
On the Feasibility of E2E Verifiable Online
Voting – A Case Study From Durga Puja Trial

Horia Druliac1, Matthew Bardsley1, Chris Riches1, Christian Dunn1, Luke
Harrison1, Bimal Roy2, and Feng Hao1

1 University of Warwick, United Kingdom
2 Indian Statistical Institute, India

Abstract. India is the largest democracy by population and has one
of the largest deployments of e-voting in the world for national elec-
tions. However, the e-voting machines used in India are not end-to-end
(E2E) verifiable. The inability to verify the tallying integrity of an elec-
tion by the public leaves the outcome open to disputes. E2E verifiable
e-voting systems are commonly regarded as the most promising solution
to address this problem, but they had not been implemented or trialed in
India. It was unclear whether such systems would be usable and practical
to the Indian people. Previous works such as Helios require a set of tally-
ing authorities (TAs) to perform the decryption and tallying operations,
but finding and managing TAs can prove difficult. This paper presents
a TA-free E2E verifiable online voting system based on the DRE-ip pro-
tocol. In collaboration with the local authority of New Town, Kolkata,
India, we conducted an online voting trial as part of the 2022 Durga Puja
festival celebration, during which residents of New Town were invited to
use mobile phones to vote for their favourite pujas (festival decorations)
in an E2E verifiable manner. 543 participants attended the Durga Puja
trial and 95 of them provided feedback by filling in an anonymous survey
after voting. Based on the voter feedback, participants generally found
the system easy to use. This was the first time that an E2E online voting
system had been built and tested in India, suggesting its feasibility for
non-statutory voting scenarios.

1 Introduction

India is the largest democracy in the world by population, and one of the earliest
adopters of electronic voting (e-voting) for national elections. E-voting machines,
known as Electronic Voting Machines (EVMs), were first used in elections in
India in 1998, and today, they have replaced paper ballots in all state and general
elections, and almost all local elections. Twenty years of deployment of e-voting
in legally binding elections in India has built up an asset of experience and
provided the world with useful lessons.

One of the most important lessons concerns the security of e-voting. With the
existing design of EVM, voters must trust that the machine functions correctly
and honestly, but they cannot independently verify if that is the case [25]. In



a civic poll in Uttar Pradesh in November 2017, some voters discovered that
an EVM always recorded votes for a fixed candidate, irrespective of the button
that was being pressed [19]. Officials attributed this to a “malfunction” and
replaced the affected machines. Similar malfunctions had been reported before,
e.g., during elections in Maharashtra in July 2017 [16]. These instances of EVM
malfunction inevitably raise the question: how can it be assured that a similar
malfunction does not happen in an election in an undetectable way?

One promising solution, widely supported by the research community, is to
make an e-voting system end-to-end (E2E) verifiable [13]. Here, the E2E ver-
ifiability refers to voters being able to verify their votes are cast-as-intended,
recorded-as-cast and tallied-as-recorded. The malfunction cases reported in Uttar
Pradesh and Maharashtra show an example of not fulfilling the cast-as-intended
requirement. Yet, despite the advancement of e-voting research, E2E verifiable
voting systems had not been implemented or trialled in India. It was unclear
whether such systems would be usable and practical for Indian people.

We reached out to the Election Commission of India (ECI) with a proposal
to validate the feasibility of E2E verifiable e-voting in the country. Subsequent
meetings with the IT secretary of the West Bengal state were arranged to dis-
cuss suitable trial opportunities. However, instead of doing a trial as part of a
statutory election, it was suggested that the trial be conducted for an informal
non-statutory election to build a case study first. One opportunity that arose
from the discussions was to conduct an online voting trial as part of the annual
Durga Puja festival celebration at New Town, Kolkata.

New Town is a modern satellite city of Kolkata in the West Bengal state.
Durga Puja is one of the most important festivals in India, especially in Kolkata.
From 2019, the research team had several meetings with New Town Kolkata
Development Authority (NKDA), the local governing body of New Town, to
gather the design requirements for an E2E verifiable online voting system to be
used in the trial. In 2022, in-person celebrations for Durga Puja were revived in
many parts of India including New Town after the COVID-19 pandemic. For the
first time, residents of New Town were provided with an opportunity to vote for
their favourite pujas (festival decorations) online in an E2E-verifiable manner.

In this paper, we present an E2E verifiable online voting system based on
Shahandashti and Hao’s DRE-ip protocol [21] (with adaptations). Compared
with other E2E voting schemes, the DRE-ip protocol has a distinctive feature
that it is free from any tallying authorities (TAs). As we will show, the removal
of TAs significantly simplifies election management. The system development
started from scratch and took about a year, comprising around 25,000 lines
of code. Voters cast votes using mobile phones or computers through a public
web interface3. The backend code including all cryptographic implementations
is available as open-source4. In collaboration with NKDA, we successfully con-
ducted an online voting trial among the New Town residents as part of the Durga
Puja festival celebration. To the best of our knowledge, this is the first time that

3 https://newtowndurgapuja.in/
4 https://github.com/DRE-ip-Implementation-Team/dre-ip-backend/

2



an E2E online voting system has been implemented and trialled in India. We
explain the details of the voting system design (§3), the implementation (§4),
the Durga Puja trial (§5) and the survey results (§6). This trial serves to provide
a case study that demonstrates the feasibility of E2E online voting, in place of
vanilla (or black-box) online voting, for an informal non-statutory election. We
leave the study of the suitability of E2E online voting, as an alternative choice
of postal voting, for statutory elections to future research.

2 Background

In general, there are two types of voting applications: local and remote voting.
The former is conducted locally at polling stations in a supervised environment,
while the latter is conducted remotely in an unsupervised environment. In ei-
ther case, voters may use paper ballots or electronic means. In this section, we
will focus primarily on remote voting. Table 1 compares several remote voting
systems in terms of the E2E verifiability requirements.

Postal voting (also called mail-in voting) is a popular form of remote vot-
ing legally permitted in many democratic countries. In the UK, about 20% of
the electorate choose postal voting in general elections. In other countries, the
proportion of the electorate which choose postal voting has been steadily increas-
ing [23]. In postal voting, a voter is able to verify that a vote is cast as intended
(since they manually write the candidate choice). However, a voter cannot verify
how a paper ballot will be recorded and tallied after it is posted.

Internet voting allows voters to vote online through a web browser. A vanilla
version of Internet voting simply asks voters to choose candidates on a web page
and tallies the submitted votes on the server. Voters are required to completely
trust the system, but their electronic ballots, as well as the tally, may be ma-
liciously changed without their awareness. Such a vanilla system is also called
a “black-box” e-voting system [11]. Examples include those used for 2022 IEEE
Annual Election and the 2022 Tory party leadership election. In these elections,
voters had no means to independently verify the tallying integrity.

A prominent online voting system that has been used for national elections
is Estonian Internet voting [13]. In 2005, Estonia became the first country that
allowed Internet voting for national elections, and today about 50% of the ballots
are cast online. As compared with a vanilla system, the Estonian online voting
system is partially verifiable – in particular, a voter can verify that their vote
is cast-as-intended (by forcing the voting device to reveal the randomness used
in the encryption of a ballot), but not that it is correctly recorded-as-cast and
tallied-as-recorded [13]. Voters must trust the server for the tallying integrity.
If the server is compromised, the attacker can freely modify the tally without
being detected, as demonstrated by Springall et al. [22].

E2E verifiable e-voting systems are commonly regarded as the most promising
solution to protect the tallying integrity since by design they must satisfy all
three verifiability requirements (see Table 1). Well-known E2E voting systems
include Chaum’s voter verifiable scheme, Prêt à Voter, Scantegrity, Helios and

3



Scheme
Postal
voting

Vanilla
online voting

Estonian
online voting

E2E verifiable
online voting

Cast-as-intended ✓ ✗ ✓ ✓

Recorded-as-cast ✗ ✗ ✗ ✓

Tallied-as-recorded ✗ ✗ ✗ ✓

Table 1: Comparison of remote voting systems in terms of verifiability

STAR-vote [13]. All of these schemes require a set of Tallying Authorities (TAs)
to perform decryption and tallying operations. However, finding and managing
such TAs has proved difficult [2]. This motivates designing E2E voting systems
that are TA-free, e.g., DRE-i [11] and DRE-ip [21]. DRE-i chooses to pre-compute
encrypted ballots but the pre-computed ballots need to be securely stored. A
compromise of the storage will reveal the secrecy of all ballots. By comparison,
DRE-ip encrypts ballots in real-time, and can provide a stronger guarantee of
ballot secrecy: when the system is completely compromised, while the tallying
integrity remains intact due to E2E verifiability, only the partial tally at the
time of compromise is revealed, representing minimum information leakage [21].
While DRE-i and DRE-ip are designed to only support the simple plurality
voting scheme, they can be extended to support more complex ranked-choice
voting schemes such as Borda count [3], Condorcet [15] and Instant Run-off [14]
without requiring TAs. In this work, we are only concerned with plurality voting.

3 System Design

This section explains the requirements for the Durga Puja online voting system,
the architectural design and the authentication mechanism.

3.1 Requirements

Based on the meetings with NKDA, the following requirements were specified.

1. E2E verifiability - The online voting system shall be E2E verifiable (which
is the main goal of the trial).

2. Admin automation - The election management should be automated without
TAs (there are no resources from NKDA to serve as any TA).

3. Mobile phone friendliness - A voter should be able to vote from a mobile
phone as long as it has Internet access. They can also vote from computers.

4. Option of verification - The option to verify votes should be available to
voters, but not imposed on them as mandatory. This is for usability reasons.

5. No registration - No registration is required; anyone with a valid India mobile
number can participate in this trial. This is to facilitate participation.

6. Support for two categories - There are two communities in New Town called
housing and block, which correspond to two categories of voting. A voter
needs to choose one of the two categories and vote within the chosen category.

4



Satisfying (1-4). To achieve E2E verifiability we chose DRE-ip [21], which
does not require any TAs. The removal of TAs significantly simplifies election
management. After the election parameters (i.e., voting questions, candidates,
start/end time) are specified, the remaining management process is automated
in a publicly verifiable manner. As soon as the election ends, the tally is in-
stantly available, together with publicly available audit data to enable anyone
to verify the tallying integrity. As the cryptographic operations are performed
on the server according to DRE-ip, a voter can use a plain browser on a resource-
constrained device such as a mobile phone to vote. In DRE-ip, the voter ver-
ification step has been naturally integrated into the voting process as a ‘can-
cel/confirm’ step, which gives every voter an option to verify votes.

Satisfying (5). To facilitate remote participation in this trial, we adopt a
single-factor (token) authentication scheme. The voter provides a mobile phone
number, and proves the ownership of that number by entering a 6-digit One-Time
Passcode (OTP) that the system sends to that number through SMS. The sys-
tem formats the provided number according to the international phone number
formatting standard (E.164) and accepts only valid India numbers (international
code +91). To preserve privacy, we do not store any phone number in plaintext
on our system. Instead, we store an HMAC tag t = HMACk(“phone number”)
where k is a HMAC key (stored in the system together with the private signing
key used to sign data for publication on the bulletin board). This allows us to
check if the phone number has been used before without storing it in plaintext.
To address the threat of a bot guessing OTP, we add reCAPTCHA (v2) as part
of the authentication process. If a voter has more than one mobile phone num-
ber, they can cast a vote using each different mobile number. This is considered
acceptable in the context of this trial (there is no award for the winners, except
an honourable mention of their names on the NKDA website). In a real election,
proper registration is required and then “one-man-one-vote” can be enforced by
checking the phone number against a list of registered numbers. Furthermore,
instead of using SMS (which is being replaced by a token-based authenticator in
many applications), alternative schemes based on multiple factors (e.g., password
+ authenticator) can be used to strengthen authentication in real elections.

Satisfying (6). To fulfill Requirement 6 and to make the system flexible and
generally useful, we define groups of voters, each of which can vote on a subset
of questions. Different groups may be mutually exclusive or overlap. In the most
common case, the electorate contains only one group. The system is designed
to support any number of groups. When we create an election, we can assign
specific voting questions to specific groups. For the New Town Durga Puja trial,
we define two mutually exclusive groups (block/housing). A voter must choose
to belong to one of the two groups, and once the choice is confirmed, it cannot be
changed. Voters in each group elect the best puja within their respective group.

3.2 Architecture

The voting system can be subdivided into two primary components: an election
server, and a web voting interface. The server implements cryptographic func-

5



tions of DRE-ip using Rust, in conjunction with MongoDB for backend storage.
The use of Rust has the advantages of eliminating classes of bugs (e.g., memory
safety bugs) at compile-time, and supporting concurrent requests efficiently. The
front-end interface adopts the open-source JavaScript framework Vue.js to pro-
vide a single-page web application. Each page is considered as a view, composed
of different components. Each component is split into three sections: template
(HTML), styling (CSS) and behavior (JavaScript). This allows for designing web
pages in a more organized manner. Among numerous CSS frameworks available,
we chose Tailwind, which is lightweight, offers the freedom to create a unique user
interface, and is compatible with mobile devices. The voting interface interacts
with the back-end of the system by issuing requests for resources (read/write)
or voter actions to the election server. All the requests are run over HTTPS.

To allow portable deployment of the system on any platform, we use Docker,
a platform-independent service for application deployment. The use of Docker
separates applications into containers that can interact with each other, and
ensures that services can run identically regardless of the host operating system.
Dependencies are automatically managed, and environments are encapsulated.
We deploy the e-voting system as a multi-container Docker application on a
Virtual Private Server (VPS) in a public cloud.

3.3 Authentication

The voting system distinguishes three types of users: 1) a coordinator, who has
the administrative right to create elections; 2) a voter, who has the right to
cast one ballot; and 3) a public member, who is free to view a public bulletin
board page without any authentication. In our implementation, a coordinator is
authenticated by a username and password. A voter is authenticated based on
proving the ownership of a mobile phone number, i.e., providing an OTP sent
to that mobile phone. A public member does not need authentication.

4 Durga Puja Online Voting System

The Durga Puja online voting system is based on implementing DRE-ip with
adaptations according to the requirements in Section 3.1. The system implemen-
tation consists of three phases: setup, voting and result, as we detail below.

4.1 Setup Phase

The original DRE-ip protocol [21] is specified in a DSA-like multiplicative group
for a single-candidate election. But in our system, we choose to implement it
using an additive group over an elliptic curve for better efficiency. We extend
the single-candidate specification by running it in parallel for multiple candidates
with an additional zero-knowledge proof (based on Chaum and Pedersen [9]) to
enforce that only one candidate may be selected from a list. Let E(Fq) be an
elliptic curve defined over a finite field Fq where q is a large prime. The system

6



works in the subgroup over E(Fq) of prime order p. We adopt the NIST P-
256 elliptic curve, which is well supported in Rust. (Alternative curves such as
Curve25519 can also be used.) The setup of an election involves deriving two
generators: namely, G1 and G2, whose discrete logarithm relation is unknown to
anyone. We define the standard generator from NIST P-256 as G1 and obtain G2

by using a hash_to_curve algorithm5 with election-specific data (e.g., election
name, start/end time, candidates etc) as the input to the hash function. On the
P-256 curve (where the co-factor is 1), any non-identity point can serve as a
generator. Hence, computing G2 is straightforward.

The setup phase also involves generating a pair of digital signing keys using
ECDSA for each election. The ECDSA keys are used to ensure the authenticity of
the data published on the bulletin board. We choose the same NIST P-256 curve
for implementing ECDSA. The public key is published on the public bulletin
board before the election. During an election, all the audit data published on
the bulletin board for voter verification is digitally signed by the corresponding
ECDSA private key for proving the authenticity of the published data. Once the
coordinator defines the parameters for an election, including the election title,
start/end time, questions and candidates, the subsequent management of an
election is automated. The voting phase will start and end automatically, with
publicly verifiable audit data published on the bulletin board to allow every
voter to verify the tallying integrity, as we explain in the next phase.

4.2 Voting Phase

A voter must first pass the authentication as described in Section 3. They then
need to choose whether they vote in the “block” or “housing” group based on the
requirements in Section 3.1. For each group, voters are presented with the same
voting question (defined by NKDA): “Best Puja under citizen choice”. They are
allowed to choose only one candidate from the given list in the respective group.

The original DRE-ip protocol is specified for a single-candidate election, in
which each voter casts one vote vi ∈ {0, 1} (which corresponds to ‘No’ and ‘Yes’
respectively). In our implementation, we extend it to support multiple candidates
by running the single-candidate elections in parallel for all k candidates and
adding a zero-knowledge proof (ZKP) to constrain that only one candidate out
of k may be chosen. Each ballot is uniquely identified by an index number
i. In our implementation, we chose the index number i to be incremental for
each ballot. Each ballot i contains vij ∈ {0, 1} (j = 0, 1, . . . , k − 1) votes for k
candidates. When the voter selects a candidate, their ballot is generated by the
server as follows. For each candidate j = 0, 1, . . . , k − 1:

1. Assign vij = 1 if the voter has chosen the jth candidate; vij = 0 otherwise.
2. Compute an encrypted vote for the jth candidate, consisting of Zij = G1 ·

(rij + vij) and Rij = G2 · rij where rij ∈R [0, p− 1] is a random secret, and
‘+/·’ are addition/multiplication operations on an elliptic curve respectively.

5 https://docs.rs/hash2curve/

7



3. Compute a 1-out-of-2 ZKP based on the Cramer-Damg̊ard-Schoenmakers
method [10] to prove that vij is either 0 or 1 (i.e., the encrypted vote for
each candidate is well-formed).

These per-candidate votes are then collated into an overall ballot i, with an
additional ZKP to prove that exactly one out of the k candidates has been chosen,
i.e.,

∑
j vij = 1. We use Chaum-Pedersen’s equality ZKP [9] to realize this.

All the ZKPs implemented in our system are made non-interactive by applying
the Fiat-Shamir heuristics [21]. Unique indices of the election ID, the question
number, the ballot number and the candidate number (where applicable) are
included into the hash function to bind each ZKP with its unique context.

Casting a ballot comprises two steps (see Figure 1 for an illustration). First,
the voter chooses a candidate from the list. Second, the voter has the option to
either cancel or confirm the ballot. In case of cancelling the ballot, the ballot is
cancelled and the voter is redirected to Step 1 to vote again. In case of confirming
the ballot, the ballot is cast and the voting session is finished.

A receipt for the ballot i consists of two parts, corresponding to the above
two steps respectively. The first part is generated as soon as the voter chooses
a candidate. It contains Zij and Rij for j = 0, 1, . . . , k − 1 and the ZKPs. The
receipt is displayed on the voter’s voting page, which they can choose to print
out. The same content is also posted on the public bulletin board together with
a digital signature to prove data authenticity. The voter is encouraged to check
that the receipt is the same as the one published on the bulletin board. To make
this check easier, we adopt a truncated hash approach used in the Gateshead
trial [12] by computing a truncated hash of 50 characters (in base-32 encoding),
arranged in two rows and groups of 5 characters. This truncated hash is called
the “confirmation code” on the receipt. It is sufficient for the voter to check the
“confirmation code” on the receipt matches that on the public bulletin board.
The full cryptographic data (including Rij , Zij , ZKPs and digital signatures)
are available on the bulletin board for public verification.

The second part of the receipt depends on whether the voter chooses to cancel
or confirm their ballot. In case of cancelling the ballot, the chosen candidate (vij ,
j = 0, 1, . . . , k − 1) is revealed on the receipt. The same content, together with
the cryptographic random secrets rij , is also published on the bulletin board.
With rij , anyone is able to decrypt Zij and Rij and check whether the decrypted
results match the vij values. This assures “cast-as-intended”. A cancelled ballot
does not add to the tally. After a voter cancels a ballot, they can vote again.

In the case of confirming the ballot, the receipt shows no additional infor-
mation other than that the ballot has been “confirmed”, and that the ballot
is the encryption of either a ‘Yes’ vote or a ‘No’ vote. A voter is encouraged
to check that the same receipt is published on the bulletin board. This pro-
vides assurance of “recorded-as-cast”. The server keeps a running tally tj for
each candidate j, and an aggregated secret sj . The tj and sj values are initially
zero and are updated during the voting phase for each confirmed ballot, i.e.,
tj ← tj + vij , sj ← sj + rij for j = 0, 1, . . . , k. The individual values of vij
and rij (j = 0, 1, . . . , k) are securely erased once a confirmed ballot is cast. At

8



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1: Voting interfaces in an example election. (a) Step 1: choose a candidate.
(b) Step 2: cancel or confirm. (c) The vote is cancelled. (d) The vote is confirmed.
(e) Part-I receipt for ballot 1. (f) Part-II receipt for ballot 1 (audited). (g) Part-I
receipt for ballot 2. (h) Part-II receipt for ballot 2 (confirmed)

this point, not even the system knows which candidate a particular ballot is for,
and the receipts reveal no information that would enable a coercer to deduce the
vote. We note that a coercer could learn the vote by being present with the voter
and observing how they cast the vote; however, this is a threat that generally
applies to all remote voting applications (including postal voting).

4.3 Result Phase

When the voting end time has passed, the system stops accepting new votes;
any existing ballots that are neither confirmed nor cancelled are automatically
cancelled. The system publishes the tally tj and the aggregated secret sj for all
k candidates. The tally tj for each candidate j ∈ [0, k − 1] can be verified as
follows. We know that tj =

∑
i vij and sj =

∑
i rij should hold over the secret

9



(and now erased) vij and rij values of all confirmed ballots C. Therefore, the
following properties hold over the public values of confirmed ballots:∑

i∈C
Zij = G1 · (sj + tj) and

∑
i∈C

Rij = G2 · sj (1)

These two properties are defined on only public values and therefore can be
checked by anyone. They are equivalent to checking the correctness properties
on the secret values and thus the correctness of the tally. In our implementation,
once an election is finished, we publish the full audit data in JSON format
on the bulletin board so anyone can download and check. To facilitate public
verification, we provide an open-source tool to allow anyone to verify that all
ballots are “tallied-as-recorded”. One is also free to write their own verification
tool since the verification algorithm is entirely public without any secret keys.

5 Durga Puja Online Voting Trial

Ethics approval. The Durga Puja trial represents a joint collaboration between
the academic research team and NKDA, which is the local authority governing
the New Town city. The system was developed according to the NKDA require-
ments in Section 3.1. After the system was developed, it was internally tested by
NKDA in several iterations before they officially approved its use for the Durga
Puja trial. Meanwhile, the trial was also approved by the University of Warwick’s
research ethics committee. As part of the ethics approval process, it was agreed
that we would not provide any awards to the winning candidates (apart from an
honourable mention on the NKDA website), or make payments to participants
of this trial. This was to avoid potential bias in favor of the system.

The trial was agreed to run during the 2022 Durga Puja festival: starting
on the 1st of October 2022, 12:00 AM and ending on the 5th of October 11:59
PM (Indian standard time). From 23 September to 30 September, NKDA issued
a public call through their official website for the nomination of candidates for
the ‘block’ and ‘housing’ categories respectively. In the end, 14 candidates were
nominated for the ‘block’ category, and 18 candidates were nominated for the
‘housing’ category. For each category, the voting question is the same: “Best
Puja under citizen choice”. After the candidates, the voting question and the
start/end times for the election were specified, the election setup was completed
and the subsequent election management was automated.

The online voting system started accepting votes at midnight (12:00 am) on
1st October 2022, when the Durga Puja festival in New Town officially began.
Over the next 5 days, 543 voters participated with 506 cast votes recorded (see
Figure 2). After voting, each voter was provided with a web link to an anonymous
survey using Google Form. In total, 95 voters filled in the survey.

The survey contains three sections. The first section includes questions about
basic demographics, such as gender, age, education, and computer usage back-
ground. The second section includes 10 standard System Usability Scale (SUS)

10



Fig. 2: Voter turnout during the 2022 Durga Puja trial

questions in order to evaluate the usability of the system. The third section in-
cludes a question asking the voter for their preference between postal voting and
E2E verifiable online voting.

6 Trial Results

In this section, we analyze the voting statistics and the collected surveys for
usability evaluation, as well as possible correlations with demographics.

6.1 Demographics

Among the 95 participants in the anonymous survey, 70 of them (73.7%) are
male, and 25 (26.3%) are female. In terms of age, 24 are aged above 60 (25.3%);
24 between 50-59 (25.3%); 22 between 40-49 (23.2%); 16 between 30-39 (16.8%);
seven between 20-29 (7.4%); one under 20 (1.1%); with one preferring not to
say (1.1%). In terms of educational background, 50 hold a postgraduate degree
(45.3%); 18 hold an undergraduate degree (18.9%); 14 are at college (14.7%);
three people are at secondary school (3.2%); one person has not attended any-
thing above or equivalent to secondary school (1.1%); nine preferred not to say
(9.5%). We observe that the percentage of postgraduate degrees, as self-reported
by participants, is higher than expected (we had a similar observation in an ear-
lier study [12]). This is likely because some participants are not familiar with
the meaning of a “postgraduate degree” and over-claim their educational back-
ground. Nonetheless, this should have little effect on our main analysis results
as we do not find any significant correlation between usability scores and edu-
cational background, both with and without “postgraduate degree” (see §6.2).
On the experience of computer usage, 43 report that they use computers “ex-
tensively” (45.3%); 30 use them “often” (31.6%); 13 “sometimes” use computers
(13.7%); nine only “occasionally” use them (9.5%).

11



6.2 System Usability Scale scores and correlations

We adopt the standard SUS framework developed by John Brooke [6] for evalu-
ating the usability of our system. The SUS framework consists of 10 statements.
Respondents must indicate their agreement with these statements on a five-point
Likert scale (1 = “strongly disagree”, 2 = “disagree”, 3 = “neutral”, 4 = “agree”,
5 = “strongly agree”). This returns a score that can be compared against other
systems. We use the original wording for the SUS questions, except that we
change one statement “I think that I would like to use this system frequently”
to “I think that I would like to use this system in the future”. This follows the
same change made to this SUS question in the Gateshead trial [12].

Using the SUS computation method, our mean SUS score is 79.55 with a
standard deviation of 17.13. This is between “good” (SUS = 73) and “excellent
(SUS = 85) based on commonly used criteria [4]. We observed that the main
inconvenience for some voters was solving a CAPTCHA challenge while going
through the OTP authentication. In ordinary cases, a user simply needs to click
a tick-box to pass the reCAPTCHA v2, but Google sometimes prompts the voter
to manually solve a CAPTCHA challenge (e.g., identifying traffic lights). This is
decided by the Google server based on several factors, e.g., if the user has previ-
ously authenticated to a Google account in the browser. The use of reCAPTCHA
v3 would reduce the need for this user interaction, but it requires a dedicated
administrator to monitor the traffic and adjust the threshold accordingly.

Based on the Spearman correlation method, we find the SUS score has little
correlation with age (Spearman correlation coefficient ρ = −0.065, and two-
tailed p = 0.533) and education (ρ = 0.134, p = 0.219)6. However, the SUS
score is found weakly correlated with computer experience, with higher scores
for users with more computer experience (ρ = 0.319, p = 0.002). This result is
broadly consistent with a previous usability study of a DRE-ip implementation
for a polling station voting trial at Gateshead, UK [12], in which the SUS score
was found uncorrelated with the age, gender, or educational background but
positively correlated with the voter’s computer usage experience.

The final question in the anonymous survey asks the voter: “If you have to
vote remotely, which system do you prefer?” Voters are asked to choose a prefer-
ence between two remote voting methods: postal voting and E2E verifiable online
voting (as used in the trial). The choices are given in a 5-point Likert scale: 1
(“strongly prefer postal voting”), 2 (“prefer postal voting”), 3 (“neutral”), 4
(“prefer online voting”) and 5 (“strongly prefer online voting”). Figure 3 sum-
marizes the preferences from the voter feedback. The vast majority (89 or 93.7%)
of participants responded that they prefer or strongly prefer online voting. This
preference is found weakly correlated with SUS with those rating higher SUS
scores more likely to prefer online voting (ρ = 0.38, p < 0.001).

We emphasize that the strong preference for online voting over postal voting
in Figure 3 is expressed within the context of an informal non-statutory election.

6 If we remove “postgraduate degree”, there remains no significant correlation between
the SUS and education with ρ = 0.276 and p = 0.103.

12



The result may not necessarily generalize to statutory elections, where the elec-
tion rules are different, and so are the voters’ expectations. This will need to be
studied further in the future. We note that voting as a basic democratic method
is not limited to government elections; a person’s democratic right can be exer-
cised in many mundane voting scenarios, such as classroom voting, boardroom
voting, and festival voting. In these scenarios, in-person voting using paper bal-
lots is not always possible. When voting is conducted remotely, postal voting
can prove costly especially when it needs to be done frequently. In that case,
E2E verifiable online voting can become a possible alternative to postal voting.

Fig. 3: Voter preference between postal voting and E2E online voting

6.3 Other statistics

Auditing rate. Our system recorded 506 cast votes during the 5-day trial.
Among these votes, 12 were cancelled (or audited) votes while the remaining
494 were confirmed votes. This gives an auditing rate of 2.4%, which is similar
to expectations from the literature when the voter is left to themselves to choose
if they wish to confirm or cancel a ballot [12]. In practice, the auditing rate can
be increased by employing dedicated auditors whose task is to cancel votes and
check cast-as-intended at any random time during the voting phase [21].

Completion rate. During the trial, 543 people (with distinct Indian mo-
bile numbers) passed the OTP authentication and chose one of the two groups.
However, only 494 cast confirmed ballots. This represents a completion rate of
494/543 = 91%. We were not able to follow up with those who did not finish
voting, but we analyze that this is most likely because after choosing one of the
two groups, a voter does not find their favored candidates on the list, hence they
quit voting by closing the browser.

13



Voting time. We record the voting time from the moment a voter enters
a mobile number in the initial authentication step to the completion of voting
by casting a confirmed ballot. If a voter passes OTP authentication but does
not cast any confirmed vote, they are allowed to log in again later and continue
voting. In that case, the voting time starts from the latest login. The average
voting time is found to be 72 s (STD = 170 s) with the median duration being
34 s. The minimum voting time is 10 s, while the maximum time is 1736 s.

6.4 Performance Measurements

We ran the core DRE-ip code, written in Rust, on a computer with a 3.8 GHz
CPU and 32 GB memory (featuring an AMD Ryzen 7 5800X processor). An
election of 16 candidates and 10,000 ballots was created to evaluate the perfor-
mance. Table 2 summarizes the time measurements averaged over 10,000 ballots.
Overall, it takes a total of 13.04 ms to create a ballot (containing 16 candidates)
during voting, and a total of 13.72 ms to verify every ballot during the tally
verification. Verifying the tally of 10,000 ballots takes 137.2 s in total (which
can be reduced by running the verification operations in parallel).

Operation Time No of multiplications in EC

Create a ballot

1). Encryption 3.03 ms 32

2). Candidate ZKP 9.80 ms 96

3). Ballot ZKP 0.21 ms 2

Verify tally

1). Candidate ZKP 12.88 ms 128

2). Ballot ZKP 0.43 ms 4

3). Signature ZKP 0.40 ms 4

4). Tally 0.01 ms 2

Table 2: The time measurements per ballot, averaged over 10,000 ballots

In the last column of Table 2, we list the number of scalar multiplications
performed on the elliptic curve for each operation. During the creation of a
ballot, 1) “Encryption” involves 16×2 = 32 multiplications to compute Rij and
Zij for 16 candidates (j = 0, 1, . . . , 15); 2) “Candidate ZKP” involves 16 × 6 =
96 multiplications to generate 16 1-out-of-2 ZKPs; 3) “Ballot ZKP” involves
2 multiplications to generate one equality ZKP (which ensures that only one
candidate out of 16 can be chosen). During the verification of tally, 1) “Candidate
ZKP” involves 16×8 = 128 multiplications to verify the 16 1-out-of-2 ZKPs7; 2)

7 It is possible to use only 6 multiplications (instead of 8) to verify one 1-out-of-2 ZKP
by adapting a Simultaneous Multiple Exponentiation (SME) [21] method in the EC
setting. However, we did not implement this optimization in our code.

14



“Ballot ZKP” involves 4 multiplications to verify the equality ZKP; 3) “Signature
ZKP” involves 4 multiplications to verify the 2 ECDSA digital signatures per
ballot (2 signatures correspond to the two stages during voting); 4) “Tally”
involves 2 multiplications to verify the tally as shown in Equation 1.

In our experiment, we measured that each elliptic curve (EC) multiplication
took 0.096 ms on average on our test machine. This allows us to theoretically
estimate the latency based on the assumption that the EC multiplication is the
dominant cost in the computation. As an example, for the “Encryption” opera-
tion, 32 multiplications correspond to a theoretical estimate of 32×0.096 = 3.07
ms, which matches closely the 3.03 ms empirical result shown in Table 2. All
the other experimental measurements in Table 2 match our theoretical estimates
based on the number of multiplications, except the “Tally” operation. This ex-
ception occurs because, for a large number of ballots, the cost of Equation 1
is dominated not by the multiplication, but by the addition (i.e., computing∑

Zij and
∑

Rij). Hence, we need a different way to estimate the cost. Us-
ing the repeated squaring method, one multiplication approximately requires
256 + 128 = 384 additions on the NIST P-256 curve. For summing up Zij and
Rij for 16 candidates, we need 2 × 16 × 10, 000 = 320, 000 additions, which is
equivalent to 320, 000/384 = 833 multiplications. For each candidate, we require
2 multiplications for the tally verification in Equation 1. So all together that is
equivalent to 833+ 2× 16 = 865 multiplications. Given that each multiplication
costs 0.096 ms, the total cost is estimated to be 0.096 × 865 = 83.04 ms for
10, 000 ballots, i.e., 0.008 ms per ballot. This approximately matches the 0.01
ms experimental measurement per ballot shown in Table 2.

7 Related Work

Many case studies have been examined in the literature regarding the deployment
and usability analysis of verifiable e-voting systems. These studies may largely
be classified into those for polling station voting [7,8,12], where a voter must cast
their vote in-person, or for remote voting [17,24], where a voter is permitted to
cast their vote from any location, for instance through the Internet. Example case
studies for remote voting include the analyses of Swiss Post’s voting system by
Marky et al. [17] and Volkamer et al. [24]. Additionally, Acemyan et al. provide
baseline data for the usability of the Helios voting system [1]. In this section,
we will focus on comparing with Helios, since both Helios and our system are
end-to-end verifiable, whilst the Swiss Post voting system is currently not [17].

Helios [2] is a web-based voting system, which initially utilized the Sako-
Kilian mix-net [20] in Version 1.0, but later switched to use homomorphic encryp-
tion in Version 2.0. Helios 2.0 implements the Cramer-Gennario-Schonmakers
(CGS) voting protocol [10], which aggregates encrypted ballots based on homo-
morphism and then employs a set of TAs to perform threshold decryption. It
additionally incorporates Benaloh’s voter-initiated auditing method [5] to en-
sure “cast as intended”. In 2009, Helios 2.0 was used to elect the president of

15



Université catholique de Louvain (UCL) [2]. Since Helios 1.0 has been replaced
by Helios 2.0, by Helios, we refer to Helios 2.0 thereafter.

Acemyan et al. assessed the usability of Helios through a within-subjects
study of 37 participants [1]. A mock election was created through the Helios
website in 2014. According to Acemyan et al., although 95% of voters perceived
that they had cast the vote through Helios, only 60% actually had. This dis-
crepancy was mainly because of the way that Helios implemented voter auditing
according to Beneloh’s challenge [5]. Anyone can choose candidates from a list
and perform auditing by cancelling votes without being authenticated. If a voter
opts to confirm the vote, they may think voting has finished, but they still need
to pass authentication to actually cast the vote. This issue could be addressed
by adding an explicit warning on the voting page to prompt the voter to log in
and finish voting. In our system, voters are authenticated at the start of a voting
session, hence avoiding any potential confusion.

Our E2E voting system differs from Helios in several aspects. First, instead
of implementing a TA-based CGS protocol [10], we adopt a TA-free DRE-ip
protocol [21]. As reported by the Helios authors in the UCL trial [2], finding
and managing the TAs proved to be a “particularly difficult issue”. As a miti-
gating measure, the Helios website now prompts the election creator to choose
the Helios server as a single TA and discourages defining more TAs due to the
additional complexity involved8. In a single TA-based Helios election, a compro-
mise of the server (i.e., the TA’s private key) breaks the secrecy of all votes. In
our system, there is no TA (or TA’s private key) and a compromise of the server
only reveals the partial tally at the time of compromise, which minimizes infor-
mation leakage [21]. For both Helios and DRE-ip, voter privacy can be enhanced
through anonymity: only authenticated voters are allowed to vote but their real
identities are unknown to the system. Anonymous voting can be realized in a
polling station through physical means, e.g., by assigning random passcode slips
to voters [12]. For remote voting, a similar procedure may be used to distribute
authentication credentials to enable legitimate voters to vote anonymously.

Second, while Helios allows a voter to audit votes without authentication as
specified in Benaloh’s challenge [5], we require voters to be authenticated first
according to the DRE-ip specification. Based on the trial, we find that this helps
provide a more natural and intuitive voting process for ordinary voters, as well
as a simpler voter-initiated auditing procedure as explained below.

Third, Helios requires a user to verify an audited ballot by copying and past-
ing the cryptographic data from a voting page to the text field of a verification
page running the JavaScript code, but this can prove difficult for ordinary vot-
ers [18]. The verification of an audited ballot in our system is simpler as the voter
only needs to check if the receipt of a cancelled ballot matches that published

8 When the election creator attempts to specify more than one TA, the Helios website
displays the following popup alert (as of 6/11/2023): “Adding your own trustee
requires a good bit more work to tally the election. You will need to have trustees
generate keypairs and safeguard their secret key. If you are not sure what that means,
we strongly recommend clicking Cancel and letting Helios tally the election for you.”

16



on the public bulletin board based on DRE-ip [21]. However, doing the same in
Helios appears difficult because a user is unauthenticated when auditing a ballot;
allowing an unauthenticated user to post data on the public bulletin board of
an election can expose the system to a Denial of Service attack.

8 Conclusion

Empirical studies play an important role in e-voting research to validate not only
the assumptions of a theoretical voting protocol but also the feasibility of the
system from a voter’s perspective. Despite extensive research on E2E verifiable
e-voting, such studies remain limited: few E2E voting systems have been imple-
mented and used in practice. In this paper, we present an E2E online voting
system based on DRE-ip and conduct a trial among the New Town residents in
India as part of the 2022 Durga Puja festival celebration. Based on the voter
feedback, participants generally found our system easy to use. Our trial expe-
rience also shows that the removal of tallying authorities significantly simplifies
not only the implementation but also the election management, making E2E
e-voting more practical than before.

Acknowledgements

We would like to thank the New Town Kolkata Development Authority (NKDA)
for their generous support. Special thanks go to Debashis Sen, Suvayu Ray and
Pritam Thakur for making the Durga Puja trial possible. This work was sup-
ported by the Royal Society International Collaboration Award (ICA\R1\180226).

References

1. C. Acemyan et al. Usability of Voter Verifiable, End-to-end Voting Systems: Base-
line Data for Helios, Prêt à Voter, and Scantegrity II. In EVT/WOTE, 2014.

2. B. Adida et al. Electing a university president using open-audit voting: Analysis
of real-world use of Helios. EVT/WOTE, 2009.

3. S. Bag, M.A. Azad, and F. Hao. E2E Verifiable Borda Count Voting System
without Tallying Authorities. In ARES, 2019.

4. A. Bangor et al. An empirical evaluation of the system usability scale. International
Journal of Human–Computer Interaction, 24(6):574–594, 2008.

5. J. Benaloh. Simple Verifiable Elections. EVT, 2006.
6. J. Brooke. SUS: A quick and dirty usablility scale. Usability evaluation in industry,

189(3), 1996.
7. C. Burton et al. Using Prêt à voter in Victorian state elections. In EVT/WOTE,

2012.
8. R. Carback et al. Scantegrity II Municipal Election at Takoma Park: The First

E2E Binding Governmental Election with Ballot Privacy. In USENIX Security,
2010.

9. D. Chaum and T. Pedersen. Wallet databases with observers. In CRYPTO, 1992.

17



10. R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient
multi-authority election scheme. EUROCRYPT, 1997.

11. F. Hao et al. Every vote counts: Ensuring integrity in large-scale electronic voting.
In EVT/WOTE, 2014.

12. F. Hao et al. End-to-End Verifiable E-Voting Trial for Polling Station Voting.
IEEE Security & Privacy, 18(6):6–13, 2020.

13. F. Hao and P. Ryan. Real-World Electronic Voting. CRC, 2016.
14. L. Harrison, S. Bag, and F. Hao. Camel: E2E Verifiable Instant Runoff Voting

without Tallying Authorities,. In ASIACCS, 2024.
15. L. Harrison, S. Bag, H. Luo, and F. Hao. VERICONDOR: End-to-End Verifiable

Condorcet Voting without Tallying Authorities. In ASIACCS, 2022.
16. India News. EVM Row: RTI Reveals Case Of Voting Machine’s Malfunction In

Maharashtra Zilla Parishad Election. https://tinyurl.com/bdd3td3y, July 2017.
17. K. Marky et al. Improving the usability and UX of the Swiss internet voting

interface. In CHI, 2020.
18. S. Neumann et al. Helios verification: To alleviate, or to nominate: Is that the

question, or shall we have both? In EGOVIS, 2014.
19. S. Rai. Furore in Meerut after voter presses BSP on EVM, vote goes to BJP.

https://tinyurl.com/46mawdue, November 2017.
20. K Sako and J. Kilian. Receipt-free mix-type voting scheme. In CRYPTO, 1995.
21. S. Shahandashti and F. Hao. DRE-ip: A verifiable e-voting scheme without tallying

authorities. In ESORCIS, 2016.
22. D. Springall et al. Security analysis of the Estonian Internet voting system. In

CCS, 2014.
23. J. Townsley et al. Who votes by post? understanding the drivers of postal voting

in the 2019 british general election. Parliamentary Affairs, 2021.
24. M. Volkamer et al. Increasing security without decreasing usability: A comparison

of various verifiable voting systems. In SOUPS, 2022.
25. S. Wolchok et al. Security analysis of India’s electronic voting machines. In CCS,

2010.

18


