
The Non-Uniform Perebor Conjecture for Time-Bounded

Kolmogorov Complexity is False∗

Noam Mazor † Rafael Pass ‡

November 15, 2023

Abstract

The Perebor (Russian for “brute-force search”) conjectures, which date back to the 1950s and
1960s are some of the oldest conjectures in complexity theory. The conjectures are a stronger
form of the NP ̸= P conjecture (which they predate) and state that for “meta-complexity”
problems, such as the Time-bounded Kolmogorov complexity Problem, and the Minimum Circuit
Size Problem, there are no better algorithms than brute force search.

In this paper, we disprove the non-uniform version of the Perebor conjecture for the Time-
Bounded Kolmogorov complexity problem. We demonstrate that for every polynomial t(·),
there exists of a circuit of size 24n/5+o(n) that solves the t(·)-bounded Kolmogorov complexity
problem on every instance.

Our algorithm is black-box in the description of the Universal Turing Machine employed in the
definition of Kolmogorov Complexity, and leverages the characterization of one-way functions
through the hardness of the time-bounded Kolmogorov complexity problem of Liu and Pass
(FOCS’20), and the time-space trade-off for one-way functions of Fiat and Naor (STOC’91).
We additionally demonstrate that no such black-box algorithm can have sub-exponential circuit
size.

Along the way (and of independent interest), we extend the result of Fiat and Naor and
demonstrate that any efficiently computable function can be inverted (with probability 1) by a
circuit of size 24n/5+o(n); as far as we know, this yields the first formal proof that a non-trivial
circuit can invert any efficient function.
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1 Introduction

In his historical account, Thaktenbrot [Tra84], describes efforts in the 1950s and 1960s in the
Russian Cybernetics program to understand problem that requiring brute-force search to solve.
[Tra84; Yab59a; Yab59b]. The so-called Perebor (Russian for brute-force search) conjectures refer
to the conjectures that certain types of, what today are referred to as “meta-complexity”, problems
require brute-force search to be solve. These include (a) the Minimimum Circuit Size problem
(MCSP) [KC00; Tra84]—finding the smallest Boolean circuit that computes a given function x,
and (b) the Time-Bounded Kolmogorov Complexity Problem [Kol68; Sol64; Cha69; Ko86; Har83;
Sip83]—computing the length, denoted Kt(x) of shortest program (evaluated on some particular
Universal Turing machine U) that generates a given string x, within time t(|x|), where t is a
polynomial. The Perebor conjectures state that solving these problems require an algorithms with
running time (in the uniform regime), or circuit size (in the non-uniform regime) close to 2n where
n = |x| is the size of the given instance x.

The Perebor conjecture can be viewed as an early precursor, and stronger form, of the NP ̸= P
conjecture (as these meta-complexity problems reside in NP). In this work, we focus on the Time-
Bounded Kolmogorov Complexity Problem, and the stronger non-uniform version of the Perebor
conjecture for the time-bounded Kolmogorov Complexity problem.

1.1 Our Results

Circuit Complexity Upperbounds for Solving Kt Our main result disproves the non-uniform
Perebor conjecture for Time-bounded Kolmogorov Complexity:

Theorem 1.1 (Main theorem). For every t ∈ poly, there exists a circuit family C = {Cn}n∈N of

size Õ(24n/5) such that, for every n ∈ N and for every x ∈ {0, 1}n, Cn(x) = Kt(x) (That is, the
circuits computes Kt(x) on every instance x.)

In fact, our theorem is stronger than stated: we not only show how to compute Kt but also to find
a so-called Kt-witness (i.e., a shortest-length program generated the string x)—this was referred to
as the constructive version of the problem in [Tra84].

We highlight that the fact that a non-uniform Perebor conjecture may be false may perhaps
not be shocking to experts; indeed, Ren and Santhanam [RS21] recently considered an average-case
strengthening of the non-uniform Perebor conjecture for the Time-bounded Kolmogorov complexity
and noted that by the recent connection [LP20] between average-case hardness of the time-bounded
Kolmogorov complexity problem and the cryptographic notion of one-way functions [DH76], there
is evidence pointing to this conjecture being false:

However, building on Hellman [Hel80], Fiat and Naor [FN00] showed that no such one-
way function exists in the non-uniform RAM model. In particular, for any function
f : {0, 1}n → {0, 1}n, there is an algorithm that runs in 23n/4 time, with random access
to an advice tape of length 23n/4, and inverts f at any point. It is conceivable that
a similar attack could also be implemented in circuits, i.e. every function f could be
inverted by a circuit of size 299n/100 in the worst-case. This gives strong evidence that
the non-uniform version of Hypothesis 5.18 is false.
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As far as we know, such a circuit implementation of [FN00] is not known—indeed, as we discuss
below, the natural implementation of their algorithm as a circuit leads to a “trivial” size circuit,
and does not beat Perebor.

Our main technical result is a non-trivial implementation of the Fiat-Naor algorithm using
a circuit of size Õ(24n/5) (note that this is larger than the running-time/advice size of Õ(23n/4)
acheived by Fiat and Naor):

Theorem 1.2. For every efficiently computable function f : {0, 1}n → {0, 1}n, there exists a
circuit family C = {Cn}n∈N of size Õ(24n/5) such that, for every n ∈ N and for every x ∈ {0, 1}n,
f(Cn(f(x)) = f(x) (That is, the circuits inverts f on every point in the range of f).

We next combine Theorem 1.2 with the one-way function construction of [LP20] to conclude
Theorem 1.1—leveraging the fact that the one-way function construction is length-preserving and
thus there is little loss in the parameters.

Circuit Complexity Lowerbounds for Black-box Solving Kt. We highlight that our Kt

solving circuit is “black-box” in the description of the Universal Turing machine U employed in
the definition of Kolmogorov complexity (or more precisely, the circuit can be implemented having
simply oracle access to U)—we refer to such circuits as being a black-box Kt solver. We next
demonstrate that subexponential-size black-box Kt solvers cannot exists, and as such our non-
uniform Kt solver is “optimal” up to a constant in the exponent w.r.t. such black-box algorithms.

Theorem 1.3 (Informal). Every black-box Kt-solver must have circuit size at least 2n/2−o(n).

1.2 Proof Outline

We here provide a proof outline of Theorems 1.1 and 1.2.

1.2.1 Constructing a One-way Function from Kt

As mentioned above, our starting point is the one-way function construction of [LP20] from the
Time-bounded Kolmogorov Complexity problem. We note that this construction trivially works
also in the worst-case regime (i.e., any worst-case inverted for the one-way function also solves Kt

in the worst-case). But most importantly, this construction is length preserving : any algorithm
breaking the one-way function of inputs of length n+O(log n) solves the Kt problem on inputs of
length n. This observation will be crucial as it means that the upperbound that we get for inverting
the one-way function will directly translate to (essentially) the same bound for Kt.

1.2.2 The Hellman/Fiat-Naor Algorithm

The Hellman Algorithm Before describing the Fiat-Naor algorithm for inverting arbitrary
functions, we describe the algorithm of Hellman [Hel80] for inverting a permutation. The main
idea of Hellman is that for every permutation f : [2n] → [2n], and every image y ∈ [2n], if we
compute the chain (y, f(y), f(f(y)), . . . ), at some point we must find a pre-image of y. Namely,
there exists some k ≥ 1 such that fk(y) = y, and thus fk−1(y) = f−1(y). Of course, this k can be
large, and it could even be that k = 2n. In this case, computing the chain (y, f(y), f(f(y)), . . . )
takes the same time as brute-force search.
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To overcome this, Hellman’s algorithm uses an advice string. For a parameter T , this advice
string contains S entries of the form (x, fT (x)). Then, to find a pre-image of y, the algorithm
computes the chain of length T , (y, f(y), . . . , fT (y)). If one of the points in the chain is a pre-image
of y, the algorithm finishes. Otherwise, the algorithm looks for an entry (xi, f

T (xi)) in the advice
string, such that fT (xi) appears in the chain (y, f(y), . . . , fT (y)). If it finds such an entry, then it
holds that fk(y) = fT (xi) for some k ≤ T , or equivalently, y = fT−k(xi). The algorithm then can
find the pre-image of y by computing fT−k−1(xi).

Every such entry (xi, f
T (xi)) in the advice can be used to invert the T images (f(xi), . . . f

T (xi))
using O(T ) calls to f . Hellman showed that we can find at most S = N/T points x1, . . . xS , such
that the advice ((x1, f

T (x1)), . . . , (xS , f
T (xS))) can be used to invert any image with O(T ) calls to

f . This allows to invert any such permutation in time Õ(2n/2) using an advice of length Õ(2n/2).
When f : [2n]→ [2n] is an arbitrary function, it is no longer true that y = fT−k(xi) if f

k(y) =
fT (xi). Moreover, it might be impossible to find a non-trivial number of points x1, . . . , xS such
that the T -length chains starting from these points cover all the images of the function. However,
Hellman showed under some assumptions on the structure of f (that is, that f is “random enough”),
that a similar algorithm to the above can work with slightly worse parameters. Fiat and Naor later
generalized Hellman’s result to work with any function f .

The Fiat-Naor Algorithm. Let f : [2n] → [2n] be an arbitrary function. The first step in the
Fiat-Naor algorithm is to remove from f any image with too many pre-images. To do so, for a
parameter U ∈ N, let A = {y1, . . . , yr} be the set of all images yi with more than U pre-images.
Observe that the size of A, r, is at most 2n/U . The Fiat-Naor algorithm adds to the advice a
pre-image xi of every yi ∈ A. By saving (xi, yi)yi∈A in the advice, we can trivially invert any image
yi. Thus, we are left to invert f over the domain D = {x : f(x) /∈ A} of all inputs with a small
number of “siblings”. Note that over the domain D, every image of f has at most U pre-images. In
the following, we restrict attention to functions with a small number of heavy images. That is, we
assume that |D| ≥ 2n/2. (Fiat and Naor deal with this issue later using a different parametrization,
which would lead to further complications in our setting. Nevertheless, as we shall explain in more
detail below, we shall observe that focusing on the above “simplified” case actually is without loss
of generality.)

Next, [FN00] proceed by presenting an algorithm A with advice of length Õ(m) that makes
Õ(t) calls to f . For some choices of the parameters m and t, [FN00] presented a distribution over
advices, such that for every image y ∈ f(D) and for a random advice, A successfully invert y with
probability roughly mt/N . By running the algorithm ℓ = Õ(N/mt) times with ℓ random advices,
[FN00] get an algorithm that inverts all images y ∈ f(D) simultaneously with high probability.
The resulting algorithm has advice of length S = ℓ ·m + |A|, and it makes T = ℓ · t calls to the
function f .

We next describe the algorithm A. To make the function f behave more randomly, Fiat-Naor
uses a hash function g : [2n] → [D]. Then, the algorithm actually tries to invert the function
h = g ◦ f . Choosing the function g such that it will have a succinct description and yet will be
easy to evaluate is an important part of the Fiat-Naor algorithm. But for now, we can think of g
as a random function. As in Hellman’s algorithm, the advice contains (xi, h

t(xi)) for m randomly
chosen points x1, . . . , xm.

Given the advice (xi, h
t(xi))i∈[m], the function g and an input y = f(x) to invert, the algorithm

A starts with computing g(y) = h(x). Next, the algorithm proceed by computing the t-length
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chain (h(x), h2(x), . . . , ht(x)). Then, for every i ∈ [m] such that ht(xi) = hk(x) (that is, ht(xi)
appears in the chain (h(x), h2(x), . . . , ht(x))), A computes x′ = ht−k(xi) and checks if f(x′) = y.
Importantly, when f is not a permutation, it is possible that f(x′) ̸= y. In this case, we say that i
is a false-positive index.

The Correctness Proof. Fiat and Naor showed that for every y ∈ f(D), when the parameters
are chosen such that mt2U ≈ 2n, and over a random choice of the function g and the points
x1, . . . , xm ← [2n], the algorithm succeeds in finding a pre-image of y with probability roughly
mt/N . Moreover, to bound the running time of the algorithm Fiat and Naor showed that the
expected number of false-positive indexes is constant. For the convenience of the interested reader,
we give a high level sketch of the proof in Appendix A (but this will not be relevant for the rest of
the paper—we will use this part of Fiat-Naor in a black-box way).

The Function g. We next describe how to choose the function g used by A. As mentioned above,
we want g to have a succinct description and we need to be able to evaluate it efficiently. Recall
we want g to be from [2n] to D. However, the range D is defined by the function f , and it thus
does not have an efficient representation. However, given the set A, and the function f , it is easy
to check if a point x is in D: simply check if f(x) is not in A. Using this fact, to construct the
function g, Fiat and Naor [FN00] constructed first a function g′ : [2n] × [2n] → [2n]. Then, they
defined g(x) to be g′(x, z) for the minimal z ∈ [2n] for which g′(x, z) ∈ D. By our assumption that
D is large (at least 2n/2), if g′ is a random function (or Ω(1)-wise independent), the expectation
of this z is O(1). Thus, we will not need to evaluate g′ too many times to evaluate g. Moreover,
in the RAM model, checking if g′(x, z) ∈ D can be done efficiently (using hash tables or binary
search), and thus evaluating g has roughly the same cost as evaluating g′.

For the function g′, [FN00] used a random O(t)-degree polynomial. Such a polynomial has a
(relatively) succinct description, and the resulting function g′ is O(t)-wise independent, which is
enough for their analysis to go through. However, evaluating g′ on a single point takes O(t) time,
which is more than we can afford.

[FN00] solved this issue by exploiting the fact that we run the algorithm A ℓ times in parallel, and
by using the FFT algorithm. Specifically, as we actually need to construct ℓ functions, g′1, . . . , g

′
ℓ.

[FN00] constructed these polynomials in a correlated way, such that the amortized cost of evalu-
ating each polynomial g′i on a point xi will be Õ(1). In other words, computing g′1(x1), . . . , g

′
ℓ(xℓ)

simultaneously can be done in time Õ(ℓ).

The Time and Space Complexity. As mentioned above, the Fiat-Naor algorithms has time
T = Õ(ℓ · t) and space S = Õ(ℓ ·m+ |A|), where |A| ≤ 2n/U and ℓ = 2n/mt. That is, T = Õ(2n/m)
and space S = Õ(2n/t+ 2n/U). Thus, [FN00] can choose parameters such that U = t. Moreover,
by the analysis above we need to choose parameters such that mt2U < 2n. To minimize T + S, we
want to choose parameters such that 2n/m = 2n/t = 2n/U , which imply that m = t = U = 2n/4.
In this case, we get that S = T = 23n/4.

On Implementing the Attack as a Circuit. When trying to implement the Fiat-Naor algo-
rithm as a circuit, the main difference from the above is in the evaluation of the functions g1, . . . , gℓ.
Specifically, to evaluate gi on a point x, we need to evaluate the function g′i on x, z for multiple
values of z, and for each one, to check if f(g′i(x, z)) appears in the list A. While in the RAM model
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checking if f(g′i(x, z)) appears in the list A can be done in log(|A|) time, with a circuit we must
use a circuit of linear size. Since we evaluate g1, . . . , gℓ overall Ω(t · ℓ) times , the total cost of the
above lookup is Ω(|A| · t · ℓ) = Ω(2n/U · 2n/m). By the constraint that mt2U < 2n, we get that the
resulting circuit size is at least 2n · t2, which is more than the trivial size.

1.3 Our Circuit Implementation

To solve the above issues, we first construct a new primitive that we call batched look-up tables, and
show that it is possible to look-up for multiple values in the list A with a small amortized cost.

Then, we show that by choosing different parameters then Fiat and Naor [FN00], we can obtain
a non-trivial circuit.

Batched Look-Up Tables Informally, Batched Look-Up circuits allow to search multiple entries
in a list, with a small amortized cost. In more detail, let T = (a1, . . . , ar) be a target list, and let
B = (x1, . . . , xℓ) be the inputs. We want to check for each xi if it appears in T . The batch look-up
circuit returns a list of bits (b1, . . . , bℓ) such that bi indicates if xi ∈ T .

We show that there is a look-up circuit of size Õ(|T | + |B|). It follows that, when B is long
enough, the amortized cost of each search is Õ(1). We implement this circuit in three steps:

First, we modify the list B such that each element in the list contains the index. That is, we
let B′ = ((x1, 1), . . . , (xℓ, ℓ)). We also let T ′ = ((a1, 0), . . . , (at, 0)). Then, we use a sorting circuit
to sort the union of the lists (according to the first entry of each element, and then the second).
Let R1 be the output of this step.

Next, we check for each element (x, i) in R′ if there exists an element of the form (x, 0) earlier
in the list. If there is, we change the entry to (1, i). If there is no such element, we change the entry
to (0, i). Since the list is sorted, this can be done with an efficient algorithm that reads the list in
one pass, and thus can be implemented with a small circuit. After this step, the list contains one
entry of the form (b, i) for every i ∈ [ℓ], where the value of b is 1 if and only if xi appears in T .

Lastly, we sort the list again, this time according to the indexes, and output the first entry of
each of the last ℓ elements in the sorted list.

Changing the Parametrization Using the batched look-up circuit, we can now compute the
functions g1, . . . , gℓ in a small amortized cost in parallel. Specifically, we can evaluate all the ℓ
functions, each on one point, in cost of Õ(ℓ+ |A|). However, to compute a chain of length t using
the function gi, the algorithm needs to evaluate gi sequentially. Recall that to evaluate gi on a
point x, we need to find z such that f(g′i(x, z)) /∈ A. Thus the look-up step must be performed
between every two consecutive calls gi. So while we can batch calls across chains, in each chain we
must perform the look-up separately for each call. This implies that we need to apply the batch
look-up circuit t times, each time on ℓ calls. Thus, we need to pay Õ((r + ℓ)t) for this step. For
the parameter choice of Fiat and Naor [FN00], when r = S = ℓ ·m, we get that t · r = 2n, and thus
the circuit size is again trivial.

Fortunately, we can choose the parameters differently to get a better circuit size. Specifically,
we choose r to be much smaller than ℓ ·m. In more detail, our final circuit size is Õ((r+ℓ)t+m ·ℓ).1
Recall that ℓ = 2n/mt, r = 2n/U , and we need to choose parameters such that mt2U < 2n, or

1The term m · ℓ is since in the Fiat-Naor algorithm, we need to find all the indexes j such that (xj , h
t(xj)) is in

the advice and ht(xj) appears in the chain starting with y. For this step we also use a batch look-up circuit.
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equivalently mt2 < r. Taking m = t and r = ℓ = 2n/t2, we get that for t < 2n/5 the above constrain
holds. In this case, the circuit size is Õ(24n/5).

Other Issues We note that the above outline oversimplifies a bit, and we are also require to
reanalyze certain aspect of the Fiat-Naor algorithm (on top of the above changes).

Inverting General Functions The above approach only work when most points in the range
of the function has a small number of pre-images. Fiat and Naor show how to deal also with the
more general case, but this requires a more subtle choice of parameters and this would complicate
things for us. To overcome this issue (and of independent interest), we observe that any function
f : [2n] → [2n] can be converted into a function f ′ : [2 · 2n] → [2 · 2n] satisfying the small-image
requirement, in a way that inverting f can be reduced to inverting f ′. Indeed, we can simply let
f ′(x) = f(x) for every x ∈ [2n], and f ′(x) = x otherwise. As a result, get that every function f can
be inverted with a circuit of size Õ(24n/5).

2 Preliminaries

2.1 Notations

All logarithms are taken in base 2. We use calligraphic letters to denote sets and distributions,
uppercase for random variables, and lowercase for values and functions. Let poly stand for the set
of all polynomials. Given a vector v ∈ Σn, let vi denote its ith entry, let v<i = (v1, . . . , vi−1) and
v≤i = (v1, . . . , vi). Similarly, for a set I ⊆ [n], let vI be the ordered sequence (vi)i∈I . For a function
f : D → R, and a set S ⊆ D, we let f(S) = {f(x) : x ∈ S}.

2.2 Distributions and Random Variables

When unambiguous, we will naturally view a random variable as its marginal distribution. The
support of a finite distribution P is defined by Supp(P) := {x : PrP [x] > 0}. For a (discrete)
distribution P, let x ← P denote that x was sampled according to P. Similarly, for a set S, let
x← S denote that x is drawn uniformly from S.

We will use k-wise independent functions in the construction.

Definition 2.1 (k-wise independent). For a set R, n random variables Y1, . . . , Yn over Ω are k-
wise independent if for every indexes i1, . . . , ik, the joint distribution Yi1 , . . . , Yik is the uniform
distribution over Rk.

A function family G = {g : [N ]→ R} is k-wise independent if the distribution of g(1), . . . , g(N),
for g ← G is k-wise independent.

2.3 Kolmogorov Complexity

Roughly speaking, the t-time-bounded Kolmogorov complexity, Kt(x), of a string x ∈ {0, 1}∗ is
the length of the shortest program Π = (M,y) such that, when simulated by an universal Turing
machine, Π outputs x in t(|x|) steps. Here, a program Π is simply a pair of a Turing Machine M
and an input y, where the output of P is defined as the output of M(y). When there is no running
time bound (i.e., the program can run in an arbitrary number of steps), we obtain the notion of
Kolmogorov complexity.
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In the following, let U(Π, 1t) denote the output of Π when emulated on U for t steps. We now
define the notion of Kolmogorov complexity with respect to the universal TM U.

Definition 2.2. Let t be a polynomial. For all x ∈ {0, 1}∗, define

Kt
U(x) = min

Π∈{0,1}∗
{|Π| : U(Π, 1t(|x|)) = x}

where |Π| is referred to as the description length of Π.

We will use the following bound on the Kolmogorov complexity of strings sampled from the
uniform distribution.

Lemma 2.3. For any universal TM U and every n ∈ N, it holds that

Prx←{0,1}n
[
Kt

U(x) ≥ n− i
]
≥ 1− 2−i.

In this paper, unless otherwise stated, we fix some universal Turing machine U that can emulate
any program Π with polynomial overhead, and let Kt = Kt

U.

2.4 Circuits

In this paper we consider circuits over the De-Morgan Basis, which contains the following gates: ∧
(“and” gate with fan-in 2), ∨ (“or” gate with fan-in 2), and ¬ (“not” gate with fan-in one). The
size of a circuit C, denoted by |C| is the number of gates in C. We will sometime allow to use also
f -gates in the circuits, for a function f : {0, 1}n → {0, 1}m.

Definition 2.4 (Circuit with f -gates). For a function f : {0, 1}n → {0, 1}m, a circuit with f -gates
is a circuit which have, in addition to ∧,∨ and ¬ gates, a special f gates. Each f -gate has fan-in
n, where each in-wire is label (uniquely) by a number in 1, . . . , n. Each out-wire is labeled by a
number in 1, . . . ,m. The value of a out-wire labeled by i is the i-th bit of f(w1, . . . , wn), where wj

is the value of the in-wire labeled by j.

The following lemma is a non-uniform version of the fast evaluation algorithm used by [FN00]
(see for example [Bav12]), stating that it is possible to efficiently evaluate a polynomial on multiple
points. This lemma will help us to get better parameters in our construction.

Lemma 2.5 (Evaluating a polynomial on multiplied points.). There exists a constant c such that
the following holds. Let p be an arbitrary degree d polynomial in a field of size 22n, for n ≥ 1. Then
there exists a circuit C of size d · (n+ log d)c such that C(x1, . . . , xd) = (p(x1), . . . , p(xd)) for every
d field elements x1, . . . , xd.

The next lemma states that it is possible to sort a list of integers by an nearly linear size circuits.

Lemma 2.6 (Sorting circuits [AKS83]). There exists a circuit family of size O(n · poly(log n, k))
that sorts n numbers of k-bits each.

We will also use the following simple lemma, that states that any computation on a list that
can be done using efficient, one-pass algorithm, can be done also with a small circuit.

Lemma 2.7 (Circuit of an one-pass algorithm.). There exists a universal constant c such that the
following holds. Let A be an algorithm that gets as input a list L of length ℓ of n-bits elements, and
output a list L′ of length ℓ of n-bits elements. Furthermore, assume that A reads L in one pass:
for i ∈ [ℓ], in the i-th step of the algorithm, A reads the i-th entry of L, and apply a s-sized circuit
on the entry and its own state to compute the i-th entry of L′ together with its new state. Then the
function computed by A can be computed by a cℓ · s-size circuit.
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3 The Fiat-Naor Algorithm

In this part we describe the algorithm of Fiat and Naor [FN00], and show how to implement it
using a small circuit. For this implementation, we need to choose different parameters than the one
used in [FN00]. For a function f : [2n] → [2n], our goal is to construct a small circuit that inverts
any image of f . We prove the following theorem.

Theorem 3.1. There exists a constant c such that the following holds. Let n ∈ N be a number,
and let f : [2n]→ [2n] be a function. Then there exists a circuit C of size c · 24n/5 · nc with f -gates,
such that

Prx←[2n],y:=f(x)

[
C(y) ∈ f−1(y)

]
= 1.

Following Fiat and Naor [FN00], we start with focusing on functions which are not trivial to
invert. Informally, for a parameter U ∈ N, a function f is said to be U -trivial to invert if there are
many images with more than U pre-images.

Definition 3.2 (Trivial to invert function, [FN00]). Let U, n ∈ N be two numbers. A function
f : [2n]→ [2n] is U -trivial to invert if∣∣{x : ∣∣f−1(f(x))∣∣ < U

}∣∣ < 2n/2.

Notice that if f is U -trivial to invert, it also U ′-trivial to invert, for every U ′ < U . Such a
function f which is U -trivial to invert, can inverted with probability 1/2 (over a random input)
using a relatively short advice, by keeping one pre-image for every image with more than U pre-
images. As a simplification of independent interest2, we observe that any function f : [2n] → [2n]
can be converted to a function f ′ : [2 · 2n]→ [2 · 2n] which is not U -trivial to invert for any U > 1.
Indeed, define f ′(x) be equal to f(x) if x ∈ [2n], or equal to x otherwise. It immediately follows
that f is injective on at least 1/2 of the domain. Moreover, inverting f is equivalent to inverting
f ′. Thus, the assumption that f is not trivial to invert is without loss of generality.

In the first step, following [FN00], we construct a distribution P over circuits of size Õ(24n/5),
such that, for every y ∈ f([2n]), it holds that PrC←P

[
C(y) ∈ f−1(y)

]
≥ 1/10. Then, by sampling

O(log n) circuits from P and combining them together, with high probability we get a single circuit
that inverts any image y. The main lemma and the derivation of Theorem 3.1 are formally stated
next.

Lemma 3.3. There exists a constant c such that the following holds. Let n ∈ N be a number, and
let f : [2n] → [2n] be a function which is not 2n/5-trivial to invert. There exists a distribution P
over circuits of size at most c · 24n/5 · nc with f -gates, such that for every y ∈ f([2n]),

PrC←P
[
C(y) ∈ f−1(y)

]
≥ 1/10.

Theorem 3.1 follows easily by Lemma 3.3.

Proof of Theorem 3.1. Let n′ = n + 1 and f ′ : [2n
′
] → [2n

′
] be as defined above. Let P be the

distribution promised by Lemma 3.3 with respect to f ′. Consider the following distribution over
circuits P ′. To sample a circuit C from P ′, we start by sampling 15n′ circuits from P, C1, . . . , C15n′ .

2As mentioned in the introduction, Fiat and Naor, required a more subtle analysis to deal with also U -trivial
functions.
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Then, we let C be the circuit that given y, computes xi = Ci(y) for every i ∈ [5n′], and checks if,
for some i, f ′(xi) = y. If there exists some i, C outputs xi (for the minimal such i), or arbitrary
value otherwise. It is not hard to see that C can be implemented with size

∑
i∈[15n′]|Ci|+poly(n) ≤

c24n
′/5 · nc+2 using f ′-gates. Since the function f ′ can be implemented by a circuit of size 5n with

f -gates, and since n′ = n + 1, C can be implemented as a circuit with f -gates, in size at most
10c · 24n/5 · nc+3.

For the correctness, fix y ∈ f([2n]), and observe that every pre-image of y with respect to f ′ is
a also a pre-image of y with respect to f . By the promise that a random sample from P inverts
y successfully with probability 1/10, we get that a random sample C from P ′ fails to invert y
with probability at most (9/10)15n

′ ≤ 1/22n
′
. By the union bound, C inverts simultaneously all

y ∈ f([2n]) with probability at least 1− 2−n.
Since with positive probability C is a circuit of size c24n/5 · nc+2 that inverts f on any image,

such a circuit exists. □

3.1 Proving Lemma 3.3

We now move to prove Lemma 3.3. In the following, fix n ∈ N and a function f : [2n]→ [2n] which
is not trivial to invert. Let N = 2n.

To prove Lemma 3.3, let m, t, ℓ, k and U ≥ 2n/5 be parameters to be chosen later. Let A =
{y1, . . . , yr} be the set of all images yi such that

∣∣f−1(yi)∣∣ ≥ U , and observe that r := |A| ≤ N/U .
In the Fiat-Naor algorithm, we give as an advice to the inverter a pre-image xi ∈ f−1(yi) of every
yi ∈ A. As a result, we only left to invert f on y /∈ A.3 Let D = {x : f(x) /∈ A}. Since f is not
U -trivial to invert (recall that U ≥ 2n/5), it holds that |D| ≥ N/2.

Next, we need to invert the function f on the domain D. For the yet to be chosen parameter
ℓ, the algorithm of Fiat and Naor [FN00] uses ℓ hash functions g1, . . . , gℓ : [N ]→ D. We will later
describe how to choose this functions, but for now this can be thought as ℓ random functions.
Finally, for every i ∈ [ℓ], let hi : [N ]→ D be defined by hi(x) = gi(f(x)).

In the following algorithm, for every i ∈ [ℓ] and j ∈ [m], let xi,j ∈ [N ] be inputs to f , to be
chosen (randomly) later. For every i ∈ [r], let xi be such that f(xi) = yi, for A = {y1, . . . , yr}.

Algorithm 3.4 (Fiat-Naor [FN00]).

Parameters: m, t, ℓ, U ∈ N
Advice: {(xi, yi)}i∈[r], {gi}i∈[ℓ],

{
(xi,j , h

t
i(xi,j)

}
i∈[ℓ],j∈[m]

.

Input: y ∈ [N ].

1. Check if there exists i ∈ [r] with yi = y. If so, output xi.

2. For every i ∈ [ℓ], set u0i = gi(y).

3. For every v ∈ [t]:

(a) For every i ∈ [ℓ], compute uvi = hi(u
v−1
i ).

3Actually, in [FN00], for r = Õ(N/U), the points x1, . . . , xr are chosen uniformly at random from the domain [N ],
and the set A is defined to be {f(x1), . . . , f(xr)}. In [FN00] it is shown that with high probability the set A contains
all the images with more than U pre-images, which is the only property of A that is used in the proof. We could also
choose A in the same way here.
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4. For every i ∈ [ℓ], let Ji =
{
j : hti(xi,j) ∈

{
u0i , . . . , u

t
i

}}
. Set û0i,j = xi,j for every i ∈ [ℓ] and

j ∈ Ji,.

5. For every v ∈ [t]:

(a) For every i ∈ [ℓ] and j ∈ Ji, let ûvi,k = hi(û
v−1
i,k ).

6. For every i ∈ [ℓ], v ∈ [t] and j ∈ Ji, compute f(ûvi,k), and output ûvi,k if f(ûvi,k) = y.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

That is, for every hash function gi, the advice contains m points, xi,1, . . . , xi,m. On each such
point xi,j we apply the function hi = gi ◦ f t times in a chain, to get hti(xi,j), and keep the result
in the advice.

Giving an input y, the algorithm first check if y ∈ A. If it does, a pre-image of y appears in the
advice, and thus y can be trivially inverted. Otherwise, we want to check if y = f(hvi (xi,j))
for some i, j and v < t. That is, if y appears in the chain starting with xi,j . If this is
the case, then gi(y) = hv+1

i (xi,j), and thus the chain (gi(y), hi(gi(y)), . . . , h
t
i(gi(y))) contains the

point hti(xi,j). The algorithm therefore search for every i, j such that hti(xi,j) is in the chain
(gi(y), hi(gi(y)), . . . , h

t
i(gi(y))). For every such i, j, the algorithm then computes the chain starting

with xi,j , (xi,j , . . . h
t
i(xi,j)), and checks if one of the element in the latter is indeed a pre-image of

y.

Choosing g1, . . . , gℓ. We next describe how to chose the functions g1, . . . , gℓ. The idea in Fiat
and Naor [FN00] is to choose these functions, such that, instead of being ℓ random functions, each
function will be O(t)-wise independent, and the joint distribution of the functions will be pair-wise
independent. This is enough for the analysis of the algorithm, and allows computing the functions
efficiently.

One problem we have is that the set D ⊆ [N ] is dependent on the function f , and thus it is not
simple to construct a function from [N ] to D. To overcame this, Fiat and Naor [FN00] constructed,
for each i ∈ [ℓ], a function g′i : [N ]× [N ] → [N ]. Then, for every x ∈ [N ], they defined gi(x) to be
equal to g′i(x, z) for the minimal value of z ∈ N for which g′i(x, z) ∈ D. Notice that given the set
A we can check efficiently if g′i(x, z) ∈ D, by checking whether f(g′i(x, z)) ∈ A. Moreover, since
|D| ≥ N/2, it is not hard to see that the expected value of z is O(1).

To construct the functions g′i, we think on the domain [N ] × [N ] as [N2]. Let k ∈ N be a
parameter (we will choose k = Õ(t)), and for every j ∈ [k], let aj , bj ← [N2] be random numbers.
For every i ∈ [ℓ], let g′i : [N

2]→ [N ] be defined by g′i(α) = (
∑

j∈[k](aj · i+ bj)α
j−1)≤n (where all the

operations are preformed over a field of size N2 = 22n, and we take the first n bits of the result).
By the construction the functions g′1, . . . , g

′
ℓ are pair-wise independent, where each of them is

k-wise independent. As described above, for every x ∈ [N ], let gi(x) to be equal to g′i(x, z
∗) for

z∗ = min{z : g′i(x, z) ∈ D} (letting z∗ = N if no such exists).

Correctness. By Fiat and Naor [FN00], for a random choice of points xi,j and the polynomials
gi, Algorithm 3.4 inverts f on any fixed y with a good probability. We need a slightly different
version of Fiat and Naor [FN00] theorem, stated below.

Theorem 3.5. Let m, t, ℓ, k, U ∈ N be parameters such that m ≤ N , 8 log(4N) ≤ t ≤ N , k = 8t,
mk2U = N and ℓ = N/mt. Let f : [N ]→ [N ] be a function which is not U -trivial to invert. Then,
the following holds for every y ∈ f([N ]).
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Over a random choice of {(aj , bj)}j∈[k] and {(xi,j}i∈[ℓ],j∈[m], Algorithm 3.4 inverts y with prob-

ability at least 1/8. Moreover, under the same distribution, E
[∑

i∈[ℓ]|Ji|
]
≤ ℓ.

We remark the [FN00] proved the above theorem for U = N/S. However, their proof directly
generalized to the above set of parameters.

Proof. Theorem 3.5 follows almost directly from the proof in [FN00]. There, to get the best
parameters, U is chosen such that N/U = m · ℓ , and we do not add this constrain. Theorem 3.5
follows by setting S = N/U in the proof of [FN00].

□

3.1.1 Circuit implementation

We now show that, for the right choice of parameters, it is possible to implement Algorithm 3.4
with a relatively small circuit. Recall that we allow f -gates in our circuit.

One main component in the implementation of Algorithm 3.4 is the computation of the func-
tions gi on different inputs. This is done Ω(ℓ · t) times during the algorithm, and thus must be done
efficiently. Fiat and Naor [FN00] showed that, due to the dependency between them, the evaluation
of the functions g1, . . . , gℓ simultaneously on one point each, can be done in Õ(ℓ) time (or, in Õ(1)
amortized time). The following claim shows that (for different parameters) this can be done by a
small circuit.

Claim 3.6. There exists a constant c such that the following holds for every n ∈ N and f : [2n]→
[2n]. Let A, r, k, g′1, . . . , g′ℓ and g1, . . . , gℓ be as defined above, and let τ, p ∈ N be numbers. There
exists a C circuit of size c · (r + k + τ · p) · (n+ log(τpr))c such that the following holds. For every
i ∈ [τ ], let α(i) ∈ [ℓ] and ui ∈ [N ] be such that g′α(i)(ui, z) ∈ D for some z ≤ p. Then given

α(1), . . . , α(τ) and u1, . . . , uτ , C computes gα(1)(u1), . . . , gα(τ)(uτ )

It is worth to mention here that in the setting of [FN00], the main cost in evaluating gi is
the evaluation of the polynomial g′i. Thus, for [FN00] it was enough to show how to compute
g′1, . . . , g

′
ℓ simultaneously. While their technique helps us getting better parameters, the crucial

cost in the setting here is to check if the output of g′i(x, z) is in the domain D, or equivalently,
if f(g′i(x, z)) ∈ A. With RAM machine this can be done efficiently, for example using a binary
search, but with a circuit we must a circuit with size linear in the length of A. In the proof we
show that this also can be done simultaneously with a smaller amortized cost. An important part
of our proof is showing that there is a near linear sized circuit that preform a task for which we
call “batch lookup”. This task is now defined.

Definition 3.7 (Batch look-up). Given a list A = (a1, . . . , ar) ∈ ({0, 1}n)r of length r, and a list
L = (y1, . . . , yτ ) ∈ ({0, 1}n)τ of τ n-bits numbers, the batch look-up functionality, BLOOKUP(A,L)
returns τ bits b1, . . . , bτ , such that bi = 1 if yi appears in A.

In Section 3.1.2 we show how to implement the batch look-up functionality with a small circuit.
We prove the following lemma.

Lemma 3.8. There exists a constant c such that the following holds for every n ∈ N, r ∈ N and
τ ∈ N. There exists a circuit C of size c · (r + τ) · (n + log(rτ))c that computes the BLOOKUP
functionality.
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Using Lemma 3.8 we prove Claim 3.6.

Proof. In the following we use the notation Õ(·) to hide fixed multiplicative polynomial factors in
n and log(pτr). Without loss of generality, assume that τ · p ≥ k. Recall that to compute gα(i)(ui),
we need to find the minimal z ∈ N such that g′α(i)(ui, z) ∈ D. Moreover, by assumption, z ∈ [p].

Thus we start with computing gα(i)(ui, z) for every z ∈ [p] and for every i ∈ [τ ].
To do so, observe that for the polynomials A(x) =

∑
ajx

j , and B(x) =
∑

bjx
j (for x ∈ [N2]),

we can write g′i(x) = i ·A(x)+B(x) for every i ∈ [ℓ]. Thus, to compute g′α(i)(ui, z) for every i ∈ [τ ],

z ∈ [p], it is enough to compute A(ui, z) and B(ui, z) for every such i, z. This can be done with a
circuit of size Õ(k + τ · p), using Lemma 2.5.

Next, given the values
{
g′α(i)(ui, z)

}
i∈[τ ],z∈[p]

, we need to find, for every i ∈ [τ ], the min-

imal z for which g′α(i)(ui, z) ∈ D. This can be done by applying the BLOOKUP circuit on

A and L = (f(g′α(1)(u1, 1)), . . . , f(g
′
α(1)(u1, p)), . . . , f(g

′
α(τ)(uτ , 1)), . . . , f(g

′
α(τ)(uτ , p))) to compute

(b1,1, . . . , b1,p, . . . , bτ,1, . . . , bτ,p), where bi,z = 1 if and only if f(g′α(i)(ui, z)) ∈ A (or, equivalently, if

g′α(i)(ui, z) /∈ D). Then, for each block i ∈ [τ ] of size p, we can output g′α(i)(ui, z) for the first z
in the block for which bi,z = 0. Since the last step can be implemented with an efficient one-pass
algorithm, and by Lemma 3.8, the entire process can be done with a circuit of size Õ(k+ r+ p · τ).
Moreover, the output of the above process is exactly gα(1)(u1), . . . , gα(τ)(uτ ). □

We next use Claim 3.6 to prove Lemma 3.3.

Proof of Lemma 3.3. In the following we assume that n > 10, as we can choose the constant c in
Lemma 3.3 such that the theorem will hold trivially for every smaller n. Fix such n > 10 and a
function f as in Lemma 3.3, and let N = 2n.

We start with our choice of parameters. Let U = N
2
5 /64,m = N

1
5 , t = N

1
5 and ℓ = N

3
5 . It is not

hard to verify that the conditions of Theorem 3.5 hold with respect to these parameters, and thus the
correctness holds. Namely, for every y ∈ f([N ]), over a random value of a1, . . . , aℓ, b1, . . . , bℓ ← [N2],
and x1,1, . . . , xℓ,m ← [N ], Algorithm 3.4 finds a pre-image of y with probability at least 1/8.

To implement Algorithm 3.4 as a circuit, we need a bound some running-time parameters.
That is, we need to bound the worst-case number of times we will need to evaluate g′i for each
time Algorithm 3.4 evaluates gi (so we will be able to use Claim 3.6). Additionally, we will need
to bound the size of the sets Ji defined in Step 4 of the algorithm.

In the following we show that with probability 0.99 over the choice of a1, . . . , aℓ, b1, . . . , bℓ ← [N2]
it holds that:

1. For every x ∈ [N ] and i ∈ [ℓ], there exists z ∈ [3n] such that g′i(x, z) ∈ D, and,

2.
∑

i∈[ℓ]|Ji| ≤ 200ℓ.

Then, we show that when Items 1 and 2 above hold, we can implement Algorithm 3.4 with a
small circuit. Overall, by the union bound, this shows that for every y ∈ f([N ]), the following holds
with probability at least 1/8−0.01 ≥ 1/10 over a random value of a1, . . . , aℓ, b1, . . . , bℓ ← [N2], and
x1,1, . . . , xℓ,m ← [N ]: Algorithm 3.4 can be implemented with a small circuit and it finds a pre-image
of y. Given this promise, we can easily construct the distribution P: To sample a circuit from P,
we randomly choose the parameters a1, . . . , aℓ, b1, . . . , bℓ ← [N2], and x1,1, . . . , xℓ,m ← [N ]. Then,
if Algorithm 3.4 can be implemented with a circuit of size Õ(N4/5) with the chosen parameters, we
output this circuit. Otherwise, we output an arbitrary small circuit.
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To see that Items 1 and 2 above holds, first notice that the second item hold with probability
1 − 1/200 by Markov and the promise that E[

∑
i|Ji|] ≤ ℓ. For the first item, randomly choose

a1, . . . , aℓ, b1, . . . , bℓ ← [N2]. We start with showing that g′i(x, z) ∈ D for every i, x and some
z ∈ [3n]. Fix i and x and recall that g′i is a degree k > 3n polynomial. Thus, for every z ∈ [3n],
Pr[gi(x, z) ∈ D] = D/N ≥ 1/2 (where the probability is taken over the choice of {ai, bi}). By the
k-wise independence of g′i, we get that

Pr
[
∀z ∈ [3n] s.t. g′i(x, z) /∈ D

]
≤ 1/23n = 1/N3.

By applying the union bound on all possible values of i ∈ [ℓ] and x ∈ [N ], we get that

Pr
[
∃i ∈ [ℓ], x ∈ [N ], ∀z ∈ [3n] s.t. g′i(x, z) /∈ D

]
≤ ℓ ·N · 1/N3 ≤ 1/N.

In other words, with all but 1/N probability, for every i and x, there exists some z ≤ [2n] such
that g′i(x, z) ∈ D, as we wanted to show.

Next, we show how to implement Algorithm 3.4 with a small circuit, under the above as-
sumption. We implement each step of Algorithm 3.4 separately using a small circuit. Recall that
r = N/U = N

3
5 . In the following we use the notation Õ(·) to hide fixed multiplicative polynomial

factors in n.
Step 1 can be done trivially by a circuit of size Õ(r). Similarly, the last step can be done with

a circuit of size Õ(ℓ · t) under the assumption in Item 2, and using the f -gates.
By Claim 3.6, Step 2 can be implemented by a circuit of size Õ(r + k + ℓ). Similarly, as a

corollary of Claim 3.6, Steps 3 and 5 (under the assumption that Item 2 holds) can be done with
a circuit of size Õ(t · (r + k + ℓ)).

Lastly, Step 4 can be done with circuit of size Õ(ℓ · t + ℓ ·m), by using batch look-up again.
In more detail, let A = (u01, . . . , u

t
1, . . . , u

0
ℓ , . . . , u

t
ℓ) and L = (ht1(x1,1), . . . , h

t
ℓ(xℓ,m)). We first

compute BLOOKUP(A,L) to get R = (b1,1, . . . , bℓ,m). Then, we can easily change the list R
such that it will contain the block index and the input xi,j in every coordinate, that is R′ =
((b1,1, x1,1, 1), . . . , (bℓ,m, xℓ,m, ℓ)). We can now sort the list according to the first entry bi,j , and keep
only the last 100ℓ entries. By the assumption in Item 1, those entries contains all the entries i, j
for which hti(xi,j) ∈

{
u0i , . . . , u

t
i

}
. Each element in the output list contains both xi,j and i, which is

enough to apply Claim 3.6 in Step 5.
Overall, the entire process can be implemented by a circuit of size Õ(t(r+k+ℓ)+ℓ·m) = Õ(N4/5),

as stated.
□

3.1.2 Implementing Batch Look-Up

We now prove Lemma 3.8. The main idea is to sort the lists A,L together, and then find all the
duplications in the sorted list.

Proof. Let τ, r, n,A = (a1, . . . , ar) and L = (y1, . . . , yτ ) be as in Definition 3.7. Let k = ⌈log τ⌉ To
compute BLOOKUP(A,L) we do the following:

1. First, we construct the listsA′ = ((a1, 0
k), . . . , (ar, 0

k)) ∈ ({0, 1}n×{0, 1}k)r and L′ = ((y1, 1), . . . , (yτ , τ)) ∈
({0, 1}n×{0, 1}k)τ . Namely, we add the index i (represented as a k-bits string) to every element
in L, and 0 for every element in A. This can be done with a circuit of size (r + τ)(n+ k).
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2. Next, we sort (A′,L′) jointly, according to the first and then the second entry. Let R1 be the
output. This can be done with a circuit of size c1 · (r+ τ)(n+ k+ log(r+ τ))c1 , by Lemma 2.6,
for some universal constant c1. Let R1 be the output of this step.

3. In the next step, we replace with 1 the first entry of every element (yi, i) in R1, such that an
element of the form (yi, 0) appears earlier in the list R1. We replace by 0 the first entry of every
element (yi, i) in R1, such that (yi, 0) does not appear earlier in the list. Let R2 be the output of
this step. The result of this step is that R2 contains entries of the form (bi, i), where bi is 1 if and
only if yi appears in A. As this step can be implemented by an efficient, one-pass algorithm (the
algorithm only needs to remember the first entry of the last element with second entry equal to
0 as its state), it can be also be implemented by circuit of size c2 · (r + τ)(n+ k + log(r + τ))c2

by Lemma 2.7, for some universal constant c2.

4. Lastly, we sort the list again according to the second entry, to get the elements in order according
to the indexes. We output the first entry of each of the last τ items in the sorted list. It is not
hard to see that the values we output are exactly the one we wanted to compute. Moreover, this
last step can also be implemented by a circuit of size c1 · (r + τ)(n+ k + log(r + τ))c1 .

By concatenating the circuits for each of the above steps, we get a circuit of size c · (r+ τ)(n+
log rτ)c that computes the functionality BLOOKUP, for a sufficiently large constant c. □

4 Computing t-Bounded Kolmogorov Complexity

In this part we use Theorem 3.1 to prove our main theorem. The latter is a corollary of the following
theorem.

Theorem 4.1. For any universal TM U and every function t = t(n) there exists a circuit family
C = {Cn}n∈N of size O(24n/5 ·poly(n)) such that the following holds for every n ∈ N. Cn is a circuit

with fn-gates, for fn : {0, 1}≤2n → {0, 1}∗ defined by fn(Π) = U(Π, 1t(n)), and for every x ∈ {0, 1}n,
Cn(x) outputs Kt

U(x).

Recall that we defined Kt = Kt
U for some fixed U with polynomial running time overhead. We

get the following corollary.

Corollary 4.2 (Main theorem). For every t = t(n), there exists a circuit family C = {Cn}n∈N of

size O(24n/5 · poly(t(n), n)) (over the DeMorgan basis) such that, for every n ∈ N and for every
x ∈ {0, 1}n, Cn(x) outputs Kt(x) .

Proof of Corollary 4.2. Corollary 4.2 follows by Theorem 4.1, observing that we can replace every
fn-gate with a circuit of size poly(t(n), n) that computes fn. We get a circuit family of size
O(24n/5 · poly(n, t(n))) that computes Kt. □

We now prove Theorem 4.1

Proof of Theorem 4.1. Let c be a constant such that Kt(x) ≤ |x|+c for every x. Let f ′n : {0, 1}
n+c×

[n+ c]→ {0, 1}n × [n+ c] be defined as

f ′n(Π, i) =

{
(fn(Π≤i), i) |fn(Π≤i)| = n

0n Otherwise
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Let n′ = n+ c+ ⌈log(n+ c)⌉. In the following, we assume that both the domain and the range
of fn is [2n

′
], by the use of appropriate encoding and padding.

By Theorem 3.1, the above imply that there is a circuit family Ĉ =
{
Ĉn

}
n∈N

with f ′n gates,

of size O(24n
′/5 · poly(n)) = O(24n/5 · poly(n)) that inverts f ′n with probability 1.

Given a circuit Ĉn that inverts f ′n, we can construct a circuit Cn (with f ′n gates) that computes
the Kt complexity of any string x of length n. This can be done by computing f ′−1n (x, 1), . . . , f ′−1n (x, n+
c) and taking the output (Π, i) for the minimal value of i such that U(Π<i, 1

t(n)) = x (the t-bounded
Kolmogorov complexity of the string 0n can be hardcoded in the circuit).

Observe that the size of Cn is n ·
∣∣∣Ĉn

∣∣∣ + poly(n). Thus, there exists a circuit family of size

O(24n/5 · poly(n)), with f ′n gates, that computes Kt.
Lastly, observe that f ′n can be efficiently computed from fn, thus we can replace the f ′n gates

with a small circuit. □

5 Lower Bound on the Circuit Size

The result presented in Section 4 holds when Kt is defined with respect to any universal TM
with polynomial running-time overhead (more specifically, for every universal TM that can be
implemented as a circuit with polynomial size in the running time t(n) and the program Π).
Moreover, by Theorem 4.1, the result generalized for any universal TM U, if we allow the circuit
to have oracle gates to the UTM U.

In this section we prove a lower bound on this type of circuits. Namely, we show that there is a
“black-box” universal TM, with respect to there is no circuit of sub-exponential size that computes
Kt using oracle gates to U. In more details, we consider the black-box universal TM definition from
[LP23].

Definition 5.1 (Black-box universal TM). A function U : {0, 1}∗ × 1∗ → {0, 1}∗ ∪ {⊥}, we say
that U is a black-box universal Turing machine (black-box UTM) if

• (Universality) Informally, this requires that U simulates “valid programs” correctly: There exists
a standard universal Turing machine U0 such that for any (M, 1t), if M is a valid description of
a Turing machine (w.r.t U0), U(M, 1t) outputs what M outputs after t steps.

• (Any “program” has a unique output) For any M ∈ {0, 1}∗, t1, t2 ∈ N, t1 ≤ t2, if U(M, 1t1) ̸= ⊥,
U(M, 1t2) = U(M, 1t1).

We remark that the above definition is black-box in the following two ways: (1) U is defined to
be a function; (2) U is allowed to assign the output of invalid “programs” with an arbitrary string.

For any black-box UTM U, we can define the time-bounded Kolmogorov complexity with respect
to U. Formally, for any black-box universal Turing machine U, any string x ∈ {0, 1}∗, let

Kt
U(x) = min

Π∈{0,1}∗
{|Π| | U(Π, 1t(n)) = x}.

In the following, for a universal TM U, a function t : N → N, and a number n ∈ N, we let fU
be the function defined by fU

n (Π) = U(Π, 1t(n)) for any Π ∈ {0, 1}≤2n. Using appropriate encoding,
we can see fU

n as a function from n+ log n bits to 2t(n) bits.
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A circuit C with oracle gates is a circuit C with special O-gates. For a function f (with the
same input and output length), we let Cf be the circuit received by replacing the O-gates with
f -gates.

We next define black-box Kt-solvers. We give two definitions, of fully black-box and (plain)
black-box. The first is now defined.

Definition 5.2 (Fully black-box Kt-solver). A circuit family C = {Cn}n∈N is fully black-box Kt-
solver if for every black-box universal TM U, for every n ∈ N and for every input x ∈ {0, 1}n,
C

fU
n

n (x) = Kt
U.

That is, the circuit family C can be used to compute the Kt
U complexity with respect to any

universal TM U. Our construction in Section 4 is not fully black-box. Indeed, the circuit family
we construct is dependent in the universal TM with respect to we defined Kt. We next define a
weaker notion of black-box solutions, that captures these kinds of constructions.

Definition 5.3 (Black-box Kt-solver). For any black-box universal TM U, a circuit family C =
{Cn}n∈N is black-box Kt

U-solver if for every n ∈ N, Cn is a circuit with fU
n -gates, and for every

input x ∈ {0, 1}n, CfU
n

n (x) = Kt
U.

Here we only require the circuit to compute Kt
U with respect to U, and allow the circuit to use

black-box access to the universal TM. Theorem 4.1 directly implies the following theorem.

Theorem 5.4. For any universal TM U and every function t = t(n) there exists a black-box Kt
U

solver C = {Cn}n∈N of size O(24n/5 · poly(n)).

In this part we prove the following lower bound on the size of black-box Kt solvers. This lower
bound immediately generalized to fully black-box solvers.

Theorem 5.5. There exists a black-box UTM Û and a constant c such that the following holds for
every function t(n) ∈ poly with t(n) ≥ nc. For any black-box Kt

Û
-solver C = {Cn}n∈N it holds that

|Cn| ≥ 2n/2−o(n) for infinitely many n ∈ N.

We leave open the question of closing the gap between the lower and upper bounds on the size
of black-box Kt-solvers.

In the following we give two proofs for the above theorem. In both proofs, we use an universal
TM Uoracle with an oracle as our black-box UTM. In the first proof, we we give Uoracle an oracle to
a random function, used as a pseudorandom generator (PRG). We then use the Kt-solver to break
the PRG. We use the result of Coretti, Dodis, Guo, and Steinberger [CDGS18] which states that a
random function is a good PRG against circuits of size roughly 2n/2.

The second proof get slightly worse parameters, but is based on more standard results. Here
we take the oracle to be a random permutation σ, and use a result from [Imp11] that states of that
a random permutation cannot be inverted by a circuit of size 2n/2. Then, we use Goldreich-Levin
hardcore functions to construct a PRG from σ.

The first proof. For our first proof, we will use the following theorem from [CDGS18].

Theorem 5.6 ([CDGS18]). There exists a constant c such that the following holds for every
numbers m > n. Let (A0,A1) be a pair of oracle-aided algorithms, such that given a oracle
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O : {0, 1}n → {0, 1}m, AO0 outputs advice a of length S > n, and A1 makes at most T queries
to O. Then

∣∣PrO←Fn,m,x←{0,1}n
[
AO1 (A

O
0 ,O(x)) = 1

]
− PrO←Fn,m,y←{0,1}m

[
AO1 (A

O
0 , y) = 1

]∣∣ ≤ cm(

√
ST

2n
+

Tn

2n
)

where Fn,m is the family of all functions from {0, 1}n to {0, 1}m.

That is, a random oracle is a good PRG, even against adversaries with non-uniform advice. The
following corollary, stating that there exists a function which is a good PRG against small circuits,
follows almost directly from Theorem 5.6.

Corollary 5.7. There exists a constant c such that for every number n ∈ N and for m = n+log n,
there exists a function G : {0, 1}n → {0, 1}m, such that the following holds for every circuit of size

2n/2−2 log
2 n with G-gates.∣∣Prx←{0,1}n [C(G(x)) = 1]− Pry←{0,1}m [C(y) = 1]

∣∣ ≤ 1/10.

Proof of Corollary 5.7. Fix large enough n ∈ N, and assume toward a contradiction that for every
function G : {0, 1}n → {0, 1}m, there exists a circuit C with O : {0, 1}n → {0, 1}m oracle gates of

size 2n/2−2 log
2 n, such that∣∣Prx←{0,1}n [C(G(x)) = 1]− Pry←{0,1}m [C(y) = 1]

∣∣ > 1/10.

By flipping the answer of C, we can assume that

Prx←{0,1}n [C(G(x)) = 1]− Pry←{0,1}m [C(y) = 1] > 1/10.

First, observe that the circuit C can be described with less than S := 3 · |C| ·n2 ≤ 2n/2+3 logn−2 log2 n

bits (see for example [GGKT05]).
Next, consider the oracle-aided pair of algorithms (A0,A1), that given access to an oracle G,

AG
0 outputs a description of length 2n/2+3 logn−2 log2 n of the circuit C that distinguish G(x) from

uniform. Given the advice, and an input z, AG
1 simulates CG(z). Clearly A1 makes at most T = |C|

queries to G. By our assumption, for every G,

Prx←{0,1}n
[
AG
1 (A

G
0 , G(x)) = 1

]
− Pry←{0,1}m

[
AG
1 (A

G
0 , y) = 1

]
> 1/10.

By taking expectation on G← Fn,m, and by Theorem 5.6, it must holds that

1/10 ≤ cm(

√
ST

2n
+

Tn

2n
) ≤ 2cm

√
ST

2n
≤ 4cn

√
23 logn−4 log

2 n,

which is a contradiction for large enough n. □

We can now prove Theorem 5.5.

Proof of Theorem 5.5. Let N = {n1, n2, . . . } ⊆ N be the infinite set defined by n1 = 1 and ni+1 =
2ni . We will show a black-box UTM, with respect to, |C2n+logn| ≥ 2n/4−o(n) for every n ∈ N , which
concludes the theorem.

18



The black-box UTM we consider is an oracle universal Turing machine Uoracle such that for
any oracle O, UOoracle simulates any oracle machine Π with the oracle O. In addition, if Π does not
make oracle query, Uoracle will also simulate the execution of Π. We next describe our choice of the
oracle O: For every large enough n ∈ N , let Gn : {0, 1}n → {0, 1}n+logn be the function promised
by Corollary 5.7 (for m = n + log n). For every x ∈ {0, 1}n with n ∈ N , let O(x) = Gn(x). For
every x ∈ {0, 1}n with n /∈ N , let O(x) = x. Let Û = UOoracle. The choice of the sparse set N is

to make sure that on input of length n, it is not useful to Û to call the oracle O on inputs with
length different than n (see more detail below). This is a similar technique to the one used in the
sparsification lemma in [CLMP12].

Intuitively, we use the oracle O as a PRG. Observe that for every n ∈ N , G can be computed in
polynomial time using the oracle to O. Let MG be such an efficient oracle-aided TM that computes
G, and let c be a constant such that nc is a upper bound on the running time of MG. Fix a function
t(n) such that t(n) ≥ nc for every n ∈ N. Clearly, Kt

Û
(G(x)) ≤ n+2|MG| ≤ n+0.1 log n, for every

x ∈ {0, 1}n and every large enough n.
On the other hand, for random Y ← {0, 1}m, Kt

Û
(Y ) ≥ n+log n−1 with probability at least 1/2.

Thus, every circuit C that computes Kt
Û
on strings of length n + log n can be used to distinguish

between G(X) and Y , for X ← {0, 1}n, with advantage 1/2 by outputting 1 if the output of C is
larger or equal to n+ log n− 1. By the choice of Gn, it follows that if C is a circuit with Gn-gates,
it must holds that |C| ≥ 2n/2−2 log

2 n/nc.

Recall that the circuits in C = {Cn}n∈N have oracle gates to fn := f Û
n , and our lower bound

above only holds for circuits with Gn gates. To conclude the theorem, we thus need to show that
fn can be implemented with a circuit of size poly(n) with Gn-gates. Indeed, in this case, taking

C = Cn+logn, we get that |Cn+logn| ≥ 2n/2−2 log
2 n/poly(n).

To see that we can implement fn with circuit of polynomial size (with Gn-gates) first observe
that if we allow O-gates, we can simulate fn with a circuit of size poly(t(n)). Thus, we only left to
implement the oracle O.

To do so, recall that on inputs x of length n, O(x) = Gn(x). Therefore we only need to simulate
O on other input lengths. For every n′ > n with n′ ∈ N , it holds that n′ ≥ 2n. Since t(n) ≤ 2n,
we get that for every call to fn, Û cannot call to O on inputs length n′ ∈ N with n′ > n. Thus, we
do not need to simulate O on those inputs. Moreover, for every n′ < n with n′ ∈ N , it holds that
n′ ≤ log n. Thus, O(x) for any x ∈ {0, 1}n

′
can be computed by a circuit of size O(2n

′
) = O(n).

Lastly, for every x with |x| /∈ N , it holds that O(x) = x. Thus the oracle can be implemented
trivially also in this case. □

The second proof. For our second proof of Theorem 5.5, we will use the following two theorems.
The first state that for every large enough n, there exists a permutation σ which is hard to invert
by any circuit of size 2n/2, even using σ gates.

Theorem 5.8 (Hard to invert permutation). For every large enough n ∈ N, there exists a per-
mutation σ : {0, 1}n → {0, 1}n such that the following holds for every circuit C of size at most

2n/2−2 log
2 n with σ-gates.

Prx←{0,1}n [C(σ(x)) = x] ≤ n− logn.

Theorem 5.8 follows directly from [Imp11], with the same lines of the proof of Corollary 5.7.
We give the proof of Theorem 5.8 in Section 5.1.
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We will also use the following theorem, which is similar to the Goldriech-Levin hardcore pred-
icate. This version allow to output log n hardcore bits using a seed of length n. We will need a
weak version of their result with a stronger assumption.

Theorem 5.9 (Goldreich-Levin hardcore functions [GL89; Gol01]). There exists an efficiently
computable function g : {0, 1}n × {0, 1}n → {0, 1}logn, an efficient oracle aided algorithm R, and
a constant c ∈ N such that the following holds. Let f : {0, 1}n → {0, 1}n be a function, and A an
algorithm, such that∣∣∣Prx←{0,1}n,s←{0,1}n [A(s, f(x), g(x, s)) = 1]− Prx←{0,1}n,s←{0,1}n,z←{0,1}logn [A(s, f(x), z) = 1]

∣∣∣ ≥ 0.1.

Then,

Prx←{0,1}n
[
RA(f(x)) = x

]
≥ n−c.

Moreover, R makes at most nc oracle calls to A.

In the following we prove a slightly weaker lower bound of 2n/4−o(n) on the size of black-box
Kt-solvers.

Proof of Theorem 5.5, second proof. As in the first proof above, let N = {n1, n2, . . . } ⊆ N be the
infinite set defined by n1 = 1 and ni+1 = 2ni . We will show a black-box UTM, with respect to,
|C2n+logn| ≥ 2n/4−o(n) for every n ∈ N , which concludes the theorem.

We again consider oracle universal Turing machine Uoracle as our black-box UTM. We next
describe our choice of the oracle O: For every large enough n ∈ N , let σn be the permutation
promised by Theorem 5.8. For every x ∈ {0, 1}n with n ∈ N , let O(x) = σn(x). For every
x ∈ {0, 1}n with n /∈ N , let O(x) = x. Let Û = UOoracle.

Intuitively, we use the oracle O to construct a pseudorandom generator G. In more detail, fix
n ∈ N and let G : {0, 1}n × {0, 1}n → {0, 1}2n+logn be the function defined by

G(x, s) = (s, σn(x), g(x, s)),

where g is the function promised by Theorem 5.9. The proof now proceeds similarly to the first
proof. Let MG be an efficient oracle-aided TM that computes G, and let c be a constant such that
nc is a upper bound on the running time of MG. Fix a function t(n) such that t(n) ≥ nc for every
n ∈ N. Clearly, Kt

Û
(G(x, s)) ≤ 2n+ 2|MG| ≤ 2n+ 0.1 log n, for every x, s ∈ {0, 1}n and every large

enough n.
On the other hand, for random X ← {0, 1}n, S ← {0, 1}n and Z ← {0, 1}logn, Kt

Û
(S, π(X), Z) ≥

2n+ log n− 1 with probability at least 1/2. Thus, every circuit C that computes kt
Û
on strings of

length 2n + log n can be used to distinguish between (S, σn(X), g(X,S)) and (S, σn(X), g(X,Z))
with advantage 1/2, by outputting 1 if the output of C is larger or equal to 2n+log n−1. It follows
that, by Theorem 5.9, there exists a nc-size circuit C ′ that, given oracle gates to C, inverts σn with
probability at least n−c. By the choice of σn, it follows that if C is a circuit with σn-gates, it must
holds that |C| ≥ 2n/2−2 log

2 n/nc.
To conclude the theorem, we need to show that fn can be implemented with a circuit of size

poly(n) with σn-gates. As in the previous proof, if we allow O-gates, we can simulate fn with a
circuit of size poly(t(n)). Moreover, by over choice of N , we can simulate the oracle O on every
input length given an oracle to σn. This is done using the same method used in the first proof
above. □
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We believe that we can strengthen Theorem 5.5 to hold for every input length. In the above
proof we use a similar technique to the one used in the sparsification lemma in [CLMP12], to make
sure the circuit only use the oracle on inputs with length n. However, we believe that by following
the proof of Theorem 5.8, it is possible to show similar lower bound even when there is oracle access
to all the permutations {σn}n∈N. We left the weaker statement to keep the proof modular.

5.1 Proving Theorem 5.8

In this part we prove Theorem 5.8. We will use the following theorem from [Imp11].

Theorem 5.10. There exists a constant c such that the following holds. Let n ∈ N and 1 > δ > 0
be numbers, and let A be a T -query oracle-aided algorithm, with advice of length S. Then with
probability 1− δ over the choice of a random permutation σ : {0, 1}n → {0, 1}n, the following holds
for any advice w ∈ {0, 1}S.

Prx←{0,1}n [Aσ(σ(x), w) = x] ≤ c
T (S + log 1/δ)

2n

Proof of Theorem 5.8. Fix large enough n ∈ N, and assume toward a contradiction that for every
permutation σ : {0, 1}n → {0, 1}n, there exists a circuit C with O : {0, 1}n → {0, 1}n oracle gates

of size 2n/2−2 log
2 n, such that Prx←{0,1}n [C

σ(σ(x)) = x] ≥ n− logn. First, observe that the circuit

C can be described with less than S := 3 · |C| · n2 ≤ 2n/2+3 logn−2 log2 n bits (see for example
[GGKT05]).

Next, consider the oracle-aided algorithm A, that given access to an oracle σ, advice w ∈ {0, 1}S

and input y, A interpret w as a description of a circuit C of size 2n/2−2 log
2 n, and simulate Cσ(y).

Clearly A makes at most |C| queries to σ. By our assumption, for every σ there exists an advice
w such that Prx←{0,1}n [A

σ(w, σ(x)) = x] ≥ n− logn. By Theorem 5.10, setting δ = 1/2, we get that

n− logn ≤ c
|C|(S + 1)

2n
≤ c

2n/2−2 log
2 n(2n/2+3 logn−2 log2 n + 1)

2n

which is a contradiction for large enough n. □
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A Correctness Sketch for Fiat-Naor

In this part, we sketch the correctness proof of the Fiat-Naor algorithm. We want to show that
for every y ∈ f(D), and over a random choice of the function g and the points x1, . . . , xm ← [2n],
the algorithm succeeds in finding a pre-image of y with probability mt/N . Moreover, to bound the
running time of the algorithm we need to show that the number of false-positive indexes is small
with high probability.

For the first part, observe that if y is covered by one of the chains, namely y = f(hk(xi)) for
some i ∈ [m] and k ≤ t, then A finds a pre-image of y. As there are m · t choices for k and i, if
the values hk(xi) were uniformly and independently chosen, the success probability of A would be
roughly mt/N . Of course, the values hk(xi) are dependent on the function f and g and are not
independent. Yet, [FN00] showed that for the right choice of m and t, this is not far from the real
distribution. Specifically, [FN00] showed that this is the case if mt2U ≈ 2n. We now sketch the
proof.

The probability that y is covered by a specific chain. Fix i ∈ [m]. We start by showing
that when t2U << 2n, the distribution of the chain (xi, h(xi), . . . , h

t(xi)), over the choice of xi
and g, is close (in statistical distance) to the distribution of t randomly distributed points in D.
Indeed, recall that g : [2n]→ D is a random function, and h = g ◦f . Thus, for every prefix of length
j of the chain (xi, h(xi), . . . , h

j(xi)), if f(h
j(xi)) did not appear as an image in the chain earlier

(that is, f(hj(xi)) ̸= f(hk(xi)) for every k ≤ j), then the next point in the chain, g(f(hj(xi))) is
uniformly distributed. Thus the above statistical distance is bounded by the probability that for
random w1, . . . , wt ← D, there are i ̸= j such that f(wi) = f(wj). As every image of f has at
most U pre-images, for every fixed i and j it holds that Pr[f(wi) = f(wj)] ≤ U/|D| ≈ U/2n (recall
that we assumed that |D| ≥ 2n/2). By taking union bound on all possible t2 pairs of indexes, we
get that the probability that there exists some pair is at most t2U/2n ≪ 1. This shows that every
chain contains y with probability ≈ t/2n

The probability that y is covered by one of the chains. Next, [FN00] show that when
mt2U < 2n, the m chains rooted with x1, . . . , xm contains roughly m · t different images, and more
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importantly, contain y with probability mt/2n. This can be done by showing that with a good
probability, for every i ≤ m, the i-th chain does not collide with any of the first i− 1 chains. Thus,
every chain covers Ω(t) new images in expectation, and thus increases the inversion probability by
Ω(t/2n). The proof that the i-th chain indeed does not collide with the first i− 1 chains is similar
to the above proof that every chain covers t images: fix the first i− 1 chains. These chains contain
at most (i − 1)t ≤ m · t different images. Thus, the probability that the image of a random input
w ← [2n] is equal to the image of some point in one of the chains is at most mtU/2n. Since the
i-th chain contains t points, each one of them is random as long as there was no collision yet, we
get that the collision probability is at most mt2U/2n < 1.4

Bounding the false-positive probability. To bound the number of false-positive indexes, we
now bound the probability that the chain (g(y), h(g(y)), h2(g(y)), . . . , ht(g(y)) collide with the chain
(xi, h(xi), . . . , h

t(xi)) for some fixed i. Similarly to the previous argument, since as long as there is
no collision the next point in each chain is random, the collision probability of any specific pair is
at most U/2n. Since there are at t2 such pairs, the collision probability is Ut2/2n < 1/m. Thus, on
expectation, we will see one false positive index per repetition of the algorithm A. In total for all
the ℓ repetitions, so we will see less than 10ℓ such false-positive indexes with a good probability.

4In [FN00] the function g is not a random function, and the chains are not independent. Instead, the function g
is 2t-wise independent, which implies that the chains’ distribution is pair-wise independent. This is enough for the
proof to go through, using the the inclusion/exclusion principle.

24


