
The Impact of Hash Primitives and Communication
Overhead for Hardware-Accelerated SPHINCS+

Patrick Karl
Technical University of Munich, Germany

TUM School of Computation, Information and Technology
patrick.karl@tum.de

Jonas Schupp
Technical University of Munich, Germany

TUM School of Computation, Information and Technology
jonas.schupp@tum.de

Georg Sigl
Technical University of Munich, Germany

TUM School of Computation, Information and Technology,
Fraunhofer Institute for Applied and Integrated Security, Garching, Germany

sigl@tum.de

Abstract—SPHINCS+ is a signature scheme included in the
first NIST post-quantum standard, that bases its security on the
underlying hash primitive. As most of the runtime of SPHINCS+
is caused by the evaluation of several hash- and pseudo-random
functions, instantiated via the hash primitive, offloading this
computation to dedicated hardware accelerators is a natural step.
In this work, we evaluate different architectures for hardware
acceleration of such a hash primitive with respect to its use-
case and evaluate them in the context of SPHINCS+. We attach
hardware accelerators for different hash primitives (SHAKE256
and Asconxof for both full and round-reduced versions) to CPU
interfaces having different transfer speeds. We show, that for most
use-cases, data transfer determines the overall performance if
accelerators are equipped with FIFOs.

Index Terms—SPHINCS+, PQC, post-quantum cryptography,
hardware acceleration, Ascon

I. INTRODUCTION

Post-Quantum Cryptography (PQC) schemes spend a sub-
stantial computation time to hash data or to generate pseudo-
randomness. One of the post-quantum secure signature schemes
to be standardized by the National Institute of Standards and
Technology (NIST) is SPHINCS+ [1], a hash-based PQC
framework that can be instantiated with different hash prim-
itives. One of the proposed instances uses the SHA-3 Extend-
able Output Function (XOF) SHAKE256. For this choice, the
algorithm spends more than 95% of its runtime inside the
hash function when running on a commonly used microcon-
troller [2]. Moreover, using the SHA-3 functions for hashing
and generation of pseudo-randomness is a usual choice for PQC
algorithms. Thus, hardware acceleration for the underlying
hash primitive is a natural step to improve the performance
and energy consumption of PQC schemes, and in particular
SPHINCS+.

Related Work: Previous works investigated hardware im-
plementations for SPHINCS+, but mostly focused on co-
processors that compute the entire signature. For instance, the
work in [3] presents a standalone, high-throughput co-processor
using SHAKE256. In [4], another co-processor with area effi-
ciency as primary design goal is presented using SHA-2 as hash
primitive. These standalone designs yield high performance,

but lack flexibility – they speed-up a single algorithm, but
their re-use for other schemes is limited. Hardware/software co-
designs provide a trade-off between performance and flexibility
by offloading only computationally intensive operations to
dedicated hardware, but run the main algorithm in software.
The work presented in [5] investigates the use of SPHINCS+
in the context of secure boot within a hardware-software co-
design, and extends the platform’s SHA-2 core to improve the
performance for hash-based signatures in general. To the best
of our knowledge, no hardware/software co-design evaluating
SPHINCS+ using the SHA-3 standard has been presented so
far.

Contribution: We explore different design architectures
for accelerators and evaluate the advantages and disadvantages
of these options with respect to resource cost and perfor-
mance. We show that the choice for the most performant
design option is application dependent. We use SPHINCS+
as a case study and provide performance metrics for the
resulting hardware/software co-design. Furthermore, we replace
the SHAKE256 primitive with other alternatives like Tur-
boSHAKE256 [6], a round-reduced SHAKE256 version, and
functions from the Ascon [7] suite, the winner of the NIST
Lightweight Cryptography (LWC) competition. Instantiating
Ascon in the SPHINCS+ framework has been submitted to
NIST’s additional call for signature schemes1 under the name
of Ascon-Sign2. In short, our contributions are as follows:

• Design-space exploration of hash-accelerator architectures
on a 32 -bit RISC-V platform, considering the correspond-
ing requirements of data transfer.

• Performance evaluation for SPHINCS+ using different
primitives, i.e. SHAKE256, TurboSHAKE256, Asconxof
and Asconxofa.
Organization: Section II provides a brief overview of

SPHINCS+, the SHA-3 standard and our evaluation setup.
In Section III we explain different architectures for the in-
vestigated hardware accelerators and their parameterization

1https://csrc.nist.gov/Projects/pqc-dig-sig/standardization
2https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

https://csrc.nist.gov/Projects/pqc-dig-sig/standardization
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures


and cost. A performance analysis of these architectures and
their application to SPHINCS+ is conducted in Section IV.
Section V investigates the usage of cryptographic primitives for
SPHINCS+ that are not part of the NIST submission. Finally,
Section VI concludes this work.

II. PRELIMINARIES

A. The SPHINCS+ Framework

SPHINCS+ [1] uses different families of hash- and pseudo-
random functions and solely relies on their (second-) preimage
resistance. The core idea of SPHINCS+ is to combine several
layers of Merkle trees with One-Time Signature (OTS) key
pairs on its leafs. In the last layer of the resulting hypertree,
a Few-Time Signature (FTS) scheme called Forest Of Random
Subsets (FORS) is used. For details, we refer to the original
work [1]. Within SPHINCS+, the following pseudo-random and
message-digest functions are used, where B denotes the set of
bytes:

PRF : Bn × B32 → Bn

PRFmsg : Bn × Bn × B∗ → Bn

Hmsg : Bn × Bn × Bn × B∗ → Bm

Furthermore, a hash function Tl with its two special cases F =
T1 and H = T2 is defined as follows:

Tl : Bn × B32 × Bln → Bn

The parameter n ∈ {16, 24, 32} defines the output length (in
bytes) of all the functions being used except for Hmsg , that
outputs an m-byte string. Likewise, the size of n determines
the NIST security levels I, III and V. In this work, we consider
parameter sets using the XOF SHAKE256 from the SHA-3
standard [8] as the underlying primitive. Therefore, we briefly
explain its concept in Section II-B.

B. Keccak and the SHA-3 Standard

SHAKE256 is based on the Keccak primitive and con-
sists of a 1600 -bit state on which the permutation function
keccak-f1600 is applied for 24 rounds. For all the functions
defined in the SHA-3 standard [8], Keccak is used in a sponge
construction. The 1600 -bit state is divided into a rate r and
a capacity c and is initialized with zeroes. The input data is
split into several blocks bi of size r, that are consecutively
absorbed into the state. Between the absorption of two blocks,
the permutation function is applied. After absorbing all blocks,
the output blocks bo (of size r) are squeezed and if more than
one block is requested, the state is permuted again after each
output block. SHA-3 defines several hash functions with fixed
output lengths and two XOF functions with outputs of arbitrary
length, i.e. SHAKE128 and SHAKE256.

C. Evaluation Platform

We use the PULPino microcontroller platform3 that in-
stantiates the cv32e40p, a 4-stage pipelined 32 -bit RISC-V
core supporting the RV32IMC and optional F Instruction Set

3https://github.com/pulp-platform/pulpino

Architecture (ISA) [9]. We evaluate our experiments on a
Zynq UltraScale+ FPGA (xczu9eg-ffvb1156-2) using Vivado
2020.2 as synthesis tool. On this platform, the PULPino base-
line implementation consumes 16,038 Look-Up Tables (LUTs)
and 10,050 Flip-Flops (FFs) after synthesis and runs at a
frequency of 150MHz. It is noteworthy, that none of the
hardware extensions in this work lead to a decrease in frequency
and thus, the reduction in cycle counts directly translates to
performance gains. For software compilation, the corresponding
PULP compiler4 with -O3 flag has been used.

III. ACCELERATOR ARCHITECTURES

Figure 1 shows the schematic of the PULPino microcon-
troller and different accelerator options. A designer can inte-
grate custom functionality tightly into the processor and extend
the ISA with corresponding instructions. One can also connect
a co-processor loosely to the system bus. Finally, the last
option is to connect the co-processor to the Load-Store Unit
(LSU) before bridging onto the system bus. For evaluation,

IF
ID

ID
EX

EX
WB

Prefetch
Buffer

Decoder

GPR

FPR

Tightly

ALU

MULT

LSU
B

rid
ge

AXI4 System Bus

Instruction Interface
rdata addr

Data Interface
addr wdata rdata

RISC-V Core

Peripherals
(SPI, I2C, UART etc.)

Instruction
Memory

Data
Memory

Loosely
(SRAM)

Mem

Loosely
(FIFO)

RX
FIFO

TX
FIFO

LSU
(FIFO)

RX
FIFO

TX
FIFO

M
U

X

Fig. 1: Extended PULPino with accelerator architectures (blue).

we implemented a SHA-3 hash core that is integrated in the
different architectures as depicted in Figure 2.

Decoder
Keccak-
f1600Reg

OUT
Reg
IN

reset
round
enable

(a) Tightly-coupled as in [10]

AXI
bridgeAXI4

cfg / stat register

SRAM HASH core

clear_start
done

start
cfg

(b) Loosely-coupled with SRAM

AXI
bridgeAXI4

cfg / stat reg

HASH core

cfg

RX FIFO
TX FIFO

(c) Loosely-coupled with FIFOs

LSU

cfg / stat reg

HASH core

cfg

RX FIFO
TX FIFO

(d) LSU-coupled with FIFOs

Fig. 2: Overview of accelerator architectures.

A. Tightly-coupled into Register Set

In [10], the keccak-f1600 function has been integrated
tightly-coupled into the register set of a RISC-V microcon-
troller. This concept is depicted in Figure 2a. The advantage

4https://github.com/pulp-platform/pulp-riscv-gnu-toolchain

https://github.com/pulp-platform/pulpino
https://github.com/pulp-platform/pulp-riscv-gnu-toolchain


of this strategy is, that it prevents load-store overheads that are
required for loosely-coupled solutions connected to a system
bus. It also provides a flexible solution that can be re-used
for any function relying on the Keccak permutation, because
only the round function itself is implemented in hardware.
Consequently, different functions (e.g., SHA-3 hash functions,
SHAKE128 or SHAKE256) are run in software and only their
costly permutation routine is replaced by a single custom RISC-
V instruction per round. A drawback, however, is that for
32 -bit platforms, it requires the presence of both the General-
Purpose Registers (GPRs) and the Floating-Point Registers
(FPRs) to store the entire 1600 -bit Keccak state. Besides that,
compilers must be adapted accordingly to support the custom
instruction.

B. Loosely-coupled with SRAM

The simplest way of integrating a hardware co-processor is
attaching it to the platforms’s system bus as shown in Figure 2b.
In this architecture, the address space is divided into a data
section that enables writing into and reading from a dedicated
SRAM, and a configuration/status register. For a hash co-
processor, the procedure using this architecture is as follows:
The user writes the input data to the SRAM via the system bus
and configures the hash core. This includes for instance the
desired mode of operation (e.g., SHA-3-256, SHAKE256, etc.)
or the input and output length of the data. Finally, a signal start
triggers the core to process the input data and the produced hash
output is written into the SRAM. Afterwards, the produced data
can be read again via the AXI4 interface.

The advantage of this approach is the easy integration into
the platform and its accessibility in software. The drawback
is, that the core starts the computation after the data is fully
written into the memory and the produced digest is read after
the computation is finished. As we show in Section IV, this
has a severe impact on performance for large data sizes.

C. Loosely-coupled with FIFOs

Using First-In-First-Outs (FIFOs) as depicted in Figure 2c
instead of a dedicated SRAM enables to hide the computation
inside the hash core in the data transfer. A write-only RX FIFO
buffers the input data and a read-only TX FIFO buffers the
output data. This enables the co-processor to start absorbing
the input data as soon as the first chunk is written into the
RX FIFO. The output data is written into the TX FIFO and
the microcontroller can immediately start reading the output.
This also reduces the complexity in the module, as no control
bits are required anymore. How to properly dimension the
FIFOs depends on the underlying hash function (the number
of permutation rounds), as during permutation, no input data
can be absorbed and no output data is produced.

D. LSU-coupled using FIFOs

Although the usage of FIFOs benefits the performance in
general, writing and reading the data via the AXI4 system
bus can still pose a notable overhead due to the bus latency.
Therefore, the last design option is to integrate the co-processor
closer to the RISC-V core and to connect it directly to the core’s

LSU, as shown in Figure 2d. This yields two advantages: First,
the latency caused by the system bus is reduced as no bridging
is required anymore – it only requires multiplexing between the
accelerator’s and the remaining address space. Second, the co-
processor does not require a complex AXI4 interface anymore
which reduces the area cost. The drawback of this approach is,
however, the increased integration complexity. Connecting the
module to the LSU requires knowledge of the microcontroller
implementation.

E. FIFO Dimensions

For the architectures discussed in Section III-C and Sec-
tion III-D the FIFOs sizes influences the resource cost as well
as the accelerator’s performance. Both FIFOs have a width of
32 -bit to comply with the word width of the RISC-V core. The
RX FIFOs should be large enough to buffer incoming data while
the hash core is permuting without running full, so that the data
transfer is not blocked. That is, the FIFO’s size (DRX ) depends
on the number of the hash function’s permutation rounds Tperm

and the bus latency tbus,wr to perform a write operation. For
the TX FIFO, it is desirable that whenever the microcontroller
wants to read data, the FIFO is not empty. However, it should
be able to store enough data that the hash core can start the next
permutation while the FIFO is still being read without running
empty. As a consequence, the required depths (in 32 -bit words)
of the FIFOs are as follows:

DRX ≥ ⌈ Tperm

tbus,wr
⌉ DTX ≥ ⌈ Tperm

tbus,rd
⌉ (1)

In our design, we have taxi,wr = 6, taxi,rd = 7, tlsu,wr = 2
and tlsu,rd = 3, until the data is inside the corresponding
FIFO or read from it. With Tperm = 24 for SHAKE256,
we end up with FIFO depths of DRX = DTX = 4 for the
loosely-coupled case and DRX = 16 and DTX = 8 for the
LSU-coupled version. Note, that although for the LSU-coupled
version, DRX = 12 would meet the requirements, we slightly
increased it to stick to a power-of-two.

F. Resource Overhead

A comparison of the different architectures with respect to
resource overhead compared with the plain PULPino design
is given in Table I. For a discussion on the Ascon cost we
refer to Section V-A. The results highlight the advantage of
the tightly-coupled approach: Because this architecture only
implements the round function in hardware but re-uses the
GPR and FPR to store the state, it shows the least overhead.
It is worth noting that the tightly-coupled’s overhead in FFs
mainly stems from the 32 × 32 = 1024 -bit of the additional
FPR. The loosely- and LSU-coupled architectures require more
logic resources due to bus interfaces, control logic and the local
memory in terms of FIFOs or SRAM. The SRAM overhead
for the loosely-coupled version is omitted for two reasons.
First, the accelerator’s SRAM can later be re-used for normal
operation of the RISC-V core and thus, does not need to be
accelerator-specific. Second, the SRAM size depends on the
specific application – it needs to be big enough to store the
maximum amount of input or output data. In contrast to that,



the FIFO dimensions are application independent. Application
independent in the sense that the FIFO dimensions do not
depend on the amount of input or output data, but only on
the small amount of data that needs to be buffered while the
hash core is permuting. For a discussion on the cost for Ascon
as hash primitive, we refer to Section V.

TABLE I: Resource overhead including the hash core.

Architecture SHA-3 Ascon
LUTs FFs LUTs FFs

loosely-coupled with SRAM +8,731 +2,511 +1,984 +1,189
loosely-coupled with FIFOs +8,963 +2,485 +1,968 +1,158
lsu-coupled +8,215 +1,890 +1,388 +547
tightly-coupled +4,494 +1,087 +246 +12

IV. PERFORMANCE EVALUATION

A. Architecture Benchmark

In the following, we compare the performance of the archi-
tectures described above. To do so, we consider two scenarios:

In the Hash scenario, we benchmark the performance for a
fixed output length and vary the input length. Concretely, we
set the output length to 16B and vary the input lengths up
to 4 kB. In the Cryptographically Secure Pseudo-Random
Number Generator (CSPRNG) scenario, we do the opposite,
i.e. the input length is fixed to 16B, the output length varies up
to 4 kB. For both scenarios we consider the SHAKE256, that
can be used for arbitrary input and output lengths.

The results for both scenarios are shown in Figure 3. The
LSU- and tightly-coupled versions perform best depending on
the scenario and amount of data to be processed. To explain
this, the data transfer has to be considered. In both cases, the
input data is first loaded from memory into the register set and
after computation, the hash output is written back to memory.
Yet, the computation is different depending on the architecture:
In the tightly-coupled case, input blocks bi must first be loaded
into some free GPR registers. For the parts of the state’s rate
that lie within the FPR, the corresponding state word must be
moved to the GPR, then absorption (xor) is performed, and
afterwards, the updated word is written back to the FPR. This
requires 3 instructions for the rate part in the FPR (in our
implementation 16 regs × 3 instr), whereas the rate part in
the GPR can be absorbed within one single xor instruction
(18 regs × 1 instr). Therefore, the absorption takes 66 clock
cycles per input block, as for SHAKE256, the rate consists of
34 words of 4B each. After absorption of each input block bi
and squeezing of output blocks bo, the state must be permuted
for Tperm cycles. Thus, the computation can be modeled as:

ttightly = bi(66 + Tperm) + boTperm + tsw (2)

where tsw denotes a software overhead e.g., for calling func-
tions. It should be noted that the absorption of the last input
block might take less than 66 cycles if it is only partially filled.

For the LSU-coupled and loosely-coupled architectures, the
input data must be written to and the output data read from
the accelerator. However, when using FIFOs, the absorption,
squeezing and subsequent permutations are hidden in the data

transfer assuming the FIFOs do not run full or empty. With this
assumption, the behavior of the architectures can be modelled
as follows:

tloosely,sram = tstore + (bi + bo)Tperm + tload + thw (3)
tloosely,fifo = tstore + tload + thw (4)

tlsu = tstore + tload + thw (5)

The variables tstore and tload denote the cycles to write data to
and read data from the accelerator, thw the constant overhead
of the hardware drivers.

a) Implications for Hash scenario: For the hash scenario,
the tload as well as bo is negligible, as only a fixed, typically
small amount of data is read back from the hash core. For the
LSU-coupled approach, Equation (5) yields tlsu = tstore+thw.
In fact, as the co-processor is connected directly to the LSU,
writing to the co-processor only takes a single cycle and thus,
tstore ≈ din

4 is equal to the amount of input data words where
din is the input data in bytes. If we neglect the terms tsw and
thw, Equation (2) yields ttightly ≈ bi(66+Tperm) = ⌈ din

34×4⌉×
(66+Tperm) ≈ din

90
136 > din

4 , such that ttightly > tlsu, which
confirms the observation of Figure 3a.

For both loosely-coupled scenarios, tload and tstore is larger
than in the LSU-coupled case. In fact, writing takes 6 instead
of 1 clock cycle, hence tloosely,fifo > tlsu according to
Equations (4) and (5). Furthermore, as the loosely-coupled
solution using a SRAM interface cannot hide the absorption
and squeezing phase, it is tloosely,sram > tloosely,fifo > tlsu.
Nevertheless, as the data transfer time for small data sizes is
negligible, the computational overhead of the tightly-coupled
approach exceeds the loosely-coupled variants.

b) Implications for CSPRNG scenario: If only a small
seed is absorbed (typically lower than one block of the Keccak
primitive), we can neglect the impact of the terms containing
bi, as the absorption phase is negligible. In the LSU-coupled
case, we can neglect tstore for the same reason. Hence, we
end up with ttightly ≈ boTperm + tsw = ⌊ dout

34×4⌋ 24 + tsw ≈
dout

3
17 + tsw and tlsu ≈ tload + thw = 2dout

4 + thw =
dout

2 + thw, where dout denotes the number of output bytes and
loading from the LSU-coupled accelerator requires 2 cycles.
As 3

17 < 1
2 the tightly-coupled architecture will be faster as

soon as the lower computational effort for sufficient amounts
of data compensates that tsw > thw. Concerning the two
loosely coupled approaches, the same consideration as for the
hash scenario holds, i.e. the larger penalty for data transfers
dominates the smaller initial overhead compared to the tightly-
coupled approach from a certain amount of data on.

B. Application to SPHINCS+

The results in Section IV-A have shown, that either
the tightly-coupled or the LSU-coupled approach shows the
best performance. Therefore, we restrict our evaluations for
SPHINCS+ to these architectures and only present results
for the simple versions of SPHINCS+ that are considered by
NIST [11]. We performed measurements for all NIST security
levels but only refer to NIST level I for brevity. We consider



0 50 100 150 200 250
Input size [B]

0

200

400

600

800

1000

1200

Cl
oc

k 
cy

cle
s

shake256_loosely_fifo
shake256_lsu
shake256_loosely_sram
shake256_tightly

(a) SHAKE256 hash scenario short

0 50 100 150 200 250
Output size [B]

0

200

400

600

800

1000

1200

Cl
oc

k 
cy

cle
s

shake256_loosely_fifo
shake256_lsu
shake256_loosely_sram
shake256_tightly

(b) SHAKE256 CSPRNG scenario short

0 1000 2000 3000 4000
Output size [B]

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Cl
oc

k 
cy

cle
s

shake256_loosely_fifo
shake256_lsu
shake256_loosely_sram
shake256_tightly

(c) SHAKE256 CSPRNG scenario long

Fig. 3: Performance evaluation of the accelerators in the hash (Figure 3a) and CSPRNG (Figures 3b and 3c) scenario.

message sizes of 59B as in the pqm4 benchmarks [2] and take
the C reference code of the NIST submission as baseline.

A comparison of the cycle counts for both architectures
is given in Table II, and is compared with the software
implementation that does not use the hardware accelerators.
The LSU-coupled architecture shows advantages compared to
the tightly-coupled alternatives. These results are in line with
the results observed in the benchmark in Figure 3. As discussed
in Section II-A, the main hash computations within SPHINCS+
have rather short outputs of only n-byte (in the results shown
n = 16), the LSU-coupled architecture is expected to be faster,
as also the previous benchmark showed an advantage of the
LSU-coupled version for all input sizes. Compared to the

TABLE II: SPHINCS+ (128f-simple) cycle counts averaged
over 50 iterations.

Architecture Keygen Sign Verify
shake256 sw 145,118,540 3,602,834,821 201,208,510
shake256 lsu 1,724,534 42,597,665 2,457,742
shake256 tightly 2,902,191 71,920,640 4,090,820

asconxof sw 112,542,937 2,793,035,580 159,128,161
asconxof lsu 1,732,802 42,867,690 2,475,238
asconxof tightly 2,297,884 56,895,911 3,281,842

turbo shake256 sw 85,583,963 2,124,535,303 118,878,833
turbo shake256 lsu 1,684,079 41,593,651 2,400,881
turbo shake256 tightly 2,847,867 70,573,841 4,013,566

asconxofa sw 82,715,595 2,052,961,820 116,680,454
asconxofa lsu 1,570,919 38,851,303 2,242,401
asconxofa tightly 2,136,072 52,883,808 3,048,805

software reference, the LSU-coupled architecture yields speed-
up factors between ×81 and ×84.

V. DEVIATION FROM THE SPHINCS+ NIST SUBMISSION

In this section, we evaluate deviations from the official NIST
submission of SPHINCS+. More specifically, we investigate the
use of the Ascon suite [7] and evaluate the changes also for
round-reduced versions for Ascon and SHAKE256.

A. Ascon Primitive

Just as Keccak, Ascon is based on the sponge construction
but consists only of a 320 -bit state and a round function that
is applied for 12 rounds. Due to its smaller state and numbers

of rounds, performance gains could be expected. Yet, it has
a rate of r = 64 -bit (or 2 words, compared to SHAKE256’s
34 words), such that it requires more permutations when large
amounts of data are processed. Furthermore, due to the smaller
state, Ascon only provides a (second-) preimage resistance
of 128 -bit and thus, reaches only NIST security level I if
instantiated within SPHINCS+. For evaluation we developed
a small hash core that fits into the architectures described
above. Moreover, we implemented a tightly-coupled approach
as previously presented in [12].

a) FIFO Dimensions: As Ascon permutes for Tperm = 12
rounds, DRX and DTX of the loosely-coupled architecture are
set DRX = DTX = 2 according to Equation (1). For the
LSU-coupled version, the same dimensions apply although the
rationale is different: With a write-delay of only 2 cycles, the
microcontroller can provide up to 6 data words while Ascon is
permuting. As the rate of Ascon is only 64 -bit, i.e. 2 words,
data is provided faster than it is processed by the hash core.
Thus, setting DRX = 2 is sufficient to constantly provide data
to the hash core. The same applies for DTX : Data is read faster
than the hash core can produce and thus, DTX = 2 is sufficient
such that the hash core can output a full block and continue
permuting the state immediately. As such, the permutation of
the Ascon state is the actual bottleneck in the computation.

b) Resource Overhead: The overhead for using the Ascon
primitive is also given in Table I. Compared to the SHA-3 core,
it shows reductions in both, the LUT and FF count, mostly
due to the smaller state. In particular for the tightly-coupled
architecture, this overhead is almost neglectable.

c) Architecture Benchmark: Figures 4a and 4b show the
architecture benchmark using Asconxof. For the CSPRNG
scenario, the loosely-coupled version with FIFOs is similiarly
fast as the LSU-coupled architecture (same slope, only a small
offset). This indicates that the Ascon core is the actual bottle-
neck, but not the bus latency. However, this is not the case for
the hash scenario, because the data transmission itself hides the
computation in the absorption phase. For small amounts of data,
the tightly-coupled version is competitive but the arithmetic
overhead for a tightly-coupled option poses a notable drawback
in both scenarios when the amount of data increases.

d) Application to SPHINCS+: In Table II we also provide
the cycle counts using Asconxof for SPHINCS+. It can be seen



0 50 100 150 200 250
Input size [B]

0

200

400

600

800

1000

1200

Cl
oc

k 
cy

cle
s

asconxof_loosely_fifo
asconxof_lsu
asconxof_loosely_sram
asconxof_tightly

(a) Asconxof hash scenario short

0 50 100 150 200 250
Output size [B]

0

200

400

600

800

1000

1200

Cl
oc

k 
cy

cle
s

asconxof_loosely_fifo
asconxof_lsu
asconxof_loosely_sram
asconxof_tightly

(b) Asconxof CSPRNG scenario short

0 50 100 150 200 250
Output size [B]

0

200

400

600

800

1000

1200

Cl
oc

k 
cy

cle
s

asconxofa_loosely_fifo
asconxofa_lsu
asconxofa_loosely_sram
asconxofa_tightly

(c) Asconxofa CSPRNG scenario short

Fig. 4: Performance evaluation of the Ascon accelerators.

that the gap between the two Ascon architectures is smaller than
for the SHAKE256 variants. While the LSU-coupled versions
of SHAKE256 and Ascon are roughly in the same ballpark,
the tightly-coupled Asconxof design yields better results than
its SHAKE256 counterpart, as it does not require the FPR.
Compared to the software reference implementation, the LSU-
coupled architecture yields speed-up factors between ×64 and
×65.

B. Round-reduced Versions

Asconxofa is a round-reduced version of Asconxof. The first
permutation and the permutation after absorbing the last input
block remain at 12 rounds, all others are reduced to 8 rounds.
Reducing the number of rounds within a permutation has also
been discussed in the context of the Keccak primitive. As a
result, reducing the number of rounds from 24 to 12 has been
formalized under the name of TurboSHAKE256 [6]. In the
following, we evaluate the advantages of the round-reduced
versions for Asconxof and SHAKE256.

a) FIFO Dimensions: For TurboSHAKE256, halving the
number of rounds per permutation also enables to halve the
FIFO dimensions of the accelerator. For the Asconxofa variant,
however, the RX FIFO in the loosely-coupled case must be
slightly increased to DRX = 4.

b) Resource Overhead: As only the FIFO dimensions
change slightly, the change in area cost is negligible.

c) Architecture Benchmark: For the architecture bench-
mark, our results for TurboSHAKE256 look similar as the ones
shown in Figure 3, with only minor offsets, which underlines
the dominant impact of the data transfer. For Asconxofa, this
case is slightly different. As mentioned previously, the Ascon
core has been a bottleneck due to its lower rate. This has been
visible in Figure 4b, where the slope of the loosely-coupled
FIFO version and the LSU-coupled architecture are equal. Yet,
Figure 4c shows that this changes for Asconxofa. The cycle
counts are reduced and the slope of the LSU- and loosely-
coupled FIFO version are different, as the computation within
the core is blocking the data transfer less.

d) Application to SPHINCS+: Table II also lists the
cycle counts for the round-reduced versions in the context of
SPHINCS+. As expected, it shows performance gains for all

cases. It is notable, however, that the reduction for the round-
reduced version Asconxofa is larger than for TurboSHAKE256.
This is due to the obervation made previously, where the
computation inside the hash core posed a bottleneck. Reducing
the rounds speeds up this computation and thus, resolves this
issue. As a consequence, the Asconxofa design yields the
highest performance when instantiated in SPHINCS+ using
the LSU-coupled architecture. Compared to the software im-
plementations, the LSU-coupled architecture yields speed-up
factors of between ×49 and ×51 for TurboSHAKE256 and
between ×52 and ×53 for Asconxofa.

VI. CONCLUSION

The efficiency of different hardware architectures for hash
acceleration depend on their specific use-case – whether they
are used to compute a hash digest or generate pseudo-
random data. For sponge-based hash functions, we have shown,
that tightly-coupled architectures are best suited when large
amounts of pseudo-randomness are required. On the contrary, if
large amounts of data must be digested, architectures where the
absorption phase can be hidden in data transfer are better suited.
This evaluation illustrates that not only hardware accelerators
itself, but also the application including data transfer must
be taken into account to find suitable acceleration solutions.
As SPHINCS+ heavily relies on the evaluation of hash- and
pseudo-random functions with short outputs, the best perfor-
mance is obtained by the LSU-coupled architecture. Dedicated
hardware acceleration for SHAKE256 shows promising per-
formance results even on resource constrained environments.
Furthermore, using the Ascon suite over the proposed SHA-
3 standard poses a competitive alternative for the applicable
security level, especially when taking the resource cost into
account.

ACKNOWLEDGMENT

The authors acknowledge the financial support by the Fed-
eral Ministry of Education and Research of Germany in the
programme of “Souverän. Digital. Vernetzt.”. Joint project 6G-
life, project identification number: 16KISK002



REFERENCES

[1] D. J. Bernstein, A. Hülsing, S. Kölbl, R. Niederhagen, J. Rijneveld, and
P. Schwabe, “The SPHINCS+ Signature Framework,” in Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security. ACM, nov 2019.

[2] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen, “PQM4:
Post-quantum crypto library for the ARM Cortex-M4,” https://github.com/
mupq/pqm4, as of commit 918f379.

[3] D. Amiet, L. Leuenberger, A. Curiger, and P. Zbinden, “Fpga-based
sphincs+ implementations: Mind the glitch,” in 23rd Euromicro
Conference on Digital System Design, DSD 2020, Kranj, Slovenia,
August 26-28, 2020. IEEE, 2020, pp. 229–237. [Online]. Available:
https://doi.org/10.1109/DSD51259.2020.00046

[4] Q. Berthet, A. Upegui, L. Gantel, A. Duc, and G. Traverso,
“An area-efficient sphincs+ post-quantum signature coprocessor,” in
IEEE International Parallel and Distributed Processing Symposium
Workshops, IPDPS Workshops 2021, Portland, OR, USA, June 17-
21, 2021. IEEE, 2021, pp. 180–187. [Online]. Available: https:
//doi.org/10.1109/IPDPSW52791.2021.00034

[5] A. Wagner, F. Oberhansl, and M. Schink, “To be, or not to be stateful:
Post-quantum secure boot using hash-based signatures,” in Proceedings
of the 2022 Workshop on Attacks and Solutions in Hardware Security,
ASHES 2022, Los Angeles, CA, USA, 11 November 2022, C. Chang,
U. Rührmair, D. Mukhopadhyay, and D. Forte, Eds. ACM, 2022, pp.
85–94. [Online]. Available: https://doi.org/10.1145/3560834.3563831

[6] G. Bertoni, J. Daemen, S. Hoffert, M. Peeters, G. V. Assche, R. V.
Keer, and B. Viguier, “Turboshake,” IACR Cryptol. ePrint Arch., p. 342,
2023. [Online]. Available: https://eprint.iacr.org/2023/342

[7] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer, “Ascon v1.2,”
2021, https://ascon.iaik.tugraz.at/specification.html.

[8] N. I. of Standards and Technology, “SHA-3 Standard: Permutation-Based
Hash and Extendable-Output Functions,” Tech. Rep., jul 2015.

[9] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, and L. Benini, “Near-threshold RISC-V
core with DSP extensions for scalable iot endpoint devices,” IEEE
Trans. Very Large Scale Integr. Syst., vol. 25, no. 10, pp. 2700–2713,
2017. [Online]. Available: https://doi.org/10.1109/TVLSI.2017.2654506

[10] T. Fritzmann, G. Sigl, and J. Sepúlveda, “RISQ-V: tightly coupled
RISC-V accelerators for post-quantum cryptography,” IACR Trans.
Cryptogr. Hardw. Embed. Syst., vol. 2020, no. 4, pp. 239–280, 2020.
[Online]. Available: https://doi.org/10.13154/tches.v2020.i4.239-280

[11] D. Moody, “NIST PQC: Looking into the Fu-
ture,” Nov. 2022, https://csrc.nist.gov/Presentations/2022/
nist-pqc-looking-into-the-future. [Online]. Available: https://csrc.nist.
gov/Presentations/2022/nist-pqc-looking-into-the-future

[12] S. Steinegger and R. Primas, “A fast and compact RISC-V accelerator for
ascon and friends,” in Smart Card Research and Advanced Applications
- 19th International Conference, CARDIS 2020, Virtual Event, November
18-19, 2020, Revised Selected Papers, ser. Lecture Notes in Computer
Science, P. Liardet and N. Mentens, Eds., vol. 12609. Springer, 2020, pp.
53–67. [Online]. Available: https://doi.org/10.1007/978-3-030-68487-7 4

https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
https://doi.org/10.1109/DSD51259.2020.00046
https://doi.org/10.1109/IPDPSW52791.2021.00034
https://doi.org/10.1109/IPDPSW52791.2021.00034
https://doi.org/10.1145/3560834.3563831
https://eprint.iacr.org/2023/342
https://ascon.iaik.tugraz.at/specification.html
https://doi.org/10.1109/TVLSI.2017.2654506
https://doi.org/10.13154/tches.v2020.i4.239-280
https://csrc.nist.gov/Presentations/2022/nist-pqc-looking-into-the-future
https://csrc.nist.gov/Presentations/2022/nist-pqc-looking-into-the-future
https://csrc.nist.gov/Presentations/2022/nist-pqc-looking-into-the-future
https://csrc.nist.gov/Presentations/2022/nist-pqc-looking-into-the-future
https://doi.org/10.1007/978-3-030-68487-7_4

	Introduction
	Preliminaries
	The SPHINCS+ Framework
	Keccak and the SHA-3 Standard
	Evaluation Platform

	Accelerator Architectures
	Tightly-coupled into Register Set
	Loosely-coupled with SRAM
	Loosely-coupled with FIFOs
	LSU-coupled using FIFOs
	FIFO Dimensions
	Resource Overhead

	Performance Evaluation
	Architecture Benchmark
	Application to SPHINCS+

	Deviation from the SPHINCS+ NIST Submission
	Ascon Primitive
	Round-reduced Versions

	Conclusion
	References

