a n-long
sequence). On every new payment, a new state of the channel is created. It is
performed by generating a pair of new transactions, and their signatures, along
with freshly derived key pairs are generated, and old committed transactions
are revoked (by sharing the revocation keys with the counterpart). For a full
specification of the mechanism we refer the reader to [16]. For now, it is enough
to look into the two types of transaction pairs. They are
– Funding: The transaction TxF contains an output o = [1 : cA, vkA], therefore

TxF .O[1] = (cA, vkA ∧ vkB), and it will be available on the ledger after the
next transactions are signed;

– Commit: The first Commit Transaction redeems their outputs (if published),
requiring only the signatures on their inputs as witness. However both trans-
actions are kept locally when the channel is active. Concretely, A keeps the
following transactions (analogously for B),

TxAlocal ← Tx{I : (TxFA .O[1]);O : [1 : cA, vk
B
rev,n=1 ∨ (vkAdpay,n=1, ∆B)],

[2 : cB , vk
B
pay,n=1]}; and

TxAremote ← Tx{I : (TxFB .O[1]);O : [1 : cA, vk
A
pay,n=1],

[2 : cB , vk
A
rev,n=1 ∨ (vkBdpay,n=1, ∆A)]},

along with signatures σA and σB with respect to vkA and vkB respectively.
Furthermore they also depend on the IBS keys, where vkBrev,n=1, vkBpay,n=1,

vkBdpay,n=1 are the counterpart’s verification keys, and vkApay,n=1, vkArev,n=1,

vkAdpay,n=1 are the participant’s own verification keys, along with the agreed de-
lay ∆A and ∆B which are arbitrarily chosen by each participant and exchanged
prior to the creation of the Funding transactions.
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Payment and State Revocation. Payments are performed by altering the
balance, i.e., cA and cB , via the exchange of new pairs of transactions from the
initial state, i.e., Txremote,1 and Txlocal,1. The initial state n = 1 progresses to the
new state n = 2, i.e., Txremote,2 and Txlocal,2 via exchange of signatures and new
derived keys. Crucially, older states need to be “revoked” which is performed by
the computation of the secret revocation key shrev,n=1 of the old state. The main
idea is that a participant is not financially incentivized to publish a transaction
from an old state, because the counterpart can use its newly computed revocation
key to redeem the funds. Briefly, if a participant publishes an old state, the
counterpart can take all the funds of the channel. It is important to remark that
the secret revocation key is only computed when the state is agreed to be “old”,
which prevents any party to misuse it.

During the HTLC, there is an intermediate state create by a pair of trans-
action txA,htlc and txB,htlc, under locally derived HTLC keys (vhhtlc, vthtlc),
which redeems the outputs of the state transactions Txremote,n and Txlocal,n for
the state n. A thorough discussion of revocation and the HTLC mechanism can
be found in [16].

Time Analysis. The n−hop payment channel/network requires a careful set-
ting between the (relative) time delay parameters ∆1, . . . , ∆n−1, for the dispute
of the payments, within each pairwise channel, in addition to the confirmation
time of the consensus protocol, i.e., ∆confirmation. This parameter is a the-
oretic value only, however, the security of deployed systems relies on timing
values to be larger than ∆confirmation such as the dispute time delay parameter
∆HTLC when performing the HTLC procedure as well as ∆A and ∆B . While
∆confirmation is unknown, values for ∆HTLC , ∆A and ∆B are set by the imple-
mentation [19,23] in an attempt to capture the real delay of the protocol. The
parameter ∆HTLC can vary from 14 blocks [23] to a value between 14 and 144
blocks [19] whereas parameters ∆A and ∆B are set between 6 and 17 blocks4. In
Maraved́ı, we remark that the dispute time delays are arbitrarily picked by each
participant of the channel, say ∆A and ∆B , as it is defined in [16], and there
is also the dispute time delay parameter ∆HTLC when performing the HTLC
procedure. In our construction we require that ∆A, ∆B , ∆HTLC are greater than
∆confirmation, which, likewise [19,23], can be set by the concrete implementa-
tion. In Section 5.2, we only rely on ∆A and ∆B , for the Merchant and Risk
Buyer, respectively, and ∆HTLC for the intermediate state given it is a pairwise
payment channel.

3 Desiderata

We overview the main requirements/characteristics, i.e., desiderata for a proto-
col to trade risk, for each of the three classes of participants, namely Customer,
Merchant and Risk-Buyer. We denote them respectively by C, M and R.

Let us start with the requirements/characteristics from C’s point of view:

4 https://github.com/lightningnetwork/lnd/blob/master/lnrpc/lightning.proto.
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– Instantaneous Finality: The transaction performed between C and M
should be instantaneous. That is, no confirmation time is required. Simi-
larly to a physical transaction with physical goods;

– Ad Hoc Availability: The participant C should not be required to know
M in advance. In the sense that any sort of interaction or preparation must
not be required between M and C;

– Background Availability: The participant C may know R, and may inter-
act with it via a direct communication channel prior to be in direct contact
with M (it is the same for R later);

– Trustless Trade: There is no trust assumed between C and M.

From now we list the requirements/characteristics for M:

– Instantaneous Settlement: The merchant M should be in contact with
R which allow instantaneous payment which can be created prior to any
transaction between C and M;

– Direct Interaction: All transactions are exchanged via the direct (not
necessarily secure) communication channel between C and M, and M and R;

– Risk Trade Security: For each accepted transaction, with an arbitrary
value, M receives from R the same value minus a discount, via the already
established payment channel (analogous 5 for R);

– Trustless Risk Buyer: There is no trust assumed between M and R (the
same in the point of view of R).

Lastly we list the requirements/characteristics for R:

– Allowed Pre-processing: Prior to any performed transaction between C
and M, a “pre-processing” phase is allowed (not necessarily related to a
payment channel) to implement a instantaneous payment method between
M and R with enough payment capacity;

– Background Availability: The participant R can potentially keep a list of
(ledger) addresses for multiple customers Ci (for accessing the risk of buying
C’s risk, for example, and it is identical to C’s case);

– Risk Trade Security: For every transaction accepted by M, R should re-
ceive the equal value (after the confirmation time) by publishing a regular
transaction (e.g., issued by C) in the ledger (analogous 6 for M).

– Trustless Merchant: There is no trust assumed between R and M (the
same in the point of view of M).

We remark that C and R do not necessarily interact directly, unless they prior to
the execution of the protocol. For example, in order to share “background” as in
the Background Availability. Therefore, we let it out of the desiderata. However,
in the general case they do not necessarily trust each other.

For clarification, our protocol handles two types of transactions which we
denote by payment channel transaction and regular transaction. Whereas the

5 That is, the procedure of R and M are comparable in certain respects. In other
words, they are not quite the same, because R does not receive anything. It, instead,
pays the same value minus a discount to M, being its counterpart in the (single-hop)
payment channel.

6 In the sense of what already explained earlier.
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former is the transaction between M and R over the payment channel, the later
is the one that relies on the blockchain confirmation time, and issued by C to
be redeemed by R. Technically, there are only small differences between the two
types which become clear later, however we highlight this terminology to avoid
ambiguities and improve readability.

4 Outline of the Construction

The main phases of our protocol are Protocol Set up, Issuing Transaction Pro-
posal, Risk Buying, and Settlement performed by M, C and R all with access
to their respective states Σi for i ∈ {M,C,R} via the ledger. Furthermore, we
assume they have a pairwise direct communication channel. Their interaction
happens through direct exchange of transactions: (1) TxC a regular transaction
to be redeemed by R via ledger, and (2) the payment channel transaction TxR
to be issued by R and assigned to M. Both transactions require the reveal of the
HTLC preimage x picked by R. In addition to the value x, the payment channel
transaction TxR requires signatures from R and M as it is standard in [24].

Our model starts with the instantiation of the payment channel in the be-
ginning of a trading day as a “pre-processing” phase.

Protocol Set Up. Initially, each participant generates locally the verification
and secret key pair (vki, ski) for i ∈ {M,C,R}. On the beginning of each trading
day, R initiates a payment channel with M. Note that before accepting any
transactions (from C), M and R are required to wait until the confirmation of
the channel initialization as given by the consensus layer. This waiting time
assures both players that the channel can be safely used.

Transaction Proposal. After the earlier described initial setting, assume a
merchant M receives a transaction proposal Tp = (v, vkC) from C, for a value
v. The Merchant M directly contacts R through a separated (and independent)
communication channel, and offers Tp for trade.

Risk Buying. In the case R accepts Tp, then it hands back (d, vkR, y) to M
where y is the image for the HTLC, d is the discount of the value v, vkR is its
own public key where the payment should be directed, i.e., regular transaction.
At this point, M (1) signals C that the deal can continue by handing y to C,
and (2) requests R the payment, which will be done via the payment channel. It
follows that C generates (TxC, σC), where σC is the signature of TxC with respect
to vkC, and returns (TxC, σC) to M, while R and M perform the payment in the
channel, i.e., progress the channel from, say, state n to n + 1. At this point
the intermediate state, for the HTLC, is created and both M and R revoke the
previous ones.

Settlement. At this point, M has (TxC, σC) and submits it to R which receives in
exchange of the HTLC pre-image x such that y = h(x). Since M and R have both
signatures for TxR and the value x for the HTLC hash value, the payment over
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the channel is performed for the value of v− d to M, and R has (TxC, σC) which
can be redeemed with its publication in the ledger. At this point, M already
assured its payment in the channel, whereas R has to wait the confirmation
time to settle its payment via the consensus protocol. As far as M is concerned
the procedure is over therefore it can initiate another transaction with another
customer any time. The properties of the channel assure M that its payment is
guaranteed and available by the time of the closure of the channel. By the end
of the trading day, both R and M jointly decide to close the channel, which frees
the payments for M. This procedure is a regular one from any payment channel.

Remark 2. The overall actions rely on the procedures of a payment channel
protocol like [16]. However our protocol uses the HTLC technique in a different
way. That is, by adding the hash value into both TxC and TxR, by the time of the
settlement of the transaction TxR on the chain the preimage is publicly disclosed,
thus M can redeem the value received within the channel.
Remark 3. The early description briefly outlines the actions performed, however
it is critical to note that the transaction via a payment channel is done by
synchronized changes in the channel status of the participants. In particular,
the preimage revealing is not performed by an exchange of TxR. In fact, the
“transfer of TxR” is an interactive process that both players instantiate the new
state and revoke the previous one (as it is standard in payment channels).

5 Our Protocol: Maraved́ı

Here we thoroughly describe our construction for the model in Section 4. We
start by providing a general intuition of the protocol.

5.1 Intuition

Our protocol relies on the channel between M and R and it is an adaptation from
LN as it is described in [16]. Here we skip the full specification of the payment
channel, we refer the reader to [16] for a thorough description. For our purposes
it suffices to describe the final configuration between the two parties by the end
of the setup of the channel. Then we concretely describe our protocol and our
adaptation to the use of the HTLC technique.

After exchanging of initial keys, the established requested delay time, i.e., ∆R

and ∆M, the participants perform the signing and publication of, respectively,
the initial Commit Transactions, i.e., Txlocal and Txremote, and the Funding
Transaction TxFR

. Each payment received by the Merchant M from the Customer
C is processed via the payment channel transaction (instantaneous payment)
and a regular transaction (slow payment, performed in the ledger). Therefore
the execution of the protocol starts from an initial set up, with n = 1 with
the initial Commit Transaction. At a later moment, upon receiving a customer
transaction, with the last signed Commit Transaction with index n, the protocol
progresses to a new (intermediate) state for HTLC, i.e., n = n+ 1, and then to
the final balance with (valid) state n = n + 2. Figure 2 illustrates the progress
through the three states. Namely, it outlines the inclusion, and the removal, of
the outputs into the locally kept pairs of Commit Transactions.
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The closing of the channel works like a regular LN channel, i.e., as described
in [16]. Our protocol leverages on the original HTLC technique by atomically
conditioning the payment channel transaction and the regular transaction, by
adding the HTLC value to the latter and the former. With this setting, by the
time R cashes in the payment via the ledger, it reveals the HTLC preimage
allowing M to also redeem its own payment within the channel, even if R did not
reveal the value previously. Note that, as in the regular payment channel, it is
required that both participants are online.

Fig. 2. This sequence of states illustrates the transferring of amount, and it depicts
as the pairs of Commit Transactions kept locally by the merchant M. Note that in the
intermediate state n+1, in order to redeem the outputs, it is necessary to disclose the
preimage of the HTLC value or wait for the delay ∆htlc. Moreover the final state n+ 2
the amount is transferred to the final outputs and conditioned to the revealing of the
HTLC value. We highlight the update in the transactions in the intermediate state in
blue, and the adaption of our protocol atomically payment between M and R in red.

5.2 Concrete Construction

Maraved́ı progresses from the initial setting, the “pre-processing” phase, which
is the creation of a regular LN channel. Thus it progresses as the phases outlined
in Section 4. Hence we start from the initial state and by quickly reviewing the
initial key generation. We remark that the initial phase is a regular creation of
the LN channel, therefore we only briefly recall it. We refer the reader to a full
discussion in [16].
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Protocol Setup Up. As a regular LN channel construction, R and M generate
private information and exchange cryptography keys. They are

– Randomnesses: seedi for i ∈ {R,M} which is used with the PRF in order
to generate new randomness for the keys to be derived on each state of the
channel;

– IBS Master keys: These keys, as pointed in [16], are necessary to optimize the
exchange of keys. They are Gen(1λ)→ (mvkidpay,mskidpay), (mvkipay,mskipay),

(mvkihtlc,mskihtlc), (vkicom, sk
i
com) for i ∈ {R,M}, and they are used to derive

new keys for the each new state;
– CS Master keys: This key pair is also used to optimize the key exchange.

Furthermore it is used to generate the revocation key which allows the par-
ticipant to revoke an old state of the channel. The key pairs are given by
setting MasterKeyGen(1λ)→ (mvkirev,mskirev) for i ∈ {R,M}.

These initial keys are used to generate and derive new keys for each state. Con-
cretely, R has vkR, skR to create the channel, and starts by generating, for the
first state, (vkRcom,1, sk

R
com,1), vkRpay,1, vkRrev,1, vkRdpay,1 vkRhtlc,2 (and its respective

secret keys), and keeps track of vkMrev,1, vkMpay,1, vkMdpay,1, vkMhtlc,2 which are M
public keys. Vice-versa for M which also keeps track of R’s verification keys.
Note that both parties also have their respective keys regarding the Funding
Transaction vkR and vkM.

Later, R accesses its state ΣR in the ledger to issue the Funding Transac-
tion, and exchanges it (after the local Commit Transactions are securely signed
and exchanged). In the end of the process, R keeps the following two Commit
Transactions

TxRlocal ← Tx{I : (TxFR
.O[1]);O : [1 : c, vkMrev,1 ∨ (vkRdpay,1, ∆M)], [2 : 0, vkMpay,1]},

TxRremote ← Tx{I : (TxFR
.O[1]);O : [1 : c, vkRpay,1], [2 : 0, vkRrev,1 ∨ (vkMdpay,1, ∆R)]},

while M keeps

TxMlocal ← Tx{I : (TxFR
.O[1]);O : [1 : c, vkRpay,1], [2 : 0, vkRrev,1 ∨ (vkMdpay,1, ∆R)]},

TxMremote ← Tx{I : (TxFR
.O[1]);O : [1 : c, vkMrev,1 ∨ (vkRdpay,1, ∆M)], [1 : 0, vkMpay,1]},

with both participants having either the signature σR or σM for each of the
locally kept transactions. Note that both transactions rely on the original funds
c provided by R in the Funding Transaction TxFR

. Although M can also add
funds to the channel, as in a regular payment channel, in our construction, it
just receives them from R, therefore a single source of funds suffices for us.

Each participant keeps track of the last n committed transactions, starting
from n = 1, such that Txremote = Txremote,1 and Txlocal = Txlocal,1. Moreover,
the channel is assigned with a flag Channel to monitor the channel with a pair
of values (id, note) initially set empty, i.e., Channel ← ⊥, such that note is a
string which identifies the state of the channel, and id is an identifier for the
payment to be performed.
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Transaction Proposal. According to the early described model, C submits a
transaction proposal Tp = (v, vkC), for an amount v and C’s verification key, to
M which performs the following
– Picks a uniformly random unique identifier payid
– Sets ChannelM ← (payid, ·)
– Checks if there is a payment channel with R with capacity greater than v
– Adds to the list pendingGetPay the tuple (vkC, v, payid, ·, “Waiting update”)
– Submits (vkC, v, payid) to R via a direct communication channel.

The lists pendingPay and pendingGetPay are used to keep track of the pay-
ments and their current status on either participants.
Risk Buying/Preparation. Given a hash function H, R picks the value of the
HTLC preimage, and, jointly with M, prepares its pair of local transactions, i.e.,
Txlocal and Txremote. That is, R performs as follows upon receiving (vkC, v, payid):
– Verifies if @(vkC, α, β, θ, γ, payid, ·) in pendingPay for any α,β,θ and γ. Oth-

erwise, close the channel
– Picks a random value x in the domain of H
– Sets ChannelR ← (payid, ·)
– Sets (vkC, vkM, H(x), x, v, payid, “Waiting update”) to pendingPay

– Picks ∆htlc, for delay period, and sends (payid,H(x), ∆htlc) to M
Upon receiving the message (payid, y,∆htlc) from R, M prepares its local trans-
actions accordingly, which concretely means to add new outputs into the local
kept transactions Txlocal and Txremote. The new outputs are related to the value
of the received hash value y. In other words, M proceeds to perform the following
upon receiving (payid, y,∆htlc):
– If (vkC, v, payid, ·, “Waiting update”) = pendingGetPay, then
• Removes “Waiting update” from the entry, and adds y to the entry, i.e.,

(vkC, v, payid, y, ·) ∈ pendingGetPay

– Update its locally kept transactions by adding the third output (in blue)
with respect to the HTLC state on each transaction:

TxMlocal ← Tx{I : (TxFR
.O[1]);O : [1 : cR−(v − d), vkRpay,n],

[2 : cM, vk
R
rev,n ∨ (vkMdpay,n, ∆R)],

[3 : v − d, vkRrev,n+1 ∨ (vkRhtlc,n+1 ∧ (vkMhtlc,n+1, y))∨(vkRhtlc,n+1, ∆htlc)]},

TxMremote ← Tx{I : (TxFR
.O[1]);O : [1 : cR−(v − d), vkMrev,n ∨ (vkRdpay,n, ∆M)],

[2 : cM, vk
M
pay,n],

[3 : v − d, vkMrev,n+1 ∨ (vkMhtlc,n+1, y)∨(vkMhtlc,n+1 ∧ vkRhtlc,n+1)]},

where cR and cM are the current balances, and the public keys derived from
the initial state, in the channel for the n−th payment

– Forward (v, vkR, y) to C, which replies with (TxC, σC) such that TxC ← Tx{I :
o ∈ ΣC;O : [1 : v, vkR ∧ y]} which pays directly to R (redeeming C’s outputs
in ΣC) conditionally to the disclosure of the preimage of y. Hence M submits
(UpdateADDHTLC, payid) message to R, meaning R can update its locally
kept transactions.
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At this point, only M has prepared its internally kept transactions. Thus it
is R’s turn to set its transaction variables similarly.
– Verifies if ∃(vkC, α, β, θ, γ, payid, note) in pendingPay for any α,β,θ and γ,

and note = “Waiting update”. Otherwise, close the channel
– Upon receiving the message (UpdateADDHTLC,payid), R updates (in

blue) its local transactions as follows:

TxRlocal ← Tx{I : (TxFR
.O[1]);O : [1 : cR−(v − d), vkMrev,n ∨ (vkRdpay,n, ∆M)],

[2 : cM, vk
M
pay,n],

[3 : v − d, vkMrev,n+1 ∨ (vkMhtlc,n+1, y)∨(vkMhtlc,n+1 ∧ vkRhtlc,n+1)]};

TxRremote ← Tx{I : (TxFR
.O[1]);O : [1 : cR−(v − d), vkRpay,n],

[2 : cM, vk
R
rev,n ∨ (vkMdpay,n, ∆R)],

[3 : v − d, vkRrev,n+1 ∨ (vkRhtlc,n+1 ∧ (vkMhtlc,n+1, y))∨(vkRhtlc,n+1, ∆htlc)]}.

– R moves (vkC, vkM, H(x), x, v, payid, note) from pendingPay to paid, and
sets pendingPay = ⊥

– Sets (payid, x)→ pendingFulfill

Risk Buying/Agreement-R Side. At this point, M and R proceed to create
new HTLC Commitment transactions which relies on the previously updated
transactions, respectively redeeming their HTLC outputs. First, R performs the
following, assuming, as before, TxRremote,n is the last signed transaction:

– Verifies if TxRremote 6= TxRremote,n. Otherwise stop

– Verifies (payid, note) = ChannelR, such that note 6= “waiting
for RevokeAndAck”

– Sets TxRremote,n+1 ← TxRremote
– Sets σremote,n+1,R ← SignDS(TxRremote,n+1, skR)
– Issue an unsigned Remote HTLC transaction

TxRremHTLC,n+1 ← Tx{I : (TxRremote,n+1.O[3]);

O : [1 : v − d, vkRrev,n+1 ∨ (vkMdpay,n+1, ∆R)]}

– Set σhtlc,n+1,M ← SignIBS(TxRremHTLC,n+1, sk
R
htlc,n+1)

– Set note← “waiting for RevokeAndAck”, and ChannelR ← (payid, note)
– Send M the tuple (payid, σremote,n+1,R, σhtlc,n+1,R)

At this point R creates a new status by sending the necessary signatures to M
(and revoking the previous state), which verifies its secret key shR for the (n+1)-
th Commit Transaction, and transaction that redeems the newly added output
(which sets the funds in a special state due to the HTLC technique). Therefore M
performs the following upon receiving the signatures (payid, ComSig,HTLCSig),
respectively for the Commit and HTLC Transactions:
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– Verifies (payid, note) = ChannelM, such that note 6= “waiting
for RevokeAndAck”, otherwise stop

– Let TxMlocal,n be the last signed transaction, then it verifies if TxMlocal 6=
TxMlocal,n. Otherwise stop

– If VerDS(ComSig, TxMlocal, vkR) = 0, then close the channel
– Sets

TxMlocalHTLC,n+1 ← Tx{I : TxMlocal.O[3];

O : [1 : v − d, vkRrev,n+1 ∨ (vkMdpay,n+1, ∆R)]}

– If VerifyIBS(HTLCSig, TxMlocalHTLC,n+1, vk
R
htlc,n+1) = 0, then close the

channel
– Sets note ← “ irrevocably committed” and adds (TxMlocal, note) to the list

pendingLocalComM

– Sets prandMn+2 ← PRF(seedM, n+ 2)

– Sets (vkMcom,n+2, sk
M
com,n+2)← KeyShareGen(1λ, prandMn+2)

– Send (payid, skMcom,n, vk
M
com,n+2) to R

We remark that disclosing the previous key skMcom,n is part of the revocation
process to invalidate the previous state of the channel. Such a mechanism allows
R to combine the keys (property of the Combined Signature Scheme as outlined
in Section 2), and to obtain the secret revocation key skRrev,n.

From now, on R’s side, it starts the final step of this phase: verifies whether
the received keys from M are correct, derive new ones and update the flags.
Concretely, upon receiving (payid, skMcom,n, vk

M
com,n+2), R proceeds as follows:

– Retrieve note from ChannelR, and verify if note = “waiting
for RevokeAndAck”. Otherwise close the channel

– If TestKey(vkMcom,n, sk
M
com,n) = 0, then close the channel

– Set note← “irrevocably committed”, and add to the list pendingRemoteComR

the tuple (TxRremote, note)
– Derive new keys by setting
• skRrev,n ← CombineKey(mskRrev, mskRrev, vk

M
com,n, sk

M
com,n)

• vkRrev,n+2 ← CombinePubKey(mskRrev, vk
M
com,n+2)

• vkMrev,n+2 ← CombinePubKey(mskRrev, vk
R
com,n+2)

• (vkRdpay,n+2, sk
R
dpay,n+2)← KeyDer(mvkRdpay, mskRdpay, vk

R
com,n+2)

• vkMdpay,n+2 ← PubKeyDer(mvkMdpay, vk
M
com,n+2)

• (vkRpay,n+2, sk
R
pay,n+2)← KeyDer(mvkRpay, mskR, vkRcom,n+2)

• vkMpay,n+2 ← PubKeyDer(mvkMpay, vk
M
com,n+2)

• (vkRhtlc,n+2, sk
R
htlc,n+2)← KeyDer(mvkRhtlc, mskRhtlc,vk

R
com,n+2)

• vkMhtlc,n+2 ← PubKeyDer(mvkMhtlc, vk
M
com,n+2)

– Set note← “·”, and update ChannelR

At this point R computed the skRrev,n meaning that the n-th state is “irre-
vocably revoked” because if the counterpart M tries to publish this state R can
use it to redeem all the contents of the channel via the second output of TxMlocal.
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Furthermore, an intermediate state is partially created by TxRremote where the
funds (v − d) are carried. In order to fully create the intermediate state, it is
necessary that M performs its side of the procedure.

Risk Buying/Agreement-M Side. The case is analogous to the R, which
means that both states, for M and R, are committed. Briefly M generates the sig-
nature σremote,n+1,M ← SignDS(TxMremote,n+1, skM), for TxMremote,n+1 ← TxMremote,
and issues a unsigned remote HTLC transaction

TxMremHTLC,n+1 ← Tx{I : (TxMremote,n.O[3]);

O : [1 : v − d, vkMrev,n+1 ∨ (vkRdpay,n+1, ∆M)]},

and sets
σhtlc,n+1,M ← SignIBS(TxMremHTLC,n+1, sk

M
htlc,n+1),

and submits to R which verifies both σremote,n+1,M and σhtlc,n+1,M (which R
verifies with its locally kept TxRlocalHTLC,n+1 ). Moreover M derives the new keys,

namely, vkMrev,n+2, vkRrev,n+2, (vkMdpay,n+2, sk
M
dpay,n+2), vkRdpay,n+2, (vkMpay,n+2,

skMpay,n+2), vkRpay,n+2, (vkMhtlc,n+2, sk
M
htlc,n+2), vkRhtlc,n+2. In particular, M also

computes the revocation key skMrev,n (in a similar fashion as R did).
Crucially, the participants keep the states in two lists, namely, for i ∈ {M,R},

pendingLocalComi and pendingRemoteComi, in order to keep track of the com-
mitted transactions. This design guarantees that the new state is revoked only
when the next one is signed on both sides.

Settlement. Here, the previous state n is successfully revoked on both sides,
however the funds are in the intermediated HTLC state n+1. For now it remains
(1) to move to the final value to state n + 2 (when M receives the funds); (2)
R to reveal the preimage x to M; and (3) M to submit (Txbuy, σbuy) to R. This
final step allows R to cash the value later via the ledger when it publishes the
transaction. However it is first necessary to finalize the payment within the
channel, which means to revoke the state n+ 1. Therefore R verifies whether M
has not submitted its transaction to the ledger as follows
– Reads the ledger to update the outputs in the state ΣR

– R checks if M has not submitted transaction to the ledger. That is, if the
outputs TxRremote.O /∈ ΣR, then
• Send message (Settlement, payid) to M

Otherwise
• if ∃(α, β, γ,H(x), x, payid, note) = paid, then remove the entry
• Set

TxRpay ← Tx{I : TxRremote,com.O[3];O : [1 : v − d, vkRhtlc,n]}

• Set σpay ← SignIBS(Txpay, sk
R
htlc,n)

• Submit (Txpay, σpay) to ledger
In case M has not submitted the transaction to the ledger, then it receives

(Settlement, payid), and it performs
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– Verifies (payid, note) = ChannelM, such that note 6= “waiting
for RevokeAndAck”, otherwise stop

– M removes the outputs (added in the preparation phase) of its locally kept
remote and local transactions, and update the balance. That is, it sets

TxMlocal ← Tx{I : (TxFR
.O[1]);O : [1 : cR−(v − d), vkRpay,n+2],

[2 : cM+(v − d), vkRrev,n+2 ∨ ((vkMdpay,n+2, ∆R)∧y)]},

and

TxMremote ← Tx{I : (TxFR
.O[1]);

O : [1 : cR−(v − d), vkMrev,n+2 ∨ (vkRdpay,n+2, ∆M)],

[2 : cM+(v − d), vkMpay,n+2∧y]}.

– Sets σremote,n+2,M ← SignDS(TxMremote, skM)
– Sets note← “waiting for RevokeAndAck”, and ChannelM← (payid, note)
– Sends R the tuple (payid, σremote,n+2,M)

Note that the preimage of y (in red) is necessary to redeem the output, and
it will only be available after R discloses it, upon receiving the transaction issued
by C.

From this point, in case R verifies M’s signature on its local version of the
transaction it can revoke its old state n+1. Thus R starts by creating the locally
kept Commit Transactions for state n + 2. Upon receiving (payid, ComSig), R
does as follows:
– Analogous to the procedure performed by M, R updates its new state by

removing the HTLC outputs and adjusting the balance:

TxRlocal ← Tx{I : (TxFR
.O[1]);

O : [1 : cR−(v − d), vkMrev,n+2 ∨ (vkRdpay,n+2, ∆M)],

[2 : cM+(v − d), vkMpay,n+2∧y]}; and

TxRremote ← Tx{I : (TxFR
.O[1]);O : [1 : cR−(v − d), vkRpay,n+2],

[2 : cM+(v − d), vkRrev,n+2 ∨ ((vkMdpay,n+2, ∆R)∧y)]}.

– If VerDS(ComSig, TxRlocal, vkM) = 0, then close the channel
– Verifies (payid, note) = Channel, such that note 6= “waiting

for RevokeAndAck”
– Sets note← “ irrevocably committed” and pendingLocalComR← (TxRlocal, note)

– Sets prandRn+3 ← PRF(seedR, n+ 3)

– Sets (vkRcom,n+3, sk
R
com,n+3)← KeyShareGen(1λ, prandRn+3)

– Sends (payid, skRcom,n+1, vk
R
com,n+3) to M

As before, the disclosing of skRcom,n+1 allows M to compute the revocation
key and therefore R has revoked the n+ 1 state of the channel on its side. From
this point, M can also revoke its state, and derive a whole new set of keys for
the next state. The derivation on M’s side is similar as before
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– skMrev,n+1 ← CombineKey(mskMrev, mskMrev, vk
R
com,n+1, sk

R
com,n+1)

– vkMrev,n+3 ← CombinePubKey(mskMrev, vk
R
com,n+3)

– vkRrev,n+3 ← CombinePubKey(mskMrev, vk
M
com,n+3)

– (vkMdpay,n+3, sk
M
dpay,n+3)← KeyDer(mvkMdpay, mskMdpay, vk

M
com,n+3)

– vkRdpay,n+3 ← PubKeyDer(mvkRdpay, vk
R
com,n+3)

– (vkMpay,n+3, sk
M
pay,n+3)← KeyDer(mvkMpay, mskM, vkMcom,n+3)

– vkRpay,n+3 ← PubKeyDer(mvkRpay, vk
R
com,n+3)

– (vkMhtlc,n+3, sk
M
htlc,n+3)← KeyDer(mvkMhtlc, mskMhtlc, vk

M
com,n+3)

– vkRhtlc,n+3 ← PubKeyDer(mvkRhtlc, vk
R
com,n+3)

– Set note← “·”, and update ChannelM

Analogously, M revokes its state channel when verifying the signature of R
with its locally kept transaction. Therefore R performs as follows

– Sets σremote,n+2,R ← SignDS(TxRremote, skR)
– Sets note← “waiting for RevokeAndAck”, and ChannelR ← (payid, note)
– Sends M the tuple (payid, σremote,n+2,R)

Upon receiving (payid, Comsig), If VerDS(ComSig, TxMlocal, vkR) = 0, then
close the channel. Otherwise M does the following:

– Verifies (payid, note) = ChannelM, such that note 6= “waiting
for RevokeAndAck”

– Sets note← “irrevocably committed” and pendingLocalComM← (TxRlocal, note)

– Sets prandMn+3 ← PRF(seedM, n+ 3)

– Sets (vkMcom,n+3, sk
M
com,n+3)← KeyShareGen(1λ, prandMn+3)

– Sends (payid, skMcom,n+1, vk
M
com,n+3) to R

The secret key skMcom,n+1 is disclosed by M, triggering the key derivation
phase and, therefore, the revocation of the old state. As before, R derives the
new set of keys. For completeness, the keys are vkRrev,n+3, vkMrev,n+3, (vkRdpay,n+3,

skRdpay,n+3), vkMdpay,n+3, (vkRpay,n+3, sk
R
pay,n+3), (vkRhtlc,n+3, skRhtlc,n+3), vkMpay,n+3,

vkMhtlc,n+3. In particular, R computes the revocation key skRrev,n+1.

At this point, the only valid (not revoked) state is n+2, and the balance for R
is cR−(v−d), whereas for M, it is cM+(v−d) (and initial amounts of, respectively,
cR and cM before the payment). Note that the last signed transaction requires
the preimage of y. Therefore both participants perform as follows

– M submits to R the tuple (TxC, σC) received from C
– R removes (payid, x) from pendingFulfill, sets both pendingFulfill and

paid to ⊥, and submits x to M
– M sets ChannelM and pendingGetPay to ⊥
– M delivers the purchased good to C
– R submits (TxC, σC, x) to ledger, and sets ChannelR ← ⊥

We remark that in order to cash in the whole amount (without the discount
d), R publishes (TxC, σC, x) which allows that, even without communicating di-
rectly to M the value x, M to obtain the value from the ledger and therefore can
redeem the payment within the channel.
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Remark 4. We emphasize that closing the channel, cooperatively or not, in our
construction is done with the same procedure of a regular LN channel. Thus, we
refer the reader to [16] for a full discussion on the matter.

6 Security Analysis

Here we discuss two complementary security features of our construction: the (1)
payment channel based security and its performance, and the (2) risk trade secu-
rity. While the former is based on the security of LN and its financial punishment
mechanism, the latter formally proves the novel property of our construction,
i.e., the guaranteed payment between the Merchant M and the Risk Buyer R.
This is the main novel security result of this work. We later discuss its resistance
against collusion attacks. Finally we review our construction in the light of the
identified desiderata in Section 3.

We start by discussing the online security of our construction.

6.1 Online Security and Performance

The first key observation, and also a downside of our construction, is that both
M and R need to be online during the execution of the protocol. That is a direct
feature of the payment channel design we rely on for the instantaneous payment
property. However, we remark that solutions like watchtowers [1,2] can be used
along with our construction which minimizes the online time.

The online period is necessary because either one of the participants can
maliciously claim an old state (possibly with higher balance) of the channel. In
such an attack the claimer publishes an old (already revoked) Commit Transac-
tion. A closer look at the locally kept transactions tells us that the outputs of
such transactions require a delay period in order to be redeemed (which could
be either ∆M or ∆R) as concretely described in Section 5.2. Given the design
of the state (in particular the locally kept transactions), another output can be
redeemed instead with the revocation public key during this period (which could
be either vkMrev,n or vkRrev,n). In conclusion, with such a transaction published,
the revocation key can be used by the attacked participant to take the funds
from the channel and punish the attacker.

We recall that the progression of the protocol, from state n and n + 1 as
shown in Section 5.2 (state n+ 2 is not revoked), follows the order that (1) first
the participant receives from the counterpart the signature to the next state,
then (2) it releases the necessary private information for the computation of the
revocation secret key (again, it could be either skMrev,n or skRrev,n, depending on
who is performing the attack). This strict step order guarantees that both par-
ticipants are always committed to a transaction, which can be used to financially
disincentivize the early described old state attack.

Lastly, it is not hard to see, but we remark for completeness, that the direct
communication channels between the participants can be plain, i.e., not needed
to be secure, since the transactions/messages are signed. In particular, we remark
that the transaction which carries the payment to R will be widely known for
the verification of its validity in the ledger.
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Collusion Cases. We start by pointing out that C has a security advantage as
it directly transacts with M (not within a channel). The basic observation is that
as far as C is concerned, the transaction is completed when it hands its signed
transaction (during the Risk Buying/Preparation Phase) to M and it receives
the purchased good. In particular, if the transaction is for a physical item, then
it makes the transaction completion even more easily verifiable on C’s side. To
conclude, a collusion between M and R do not have effect, since C can verify its
own payment along with the received item.

Similarly with the case when C colludes with either M or R. Here again, once
C delivers its signed transaction to M (via the direct communication channel,
not the payment channel), the protocol is carried by M and R as it is a single hop
channel. Consequently, trust between C and M is not needed since they transact
directly. Furthermore, trust between M and R is also not needed because they
interact via the payment channel which already assumes mistrusting parties.

Given the security guarantees provided by the payment channel, we can say
with confidence that the only attack case is when the adversary, which can be
either M or R, after receiving its payment, does not follow the protocol and, thus,
does not pay its counterpart. Our novel use of the HTLC technique allows the
payment to both parties to be atomic, meaning if one receives the payment, the
other will necessarily receive it too. We denote this property Risk Trade Security,
and prove that Maraved́ı has this property in Section 6.2.

Performance. We argue that the efficiency is equivalent to the [24] as de-
scribed in [16], since the number of operations is the same. Our construction
leverages on a single pairwise channel, i.e., between M and R, as C does not
interact in the channel, therefore it is not a multihop channel network. We high-
light that the phases, namely, Risk Buying/Agreement-R Side Phase and Risk
Buying/Agreement-M Side Phase, jointly are equivalent to a single state change
of the LN channel (which R and M do sequentially). Similarly to the Settlement
Phase. That is both sides jointly progress to the next state of the channel, by
performing operations locally and sequentially.
– Risk Buying/Agreement-R Side + Risk Buying/Agreement-M Side: 4 signa-

ture generations, 6 key combinations and 12 key derivations;
– Settlement Phase: 4 signature generations, 6 key combinations and 12 key

derivations.
These figures are based on the construction in [16]. The only adaption that we
introduce are the y values (in red) as in Figure 2. This small change makes us
confident that in practice our construction is as efficient as LN implementations.

6.2 Risk Trade Security
Our design prevents that M, or R, receives the payment and prevents its respec-
tive counterpart to receive it too. Recall that our protocol deals with two types
of transaction (1) regular transaction to be redeemed in the ledger (important
to R), and (2) the payment transactions (important to M). The disclosing of
the HTLC value x happens only in the final steps during the Settlement Phase
which enforces the atomicity (in the sense of unlocking funds) of the transactions
(1) and (2), despite of being in two different layers.
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We concretely prove the early discussion in the following theorem.

Theorem 1. Given that the protocol in Section 5.2 is jointly executed by C, M
and R such that C issues (TxC, σC), if R redeems TxC, then M redeems the funds
received from R.

Proof. Note that up to the Settlement Phase, M has received (TxC, σC), however
it has not handed it to R. Likewise, R has picked the HTLC value y, such that,
y = H(x) for the used hash function H. Furthermore, up to this phase the
protocol has performed like a payment channel. In particular, it performs until
the only valid (not revoked) state is n+ 2.

Now assume, a malicious Risk Buyer R∗ which receives (TxC, σC) from M,
then aborts the protocol without disclosing x to M. Note that by aborting the
protocol, M can also close the channel by signing the locally kept transaction

TxR
∗

local ← Tx{I : (TxFR∗ .O[1]);

O : [1 : cR∗ − (v − d), vkMrev,n+2 ∨ (vkR
∗

dpay,n+2, ∆M)],

[2 : cM + (v − d), vkMpay,n+2 ∧ y]};

and publishing (TxR
∗

local, σR, σM) for the priorly received σR from R (when the state
was created). Note TxR

∗

local redeems the outputs from the Funding Transaction
TxFR∗ but cannot be further redeemed by M as it did not receive the HTLC
preimage x.

Now assume that R∗ redeems its received transaction TxC, such that TxC ←
Tx{I : o ∈ ΣC;O : [1 : v, vkR∗ ∧ y]}, meaning it has publicly disclosed σR and x,
such that y = H(x). Consequently, M can now issue a transaction, say Txredeem,
such that Txredeem ← Tx{I : (TxR

∗

local.O[1]);O : [1 : cM − (v − d), vkM]}, signs it
and publishes the tuple (Txredeem, σM, x) in order to transfer cM − (v− d) to its
known key vkM, thereby giving the theorem.

Remark 5 (A Note on Collusion). Note that the earlier theorem is enough to
show the security of our protocol even regarding collusion of any two of the
participants as it was also discussed in Section 6.1. Briefly, since C only issues a
regular transaction (for a physical or digital good) as it is not part of the pairwise
channel, a meaningful collusion attack would pair C with either (1) M or (2) R. In
both cases, it is covered by the security of the channel construction, i.e., it is still
a single hop channel but the colluding C is playing along with either of the sides
of the channel. In case of (1), R cannot use the received (regular) transaction to
transfer the funds, therefore it aborts the protocol without disclosing the HTLC
value. Thus preventing any loss of funds since. On the other hand, in case of
(2), all the funds to be used for payment would be in control of the colluding
parties, i.e., C and R, except for the payments already performed to M, which
are protected by the past states of the channel. If R (and C) denies the payment
to M in the channel, M and R funds will be locked in the channel and C does
not receive the purchased goods (M does not hand it). Furthermore, R cannot
receive its funds in the ledger (which would reveal the HTLC value). However,
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we showcase that R is financially incentivized to not abort the protocol, and,
therefore, publish the transaction in the ledger, given the small profit on each
transaction it receives.

6.3 Desiderata

We start by observing that our hybrid approach of relying on the LN protocol
in order to “buy the risk” already provides us with the Instantaneous Finality
and Instantaneous Settlement properties from Section 3. It also easily allows
the requirement of Direct Interaction, since transactions are exchanged directly
between the participants in such a protocol. Our design also puts forth a Allowed
Pre-processing phase which in our case is the creation of the channel itself.

The creation of the LN channel does not require trust between the partici-
pants, therefore our construction also supports Trustless Merchant and Trustless
Risk Buyer. Furthermore the interaction between the Customer and the Mer-
chant does not require any trust, and can be readily available since it just requires
the direct exchange of transactions. Therefore we also have Ad Hoc Availability.

In the case of Trustless Trade, our protocol does not address the situation of
a malicious Merchant which may deny receiving the initial transaction. We high-
light that although it may abort the protocol, it is not financially incentivized
to do so, since it is expected to receive funds from the Risk Buyer.

It is important to notice that our protocol is generic enough to support
Background Availability both for the Customer and the Risk Buyer, although
we did not explore more this property in this work. One example is that the
Customer, prior to the interaction of the Merchant, may have received a list of
addresses of the Risk Buyer, therefore it only issues transactions to the addresses
in the list, leaving no room for the Merchant to try to deviate the funds.

Finally, Section 6.2 showed a formal proof that our protocol provides Risk
Trade Security for both the Merchant and the Risk Buyer in the sense that both
are guaranteed to not lose funds.

7 Final Remarks

This work presented the Maraved́ı Protocol which introduces a novel technique
to implement instantaneous finality for transactions. Instead of previous works,
which focus on techniques to provide faster finality of blocks in a consensus
protocol, our technique relaxes that criteria by addressing the finality for a single
transaction for a single participant, the Merchant. The main intuition is that the
receiver of the transaction relies on a third party which covers the risk of the
transaction not be fulfilled in the consensus layer.

We investigated the early mentioned risk trade approach and discussed the
main ideas for the “risk trade” in a 3-player model of Customer-Merchant-Risk
Buyer, outlining its desiderata. We have emphasized that relying on TPS ration
to discuss efficiency with decentralized ledger protocols, and in particular to
compare it with credit card companies network, may be misleading. The main
reason is that blockchain based systems rely on 2-party, i.e., payer and payee,
while ours allows the relaxation of the definition of finality and the risk trade.
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As mentioned earlier, our protocol guarantees that the Merchant will receive
the funds while performing a transaction. The guarantee is instantaneous, hence
instantaneous finality. We devised a hybrid technique which uses a consensus
based transaction (slow settlement) and a payment channel transaction (instan-
taneous settlement). The Maraved́ı Protocol is based on the Lightning Network,
however we proposed an adaption to assure that both the Merchant and the
Risk Buyer receive the funds correctly.

Our novel design allows the Risk Buyer to profit on every transaction. It
may seem that the game theoretical dynamics of such design may inspire new
businesses. It is important to observe that we did not investigate composability
properties of our protocol, similarly to what was done in [16] by employing the
UC Framework. We leave the study of these properties, both game theoretical
dynamics and composability for future work.
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