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Abstract. We study a novel family of cryptographic hash functions based on Galois linear
feedback shift registers (LFSRs), and identify initial guidelines for choosing secure param-
eters for this family. These hash functions are extremely simple, efficient, and suitable for
implementation in constrained environments.

1. Introduction

We study a new family of cryptographic hash functions for constrained environments.
This family is an instantiation of the following abstract construction. For a fixed natural
number k, let f0, . . . , fk−1 be actions on a set V , that is, functions from the set V into itself.
Throughout this paper, we denote function composition by multiplication. Fix an initial
value v0 in V . A message to be hashed is coded as a sequence (b0, . . . , b`−1) of elements in
{0, . . . , k − 1}. The hash of the message is defined by

h(b0, . . . , b`−1) := fb`−1
fb`−2

· · · fb1fb0(v0) =
= fb`−1

(fb`−2
(· · · fb1(fb0(v0)) · · · )).

For bit by bit hashing, we let k = 2. Using larger k may improve the efficiency of the hash
function, but this does not enhance the security of this hash function. Indeed, the attacker
can choose to hash only strings of zeros and ones.

Cayley hash functions [9, 8] form an important special case of this scheme: There, the set
V is a group, the initial element v0 is the group identity element e, and each function fi is
defined by fi(g) := hi · g, for a fixed group element hi. In this case,

h(b0, . . . , b`−1) = hb`−1
· hb`−2

· · ·hb1 · hb0 ,

an element of the group V .
The case V = SL2(F), the group of 2 × 2 matrices with determinant 1 over a field of

cardinality 2n, is called SL2-Hash. It was thoroughly studied [8, 1, 6, 3, 7, 4]. SL2-Hash
remains secure when the group elements are chosen at random [5, and references therein].
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This hash function is equally secure if we let V be the vector space F2, and the functions on
V are defined by matrix multiplication on the left [6]. This motivates the search of additional
useful instantiations of the abstract construction.

We consider TS-Hash [10], a particularly simple and efficient instantiation of the abstract
construction. The definitions are provided in Section 2. Section 3 describes basic mathemat-
ical properties of this hash function, including a mild provable security result that cannot be
established for ad-hoc hash functions such as the SHA family. Section 4 includes an initial
cryptanalytic study of TS-Hash, showing that extremely degenerated feedback polynomials
should not be used for this hash function to be secure.

2. TS-Hash

2.1. General definition. Fix a natural number k. Let T0, . . . , Tk−1 be linear transforma-
tions defined on a vector space V . Let S : V → V be a function such that, for each nonzero
vector v ∈ V , the elements

T0S(v), . . . , Tk−1S(v)

are all distinct. Then TS-Hash is the hash function defined by the abstract construction,
using the functions T0S, . . . , Tk−1S. Explicitly, we fix an initial nonzero vector v0 ∈ V , and
define

h(b0, . . . , b`−1) = Tb`−1
S Tb`−2

S · · ·Tb1S Tb0S(v0).

Remark 2.1. The condition on the function S must hold, at least with overwhelming proba-
bility, for the hash function to be collision-resistant. Indeed, assume that, with non-negligible
probability, the hash value v of a random string (b0, . . . , b`−1) has TiS(v) = TjS(v), for some
distinct i and j. Then we have a collision

h(b0, . . . , b`−1, i) =

= TiS Tb`−1
S Tb`−2

S · · ·Tb1S Tb0S(v0) =

= TiS(v) = TjS(v) =

= TjS Tb`−1
S Tb`−2

S · · ·Tb1S Tb0S(v0) =

= h(b0, . . . , b`−1, j).

In some cases, the function S may be the identity function. Indeed, this is essentially the
case in the projective version of SL2-hash [6]. In the main concrete example considered in
this paper, the function S is necessary, for the above reason.

2.2. Implementing with Galois LFSRs. A Galois LFSR is a linear-feedback shift register
(LFSR) represented by a linear transformation T : Fn

2 → Fn
2 of the following type:

T (x0, x1, . . . , xn−1) := (0, x0, . . . , xn−2) + xn−1 · (c0, c1, . . . , cn−1),

where c0, . . . , cn−1 ∈ {0, 1} are fixed. Thus, the state is shifted once, and if the discarded bit
xn−1 is 1, the mask vector (c0, . . . , cn−1) is XORed to the state. Equivalently, after the shift,
the bit xn−1 is XORed to the places i where ci = 1.
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Galois LFSRs arise from Galois field extensions, as follows. Using the above notation, let

p(X) := c0 + c1X + · · ·+ cn−1X
n−1 +Xn,

the feedback polynomial of the tranformation T . Assume that the polynomial p(X) is ir-
reducible, and identify the vector space Fn

2 with the Galois extension field F2[X]/〈p(X)〉,
viewed as a vector space spanned by 1, X, . . . , Xn. Then the induced linear transformation
on the latter space is

q(X) 7→ X · q(X) mod p(X).

In the instantiation we consider, the linear transformations T0, . . . , Tk−1 are Galois LFSRs.
In this case, there is a simple function S as required in the definition of TS-hash.

Definition 2.2. The shift of a nonzero vector in Fn
2 is defined by

S(x0, x1, . . . , xn−1) := (0, . . . , 0, x0, x1, . . . , xn−m)

where m is minimal with xn−m 6= 0. That is, the vector is shifted to the right, until the
rightmost bit is 1.

The shift map S is nonlinear. It is equivalent to repeated application of a Galois LFSR,
with any feedback polynomial, until the rightmost bit is 1.

Lemma 2.3. Let T and R be distinct Galois LFSRs. Then TS(v) 6= RS(v) for all nonzero
vectors v.

Proof. In S(v), the rightmost bit is 1. Thus, in the application of T and R to S(v), the
(distinct) feedback masks are XORed to the one-bit shift of S(v), and the results are distinct.

�

Consider the case k = 2. The input to the hash function is a string of bits, and the function
is illustrated by the following figure, keeping in mind that the shift function is applied prior
to each application of the LFSRs.

b0 b1 b2 b3 ...1011011000

0

1

Following is the C-like pseudocode of this hash function. Despite being very close to a
true implementation, it is remarkably simple and short.
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word Hash(bitstring b) {
word mask[2] = {p0, p1};
word v = v0;
for (i = 0; i < length(b); i=i+1) {

while ((v & 1) == 0) v >>= 1; // v = S(v)
v = (v >> 1) ^ mask[b[i]]; // v = T_{b[i]}(v)

}
return v;

}

On average, the shift function performs two conditional single-bit shifts per iteration. The
application of a Galois LFSR to a shifted element only requires one shift and one XOR with
the feedback mask.

On modern processors, the shift function can be implemented using a single CPU instruc-
tion, by finding the required shift amount m [12]. Knowing m, we can shift by m + 1 (this
includes the last shift in the pseudocode) in one CPU instruction, and then perform one
memory access, and one XOR operation. This amounts to very few clock cycles per each
hashed bit, if the entire inner state is stored in one CPU word. In general, the complexity
grows proportionally to the number of CPU words needed to store the inner state.

Popular word-oriented hash functions, such as the SHA family, are more efficient than TS-
Hash as instantiated here. There are obvious variations of this instantiation. For example,
using k = 256, we read 8 bits of the input string on each step, and thus gain a speedup factor
close to 8, at the price of 256 words of memory. Word-oriented LFSRs [11, 13] can also be
used in word-oriented TS-Hash, especially if the state space is too large for one machine
word. We leave the consideration of the general case for future studies, and consider here
the most basic instantiation.

2.3. The feedback polynomials and parameter choices. For a Galois LFSR to be
invertible, the bit c0 in its feedback mask (which is the constant term in its feedback polyno-
mial) must be 1. To have a chance that it has a maximal cycle covering all nonzero states,
the feedback polynomial must be irreducible, but this is insufficient in general. Feedback
polynomials providing maximal periods are called primitive polynomials, and there are effi-
cient tests for the primitivity of a polynomial. Thus, we suggest choosing the initial vector v0
uniformly at random among the nonzero vectors, and the feedback polynomials uniformly at
random among the primitive ones. This is done by choosing random polynomials repeatedly,
until a primitive one is obtained.

Degenerate polynomials should be avoided; we will treat this later. Here, it suffices to note
that with overwhelming probability, for large vector lengths n (such as n = 256) random
polynomials are not degenerate.

Since our Galois LFSRs are invertible, the leftmost bit of all hash values is 1. Thus, this
bit can be discarded and the effective inner state and output size is n− 1 bits. This makes
for a small constant factor in security estimations.
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Since the feedback polynomials are irreducible, the parity of their mask is even. By the
definition of the shift operator, in every step we remove from the state v one set bit, and
change an even number of bits in the state. This flips the parity of the state. Thus, the
parity of the hash value is determined by the parity of the length of the message. This is an
interesting property, but if it has any effect on the effective output length (e.g., if only even-
length messages are hashed), it reduces it by at most one additional bit. Taking everything
into account, it seems that n = 256 is a secure choice for TS-Hash for all purposes.

3. Mathematical features

3.1. Graph visualization. TS-Hash may be viewed as a walk on a graph, where vertices
represent states and edges represent the possible transitions between states via application
of single iterations TiS. This is a directed 2-regular graph. Let us first consider the graph
corresponding to a single feedback polynomial, that is, hashes of messages of the form 0` or
1`:
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p0(X) = 1 +X +X4 = 1100
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p1(X) = 1 +X3 +X4 = 1001

The blue edges describe the action of the Galois LFSR Ti with the corresponding feedback
polynomial. The red edges represent the action of the iteration function TiS. Since both
polynomials are primitive, the red subgraphs have the same vertices: These are all possible
24−1 = 8 state words with leftmost bit 1. TS-Hash takes a walk in the graph with the same
vertices, but alternates between the red edges on the left cycle and those on the right cycle,
according to the message input bits. This is described by the following graph, where the
walk follows the red arrow for each input bit 0, and the green arrow for each input bit 1.

The graph of TS-Hash is the union of the red cycles from the above two figures. We show
it here, with red edges for T0S and green edges for T1S:
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The provided figures are just toy examples. For example, for large values of n, the com-
bined graph is unlikely to have short cycles.

3.2. Provable security. In contrast to presently used efficient hash functions, TS-Hash
is based on a clear, well studied mathematical concept, namely, Galois LFSR. As such, it
has the potential to have some provable security guarantees. We demonstrate this with the
following mild security guarantee: No subexponential collisions among “all 0” or “all 1”
messages are possible. Such a guarantee is not available for ad-hoc hash functions such as
the SHA family.

Proposition 3.1. For TS-Hash, there are no collisions of the form h(0`) = h(0m), or h(1`) =
h(1m), for `,m < 2n−1.

Proof. It suffices to consider 0-strings. We may assume that ` < m. Since the feedback
polynomial is primitive, the cycle of the corresponding Galois LFSR covers all 2n−1 nonzero
states, and the cycle of the map T0S covers all 2n−1 states with leftmost bit 1. For a collision
of the form h(0`) = h(0m), we need a cycle of length m− `, and then m− ` ≥ 2n−1. �

We expect that future explorations will reveal additional security guarantees.

3.3. Symbolic Calculation. Identify the state space with the degree n − 1 polynomials,
as the vector space spanned by the monomials 1, X, . . . , Xn−1. Let p0(X) and p1(X) be the
feedback polynomials of T0 and T1, respectively. For each state v(X), we have:

S(v(X)) = Xn−1−deg v(X) · v(X)

Ti(v(X)) = X · v(X) mod pi(X)

TiS(v(X)) = X ·Xn−1−deg v(X) · v(X) mod pi(X)

= Xn−deg v(X) · v(X) mod pi(X)

Definition 3.2. A polynomial expression Xm1 + . . .+Xmr is ordered if m1 < . . . < mr.
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Let pi(X) = 1+Xk1 + . . .+Xks +Xn, v(X) = Xm1 + . . .+Xmr be both ordered. We can
calculate:

TiS(v(X)) = Xn−deg v(X) · v(X) mod pi(X)

= Xn−mr · (Xm1 + . . .+Xmr) mod pi(X)

=
(
Xm1+(n−mr) + . . .+Xmr−1+(n−mr) +Xn

)
mod pi(X)

=
(
Xm1+(n−mr) + . . .+Xmr−1+(n−mr)

)
+
(
1 +Xk1 + . . .+Xks

)
The expressions in the parentheses are ordered, but the total sum is not.

4. Cryptanalysis

4.1. Trinomials are weak keys. Trinomials are particularly efficient in certain environ-
ments. However, we will show that they produce short collisions, at least for the simplest
initial value v0, and should thus be avoided.

Proposition 4.1. Let v0(X) = 1, p0(X) = 1 + Xm + Xn, and p1(X) = 1 + Xk + Xn.
Without loss of generality, assume that 0 < m < k < n. Let c = dk/(n−m)e.

(1) If c = k/(n−m), we have the following collisions of length c+ 1:
h(00c−10) = h(10c−11)

h(10c−10) = h(00c−11)

(2) If c > k/(n−m), we have the following collisions of length c+ 2:
h(100c−10) = h(010c−11)

h(010c−10) = h(100c−11)

Proof. We will only prove the more general assertion (2); the proof for the remaining assertion
(1) is similar. Assume cm+k < cn. By the minimality of c, for all d < c we have dm+k > dn,
and thus

m > (d− 1)(n−m) + (n− k)

Calculating h(100c−10) = h(10c+1) iteratively and using the above inequalities to order the
expressions, we get:

T1S(1) = 1 +Xk

T0S(T1S(1)) = 1 +Xn−k +Xm

(T0S)
2(T1S(1)) = 1 +Xn−m +X(n−m)+(n−k) +Xm

...
(T0S)

c−1(T1S(1)) = 1 +Xn−m +X2(n−m) + . . .+X(c−2)(n−m)+

+X(c−2)(n−m)+(n−k) +Xm
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To determine the degree of the upcoming expression, we need to compare (c− 1)(n−m) +
(n− k) to m:

(c− 1)(n−m) + (n− k) =

= c(n−m)− (n−m) + (n− k) = c(n−m) + (m− k) >

> k + (m− k) = m

Thus,

(T0S)
c(T1S(1)) =

= 1 +Xn−m + . . .+X(c−1)(n−m) +Xm +X(c−1)(n−m)+(n−k).

This expression may not be ordered; we do not know how m compares to (c − 1)(n − m).
Finally,

h(10c+1) = (T0S)
c+1(T1S(1))

= Xn−(c−1)(n−m)−(n−k) · (T0S)
c(T1S(1)) mod p0

= Xk−(c−1)(n−m) · (T0S)
c(T1S(1)) mod p0

= 1 +Xk−(c−1)(n−m) + . . .+Xk−2(n−m) +Xk−(n−m)+

Xk +Xm+k−(c−1)(n−m) +Xm

We calculate h(010c−11) iteratively, using the above inequalities to order the expressions:

T0S(1) = 1 +Xm

T1S(T0S(1)) = 1 +Xn−m +Xk

T0S(T1S(T0S(1))) = 1 +Xn−k +X(n−m)+(n−k) +Xm

(T0S)
2(T1S(T0S(1))) = 1 +Xn−m +X(n−m)+(n−k) +X2(n−m)+(n−k)+

+Xm

...
(T0S)

c−2(T1S(T0S(1))) = 1 +Xn−m + . . .+X(c−3)(n−m)+

+X(c−3)(n−m)+(n−k) +X(c−2)(n−m)+(n−k) +Xm

(T0S)
c−1(T1S(T0S(1))) = 1 +Xn−m + . . .+X(c−2)(n−m)+

+X(c−2)(n−m)+(n−k) +Xm +X(c−1)(n−m)+(n−k).
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Finally,

h(010c−11) = T1S((T0S)
c−1(T1S(T0S(1))))

= Xn−(c−1)(n−m)−(n−k) · (T0S)
c−1(T1S(T0S(1))) mod p1

= Xk−(c−1)(n−m) · (T0S)
c−1(T1S(T0S(1))) mod p1

= 1 +Xk−(c−1)(n−m) + . . .+Xk−2(n−m) +Xk−(n−m)+

+Xm +Xm+k−(c−1)(n−m) +Xk

= h(10c+1)

We calculate h(010c−10) and h(100c−11) using the results of previous calculations:

h(010c−10) = T0S((T0S)
c−1(T1S(T0S(1))))

= Xk−(c−1)(n−m) · (T0S)
c−1(T1S(T0S(1))) mod p0

= 1 +Xk−(c−1)(n−m) + . . .+Xk−2(n−m) +Xk−(n−m)+

+Xm +Xm+k−(c−1)(n−m) +Xm

= 1 +Xk−(c−1)(n−m) + . . .+Xk−2(n−m) +Xk−(n−m)+

+Xm+k−(c−1)(n−m)

h(100c−11) = T1S((T0S)
c(T1S(1)))

= Xk−(c−1)(n−m) · (T0S)
c(T1S(1)) mod p1

= 1 +Xk−(c−1)(n−m) + . . .+Xk−2(n−m) +Xk−(n−m)+

+Xk +Xm+k−(c−1)(n−m) +Xk

= 1 +Xk−(c−1)(n−m) + . . .+Xk−2(n−m) +Xk−(n−m)+

+Xm+k−(c−1)(n−m).

The expressions are indeed equal. �

To maximize c, we want m and k to be as large as possible. But even if we set m = n− 2
and k = n − 1, we have c ≈ n/2, which is the birthday bound. These choices for m and k
will rarely yield primitive trinomials, however, so in practice we end up with collision lengths
that are much shorter.

We stress, though, that the exact length of the collisions is not the issue here, but rather
that they are short and can be found efficiently.

4.2. Polynomials with small monomials are weak. The result in Section 4.1 parially
extends to a special class of polynomials.
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Proposition 4.2. Let v0(X) = 1, and let
p0(X) = 1 +Xm1 + . . .+Xmr +Xn,

p1(X) = 1 +Xk1 + . . .+Xks +Xn

be ordered. If mr + ks < n, we have the following collisions of length max{r + 2, s+ 2}:
h(01r0) = h(10s1);

h(01r1) = h(10s0).

The proof of this proposition, which is similar to that of Proposition 4.1, is included in
Section 5. To avoid this weakness, we must require that mr + ks ≥ n. This will be the
case by default, with overwhelming probability, if the primitive polynomials are chosen at
randoms.

It remains open to what extent the weaknesses exhibited here for degenerate feedback
polynomials with initial value v0(X) = 1 remain when using a random initial value.

4.3. Discrete logarithm attacks. Assume that a message m has hash value v, whose
logarithm in base X, in the field F2n = F2[X]/〈p0(X)〉 is small. In other words, there is a
small number l with X l = v in the field. Computing this discrete logarithm l is feasible,
since the characteristic of the field F2n is small. Using this, we can find a number k ≤ l with
h(0k) = v, thus mounting a second-preimage attack. A similar assertion holds for the other
polynomial, p1(X).

However, the probability that a hash value of a long message has small index should be
negligible. The above argument implies that if we are provided with h(0k) or h(1k) for small
k, we can compute k and thus recover the input message. But this is true for every hash
function, since in this scenario k can be found by exhaustive search, hashing all values h(0),
h(1), h(02), h(12), …, until the value v is attained. Thus, this is not a threat.

4.4. Preimage attack at the birthday bound. For each state v and each i, we can
calculate (TiS)

−1(v) by XORing the feedback mask, shifting to the left, setting the righmost
bit to 1, and shifting to the left until the leftmost bit is 1. In this case, preimages of hash
values can be found in complexity O(2n/2).
Proposition 4.3. Let h be the abstract hash function defined by

h(b0, . . . , b`−1) := fb`−1
fb`−2

· · · fb1fb0(v0),
with all functions fi : V → V efficiently invertible. Given a hash value h(b0, . . . , b`−1), we
can compute a preimage (c0, . . . , cm−1) in complexity O(

√
|V |).

Proof. We will find a minimal length string with the same hash value, using the meet-in-
the-middle approach. Let

v := h(b0, . . . , b`−1) = fb`−1
fb`−2

· · · fb1fb0(v0).
Initialize to sets L := {v} and R := {v0}. Repeat the following procedure until an element
added to one set already belongs to the other set:
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(1) For each u ∈ R and each i = 0, . . . , k − 1, add fi(u) to the set R.
(2) For each u ∈ L and each i = 0, . . . , k − 1, add f−1

i (u) to the set L.
An element u in the intersection can be expressed (by storing the computation details) as

f−1
jt

· · · f−1
j1

(v) = u = fim · · · fi1(v0),

and then we have

v = fj1 · · · fjtfim · · · fi1(v0) = h(j1, . . . , jt, im, . . . , i1),

as required. �

It should be possible to reduce the space complexity substantially [2], but not the time
complexity. This cryptanalysis is a serious drawback of TS-Hash if 2n/2 is a feasible com-
plexity. For n = 256 or greater, this should not be considered a threat.

Ideally, if a cryptographic hash function has output size about 2n, preimages should not
be possible to find in time less than the order of 2n. One way to achieve this goal is to
double the state space and output only half of it as the hash value. The price is doubling
the running time of the hash function. There may be additional, more effficient ways, but
this is beyond the scope of the present paper.

4.5. Length extension attacks. We briefly point out that, since the basic design of TS-
Hash outputs the entire inner state, this hash is not secure against length-extension attacks.
In implementations where length-extension attacks are a threat, we recommend the same
solution as in the end of Section 4.4: Double the size of the inner state, and output just half
of the bits. Here too, more efficient solutions may be possible.

4.6. Side-channel attacks. In implementation where the operations FindFirstSet, Vari-
ableShift, MemoryLoadFromL1Cache, and XOR have constant latency, and the array of feed-
back polynomials fit in the L1 Cache, the algorithm processes every bit (or block) of input
in constant time, so the duration of the entire computation leaks only the message’s length.
Even in other scenarios, it is unclear how timing attacks can proceed. However, this hash
family is still in its initial study, and immunization against side channel attacks is too early
to consider at present. When time is ripe, we believe that adaptations of the standard
counter-measures would be applicable for TS-Hash.

5. Proof of Proposition 4.2

We begin by computing the common prefixes to both collisions, h(01r) = (T1S)
r(T0S(1))

and h(10s) = (T0S)
s(T1S(1)). First, let us compute h(01r):

T0S(1) = 1 +Xm1 + . . .+Xmr

T1S(T0S(1)) = 1 +Xk1 + . . .+Xks+

+Xn−mr +Xn−mr+m1 + . . .+Xn−mr+mr−1 .
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We note that n−mr > ks and mr−1 > 0, so n−mr +mr−1 > ks. Thus, in the next step we
multiply by Xmr−mr−1 :

(T1S)
2(T0S(1)) = 1 +Xk1 + . . .+Xks+

+Xmr−mr−1 +Xk1+mr−mr−1 + . . .+Xks+mr−mr−1+

+Xn−mr−1 +Xn−mr−1+m1 + . . .+Xn−mr−1+mr−2 .

It can be shown that n −mr−1 +mr−2 > ks +mr −mr−1, so in the next step we multiply
by Xmr−1−mr−2 (and then subtract the modulus). In general, in step i we multiply by
Xmr−(i−2)−mr−(i−1) . Iterating this r times we get:

(T1S)
r(T0S(1)) = 1 +Xk1 + . . .+Xks+

+Xm2−m1 +Xk1+m2−m1 + . . .+Xks+m2−m1+

+ . . .+

+Xmr−m1 +Xk1+mr−m1 + . . .+Xks+mr−m1+

+Xn−m1 .

Now, let us compute h(10s):

T1S(1) = 1 +Xk1 + . . .+Xks

T0S(T1S(1)) = 1 +Xm1 + . . .+Xmr+

Xn−ks +Xn−ks+k1 + . . .+Xn−ks+ks−1 .

We note that n− ks > mr and ks−1 > 0, so n− ks + ks−1 > mr. Thus, in the next step we
multiply by Xks−ks−1 :

(T0S)
2(T1S(1)) = 1 +Xm1 + . . .+Xmr+

+Xks−ks−1 +Xm1+ks−ks−1 + . . .+Xmr+ks−ks−1+

+Xn−ks−1 +Xn−ks−1+k1 + . . .+Xn−ks−1+ks−2 .

In can be shown that n − ks−1 + ks−2 > mr + ks − ks−1, so in the next step we multi-
ply by Xks−1−ks−2 (and then subtract the modulus). In general, in step i we multiply by
Xks−(i−2)−ks−(i−1) . Iterating this s times we get:

(T0S)
s(T1S(1)) = 1 +Xm1 + . . .+Xmr+

+Xk2−k1 +Xm1+k2−k1 + . . .+Xmr+k2−k1+

+ . . .+

+Xks−k1 +Xm1+ks−k1 + . . .+Xmr+ks−k1+

+Xn−k1 .
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Now we can compute h(01r1) and h(10s0) and observe that they are indeed equal:

(T1S)
r+1(T0S(1)) = 1 +Xk1 + . . .+Xks+

+Xm1 +Xk1+m1 + . . .+Xks+m1+

+Xm2 +Xk1+m2 + . . .+Xks+m2+

+ . . .+

+Xmr +Xk1+mr + . . .+Xks+mr

(T0S)
s+1(T1S(1)) = 1 +Xm1 + . . .+Xmr+

+Xk1 +Xm1+k1 + . . .+Xmr+k1+

+Xk2 +Xm1+k2 + . . .+Xmr+k2+

+ . . .+

+Xks +Xm1+ks + . . .+Xmr+ks .

The computation for h(01r0) and h(10s1) is similar. This completes the proof.

6. Connection Between Reciprocal Trinomials

There is a strong connection between the behavior of TpS with a primitive trinomial
p(X) = Xn+Xm+1 and the behavior of TqS the reciprocal trinomial q(X) = Xn+Xn−m+1
of p. To describe it, we will need to define a new term first.

Definition 6.1. Let r(X) be a state polynomial (constant term equal to 1). Let us order it
(to have n > m1 > m2 > . . . > mk−1 > mk > 0):

r(X) = Xm1 +Xm2 + . . .+Xmk−1 +Xmk + 1

= Xm1 +Xm2 + . . .+Xmk−1 +Xmk +X0

Define its reflection as follows:

reflect(r) = Xm1−m1 +Xm1−m2 + . . .+Xm1−mk−1 +Xm1−mk +Xm1−0

= Xm1 +Xm1−mk +Xm1−mk−1 + . . .+Xm1−m2 + 1

The function reflect is an invertible involution on the state space. We also have deg(r) =
deg(reflect(r)) for all r.

Proposition 6.2. The following identity holds:

reflect ◦TqS ◦ reflect ◦TpS = id .

In other words, the reflection function conjugates TqS to the inverse of TpS.
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Proof. Let p(X), q(X), r(X) be as defined. We know that deg(r) = m1. We calculate:
TpS(r) = Xn−m1 · (Xm1 +Xm2 + . . .+Xmk + 1) mod p

= (Xn +Xn−m1+m2 + . . .+Xn−m1+mk +Xn−m1) mod p

= Xn−m1+m2 + . . .+Xn−m1+mk +Xn−m1 +Xm + 1.

This expression is possibly not ordered because Xm may be out of place. Regardless, define
M = deg(TpS(r)) = deg(reflect(TpS(r))). Applying reflection, we get

reflect(TpS(r)) =

= XM−n+m1−m2 + . . .+XM−n+m1−mk +XM−n+m1 +XM−m +XM .

This expression still has degree M . Apply TqS:
TqS(reflect(TpS(r))) = Xn−M · (XM−n+m1−m2 + . . .+XM−n+m1−mk+

+XM−n+m1 +XM−m +XM) mod q.

Simplifying, we have
TqS(reflect(TpS(r))) =

= (Xm1−m2 + . . .++Xm1−mk +Xm1 +Xn−m +Xn) mod q

= Xm1−m2 + . . .+Xm1−mk +Xm1 + 1

= Xm1 +Xm1−mk + . . .+Xm1−m2 + 1.

Finally, applying reflect again, we get
reflect(TqS(reflect(TpS(r)))) = Xm1 +Xm2 + . . .+Xmk + 1,

which is equal to r. �

A graph-theoretic interpretation of this property is that the graph of TS-Hash with two
trinomial feedback polynomials and the graph of TS-Hash with the reciprocals of these
trinomials are naturally isomorphic: the vertices are reflected and the edges are reversed.

7. Conclusions and open problems

This is the first study of a cryptographic hash function proposed, but hitherto unpublished
officially, by the second named author. It may be viewed as a particularly simple and efficient
instatiation of a general scheme motivated by noncommutative mathematical structures.
Indeed, the code for this function is surprisingly short and clear.

Based on the well studied notion of primitive Galois LFSRs, this function is likely to have
security guarantees that are not provable for other hash functions. We provided here one,
very simple and initial, guarantee of this kind.

This hash function is easy to secure against theoretical threats, such as preimage search
in time less than exhaustive search, as well as against more practical threats such as lengh
extention attacks, as demonstrated above.
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Our initial cryptanalysis indicates that excessive greediness regarding efficiency may come
at the cost of security: Using only trinomials as feedback polynomials, or using polynomials
with low coefficients only, is insecure—at least when the initial vector is v0(X) = 1. The
following problems remain open.
Problem 7.1. Let v0(X) be a uniformly random initial state, and p0(X), and p1(X) be
trinomials. Is there, with high probability, a collision of subexponential length?
Problem 7.2. Let v0(X) be a uniformly random initial state, and p0(X), and p1(X) be
polynomials with small monomials, in the sense of Proposition 4.2. Is there an efficiently
computable collision of subexponential length?
Problem 7.3. Let v0(X) = 1, p0(X) = 1 + Xm + Xn be a trinomial, and p1(X) = 1 +
Xk1 +Xk2 +Xk3 +Xn be a polynomial with m+ k3 ≥ n. Is there an efficiently computable
collision of subexponential length?
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