
SECURE TRANSFORMER INFERENCE

Mu Yuan, Lan Zhang, Xiang-Yang Li
University of Science and Technology of China

Hefei, China
ym0813@mail.ustc.edu.cn, {zhanglan, xiangyangli}@ustc.edu.cn

ABSTRACT

We present a three-party protocol that can protect both Transformer parameters and user data during
the inference phase. For each feedforward inference process, our protocol only introduces permutation
computation of input and output data on the user side. Our protocol, Secure Transformer Inference
Protocol (STIP), can be applied to real-world services like ChatGPT.

Keywords inference · large language model · permutation · secure protocol · three-party · Transformer

1 Introduction

Applications of Transformer models are exploding, e.g., ChatGPT [1]. Security is critical to Transformer-based services,
which determines whether applications can be scaled to privacy-sensitive areas like cloud copilot for proprietary code
and documents [2].

Existing work [3, 4] studied this problem under the classic secure multi-party computing framework. Using encryption
and decryption methods requires approximation of complex nonlinear layers and introduces heavy computational
overhead. In this work, we propose a three-party protocol using permutation to protect both model parameters and user
data without any approximation of Transformer models.

2 Formalization

Let x ∈ Rn×d denote the input where n is the sequence length (e.g., the number of tokens) and d is the model dimension.
We define a Transformer block [5] as a function fθ : Rn×d 7→ Rn×d with trainable parameters θ. Then the Transformer
inference, i.e., fθ(x) = y, is computed as follows:

Q = xWq, K = xWk, V = xWv, Wq,Wk,Wv ∈ Rd×d, (1)

u = softmax
(
QKT

√
k

+M

)
VWo, M ∈ Rn×n,Wo ∈ Rd×d, (2)

v = LayerNorm(u+ x; γ1, β1), γ1, β1 ∈ Rd, (3)

z = ReLU(vW1)W2, W1 ∈ Rd×m,W2 ∈ Rm×d, (4)

y = LayerNorm(z + v; γ2, β2), γ1, β1 ∈ Rd, (5)

where k is a constant equal to d divided by the number of attention heads, M denotes the mask which is an all-zero
matrix in the encoder and a matrix whose upper right corner (not including the diagonal) is negative infinity in
the decoder. The parameter θ consists of attention weights (Wq,Wk,Wv,Wo), feedforward weights (W1,W2) and
LayerNorm weights (γ, β).



Yuan et al., Secure Transformer Inference

3 Protocol

Let π ∈ {0, 1}d×d denote a permutation matrix. We transform the parameters θ as follows:

W ′
q = πTWq, W ′

k = πTWk, W ′
v = πTWv, W ′

1 = πTW1

W ′
o = Woπ, W ′

2 = W2π, γ′
1 = γ1π, β′

1 = β1π, γ′
2 = γ2π, β′

2 = β2π.

Let θ′ denote the transformed parameters, we have:
Theorem 1. fθ′(xπ) = fθ(x)π.

Proof. First, we prove that LayerNorm(xπ; γπ, βπ) =LayerNorm(x; γ, β)π. The LayerNorm function is defined for
x ∈ Rn×d by

LayerNorm(x; γ, β) = γ ◦ x− µx

σx
+ β, γ, β ∈ Rd,

where ◦ denotes the Hadamard (element-wise) product operator. Since µx and σx are computed by rows, µxπ = µx

and σxπ = σx. Therefore,

LayerNorm(xπ; γπ, βπ) = γπ ◦ xπ − µx

σx
+ βπ =

(
γ ◦ x− µx

σx
+ β

)
π = LayerNorm(x; γ, β)π.

Then, since ∀π, ππT = I:

Q′ = xππTWq = xWq = Q,

K ′ = xππTWk = xWk = K,

V ′ = xππTWv = xWv = V,

u′ = softmax
(
Q′K ′T
√
k

+M

)
V ′Woπ = softmax

(
QKT

√
k

+M

)
VWoπ = uπ,

v′ = LayerNorm(u′ + xπ; γ1, β1) = LayerNorm(uπ + xπ; γ1, β1) = LayerNorm((u+ x)π; γ1, β1) = vπ,

z′ = ReLU(v′πW1)W2π = ReLU(vππTW1)W2π = ReLU(vW1)W2π = zπ,

y′ = LayerNorm(z′ + v′; γ2, β2) = LayerNorm(zπ + vπ; γ2, β2) = LayerNorm((z + v)π; γ2, β2) = yπ,

i.e., f ′
θ(xπ) = y′ = yπ = fθ(x)π.

Leveraging theorem 1, we present a three-party protocol, named Secure Transformer Inference Protocol (STIP):

• Party-1 (P1): Model developer (e.g., OpenAI) that owns the original Transformer model fθ.

• Party-2 (P2): Cloud computing platform (e.g., Azure) that owns the computing hardware.

• Party-3 (P3): Users that own private input (e.g., prompt token embedding) and output (e.g., response token logits).

Algorithm 1: Secure Transformer Inference Protocol
1 Initialization phase:
2 P1 randomly generate π ∈ Rd×d;
3 P1 transform fθ to fθ′ using π;
4 P1 send fθ′ to P2 and send π to P3;
5 Inference phase:
6 P3 transform x to x′ = xπ and send x′ to P2;
7 P2 compute fθ′(x′) = y′ and send y′ to P3;
8 P3 de-transform y′ by computing y′πT and get yππT = y.

Security analysis. Consider P1 as the attacker against user data x, y, since P1 cannot get access to xπ and yπ, P1

cannot recover x, y although it has π. Consider P2 as the attacker against model parameters θ and user data x, y, since
P2 has Wπ and xπ, the possibility it guess the correct π is 1/(d!). In practice, d is typically larger than 512, e.g.,
d = 4096 in llama [6], so the probability of a successful attack is negligible. Consider P3 as the attacker against model
parameters θ, since P3 cannot get access to θ′, P3 cannot recover θ although it has π.

2



Yuan et al., Secure Transformer Inference

4 Discussion

Row-wise permutation. Our protocol permutes x in the column dimension, so a natural question is: What about
doing row-wise permutation? In fact, the permutation equivariance property (f(πx) = πf(x)) in the sequence length
dimension (row-wise) has been proved for Transformer encoder [7]. For the encoder attention layer:

EncAttn(πx) = softmax
(
πxWqW

T
k xTπT

√
k

)
πxWvWo = πsoftmax

(
xWqW

T
k xT

√
k

)
πTπxWvWo = πAttn(x).

However, due to the mask inside the decoder, attention computation on row-wise permuted data cannot return recoverable
output:

DecAttn(πx) = softmax
(
πxWqW

T
k xTπT

√
k

+M

)
πxWvWo ̸= πDecAttn(x).

A quick fix is to send a transformed M ′ = πMπT to the cloud computing platform party. However, since the value
of M is fixed (the upper right corner is negative infinity, and the rest are 0), the cloud computing platform can easily
recover the permutation π, which will result in loss of protection.

RMSNorm. Llama [6] uses RMSNorm [8] instead of LayerNorm. Now we prove that RMSNorm(xπ; γπ) =
RMSNorm(x; γ)π. The RMSNorm function is defined for x ∈ Rn×d by

LayerNorm(x; γ) = γ ◦ x√
1
n

∑
i x

2
i

, γ ∈ Rd,

where ◦ denotes the Hadamard (element-wise) product operator. Since
∑

i x
2
i is computed by rows,

∑
i(xπ)

2
i =

∑
i x

2
i .

Therefore,

RMSNorm(xπ; γπ) = γπ ◦ xπ√
1
n

∑
i(xπ)

2
i

=

γ ◦ x√
1
n

∑
i x

2
i

π = RMSNorm(x; γ)π.

SwiGLU feedforward. Llama [6] uses SwiGLU [9] instead of ReLU in feedforward layers. Let FFNSwiGLU denote the
feedforward layers using SwiGLU, which is defined by:

FFNSwiGLU(x) = ((xW1)sigmoid(xW1)xW3)W2, W1,W3 ∈ Rd×m,W2 ∈ Rm×d.

We transform parameters as follows:

W ′
1 = πTW1, W ′

3 = πTW3, W ′
2 = W2π,

and let FFN′
SwiGLU denote the transformed function. Now we prove that FFN′

SwiGLU(xπ) =FFNSwiGLU(x)π:

FFN′
SwiGLU(xπ) = ((xππTW1)sigmoid(xππTW1)xππ

TW3)W2π

= ((xW1)sigmoid(xW1)xW3)W2π = FFNSwiGLU(x)π.

Applicable scope. In fact, STIP is applicable to models that are built with any global matrix multiplication-based (e.g.,
attention and feedforward) layers and row-wise (e.g., LayerNorm) layers. To give some counterexamples, STIP cannot
be applied to convolutional layers.

Our test code of STIP for the original Transformer [5] and llama [6] can be found in https://github.com/yuanmu97/
secure-transformer-inference.

5 Conclusion

In this paper, we present a secure protocol (STIP) for serving Transformer models in a three-party setting.

Acknowledgments

We would like to thank Yihang Cheng, Miao-Hui Song, Ning-Kang Zhang, Puhan Luo, and Junyang Zhang for their
contributions to the protocol design.

3

https://github.com/yuanmu97/secure-transformer-inference
https://github.com/yuanmu97/secure-transformer-inference


Yuan et al., Secure Transformer Inference

References

[1] OpenAI. Chatgpt. https://openai.com/blog/chatgpt, 2022.
[2] Microsoft. Microsoft 365 copilot. https://blogs.microsoft.com/blog/2023/03/16/introducing-microsoft-365-copilot-

your-copilot-for-work/, 2023.
[3] Xiaoyang Hou, Jian Liu, Jingyu Li, Yuhan Li, Wen-jie Lu, Cheng Hong, and Kui Ren. Ciphergpt: Secure two-party

gpt inference. Cryptology ePrint Archive, 2023.
[4] Tianyu Chen, Hangbo Bao, Shaohan Huang, Li Dong, Binxing Jiao, Daxin Jiang, Haoyi Zhou, Jianxin Li, and

Furu Wei. The-x: Privacy-preserving transformer inference with homomorphic encryption. arXiv preprint
arXiv:2206.00216, 2022.

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and
Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

[6] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971, 2023.

[7] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set transformer: A
framework for attention-based permutation-invariant neural networks. In International conference on machine
learning, pages 3744–3753. PMLR, 2019.

[8] Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Information Processing
Systems, 32, 2019.

[9] Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

4


	Introduction
	Formalization
	Protocol
	Discussion
	Conclusion

