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Abstract

Verification of program safety is often reducible to proving the unsatisfiability (i.e., validity)
of a formula in Satisfiability Modulo Theories (SMT): Boolean logic combined with theories that
formalize arbitrary first-order fragments. Zero-knowledge (ZK) proofs allow SMT formulas to
be validated without revealing the underlying formulas or their proofs to other parties, which
is a crucial building block for proving the safety of proprietary programs. Recently, Luo et
al. (CCS 2022) studied the simpler problem of proving the unsatisfiability of pure Boolean
formulas but does not support proofs generated by SMT solvers. This work presents ZKSMT, a
novel framework for proving the validity of SMT formulas in ZK. We design a virtual machine
(VM) tailored to efficiently represent the verification process of SMT validity proofs in ZK. Our
VM can support the vast majority of popular theories when proving program safety while being
complete and sound. To demonstrate this, we instantiate the commonly used theories of equality
and linear integer arithmetic in our VM with theory-specific optimizations for proving them in
ZK. ZKSMT achieves high practicality even when running on realistic SMT formulas generated
by Boogie, a common tool for software verification. It achieves a three-order-of-magnitude
improvement compared to a baseline that executes the proof verification code in a general ZK
system.

1 Introduction

Formal verification is the process of using mathematical reasoning to prove the correctness of pro-
grams. It has been used to verify large-scale real-world programs like compilers [Ler09], operating
systems [KEH+09, GSC+16], and the Transport Layer Security (TLS) protocol [BBD+17]. To
confirm that a program adheres to some property, both are translated into some mathematical
formalism so that the problem of reasoning about programs is reduced to reasoning about mathe-
matical objects.

Boolean algebra is the simplest formalism used for verification, but almost all formal verification
tasks need something beyond pure Boolean algebra. Satisfiability Modulo Theories (SMT) is a well-
explored formalism that extends the concept of Boolean satisfiability with theories such as equality
with uninterpreted functions and linear integer arithmetic. Tools known as SMT solvers [ORS09,
CHN12, BBB+22, EMT+17, HS22, DMB08] are among the most widely used verification tools.
SMT solvers reason about SMT formulas automatically: they can generate both proofs for valid
SMT formulas and counterexamples for invalid ones.
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Standard techniques for program verification require all relevant information to be completely
public: both the program and the proof must be available to everyone who wants to check whether
the program is safe. In practice, the owner of the program and the verifier of the program are
not always the same entity, and the two may not trust each other. If a program contains sensitive
intellectual property, the owner of the program cannot demonstrate the program’s safety without
revealing the program itself. This limitation results in real-world situations where vendors are
forced to reveal their software. For example, cryptographic modules must be FIPS 140-2 [14001]
certified to be allowed for use in US government systems. The certification process requires that
auditors inspect the cryptographic software and run a series of test vectors on the software. Instead
of requiring vendors to share their proprietary software for certification, a better approach would
enable vendors to prove compliance while keeping their intellectual property secret.

Zero-knowledge (ZK) proofs are a cryptographic primitive that could in theory make this ap-
proach a reality. ZK proofs enable a prover to demonstrate that they know a witness w that satisfies
a public predicate P without revealing anything about the value of w. In this context, the witness
would be the private program and its SMT validity proof, while the predicate encodes a program
that verifies the validity of the SMT formula. To instantiate such a system, one could take an exist-
ing tool that can convert any C-like program (e.g., [BCG+13, HYDK21, CHP+23, GHAH+23]) and
apply it to execute the program that verifies the validation of the SMT formula in ZK. However,
we observe that such an approach does not scale at all even on toy examples. When using a state-
of-the-art ZK toolchain [CHP+23] to run on a short benchmark with only 6 steps, the end-to-end
running time is almost two hours (Sec. 7.3)! Since typical SMT proofs often need hundreds of steps,
this approach is clearly impractical, due to a few reasons:

1. To prove arbitrary programs in ZK, all tools adopt the von Neumann architecture, providing an
execution environment that resembles the cleartext computation. However, translating the SMT
proof verification program to such a format (e.g., TinyRAM [BCG+13]) incurs a huge overhead,
a necessary cost to achieve the highest expressiveness.

2. Each SMT theory has its own verification techniques, which in turn means different optimization
opportunities in ZK. Using a generic tool essentially prohibits theory-specific optimizations.

3. Supporting random access memory (RAM) in ZK protocols is often the most costly compo-
nent [BCTV14, WSR+15, HMR15, MRS17, HK20, Set20, FKL+21, DdSGOTV22]. Although
SMT verification features unique access patterns in how and when it reads from RAM, they
cannot be captured in a generic toolchain.

Essentially, we need a framework that allows modular support of new theories (like cleartext SMT
solvers) and the flexibility to introduce customized protocols for different rules. This framework
should be compact, general, and compatible with common ZK optimizations simultaneously. The
first two require reasonable proof size and the ability to express reasoning on first-order theories.
Achieving a level of usability for these two features in SMT in cleartext took decades [DMB08,
ORS09, CHN12, EMT+17, BBB+22, HS22]. Introducing a layer of ZK to the SMT-proof system
should ideally maintain the same level of compactness and generality while being efficient; this
requires a ZK mindset from the outset. Finally, the whole framework should allow incremental
development, meaning that the support of different SMT theories could be added over time.

Our Contributions In this paper, we introduce a new proof framework, ZKSMT, designed to
support proving SMT theorems, along with an efficient instantiation in ZK. We make three main
contributions:
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• We introduce ZKSMT, a virtual machine (VM) for validating refutation proofs of SMT formulas
based on our proof representation. ZKSMT includes a new encoding of SMT refutation proofs
that can express any refutation proof involving arbitrary first-order theories. ZKSMT is designed
to be efficient when being instantiated in ZK where the privacy of the proof and formula can be
upheld.

• We instantiate three common theories in ZKSMT: Boolean logic, Equivalence of uninterpreted
functions (EUF), and Linear integer arithmetic (LIA). These theories require non-trivial checking
procedures in ZK where we propose optimized arithmetizations based on multiset interpretation
and polynomial encodings.

• We implement ZKSMT in ZK and benchmark it over formulas that are generated by the Boogie
verification toolchain [BCD+06] and the Wisconsin Safety Analyzer [WiS] benchmark suite (from
the official SMT-LIB benchmark set [smt]). The results for Boogie show that ZKSMT achieves a
speed-up of more than three orders of magnitude compared to a state-of-the-art system [CHP+23].
ZKSMT can also verify an “ultra-large” proof instance from the Wisconsin Safety Analyzer set
with 200,000 proof steps in about 3 hours.

Information Leakage Our system does reveal some size parameters of the proof (e.g., the
number of proof steps). We also made some privacy-efficiency trade-offs by revealing the number of
occurrences (but not the order) of each proof rule. Together with other techniques, our trade-offs
enable the impressive improvement mentioned above.

2 Preliminaries

2.1 Quantifier-Free First-Order Logic

Formula Structure Logical formulas are mathematical statements that assert a property of
functions and predicates; the class of formulas that we consider in this work have the following
structure. A set of function symbols is a set in which each element has an arity, denoted |f |
for f ∈ F . The arity of a function may be any natural number, including 0. The set of terms
over function symbols F and variables V, denoted TF ,V , is the smallest set containing V and
f(t0, . . . , t|f |−1) for all function symbols f ∈ F and terms ti ∈ TF ,V . For instance, the function
symbols for linear integer arithmetic include all integer literals n, with |n| = 0, the negation operator
−, with |−| = 1, and the addition operator +, with |+| = 2. An example of a term over these
function symbols and the variable x is −(x+ 3).

Predicate symbols, similar to function symbols, are a set equipped with arities. The set of
atoms over variables V, function symbols F , and predicate symbols P is the set of all P (t0, . . . , t|P |)
for predicate symbols P ∈ P and terms ti ∈ TF,V . The formulas over F , P, and V are all
Boolean combinations of atoms over F , P, and V, i.e. all objects built from atoms using the
distinguished formulas True and False and the constructors negation, conjunction, disjunction, and
implication. For example, linear integer arithmetic has the predicate symbols =, ≤, and <, with
|=| = |≤| = |<| = 2. A formula over these function and predicate symbols and the variable x is
x = 0 ∨ 10 ≤ x+ 2.

The definitions of terms and formulas can be described by the following BNF grammar for terms
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t and formulas b:

t ::= v | f(t0, ..., tn)

b ::= True | False | P (t0, ..., tn) | ¬b0 |
∧
{b0, ..., bn} |∨

{b0, ...bn} | b0 → b1

Formula Validity and Proofs One approach for assigning meaning to function and predicate
symbols is to specify which of the formulas defined over them are conclusions of a given set of
assumed formulas. Evidence that a formula is a conclusion of some assumptions A is represented
as a proof: a tree-shaped argument whose nodes are formulas, each derived from its children by a
step of inference.

More precisely, a theory is a set of automatically recognizable proof steps, each of which consists
of: (1) a symbol, referred to as the rule identifier, which has a finite arity; (2) a set of formulas
known as the premises; and (3) a formula referred to as the conclusion. The proofs of a formula φ
in theory T under assumed formulas A are the smallest set such that (1) each assumption φ ∈ A
is a proof of itself; (2) if P0, . . . , Pn are proofs of formulas φ0, . . . , φn, and R is a proof step with
φ′ as its conclusion and φ0, . . . , φn as its premises, then R and P0, . . . , Pn form a proof of φ′. If
φ has a proof in T under A, then φ is derived in T from A. A refutation of formula φ in theory
T is a proof of False in T under assumption φ. Multiple theories can be combined into a single
theory by combining the programs that recognize applications of their proof rules. Thus, when
convenient, we may consider either individual theories in isolation (to explain facts that they can
derive) or a combination of multiple theories (when describing benchmarks that use many theories
in combination).

Defining a formal theory for a previously unformalized domain of interest, and obtaining assur-
ance that it proves exactly the formulas of interest, can be non-trivial. Our work is applicable in a
setting where each theory of interest is accompanied by a public definition of the theory as a set of
inference rules that the prover and verifier have agreed allows the derivation of only desired con-
clusions from assumptions. App. A summarizes classical methods that provide such assurance in a
theory; the methods generalize the fundamental concept of a satisfying assignment from Boolean
satisfiability.

2.2 SMT Theories of Interest

We now introduce illustrative examples of inference rules that define three logical theories of central
importance: those of propositional logic, equality with uninterpreted functions, and linear arith-
metic. Each of these theories is commonly used by program verifiers to verify critical properties of
software, and each is supported by the current implementation of our protocol. Each inference rule
is presented using a standard notation where the rule’s premises occur above a horizontal bar and
its conclusion occurs below.

2.2.1 Propositional Logic

Propositional logic rules—i.e., how formulas constructed from conjunction, disjunction, and nega-
tion can be proved and used to prove other formulas—include the following.

ExclMid The rule ExclMid formalizes the law of the excluded middle, stating that each proposition
or its negation must hold:

a ∨ ¬a
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Resolution The rule Res formalizes the idea of reasoning by case splitting. Intuitively, if both
p ∨A and ¬p ∨B hold, then either A must hold (when ¬p holds) or B must hold (when p holds):

p ∨A ¬p ∨B
A ∨B

DeDup The de-duplication rule DeDup prunes duplicated disjuncts. A weak form of it (which can
be applied n times to prune disjuncts that are repeated n times) is

a ∨ a ∨B
a ∨B

Given that resolution alone is complete for proving refutations in propositional logic and there
are existing protocols that verify resolution proofs in ZK [LAH+22], it may be surprising that we
consider a large collection of rules instead of a minimal subset. However, practical SMT theorem
provers [CHN12] often generate proofs that use many distinct rules, both to minimize their tool’s
output and to simplify their implementations. While such proofs could be rewritten to use a more
restricted rule set, the consequences for both the size of the resulting proof and the performance of
a subsequent ZK proof that verifies it are non-obvious and well beyond the scope of the this work.

2.2.2 Equality with Uninterpreted Functions

The theory of Equality with Uninterpreted Functions (EUF) enables SMT to describe general
properties of system operations without explicitly defining their complete behavior, which can be
helpful for modeling complex systems that consist of multiple modules. EUF contains three rules—
Reflexivity, Symmetry, and Transitivity—that express the fact that equality is reflexive, symmetric,
and transitive (i.e., that it is, unsurprisingly, an equivalence relation); their definitions are straight-
forward. It also contains an infinite family of rules, Congn for all n ∈ N, which express that applying
an n-ary function f to n equal arguments produces equal results:

a0 = b0 . . . an−1 = bn−1

f(a0, . . . , an−1) = f(b0, . . . , bn−1)

2.2.3 Linear Integer Arithmetic

Linear Integer Arithmetic (LIA) is a commonly used first-order theory of integers that includes
addition and multiplication by constants but does not permit multiplication between variables. It
is used to model the semantics of both bounded and unbounded arithmetic.

Multiplication Distribution The rule MulDist is the general law that multiplication distributes
over addition, specialized to the case of constant left factors. It can be applied to conclude, e.g.,
that the equation 4 ∗ (2x+ 3y) = 8x+ 12y is valid. Its general form is:

c ∗ (
∑n

i=0 di ∗ xi) =
∑n

i=0 c ∗ di ∗ xi

where x0, . . . , xn are arbitrary terms; c, d0, . . . , dn are constants.

Farkas’ Lemma Farkas’ Lemma derives strict inequalities over the coefficients of a given strict
inequality. It can be expressed as the following family of inference rules, indexed by a term size n:∑n

i=0 ci ∗ ai − ci ∗ bi > 0∨n
i=0 ai > bi

A similar rule can be applied to derive a slightly more constrained disjunction when a linear term
of the identical form is given to be equal to 0.
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2.3 An Example Formalizing Software Safety

We can use EUF and LIA to model safety properties for numerical type conversion in languages
like C. Let f be a function on integers. We do not have access to the source code for f, but we
know that it respects negation: the identity f(-x) = -f(x) holds for any integer x. Suppose that
we have another function f-cast that uses f as a helper:

1 extern int f(int x); // f(-x) = -f(x)

2
3 short f-cast(int a) {

4 int b = -a;

5 if (f(b) < SHRT_MIN || SHRT_MAX < f(b)) error;

6 else return short (f(b));

7 }

f-cast returns a short as its output rather than an int. It includes a safeguard to ensure that
its output lies within the bounds of the short type. SHRT MIN and SHRT MAX are the lowest and
highest possible values for a signed 16-bit integer: −32768 and 32767, respectively. The check that
the output lies between SHRT MIN and SHRT MAX is critical for the safety of f-cast. If f(b) does
not fit within the bounds of the short type, the result will be truncated and will have a different
value than it would in the original type. C does not throw any exception when truncations occur,
so unguarded down-casting can silently introduce security vulnerabilities into a program, making
memory corruption attacks possible [BCJ+07]. f-cast eliminates the vulnerability by throwing an
exception on its own.

We can prove that f-cast must throw an exception if f(a) is out of bounds using the following
SMT formula:

SHRT MAX = 32767 ∧ SHRT MIN = −32768 (1)

f(−a) = −f(a) ∧ b = −a (2)

∧(¬(f(b) < SHRT MIN ∨ SHRT MAX < f(b)) ∨ err) (3)

∧ (f(b) < SHRT MIN ∨ SHRT MAX < f(b) ∨ ret = f(b)) (4)

∧ ¬err ∧ f(a) < SHRT MIN (5)

Line (1) represents the upper and lower bounds of the short type. Line (2) represents our
knowledge of the behavior of f and also the definition of b. Lines (3) and (4) represent the
semantics of the conditional inside the function, where err is a Boolean variable indicating whether
an exception has been thrown, and ret is the function’s return value. Line (5) represents our
assumptions for the specific scenario being analyzed: f(a) is out of bounds, but no exception has
been thrown. We can give this formula as an input to an external SMT solver that produces a
refutation proof that ZKSMT can use. In Sec. 3.1, we will discuss the encoding that ZKSMT uses
to represent the refutation proof for this formula.

2.4 Zero-Knowledge Proofs

A zero-knowledge proof [GMR85, GMW91] allows a prover to convince a verifier that it possesses an
input w such that P (w) = 1 for some public predicate P , while revealing no additional information
about w. There have been many lines of work in designing practically efficient ZK protocols under
different settings and assumptions (e.g., [IKOS07, GKR08, Gro10, JKO13]). ZKSMT uses a special
type of ZK protocol commonly referred to as “commit-and-prove” ZK [CLOS02], which allows a
witness to be committed and later proven over multiple predicates while ensuring consistency of
the committed values.
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Figure 1: The retrieval and processing of information over one of ZKSMT’s steps. Operations are
numbered in the order of their occurrence. Data concerning rules applied and proof expressions to
the right is used to check step validity, depicted in the middle. The result of the check is written
to a storage cell in D, on the left.

Although ZKSMT can be instantiated with any commit-and-prove ZK, we use the recent VOLE-
ZK series for maximum efficiency [WYKW21, BMRS21, DIO21] and, in particular, take advantage
of optimizations for polynomials [YSWW21] and RAM operations [FKL+21]. We also use the
permutation check originally proposed by [BEG+91].

Note that ZK proofs and refutation proofs are two different concepts, one in cryptography and
one in formal methods. The verification procedure of a refutation proof is encoded as a statement
proven by two parties using a ZK protocol.

3 ZKSMT Architecture

To verify an SMT refutation proof, ZKSMT examines the whole proof, step by step, in a loop: one
such step is depicted in Fig. 1. In each iteration, ZKSMT (1) fetches the rule to be applied to the
current step, (2) fetches the rule’s premises, and (3) verifies that the derived formula is a valid
conclusion of the proof rule. The overall structure resembles the design of a Von Neumann processor
that executes only straight-line instructions (i.e., instructions that always transfer control to their
successor). The available set of proof rules resembles a CPU’s set of supported instructions. The
proofs themselves are similar to programs composed of sequential instructions. In this analogy, the
checking instruction responsible for each individual proof rule can be envisioned as analogous to a
CPU’s arithmetic-logic unit to handle specific computations.

Meanwhile, the main checker acts as the control unit, orchestrating the overall verification
process. For each proof step, ZKSMT relies on a fixed-length array of formulas to store premises
associated with the current step, functioning much like instruction operands. Furthermore, tempo-
rary storage is needed for a derived conclusion, a pointer to the next proof step, etc. The expression
table, similar to the memory in CPU architecture, is read-only in this context. Our main philoso-
phy is to develop a flexible VM that can efficiently encode and verify SMT refutation proofs when
the underlying VM is instantiated using ZK protocols. This way, we can plug in any suitable ZK
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Addr. NodeID ImmAddr IndAddr Meaning

&1 Var SHRT MIN {} SHRT MIN

&2 Var a {} a

&3 Apply f {&2} f(a)

&4 Mul −1 {&2} −1 ∗ a
&5 Var b {} b

&6 Eq {&5,&4} b = −a

&7 Lt {&3,&1} f(a) < SHRT MIN

&8 Apply f {&5} f(b)

&9 Apply f {&4} f(−a)

&10 Mul −1 {&3} −1 ∗ f(a)
&11 Eq {&9,&10} f(−a) = −f(a)

&12 Eq {&8,&9} f(b) = f(−a)

&13 Not {&6} ¬(b = −a)

&14 Eq {&8,&10} f(b) = −f(a)

&15 Or {&12,&13} f(b) = f(−a)
∨¬(b = −a)

Table 1: Part of the expression table Me for the proof of the safety of f-cast. We use & to denote
the addresses of expressions.

StepID RuleID Premises Result
#1 Assume &11: f(−a) = −f(a)

#2 Assume &6: b = −a

#3 Assume &7: f(a) < SHRT MIN

. . .

#4 Cong &15: f(b) = f(−a) ∨ ¬(b = −a)

#5 Res {#2,#4} &12: f(b) = f(−a)

#6 Trans f(b) = −f(a)
∨¬(f(b) = f(−a))
∨¬(f(−a) = −f(a))

#7 Res {#1,#6} f(b) = −f(a)
∨¬(f(b) = f(−a))

#8 Res {#5,#7} &14: f(b) = −f(a)

. . .

#11 Res {#9,#10} f(a)− SHRT MIN = 1

#12 Farkas {#11} ¬(f(a) < SHRT MIN)

#13 Res {#3,#12} False

Table 2: Part of the array of proof stepsMp for the proof of the safety of f-cast. Not all conclusions’
addresses are shown. We use # to denote the IDs of proof steps.

protocol for ZKSMT and bring in optimizations in CPU design. Below we introduce our VM’s
encoding for formulas and proofs and its execution strategy.

3.1 Encoding Formulas and Proofs

We first explain how ZKSMT represents SMT formulas and checks that particular formulas can be
proved from others according to the rules of a logical theory. ZKSMT’s encoding of SMT formulas,
and the complex terms that they may contain, critically enables it to prove formulas in theories
beyond what existing techniques can support.

Encoding Formulas in an Expression Table Every formula is constructed from an operator
applied to a finite collection of sub-formulas; thus, it can be represented naturally as an AST. In
particular, if we view formulas as being defined by the BNF grammar from Sec. 2.1, we can think
of every individual production option used to produce a formula as a node in the formula’s AST.
The sub-productions are the node’s children. Note that even semantically equivalent formulas can
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have distinct ASTs (e.g., False and ¬True).
ZKSMT stores the ASTs for all formulas involved in the proof in a read-only table Me, called

the expression table. We refer to entries in the table as expressions. Each expression represents
an individual node within the AST of a formula. A node of an AST has three fields: the Node
ID (NodeID), the immediate addressing list (ImmAddr), and the indirect addressing list (IndAddr).
NodeID specifies the operator being employed, such as Eq or Mul. ImmAddr is used to identify
constants and immediate values, like an immediate value of an operand in a CPU. We also consider
the variable names as immediate values. AST nodes with children store the indices of their children
within the expression table under the IndAddr field. Most expressions, such as logical negation (Not)
and equality (Eq), have a fixed number of children. Others, including Boolean conjunction (And),
disjunction (Or), and applications of uninterpreted functions (Apply), can have a variable number
of entries within IndAddr.

Note that not all nodes in the table are formulas: some entries simply represent sub-parts of
other rows’ formulas. A row that encodes a term or formula can have multiple other rows pointing
to it; this happens when the term/formula appears in different formulas (which can even come from
different theories). For example, in Table 1, a has only one entry even though it appears within
b = −a, f(a) < SHRT MIN, and several other formulas.

Example 3.1. Table 1 shows a portion of the expression table for the proof in Table 2. The entry
with address &7 in Table 1 represents the formula f(a) < SHRT MIN, whose NodeID is Lt (less than).
The values indicated within the IndAddr field represent the indices for the sub-expression children
of f(a) < SHRT MIN; specifically, the indices of f(a) (entry &3) and SHRT MIN (entry &1). The
sub-expression f(a) (entry &3) is a term rather than a formula and has one sub-expression child
a (&2) and the label f as an immediate value stored in ImmAddr.

Encoding Proof Steps A proof step in a theory T consists of an application of a rule, labeled
with an identifier with a fixed arity n to formulas φ0, . . . , φn to conclude a formula φ (Sec. 2.1). The
steps of a theory T of interest are checked in ZKSMT by a finite set of step checking instructions,
each one checking steps identified by a corresponding rule of T . An occurrence p of a checking
instruction has four fields:

• StepID: the position of the step in the execution order.

• RuleID: the identifier of the applied theory rule. Rule identifier r of theory T is identified as the
pair (R, T ).

• Premises: a list of the StepID’s of φ0, . . . , φn. Each StepID points to a previous step, whose
derived formula is a premise of p.

• Result: an index into the expression table to identify the conclusion φ of the current proof step.

A set of instructions T is a T -logical unit if there is a bijection from rule identifiers of T to instructions
in T such that each instruction succeeds if and on if it is executed in a machine state in which it
points encoding of premises and a conclusion that can be derived using its corresponding rule in T .

Size Parameters Five parameters bound the resources used by a ZKSMT instance. (1) π is the
maximum number of proof steps. It parallels the concept of program size in CPU design and defines
the extent of the proof structure that can be examined in a manner similar to how the size of a
program in a CPU determines the number of instructions it can execute. (2) χ is the maximum
number of expressions the proof can use, analogous to the size of the CPU’s memory. (3) µ is the
maximum number of premises in any rule, analogous to the number of registers in a CPU. (4) α is
the maximum argument list size of any expression, where the argument list size of an expression e is
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defined as |e.ImmAddr|+ |e.IndAddr|; it is analogous to the bit width of memory entries. (5) ρ is the
number of distinct rules used in the proof, analogous to the size of the architecture’s instruction set.
The set of ZKSMT machines over checking instructions T on particular size parameters is denoted
ZKSMT[T](π, χ, µ, α, ρ).

To define the necessary components of the machine, we often use the bit widths of these numbers:
ℓp = ⌈log(π)⌉, ℓe = ⌈log(χ)⌉, and ℓr = ⌈log(ρ)⌉.

Example 3.2. Some of the entries of Me and Mp for the refutation of the formula in Sec. 2.3 are
shown in Table 1 and Table 2, respectively. The proof applies rules from EUF and LIA as well as
rules for Boolean connectives. Most of the 1,038 steps in the proof are omitted, and some of the
steps that we show are simplified. For example, we do not show the steps for adding and removing
singleton disjunctions.

3.2 Machine Specification and Execution

Once the encodings are specified, we can build the VM on top of them. We show the overall
architecture in Fig. 1.

Machine Specification ZKSMT has five main components:
- pc: the proof counter, an ℓp-bit integer.

- {ri}, {ti}: the list of registers that store information for the proof step currently being examined.
The machine has 2µ+2 registers in total: r0 stores the conclusion, r1, . . . , rµ store the premises,
and rrule stores the rule ID. The first µ + 1 registers are of size ℓe, and rrule is of size ℓr. The
registers {t1, . . . , tµ} store the addresses of r1, . . . , rµ. The main checker uses them when fetching
the premises of a proof step from Me. Each ti is of size ℓe.

- Me: the expression table, a read-only array of size χ that contains all expressions used in the
proof, using the encoding system that we explained in Sec. 3.1.

- Mp: the step table, a read-only array of size π that contains all the proof steps used in the proof.

- D: the checking order of the proof. The checking order is the order in which proof steps are
validated during the execution of the checker. If D[i] = j, then the validation of the jth proof
step occurs on the ith iteration of the main verification loop.

Machine Execution to Validate a Proof As mentioned above, ZKSMT’s process of validating a
proof closely resembles how a machine program is executed in the Von Neumann architecture (using
a CPU, memory, etc.). To provide more flexibility in VM execution, we distinguish two orderings:
the logical ordering and the checking ordering. The logical ordering is the original ordering of
the proof as outlined in Sec. 2: a proof step should not use a result proven in a step that occurs
later in the logical ordering. The StepID of each proof step is its logical ordering. However, the
checking order, which is the order in which proof steps are validated during the execution of the
VM, does not need to have any relationship with the logical ordering other than the former being
a permutation of the latter. This could potentially provide huge opportunities in improving the
performance when the VM is instantiated in ZK.

Algorithm 1 provides an overview of ZKSMT’s algorithm, which iterates over the set of all proof
steps (line 2). Each proof step is verified over five phases: proof step fetching, conclusion fetching,
premise fetching, rule checking, and cycle checking. In the fetching phases (lines 3–10), ZKSMT
fetches the relevant elements for that step from the tables Mp and Me based on the values in the
fields Result and Premises and stores them in r0, . . . , rµ. Next, the checker determines the checking
instruction to execute by examining the value specified in RuleID (lines 11–12). It delegates the
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Algorithm 1: ZKSMT[T](π, χ, µ, α, ρ)’s execution

Output: True, False
1 D← [0, . . . , 0];
2 for pc = 0 to π − 1 do
3 Proof Step Fetch:
4 (StepID,RuleID,Res,ClArgs)←Mp[pc];
5 rrule ← RuleID;
6 Conclusion Fetch:
7 r0 =Me[Res];
8 Premise Fetch:
9 t1, · · · , tµ ←Mp[ClArgs0], · · · ,Mp[ClArgsµ−1];

10 r1, · · · , rµ ←Me[t1.Res], · · · ,Me[tµ.Res];
11 Rule Checking:
12 CheckingInstrs[rrule](r0, {r1, · · · , rµ});
13 Cycle Checking:
14 for j = 1 to µ do
15 assert(tj .StepID < StepID);
16 D[i]← StepID ;

17 assert(PermuteCheck(D, [0, . . . , π − 1]));
18 TypeCheck(Me);

responsibility of validating the proof step to the selected instruction and asserts the success of
the validation (line 12). Formulas must be proven before being used as premises. Since StepID
represents the logical ordering of a derived formula, we can confirm that in cycle checking that
the StepID of every formula in Premises for a rule is strictly smaller than the StepID of the rule’s
conclusion. This is checked by iterating over all rule premises (lines 13–15). To conclude the
iteration, the checker assigns StepID to D[i] (line 16).

To address the potential discrepancies between orderings, we need to perform one more check.
Every proof step needs to be verified at some point. The array D keeps track of which proof steps
have been validated. When the main loop finishes execution, the main checker verifies that D is a
permutation of the list [0, · · · , π − 1] (line 17). If it is, then every step in the refutation proof has
been verified.

Well-Formed Expressions The soundness of ZKSMT also relies on the well-formedness of ex-
pressions in the table Me. This can be ensured by a process analogous to proof validation. In
particular, we type check each expression according to a set of type rules, which work similarly
to proof rules and are provided as public configurations of ZKSMT. To forbid cyclic expressions,
ZKSMT also checks for cycles in Me, similarly to the check for cycles in proof steps.

3.3 Soundness and Completeness

The following are key properties of ZKSMT that establish that it produces exactly valid SMT
formulas. Both theorems are defined over an arbitrary theory T and T -logical unit T, formula φ,
and size parameters π, χ, µ, α, ρ (Sec. 3.1)

In this context, we say that φ is boundedly verifiable if it has a derivation in T containing at
most π steps, χ distinct expressions with at most α arguments, and using ρ rules which all have at
most µ premises.
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RuleID Side Condition Premises Conclusion

Boolean

Resolution ∃p.p ∈ ⟨⟨A⟩⟩, ¬p ∈ ⟨⟨B⟩⟩,
∨

A,
∨

B
∨

C
⟨⟨A⟩⟩ ⊆ ⟨⟨C⟩⟩ ⊎ ⟨⟨p⟩⟩, ⟨⟨B⟩⟩ ⊆ ⟨⟨C⟩⟩ ⊎ ⟨⟨¬p⟩⟩

DeDup ∀a ∈ ⟨⟨A⟩⟩. a ∈ ⟨⟨B⟩⟩
∨

A
∨

B

ExclMid
∨

{¬a, a}
EUF

Congruence ∃A,B, f.(fA = fB) ∈ C, |A| = |B|,
∨

C
∀i ∈ {0, . . . , |A| − 1}.¬(Ai = Bi) ∈ C

LIA

MulDist c ∗ (
∑n

i=0 di ∗ xi)
=

∑n
i=0 cdi ∗ xi

Flatten ∃⟨⟨C⟩⟩, ⟨⟨D⟩⟩. ⟨⟨C⟩⟩ ⊎ ⟨⟨
∑

D⟩⟩ = ⟨⟨A⟩⟩, ⟨⟨C⟩⟩ ⊎ ⟨⟨D⟩⟩ = ⟨⟨B⟩⟩
∑

A =
∑

B

Farkas ∀i ∈ {0, . . . , n}. mi ≥ 0
∑n

i=0(mi ∗ ai)+
∨n

i=0{¬(ai ≤i bi)}
either c > 0, or c = 0 and ∃j. ≤j is < (−mi ∗ bi) = c

Table 3: A selection of ZKSMT’s rules for Boolean logic, EUF, and LIA that we cover
in Sec. 4, Sec. 5, and Sec. 7. Tables 5 and 6 in the appendix show all of the proof rules omit-
ted here.

Theorem 1 (Soundness). A VM in ZKSMT[T](π, χ, µ, α, ρ) validates φ only if φ is boundedly
verifiable.

Theorem 2 (Completeness). If φ is boundedly verifiable, then some VM in ZKSMT[T](π, χ, µ, α, ρ)
validates it.

App. C contains informal proofs of Thm. 1 and Thm. 2, specialized to the checking instructions T
that we implemented to check the combination of the theories of propositional logic (Sec. 2.2.1),
Equality with Uninterpreted Functions (EUF; Sec. 2.2.2) and Linear Integer Arithmetic (LIA;
Sec. 2.2.3).

4 Instantiating ZKSMT on Practical Theories

In this section, we explain how to instantiate ZKSMT on propositional logic, equality with unin-
terpreted functions (EUF), and linear integer arithmetic (LIA). We discuss (1) the encoding of
expressions in each theory, (2) the theories’ proof rules, and (3) the implementations of the check-
ing instructions for an illustrative selection of each theory’s rules. Table 3 shows all of the rules
that we cover in this section, along with a few others that we discuss later.

4.1 Checking Propositional Logic

We have implemented in ZKSMT an instruction unit that checks applications of the rules of propo-
sitional logic. We now describe implementations of checking instructions for selected example rules
(Sec. 2.2.1).

ExclMid When the unit instruction that checks applications of ExclMid (the rule formalizing the
law of the excluded middle) receives the conclusion expression r0 from the main checker, it first
confirms that r0’s NodeID is Or. Next, the checking instruction retrieves the first two entries a0
and a1 from list r0.IndAddr and confirms that (1) the NodeID of a0 is Not; and (2) the expression
table index of a0’s child is the same as the expression table index of a1. In general, the same
technique is implemented by all checking instructions that must check that two expressions are
identical: the instructions check the equality of indices in the expression table, instead of traversing
the expressions’ complete ASTs.

Many rules of propositional logic, as in the case of ExclMid, do not have premises. Instead of
interacting with the results of previous steps, they introduce simple tautologies that other Boolean
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rules can use as premises later; the checking instructions for such rules need only to pattern match
the rules’ conclusions. However, in general, an instruction may need to validate non-trivial side
conditions imposed by the a rule on the terms matched to its conclusion and premises (similar to the
LFSC framework [ORS09]). One example of such a rule is Resolution, whose checking instruction
we now describe.

Res The checking instruction for Res (the formalization of unit resolution) checks properties of the
multisets of propositions that may be in each of its premise clauses. To describe the instruction’s
implementation, we employ the notation ⟨⟨A⟩⟩ (or ⟨⟨a⟩⟩) to represent the multiset containing the
elements of a list A (or single element a).

The checking instruction interprets r0.IndAddr—from the conclusion r0—as a multiset ⟨⟨C⟩⟩ and
interprets r1.IndAddr and r2.IndAddr—from the premises r1 and r2—as multisets ⟨⟨A⟩⟩ and ⟨⟨B⟩⟩,
respectively. After checking that r0, r1, and r2 are Or nodes, the instruction identifies the expres-
sion p, locates p within ⟨⟨A⟩⟩, and locates ¬p within ⟨⟨B⟩⟩. Finally, the instruction checks the side
conditions

⟨⟨A⟩⟩ ⊆ ⟨⟨C⟩⟩ ⊎ ⟨⟨p⟩⟩
⟨⟨B⟩⟩ ⊆ ⟨⟨C⟩⟩ ⊎ ⟨⟨¬p⟩⟩

Note that p can be provided as an extended witness so that the checking instruction does not need
to search for it.

In general, checking instructions for all propositional rules that have premises, as in the case
of Res, must perform pattern matching on both the conclusion clause r0 and the premise clauses
r1, . . . , rk that they receive from the main checker.

Remark 4.1 (Extended witnesses). In the context of zero-knowledge proofs, determining the value
of p for the checking instruction for Resolution can be computationally expensive. To reduce the
runtime cost, the proof itself can cache the value of p and provide it for the checking instruction
directly. This value serves as an extended witness. When it receives an extended witness, the
checking instruction only needs to test the side condition on the cached value of p rather than
checking all possible options. Multiple other rules use extended witnesses for the same purpose.

DeDup It is straightforward to implement a checking instruction for applications of the de-
duplication rule DeDup as presented in Sec. 2.2.1: the instruction simply checks that its conclusion
and premise are Or nodes, that the children of the conclusion’s node occur in the premise, and
that the children of the premise at corresponding positions are identical. However, checking DeDup
strictly as presented would unfortunately require a proof to apply it multiple times to remove
disjuncts that occur more than twice, and apply another rule formalizing the associativity of dis-
junction to arrange the premise in an expected form.

Instead, DeDup’s actual checking instruction effectively checks repeated applications of such
a rule in one step by checking that each distinct element in ⟨⟨A⟩⟩ is also in ⟨⟨B⟩⟩, where A is the
argument list for the proof step’s premise and B is the argument list for its conclusion.

4.2 Checking Equalities with Functions

We have instantiated ZKSMT as follows to refute proofs that use the theory of Equality with Un-
interpreted Functions (EUF; Sec. 2.2.2). In particular, to check applications of a Congruencei rule,
we model an alternative formulation, easily shown to be logically equivalent to the standard for-
malization, which derives a disjunctive clause from no premises. The ZKSMT checking instruction
for Congruence begins by confirming that the NodeID of rule application r0 is Or. Next, it retrieves
the set of expressions indexed by r0.IndAddr, identifies the pair of function applications, and verifies
that the other disjuncts match the corresponding arguments of the function applications.
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4.3 Checking Linear Integer Arithmetic

We now describe ZKSMT’s representation of expressions from Linear Integer Arithmetic (LIA;
Sec. 2.2.3). Then, we discuss implementations of checking instructions in ZKSMT for two LIA
rules: MulDist and Farkas.

Expression Representation In ZKSMT’s representation of LIA, addition is an n-ary operation,
just like ∧ and ∨. Singleton sums are allowed, and so are empty sums. The entries in a sum can be
arbitrary integer-valued expressions, including other sums. Multiplication in LIA is shorthand for
the repeated addition of an expression to itself. A multiplication node always has exactly one child,
which can be an arbitrary integer-typed expression. It stores its scaling factor in the ImmAddr field,
as we show in entries &4 and &10 in Table 1. The value of the scaling factor can be any integer,
positive or negative. We store integer constants in Me as multiples of a special variable ONE that
represents 1. This representation enables checking instructions for rules such as MulDist to assume
that the sums in their conclusions contain only Mul nodes rather than having a separate case for
integer constants.

Multiplication Distribution MultDist’s checking instruction can validate an application of Mult-
Dist by combining a bounded AST traversal and simple numerical computations with expression
equality checks, implemented as checks for reference equality. Specifically, it first checks that the
conclusion node r0 is an Eq node whose children are (1) a Mul node with scaling factor denoted
(1.1) and child denoted (1.2) and (2) an Add node. It then iterates over the children of nodes
(1.2) and (2) in lockstep, checking that each child of node (2) is a Mul node with the same child
as the corresponding Mul node in (1.2) and a scaling factor that is the product of (1.1) and the
scaling factor of the same Mul node.

Farkas’ Lemma Although Farkas’ Lemma formalizes a somewhat subtle law of linear arithmetic,
its application as a formal rule can be checked efficiently within ZKSMT’s low-level design. The
instruction checks that: (1) its conclusion operand is a node with operation Or whose children
are negated inequalities; (2) its premise operand is a node with operation Eq whose children are
a linear term matching the pattern given in the conclusion and a nonnegative constant; and (3)
the sub-expressions of the linear term in the premise match the children of the inequalities in the
disjuncts of the conclusion.

5 Zero-Knowledge Support

In this section we describe the technical details of ZKSMT’s instantiation in ZK. Recall that the
prover needs to demonstrate to the verifier that it knows a refutation proof of a formula without
revealing the proof (or even the formula) to the verifier. We first explain how to commit ZKSMT’s
encoding of a refutation proof in Sec. 5.1. We discuss the details of how ZKSMT validates a
committed refutation proof in ZK in Sec. 5.2. Finally, in Sec. 5.3, we explain the checking instruction
protocols that have some non-trivial design component for the ZK setting, continuing our focus on
the theories covered in Sec. 4.

5.1 Refutation Proof Commitment

Recall that a refutation proof consists of a set of clauses and a sequence of proof steps. Both the
clauses and proof steps can be committed as fixed-length vectors of integers. In detail, for a k-bit
integer, we commit each bit individually (i.e., Fk2) and they can be converted to an extension binary
field element (i.e., F2k) for free thanks to the structure of the VOLE commitment [FKL+21]. Let
I, Aimm, and Aind denote the set of all possible NodeID values, elements in ImmAddr, and elements
in IndAddr, respectively. Given three injective functions ϵI : I → N, ϵAimm : Aimm → N>0, and
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ϵAind
: Aind → N>0, an expression e specified by the tuple (NodeID, ImmAddr, IndAddr) can be

mapped to the following vector of integers:

{ϵI(NodeID)}∥{ϵAimm(ImmAddr)}∥{ϵAind
(IndAddr)} (6)

Here, ϵAimm and ϵAind
are applied element-wise on the two respective lists. Given concrete encoding

schemes ϵI , ϵAimm , and ϵAimm , an expression can be committed by committing the vector in Eq. (6)
element-wise. These encoding schemes are made known by both the prover and the verifier.

An expression’s NodeID should be kept private. Different NodeIDs takes different numbers of
operands. To avoid revealing an expression’s NodeID from the size of its ImmAddr and IndAddr, we
can pad both ImmAddr and IndAddr to the length α that is the upper bound of their size (Sec. 3.1).

Each proof step can be committed in a similar way. Recall that a proof step is encoded by four
fields: StepID, RuleID, Result, and Premises which are either integers or lists of integers serving as
pointers. The list Premises has its size bounded by µ. Hence, any proof step can be committed as
a list of µ+ 3 integers.

5.2 Machine Execution in Zero Knowledge

We discuss how machine execution, i.e., the main checker, can be instantiated in ZK. Recall that
the main checker performs three key operations:

1. Fetching essential clauses and expressions. To verify SMT proofs, we need to read entries
from Me and Mp using committed addresses. We can achieve this by instantiating Me and
Mp with any read-only memory (ROM) protocol [HK20, FKL+21, DdSGOTV22] in ZK that is
compatible with the commitment scheme we use.

2. Guaranteeing the proof is acyclic. The proof can be regarded as a DAG with proof steps
ordered by their logical order. Proving a graph is a DAG can be reduced to proving magnitude
relationships between pairs of committed integers.

3. Invoking the corresponding checking instructions. To ensure the privacy of a proof, the
proof rule employed by each proof step should be kept private. This can be achieved generically
by multiplexing all checks, but that incurs a high cost and leads a to large overhead. Instead,
ZKSMT uses group checking, as we will explain next.

Group Checking ZKSMT groups the verification of the proof steps with the same proof rule,
where the real checking instruction is the only checking instruction that will be called. There is no
multiplexing, and no other checking instructions are executed. For instance, all proof steps employ-
ing the Resolution rule are verified consecutively, and only the checking instruction of Resolution is
invoked on them.

The RuleID of a proof step, which identifies the specific step being validated within a particular
checking group, is private to the prover. The StepID of every step that has been verified so far
appears in D. The array D is append-only, and at the end of each proof step, the step’s committed
StepID is appended to it. D can be implemented using a standard array containing commitments
when ZKSMT is instantiated in ZK.

The soundness of ZKSMT relies on the permutation checking between D and {0, 1, . . . , π − 1}
(see Algorithm 1, line 17). The permutation checking ensures that every proof step is validated
in the end. When D contains committed values, permutation checking can be achieved efficiently
using the Schwartz-Zippel lemma.
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Remark 5.1 (Leakage and Optimization). By group checking, we reveal the number of applica-
tions of each proof rule in the input proof. On the other hand, grouping checking for identical
proof rules over different premises and conclusions offers a chance for optimization by using a ZK
protocol optimized for batch proofs (i.e., single instruction multiple data (SIMD) optimizations),
such as [WYY+22].

5.3 Checking Instructions in Zero Knowledge

Some checking instructions for Boolean, EUF, and LIA rules consist of only reading operations over
the expression table and comparisons, such as ExclMid (Sec. 2.2.1). All necessary ZK operations
are already needed by the main checker, and the same operations suffice for handling these simpler
proof rules.

The instantiation of checking instructions becomes complex when the side condition of the
proof rule involves traversing the IndAddr. In Sec. 4, we explain how these side conditions can be
represented using the language of multisets. This level of abstraction further enables us to leverage
the polynomial commitment scheme when instantiating these checking instructions in ZK. Next,
we explain how to check two relations, subset and subsetd, between multisets using a polynomial
commitment scheme. Following this, we will illustrate our implementations of the DeDup and
Resolution checking instructions as examples.

Checking Multiset Relations To enable compact representation and efficient operations simul-
taneously, our protocol encodes multisets as polynomials over a finite field.

For the checking instructions we consider, we focus on two relations: subset and subset up to
the number of occurrences (subsetd). The subset relation takes multiplicities into account. The
multiset ⟨⟨A⟩⟩ is a subset of the multiset ⟨⟨B⟩⟩ if the multiplicities of all elements in ⟨⟨A⟩⟩ are less than
or equal to their multiplicities in ⟨⟨B⟩⟩. On the other hand, ⟨⟨A⟩⟩ is a subsetd of ⟨⟨B⟩⟩ if all distinct
elements of ⟨⟨A⟩⟩ also appear in ⟨⟨B⟩⟩.

Checking the subset relation between two multisets is based on encoding multisets as univariate
polynomials. Let Σ be a finite set, and F a finite field such that |F| > |Σ|. Let ⟨⟨Σ∗⟩⟩ be the set
of all possible multisets over Σ. Given an injective function ψ : Σ → F, we define an encoding
γψ : ⟨⟨Σ∗⟩⟩ → F[X] of a multiset as univariate polynomials over F such that for each multiset ⟨⟨ℓ⟩⟩,
the images under ψ of the Σ-elements ℓi in ⟨⟨ℓ⟩⟩ are the roots of the image of ⟨⟨ℓ⟩⟩ under γψ:

γψ(⟨⟨{ℓ0, . . . , ℓd}⟩⟩) = (X − ψ(ℓ0)) . . . (X − ψ(ℓd))

To check the subset relation between two multisets ⟨⟨ℓsub⟩⟩ and ⟨⟨ℓsup⟩⟩, the prover commits their
polynomial encodings, and the verifier checks that γψ(⟨⟨ℓsub⟩⟩) divides γψ(⟨⟨ℓsup⟩⟩) by attesting

γψ(⟨⟨ℓsub⟩⟩) ·W = γψ(⟨⟨ℓsup⟩⟩).

Here, W is a private polynomial committed by the prover as an extended witness. We use bi-
variate polynomials to verify the subsetd relation between two multisets, leveraging the following
observation in [GW20]. Let ℓ̄sub, ℓ̄sup and ℓ̄ be permuted versions of ℓsub, ℓsup and ℓ = ℓsub ⊎ ℓsup
respectively with the d′ being the size of ℓ̄sub and d being the size of ℓ̄sup. Given the same ψ we
use for subset checking, define the following two polynomials:

αψ(⟨⟨ℓ̄sub⟩⟩, ⟨⟨ℓ̄sup⟩⟩) := (1 +X)d
′ ·Πd′−1

i=0 (Y + ψ(ℓ̄subi ))

·Πd−2
i=0 (Y · (1 +X) + ψ(ℓ̄supi ) +X · ψ(ℓ̄supi+1))

βψ(⟨⟨ℓ̄⟩⟩) := Πd
′+d−1
i=0 ((1 +X) · Y + ψ(ℓ̄i) + ψ(ℓ̄i+1) ·X)
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It is proved that αψ(⟨⟨ℓ̄sub⟩⟩, ⟨⟨ℓ̄sup⟩⟩)(X,Y ) equals βψ(⟨⟨ℓ̄⟩⟩)(X,Y ) if and only if (1) ⟨⟨ℓ̄sup⟩⟩ is a subsetd of
⟨⟨ℓ̄sup⟩⟩; and (2) ℓ̄sub, ℓ̄sup and ℓ̄ are order-consistent1. A set of lists is order-consistent if values appear
in the same order across all lists in the set. Putting it all together, to check if the subsetd relation
between ⟨⟨ℓsup⟩⟩ and ⟨⟨ℓsub⟩⟩ holds, the verifier attests the following relation between polynomials:

αψ(⟨⟨ℓ̄sub⟩⟩, ⟨⟨ℓ̄sup⟩⟩) = βψ(⟨⟨ℓ̄⟩⟩)
γψ(⟨⟨ℓ̄sub⟩⟩) = γψ(⟨⟨ℓsub)⟩⟩)
γψ(⟨⟨ℓ̄sup⟩⟩) = γψ(⟨⟨ℓsup)⟩⟩)
γψ(⟨⟨ℓ̄⟩⟩) = γψ(⟨⟨ℓsup)⟩⟩) · γψ(⟨⟨ℓsub)⟩⟩)

Here, the prover computes and commits ℓ̄, ℓ̄sub and ℓ̄sup using some proper order over Σ.

Resolution Recall that the side condition of Resolution on premise clauses
∨
A,

∨
B and conclusion

clause
∨
C is the following:

⟨⟨A⟩⟩ ⊆ ⟨⟨C⟩⟩ ⊎ ⟨⟨p⟩⟩, ⟨⟨B⟩⟩ ⊆ ⟨⟨C⟩⟩ ⊎ ⟨⟨¬p⟩⟩

Here, A, B, and C are lists of addresses of the expression table and p is an address. Given that
the size of the expression table is bounded by χ, we can restrict the co-domain of ϵI to N≤χ,
i.e., ϵI : I → N≤χ. We further fix an injective function ψI : N≤χ → F for a given proof. Then
the checking instruction of the resolution rule can be implemented by verifying the subset relation
between multisets ϵI(⟨⟨A⟩⟩), ϵI(⟨⟨C⟩⟩⊎⟨⟨p⟩⟩)2 and between ϵI(B) and ϵI(⟨⟨C⟩⟩⊎⟨⟨¬p⟩⟩) using the approach
mentioned above, with ψ is concretized by ψI . By applying ϵI to the multisets, we mean element-
wise application.

DeDup The side condition of DeDup asserts that for all a ∈ ⟨⟨A⟩⟩ it holds that a ∈ ⟨⟨B⟩⟩ given
the premise clause

∨
A and the conclusion clause

∨
B. This side condition can be validated by

checking if ⟨⟨A⟩⟩ is a subsetd of ⟨⟨B⟩⟩. Using the same encoding scheme as is used for the Resolution
rule, we can implement the checking instruction of the DeDup rule by checking the subsetd relation
between ϵI(⟨⟨A⟩⟩) and ϵI(⟨⟨B⟩⟩). This relation checking can be achieved using the protocol we explain
at the beginning of this section.

6 Implementation

We implement our protocol using the EMP-toolkit [WMK16] for ZKP operations (circuits, polyno-
mials, read-only memory access). We instantiated the arithmetic field as the extension field F2128 ,
under which field operations (and their ZK counterparts) can be efficiently implemented. The in-
dices of proof steps are 32-bit integers, which support refutation proofs with more than one billion
steps. In addition, for performance optimization, we use an array Ma known as the expression list
table to store argument lists for expressions that can take variable numbers of children. Expressions
that take a fixed number of children (which is always 1 or 2 for the theories that we cover) store
pointers to their children directly in Me, but nodes that take variable numbers of children store a
pointer to an entry in Ma that contains pointers to the expression’s children. It allows us to keep
the individual entries of Me small and to avoid the cost of scanning a variable-length argument list
for nodes like Not and Eq. We use η to denote the number of lists inMa. This is not to be confused
with α, which is the maximum length of an individual list within Ma.

1See Claim 3.1 [GW20] and its proof.
2When verifying equivalences that involve the combination of multisets through union operations, we compute the

product of the two corresponding polynomials.
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7 Evaluation

We evaluate ZKSMT to compare our protocol with the prior state of the art. We intend to answer
three key questions with our experiments:

Q1 Does our protocol efficiently validate SMT formulas that formalize the safety and security of
practical software?

Q2 Does our protocol scale well in response to increases in proof size?

Q3 Is ZKSMT more efficient than a zkVM running a commodity SMT proof validator?

The results of our experiments allow us to report an affirmative answer for all three questions. For
all benchmarks, we ran ZKSMT on AWS instances of type r5b.4xlarge with 128 GB of memory, 16
vCPUs, and a 10 Gbps network connection between the prover and verifier. However, the underlying
ZK protocols that we use only consume about 100 Mbps bandwidth. We also configured ZKSMT
to use 8 threads. Our methodology and results for Q1, Q2, and Q3 appear in Sec. 7.1, Sec. 7.2,
and Sec. 7.3, respectively.

7.1 Verifying Practical Software

To answer Q1, we collected a set of SMT formulas whose validity formalizes program correctness.
Specifically, the SMT formulas were generated by the Boogie verification toolchain [BCD+06].
The Boogie toolchain contains an intermediate language for expressing low-level programs anno-
tated with function requirements and guarantees, along with compilation passes to an intermediate
language from high-level languages including C, Spec#, and Dafny [Lei10]. Boogie generates veri-
fication conditions from the annotated intermediate programs in SMT-LIB 2.0 format, which can
be validated by SMT solvers like Z3 [DMB08]. We ran Boogie on its test suite to collect the
corresponding SMT formulas, and we validated the SMT formulas using the solver SMTInter-
pol [CHN12, HS22] to generate proof certificates that ZKSMT can process.

Fig. 2 shows the runtime of ZKSMT versus the number of proof steps used in each of the SMT
statements in the Boogie test suite. ZKSMT is able to verify most of the test suite SMT statements
in ZK within a few seconds, but the largest benchmark takes 39 seconds. We also observe a general
linear trend between the running time and the number of steps, which is expected. The fluctuation
is due to the use of different rules in each instance.

7.2 Scalability

To determine how our protocol scales in response to increases in proof size (Q2), we microbenchmark
various aspects of ZKSMT while varying the size of input SMT statements.
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Figure 5: Scalability and rule breakdown of our protocol. Fig. 5a and Fig. 5b contain the running
times of a single proof step across different rules for changing values of expression table size χ.
Fig. 5c shows the time cost decomposition across the four rules with max list size α = 5, 21.

Proof Breakdown To assess the relative time consumption of different parts of our protocol,
we run three of our Boogie benchmarks and separate the timing results into three phases: type
checking, Resolution, and all other proof rules. We place Resolution in a phase of its own because,
for each of the examples, it takes more time than checking all of the other rules combined. Fig. 3
shows the performance decomposition for the three benchmarks. All of them are related to program
safety verification: Lock is a Boogie benchmark for verification of a lock; Houdini is a benchmark
on modular contract checking [LV11]; and McCarthy is an adaptation of a standard benchmark for
verification of recursive functions [MM69].

We observe that type checking can be as time-consuming as the main checking loop itself. This
is due to the fact that ZKSMT needs to fetch every entry of every list inMa at least once to confirm
that its type fits with the list’s type.

Max List Size To understand how α, the maximum list size, affects the running time of our rules,
we benchmark the running time of our individual proof rules in isolation. To find the amortized
cost of each rule, we run the rule 1,000 times and average the result. Most of our rules are simple, so
we present the results for only our four most performance-intensive rules: Resolution, Consolidate,
Farkas, and Flatten.

The results of varying α with values ranging from 10 to 50 are presented in Fig. 5a. We ran a
linear regression and determined that all four rules scale linearly, with R2 values above 0.99. This
occurs because all four rules contain loops or procedures which iterate O(α) times.

Many of ZKSMT’s rules are affected by the size of the longest list in the proof because all
argument lists are padded to be the same size. The worst-case scenario for ZKSMT would be
a proof that operates mainly on short lists but contains one extra-long list that forces all list-
traversing rules to perform a large number of iterations. Fortunately, our benchmarks demonstrate
that this degenerate case does not appear in practice. In the future we plan to mitigate the effect
of α on a proof’s overall running time by breaking down list-based rules into smaller pieces, which
will improve runtime even more by eliminating the impact of large maximum list sizes.

Table Size Next, we consider how χ, the size of Me, affects the running time of our four main
rules. For each trial, we ran 10,000 instances of a rule with an α value of 10, which was a common
value among our benchmarks, an η value of 1,000, and a π value of 10 while varying the value of
χ to between 1,000 and 4,000. The results are plotted in Fig. 5b. Unlike our results for α, the
running time does not change appreciably. This is because the main operation in these rules that
is affected by a change in table size is the cost of accessing an element from ROM, for which the
amortized access time does not depend on the number of elements. For similar reasons, the value
of η does not significantly change the running time.
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Rule Breakdown We also consider which operations make up the running time of our four main
rules. With α values of 5 and 21, we divide the running times for each rule into the time taken for
memory operations (retrieving entries fromMe orMa) and the time taken for arithmetic operations
(everything else). 5 is a small but still realistic value for α, and 21 is the highest value of α that
appears in our Boogie benchmarks. The results appear in Fig. 5c. Arithmetic operations dominate
the running time for Resolution, Consolidate, and Flatten, but memory operations dominate the
running time for Farkas. This makes sense because, unlike the other three rules, Farkas does
not perform any multiset equivalence or containment checks. Multiset checks can work directly
with expressions’ addresses, but Farkas needs to fetch every entry in its premise and conclusion to
pattern-match their NodeIDs and arguments.

Original Proof Size Our work uses a compiler to convert the output of SMTInterpol to the
format accepted by ZKSMT. To enable evaluation in zero knowledge, some rules in SMTInterpol,
particularly the LIA rules, must be broken down into simpler rules. This increases the proof size.
A comparison between the number of proof steps in SMTInterpol and ZKSMT is given in Fig. 4
for the Boogie test suite. The proof size increases by a factor from 1 to 7, which is not problematic
because ZKSMT is still vastly more efficient than the generic zkVM solution.

Stress Test To stress test ZKSMT, we ran it against a series of larger tests from the Wisconsin
Safety Analyzer [WiS] benchmark suite found in the official SMT-LIB benchmarks repository [smt].
The resulting running times are plotted in Fig. 6. The largest test which passed uses 200K steps,
380K expressions, and a maximum list size α of 97. This verified in about 3 hours, requiring more
than 22.9 billion F2 multiplications and 336 million F2128 multiplications. Larger tests ran out of
memory. This demonstrates that ZKSMT can scale up to proofs of a larger size, and gives insight
into ZKSMT’s current limitations.

7.3 Comparison with Alternative Protocols

Instead of developing a custom ZK protocol to validate SMT formulas, a simpler approach would
be to take a commodity SMT proof validator and compile it to a ZK statement using a ZK virtual
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Tool MicroRAM cycles F2 muls F2128 muls Time

Baseline 183K 14B 421K 1h 51m
ZKSMT — 108K 770 2s

Improvement — 129,629× 546× 3,330×

Table 4: Comparison of ZKSMT’s performance against the baseline of Cheesecloth and Diet
Mac’n’cheese on the shortest Boogie benchmark.

machine (zkVM). We benchmark the performance of ZKSMT against such a zkVM to determine
whether the benefits of a custom ZK protocol are worth the effort (Q3).

In our evaluation, we used Cheesecloth [CHP+23] and Diet Mac’n’cheese [Gal19, BMRS21]
as the baseline zkVM. Cheesecloth is a general-purpose tool for generating zero-knowledge proof
statements that verify the execution of LLVM programs. Diet Mac’n’cheese is an interactive VOLE
based zero-knowledge proof backend, capable of verifying ZK statements. We developed a clear-
text C++ version of ZKSMT that verifies SMT statements, and we used Cheesecloth and Diet
Mac’n’cheese to verify the shortest Boogie benchmark (with only 6 steps) in ZK. The results in
Table 4 demonstrate that ZKSMT is significantly faster than the baseline, taking seconds instead
of hours to verify. With a 3,330× improvement in runtime, it is clear that ZKSMT provides a sig-
nificant improvement over the zkVM approach in enabling SMT validation for program verification
in ZK.

8 Conclusion

This paper introduces ZKSMT, an efficient protocol for validating SMT formulas in ZK. This work
sets up exciting future work in multiple directions. First, protocols can be developed for other
theories that model practical verification problems but are not currently supported, including the
theory of arrays and the theory of bit-vectors [GD07]. Arrays and bit-vectors are commonly used
by symbolic execution engines that execute low-level code [CDE+08]. Second, the core logic itself
can be extended to validate formulas that contain universal and existential quantifiers. Prominent
program verification toolchains often produce quantified formulas as output [BCD+06, Lei10].
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A Trusting Proof Systems

Formula Interpretations An interpretation ι of a vocabulary defines a domain of values D
and assigns each function and predicate symbol to functions and predicates in D. Specifically, the
interpretation of each function symbol f ∈ F , denoted ιf : D|f | → D, maps |f |-tuples in D to
D. ι defines a natural interpretation of each term t as a function from variable assignments to D,
denoted ι[t] : (V → D) → D, by composing the interpretations ιf of all function symbols f ∈ F
occurring in t. Similarly, an interpretation of each predicate symbol p ∈ P is a set of |p|-tuples in
D, denoted ι[p] ⊆ D|p|. Combined, ιF and ιP interpret each atom p(t0, . . . , tn) over F and P as a
set of V-assignments ι[p(t0, . . . , tn)] that satisfy them: assignment X : V → D satisfies the atom’s
interpretation if (ιF [t0], . . . , ιF [tn]) ∈ ιP(p). ιF and ιP define an interpretation of each formula φ as
a set of assignments that satisfy it, by combining the interpretation of atoms with the standard
interpretations of Boolean connectives.

For example, under an interpretation ι with domain N that interprets 0 as 0 ∈ N, interprets + as
addition of naturals, and interprets as succ as the N-valued function s(x) = 1+x, the logical term
X+ succ(succ(0)) denotes the N-valued function t(x) = x+2 from X-assignments to N. Under an
interpretation of predicate symbols = and ≤ as the equality and less-than-or-equal relations of N,
the assignment x 7→ 2 satisfies the atom 4 ≤ x+ 3.

Theory Axiomatizations Typically, we are interested in determining if a formula is unsatisfi-
able not under arbitrary interpretations, but specifically ones that satisfy laws of a mathematical
domain of interest. Such laws are represented as the theory’s axioms, which are simply an auto-
matically recognizable set of formulas. A formula is valid under a set of axioms if it accepts every
interpretation and assignment that satisfies all axioms; it is unsatisfiable under the axioms if it
rejects every such interpretation and assignment.

As an example, the standard axiomatization of linear arithmetic contains the set of formulas
x + succ(y) = succ(x) + y, for all variables x and y (among others). These axioms are satisfied
by the standard model of natural numbers (given above), but not, for instance, by a non-standard
interpretation that interprets succ as the function s(z) = 0.

In general, a proof system may contain proofs of arbitrary formulas, even False, but such
inconsistent systems typically are not of much practical use. Instead, we are typically interested
in proof systems that, for a given set of axioms A, are sound : they only contain proofs of formulas
that are valid under A. Designing and certifying a sound proof system can be highly non-trivial:
depending on the theories of interest, it may achieved either by mechanical proof in an even more
expressive logic or by social processes. Our work considers settings in which the Prover and Verifier
have agreed upon a proof system for refuting formulas: typically, these will be systems that have
been argued as sound for some axiomatization of interest, which is indeed the case for all theories
to which we have applied our framework.
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RuleID Conclusion

Boolean

TruePos
∨
{True}

FalseNeg
∨
{¬False}

ExclMid
∨
{¬a, a}

ImplPos1
∨
{a→ b, a}

ImplPos2
∨
{a→ b,¬b}

ImplNeg
∨
{¬(a→ b),¬a, b}

EquivPos1
∨
{a = b, a, b}

EquivPos2
∨
{a = b,¬a,¬b}

EquivNeg1
∨
{¬(a = b), a,¬b}

EquivNeg2
∨
{¬(a = b),¬a, b}

EUF

Refl
∨
{a = a}

Symm
∨
{a = b,¬(b = a)}

Trans
∨
{a = c,¬(a = b),¬(b = c)}

LIA

Total
∨
{a ≤ b, b < a}

Trichotomy
∨
{a < b, a = b, b < a}

AddSingle
∑
{a} = a

MulSingle 1 ∗ a = a

MulDist c ∗ (
∑n

i=0 di ∗ xi) =
∑n

i=0 cdi ∗ xi

Table 5: ZKSMT’s rules that have no premises or side conditions, grouped by theory.

B Proof Rule Tables

Tables 5 and 6 show our full set of proof rules for Boolean logic, EUF, and LIA. Table 5 contains
the simple rules that have no premises or side conditions, and Table 6 contains the more complex
rules.

C Proofs

We prove that ZKSMT is sound and complete by demonstrating that ZKSMT and SMTInterpol are
equipotent when operating on Boolean logic, EUF, and LIA. A refutation proof of a formula exists
in ZKSMT’s format if and only if a corresponding proof exists in SMTInterpol’s format based on
only Boolean logic, EUF, and LIA. We restrict our attention to only these three theories because
they are the ones supported by the implementation.

C.1 Proof of VM Soundness

We will start with soundness: if a refutation proof exists in ZKSMT’s format, a corresponding
refutation proof exists in SMTInterpol’s format. Let Π be a proof in ZKSMT’s format that derives
False from φ. Our goal is to convert Π into a new proof Π′ in SMTInterpol’s format that derives an
empty disjunction from φ. (SMTInterpol uses an empty disjunction as the end goal of refutation
proofs rather than False.) If we can construct Π′, then we know that φ is boundedly verifiable
because proofs in SMTInterpol’s format must be finite. We can construct Π′ by induction. In both
formats, a proof is a tree of derivations, so we can convert Π into Π′ by providing a conversion
process for every individual proof rule that Π could contain. For most proof rules, the conversion
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RuleID Side Condition Premises Conclusion

Boolean

Resolution ∃p.p ∈ ⟨⟨A⟩⟩, ¬p ∈ ⟨⟨B⟩⟩,
∨

A,
∨

B
∨

C
⟨⟨A⟩⟩ ⊆ ⟨⟨C⟩⟩ ⊎ ⟨⟨p⟩⟩, ⟨⟨B⟩⟩ ⊆ ⟨⟨C⟩⟩ ⊎ ⟨⟨¬p⟩⟩

DeDup ∀a ∈ ⟨⟨A⟩⟩. a ∈ ⟨⟨B⟩⟩
∨

A
∨

B

OrNil
∨

{} False

OrSingle a
∨

{a}
OrSingleRev

∨
{a} a

AndPos ∃A,B.⟨⟨
∧

A⟩⟩ ⊎ ⟨⟨B⟩⟩ = ⟨⟨C⟩⟩,
∨

C∧
A =

∧n
i=0 ai,

∨
B =

∨n
i=0 ¬ai

AndNeg a ∈ ⟨⟨A⟩⟩
∨
{¬

∧
A, a}

OrPos a ∈ ⟨⟨A⟩⟩
∨
{
∨

A,¬a}
OrNeg ∃A.⟨⟨¬

∨
A⟩⟩ ⊎ ⟨⟨A⟩⟩ = ⟨⟨B⟩⟩

∨
B

EUF

Congruence ∃A,B, f.(fA = fB) ∈ C, |A| = |B|,
∨

C
∀i ∈ {0, . . . , |A| − 1}.¬(Ai = Bi) ∈ C

LIA

TotalInt i0 = m ∗ ONE, i1 = (m+ 1) ∗ ONE
∨
{a ≤ i0, i1 ≤ a}

Consolidate ∃a,Aa, Ba, C. ⟨⟨Aa⟩⟩ ⊎ ⟨⟨C⟩⟩ = ⟨⟨A⟩⟩, ⟨⟨Ba⟩⟩ ⊎ ⟨⟨C⟩⟩ = ⟨⟨B⟩⟩,
∑

A =
∑

B
Aa = {α0 ∗ a, . . . , αt−1 ∗ a}, Ba = {β0 ∗ a, . . . , βt′−1 ∗ a},

α0 + · · ·+ αt−1 = β0 + · · ·+ βt′−1

Flatten ∃⟨⟨C⟩⟩, ⟨⟨D⟩⟩. ⟨⟨C⟩⟩ ⊎ ⟨⟨
∑

D⟩⟩ = ⟨⟨A⟩⟩, ⟨⟨C⟩⟩ ⊎ ⟨⟨D⟩⟩ = ⟨⟨B⟩⟩
∑

A =
∑

B

Farkas ∀i ∈ {0, . . . , n}. mi ≥ 0
∑n

i=0(mi ∗ ai)+
∨n

i=0{¬(ai ≤i bi)}
either c > 0, or c = 0 and ∃j. ≤j is < (−mi ∗ bi) = c

Table 6: ZKSMT’s rules that have premises or side conditions, grouped by theory. Capital letters
represent argument lists for n-ary operations, and lowercase letters represent individual expressions.

is trivial because SMTInterpol supports a functionally identical rule. We will show only the cases
for proof rules in our format that do not have exact analogues among SMTInterpol’s rules.

DeDup DeDup has no analogue in SMTInterpol because SMTInterpol’s disjunctions cannot
contain duplicate elements. To convert a proof in our format into SMTInterpol’s format, we can
discard occurrences of DeDup.

OrNil OrNil simply converts an empty disjunction into False. Our refutation proofs never contain
more than one occurrence of OrNil because we are always finished when we reach False. To convert
a proof in ZKSMT’s format into an SMTInterpol proof, we can simply discard occurrences of OrNil
and treat the empty disjunction that OrNil uses as a premise as the end of the proof.

OrSingle and OrSingleRev We can discard all steps that use OrSingle and OrSingleRev. In
ZKSMT’s format, OrSingle and OrSingleRev interchange singleton disjunctions with the formulas
inside them. In SMTInterpol’s format, every formula is implicitly a disjunction, so the conversions
that OrSingle and OrSingleRev perform in Π are unnecessary in Π′.

Congruence We omit the details in Section 4, but ZKSMT has multiple distinct congruence
rules: one for uninterpreted functions, one for n-ary Boolean and LIA connectives, one for binary
connectives, and so on. On the other hand, SMTInterpol has only one cong rule. All of our
congruence rules map onto cong because SMTInterpol’s cong works for Boolean connectives and
arithmetic operations along with uninterpreted functions.

Addition Rules AddSingle, Consolidate, and Flatten are all restricted versions of poly+, SMT-
Interpol’s general-purpose polynomial addition rule. Anything that can be proven with AddSingle,
Consolidate, or Flatten can also be proven with poly+ because poly+ proves equalities for arbitrary
sums of polynomials. If a proof in our format uses AddSingle to derive

∑0
i=0 a = a, then we can
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use poly+ to derive (= (+ a) a) in SMTInterpol’s format. Likewise, if we prove
∑
A =

∑
B with

Consolidate or Flatten, we can derive the same conclusion with poly+.

MulDist ZKSMT’s MulDist rule is a restricted version of poly*, SMTInterpol’s polynomial
multiplication rule. ZKSMT’s MulDist rule allows only multiplications of linear sums by constants,
but poly* supports arbitrary polynomial multiplications. Therefore, any use of MulDist in Π can
be translated into a corresponding use of poly* in Π′.

Farkas’ Lemma Both ZKSMT and SMTInterpol have rules for Farkas’ lemma, but one significant
difference exists between the two tools’ rules. ZKSMT’s version takes an equation as a premise, but
SMTInterpol’s version treats the same equation as a side condition. If Π contains an application of
Farkas’ lemma along with a series of steps proving the premise, we can discard the steps used for
the premise and convert the application of Farkas’ lemma into SMTInterpol’s farkas rule for Π′.

C.2 Proof of VM Completeness

For the reverse direction, we will start with a proof Π′ in SMTInterpol’s format and produce a new
proof Π in ZKSMT’s format. Again, we will cover only the rules that require non-trivial conversions.
We convert every step in Π′ into a finite number of steps in Π, and Π′ itself must be finite, so Π
will be finite as well. Because Π must be finite, we can always place upper limits on π, χ, µ, α,
and ρ once the conversion is finished.

Congruence SMTInterpol’s cong rule can be applied not only to uninterpreted functions but
also to arithmetic and Boolean operations. ZKSMT has multiple distinct congruence rules, but all
of SMTInterpol’s uses of cong within Boolean logic, EUF, and LIA map exactly to one of them.

Resolution SMTInterpol’s res rule does not include duplicate entries in the conclusion, but
ZKSMT’s Resolution rule does. When we convert an application of res from Π′ into ZKSMT’s for-
mat, we may need to add duplicates to the conclusion. We can eliminate the duplicates immediately
afterward with DeDup.

Polynomial Addition SMTInterpol’s poly+ rule supports arbitrary polynomial additions. We
do not allow arbitrary additions to be performed atomically, but our LIA rules allow us to achieve
the same end result over the course of multiple steps.

If we need to prove that
∑
A =

∑
B for two arbitrary sums, then we can start by proving that∑

A =
∑
A′, where A′ is a normalized version of A that is a flat sum of Mul nodes, where no two

distinct nodes have the same child. Flatten can eliminate nested sums, MulSingle can convert every
entry in the sum into a Mul node that is not one already, MulDist can eliminate nested products,
and Consolidate can combine Mul nodes with the same child. We can take the same approach
to prove that

∑
B =

∑
B′, where B′ is a normalized version of B. Because

∑
A and

∑
B are

equal, A′ and B′ should be identical apart from the ordering of their elements. This means that
a single application of Consolidate can prove

∑
A′ =

∑
B′. At that point, we can use our EUF

rules to chain all of the equalities together, producing
∑
A =

∑
B as the end result. Overall, the

conversion requires only finitely many proof steps in Π because A and B can contain only finitely
many nested sums, non-Mul entries, nested products, and pairs of Mul nodes with the same child.

Polynomial Multiplication SMTInterpol’s poly* rule supports arbitrary polynomial multipli-
cations, but ZKSMT’s MulDist rule allows only multiplications of sums by constants. SMTInterpol
will not include non-linear multiplications in a proof unless the input formula itself includes non-
linear multiplications. We are restricting our attention to Boolean logic, EUF, and LIA, so we do
not need to take non-linear multiplications into consideration.

Any use of poly* that we receive from SMTInterpol for LIA can be translated easily into a use
of our MulDist rule. At least one of the factors in a multiplication must be a constant, so we always
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have a value to use as the scaling factor. We use the other factor as the child of the multiplication
node.

The requirement for every entry in the sum to be a Mul node does not have an analogue in
SMTInterpol’s format. If a sum that we receive from SMTInterpol contains entries that are not
products, we can always use MulSingle and Congruence to normalize every entry in the sum.

Farkas’ Lemma The difference between ZKSMT’s rule for Farkas’ lemma and SMTInterpol’s
farkas rule is that ZKSMT’s version takes a premise. For the side condition in SMTInterpol’s
version of Farkas’ lemma, the weighted sum of the polynomials provided as arguments must equal
a nonnegative integer constant. For our own version, we take a premise that asserts the same
condition. To convert SMTInterpol’s version into our version, we need to construct the premise
and the steps required to prove it.

Let c be the nonnegative constant used for the original application of farkas. We can start
by applying Refl to get that c = c. We can then construct the sum that we need for the premise
gradually, applying Consolidate to introduce expressions that cancel each other and using our
EUF rules to chain all of the equations that we produce. Finally, we group the terms into the
configuration that the premise requires by using MulDist and Flatten. This conversion results in
only a finite number of new steps in Π for the same reason that the conversion for poly+ does.

Singleton Disjunctions In SMTInterpol’s representation, every formula is implicitly a disjunc-
tion. Just as we can discard uses of OrSingle and OrSingleRev when converting one of our own
proofs into an SMTInterpol proof, we can add uses of OrSingle and OrSingleRev when converting
a proof from SMTInterpol into ZKSMT’s format.

Empty Disjunctions SMTInterpol’s refutation proofs always end by deriving an empty dis-
junction, but ZKSMT’s refutation proofs end with False. At the point where Π′ derives an empty
disjunction, we can add an application of OrNil in Π to complete the proof.
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