
Scalable and Adaptively Secure Any-Trust Distributed Key Generation and
All-hands Checkpointing

Hanwen Feng
School of Computer Science,

University of Sydney

Tiancheng Mai
School of Computer Science,

University of Sydney

Qiang Tang
School of Computer Science,

University of Sydney

Abstract
The classical distributed key generation protocols (DKG) are
resurging due to their widespread applications in blockchain.
While efforts have been made to improve DKG communica-
tion, practical large scale deployments are still yet to come,
due to various challenges including broadcast channel scal-
ability and worst-case complaint phase. In this paper, we
propose a practical DKG for DL-based cryptosystems, with
only (quasi-)linear computation/communication cost per par-
ticipant, with the help of a public ledger, and beacon; Notably,
our DKG only incurs constant-size blockchain storage cost for
broadcast, even in the face of worst-case complaints. More-
over, our protocol satisfies adaptive security. The key to our
improvements lies in delegating the most costly operations
to an Any-Trust group. This group is randomly sampled and
consists of a small number of individuals. The population
only trusts that at least one member in the group is honest,
without knowing which one. Additionally, we introduce an
extended broadcast channel based on a blockchain and data
dispersal network (such as IPFS), enabling reliable broad-
casting of arbitrary-size messages at the cost of constant-size
blockchain storage, which may be of independent interest.

Our DKG leads to a fully practical instantiation of File-
coin’s checkpointing mechanism, in which all validators of a
Proof-of-Stake (PoS) blockcahin periodically run DKG and
threshold signing to create checkpoints on Bitcoin, thereby
enhancing the security of the PoS chain. In comparison with
another checkpointing approach of Babylon (Oakland, 2023),
ours enjoys a significally smaller monetary cost of Bitcoin
transaction fees. For a PoS chain with 212 validators, our cost
is merely 0.6% of that incurred by Babylon’s approach.

1 Introduction

Better blockchains with threshold cryptography. Thresh-
old cryptography [7, 60] enables a group of nodes to col-
laboratively perform cryptographic operations, such as mes-
sage signing or ciphertext decryption, securely even when a

minority of nodes are corrupted. In decentralized scenarios
like blockchains, it necessitates a distributed key generation
(DKG) [34, 52] protocol for setting secret key shares among
all parties, eliminating the need of trusted key generation.

Demonstrated by many research work and industry projects,
threshold cryptography shows its power to dramatically en-
hance blockchains in many aspects. Here, we outline a few
applications that are for enhancing security aspects, all of
which require all validators of a blockchain system to execute
DKG with a threshold cryptography primitive.

BITCOIN CHECKPOINTING. Long-range attacks [57] are
a prominent security challenge in Proof-of-Stake (PoS)
blockchain systems. As creating a block in PoS does not
consume physical resources, an attacker may effortlessly fork
a chain by using the secret keys of previous validators who
have left the system, without being punished. Among vari-
ous options, one main defense mechanism is via checkpoint-
ing PoS states into Bitcoin network. In particular, Filecoin
project [6,29] presented an elegant blueprint that allows every-
one to distinguish the canonical chain from the attack chain
with the help of checkpoints. In their design, a checkpoint
is a regular Bitcoin transaction signed by all PoS validators
through a threshold Schnorr signing protocol [47]. And a
DKG is performed for each checkpoint.

CROSS-CHAIN BRIDGE. Cross-chain bridges [48] enable the
swapping of assets across different blockchains. A major
challenge in existing approaches is how to trustlessly and
efficiently verify the status of the other blockchain. Using
threshold signatures makes the task easier [16]: all validators
from one chain can sign the status via a threshold signature,
allowing validators from another chain to simply verify the
signed messages. One prominent feature in this setting is
again DKG needs to be frequently run across the whole val-
idator population, when they are dynamically changing.

CENSORSHIP RESISTANCE AND MEV PROTECTION. Max-
imal Extractable Value (MEV) attacks [49] are a severe issue
for many blockchain systems, where miners could manipulate
transaction orders or even exclude valid transactions for their

personal interests, resulting in censorship or even denial of
service. Besides obvious reasons in DeFi settings, censorship
resistance is also a basic security property of asynchronous
consensus protocols [40, 50]. If not properly dealed with, the
underlying asynchronous consensus will either loses liveness,
or incur large communication blow-up [31]. Threshold en-
cryption provides an elegant solution for MEV/censorship
protection. Specifically, all transactions are encrypted under
the system’s public key and will only be jointly decrypted
by all validators after they have been ordered. Many asyn-
chronous consensus took this path [39, 40, 50], and various
industry projects have expressed their interests in implement-
ing threshold encryption for MEV protection [55, 61].

DKG: the barrier towards the fantasy. Despite numer-
ous efforts to improving threshold cryptography in the last
decade, the promising applications mentioned above remain
confined to small-scale prototypes. While many threshold
cryptographic primitives like threshold ElGamal and thresh-
old BLS [12] are non-interactive and believed to be scalable,
a clear barrier arises from the sophisticated DKG component.

There are a few real-world DKG implementations (e.g.,
by DFINITY [24], GNOSIS [25], and Drand [27]), which,
however, can only scale up to a few dozen nodes [20]. In
contrast, for applications mentioned above, it requires deal-
ing with DKG for all validators of the blockchain network
(e.g., thousands or more). In the following, we examine the
bottlenecks of DKG, identifying the barriers to achieving the
fantasy of whole-chain threshold cryptography.
A COMMON DESIGN PARADIGM. For clarity, we include a
common paradigm for DKG protocols. In a nutshell, among
n participants where up to t could be adversarial, each partici-
pant Pi selects a t-degree polynomial fi to define sk(i) = fi(0).
They then deliver the share sk(i)j = fi(j) to other Pj and broad-
cast a commitment, comi, for the polynomial fi(X). Partic-
ipants validate received shares and collectively engage in a
complaint phase, where they broadcast complaints and iden-
tify the set J ∈ [n] ensuring that all transmitted secret shares
are valid. The final secret share for Pi is ski = ∑ j∈J sk(j)

i , and
the aggregate secret key is sk = ∑ j∈J sk(j).
BURDEN ON BROADCAST. Broadcast channels are essential
for DKG protocols to help users reach consensus. Two promi-
nent approaches to a broadcast channel include the use of
Byzantine broadcast (BB) protocols [18, 26] or the utilization
of pre-existing infrastructure like blockchains. Implementing
a large-scale BB protocol can be intricate and susceptible to
errors, making the use of established blockchains an attrac-
tive, simpler, and modular alternative. This blockchain-based
approach naturally aligns with various applications [1–3].

For blockchain-based broadcast channels, we care about
blockchain’s on-chain storage which is a scarce resource.
However, existing DKG schemes incur a large O(n2λ) on-
chain storage: traditional schemes [34, 52] employing O(nλ)-
sized polynomial commitments would require quadratic stor-

age during the delivery phase already, while schemes with
advanced O(λ)-size polynomial commitments [45, 65] still
would cost O(n2λ) storage during the complaint phase in the
face of t = Θ(n) Byzantine adversaries. It’s worth noting that
even though worst-case complaint phases are infrequent oc-
currences, they must remain feasibly manageable – this is
not just a matter of efficiency but also a significant security
consideration. Improving the worst-case performance is the
major open problem left by previous work [60].

BURDEN ON COMPUTATION. The computation overhead for
verifying shares constitutes another bottleneck. Almost all
designs necessitate O(n2) group exponentiation operations.
Similar to our discussion about broadcast, traditional schemes
require O(n) group exponentiation operations for verifying
a single share, resulting in a quadratic computational cost
for the delivery phase. Advanced schemes still require O(n2)
group exponentiation during the complaint phase.

While publicly verifiable secret sharings (PVSS) eliminate
the complaint phase, all known schemes already require O(n)
group operations for verifying a PVSS transcript, and thus the
overall cost is still O(n2). Their concrete computational over-
head is even higher, costing a few hours for a few hundreds
of participants [36].

THE CHALLENGE IN THE WEIGHTED SETTING. In DKG
and other conventional threshold cryptosystems, all partic-
ipants are treated equally, and we assume an honest majority
of participants. However, in scenarios like PoS blockchains,
validators have different weights, while a threshold of weights
is assumed to belong to honest validators. To bridge this gap,
a common approach is to allocate different numbers of subIDs
proportional to their weights. Each sub-ID is then treated as
an independent participant in threshold cryptosystems. While
this approach addresses the security concern, it can lead to an
enormous number of sub-IDs. For example, we would need
to allocate 674 trillion sub-IDs to 3700 Filecoin validators1!

DELEGATING TO A COMMITTEE IS NOT PANACEA. A com-
mon strategy to enhance scalability is by selecting a com-
mittee and executing the threshold cryptographic systems
within this smaller subset. However, this approach is fraught
with challenges. An adaptive adversary, once aware of the
committee’s composition, can compromise the entire group,
thereby undermining security. Furthermore, given that each
member of the committee is required to contribute multiple
times during both key generation and subsequent threshold
operations, methods like silent committee sampling (e.g., us-
ing a verifiable random function [18]) and assuming memory
erasure fail to provide protection against adaptive attackers.
Recent advances in the YOSO (You-Only-Speak-Once) MPC
realm [11, 35] hint at potential solutions to deter adaptive
adversaries targeting the committee. However, these meth-
ods come with their own set of challenges, such as a heavy
dependence on broadcast channels, necessitating a super hon-

1https://filfox.info/en/ranks/power

2

https://filfox.info/en/ranks/power

Table 1: Comparison with the state-of-the-art DKGs.

Schemes Resilience Adap.?* Comm. Cost (total)*** Comp. Cost (per node)**
Broad. P2P/Multi.. Bad† Good† Bad†

Pedersen [52] 1/2 ! O(nB(nλ)) O(n2λ) - O(n2) -
KZG [45, 65] 1/2 % O(nB(λ)) O(n2λ) +O(nB(nλ)) O(n logn) +O(n2)

GHL [36]‡ 1/2 % O(nB(nλ) O(n2)

GJM+ [41]‡ logn/n % O(nB(λ)+ lognB(nλ)) O(n log2 n)
BHK+ [11] § 1/4 !* O(CB(Cλ)) O(CM (C2λ)) - O(C3) -
Ours (Sect.3)§ 1/2 ! O(sB(nλ)) 0 +O(nM (sλ)) O(sn) -

*Adap.? asks if the protocol is adaptively secure, and we accept the relaxed definition from [7]; BHK+ achieves the stronger
mobile security. **Comp.Cost measures the number of group exponentiation operations performed by each node.
***Comm.Cost measures the communication cost on the different channels, where B(ℓ) (or M (ℓ)) denotes the cost of sending ℓ
bits via broadcast channel (or multicast channel); We consider M (ℓ) = O(nℓ).
†For both communication and computation, Good (including Broad. and P2P/Multi.) considers the cost without complaints, Bad
considers the extra cost when facing the maximal number of complaints; “-" represents no asymptotically greater cost.
‡GHL and GJM+ do not have a complaint phase and only use broadcast channels. §BHK+ and ours are committee-based
approaches. For ensuring the quality of the committee with high probability (say 1−5×10−9, as adopted by Algorand [18]),
BHK+ needs the committee size of C ≈ 6000 (estimated based on [10]), while ours only needs s = 20.

est majority around 75% (which in turn requires a large-size
committee with hundreds or thousands of members [10]), or
requiring resource-intensive tools like fully homomorphic
encryption [37]. While these approaches offer promise, sig-
nificant gaps remain for our intended applications.

To sum up, even for just a few thousand validators, existing
DKG designs demand hundreds of megabytes of on-chain
storage coupled with hours of computational effort – a combi-
nation that is plainly impractical. Moreover, in the weighted
setting, the scale could easily extend to millions, and costs
would skyrocket. Recognizing this glaring disparity between
practical needs and our available tools, we are compelled to
pose the following question:

Is it feasible to devise a DKG protocol scalable to an entire
blockchain, secure against adaptive adversaries?

1.1 Our Results
In this work, we have developed a set of techniques that to-
gether form an affirmative answer to the question. We outline
our results and techniques as follows.

Primary result: A scalable and adaptively secure DKG.
Our primary result is a practical adaptively secure DKG proto-
col for DLog-based cryptographic systems. It features (quasi-
)linear per-node computation overhead2, linear broadcast over-
head, even when facing the maximal number of complaints.
Moreover, besides the broadcast channel, our DKG only uses
a multicast channel (rather than P2P channels), which can be
efficiently implemented with gossip protocols for large-scale

2Evaluating O(n)-degree polynomials at O(n) points inherently causes
O(n logn) computation. However, we only need O(n) expensive group expo-
nentiation operations.

deployment. We compare our scheme with state-of-the-art ef-
ficient DKG constructions in Table 1 and discuss more related
works in Section.1.2 3. Among them, ours and the YOSO-
model DKG (BHK+ [11]) are committee-based approaches
that rely on external common randomness. Besides the effi-
ciency differences highlighted in the table, BHK+ generates
secret shares for committee members only, meaning that all
subsequent threshold cryptographic operations must be done
in the YOSO model, which further incurs significant broad-
cast costs. In contrast, our protocol generates secret shares for
the whole population, and conventional threshold cryptogra-
phy can follow immediately, without consuming additional
broadcast bandwidth.

We achieve this result through the following techniques.

SELECTING AN ANYTRUST GROUP AS VSS DEALERS.
Our main observation is that it is unnecessary to let all
participants act as dealers of VSS. Recall that in the common
DKG paradigm, the final secret is sk = ∑ j∈Qual s(j), where s(j)

is the secret dealt by a qualified participant P j. All we need is
to ensure the secrecy of sk, and assuming the existence of
one honest qualified participant would suffice. Therefore,
we propose utilizing a group of participants, known as an
"any-trust" group (as introduced in the context of anonymous
communication [63]), where we can trust at least one honest
member as VSS dealers. Since a group member does not
need to keep any secret information beyond its private keys,
we can employ techniques from [18, 21], including verifiable
random function-based sortition [18] and forward-secure
signatures [21], to defend against adaptive corruption. It is

3Asynchronous DKGs [4, 20, 32] are not included in the table, as their
implementations cannot simply leverage a broadcast channel. Instead, they
rely on O(n) instances of reliable broadcast protocols [13] and incur O(n3λ)
communication cost.

3

also important to note that the size s of an any-trust group can
be as small as a few tens, which is in stark contrast to that of
a group with an honest majority, which can be up to hundreds
or thousands. Looking ahead, we commit to a polynomial
by committing to its n evaluations (as Scrape [15] does).
Then, with an any-trust group as dealers, the broadcast cost is
sB(nλ), and the per-node computation is O(sn), before the
complaint phase.

OPTIMIZED COMPLAINTS FOR PUBLIC VERIFIABILITY.
Using an any-trust group as dealers necessitates a funda-
mental shift in the complaint phase, as the dealers are not
supposed to respond to any complaints. To work around
this issue, we adopt publicly verifiable and unforgeable
complaints. Particularly, we let the dealers broadcast all
encrypted shares, which ensures the availability of ciphertexts.
This step inherently requires the broadcast cost of s ·B(nℓ),
and using a constant-size polynomial commitment cannot
help. Then, if a receiver obtains an incorrectly decrypted
share, it can complain against the dealer by disseminating a
NIZK proof of decryption along with the share. By doing this,
everyone can disqualify a dealer by verifying a complaint
without further interaction with the dealer. Moreover, the
publicly verifiability and unforgeability of complaints enable
a more efficient publishing method. Particularly, after each
node disseminates the complaints using a multicast channel,
we sample an anytrust group again and let the group members
deduplicate the complaints and broadcast them, which
guarantees that all malicious dealers will be disqualified.
With the optimized complaint phase, the broadcast and
computation cost of our DKG will not blow up even if there
are many complaints. More details are discussed in Sect. 3.

Add-on 1: A practical extended broadcast channel. The
broadcast cost of our DKG is s ·B(nλ). When implementing
the broadcast channel with a blockchain, we need to write
O(snλ) bits into the blockchain. While the cost may be ac-
ceptable when n is a few thousand, it is certainly a bottleneck
for extremely large n. Therefore, we present a practical exten-
sion to the blockchain-based broadcast channel, by leveraging
a multicast channel and a data dispersal network (DNN) like
IPFS [62]. Our design is simple and modular, retaining the
major benefits of using blockchain. Let P B(m) be the cost of
posting m bits to the blockchain and R (s) be the cost of reg-
istering s data blocks to the DNN. Then, the cost of s senders
each sending ℓ bits via our broadcast channel is

s ·B(ℓ) = sP B(λ)+O(snℓ)+ cP B(λ+ s)+nR (s), (1)

where c is the size of an honest majority committee sampled
from the population. We can choose c = 296, which guaran-
tees the honest majority with high probability (1−5×10−9),
when 2/3 nodes/weights of the whole population are honest4.
Note that the blockchain storage cost is independent of the

4The parameter is calculated with the program in [22]

message length ℓ, so a sender can broadcast an arbitrarily long
message while incurring constant on-chain storage cost.

Our design is inspired by Byzantine Broadcast exten-
sions [51], which invoke a few instances of Byzantine Broad-
cast/Agreement for λ bits plus some P2P communications to
realize Byzantine Broadcast for a large amount of data. In
our design, we essentially view the blockchain as an oracle to
reach a consensus about the status of data while using DNN
to guarantee availability. Though it may be folklore to write
digests alone into a blockchain to save bandwidth, we are not
aware of any design with a formal guarantee of agreement.
We believe this component may be of independent interest.
More details are in Sect.4.
Add-on 2: Optimized sub-ID allocation for the weighted
setting. While the traditional sub-ID allocation method pre-
cisely preserves the portion of each party’s power, we have
noticed and leveraged a gap between the usual assumption on
the honest participant’s weight ratio (assumed to be more than
2/3 due to other components of the system) and the honest
ratio needed in threshold cryptography (usually just above
1/2). Therefore, we propose a lossy-yet-qualified allocation,
guaranteeing that more than half of the sub-IDs will be issued
to honest participants if they possess over 2/3 of the weights.
With this simpler goal in mind, we have devised a more effi-
cient sub-ID allocation method, requiring only 1688 sub-IDs
instead of 674 trillion for the 3700 Filecoin validators. In
comparison with concurrent work in [23], ours issues fewer
sub-IDs for large validator sets like Filecoin’s. More details
can be found in Sect.5.
Application: All-hands checkpointing. We then apply our
techniques to realize the checkpointing mechanism of File-
coin [6] that require all validators to participate. After our
optimized sub-ID allocation, we need to execute a DKG and
a threshold Schnorr signature [56] among these 1688 sub-IDs
to create a checkpoint. With our Any-Trust DKG, the DKG
phase only incurs around 1.6MB of broadcast messages in
total. Each node can complete all computations in just a few
seconds, even when facing the maximum number of com-
plaints. Regarding the threshold signature, we use Any-Trust
DKG again to generate the nonce in the GJKR [34] sign-
ing protocol, resulting in a non-interactive threshold signing
protocol (after nonce-generation), eliminating the potential
single point of failures in coordinator-based protocols like
FROST [47].

Compared with a recent checkpointing scheme, Babylon
[58], which uses an aggregatable signature instead of a thresh-
old signature, ours/Pikachu only requires exactly one Bitcoin
transaction for each checkpoint. In their scheme, the number
of Bitcoin transactions per checkpoint grows linearly. This
difference reflects on monetary cost. As an example with File-
coin, the estimated Bitcoin transaction fee per annum would
be 2152.3 USD for ours and 344,373.1 USD for theirs, espe-
cially when we choose to address the potential single point of
failure in Babylon. More details can be found in Sect.6.

4

Implementation and Evaluation. We implemented our pro-
tocol in Java and deployed it on AWS EC2 instances with 32,
64, and 128 nodes. The results demonstrate that our protocol
scales effectively and completes within a few seconds (ex-
cluding ledger waiting time which could vary depending on
the blockchain). Additionally, we conducted computational
time tests for various values of n, ranging from 28 to 215. In
comparison with the state-of-the-art DKG protocol KZG [45],
our protocol’s performance in both the good-case and worst-
case scenarios is comparable to or even superior to KZG’s
performance in the good-case scenario. Notably, KZG’s cost
in the worst-case scenario experiences a significant increase.

1.2 Related Works

Distributed Key Generation (DKG) has been a prominent area
of research for several decades. Pedersen’s seminal work [52]
established the foundation in this field by introducing an
efficient protocol for Dlog-based cryptosystems. This protocol
builds upon Feldman’s Verifiable Secret Sharing (VSS) [28].
Within this scheme, each participant collaboratively runs n
instances of Feldman’s VSS, taking on the role of the dealer
in one of these instances.

In the VSS framework established by Feldman, the dealer
is required to broadcast a commitment to a polynomial, while
distributing the shares privately among all participants. Given
that the commitment’s size is proportional to O(nλ), the re-
sultant communication overhead becomes O(nB(nλ)). Addi-
tionally, Pedersen’s DKG involves a complaint phase where
participants broadcast any grievances against dishonest deal-
ers. If a participant were to lodge multiple complaints concur-
rently, the communication overhead of this phase is likewise
O(nB(nλ)). It is vital to highlight that during this phase, each
participant may validate up to O(n2) shares. In Feldman’s
VSS, the computational effort to validate a single share is
equivalent to O(n) group operations. This implies a per-node
computational burden before the complaint phase of O(n2),
which can potentially amplify to O(n3) during the complaint
process.

A majority of DKG architectures conform to the joint-
VSS model. In essence, any innovative VSS protocol can be
adapted into a new DKG protocol. Furthermore, given that
VSS can be constructed using polynomial commitments, any
polynomial commitment scheme can be evolved into both a
VSS and consequently a DKG. A significant advancement
in this field was made by Kate et al. [45] who proposed the
first polynomial commitment (abbreviated as KZG) with a
commitment size of O(λ). This innovation ensures that prior
to the complaint phase, the communication overhead can be
reduced to O(nB(λ)). A notable feature of the KZG poly-
nomial commitment is its efficiency in verifying shares; the
computational cost for verifying a single share is a mere O(1).
This denotes that the computational overhead for each node,
in terms of verification before the complaint phase, is simply

O(n) in group operations, but this can rise to O(n2) during
the complaint process. Historically, the computational load
for producing a polynomial commitment was believed to be
O(n2) [60]. However, a recent exploration by Zhang et al. [65]
revealed that the computational overhead for generating a
KZG commitment can be streamlined to O(n logn). It’s note-
worthy that although KZG requires a CRS setup, there have
been other efforts [64, 65] that prioritize efficient polynomial
commitments without relying on a trusted setup, but these
don’t match KZG’s efficiency.

Fouque and Stern [30] offered a solution that sidestepped
the necessity for a complaint phase by incorporating pub-
licly verifiable secret sharing (PVSS). In the event that a
PVSS transcript consists of O(n) ciphertexts, the communi-
cation overhead will naturally be O(nBBn(nλ)) should every
participant choose to broadcast this transcript. Historically,
the validation of a PVSS transcript required an overhead of
O(n2), suggesting that the per-node computational overhead
in DKG might ascend to O(n3). However, this obstacle was
surmounted by Cascudo and David with their Scrape proto-
col [15], which introduced a PVSS methodology that caps
the verification duration at O(n). It’s worth highlighting that
Scrape’s strategy is versatile, and can be harnessed to im-
prove numerous previous methodologies, including that of
Pedersen’s, ensuring that computational overhead during the
complaint phase is kept at O(n2) and doesn’t spike to O(n3).
A distinctive branch of research, as evident in works like [36],
has pivoted towards enhancing the tangible performance of
PVSS.

Gurkan et al. [41] leveraged an aggregatable PVSS com-
bined with gossip protocols to craft a publicly verifiable DKG.
Their communication overhead is streamlined to nB(λ) +
logn ·B(nλ) as opposed to nB(nλ), with their per-node com-
munication overhead being O(n log2 n). It’s pertinent to note,
however, that their model can only accommodate O(logn)
Byzantine nodes. Another noteworthy contribution by Ben-
hamouda et al. [11] delves into DKG within the YOSO model,
where anonymous committees are periodically selected to
oversee each protocol round. Yet, existing techniques for
choosing the anonymous committee either mandate a super-
majority of honest nodes (approximately 75% of them) [10]
or hinge on advanced tools such as fully homomorphic en-
cryption [37]. Furthermore, as successive committees remain
anonymous, inter-committee communication is heavily de-
pendent on a broadcast channel.

Beyond endeavors aimed at bolstering the efficiency of
DKG, various research initiatives have tackled this challenge
from different perspectives. Gennaro et al. [34] pinpointed
vulnerabilities in Pedersen’s DKG where the secret key distri-
bution could be manipulated by adversaries. They addressed
this flaw by achieving complete secrecy, albeit with a higher
computational overhead. Gurkan et al. [41] conceptualized a
milder form of secrecy, coined as “key-expressability", which
assumes that adversaries can influence key distribution but

5

within predetermined constraints. They postulated that a key-
expressable DKG suffices for many applications, with mul-
tiple DKG architectures, including Pedersen’s [52], Fouque-
Stern’s [30], and our own, fitting this criteria. Another remark-
able contribution by Canetti et al. [14] introduced a DKG
protocol with adaptive security, a departure from our model
and numerous others that ensure security only against static
adversaries. Bacho and Loss’s recent work [7] put forth an
oracle-aided adaptive definition and ascertained that several
protocols, including [30, 52], conform to this definition in the
algebraic group model. Our model also complies with this
adaptive security definition.

Lastly, some novel research efforts [4, 20, 32] have pivoted
towards DKG within asynchronous networks. These designs
adopt the joint-VSS blueprint and depend on an asynchronous
broadcast protocol, referred to as “reliable broadcast" [13],
to guarantee verifiability, yet they encounter the cubic com-
putational challenge. Notably, Das et al. [20] showcased the
inaugural asynchronous DKG with a communication over-
head of O(n3λ) for field-element secrets, whereas Abraham
et al. [4] furnished an adaptively secure asynchronous DKG
with identical complexity.

2 Model and Preliminaries

Communication model. We assume the network is syn-
chronous and protocols proceed by rounds. Every participant
has access to a multicast channel and a broadcast channel
which have different guanranteed delivery time. They both
achieve validity, while broadcast channel additionally guaran-
tees agreement. We always let the sender also be a receiver.
VALIDITY. When an honest node send a message via this
channel, all other honest nodes can receive this message by
the end of the multicast round (or broadcast round).
AGREEMENT. At the end of a broadcast round, honest re-
ceivers always receive the same message from this channel,
even when the sender is Byzantine.

Adversarial model. Prior to protocol execution, every node
honestly generates their public key/secret key pairs and sends
public keys to all other nodes. After the setup, the adversary
can adaptively corrupt any node during the protocol execu-
tion and control their subsequent behaviours. Particularly, the
adversary controls what messages a corrupted node will send
in the same round it gets corrupted. However, messages that
were already multicasted or broadcasted by node i before i
become corroputed cannot be retracted.

Notations and assumptions. Throughout the paper: We use
λ to represent the security parameter. The notation [i,n] rep-
resents the set {i, i+ 1, · · · ,n}, where i and n are integers
with i < n. We might abbreviate [1,n] simply as [n]. For a set
{x1,x2, . . . ,xn} and a sequence (x1,x2, . . . ,xn), we may abbre-
viate them as {xi}i∈[n] and (xi)i∈[n], respectively. A function
f (n) is deemed negligible in n, denoted by f (n)≤ negl(n), if

for every positive integer c, there exists an n0 such that for all
n > n0, f (n)< n−c. For a set X, the notation x←$ X signifies
sampling x uniformly from X. A(x1,x2, · · · ;r) represents the
result of running A with inputs x1,x2, · · · and random coins r.
We use y← A(x1,x2, · · ·) to represent choosing r randomly
and obtaining y = A(x1,x2, · · · ;r). Adversaries are assumed
to be probabilistic polynomial time (PPT).
Distributed Key Generation (DKG): An (n, t)-DKG for
DLog-based cryptography is an interactive protocol involv-
ing n parties. At the end of an execution, all honest parties
possess a common public key pk ∈G and a list of public key
shares (pk1, . . . , pkn), while each of them holds a secret share
ski ∈ Zp. We follow Bacho and Loss’s DKG definition [7],
dubbed oracle-aided algebraic security. This definition cap-
tures active attackers who may adaptively corrupt parties
during the protocol execution, and a DKG satisfying this defi-
nition would suffice for instantiating the key generation part
of threshold BLS [7]. This definition considers attackers that
can be modeled as algebraic algorithms.

Definition 1 (Algebraic Algorithm). An algorithm A is called
algebraic over a group G if all group element ζ ∈ G that A
outputs, it additionally outputs a vector z⃗ = {z0, . . . ,zm} of
integers in Zp such that ζ = ∏i gzi

i , where (g1, . . . ,gm) is the
list of group elements that A has received so far.

Definition 2. Let Π be a protocol among n parties
P1,P2, . . . ,Pn where Pi outputs a secret key share ski, a vector
of public key shares (pk1, . . . , pkn), and a public key pk. Π

is a secure DKG for a DL cryptosystem over a group G of a
prime order p, if it satisfies the following properties.

• Consistency: Π is t-consistent, if despite that at most t
parties have been corrupted, the honest parties can output
the same public key pk and the same vector of public
key shares (pk1, . . . , pkn).

• Correctness: Π is t-correct, if despite that at most t
parties have been corrupted, there is a t-degree polyno-
mial f (x)∈Zp[X], such that for every i∈ [n], pki = g f (i),
every honest Pi has ski = f (i), and the public key is
pk = g f (0).

• Oracle-aided Algebraic Simulatability: Π has
(t,k,TA ,Tsim)-oracle-aided algebraic simulatability if
for every adversary A that runs in time at most TA
and corrupts at most t parties, there exists an algebraic
simulator Sim that runs in time at most Tsim, makes
k−1 queries to oracle DLg(·) and satisfies the following
properties:

On input ζ = (gz1 , . . . ,gzk), Sim simulates the role
of the honest participants in an execution of Π. Upon an
honest party Pi being corrupted, the simulator needs to
return the internal state of Pi to the adversary.

On input ζ = (gz1 , . . . ,gzk), let gi denote the i-th
query by Sim to DLg(·). Let (âi,ai,1, . . . ,ai,k) be the

6

corresponding algebraic coefficients of gi, i.e., gi =
gâi ∏

k
j=1(g

z j)ai, j and set (â,a0,1, . . . ,a0,k) as the alge-
braic coefficients of pk. Then, the following matrix over
Zp is invertible

L :=

a0,1 a0,2 · · · a0,k

a1,1 a1,2 · · · a1,k

...
...

...
ak−1,1 ak−1,2 · · · ak−1,k

 .

Whenever Sim completes a simulation of an execution
of Π, we call L the simulatability matrix of Sim.

Denote by viewA ,y,Π the view of A in an execution
of Π conditioned on all honest parties outputting pk = y.
Denote by viewA ,ζ,y,Sim the view of A when interacting
with Sim on input ζ, conditioned on Sim outputting pk =
y. Then, for all y and all ζ, viewA ,y,Π and viewA ,y,Π are
computationally indistinguishable.

Note that the adversary A does not have to be fully alge-
braic. Instead, being algebraic related to pk and queries DLg(·)
would suffice, as discussed in [7].

Additionally, we consider ’key-expressibility,’ as intro-
duced in [41], against static attackers. This property is suit-
able for instantiating the key generation of BLS, ElGamal,
and Schnorr [41, 56].

Definition 3 (Key-expressability [41]). A DKG protocol is
key-expressable, if for every static PPT adversary A that cor-
rupts up to t nodes, there exists a PPT simulator Sim, such that
on input of a uniformly random element pk′ ∈G, produces
αZp, sk1 ∈ Zp, pk1 = gsk1 ∈G, and a view which is indistin-
guishable from A’s view from a run of the DKG protocol that
ends with pk = pk′α · pk1.

Verifiable random function based sortition. A verifiable
random function (VRF) is a pseudorandom function whose
outputs can be publicly verified using the evaluator’s public
key. Throughout this paper, we use VRFs for the sole purpose
of cryptographic sortition, and thus we present VRF-based
sortition below.

• Setup(1λ). Each user generates their VRF key pair
(vk,sk) and publishes vk. A public randomness rand is
sampled independent of the key generation.

• Sortition(vk,sk, rand,event, ratio). A user with (vk,sk)
evaluates the VRF on the input of (rand∥event) and ob-
tains y and a proof π. It checks if y

max ≤ ratio, where
max is the max value in the range of the VRF. If failed,
abort. Otherwise, return (y,π) as the credential of being
selected.

• Vrfy(vk, rand, ratio,event,credential). It verifies the cre-
dential by validating the VRF output y and checking if

y
max ≤ ratio.

In the above description, ratio denotes the ratio of the expected
committee size to the whole group size, and the expected
committee size is determined by the expected ratio of honest
nodes to the committee.

Throught this paper, we take the DDH-based VRF scheme
from [38] as our instantiation, whose evalutation proof only
consists of 2 elements in Zp and one group element. Its eval-
uation algorithm costs 1 group exponenet operation, while its
verification algorithm requries 4 group exponentiation opera-
tions.

Verifiable multi-recipient encryption. We use the hybrid
version of ElGamal encryption as the PKE. Let g be a gen-
erator of G, and let Hash as a hash function modeled as a
random oracle. The key generation algorithm Gen outputs
(ek = gx,dk = x), where x←$ Zp. The encryption algorithm
Enc(ek,m) first samples r←$ Zp, and computes the cipher-
text (c0,c1) = (gr,Hash(ekr)⊕m). The decryption algorithm
Dec((c0,c1),dk) returns m = Hash(cdk

0)⊕ c1.
ElGamal encryption can be extended to an efficient multi-

recipient encryption [9]. Namely, when someone wants to
encrypt a sequence of messages (m1,m2, . . . ,mn) under a se-
quence of public keys (ek1,ek2, . . . ,ekn), it can reuse the ran-
domness, i.e., it computes the ciphertext

MREnc(ek1, . . . ,ekn,m1, . . . ,mn) := (c0 = gr,c1, . . . ,cn),
(2)

where ∀i∈ [n],ci =Hash(ekr
i)⊕mi. In this way, the ciphertext

size is the plaintext size plus the size of a group element,
greatly saving communication costs. We remark assuming a
random oracle Hash can greatly simplify the security proof
in the presence of adaptive receiver corruption, as observed
in [42, 43]; it will become apparent in our security analysis.

There is a proof system for decryption correctness
{Prove,Vrfy}. With Prove(c0,ci,dki,m)→ Γ, one can prove
that m is the correct decryption from (c0,ci), by publishing a
proof Γ = (m,cdki

0 ,π). Here π demonstrates the discrete log-
arithm of cdki

0 w.r.t c0 is equal to that of eki w.r.t. g, which
is commonly known as DLEQ proof (equality of discrete
logarithms) [17]. Vrfy(c0,ci,Γ) checks if m is the correct de-
cryption from (c0,c1) w.r.t. eki. π consists of 2 elements in
Zp, and verifying it takes 4 group exponentiation operations.

Forward-secure digital signature. A forward-secure signa-
ture scheme FS.Σ consists of four algorithms: (1) Gen(1λ)→
(FS.vk,FS.sk[1]) generates a verification key and the initial
signing key; (2) Update(FS.sk[i])→ FS.sk[i+1] updates the
signing key at round i to the signing key at round i+ 1; (3)
Sign(FS.sk[i],m)→σ generates a signature σ for the message
m; (4) Vrfy(FS.vk, i,σ,m)→ b determines if σ is a valid sig-
nature for m created by the signing key at round i. A forward-
secure signature scheme guarantees the unforgeability of sig-
natures at rounds i < i∗, even when the adversary has access
to signing oracles at any round and corrupts the signing key
at the i∗-th round.

7

3 Our DKG Protocol

We present our Any-Trust DKG protocol in this section.

High-Level Overview. At the heart of our approach lies a
fundamental shift in the joint-VSS based DKG (JV-DKG)
strategy. We identify that in JV-DKG, ensuring secrecy only
requires a single honest VSS dealer, while previous schemes
let all nodes deal secrets. With this insight, we choose a com-
pact group (called the "any-trust group") which, with high
probability, contains at least one honest node, and assign only
these group members as dealers. While an adaptive adver-
sary has the resources to compromise an entire committee,
we leverage techniques from [18, 21] to address the chal-
lenge. Specifically, we employ VRF-based sortition to anony-
mously/secretly select the group, preventing adversaries from
identifying members before their message broadcasts. For
security, group members erase their internal secrets used to
generate VSS transcripts, ensuring adversaries, even after
compromising a member, cannot access its contributed se-
cret. Additionally, we employ a forward-secure signature [44],
compelling honest entities to delete their old signing keys.
This ensures that post-corruption, adversaries can’t send addi-
tional messages in the same round, preserving the contribu-
tions of honest dealers to the final secret key – a critical factor
for maintaining secrecy.

The complaint phase presents its own set of technical chal-
lenges, especially because (1) dealers are expected to delete
their secret states, inhibiting their ability to address com-
plaints, and (2) we aim to disqualify all dishonest dealers
while minimizing the communication burden on the broadcast
channel. To address the first issue, we introduce "verifiable
complaints", enabling all to disqualify a dealer without neces-
sitating further communication. Notably, dealers broadcast
all encrypted shares, ensuring a unified view of these shares
for all nodes. Each complaint includes a decryption proof,
facilitating verification by cross-referencing the broadcasted
ciphertext for discrepancies in decrypted shares. To handle
the second issue, we use an additional anytrust group to col-
late all complaints from the multicast channel, broadcasting
only unique complaints. This structure ensures that only O(s2)
complaints (where s is the size of the anytrust group) are trans-
mitted via the broadcast channel, yet all dishonest dealers are
reported.

While PVSS schemes might offer a way to bypass the
complaint phase, we avoid them due to potential computa-
tional overhead. Furthermore, there exists no adaptively se-
cure PVSS for a secret key in Zp. In terms of polynomial
commitments, we adopt techniques from [15], directly com-
mitting to polynomial coefficients, which streamlines the ver-
ification process for multiple shares under one commitment.
We highlight that advanced polynomial commitments [45]
don’t significantly reduce our communication costs, as we
consistently place all encrypted shares in the broadcast chan-
nel to facilitate verifiable complaints.

Setup. Given the security parameter λ, the number of partici-
pants n, and the corruption bound t (where the adversary can
corrupt up to t parties), configure the system as follows:
GROUP DESCRIPTION: Based on the security parameter λ,
define the group order as a prime p. Describe the group G
of order p and its generator g. The resulting public key will
belong to group G and will have the form gsk.
PKI SETUP: Every participant Pi produces three key pairs:
(eki,dki) for PKE, (rvki,rski) for VRF, and (FS.vki,FS.ski[1])
for the forward-secure digital signature scheme.
RANDOM COIN: Uniformly select a string rand←$ {0,1}λ

that is independent of all users’ public keys.
Determine the value of ratio for VRF-based sortition. Given

n participants executing the sortition algorithm with ratio, the
chosen committee will form an any-trust group. We assume
the required configurations for the foundational channels are
established during this setup phase.
Protocol Details. Post-setup, all participants collaboratively
run our DKG protocol, detailed in Fig.1, utilizing building
blocks such as the PKE scheme PKE, the forward-secure
signature FS, and the VRF-based sortition VRF. All these
components are outlined in Sect.2.

The protocol initiates with a broadcast round, transitions
to a multicast round, and concludes with a final broadcast. A
brief overview of each round is:

• Round 1. Nodes initially determine if they’re selected
as dealers. If not, they refresh the secret key and exit
the round (lines 1-3). Chosen dealers sample a t-degree
polynomial f to decide secret shares ski = f (i), com-
mit to sk0, . . . ,skn, and encrypt shares sk1, . . . ,skn using
others’ encryption keys (lines 5-7). Dealers then sign
the commitments and ciphertexts, update their signing
keys, erase secret information, and broadcast the signed
commitments and ciphertexts (lines 8-12).

• Round 2. Nodes receive the broadcasted messages (line
1). For every message, they authenticate the signature
(line 6), if failed, move to the next message. Otherwise,
they validate its format, and the VRF sortition certificate
(lines 7-8). Moreover, they ascertain if the committed
values match valid coefficients of a t-degree polynomial,
utilizing methods from [15] (lines 3-4 and 9-10). If a
transcript fails verification, the dealer is instantly dis-
qualified (line 11). Otherwise, they check the decrypted
share’s validity against the commitments and, if incon-
sistent, generate a verifiable complaint against the dealer
(lines 12-15). All complaints are multicast.

• Round 3. Nodes first verify if they are selected as
senders (lines 1-4). If so, they collect and verify all com-
plaints (using ciphertexts received from line 1 of round
2), de-duplicate them, and curate a complaint list docu-
menting all complained dealers (lines 5-13). They then
sign and broadcast this complaint list (lines 15-17).

8

Round 1 (broadcast): each Pi do:

1 : VRF.Sortition(rvki,rski, rand,“deal", ratio)→ CRdeal
i

2 : if CRdeal
i =⊥,

3 : then FS.Update(FS.ski[1])→ FS.ski[2],exit Round 1
4 : // only elected users continue the followings.

5 : sample (a0,a1, . . . ,at)←$ Zt+1
p , define f (X) =

t

∑
τ=0

aτXτ

6 : commit (cm j = g f (j)) j∈[0,n]// commit to polynomial f (X)

7 : encrypt PKE.MREnc((eki)i∈[n],(f (i))i∈[n])→ (c0, . . . ,cn)

8 : denote transi← (CRdeal
i ,(cm j) j∈[n],(c j) j∈[n])

9 : sign FS.Sign(FS.ski[1],transi)→ σi

10 : FS.Update(FS.ski[1])→ FS.ski[2]

11 : erase FS.ski[1], f (X),(f (i))i∈[0,n], and encryption randomness

12 : broadcast (i,transi[1],σi[1])

Round 2 (multicast): each Pi do:

1 : receive {(j,trans j[1],σ j[1])} j∈D, for D⊂ [n]

2 : set D1,D2,D3,C= /0

3 : sample an (n− t)-degree polynomial q(X) ∈ Zp[x], compute

4 : cm⊥τ =
q(τ)

∏
n
j=0, j ̸=τ

(τ− j)
,∀τ ∈ [0,n]// the dual code [15]

5 : for j ∈ D
6 : if FS.Vrfy(FS.vk j,1,σ j[1],trans j[1]) = 0, then continue

7 : if parse trans j[1] = (CRdeal
j ,(cm

(j)
τ)τ∈[n],(c

(j)
τ)τ∈[n]) failed

8 : ∨VRF.Vrfy(rvk j, rand, ratio,“deal”,CRdeal
j) = 0

9 : //check if (cm(j)
τ)τ∈[n] commits to a t-degree polynomial

10 : ∨
n

∏
τ=0

(cm
(j)
τ)cm

⊥
τ ̸= 1G // the identity element of G

11 : then D1 = D1∪{ j}// disqualify j immediately

12 : elseif PKE.Dec(dki,c
(j)
i) = sk(j)

i ∧gsk(j)
i ̸= cm

(j)
i

13 : //generate a complaint, and update the complaint list

14 : then PKE.Prove(c(j)
0 ,c(j)

i ,dki,sk(j)
i)→ Γ j,

15 : D2 = D2∪{(j,Γ j)}
16 : //otherwise, update the candidate output list

17 : else D3 = D3∪{ j},C= C∪{(j,((cm(j)
τ)τ∈[0,n],sk(j)

i))}

18 : D2→ transi[2],FS.Sign(FS.ski[1],transi[2])→ σi[2]

19 : if D2 ̸= /0, then multicast (i,transi[2],σi[2])

Round 3 (broadcast): each Pi do :

1 : receive {(j,trans j[2],σ j[2])} j∈R1 , for R1 ⊂ [n]

2 : VRF.Sortition(rvki,rski, rand,“agree", ratio)→ CRagree
i

3 : if CRagree
i =⊥,

4 : then FS.Update(FS.ski[1])→ FS.ski[2],exit Round 2
5 : set DisQual,CompList= /0

6 : for j ∈ R1, if FS.Vrfy(FS.vk j,1,σ j[2],trans j[2]) = 1

7 : then for (k,Γk) ∈ trans j[2]

8 : // put a newly complained dealer in the list

9 : if k /∈DisQual, parse Γk = (sk(k)j , ·)

10 : //c(k)0 ,c(k)j are what Pi received at line 1 of round 2

11 : if PKE.Vrfy(c(k)0 ,c(k)j ,Γk) = 1∧gsk(k)j ̸= cm
(k)
j

12 : then DisQual=DisQual∪{k}
13 : CompList= CompList∪{(k,Γk)}
14 : (CRagree

i ,CompList)→ transi[3]

15 : sign FS.Sign(FS.ski[2],transi[3])→ σi[3]

16 : FS.Update(FS.ski[2])→ FS.ski[3];erase FS.ski[2]

17 : if ComList ̸= /0, then broadcast (i,transi[3],σi[3])

At the end of Round 3: each Pi do :

1 : receive {(j,trans j[3],σ j[3])} j∈R2 , for R2 ⊂ [n]

2 : set DisQual= /0

3 : // decide the disqualifed set based on broadcast message

4 : for j ∈ R2

5 : parse trans j[3] = (CRagree
j ,CompList)

6 : if FS.Vrfy(FS.vk j,2,σ j[3],trans j[3]) = 1

7 : ∧VRF.Vrfy(rvk j, rand, ratio,“agree”,CRagree
j) = 1

8 : then for (k,Γk) ∈ CompList

9 : // put a newly complained dealer in the list

10 : if k /∈DisQual∧PKE.Vrfy(c(k)0 ,c(k)j ,Γk) = 1

11 : ∧gΓk .m ̸= cm
(k)
j

12 : then DisQual=DisQual∪{k},
13 : set Qual= D3 \DisQual

14 : output:

15 : pk = ∏
j∈Qual

cm
(j)
0 ,ski = ∑

j∈Qual

sk(j)
i

16 : pkτ = ∏
j∈Qual

cm
(j)
τ , for every τ ∈ [n]

Figure 1: The Any-Trust DKG construction.

• End of Round 3. Nodes finalize the set of disqualified
dealers based on received complaint lists (lines 1-12).
Following that, they create the public key (shares) and

secret key share by aggregating contributions from qual-
ified dealers (lines 14-16).

9

Complexity analysis. We analyze our DKG protocol’s com-
putational and communication costs in Table 2. In our anal-
ysis: EXP denotes the exponentiation operation within the
group G; We primarily focus on the computationally intensive
operations, and hence additive operations, being relatively in-
expensive, are excluded from the table. The sizes of a group
element, a digital signature, and a VRF credential are denoted
by O(λ). The notation s ·B(ℓ) (or s ·M (ℓ)) implies that s
nodes are each contributing ℓ bits to the broadcast channel (or
the multicast channel). We will soon show B(nλ) may only
incur constant on-chain cost, therefore the broadcast cost will
not be a bottleneck even in a massive scale.

For clarity, we differentiate between two scenarios: (1)
Good: Represents the optimistic case where no complaints
are raised; (2) Bad: Portrays the worst-case scenario with the
maximum number of complaints. For this scenario, we also
highlight the additional overhead compared to the Good case.

Table 2: The cost of Any-Trust DKG.

Good Bad
Comp.

(per node) (s+2)nEXP +4nEXP

Broadcast s ·B(O(nλ)) +s ·B(O(sλ))
Multicast 0 +n ·M (O(sλ))

Security analysis. We establish the security of Any-Trust
DKG in the following theorem.

Theorem 1. The Any-Trust DKG satisfies t-consistency, t-
correctness, and (t,k,TA ,Tsim)-oracle-aided algebraic simu-
latability agasint adaptive adversaries (cf Def.2), with n ≥
2t +1, k ≤ s(t +1) and Tsim ≤ TA +O(snt), under the DDH
assumption in the ROM, and assuming the security of the
underlying forward-secure signature scheme. For static ad-
versaries, it further achieves the key-expressability(cf. Def.3).

Proof. Under DDH assumption in ROM, our building blocks
including the VRF and the multi-recipient encryption are
secure.

First, we argue the t-consistency. Note that the public key
pk and the vector of public key shares are deterministically
computed based on the set of qualified dealers which are
further determined by the information in the broadcast chan-
nel. As all honest users have the same view of the broadcast
channel, the t-consistency follows easily.

Then, we show the t-correctness. Recall that pk =

∏ j∈Qual cm
(j)
0 , and pki = ∏ j∈Qual cm

(j)
i for i ∈ [n]. Based on

line 10 of round 2, for each j ∈ Qual, with an overwhelm-
ing probability, there is a polynomial f j(x) ∈ Zp[X] whose
degree is up to t, such that cm(j)

i = g f j(i). Therefore, define
f (X) = ∑ j∈Qual f j(X), and then it follows that pk = g f (0) and
pki = g f (i). Meanwhile, every honest Pi should have f (i). If
an honest Pi does not have f (i), there must exist an index

j ∈ Qual such that Pi does not have f j(i). In this case, P
should follow the protocol description and multicast a verifi-
able complaint against the dealer j to all other parties. As the
verifiable complaints are posted to the broadcast channel by
an any-trust group, a verifiable complaint against j must be
included. Then, j should be disqualified, which contradicts
our assumption that j is in Qual.

For correctness, it remains to show that the set Qual is non-
empty. By parameter and the security of VRF, the sampled
committee contains at least one honest node with high prob-
ability. We argue this honest node will be included in Qual.
Particularly, this node shall broadcast an honestly generated
transcript which contains valid shares. It is easy to see that the
complaints in our system are unforgeable, due to the sound-
ness of proof of decryption. Therefore, this node cannot be
disqualified because of this transcript. Moreover, although
this node may be corrupted after it sent out the transcript, by
the forward security of the underlying signature scheme, the
adversary cannot send another message with a valid signa-
ture in this round, which means the honest node cannot be
disqualified because of post-corruption.

Given its length, the analysis for the oracle-aided algebraic
security is presented in Lemma.2, and the analysis for the key
expressability is in Lemma.3.

Lemma 2. The Any-Trust DKG satisfies (t,k,TA ,Tsim)-
oracle-aided algebraic simulatability.

Proof. By definition, if Π satisfies the oracled-aided algebraic
simulatability, then, for every adversary A , there will be an
algebraic simulator Sim which can indistinguishably simu-
late the environment for A . We proceed with the proof by
presenting the code of a universal simulator Sim which has
black-box access to the adversary A .

On inputs a vector of group elements ζ = (gz1 ,gz2 , . . . ,gzk)
for k = s(t +1), Sim can simulate each phase of Π for A as
follows.

SETUP. Sim initializes the set of corrupted parties C = /0, the
set of honest parties H = {Pi}i∈[n], and a table ROhist = /0 to
record the query history of the random oracle. Then, it follows
the protocol specifications to generate the public parameters
and key pairs for all honest users. It answers the adversary’s
queries as follows.

• Corruption queries. When A asks to corrupt the party
Pi, Sim first checks if |C | ≤ t. If the check fails, it ignores
this query; otherwise, return the secret keys of Pi, and
update the sets H = H \{Pi} and C = C ∪{Pi}.

• Random oracle queries. When A queries the random
oracle with an input x, Sim checks if x has been asked
before. If there is a record of (x,outputx) in ROhist, re-
turn outputx; otherwise, uniformly sample outputx, add
(x,outputx) to ROhist, and return outputx.

10

Round 1. For every honest party Pi ∈H , Sim runs the Self-
Election procedure using Pi’s VRF secret key. We assume
w.l.o.g. there are s′ ≤ s honest parties being selected and
denote the set by Hele = {D1, . . . ,Ds′}, where each party has
its credential CR j,deal. Then, Sim simulates the Commit to
secret procedure on behalf of each D j ∈Hele as follows.

• Denote ζ j = (ζ j,0,ζ j,1, . . . ,ζ j,t) =
(gz(j−1)(t+1)+1 ,gz(j−1)(t+1)+2 , . . . ,gz j(t+1)).

• Generate the commitments cm j,τ = ∏µ∈[0,t] ζ
τµ

j,µ, for ev-
ery τ ∈ [0,n].

• Generate the ciphertext (c j,0,c j,1, . . . ,c j,n), where c j,0 =

gr j for some r j←$Zp, and c j,τ←${0,1}⌈log p⌉ for τ∈ [n].

• Broadcast (CR j,deal,cm j,0, . . . ,cm j,n,c j,0, . . . ,c j,n).

Sim needs to answer the queries from the adversary. For
the random oracle queries made before broadcast and the
corruption queries, Sim can respond as it does in the SETUP
phase. We discuss its strategy for answering random oracle
queries that are made after the broadcast below.

• Random oracle queries. Before answering any random
oracle queries at this stage, Sim first calculates a matrix
of group elements

γ =

γ1,1 γ1,2 . . . γ1,n

γ2,1 γ2,2 . . . γ2,n

...
...

...
γs′,1 γs′,2 . . . γs′,n

 ,

where each γ j,τ = pk
r j
τ for j ∈ [s′] and τ ∈ [n], pkτ is the

encryption public key of Pτ, and r j is the randomness
used in encryption by Sim when simulating D j. Sim
checks if any γ j,τ has been asked before and aborts if
one is in the query history. Otherwise, continue.

When A queries a message x, Sim performs as follows.

If x ̸= γ j,τ for any j and τ, proceed as what it did in
the DEAL phase.

If x = γ j,τ for some j and τ, Sim first queries
the oracle DLg(·) with cm j,τ and its representation
(τ0,τ1, . . . ,τt) over ζ j. Sim will receive ξ j,τ from the
oracle. Then, it sets outputγ j,τ

:= c j,τ ⊕ ξ j,τ, records
(γ j,τ,outputγ j,τ

) into ROhist, and returns outputγ j,τ
to A .

Other rounds. Sim simulates the behavior of honest parties
by following the specifications of the protocol. The queries
from A are answered in the same way as Sim did in the DEAL
phase.

Let QualC be the set of qualified nodes which are corrupted
before the Round 1, and Qual = QualC ∪Hele. For every
j ∈ QualC, the dealer must have distributed its secret shares

to honest nodes; otherwise, it will be disqualified. As Sim
has always controlled more than t +1 honest participants, it
can recover the secret key sk j w.r.t. pk j for every j ∈ QualC.
Therefore, Sim can output the algebraic representation for the
public key as:

pk = ∏
j∈Qual

pk j = g∑ j∈QualC sk j
∏
j∈[s′]

gz(j−1)(t+1)+1 .

Now, we argue that the simulator specified above satisfies
the requirements of oracle-aided simulatability. First, it is easy
to verify that the running time of Sim is TA +O(snt).

Then, we show that viewA ,y,Π and viewA ,y,Π are identical,
under the condition that Sim never aborts during the simula-
tion. Specifically, from the point of A’s view, the commitment
sequence outputted by an honest party D j is a commitment to
the polynomial f j(x) = ∑

n
τ=0 z(j−1)(t+1)+τ+1xτ. Note that the

input group elements of Sim is uniformly sampled, and thus
the distribution of f j(x) is also uniform, which is identical to
that in the real experiment. Moreover, in the random oracle
model, the distribution of ciphertexts simulated by Sim is also
identical to the real distribution, as for every pk

r j
τ that has

been issued to the random oracle, which means that A can
decrypt the ciphertext c j,τ, it follows that

c j,τ = Hash(pk
r j
τ)⊕ f j(τ).

Next, we argue that Sim only aborts with a negligible prob-
ability. When Sim aborts, A must have queried the random
oracle with some x = γ j,τ before seeing the broadcast mes-
sages. However, γ j,τ = pk

r j
τ is a uniformly random group

element, as r j is uniformly chosen from Zp and completely
independent of A’s view before gr j is broadcasted. Therefore,
A has negligible probability if outputting pk

r j
τ .

Then, we show that Sim has made at most k−1 queries to
the DLg(·) oracle. Recall that Sim makes a query to DLg(·)
whenever A queries the random oracle with a message x
which is equal to some γ j,τ. We note that under the DDH
assumption, A can output γ j,τ = pk

r j
τ only when A has cor-

rupted the party Pτ (and thus can compute γ j,τ = (gr j)skτ),
except a negligible probability. As A can corrupt at most
t parties, Sim will query DLg(·) at most ts′ times, which is
smaller than k−1.

Finally, we show the simulatability matrix L of Sim is in-
vertible. Without loss of generality, we assume that the adver-
sary has corrupted the parties P1, . . . ,Pt , and Sim has made
s′t queries to DLg(·) for simulating the queries from the ad-
versary. For ease of analysis, we let Sim make some dummy
queries such that the representations of all the queries are
gonna form a square matrix of order s(t + 1). Specifically,
Sim makes the following extra queries:

gzs′(t+1)+1 ,gzs′(t+1)+2 , . . . ,gzs(t+1) ,

and
∏

µ∈[0,t]
ζ
(t+1)µ

j,µ , for j ∈ [1,s′−1].

11

The number of all queries by Sim is s′t+(s− s′)(t+1)+ s′−
1 = s(t + 1)− 1, which is still smaller than k. It is easy to
verify the matrix L is invertible.

Lemma 3. The Any-Trust DKG satisfies the key-
expressability.

Proof. This proof is similar to the proof for Lemma.2, except
we don’t need to handle adaptive corruption queries. For any
PPT adversary A , we can construct a PPT simulator Sim that
takes as input a public key pk′ ∈G and simulates the view of
A . Assume the sef of corrupted paries is {Pi}i∈Corr for some
Corr ⊂ [n] and |Corr| ≤ t. After sampling the any-trust group,
Sim, on behalf of the honest node in the group, creates the
following transcript: cm0 = pk′, c0 = gr for some r←$ Zp;
For i ∈ Corr, ski←$ Zp, cmi = gski , and ci = Hash(ekr

i)⊕ ski.
For i /∈ Corr, cmi are created by Langrange interpolation in
exponent, while ci are randomly sampled. This transcript is
indistinguishable with an honestly generated one in the view
of A , and cannot be disquafied. For every other transcript with
cm(j) = pk(j) which is eventually included in the qualified set,
Sim can know the secret key sk(j) by reconstructing it from
shares held by honest nodes. Note that the final public key is
in the form of pk′ ·∏ pk(j), and the simulator can express it
by setting α = 1, sk′′ = ∑sk(j).

4 Practical Extended Broadcast Channels

In this section, we introduce a practical extension to the
blockchain-based broadcast channel. Despite that it is folklore
knowledge that, theoretically, one may throw all messages
into the ledger to facilitate a broadcast, but this may incur
prohibitive cost in practice, as onchain resources are gener-
ally very expensive. Instead, our extension empowers users
to broadcast a message of arbitrary length while inscribing
only a constant-size storage on the blockchain. Crucially,
our enhanced broadcast channel retains its original simplic-
ity and modularity. Users can conveniently interact with it
using the APIs of well-established infrastructures, including
both blockchains and a data dispersal network (DDN) like
IPFS [62].

4.1 Building Blocks

We formalize our building blocks. Particularly, for simplicity,
we model a blockchain as a public bulletin board (PBB) which
allows users to post and retrieve data.

Public Bulletin Board. We follow the model of PBB pre-
sented in [46] and extend it to support keyword-based retrival.
Formally, a user can interact with PBB via the following
queries.

• getCounter()→ t. It returns the current counter value t.

• post(kw,v)→ t. On receiving value v along with a key-
word kw, it increments the counter value by 1 to t, stores
(t,kw,v), and responses t.

• retrieve(tstart, tend,kw)→{(vi, ti)}. It returns all pairs of
(vi, ti), such that tstart ≤ ti ≤ tend and kw is their keyword.

We care about the storage cost of PBB. For a user posting
ℓ bits to the PBB, we denote the cost as P B(ℓ).We assume
that a PBB satisfies the validity and agreement.

VALIDITY. Assume an honest user posted (v,kw) to the PBB
and received t. Then, every honest user who retrives with
(tstart, tend,kw′) such that tstart ≤ t ≤ tend and kw′ = kw will
receive a sequence of value/counter pairs containing (v, t).

AGREEMENT. If an honest user retrieving with (tstart, tend,kw)
when getCounter() ≥ tend receives a sequence of
value/counter pairs S, then every honest user retrieving with
(tstart, tend,kw) will receive the same S.

It is rather straightforward to use PBB as a broadcast chan-
nel by simply posting a broadcast message into the PBB. The
authenticity can be established with standard digital signa-
tures in the PKI model.

Data Dispersal Network. A data dispersal network (DDN)
provides a platform where one can provision a data block for
others who may need it. Comparing with standard multicast
which is also for data dissemination, DDN saves communica-
tion cost when there are multiple nodes providing the same
datablock. Assuming there are m receivers out of n potential
receivers, and there are k data provider for a datablock of
ℓ bits. Through multicast, every sender needs to send their
data to every potential receiver, incuring the communication
cost of k ·M (ℓ) = O(knℓ). In contrast, through DDN, each
receiver receives exactly one copy of data, incurring totoal
communication cost of O(mℓ) which is smaller than M (ℓ).

In principle, we can either use an erasure-code-based in-
formation dispersal protocol [54] or practical infrastures like
IPFS [62] to instantiate a DDN. In this work, we focus on
the IPFS-based instantiation as it comes easier to implement
(given IPFS already exists) and model it with the following
two queries which might be specific to the instantiation.

• register: on receiving a node ID nid and a block ID bid
(which is the hash value of the data), it checks whether
bid has been registered. If not, add a new entry (bid,nid);
otherwise, it appends nid to the existing entry with bid.

• retrieve: on receiving a block ID bid, it returns the asso-
ciated datablock v, by orchestrating the data flow from
candidate providers.

We assume as long as there is an honest data provider who
has registered bid and remains active, everyone can retrieve
the data block with bid. We denote the cost of registering for
s data blocks as R (s).

12

4.2 Our Extended Broadcast Channel
A strawman and our intuition. A naive approach to broad-
casting a sizeable data block involves posting its ID, denoted
as bid, on the PBB while simultaneously registering both bid
and the sender’s ID (nid) on the DDN. However, this method-
ology cannot guarantee agreement. Specifically, a malicious
sender has the capability to selectively deny some retrieval
requests on the DDN. Moreover, an adaptive adversary, upon
observing the bid on the PBB, can corrupt the sender, subse-
quently rendering the data inaccessible on the DDN.

Round 1: each sender S j(v j) do:

compute the block ID: Hash(v j)→ bid j

post PBB.post(kw,bid j),kw := (sid||send);multicast v j

Round 2: each receiver Pi do:

PBB.getCounter()→ t ′1
// assume the index set of senders is J
PBB.retrieve(t ′0, t

′
1,sid||send)→{(bid j, t j)} j∈J

receive multicast messages: {v′j} j∈J

for j ∈ J : if Hash(v′j) = bid j, then valid j = 1;else valid j = 0

VRF.Sortition(rvki,rski, rand,“check", ratiohm)→ CRi

if CRi ̸=⊥
then PBB.post(kw′,CRi||(valid j) j∈J),kw′ := (sid||check)

Round 3: each receiver Pi (with node id nidi) do:

PBB.getCounter()→ t ′2

PBB.retrieve(t ′1, t
′
2,sid||check)→{CRk||(valid(k)j) j∈J}k∈K′

verify every CRk, and obtain the valid set K⊂K′

for j ∈ J : if ∑
k∈K

valid(k)j ≥
|K|
2

+1

then final j = 1;else final j = 0

for j ∈ J, if final j = valid j = 1, then DNN.register(nidi,bid j)

At the end of Round 3: each receiver Pi do :

for j ∈ J s.t. valid j = 0 :

if final j = 1, then DNN.retrieve(bid j)→ v j;else v j =⊥
output (v j) j∈J

Figure 2: Our extended broadcast channel

To address these security vulnerabilities, we suggest us-
ing DDN and PBB together in a smarter way. Recognizing
the potential threat of adaptive corruption, the sender directly
multicasts the datablock to all receivers while posting the
block ID bid into the PBB. Importantly, this process does not
induce additional overhead compared with the DDN-based
dissemination, since there is only one provider and all re-

ceivers will require the data block. To achieve agreement, an
honest majority committee is sampled, which subsequently
votes to validate the accessibility of the data block against the
advertised bid. In scenarios where the majority of the com-
mittee members vouch for the data block’s availability, all
receivers who successfully received the data block are then
prompted to register on the DDN. This ensures that any re-
ceivers who failed to receive the data through multicast will
be able to retrieve the it from DDN.
Protocol details. We assume the PKI setup as well as the
setup for the VRF-based sortition, such that everyone in the
group gets to know others’ verifications keys w.r.t. a digital
signature scheme and VRF. A ratio ratiohm is also determined
in the setup, which ensures with high probability that the
sampled committee will contain an honest majority. Moreover,
we assume every message has been signed by the sender.
Besides that, a session id sid and an initial counter t ′0 are
supposed to be known to everyone in the group and can be
used to retrieve related messages from the PBB. We w.l.o.g.
describe our protocols in a batch manner, i.e., there can be
multiple senders, as this is the situation of our DKG protocol.
We elucidate our design in Fig.2.
Complexity analysis. Assume there are s senders, and each
of them broadcasts a message of ℓ bits to the group with n
nodes. The communication cost of our extended broadcast
channel is

s ·B(ℓ) = sP B(λ)+O(snℓ)+ cP B(λ+ s)+nR (s),

where λ denotes the security parameter (i.e., the size of a
digest, the output length of a VRF, e.t.c.), sP B(λ) is caused
by that s senders post their digests into the PBB, O(snℓ) is
caused by that the senders multicast their message and the
receivers retrieve from a DDN, cP B(λ+ s) is caused by the
selected committee members vote for the broadcast status,
and nR (s) is caused by that the honest parties register to the
DDN. Now, the onchain storage cost is independent of ℓ.
Security analysis. We establish the security of our extended
broadcast channell in the following lemma.

Lemma 4. Assume the underlying PBB satisfies validity and
agreement, and the DDN guarantees the data block can be
retrieved when there is an honest and active provider. The
protocol in Fig.2 satisfies the validity and agreement.

Proof. Our construction satisfies both the validity and agree-
ment. Regarding validity, in our protocol, when the sender is
honest, every honest receiver can receive the message v from
the multicast channel and retrieve the digest from the PBB.
Then, in round 2, selected honest committee members would
vote for this broadcast (by setting and posting valid = 1), such
that the final status of this broadcast will be 1, and honest
nodes can decide on v.

Regarding agreement, note that whether v =⊥ is deter-
mined by the votes on PBB. Therefore, if an honest receiver

13

decides on v =⊥, everyone will do the same thing. The po-
tential chance causing disagreement is that when an honest
receiver decides on v ̸=⊥, some receiver cannot successfully
retrieve v from the DDN. Below we show this case is unlikely
to happen.

Assume that the adversary is allowed to corrupt at most t
participants among all the n participants, and the VRF-based
sortition at round 2 will yield a committee C of c = 2t ′+ 1
participants. As the parameter is configured to guarantee the
honest majority of the elected committee, it implies that, for
any subgroup A whose size is not greater than t, the following
probability is very small:

Pr[|Z| ≥ t ′+1 : Z = A∩C].

Now, we consider the group B of nodes that are, before the
election, either corrupted nodes or honest nodes that have
received v. In the case that there are t ′+1 votes endorsing the
availability of v, it holds that |B∩C | ≥ t ′+1, which implies
the probability Pr[|B| ≤ t] is small. Therefore, the adversary
cannot corrupt all nodes in B even after knowing the com-
mittee C . It follows that there is always at least one honest
node that has received v and provision it to the DDN, such
that everyone can retrieve the data from the DDN, and can
agree on the value v.

5 Sub-ID Allocation for the Weighted Setting

In this section, we present a simple-yet-effective sub-ID al-
location mechanism that dramatically reduces the number of
required sub-IDs.

Qualified allocation. The traditional sub-ID allocation
method ensures that the proportion of sub-IDs held by honest
participants is equal to the proportion of an honest partici-
pant’s weights, which we call a perfect allocation. However,
we notice a gap between the usual assumption on the honest
participant’s weight ratio, which is typically assumed to be
more than 2/3 due to other components of the system, and
the honest ratio needed in threshold cryptography, which is
usually just above 1/2. Therefore, we consider a lossy-yet-
qualified allocation, which guarantees that more than half
of the sub-IDs will be issued to honest participants if they
have more than 2/3 of the weights5. Formally, we have the
following definition.

Definition 4 (Qualifed Allocation). Let W = (w1, . . . ,wn) be
a sequence of positive integers. Let A and B be any partition
of the index set [n] (i.e., A∪B = [n] and A∩B = /0). We say
a function AllocateSubID(w1, . . . ,wn)→ (d1, . . . ,dn), where
di’s are non-negative integers, is a qualified allocation for W ,

5While our discussion primarily centers on the gap between 2/3 and
1/2, the underlying concept can be effortlessly extended to address other
thresholds or scenarios.

if for every (A,B) s.t.

∑
i∈A

wi > 2 ·∑
i∈B

wi, it holds that ∑
i∈A

di > ∑
i∈B

di.

While such a qualified allocation suffices for security, we
need to find an allocation method which minimizes the num-
ber of all sub-IDs, i.e., ∑ j d j is as small as possible.

Our method. We start by observing that dividing each wi by
the greatest common division (GCD) leaves the fraction for
any index subset A unchanged. This realization provides a
straightforward allocation approach: di =

wi
gcd . However, if the

GCD is small, the total sub-IDs can be vast.
A viable approach is to modify each wi to w′i so the new

sequence W ′ = (w′1, . . . ,w
′
n) has a substantial GCD. This ad-

justment might increase some subsets’ proportions while re-
ducing others, potentially strengthening the adversary. Still,
we determine that any increased power for the adversary re-
mains capped if we limit the total adjustments. Specifically,
if ∑i∈[n] wi = 3t +1 for a positive integer t, then any partition
(A,B) over [n] satisfying ∑i∈A wi > 2 ·∑i∈B wi will ensure that
∑i∈A w′i > ∑i∈B w′i, given the inequality:

∑
i∈A

w′i−∑
i∈B

w′i ≥∑
i∈A

(wi−∆i)−∑
i∈B

(wi +∆i)≥ 1 (3)

Here, ∆i = |wi−w′i|. Such adjustments are termed t-bounded.
Sub-IDs, di, are derived by dividing w′i by this higher GCD.

Given our objective to minimize ∑ j d j, the goal is to en-
hance the GCD. To achieve this, we consider a target gcd,
defining an adjustment function fgcd(wi)→ w′i as:

w′i =

{
wi− (wi mod gcd), if wi mod gcd < gcd/2,
wi +gcd− (wi mod gcd), otherwise.

(4)

Starting with gcd = 1, we increase it until fgcd is no longer
a t-bounded adjustment for W . Utilizing binary search can
quickly find a very large gcd. While variations in (w1, . . . ,wn)
may suggest larger gcd′, our found gcd is practically near-
optimal. The allocation algorithm is detailed below.

AllocateSubID(w1, . . . ,wn)

binary search the largest gcd from 0 to max
i

wi

s.t. fgcd is t-bounded for (w1, . . . ,wn)

output (di =
fgcd(wi)

gcd
)i∈[n]

Our sub-ID allocation is a qualified allocation as per Def.4,
since fgcd is t-bounded for (w1, . . . ,wn). Moreover, for a set of
n validators with an arbitrary power distribution, our method
only issues at most 2n sub-IDs.

Lemma 5. Given any sequence W = (wi)i∈[n] with ∑i∈[n] wi =
3t +1 for some integer t, let (d1, . . . ,dn) be the output of our

14

Table 3: Comparison with Swiper/Dora

Systems # Parties #Total Weights [23] Ours
Aptos [5] 104 8.4708×108 27 34
Tezos [59] 382 6.7579×108 75 77

Filecoin [29] 3700 2.5242×1019 1895 1688
Algorand [18] 42920 9.7223×109 373 301

AllocateSubID. It follows that

∑
i∈[n]

di ≤
4t +1
⌊2t/n⌋

,

which is around 2n when n≪ t.

Proof. Let gcd = ⌊2t/n⌋. It is easy to see that (w′1, . . . ,w
′
n)

outputted by fgcd(w1, . . . ,wn) and (w1, . . . ,wn) are bounded

by n · ⌊2t/n⌋/2 = t. Let di =
w′i
gcd . It holds that ∑i∈[n] di =

∑i∈n w′i
⌊2t/n⌋ ≤

4t+1
⌊2t/n⌋ ≈ 2n.

Comparison with Swiper/Dora [23]. We notice a concurrent
work, Swiper/Dora [23], which also addresses the imparity be-
tween conventional threshold cryptography and the weighted
setting. In Table 3, we compare our method and theirs for
validator sets across various PoS systems. The comparison is
under the same condition, i.e., ensuring more than 1/2 sub-IDs
are allocated to honest parities with more than 2/3 weights.
The result shows our method issues fewer sub-IDs to large
sets of validators, such as Algorand and Fielcoin.

6 Application to All-hands Checkpointing into
Bitcoin

In this section, we delineate how our DKG yields the first
realization of Pikachu’s all-hands checkpointing vision [6]
that involves all validators in the whole blockchain network,
e.g., Filecoin, that has 3700 of them, with various mining
power.

6.1 The Blueprint of Pikachu
Long-range attacks against PoS blockchain. Unlike proof-
of-work chains, block creation in PoS systems is both costless
(in terms of physical resources like energy) and timeless (un-
constrained by time limits), which enables adversaries to eas-
ily fork a chain. Existing PoS chains prevent from malicious
forking by punishing misbehavioured validators. However,
an attacker can choose to present the fork chain after all its
stakes have been withdrawn, thus free of being slashed, What
is worse, a later coming client may not be able to decide the
canonical chain among the forks.
Securing PoS with Bitcoin checkpointing. A few works
[6, 58] have shown that long-range attacks can be effectively

mitigated by creating checkpoints of the PoS chain on a PoW
chain, such that a late comming client can distinguish the
canonical chain among forks. Pikachu illustrates a threshold
signature-based checkpointing mechanism. At a high level,
the lifetime of the PoS system is divided into multiple epochs,
and checkpoints are supposed to be created per epoch. At ev-
ery epoch i, a configuration Ci = {(Vi, j,wi, j)} j∈[ni] for some
integer ni, which is the set of all validators {Vi, j} j∈[ni] with
their weights {wi, j} j∈[ni], is associated with a public key Qi
(w.r.t. Schnorr signature scheme) which can serve as a Bitcoin
address, while the secret key of Qi is secretly shared among
Ci. At epoch i+1, validators in Ci will jointly create a Bitcoin
transaction which transfer all assets on Qi to Qi+1, the address
belong to the current configuration Ci+1; This transaction is
the checkpoint. We elucidate their design with the following
three algorithms/protocols6.

• AllocateSubID(C) → {d j} j∈[n].The sub-identity allo-
cation algorithm takes input as a configuration C =
{(V j,w j)} j∈[n] and determines the number of sub-
identities d j for each V j according to their weight w j.

• DKG({(V j,d j)} j∈[n]). The validators in C run a DKG
protocol, while each sub-identity is viewed as an inde-
pendent participant. Therefore, each validator V j obtains
d j pairs of (pk j,z,sk j,z)z∈[d j], and all validators obtain the
same public key Q = pk and the list of public key shares
p⃗k = (pk j,z) j∈[n],z∈[d j].

• CreateCKP(Ci,ckp,PreAdd,Qi+1)→ TX. At the epoch
i+1, assume that validators in Ci+1 have generated the
public key Qi+1, the digest of PoS block to be check-
pointed is ckp, and the address of the last checkpointing
Bitcoin transaction is PreAdd. Then, the validators in Ci
inovke a Threshold Schnorr protocol to sign a Bitcoin
transaction TX with the follwoing information.

{Input : PreAdd;Output : Qi+1;OP_Return : ckp}.

Once the transaction has been properly signed, every
validator should disseminate it to the Bitcoin network.

With checkpoints on Bitcoin, it is rather straightforward
for a late-coming user to decide which fork is the canoni-
cal chain, when the user is provided with a blocktree of fi-
nalized PoS blocks. Specifically, the user first synchronizes
with Bitcoin blockchain. Then, it finds the initial checkpoint
transaction and builds a chain of transactions following the
initial transaction. Next, it obtains the digest ckp from the
latest checkpoint transaction, and decides the fork with the a
block whose digest is ckp as the canonical chain. Moreover,
while other approaches like key-evolving forward-secure sig-
natures [18, 21] may also mitigate long-range attacks, the

6Slightly different from their original descirption where the PoS digest is
embeded into the Bitcoin address, we choose to put it in OP_RETURN for
simplicity.

15

Table 4: Checkpointing cost per annum. in USD.

#Parties Babylon(o.) Babylon (s.) Ours
27(Cosmos) 4,304.7 86,093.3 2,152.3

210(Polkadot) 6,457.0 129,140.0 2,152.3
212(Filecoin) 17,218.7 344,373.1 2,152.3

*Calculation based on the Bitcoin price on on Oct. 16, 2023:
0.000273 USD per Satoshi.

checkpointing mechanism enjoys a unique advantage of en-
suring malicious validators are always slashable. We defer a
detailed discussion to Sect.6.4.

6.2 Realizing Pikachu with Any-Trust DKG

Pikachu only demonstrated a proof-of-concept prototype with
21 participants, due to the inefficiency of their underlying
DKG scheme. Meanwhile, as they instantiated the threshold
Schnorr signature with FROST [47] which relies on a coordi-
nator, there may be a single point of failure. Our Any-Trust
DKG can realize Pikachu efficiently and securely.

Sub-ID allocation. Our optimized sub-ID allocation algo-
rithm in Sect.5 issues fewer sub-IDs to validators. We con-
sider a snapshot of Filecoin’s validator distribution7, which
has 3700 validators with total mining power of around 22 EB,
while the power unit is 32KB. The standard method may issue
around 674 trillion sub-IDs. In contrast, our method identifies
that 13 PB can be a good GCD and only 1688 sub-IDs need
to be issued, significantly reducing the scale of the problem.

Apply Any-Trust DKG. Then we apply our Any-Trust DKG
for the 1688 sub-IDs. We set ratioat = 20/1688, which guar-
antees the committee has at least one good node with high
probability of 1−5×10−9. Then, only around 1.6 MB data
needs to be broadcasted. It takes each node a few seconds
to finish computation, even facing the maximum number of
complaints.

Checkpointing with non-interactive threshold Schnorr
signature. To sign the checkpoint transaction, we adopt the
GJKR protocol [34], which does not require a coordinator
and is thus free of single-point of failures. The GJKR pro-
tocol involves a DKG as its subroutine for generating the
nonce and follows a non-interactive phase where every signer
can locally compute its signature share (or called a partial
signature). GJKR was believed to be inadequate for large-
scale deployment due its DKG subroutine, which however
is no longer a bottleneck with our any-trust DKG. Since our
DKG is key-expressable (cf. Def.3 and [41]), the static secu-
rity of the resulting scheme direcly follows the recent result
in [56]. While there is no direct adaptive attack, we leave a
fully analysis for adaptive security as a future study.

7https://filfox.info/en/ranks/power

6.3 Comparison with Babylon Checkpointing

Overview of Babylon. Babylon [58] is a recently proposed
checkpointing scheme that does not use DKG and threshold
signature. Instead, it employs the following approach: (1) All
validators sign the digest of the PoS block to be checkpointed.
(2) One honest validator collects and aggregates enough signa-
tures (using the BLS aggregatable signature scheme [12]) and
publishes a Bitcoin transaction with the OP_RETURN code.
This transaction contains the digest, the aggregated signature,
and the public keys.
Comparison of Bitcoin Transaction Fees. It’s important
to note that for n validators, at least n bits are needed to
encode the public key list. A Bitcoin transaction allows
80 bytes with OP_RETURN, which means the number of
Bitcoin transactions per checkpoint grows linearly with the
number of validators. Taking into account the fixed cost for
storing the aggregated signature and checkpointing identi-
fier, the number of Bitcoin transactions for a Babylon check-
point can be calculated as #Bitcoin TxBabylon = 1+ ⌈ n+32

640 ⌉.
Moreover, since it assumes an honest validator to create the
checkpointing transaction, it might have a single point of
failure. This issue can be resolved by sampling a commit-
tee that includes at least one honest validator for creating
Bitcoin transactions. For the more secure version of Baby-
lon, the number of Bitcoin transactions per checkpoint would
increase by a factor of the statistical security parameter s,
i.e., #Bitcoin Txsecure−Babylon = s+ s · ⌈ n+32

640 ⌉. For s = 20 and
n = 212, we have

#Bitcoin TxBabylon = 8, while #Bitcoin Txsecure−Babylon = 160.

In comparison, our approach (Pikachu) only requires 1
Bitcoin transaction for each checkpoint, and it is naturally
free of single points of failure.

We compare the Bitcoin transaction fees for checkpointing
per annum in Table 4. Babylon(o.) refers to the original check-
pointing mechanism in Babylon, which has a single point of
failure. Babylon(s.) refers to the secure version where a small
committee (we set s = 20) posts the checkpointing transac-
tions into Bitcoin. Following [58], we consider the checkpoint
transactions to be created hourly. We assume, without loss
of generality, that each Bitcoin transaction has 300 bytes, the
transaction fee is 3 Satoshis per byte (as suggested in [58]),
and the price of a Satoshi is 0.000273 USD 8. We evaluate
the cost for PoS chains with different numbers of validators:
27 validators for small-scale PoS chains (like the ones in
Cosmos [19]), 210validators for moderate-scale chains (like
Polkadot [53]), and 212 validators for large-scale chains (like
Filecoin [29]).

8updated on Oct. 16, 2023, from https://coincodex.com/crypto/
satoshi-sats/

16

https://filfox.info/en/ranks/power
https://coincodex.com/crypto/satoshi-sats/
https://coincodex.com/crypto/satoshi-sats/

6.4 Security of Checkpointing

This paradigm has been thoroughly analyzed in [6]. It con-
siders an efficient adversary A , which at each epoch i can
corrupt all validators in previous configurations {C j} j<i−L
and a fraction of validators up to f in “recent" configurations
{C j}i−L< j≤i, for some parameter L such that the checkpoint
transaction for epoch i0 will be confirmed in Bitcoin by epoch
i0 +L. Such an adversary can mount long range attacks by us-
ing the previous secret keys to forge another validate-looking
chain (called a long-range attack chain). However, since the
Bitcoin blockchain has recorded transactions which trans-
ferred all assets from previous addresses {Q j} j<i−L, A can-
not create valid checkpoints using secret keys of {Q j} j<i−L.
Therefore, a bootstrapping client can decide the canonical
chain with Bitcoin checkpoints. We summarize their results
in the following theorem.

Theorem 6 ([6]). Assume both Bitcoin blockchain and the
PoS chain satisfy consistency, chain growth, and chain quality
(as defined in [33]). Assume the Threshold Schnorr signa-
ture satisfies unforgeability and robustness under the DKG
protocol against A corrupting up to t sub-identities, and
AllocateSubID allocates at most t sub-identies to A . Then, the
checkpointing mechanism satisfies the following properties.

• Safety. A cannot produce any valid checkpointing trans-
actions for long range attack chains.

• Liveness. A cannot stop the checkpoints from happening.

On Slashable Safety. Babylon claims the slashable safefy.
Specifically, for a PoS system with 3t+1 units of stake, valida-
tors with at least t units should become slashable in the view
of all honest validators, whenever there is a safety violation.
Many PoS systems offer slashable safety against short-range
attacks by locking validators’ stake for a period and slashing
one’s stake once a proof of security violation is presented.
However, long-range attackers can evade being slashed by
publishing the attack chain after withdrawing their stakes
from the canonical chain.

It has been proved in [58] that slashable safety against long-
range attacks is impossible without external trust. With this
result, [58] also shows that other approaches for mitigating
long-range attacks such as key-evolving signatures [8, 18]
cannot provide slashable safety. Nonetheless, leveraging the
Bitcoin blockchain as external trust can certainly bypass this
impossibility. Assuming that checkpoints for the canonical
PoS chain has been properly posted on the Bitcoin blockchain,
the attacker cannot present an attack chain which diverges
from the canonical chain before the latest checkpoint. In this
case, the attacker must have not withdrawn its stakes and thus
is slashable.

In the light of above, both ours/Pikachu and Babylon can
guarantee slashable safety once the checkpoints have been

properly created. Now we turn to examine the case that check-
points may not be generated correctly. The adversary have
the following options (1) not make a checkpoint; (2) make
a checkpoint for an ill-formed block; (3) make more than
one checkpoints for different well-formed blocks at the same
height and hide the block whose checkpoint appears earlier;
(4) make a checkpoint for a well-formed block but excluding
some valid transactions (for censorship). Babylon introduces
an emergency break to prevent from (2) and (3). The client can
notice these attacks happening and then no longer processes
this chain. In case that the adversary refuses to participant in
the checkpoint creation, Babylon considered the punishment
of inactivity, which enables to remove the inactive validida-
tors. Regarding censorship resistance (4), Babylon proposed
a roll-up technique which is orthogonal to the checkpointing
mechanism.

In our system, as all checkpoints are in the chain of trans-
actions, the adversary cannot mount the attack of (3). For (2)
and (4), we can follow the exact same approach as Babylon
does. For the attack of (1), it may be hard to identify who
makes the DKG/threshold signing fail. Instead, we require
a checkpoint to be made by a certain height of the Bitcoin
blochain, and then the client can switch to emergency break
when it does not find a valid checkpoint by the designated
position. In summary, our checkpointing mechanism provides
slashable safety, as long as honest clients do not switch to
emergency break.

7 Implementation and Evaluation

We implemented our proposed DKG and present the experi-
mental results in this section.

Implementation. We implemented our proposed protocol in
Java 8, comprising approximately 1500 lines of code. To fa-
cilitate Elliptic Curve operations, we utilized the open-source
Java library mpc4j9 and the Bouncy Castle library10. Given
our protocol’s primary application in creating checkpoints
on Bitcoin, we opted for the secp256k1 curve and SHA-256
for relevant cryptographic operations. Our implementation
includes components such as verifiable random function and
verifiable multi-recipient encryption. It is essential to note that
this implementation serves as a proof-of-concept, demonstrat-
ing the practicality of our protocol for large-scale deployment,
even under the presence of the maximal number of Byzan-
tine nodes. We do not implement forward-secure signatures;
however, their cost is marginal and independent of the scale.
Whenever possible, we set the expected size s of an any-trust
group to 20, which ensures that the committee qualifies with a
probability of 1−5×10−9. For small-scale tests like n = 16
and 32, we set s = n/2+1.

9https://github.com/alibaba-edu/mpc4j
10https://www.bouncycastle.org/

17

https://github.com/alibaba-edu/mpc4j
https://www.bouncycastle.org/

16 32 64 128 256

Number of nodes

60.0

60.8

61.6

62.4

63.2

64.0

64.8

65.6

66.4

T
ot

al
ru

n
ti

m
e

(i
n

se
co

n
d

s)
(A) Worst-case runtime of bad instances, measured by the time difference
between the start of the ATDKG and the time the last node outputs keys.

16 32 64 128 256

Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

B
an

d
w

id
th

u
sa

ge
(i

n
M

B
s)

(B) Worst-case bandwidth usage, the amount of data transfers
inbound to and outbound from a node during the ATDKG protocol.

good

bad

16 32 64 128 256

Number of nodes

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

T
ot

al
co

m
p

u
ta

ti
on

ti
m

e
(i

n
se

co
n

d
s)

(C) Average computation time, the worst computation time
averaged over the number of repeats.

Figure 3: End-to-end Test Results

7.1 End-to-End Implementation

Evaluation Setup. We evaluate our Any-Trust DKG imple-
mentation with a varying number of nodes: 16, 32, 64, 128,
and 256. Each node is encapsulated within an individual Ama-
zon Web Services (AWS) t3a.medium EC2 virtual machines
(VM). Each VM has 2 vCPUs and 4 GiB RAM, and runs in
Amazon Linux 2023 AMI 2023.2.20231016.0 x86_64 HVM
kernel-6.1. All nodes are placed in the same AWS region, and
are connected pair-wise, e.g., every two nodes are directly
connected. Since the network delay within the same AWS
region is almost negligible, we simulate a more realistic de-
lay by employing the Linux command tc (traffic control) to
introduce an artificial delay of 100 ms for all TCP traffic.

Implementation Remarks. We set up an additional node to
simulate a blockchain, which serves as the broadcast chan-
nel in our implementation. The blockchain node is directly
connected to all other nodes. In Round 1 and Round 3 of our
DKG, whenever a node needs to broadcast a message, it sends
the message directly to the blockchain node. The blockchain

node then relays all received messages in the round to every
node in the network. As our protocol assumes network syn-
chrony and proceeds round by round, we need to specify the
time window for each round. In practice, the time window set-
ting for Round 1 and 3 can vary depending on the blockchain.
For simplicity, we artificially configure the time window to
be 30 s: the blockchain node receives messages in the first
20 s and then relays the messages. All nodes stop receiving
current-round messages at 30 s and move to the next round.
Given such a configuration, a 60 s running time is inherent
to our experiments, and our experiments concern more about
the running time incurred by Round 2 and the computation at
the end of Round 3.

We evaluate the performance of our DKG in both the good
case and bad case scenarios. In the good case, all nodes are
honest. In the bad case, we set all nodes whose node ID
is smaller than n/2 to be corrupted. A corrupted node, if
elected as a dealer in Round 1, will broadcast malformed
ciphertexts to all nodes, causing n complaints against it in
Round 2. Given a fixed number of nodes and good or bad
case, each experiment configuration is repeated 8 times.

Running Time. We measure the running time of the entire
Any-Trust DKG protocol by capturing the time difference
between the moment when the communication network is
established and when a node finishes computing the shared
public key and its secret share. We take the maximum of this
time difference value across all nodes and all repeats to repre-
sent the end-to-end running time of our protocol. We also set
the time window of Round 2 according to the maximum time
cost. The results are shown in Fig.3A. Besides the inherent 60
s incurred by two broadcast rounds, our DKG protocol only
requires a few more seconds to finish the multi-cast round
and all computation tasks.

Bandwidth Usage. We record the inbound and outbound
bandwidth of each node in Megabytes and demonstrate the
maximum bandwidth usage of all nodes and all repeats in
Fig.3B. The key observation is that the bandwidth grows
linearly in regard to the size of the group.

At the first glance of the results, some non-linearity may be
noticed, however this is mainly caused by (a) a lower sortition
ratio for n = 16 and n = 32, and (b) the randomness in the
sortition results in the Any-Trust DKG protocol. For example,
for the n = 256,bad case, there are 31 nodes being elected
as dealers in Round 1, meaning the bandwidth is about 50%
more than the case where only 20 nodes pass the sortition and
become dealers.

Average Computation Time. By accumulating the time spent
on all computation steps in the Any-Trust DKG protocol,
we can calculate the total computation time of each node.
The maximum total computation time of all nodes in the
same repeat will represent the worst computation time of that
repeat. We measure the worst computation time in each repeat
and take the mean across all repeats. The results are shown

18

29 210 211 212 213 214 215

Number of nodes

100KB

1MB

10MB

100MB

1GB

10GB

50GB

B
ro

ad
ca

st
S

iz
e

Our-Good KZG-Good Our-Bad KZG-Bad

Figure 4: Broadcast Channel Overhead

in Fig.3C. The good cases and the bad cases share similar
outcomes; hence, we only represent the bad cases. Note that
this is not a coincidence; by our design, the extra computation
cost introduced in the worst-case is marginal.

7.2 Performance Analysis on Large Scale
While our end-to-end implementation demonstrates that our
protocol remains practical when n = 28, we further tested the
computation time of our protocol and estimated the commu-
nication cost on larger scales ranging from n = 29 to n = 215.
This range covers the sizes of most PoS chain validators.

On-chain storage cost. We first examine the on-chain stor-
age cost of our protocol, which may be the most crucial part
of broadcast cost. With our extended broadcast channel (cf.
Sect.4), our protocol just requires the blockchain to store
c+ s ≈ 312 normal transactions. Assume each transaction
has 300 Bytes, and then our storage cost will be 92.6 KB.
In contrast, even in the good case, KZG still has n parties
to broadcast messages, which means n transactions are nec-
essary, incurring 300 · n Bytes, which can be 9600 KB for
n = 215.

We also estimate the total number of bits to be sent via the
broadcast channel, a metric independent of the underlying
broadcast channel instantiation. We compare our protocol and
KZG in terms of it, ranging from n = 29 to n = 215, consid-
ering both the good case and the bad case with the maximal
number of complaints. As shown in Figure 4, for our protocol,
the costs in the good case and the worst case are very close
and grow steadily. For n = 29, the cost is around 493 KB,
while for n = 215, the cost is approximately 31 MB. In con-
trast, while the good-case KZG has very low broadcast costs,
its worst-case costs grow quadratically and would require
over 26 GB when n = 215.

Computation time. We conducted tests to measure the com-
putation time for generating a secret-sharing transcript (Deal)
and reaching agreement on a qualified set (Verify) in both

29 210 211 212 213 214 215

Number of nodes

0.1

1

10

100

1K

10K

100K

1M

C
om

pu
ta

ti
on

ti
m

e
(i

n
se

co
nd

s)

Our-Deal

KZG-Deal

Our-GoodVerify

KZG-GoodVerify

Our-BadVerify

KZG-BadVerify

Figure 5: Computation Overhead

good case and bad case, on AWS c5a.large (AMD EYPC
7002 CPU with 2 cores and 4 GB RAM). We compared our
results with KZG, utilizing the reported findings from [65]
for the good case, while estimating the worst-case scenario
by assuming that n2/2 shares need to be verified. As illus-
trated in Fig.5, in the good case, our protocol’s performance is
comparable to or even better than KZG, despite their program-
ming language (C++) and environment (AWS c5a.24xlarge,
AMD EYPC 7002 CPU with 96 cores, and 187 GB RAM) are
supposed to be superior to ours. However, in the worst-case
scenario, our protocol remains efficient, while KZG becomes
infeasible.

Note that our computation time grows faster than KZG’s,
which we believe is due to the use of a naive implementa-
tion of multi-point polynomial evaluation. The complexity of
our current implementation is O(n2) for evaluating an O(n)-
degree polynomial at O(n) points. In contrast, the implemen-
tation in [65] employs an optimized algorithm whose com-
plexity is O(n log2 n). However, it is important to highlight
that our DKG protocol can benefit from the O(n log2 n) poly-
nomial evaluation algorithm as well, and our implementation
can be enhanced if a Java implementation for the algorithm
becomes available.

Acknowledgements

We thank Marko Vukolić and Alejandro Ranchal-Pedrosa
for the helpful discussions. This work was supported in part
by Protocol Labs Research Grants under the RFP-012 on
Checkpointing Filecoin onto Bitcoin.

References
[1] Makerdao, 2023. https://makerdao.com.

[2] Veramo, 2023. Accessed: Oct. 14, 2023.

[3] Wildleaks, 2023. https://wildleaks.org/.

19

[4] ABRAHAM, I., JOVANOVIC, P., MALLER, M., MEIKLEJOHN, S., AND
STERN, G. Bingo: Adaptivity and asynchrony in verifiable secret shar-
ing and distributed key generation. In CRYPTO (1) (2023), vol. 14081
of Lecture Notes in Computer Science, Springer, pp. 39–70.

[5] APTOS. https://aptoscan.com.

[6] AZOUVI, S., AND VUKOLIC, M. Pikachu: Securing pos blockchains
from long-range attacks by checkpointing into bitcoin pow using tap-
root. CoRR abs/2208.05408 (2022).

[7] BACHO, R., AND LOSS, J. On the adaptive security of the threshold
BLS signature scheme. In CCS (2022), ACM, pp. 193–207.

[8] BADERTSCHER, C., GAZI, P., KIAYIAS, A., RUSSELL, A., AND
ZIKAS, V. Ouroboros genesis: Composable proof-of-stake blockchains
with dynamic availability. In CCS (2018), ACM, pp. 913–930.

[9] BELLARE, M., BOLDYREVA, A., KUROSAWA, K., AND STADDON,
J. Multirecipient encryption schemes: How to save on bandwidth and
computation without sacrificing security. IEEE Trans. Inf. Theory 53,
11 (2007), 3927–3943.

[10] BENHAMOUDA, F., GENTRY, C., GORBUNOV, S., HALEVI, S.,
KRAWCZYK, H., LIN, C., RABIN, T., AND REYZIN, L. Can a public
blockchain keep a secret? In TCC (1) (2020), vol. 12550 of Lecture
Notes in Computer Science, Springer, pp. 260–290.

[11] BENHAMOUDA, F., HALEVI, S., KRAWCZYK, H., MIAO, A., AND
RABIN, T. Threshold cryptography as a service (in the multiserver and
YOSO models). In CCS (2022), ACM, pp. 323–336.

[12] BONEH, D., LYNN, B., AND SHACHAM, H. Short signatures from
the weil pairing. In ASIACRYPT (2001), vol. 2248 of Lecture Notes in
Computer Science, Springer, pp. 514–532.

[13] BRACHA, G. Asynchronous byzantine agreement protocols. Informa-
tion and Computation 75, 2 (1987), 130–143.

[14] CANETTI, R., GENNARO, R., JARECKI, S., KRAWCZYK, H., AND
RABIN, T. Adaptive security for threshold cryptosystems. In CRYPTO
(1999), vol. 1666 of Lecture Notes in Computer Science, Springer,
pp. 98–115.

[15] CASCUDO, I., AND DAVID, B. SCRAPE: scalable randomness attested
by public entities. In ACNS (2017), vol. 10355 of Lecture Notes in
Computer Science, Springer, pp. 537–556.

[16] CERULLI, A., CONNOLLY, A., NEVEN, G., PREISS, F., AND SHOUP,
V. vetkeys: How a blockchain can keep many secrets. IACR Cryptol.
ePrint Arch. (2023), 616.

[17] CHAUM, D., AND PEDERSEN, T. P. Wallet databases with observers.
In CRYPTO (1992), vol. 740 of Lecture Notes in Computer Science,
Springer, pp. 89–105.

[18] CHEN, J., AND MICALI, S. Algorand: A secure and efficient dis-
tributed ledger. Theor. Comput. Sci. 777 (2019), 155–183.

[19] COSMOS. https://cosmos.network.

[20] DAS, S., YUREK, T., XIANG, Z., MILLER, A., KOKORIS-KOGIAS,
L., AND REN, L. Practical asynchronous distributed key generation.
In SP (2022), IEEE, pp. 2518–2534.

[21] DAVID, B., GAZI, P., KIAYIAS, A., AND RUSSELL, A. Ouroboros
praos: An adaptively-secure, semi-synchronous proof-of-stake
blockchain. In EUROCRYPT (2) (2018), vol. 10821 of Lecture Notes
in Computer Science, Springer, pp. 66–98.

[22] DAVID, B., MAGRI, B., MATT, C., NIELSEN, J. B., AND TSCHUDI,
D. Gearbox: Optimal-size shard committees by leveraging the safety-
liveness dichotomy. In CCS (2022), ACM, pp. 683–696.

[23] DE SOUZA, L. F., AND TONKIKH, A. Swiper and dora: efficient
solutions to weighted distributed problems. CoRR abs/2307.15561
(2023).

[24] DFINITY. Distributed key generation in js, 2019.
https://github.com/dfinity-side-projects/dkg.

[25] DNOSIS. Distributed key generation, 2018.
https://github.com/gnosis/dkg.

[26] DOLEV, D., AND REISCHUK, R. Bounds on information exchange for
byzantine agreement. In PODC (1982), ACM, pp. 132–140.

[27] DRAND. A distributed randomness beacon daemon - go implementa-
tion, 2023. https://github.com/drand/drand.

[28] FELDMAN, P. A practical scheme for non-interactive verifiable secret
sharing. In FOCS (1987), IEEE Computer Society, pp. 427–437.

[29] FILECOIN. https://filecoin.io/.

[30] FOUQUE, P., AND STERN, J. One round threshold discrete-log key
generation without private channels. In Public Key Cryptography
(2001), vol. 1992 of Lecture Notes in Computer Science, Springer,
pp. 300–316.

[31] GAO, Y., LU, Y., LU, Z., TANG, Q., XU, J., AND ZHANG, Z. Dumbo-
ng: Fast asynchronous BFT consensus with throughput-oblivious la-
tency. In CCS (2022), ACM, pp. 1187–1201.

[32] GAO, Y., LU, Y., LU, Z., TANG, Q., XU, J., AND ZHANG, Z. Efficient
asynchronous byzantine agreement without private setups. In ICDCS
(2022), IEEE, pp. 246–257.

[33] GARAY, J. A., KIAYIAS, A., AND LEONARDOS, N. The bitcoin
backbone protocol: Analysis and applications. In EUROCRYPT (2)
(2015), vol. 9057 of Lecture Notes in Computer Science, Springer,
pp. 281–310.

[34] GENNARO, R., JARECKI, S., KRAWCZYK, H., AND RABIN, T. Secure
distributed key generation for discrete-log based cryptosystems. J.
Cryptol. 20, 1 (2007), 51–83.

[35] GENTRY, C., HALEVI, S., KRAWCZYK, H., MAGRI, B., NIELSEN,
J. B., RABIN, T., AND YAKOUBOV, S. YOSO: you only speak once
- secure MPC with stateless ephemeral roles. In CRYPTO (2) (2021),
vol. 12826 of Lecture Notes in Computer Science, Springer, pp. 64–93.

[36] GENTRY, C., HALEVI, S., AND LYUBASHEVSKY, V. Practical non-
interactive publicly verifiable secret sharing with thousands of parties.
In EUROCRYPT (1) (2022), vol. 13275 of Lecture Notes in Computer
Science, Springer, pp. 458–487.

[37] GENTRY, C., HALEVI, S., MAGRI, B., NIELSEN, J. B., AND YAK-
OUBOV, S. Random-index PIR and applications. In TCC (3) (2021),
vol. 13044 of Lecture Notes in Computer Science, Springer, pp. 32–61.

[38] GOLDBERG, S., NAOR, M., PAPADOPOULOS, D., AND REYZIN, L.
NSEC5 from elliptic curves: Provably preventing DNSSEC zone enu-
meration with shorter responses. IACR Cryptol. ePrint Arch. (2016),
83.

[39] GUO, B., LU, Y., LU, Z., TANG, Q., XU, J., AND ZHANG, Z. Speed-
ing dumbo: Pushing asynchronous BFT closer to practice. In NDSS
(2022), The Internet Society.

[40] GUO, B., LU, Z., TANG, Q., XU, J., AND ZHANG, Z. Dumbo: Faster
asynchronous BFT protocols. In CCS (2020), ACM, pp. 803–818.

[41] GURKAN, K., JOVANOVIC, P., MALLER, M., MEIKLEJOHN, S.,
STERN, G., AND TOMESCU, A. Aggregatable distributed key gen-
eration. In EUROCRYPT (1) (2021), vol. 12696 of Lecture Notes in
Computer Science, Springer, pp. 147–176.

[42] HEUER, F., JAGER, T., KILTZ, E., AND SCHÄGE, S. On the selective
opening security of practical public-key encryption schemes. In Public
Key Cryptography (2015), vol. 9020 of Lecture Notes in Computer
Science, Springer, pp. 27–51.

[43] HUANG, Z., LAI, J., CHEN, W., RAEES-UL-HAQ, M., AND JIANG,
L. Practical public key encryption with selective opening security for
receivers. Inf. Sci. 478 (2019), 15–27.

[44] ITKIS, G., AND REYZIN, L. Forward-secure signatures with optimal
signing and verifying. In CRYPTO (2001), vol. 2139 of Lecture Notes
in Computer Science, Springer, pp. 332–354.

20

[45] KATE, A., ZAVERUCHA, G. M., AND GOLDBERG, I. Constant-size
commitments to polynomials and their applications. In ASIACRYPT
(2010), vol. 6477 of Lecture Notes in Computer Science, Springer,
pp. 177–194.

[46] KIDRON, D., AND LINDELL, Y. Impossibility results for universal
composability in public-key models and with fixed inputs. J. Cryptol.
24, 3 (2011), 517–544.

[47] KOMLO, C., AND GOLDBERG, I. FROST: flexible round-optimized
schnorr threshold signatures. In SAC (2020), vol. 12804 of Lecture
Notes in Computer Science, Springer, pp. 34–65.

[48] LEE, S., MURASHKIN, A., DERKA, M., AND GORZNY, J. Sok: Not
quite water under the bridge: Review of cross-chain bridge hacks. In
ICBC (2023), IEEE, pp. 1–14.

[49] MALKHI, D., AND SZALACHOWSKI, P. Maximal extractable value
(MEV) protection on a DAG. In Tokenomics (2022), vol. 110 of OASIcs,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 6:1–6:17.

[50] MILLER, A., XIA, Y., CROMAN, K., SHI, E., AND SONG, D. The
honey badger of BFT protocols. In CCS (2016), ACM, pp. 31–42.

[51] NAYAK, K., REN, L., SHI, E., VAIDYA, N. H., AND XIANG, Z. Im-
proved extension protocols for byzantine broadcast and agreement. In
DISC (2020), vol. 179 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, pp. 28:1–28:17.

[52] PEDERSEN, T. P. Non-interactive and information-theoretic secure
verifiable secret sharing. In CRYPTO (1991), vol. 576 of Lecture Notes
in Computer Science, Springer, pp. 129–140.

[53] POLKADOT. https://www.polkadot.network/.

[54] REED, I. S., AND SOLOMON, G. Polynomial codes over certain finite
fields. Journal of the society for industrial and applied mathematics 8,
2 (1960), 300–304.

[55] RUBY.EXCHANGE. How skale solves the front-running problem,
2021. https://blog.ruby.exchange/how-skale-solves-the-front-running-
problem/?ref=blog.pantherprotocol.io.

[56] SHOUP, V. The many faces of schnorr. IACR Cryptol. ePrint Arch.
(2023), 1019.

[57] STEINHOFF, S., STATHAKOPOULOU, C., PAVLOVIC, M., AND
VUKOLIC, M. BMS: secure decentralized reconfiguration for
blockchain and BFT systems. CoRR abs/2109.03913 (2021).

[58] TAS, E. N., TSE, D., GAI, F., KANNAN, S., MADDAH-ALI, M. A.,
AND YU, F. Bitcoin-enhanced proof-of-stake security: Possibilities
and impossibilities. In SP (2023), IEEE, pp. 126–145.

[59] TEZOS. https://tezos.com.

[60] TOMESCU, A., CHEN, R., ZHENG, Y., ABRAHAM, I., PINKAS, B.,
GOLAN-GUETA, G., AND DEVADAS, S. Towards scalable threshold
cryptosystems. In IEEE Symposium on Security and Privacy (2020),
IEEE, pp. 877–893.

[61] TOTAL-BLOCKCHAIN. Osmosis will soon be frontrunning mev free,
2022. https://medium.com/@totalblockchainemail/osmosis-will-soon-
be-frontrunning-mev-free-b7da89f04ce9.

[62] TRAUTWEIN, D., RAMAN, A., TYSON, G., CASTRO, I., SCOTT, W.,
SCHUBOTZ, M., GIPP, B., AND PSARAS, Y. Design and evaluation of
IPFS: a storage layer for the decentralized web. In SIGCOMM (2022),
ACM, pp. 739–752.

[63] WOLINSKY, D. I., CORRIGAN-GIBBS, H., FORD, B., AND JOHNSON,
A. Scalable anonymous group communication in the anytrust model.
In European Workshop on System Security (EuroSec) (2012), vol. 4.

[64] YUREK, T., LUO, L., FAIROZE, J., KATE, A., AND MILLER, A.
hbacss: How to robustly share many secrets. In NDSS (2022), The
Internet Society.

[65] ZHANG, J., XIE, T., HOANG, T., SHI, E., AND ZHANG, Y. Polynomial
commitment with a one-to-many prover and applications. In USENIX
Security Symposium (2022), USENIX Association, pp. 2965–2982.

21

	Introduction
	Our Results
	Related Works

	Model and Preliminaries
	Our DKG Protocol
	Practical Extended Broadcast Channels
	Building Blocks
	Our Extended Broadcast Channel

	Sub-ID Allocation for the Weighted Setting
	Application to All-hands Checkpointing into Bitcoin
	The Blueprint of Pikachu
	Realizing Pikachu with Any-Trust DKG
	Comparison with Babylon Checkpointing
	Security of Checkpointing

	Implementation and Evaluation
	End-to-End Implementation
	Performance Analysis on Large Scale

