
Guardianship in Group Key Exchange for Limited Environments

Elsie Mestl Fondevik∗1,2, Britta Hale†3 and Xisen Tian‡3

1Kongsberg Defence & Aerospace, Norway∗
2Norwegian University of Science and Technology, Trondheim, Norway

3Naval Postgraduate School, USA ††‡

Abstract
Post-compromise security (PCS) has been a core goal of

end-to-end encrypted messaging applications for many years,
both in one-to-one continuous key agreement (CKA) and for
groups (CGKA). At its essence, PCS relies on a compromised
party to perform a key update in order to ‘self-heal’. However,
due to bandwidth constraints, receive-only mode, and various
other environmental demands of the growing number of use
cases for such CGKA protocols, a group member may not
be able to issue such updates. In this work, we address the
issue of devices functioning in limited mode through the
introduction of guardianship, where a designated guardian
can perform key updates on the behalf of its paired edge
device. We introduce a Guardianship PCS (GPCS) security,
and provide an associated security experiment. We investigate
various architectural designs in the pursuit of GPCS, provide
constructions and security analyses, and describe trade-offs.

1 Introduction

Instant messaging has ignited research on achieving forward
secrecy (FS) and post-compromise security (PCS) guarantees.
Formally, this is done via a continuous key agreement (CKA)
between parties wherein keys are ratcheted from one epoch
to the next. Thus, past keys remain secure even under state
reveal at a later epoch (i.e. FS). If new keying material is
introduced at each ratchet, CKA can also provide PCS for
“self-healing” of the connection after an honest update from
the compromised device. CKA has extended to continuous
group key agreement (CGKA) for multiple devices, with the
Messaging Layer Security (MLS) [9] being the first such
standardized group variant.

In group communications, asynchronous support is espe-
cially relevant since some users may not be able to send
messages due to environmental constraints. In such cases,

∗elsie.fondevik@kongsberg.com
†britta.hale@nps.edu
‡xisen.tian1@nps.edu

long periods of user inactivity can undermine the group’s se-
curity, leading to the current recommendation being to evict
them such silent users [9]. This policy discourages devices or
users routinely operating in limited environments (e.g. remote
sensors or users in disaster zones) to participate in a CGKA
protocol.

While extensive work exists on MLS and CGKAs, research
on methods for addressing PCS security when devices have
limited ability to send updates is lacking. One intuitive so-
lution for this is if the offline user “edge” device is paired
with another “guardian” device of the user’s that could update
on its behalf. For instance, if user Alice has a mobile device,
laptop, tablet, smart watch, etc., one of those could be left in a
secure and reliable bandwidth location allowing it take on the
key update action. We call the concept of PCS key updates on
behalf of another device Guardian PCS (GPCS). Of course,
GPCS raises questions about what information a guardian has
or does not have access to, whether the guardian can imper-
sonate the edge device to the group (or vice versa), whether
the other group members have awareness of the guardian
existence and its relationship to the edge, and many more
core security considerations. In this work, we delve into the
guardianship space and initialize a study of the trade-offs, con-
struction options, and how architectural design considerations
affect the end security.

2 Motivation and Related Work

This work is based in continuous key agreement protocols,
which has historically built out from one-to-one key agree-
ment to also include group key agreement protocols. End-to-
end encryption [19] is a foundational goal and assumption in
all cases we consider.

2.1 Continuous Key Agreement and Security

The Signal protocol [26] marked a pivot point in the design
of secure messaging due to a variety of security properties

1

supported beyond confidentiality and data authenticity. Re-
search has since expanded, with a wide breadth of work now
available on the design and analysis on such CKA protocols.
Unlike session-based protocols such as TLS [31], QUIC [20],
IPSec [18], CKA protocols offer a single, long-lived session
with unspecified termination. Instead of periodic handshakes
to establish keying material, CKA continuously evolve the
secret state through asynchronous updates of new keying ma-
terial. Due to the asynchronicity of the updates, CKA has the
ability to support offline devices and even devices in receive-
only mode. This has led to CKA use in messaging applica-
tions such as Signal [28] and Whatsapp [11], and Facebook
Messenger [27], and a variety of modeling techniques for
assessing security [2, 14, 16, 17, 21, 22, 30, 32], as well as
vulnerabilities [1].

The pursuit of FS and PCS in group messaging protocols
can sometimes be at odds with efficiency. After all, a single
long-lived shared group state with no updates to the keying
material supports good application performance under limited
bandwidth or computational power – it also comes at the cost
of FS and PCS security.1 This has led to an effort for the
design and standardization of a CGKA protocol, Messaging
Layer Security (MLS) [10], and has since extensive analysis
throughout its development cycle [4, 5, 8, 12, 13], including
under continuous group key agreement (CGKA) model [7].

2.2 Guardianship vs Ghosts

One may wonder about the distinction between guardianship
and ghost users as have been proposed [25] and are often
controversial [29]. First, a fundamental goal of guardianship
is preservation of the FS and PCS guarantees often found in
current end-to-end encrypted messaging protocols (this work
notes intuitive guardianship designs that would break this
foundation and should be avoided). Unlike under ghost users,
where a third party is silently added to the group, guardianship
is an additional device under the current user’s ownership,
with varying degrees of visibility to other group members. The
guardian’s role is to enforce strong FS and PCS guarantees
even if its corresponding edge is unable to send updates, and
as such there is a fundamental assumption on the guardian of
being held in a more secure location with less access and risk
of compromise. More access to the guardian – such as through
various administrators on a ghost user, would fundamentally
undermine potential guardianship benefits. Thus, an effective
guardian is an asset under the end-user’s control.

1It should be noted that traditional definitions for PCS do not account for
authentication issues or impersonation from the compromise of signature
keys [15], instead focusing on confidentiality properties only. We similarly
focus on confidentiality in this paper, but provide an overview comparision
of entity authenticity properties in Section 8.

2.3 Contributions

We initialize a study of guardianship and its use within con-
tinuous group key agreement. Specifically, we
• introduce a formal definition for Guardian Continuous

Group Key Agreement (GCGKA) and associated security
model GCGKA.

• provide a cross comparison of the design space of guardian
extension protocols for the MLS.

• analyze selected GCGKA protocols over MLS for architec-
tural design considerations and GCGKA security.

3 Prerequisites

We build upon the basis of a continuous group key agree-
ment (CGKA) protocol, and leverage the underlying notation
from [7] as found in Definition 1. The eventual construc-
tions will use MLS as a CGKA example with guardianship
capabilities added to it.

Definition 1 (Continuous Group Key Agreement, adapted
from [7] for clarity). A continuous group key-agreement
(CGKA) scheme CGKA = (init,create,add, rem,upd,proc)
consists of the following algorithms:
• Initialize: init takes as input a group member identity, ID,

and outputs an initial shared group state γ[ID].
• Create Group: create takes as input a state γ[ID] and a

list of identities for group members G = (ID1, . . . , IDn), and
outputs a new state γ[ID] and a welcome message Welcome.

• Add Group Member: add takes a shared group state γ[ID]
and ID, ID, and outputs a new state γ[ID], welcome message
Welcome, and control message (public update value) T .

• Remove Group Member: rem takes a state γ[ID] and an
ID, ID, and outputs a new group state γ[ID] and a control
message (public update value) T .

• Update Generation: upd takes a shared group state, γ[ID],
and outputs a new state γ[ID] and a control message (public
update value) T .

• Process Received Update: proc takes a state γ[ID] and a
control message (public update value) T and outputs a new
state γ[ID] and an update secret I.

Definition 2 (CGKA Security (adapted from [7]). Let Π be
a CGKA protocol and let A be a PPT adversarial algorithm
against Π as defined in gray in Figures 2, 3 and 4b. We define
the adversarial advantage of A as

AdvCGKA
Π−A (λ) =

∣∣∣∣Pr
[
ExpCGKA

Π−A (λ)
]
− 1

2

∣∣∣∣
and say that the protocol Π is CGKA-secure if AdvCGKA

Π−A (λ) is
negligible for all A . 2

2For CGKA [7] the safety predicate Figure 4b aligns to when X ∈
{FS,PCS} and ι = ID. [7]

2

Some of our constructions also utilize the continuous key
agreement (CKA) protocol for a secure pairwise channel be-
tween the guardian and edge. Figure 1 is provided as a refer-
ence for those schemes using CKA.

Definition 3 (Continuous Key Agreement (CKA) [3]). A
continuous-key-agreement (CKA) scheme is a quadruple of
algorithms CKA = CKA-Init-A, CKA-Init-B, CKA-S, CKA-R),
where
• CKA-Init-A (and similarly CKA-Init-B) takes a key k and

produces an initial state γA← CKA-Init-A(k) (and γB).
• CKA-S takes a state γ, and produces a new state, message,

and key (γ′,T, I)←$ CKA-S(γ), and
• CKA-R takes a state γ and message T and produces a new

state and a key (γ′, I)← CKA-R(γ,T).
Denote by K the space of initialization keys k and by I the
space of CKA keys I.

Definition 4 (CKA Security (adapted from [6]). Let CKA be
a continuous key agreement protocol, and let t∗ ∈ N be an
epoch index and ∆CKA ∈ N be the number of epochs until an
epoch no longer contains secret information pertaining to a
challenge. For a PPT algorithm A , we define the advantage
of A in the CKA security experiment (see Figure 1) to be

AdvCKA,t∗,∆CKA
CKA−A (λ) =

∣∣∣∣Pr[ExpCKA,t∗,∆CKA
CKA−A (λ) = 1]− 1

2

∣∣∣∣ .
We say that CKA is CKA-secure if, for all A , AdvCKA,t∗,∆CKA

CKA−A (λ)
is negligible in the security parameter λ.

Our constructions also utilize a Key Derivation Function.
Here we provide the definition for PRF security of the KDF.

Definition 5 (Key Derivation Function (KDF) (adapted
from [24])). A key derivation function, KDF(sk,id)→ sk′,
is a pseudorandom function K ×N →K that takes as input
original keying material sk and an optional key identifier id
and outputs a key sk′.

4 Terminology and GCGKA Definition

The general intuition behind GCGKA is to to expand existing
group key exchange protocols to allow for users to enter an
operational mode that potentially limits their ability to send
protocol updates – for example due to bandwidth, power, or
other limitations – while still achieving a degree of security
that they could not otherwise have. We treat the underlying
group key exchange as a CGKA blackbox, without modifica-
tion, and rather enhance it to allow guardians to update on be-
half of another specified user. As a requirement, guardianship
should not reduce the security guarantees from the blackbox
group protocol core.

4.1 Terminology
Edge Device: an edge device is an original user equipment
device. Such a device may operate in receive-only mode or
in another limited fashion such that sending regular keying
updates is impractical or even impossible.
Guardian: the guardian device operates from a secured space
with reliable network access. The intent is for the guardian
device to be paired with, and provide keying updates on behalf
of the edge device. This supports forward secrecy in the event
the edge device is compromised. When the edge device is in
an active state that allows for it to perform keying updates of
its own, the guardian device may be placed in offline mode.

The exact forward secrecy properties, as well as the
guardian’s access to messages, will be explored later. Specifi-
cally, these properties depend on the guardian/edge architec-
ture choice as well as distribution service.
Edge Device Operational Modes An edge device has two
modes of operation. Before an edge device enters a new state
the MLS delivery service (DS), which facilitates group state
consensus by ensuring in-order delivery of MLS messages,
must be informed. The operational states are:

Online mode: The edge device is available and running the
group protocol as per specification. In this state it does not
have need of a guardian.
Limited mode: The edge device has the ability to receive
application messages and key update messages, but it may
not preform its own key updates. Depending on environ-
mental situation, an edge device may still be allowed to
send application messages while in this mode. In this state,
a guardian may send updates on behalf of the edge device.

Guardian Operational Modes A guardian may be in one of
two modes as well, contingent on the mode of the edge.

Offline mode: When an edge device is online the guardian
may be set to be inactive (depending on the guardianship
construction).
Online mode: When the edge device enters limited mode,
it becomes reliant on a guardian. Therefore the guardian
status must be set to online in order to send key updates.

4.2 Notation and State Variables
Independent of construction a GP consists of an edge device
and a guardian that interchangeably access the underlying
group to update the group session key. These access point(s)
into the underlying group used by the guardian and edge de-
vice can be viewed as a group member in the underlying group
and has its own unique ID inherited from CGKA. We call this
CGKA group member node an anchor3. In the experiment
and definition we notationally differentiate between anchor
ID’s (ID) and guardian/edge device ID’s (idG/idE). Depending
on protocol design, the guardian and edge device may share
an anchor or they may have distinct anchors.

3For example, in MLS, an anchor would be a leaf node in the MLS tree.

3

ExpCKA
A :

1 : b←$ {0,1}
2 : k←$ K

3 : γ
A← CKA-Init-A(k)

4 : γ
B← CKA-Init-B(k)

5 : tA, tB← 0

send-A

1 : tA++

2 : (γ,TtA , ItA)←$ CKA-S(γ)

3 : return (TtA , ItA)

corr-A

1 : req allow-corr or finA

2 : return γA

send-A’(r)

1 : tA++

2 : req allow-corr

3 : (γ,TtA , ItA)←$ CKA-S(γ;r)

4 : return (TtA , ItA)

recieve-A

1 : tA++

2 : (γA,∗)←$ CKA-R(γA,TtA)

chall-A

1 : tA++

2 : req tA = t∗

3 : (γ,TtA , ItA)←$ CKA-S(γ)

4 : if b = 0

5 : return (TtA , ItA)

6 : else
7 : I←$ I
8 : return (TtA , I)

CKA safety predicate

allow-corrp :⇐⇒ max tA, tB ≤ t∗−2

finishedp :⇐⇒ tp ≥ t∗+∆CKA

Figure 1: The CKA experiment from [3] shows how to secure a pair-wise channel against probabilistic polynomial time (PPT)
adversary, A , given a safety predicate that prevents trivial wins.

To the underlying protocol an anchor is indistinguishable
from a regular group member. The anchor maintains the same
variables as any CGKA group member: an identity ID and a
state γ[ID]. However, the anchor is a logical construct node
vs. a real device; its state is accessed and maintained by the
edge device and/or guardian. Meanwhile, the edge device
and guardian each consist of an identity, idE and idG respec-
tively, together with an expanded state S[idE] and S[idG] re-
spectively. For an edge device idE with anchor IDE , the state
S[idE] = (γ[idE],γ[IDE]) is a two tuple consisting of the state
of edge device-specific information together with the state of
the anchor node. This inherently includes the associated sign-
ing key of the anchor. If the edge device does not have direct
access to the anchor, the γ[IDE] component is set to ε. The
guardian state is similarly constructed using the guardian’s id,
e.g., S[idG] = (γ[idG],γ[IDG]).

Moreover, the edge and guardian sessions contain en-
coded information. For an edge or guardian id, mode[id]
is a binary flag specifying the instances’ operational mode:
{isOnline, isOffline} for guardians and {isOnline, isLimited}
for edges. The variable anchor[id] stores the id’s anchor ID.
Additionally have the session state variable getGuardian[id]
and getEdge[id], which specifies the guardian id or edge of a
particular id respectively.

4.3 GCGKA Protocol Definition
A guardian protocol consist of eight algorithms in addition to
those inherited form CGKA. The first three algorithms focus
on the addition and removal of guardian or edge devices. In
the case of addition, it is assumed that anchor(s), if needed, al-
ready exist. If a user wishes to join the group directly as a edge
device with a guardian then the edge device will first need
to become a member of the underlying group using CGKA
function add before initiating the guardianship protocol to

include the guardian. When exiting the guardianship protocol
(i.e., returning to normal, non-guardianship membership), the
guardian will be removed. The edge device will, in this case,
be transformed into a regular group member. If the edge de-
vice is removed, both guardian and all corresponding anchors
will be removed from the underlying group.

The next two algorithms, enterLimitedMode and ex-
itLimitedMode, toggle between the operational modes.
These functions affect who is authorised to preform updates
in the underlying group.

The final three algorithms are used to preform and process
key updates. Updates may either be issued to the underlying
group or between guardian and edge device. Similarly, pro-
cessing is split in two; a received message may either be in
the format of the underlying group or a GP proprietary format.
Depending on the type, the input is processed accordingly.

Formally we define a guardian protocol as follows.

Definition 6. Let Π be a CGKA protocol according to Defini-
tion 1. We extend Π to a guardian CGKA protocol, GCGKA,
by introducing the following algorithms:

enterGship In: γ[IDE],γ[IDG]Out: idE ,S[idE], idG,S[idG]
This algorithm takes the anchor states for an edge S[idE]
and guardian S[idG] as input and returns ids for the
added edge and guardian devices together with their
initial states. It is required that no edge or guardian is
currently appended to the anchor ids. If the operation
could not be preformed, an error symbol ⊥ is returned.

exitGship In: idE , S[idE], idG Out: γ[IDE], T
This algorithm takes as input an edge id idE , the state of
the edge device S[idE], and a guardian id idG, and returns
an updated anchor CGKA state γ[IDE] and a control mes-
sage T . If getGuardian[idE] ̸= idG or getEdge[idG] ̸= idE ,
the algorithm outputs an error symbol ⊥. The algorithm
terminates the running of guardianship protocol. If the

4

edge and guardian have separate anchors, the guardian
anchor is removed from the group via a call to the CGKA
rem algorithm.

removePair In: γ[ID], IDE , IDG, Out: γ[ID], T1, T2
The algorithm takes as input the underlying CGKA
group leader’s state, γ[ID], and the edge device’s and
guardian’s anchor id’s, IDE and IDG respectively. If the
edge device and guardian share an anchor, IDE = IDG. If
getGuardian[idE] ̸= idG or getEdge[idG] ̸= idE , the algo-
rithm outputs an error symbol⊥. The algorithm calls the
CGKA rem remove algorithm twice: rem(γ[ID], IDG)→
(γ[ID]′,T1) and then rem(γ[ID]′, IDE)→ (γ[ID]′′,T2), re-
moving both anchors from the underlying CGKA group.
An updated CGKA state (γ[ID]← γ[ID]′′) together with
two CGKA control messages is returned as output. If the
edge device and guardian share the same anchor, then
rem is only called once and T2 is set to ε.

enterLimitedMode In: idE , idG Out: ε

This algorithm takes as input the id of an edge de-
vice and its guardian, idG. If getGuardian[idE] ̸= idG
or getEdge[idG] ̸= idE , the algorithm outputs an error
symbol ⊥. The algorithm sets mode[idE]← isOffline to
put the edge device into limited mode while mode[idG]←
isOnline sets guardian as active.

exitLimitedMode In: idE , idG Out: ε

This algorithm takes as input the id of an edge device,
idE , and its guardian, idG. If getGuardian[idE] ̸= idG or
getEdge[idG] ̸= idE , the algorithm outputs an error sym-
bol⊥. The algorithm sets mode[idE]← isOnline, putting
it online, while mode[idG]← isOffline the guardian is set
to offline mode (when possible 4).

updateE In: idE , S[idE] Out: S[idE], T
The algorithm takes as input an edge device id, idE , and
its corresponding state S[idE]. It checks that mode[idE] =
isOnline, outputting an error symbol ⊥ if not, and other-
wise outputs an updated edge device state together S[idE]
with a control message T .

updateG In: idG, S[idG] Out: S[idG], T
The algorithm takes as input a guardian id, idG, and its
corresponding state S[idG]. It checks that mode[idG] =
isOnline, outputting an error symbol ⊥ if not, and other-
wise outputs an updated guardian state S[idG] together
with a control message T .

processUpdGE In: S[id], T Out: S[id], I
The algorithm takes as inputs the state of an edge or
guardian, S[id], and a control message T . It returns an
updated device state and a group update secret I.5

4If the guardian is identical to the anchor for idE , i.e. IDE = idG as in
some possible constructions, it may not be possible to put it into offline mode.

5The algorithm can process control messages to update the internal state
whether those are CGKA-based or through a dedicate guardian-edge channel.

5 GCGKA Security

The CGKA security model is used as a basis for our guardian-
ship security model. We assume the underlying group key
exchange protocol, on which guardian protocol builds upon, is
defined according to Definition 1. Consequently, the guardian
schemes we explore can be applied to a variety of concrete
CGKA schemes. The guardian protocol (GCGKA) model is
constructed in such a way that group members may individ-
ually choose to run the GCGKA protocol or the underlying
CGKA based protocol. It is therefore especially important
that any communication between GCGKA and the underlying
protocol is done according to CGKA specification.

For GCGKA we retain the following four requirements
from CGKA [7], and include an additional fifth requirement,
guardian post-compromise security (GPCS).
Correctness: All group members output the same update

secret I in update epochs.
Privacy: The update secrets look random given the transcript

of control messages.
Forward secrecy (FS): If the state of any group member is

leaked at some point, all previous update secrets remain
hidden from the attacker.

Post-compromise security (PCS): After every group mem-
ber whose state was leaked performs an update, the up-
date secrets become secret again.

Guardian post-compromise security (GPCS): After the
guardian for any edge device whose state was leaked
performs an update (that is processed by the group),
update secrets become secret again.

Remark 1. The guardianship architecture allows for a dis-
tinct forward secrecy feature in edge device limited mode.
Namely, even if all edge devices are in limited mode and
cannot issue updates – a mode normally expanding the FS
vulnerability window – the guardian can still control and limit
that vulnerability window by issuing updates. This may be
done on some automated periodicity.

5.1 Security Experiment
The security experiment for GCGKA can be found in Figure 2
and Figure 3. The security experiment encompasses that of
CGKA, where parts taken directly from CGKA can be found
in gray. The new additions are written in black.

Initialization. The protocol is initiated by setting up the
variables used in the experiment. With the exception of a
few new variables, the process is identical to the CGKA INIT
query. The identity states γ[ID] are instantiated with a call to
CGKA init for a set of IDs. Like CGKA, every epoch (epoch[])
has an update leader (lead[]), update secret (I[]), and group
members (Group[]). Because users can issue multiple up-
dates and other actions (e.g. add/remove) within a single
epoch, a counter (ctr[]) is used to track the actions for the up-
date reconciliation process via the control messages (T) which

5

ExpX−GCGKA
Π−A (λ):

1 : b←$ {0,1}
2 : ∀ID : γ[ID]← init(ID)

3 : ∀ID : E[ID],G[ID]← ε

4 : lead[·], I[·],Group[·],S[·]← ε

5 : epoch[·],ctr[·]← 0

6 : D[·]← true

7 : chall[·]· ← false

8 : Pub M[·]← ε

GCGKA-EnterGship(IDE , IDG)

1 : t← epoch[IDE]

2 : req (t > 0∧ (IDE , IDG) ∈Group[t])
3 : req (E[IDE] = E[IDG] = ε)

4 : req (G[IDE] = G[IDE] = ε)

5 : idE ,γ[idE], idG,γ[idG]

6 : ← enterGship(γ[IDE],γ[IDG])

7 : E[IDE]← idE

8 : G[IDG]← idG

9 : S[idE]← (γ[idE],γ[IDE])

10 : S[idG]← (γ[idG],γ[IDG])

GCGKA-ExitGship(idE , idG)

1 : req getGuardian[idE] = idG

2 : req getEdge[idG] = idE

3 : IDE ← anchor(idE)

4 : IDG← anchor(idG)

5 : t← epoch[IDE]

6 : req (E[IDE] = idE)∧ (G[IDG] = idG)

7 : (γ[IDE],T)← exitGship(idE ,S[idE], idG)

8 : G[IDG],E[IDE]← ε

9 : S[idE],S[idG]← ε

10 : c← ++ctr[IDE]

11 : for ID′′ ∈Group[t] :

12 : M[t +1, IDE , ID
′′,c]← T

13 : if T = removed(t +1, IDG) :

14 : Group[t +1, IDE ,c]←Group[t]\{IDG}

GCGKA-ToggleLimitedMode(idE):
1 : idG← getGuardian[idE]

2 : req (idG ̸= ε)∧ (getEdge[idG] = idE)

3 : if mode[idE] = isOnline :

4 : enterLimitedMode(idE , idG)

5 : else
6 : exitLimitedMode(idE , idG)

createGroup(ID0, ID1, · · · , IDn)

1 : t← epoch[ID]

2 : req t = 0

3 : c← ++ctr[ID0]

4 : (γ[ID0],Welcome)

5 : ← create(γ[ID0], ID1, · · · , IDn)

6 : for i = 0, · · ·n
7 : M[t +1, ID0, IDi,c]←Welcome

8 : Group[t +1, ID,c]←{ID0, ID1, · · · , IDn}

AddUser(ID, ID′)
1 : t← epoch[ID]

2 : req t > 0∧ ID′ /∈Group[t]
3 : req E[ID′] = G[ID′] = ε

4 : c← ++ctr[ID]

5 : (γ[ID],Welcome,T)← add(γ[ID], ID′)

6 : M[t +1, ID, ID′,c]← (Welcome,T)

7 : for ID′′ ∈Group[t] :

8 : M[t +1, ID, ID′′,c]← T

9 : Group[t +1, ID,c]←Group[t]∪{ID′}

GCGKA-Remove(ID, ID′)
1 : T1,T2← ε

2 : t← epoch[ID]

3 : req t > 0∧ ID′ /∈Group[t]> 0

4 : c← ++ctr[ID]

5 : if (E[ID′] ̸= ε)∨ (G[ID′] ̸= ε) :

6 : if E[ID′] ̸= ε

7 : IDE ← ID′

8 : IDG← anchor[getGuardian[E[IDE]]]

9 : else if G[ID′] ̸= ε

10 : IDG← ID′

11 : IDE ← anchor[getEdge[G[IDG]]]

12 : γ[ID],T1,T2← removePair(γ[ID], IDE , IDG)

13 : ˆID←{IDE , IDG}
14 : E[IDE],G[IDG]← ε

15 : else :

16 : (γ[ID],T1)← rem(γ[ID], ID′)

17 : ˆID←{ID′}
18 : for ID′′ ∈Group[t] :

19 : M[t +1, ID, ID′′,c]← T1

20 : if T2 ̸= ε :

21 : M[t +1, ID, ID′′,c+1]← T2

22 : Group[t +1, ID,c]←Group[t]\{ ˆID}

23 : ctr[ID]← ctr[ID]+ || ˆID||−1

GCGKA-EdgeUpdate(idE)

1 : IDE ← anchor[idE]

2 : req E[IDG] = idE

3 : req mode[idE] = isOnline

4 : req getGuardian[idE] ̸= ε

5 : t← epoch[IDE]

6 : req t > 0

7 : S[idE],T ← updateE(idE ,S[idE])

8 : if T ∈ TCGKA

9 : c← ++ctr[IDE]

10 : for ID′′ ∈Group[t]
11 : M[t +1, IDE , ID

′′,c]← T

12 : Group[t +1, IDE ,c]←Group[t]
13 : else
14 : c← ++ctr[idE]

15 : M[t, idE , idE ,c]← T

16 : M[t, idE , idG,c]← T

GCGKA-GuardianUpdate(idG)

1 : IDG← anchor[idG]

2 : req G[IDG] = idG

3 : req mode[idG] = isOnline

4 : t← epoch[IDG]

5 : req t > 0

6 : S[idG],T ← updateG(idG,S[idG])

7 : if T ∈ TCGKA

8 : c← ++ctr[IDG]

9 : for ID′′ ∈Group[t]
10 : M[t +1, IDG, ID

′′,c]← T

11 : Group[t +1, IDG,c]←Group[t]
12 : else
13 : c← ++ctr[idG]

14 : M[t, idG, idE ,c]← T

15 : M[t, idG, idG,c]← T

SendUpdate(ID)
1 : req E[ID] = G[ID] = ε

2 : t← epoch[ID]

3 : req t > 0

4 : (γ[ID],T)← upd(γ[ID])

5 : for ID′′ ∈Group[t]
6 : M[t +1, ID, ID′′,c]← T

7 : Group[t +1, ID,c]←Group[t]

no-del(ι = (ID∨ id))
1 : D[ι]← false

Figure 2: Oracles for the GCGKA security game for a scheme GCGKA = (enterGuardianship, exitGuardianship, removePair,
enterSilentMode, exitSilentMode, updateED, updateGuard, processGP). Gray text indicates CGKA experiment syntax and black
indicated new or altered components. Algorithms and sets are indicated in bold font and variables in italics.

6

processUpd(t, ι, ι′,c)
1 : req ι = (ID∨ id) and ι

′ = (ID′ ∨ id′)

2 : req lead[t] ∈ {ε,(ID,c)}∧
3 : (t = epoch[ι′]+1∨added(t, ι, ι′,c))
4 : T ←M[t, ι, ι′,c]

5 : I← ε

6 : if (E[ι′] = G[ι′] = ε) :

7 : (γ[ι′], I)← proc(γ[ι′],T)

8 : else :

9 : if (E[ι′] /∈ {ε,⊥})∧ (G[ι] ̸=⊥)
10 : id′′← E[ι′]
11 : else if (G[ι′] /∈ {ε,⊥})∧ (E[ι] ̸=⊥)
12 : id′′←G[ι′]

13 : else
14 : req (ι = getEdge[ι′])∨ (ι = getGuardian[ι′])

15 : id′′← ι
′

16 : S[id′′], I← processUpdGE(S[id′′],T)
17 : if lead[t] = ε∧ ι = ID :

18 : lead[t]← (ID,c)

19 : I[t]← I

20 : Group[t]←Group[t, ID,c]
21 : else if I[t] ̸= I :

22 : win
23 : if removed(t, ID′)
24 : epoch[ID′]←−1

25 : else :

26 : epoch[ID′]++

27 : ctr[ι′]← 0

RevealUpdSecret(t)
1 : req I[t] /∈ {ε,⊥}∧¬chall[t]

2 : chall[t]← true

3 : return I[t]

Corrupt(ι = (ID∨ id))
1 : if ι = id

2 : return S[id]

3 : else if E[ID] = G[ID] = ε

4 : return γ[ID]

5 : return ε

Challenge(t)
1 : req I[t] /∈ {ε,⊥}∧¬chall[t]

2 : I0← I[t]

3 : I1←$ K
4 : chall[t]← True

5 : return Ib

Figure 3: GCGKA experiment continued.

for ι = ID∨ id, let
QGPCS(ι) = {GCGKA-GuardianUpdate(getGuardian[ι])}
QFS,PCS(ι) = {GCGKA-EdgeUpdate(ι),GCGKA-Remove(∗,anchor[ι]),

GCGKA-Remove(∗, ι),SendUpdate(ι),GCGKA-ExitGship(ι,∗)}
QFS,PCS,GPCS(ι) = QGPCS ∪QFS,PCS.

(a) The list of experiment queries the different security notions
allow.

X-safe(q1, · · · ,qq)

1 : for (i, j) s.t. qi = Corrupt(ι) where ι = (ID∨ id) and q j = chall(t∗) for some t∗

2 : if q2e(qi)≤ t∗ and ∄k s.t. 0 < q2e(qi)< q2e(qk)≤ t∗ and

3 : (qk ∈ QX)∨ (ι = idG ∧ (qk ∈ QGPCS))

4 : return 0

5 : if q2e(qi)> t∗ and ∃k s.t. q2e(qk)≤ t∗ and qk = no-del(ι)

6 : return 0

7 : return 1

(b) Safety predicate, where X ∈ {[FS,PCS], [FS,PCS,GPCS]}.
Figure 4: X-safe adapted from [7], prevents trivial attacks by an attacker to compute the update secret in a challenge epoch t∗

using the state of a party ι in some epoch t and the control messages observed on the network. This occurs when an ι stops
updating before epoch t∗ and is corrupted afterwards or when ι has not performed an update or is removed before epoch t∗. The
function q2e(q) returns the epoch corresponding to a query q.

7

are stored in M[]. Like in CGKA, Group[] tracks the underly-
ing CGKA group members (including anchors) while E[] and
G[] specifically keep track of edge and guardian members,
respectively.

Creation and Maintenance. To create a edge-guardian
pair, first a call to createGroup must be made to establish the
underlying group. Then, adding, removing, and updating can
be accomplished through specific queries. For correctness,
checks are made to ensure only valid members of Group[]
can be added as edges, duplicate adds and removes cannot
occur, and only edges can add or remove valid guardians.

Committing Updates. Similar to CGKA, all group oper-
ations are published to M[] via a control message T which
is accessible to the adversary in a read-only mode and is
used by the server to adjudicate the order of commits. M[]
is indexed on the epoch of the intended operation, the ID of
the caller, the ID of the affected member, and the counter
value. Since control messages can, in some constructions, be
between the edge and guardian as non-CGKA control mes-
sages, we denote TCGKA ⊆M[] as the subset that is specific to
CGKA. (See [7, Section 3.2] for how the send-update() and
deliver() within CGKA are used to deconflict and commit
updates atomically.)

Reveal and Corrupt. Reveal follows that of CGKA func-
tionality, while corruption is allowed for guardians, edges,
and regular group members. Anchors associated to edges or
guardians are specifically disallowed – these are logical con-
structs held in memory by the edge/guardian, so we follow
real-world use where a corruption to access such state would
be via the edge or guardian. To examine the security proper-
ties of the GCGKA compared too CGKA, we need to fine tune
adversarial reveal and corruption capabilities. This is done
through modifying the safety predicate from CGKA, which
captures FS and PCS, to also capture GPCS via guardian-edge
pairs (Figure 4b).

Definition 7 (GCGKA Security). Let GCGKA be an exten-
sion of CGKA as defined in Definition 6, let Π be a GCGKA
protocol and let the adversary A be a PPT algorithm against
Π as defined in Figures 2, 3 and 4b. We define the adversarial
advantage of a A as

AdvX−GCGKA
Π−A (λ) =

∣∣∣∣Pr
[
ExpX−GCGKA

Π−A (λ)
]
− 1

2

∣∣∣∣
and say that the protocol Π is X−GCGKA-secure if
AdvGCGKA

Π−A (λ) is negligible for all A .

Win. The adversary wins the GCGKA experiment by cor-
rectly answering if the presented update key, is real or random.
The safety predicate enforces PCS, FS, and GPCS in the win
condition and denies trivial wins by returning 0 to the ad-
versary. As in CGKA, the function q2e(q) returns the epoch
corresponding to the query q. This epoch is relative to the
ι, which may be an anchor ID or guardian/edge id, used as
input to the query q. For the two trivial wins, an adversary

a) queries Corrupt for an ι in a epoch and issues a challenge
against its update secret before ι or it’s guardian makes an
update; or b) disabled key deletions for ι at some point before
the Corrupt query was issued for ι.

6 Protocol Constructions

The breadth of GCGKA variations can be seen through three
binary design decision points: whether to architect the edge-
guardian pair organically within a protocol or extended off of
it, whether the edge and guardian devices share an signing key,
and whether the edge and guardian devices share randomness.
These decisions yield the possible permutations of guardian-
edge pair designs shown Figure 5b.

We choose MLS as the CGKA basis for our protocol de-
signs, and Signal [3] as a CKA example where required. For
simplicity, we use CGKA and CKA functions to the greatest
extent possible. This also allows for clearer extrapolation to
other constructions. For the mapping of other and underlying
CGKA algorithms (init,add, rem,upd,proc) to MLS, see [7];
we assume these mappings and present the additional GCGKA
functions relying on them.

Of the eight possible combinations in Figure 5b, three are
dismissed due to incompatibility with secure group protocol
notions. In (a), having a guardian edge pair anchored on dis-
tinct nodes inside the MLS protocol with unique signing keys
but shared randomness removes all possibility of achieving
PCS: if an attacker compromises one node, it would be able
to compute any new keys that the other uses to heal the group
with. This would nullify the goal of maintaining the security
of the underlying CGKA. Next, consider (b) and (c); having
distinct anchors and shared signing keys: this combination
implies clones being allowed as group members, which in-
validates non-repudiation and the MLS invariant of unique
identities. In contrast, we do consider cases where two dif-
ferent signature keys are registered at the same anchor. The
rest of this section explores the implications of our selection
choice. Figure 5a gives a conceptual overview, while Figure 6
together with Figure 7 specifies the protocol description.

Π1 – MLS siblings Π1 is nearly a direct copy of MLS with
edge and guardian as distinct members. Recall that MLS man-
ages keys in a logical binary tree where the group members
are represented as leaf nodes and the shared session key as
the root. MLS has been shown to achieve FS and PCS for its
group members [12], but if a user is unable to update (i.e., is
in limited mode) the security of the entire group is affected
as it leaves a path from a leaf node to root unaltered [13].

This construction requires guardian and edge device to be
siblings in the MLS tree so that they share one path to the
root (see Figure 6). This way, when the edge enters limited
mode guardian-updates will directly affect their parent node
and the shared path to the root, meaning that such keys do not

8

Π1 Π2 Π3 Π4

G
(skG, pkG)

E
(skE , pkE)

G
(skG, pkG)

E
(skE , pkE)

G
$

E
$

(skA, pkA)

G
(skG, pkG)

$
E

(skE , pkE)
$

MLS

(a) Guardian GCGKA Π constructions in the context of MLS.
Π5 and Π6 are described below.

Shared Anchor Shared (sk, pk) Shared $ Π

0 0 0 1
0 0 1 (a)
0 1 0 (b)
0 1 1 (c)
1 0 0 2 / 6
1 0 1 4a/b
1 1 0 5
1 1 1 3a/b

(b) Truth table of design choices.

Figure 5: GCGKA protocol options. Π3 and Π4 are separated into a/b cases depending on if the shared randomness is kept in
active memory (e.g., part of γ[idE]) or pre-installed in a secure module as may be done with signature keys. Options 5 and 6
mirror 3 and 4 except with distinct random tapes (this necessitates an external channel between G and E for both 5 and 6). An
anchor refers to the underlying CGKA protocol’s group member’s logical node. A signature, (sk, pk), refers to the signing keys
belonging to that node. Randomness, $, refers to the seed used in key generation (see Remark 2).

stay stagnant. Generally, this option doesn’t achieve GPCS
since only edge removal or self-update can heal the group
(i.e. CGKA PCS). While the sibling construct provides a
freshness benefit, the main security goals we consider in this
option (FS, PCS, GPCS) apply equally to a case where the
edge and guardian nodes are not siblings in the MLS tree. Use
of updateable public key encryption (UPKE) could improve
forward secrecy [23], but this is outside the scope of this work.

Π2 – Message Forwarding In Π2, the guardian is an MLS
group member, with a separate forwarding channel main-
tained between the edge and guardian. We use a CKA channel
for simplicity in the shown construction. A notable considera-
tion for Π2 is that not only is the guardian effectively set to
man-in-the-middle the connection between the edge and the
group, but it is impossible for the edge to remove the guardian
to regain underlying group control. Observe, exitGship re-
lies on edge action to terminate the CKA channel with the
guardian. This is an inherent issue to Π2– any direct link be-
tween the edge and main group would change the protocol to
function like e.g., Π6.

Π3 – Shared Signature keys, Shared Rand. Both the
guardian and the edge share control of one anchor in this
variant. Furthermore, we allow the edge to be aware of the
guardian’s internal choices through having shared random-
ness. We split Π3 into two cases with separate constructions
based on how the randomness is shared: Π3a for a copy into
active memory and Π3b for a copy placed in secure hardware.

Remark 2. If true random number generators are used sepa-
rately in edge and guardian devices, a shared random tape
is not possible. Therefore, instead a seed is shared between
edge and guardian. The seed is updated in a deterministic
manner. Without the knowledge of the seed, key generation
will look random, while access to the seed on either device

implies compromise of both.

Π3a – Unprotected Shared Randomness In this subvari-
ant, the shared randomness is copied into memory that is
accessible to the adversary under a Corrupt(ID) query. Once
an adversary corrupts the edge or guardian, both are corrupted
since the randomness is a direct duplication. Furthermore, the
randomness, now in adversarial possession, is the same ran-
domness used to generate new keys, the group cannot obtain
PCS. PCS can only be achieved through removal of both the
edge and guardian. GPCS can never be attained.

Π3b – Protected Shared Randomness In this subvariant,
the shared randomness is copied into a secure hardware com-
ponent and is kept separate from the active state. This is
analogous to the protections placed on signature keys. Such
memory is not accessible to the adversary under a Corrupt(ID)
query. If an adversary were able to corrupt the state of the
edge or guardian, they do not get access to the randomness.
Thus, PCS is achievable through a normal update process.
Furthermore, GPCS is achieved since the guardian can issue
an update to the rest of the group that the corrupted edge can
generate locally. Since the update secret keying material does
not need to be sent to the edge, an adversary is unable to gain
access to the new group key even though they have a copy of
the local state S[idE]. Thus, through automated guardian key
updates, PCS can be achieved even if the corrupted edge is in
limited mode.

Π4 – Distinct Signature Keys, Shared Randomness In-
stead of allowing end users in the underlying protocol to reg-
ister only a single authentication key pair, we allow multiple
signing keys for a single CGKA node. By having the guardian
and the edge device possess two distinct but registered signing
keys the edge-guardian impersonation behaviour seen in Π3 is
impossible. However, this does require that CGKA members
(in this case, MLS members), can associate more than one
signing key to a given leaf member node.

9

enterGship(γ[IDE],γ[IDG])

1 : (idE ,anchor,mode,getGuardian)← (IDE , IDE , isOnline, idG)

2 : (idG,anchor,mode,getEdge)← (IDG, IDG, isOffline, idE)

3 : if IDE sibling of IDG

4 : return idE ,γ[idE], idG,γ[idG]

5 : return ⊥

exitGship(idE ,γ[idE], idG)

1 : γ[IDE],T ← rem(γ[IDE], idG)

2 : return γ[IDE],T

enterLimitedMode(idE , idG)

1 : req (getGuardian[idE] = idG)∧ (getEdge[idG] = getEdge)

2 : mode[idE]← isOffline

3 : mode[idG← isOnline

exitLimitedMode (idE , idG)

1 : req (getGuardian[idE] = idG)∧ (getEdge[idG] = getEdge)

2 : mode[idE]← isOnline

3 : mode[idG← isOffline

removePair(γ[IDl], IDE , IDG)

1 : γ[IDl],T1← rem(γ[IDl], IDE)

2 : γ[IDl],T2← rem(γ[IDl], IDG)

3 : return γ[IDl],T1,T2

updateE(idE ,γ[idE])

1 : req mode[idE] = isOnline

2 : γ[IDE],T ← upd(γ[IDE])

3 : return γ[idE],T

updateG (idG,γ[idG])

1 : req idG.isOnline

2 : γ[IDG],T ← upd(γ[IDG])

3 : return γ[idG],T

processUpdGE(γ[id],T)
1 : γ[ID], I← proc(γ[ID],T)

2 : return (γ[ID], I)

Figure 6: Construction of the additional GCGKA Π1 algorithms, including algorithms for entering and exiting guardianship
mode (enterGship),exitGship), entering and exiting limited mode (enterLimitedMode, exitLimitedMode), removing an
edge-guardian pair (removePair), updating an edge or guardian (updateE, updateG), and processing a received update
(processUpdGE).

By expanding the edge and guardian id to include the
new signing keys the remaining protocol is identical to that
presented in Figure 7 Π3a and Π3b. The new edge id and
guardian with anchor ID will now be idE = (A, ID, ·,skA) and
idG = (B, ID, ·,skB). The discussion about security levels from
the previous sections remain.

Π5 – Shared Anchor and Signature key, Distinct Rand.
In Π5, a guardian and edge share an anchor and signature

key pair, as in Π3. Unlike Π3, however, the guardian and
edge retain distinct individual states and randomness. This
necessitates a separate, non-CGKA channel to be maintained
between them, similar to Π2, to share update information.

This option limits the fallout risk from edge compromise as
an adversary does not also automatically obtain the guardian
state. Separation in to unprotected and protected random-
ness is unnecessary since distinct random tapes mean that
both devices can use random number generators. GPCS is
impossible, however, for the same reason. PCS and FS are
maintained. If a signature key is compromised, then both the
edge and guardian can be impersonated. Refer to Figure 7 for
the construction.

Π6 – Shared Anchor, Distinct Signature Key and Rand.
Π6 mirrors Π4 except that distinct random tapes are used. As
in Π5, this solves issues relating to secure storage of a shared

random tape, but also necessitates a separate channel between
G and E. In our construction, this is a CKA channel.

7 Analysis

Given the above insights we can summarize overall trade-offs
among the proposed options. The first step is to show that all
the protocols are GCGKA protocols, i.e. they behave according
to Definition 6 and fulfill the four mandatory requirements:
correctness, privacy, FS, PCS.

Theorem 1. [FS and PCS Security] Consider Πi, i ∈
{1,2,3b,4b,5,6}. Then Πi is [FS,PCS]-GCGKA-secure
secure under the CGKA security of the CGKA and the
CKA security of the CKA. That is, for any PPT algo-
rithm A against the [FS,PCS]-GCGKA security experiment,
Adv

[FS,PCS]−GCGKA
Π−A (λ) is negligible.

Theorem 2. [GPCS Security] The protocols Π3b and Π4b are
[FS,PCS,GPCS]-GCGKA-secure under the CGKA security
of the CGKA and the CKA security of the CKA. That is, for
any PPT algorithm A against the [FS,PCS,GPCS]-GCGKA

security experiment, Adv[FS,PCS,GPCS]−GCGKA
Π−A (λ) is negligible.

Due to space constraints, the proofs for Theorem 1 and
Theorem 2 can be found in Appendix A.

10

enterGship(γ[ID],γ[ID])

1 : k←$ K
2 : if Π = Π2∨Π5∨Π6

3 : γ
A← CKA-Init-A(k)

4 : γ
B← CKA-Init-B(k)

5 : else

6 : γ
A,γB← ε

7 : (idE ,anchor,mode,getGuardian)← (A, ID, isOnline, idG)

8 : (idG,anchor,mode,getEdge)← (B, ID, isOffline, idE)

9 : if Π = Π2

10 : S[idE]← ((γA,k),ε)

11 : else

12 : S[idE]← ((γA,k),γ[ID])

13 : S[idG]← ((γB,k),γ[ID])

14 : return idE ,(γ
A,k), idG,(γ

B,k)

exitGship(idE ,S[idE], idG)

1 : (γ[idE],γ[IDE])← S[idE]

2 : req getGuardian[idE] = idG

3 : req getEdge[idG] = idE

4 : req anchor[idG] = anchor[idE]

5 : if Π = Π2

6 : γ[IDE],T ← (⊥,⊥)
7 : else
8 : γ[IDE],T ← rem(γ[IDE], IDE)

9 : S[idE]← (γ[idE],γ[IDE])

10 : return γ[IDE],T

enterLimitedMode(idE , idG)

1 : req (getGuardian[idE] = idG)∧ (getEdge[idG] = getEdge)

2 : mode[idE]← isOffline

3 : mode[idG]← isOnline

exitLimitedMode (idE , idG)

1 : req (getGuardian[idE] = idG)∧ (getEdge[idG] = getEdge)

2 : mode[idE]← isOnline

3 : mode[idG]← isOffline

removePair(γ[IDl], ID, ID)

1 : γ[IDl],T1← rem(γ[IDl], ID)

2 : return γ[ID],T1,ε

updateE(idE ,S[idE])

1 : req mode[idE] = isOnline

2 : ((γ,k)),γ[ID])← S[idE]

3 : if Π ̸= Π2

4 : (γ[ID],T2)← upd(γ[ID];k)

5 : if Π = Π3∨Π4

6 : T1← KDF(k,cntrl)

7 : k← KDF(k)

8 : else if Π = Π2∨Π5∨Π6

9 : (γ,T1,k)←$ CKA-S(γ)

10 : if Π = Π2

11 : S[idE]← ((γ,k),ε), T2← ε

12 : else
13 : S[idE]← ((γ,k),γ[ID])

14 : return S[idE],(T1,T2)

updateG(idG,S[idG])

1 : req mode[idG] = isOnline

2 : ((γ,k),γ[ID])← S[idG]

3 : (γ[ID],T2)← upd(γ[ID];k)

4 : if Π = Π3∨Π4

5 : T1← KDF(k,cntrl)

6 : k← KDF(k)

7 : else if Π = Π2∨Π5∨Π6

8 : (γ,T1,k)←$ CKA-S(γ)

9 : S[idG]← ((γ,k),γ[ID])

10 : return (S[idG],(T1,T2)

processUpdGE(S[id],T)

1 : ((γ,k),γ[ID])← S[id]

2 : (T1,T2)← T

3 : if Π = Π3∨Π4

4 : req T1 = KDF(k,cntrl)

5 : if Π = Π3∨Π4∨Π5∨Π6

6 : γ[ID], I← proc(γ[ID],T2;k)

7 : if Π = Π3∨Π4

8 : k← KDF(k)

9 : S[id]← ((γ,k),γ[ID])

10 : else if Π = (Π5∨Π6)∨ (Π = Π2∧ (id = idG))

11 : (γ,k)← CKA-R(γ,T1)

12 : S[id]← ((γ,k),γ[ID])

13 : else if Π = Π2∧ (id = idE)

14 : (γ,k)← CKA-R(γ,T1)

15 : S[id]← ((γ,k),ε), I← ε

16 : return (S[id], I)

Figure 7: Constructions for the additional GCGKA Π2, Π3 and Π5 algorithms. Π3a and Π3b are differentiated in the storage
protection of k. Furthermore, this construction covers Π4 and Π6 as Π3 and Π5 resp., when id expanded to idE = (A, ID, ·,skA)
and idG = (B, ID, ·,skB) for edge and guardian.

11

Theorem 1 forms a baseline check that the guardianship
introduction has not affected the underlying security of the
CGKA for the edge. As noted, Π3a and Π4a do not pass this
check, while in Π2 achieves FS and PCS only to the extent
of the CKA channel between the edge and guardian – the
edge is completely outside the FS and PCS scope of the group
protocol. Theorem 2 meanwhile demonstrates the viability
of having the guardian issue updates on behalf of the edge.
To achieve GPCS, a core assumption is that the shared ran-
domness can be installed in protected hardware in the same
way that long-term signing keys are, and are therefore out
of scope of a Corrupt query. Thus, while GPCS is fundamen-
tally a cryptographic notion, achieving it relies on various
architectural decisions.

8 Architectural comparison

Security considerations fall into two categories: protocol guar-
antees which can be analyzed using provable security, and
properties that are affected based on architectural choices.
Architectural questions extend beyond security and into reli-
ability and usability within the use environment constraints.
The DS used for message transport may further influence the
properties that are achievable. A summary of the architectural-
related properties associated with each protocol is shown in
Table 1. Their associated overhead costs are shown in Table 2.

Connectivity: In the edge-guardian scenario, it is assumed
that the edge may be in limited/receive-only mode for ex-
tended periods of time. During that time, it is expected that
the guardian can provide updates – this, however, raises the
question of whether the guardian must be online as a func-
tionality requirement.

With the exception of Π2 none of the proposed protocols
require both an online guardian and edge device to function.
In the case of Π2, the edge is entirely dependent on the reli-
able connectivity of the guardian. If, e.g., the user is traveling
with the edge device and left the guardian in a secure location
at home, this could come with network delays as the com-
munication must route through the guardian. Also in Π2 it
is impossible for the edge device to participate in the group
independently of the guardian even if online.

Guardian Removal: Device removal has differing effects
across the protocol options, meaning that exitGship results in
differing behaviors. In Π1, a guardian can be removed from
the group without affecting its edge. The same holds for Π4
and Π6. In contrast, removal of the guardian in Π2, Π3, or
Π5 will necessarily incur the removal of the edge. For Π2
the guardian is the gateway to the group for the edge while
in Π3 and Π5 the guardian and edge share a signing key –
thus removal of the signing key identity automatically incurs
removal of the edge.

If an attempt is made in Π3a, Π3b, or Π5 to remove a
guardian while maintaining the edge’s access to the group, the
guardian will still be able to decrypt messages in the case of

either Π3a or Π3b, and can impersonate an update and regain
access while locking out the edge in the case of Π5.

Traceability: In some protocols, other group members may
be aware of the guardianship and can trace the online/offline
status of the guardian or limited mode for the edge device. In
other protocols, the DS must have knowledge.

In the case of Π1, Π4 and Π6 the edge and guardian have
separate signature keys used when preforming an update into
the MLS group. As such, any group member will be able to
differentiate between edge and guardian, and thus determine
the operational mode in play.

In the remaining cases signature keys are identical for both
guardian and edge. Thus an arbitrary group member will not
be able to determine which of the two entities is online.

The distribution service (DS), however, being used to de-
liver data between members in the correct order, could trace
the edge/guardian relationship and online/offline status – if
a single DS is used. Under Π2 it is possible to implement
the channel between the edge and guardian using a separate
DS from the CGKA, as no coordination with the CGKA up-
dates is necessary. In the case of Π3 and Π5, the DS must
have awareness of the edge/guardian pairing in order to de-
liver messages. It may also be aware of online/offline statuses.
This is dependent on a push or pull design of the DS. The DS
must be able to distinguish between the edge and guardian in
order to send them both messages in a push context, whereas
the edge-guardian relationship can be more obscured to the
DS in a pull context.

As a core group member, it is not a requirement that the
DS is aware of the guardian existence or status; however, a
lack of awareness implies that the guardian is privy to all
application messages. In other words, either the DS delivers
messages to the guardian based on activity status, or the DS
always delivers messages to the guardian.

Extensibility: A natural question on guardianship is the
extensibility to place multiple edge devices with a single
guardian. While we do not model this under the GCGKA
experiment, it is not unreasonable to consider the option. Π1
loses the sibling connection if further edges are added. Π2
can easily be extended. Likewise, Π3, Π4, Π5, and Π6 can
have further edges added to the anchor with a single guardian.

There are security costs to some such arrangements – in Π3
and Π4, for example, the same random tape would necessarily
be shared among all such edge devices as well as the guardian,
creating more opportunity for compromise. In the case of Π3a,
Π4a, where the shared randomness is kept in active memory,
this is especially unsafe. Even in Π3b and Π4b, where the
shared randomness is kept in protective memory, any one
edge is still at risk from compromise of another as the same
assumption do not apply to edges as guardians (i.e., that the
guardian is kept in a secure location). In contrast, Π1 does not
present such hazards among edge devices.

Impersonation Risk: There are a number of straight-
forward observations that can be made on the comparative

12

Feature Π1 Π2 Π3a Π3b Π4a Π4b Π5 Π6
Extensible to multiple edges
Guardian can be offline
Guardian removal without edge
Traceability of guardianship
Low impersonation risk
FS
PCS
GPCS

Table 1: Architectural feature comparison. Green circles mean "Supported", Unfilled circles mean "Unsupported", and half-
colored circles mean "It Depends". Depending on use case, different features may be desirable.

Notable Changes Π1 Π2 Π3a Π3b Π4a Π4b Π5 Π6
Increased Tree Size ✗
Preloaded, Secure Storage of Shared Random Seed ✗ ✗ ✗ ✗
Additional Channel Maintenance ✗ ✗ ✗
Additional Per-Device Signature Key in MLS ✗ ✗ ✗

Table 2: Summary of changes from baseline MLS across various constructions.

risk of a guardian impersonating an edge device. These are in
part dependent on whether application messages are signed
or only group control messages – a choice dependent on the
underlying CGKE, e.g., MLS or other.

In Π1, Π4a, Π4b, and Π6, the edge device and guardian
device will have distinct signing keys and will not have any
knowledge of the others keying material. This assures non-
repudiation. Impersonation detection by other group members,
as well as by the edge and guardian device may therefore be
possible. This is true for both tree updates as well as regular
message transmission.

For Π2, Π3a, Π3b, and Π5, the guardian possesses a copy
of the edge’s signing key or acts as the anchor relay, and can
therefore impersonate the edge device – in fact, impersonation
is a requirement for normal functionality. This means that
guardianship is opaque to other group members but comes at
the cost of non-repudiation (for Π3a, Π3b, and Π5) as well as
an increased reliance on the honesty/security of the guardian.

Costs: Each protocol presented has some additional cost
pertaining to storage, computation, or additional hardware.
Table 2 gives an overview of notable changes based on each
protocol. Further calculation can show costs for specific cases.
These should be taken into account when compared to possi-
ble improvements, as seen from Table 1.

With the exception of Π1, all the other proposed protocols
use the same anchor for both guardian and edge device. This
means that in order for Π1 to function, an additional MLS
leaf node needs to be added per edge device; resulting in
a greater tree of depth. Since the depth of the MLS tree di-
rectly correlates to the number of encryptions and decryptions
needed to be preformed for each update, Π1 would result in
one encryption/decryption per update.

For protocols Π4 and Π6 the tree size does not need to be al-
tered but an extension change to MLS is required. Specifically,
the allowance of multiple authentication keys to a singular
MLS member is required. Π4 additionally needs extra key
management to load the shared seed, a requirement also found
in Π3. In Π3b and Π4b, secure hardware requirements also
needs to be met. While need for shared randomness is not
found in Π6, it still requires additional key management in or-
der to keep a separate communication channel between edge
and guardian. This similarly applies to Π2 and Π5.

9 Conclusion

While prior work has considered PCS to be uniquely tied to
the ability for a compromised node to issue key updates, we
have shown that it is possible for a designated third party to
perform this function on the behalf of vulnerable members
through GPCS. Achieving GPCS is non-trivial. Both it and
the overall security of the protocol are highly dependent on a
number of system architectural choices, and such decisions
can introduce trade-offs.

As shown in Section 7, among the design space options,
only Π3b and Π4b achieve GPCS security. Given the options
listed, Π4b nominally demonstrates the best selection of prop-
erties. However, given the full discussion provided in this
paper, one can note that this is context, security goal, and
environment dependent.

13

References

[1] Martin R. Albrecht, Sofia Celi, Benjamin Dowling, and
Daniel Jones. Practically-exploitable cryptographic vul-
nerabilities in matrix. Cryptology ePrint Archive, Paper
2023/485, 2023. https://eprint.iacr.org/2023/
485.

[2] Martin R. Albrecht, Lenka Mareková, Kenneth G. Pa-
terson, and Igors Stepanovs. Four attacks and a proof
for telegram. In 2022 IEEE Symposium on Security and
Privacy (SP), pages 87–106, 2022.

[3] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The
double ratchet: Security notions, proofs, and modular-
ization for the signal protocol. In Yuval Ishai and Vin-
cent Rijmen, editors, Advances in Cryptology – EURO-
CRYPT 2019, pages 129–158, Cham, 2019. Springer
International Publishing.

[4] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yian-
nis Tselekounis. Security analysis and improvements
for the ietf mls standard for group messaging. In Daniele
Micciancio and Thomas Ristenpart, editors, Advances
in Cryptology – CRYPTO 2020, pages 248–277, Cham,
2020. Springer International Publishing.

[5] Joël Alwen, Daniel Jost, and Marta Mularczyk. On
the insider security of mls. In Yevgeniy Dodis and
Thomas Shrimpton, editors, Advances in Cryptology
– CRYPTO 2022, pages 34–68, Cham, 2022. Springer
Nature Switzerland.

[6] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The
double ratchet: Security notions, proofs, and modulariza-
tion for the signal protocol. Cryptology ePrint Archive,
Paper 2018/1037, 2018. https://eprint.iacr.org/
2018/1037.

[7] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yian-
nis Tselekounis. Security Analysis and Improvements
for the IETF MLS Standard for Group Messaging, pages
248–277. 08 2020.

[8] Alwen, Joël and Sandro Coretti and Yevgeniy Dodis
and Yiannis Tselekounis. Modular Design of Secure
Group Messaging Protocols and the Security of MLS.
In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’21,
page 1463–1483, 2021.

[9] Richard Barnes, Benjamin Beurdouche, Raphael Robert,
Jon Millican, Emad Omara, and Katriel Cohn-Gordon.
The Messaging Layer Security (MLS) Protocol. RFC
9420, July 2023.

[10] Richard Barnes, Jon Millican, Emad Omara, Katriel
Cohn-Gordon, and Raphael Robert. The Messaging
Layer Security (MLS) Protocol. Internet-Draft
draft-ietf-mls-protocol-20, IETF Secretariat, May
2023. https://datatracker.ietf.org/doc/
draft-ietf-mls-protocol/.

[11] Corina-Elena Bogos, Răzvan Mocanu, and Emil Simion.
A security analysis comparison between signal, what-
sapp and telegram. Cryptology ePrint Archive, Paper
2023/071, 2023. https://eprint.iacr.org/2023/
071.

[12] Christina Brzuska, Eric Cornelissen, and Konrad Ko-
hbrok. Cryptographic security of the mls rfc, draft 11.
IACR Cryptol. ePrint Arch., 2021:137, 2021.

[13] Konrad Kohbrok Cas Cremers, Britta Hale. The com-
plexities of healing in secure group messaging: Why
cross-group effects matter. USENIX, pages 1847–1864,
2021.

[14] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt,
and D. Stebila. A formal security analysis of the signal
messaging protocol. In 2017 IEEE European Sympo-
sium on Security and Privacy, (Euro S&P), pages 451–
466, 2017.

[15] Benjamin Dowling and Britta Hale. Secure Messaging
Authentication against Active Man-in-the-Middle At-
tacks. In 2021 IEEE European Symposium on Security
and Privacy, (Euro S&P), 2021.

[16] Benjamin Dowling and Britta Hale. Authenticated con-
tinuous key agreement: Active mitm detection and pre-
vention. Cryptology ePrint Archive, Paper 2023/228,
2023. https://eprint.iacr.org/2023/228.

[17] F. Betül Durak and Serge Vaudenay. Bidirectional asyn-
chronous ratcheted key agreement without key-update
primitives. IACR Cryptol. ePrint Arch., 2018:889, 2018.

[18] S. Frankel and S. Krishnan. IP Security (IPsec) and
Internet Key Exchange (IKE) Document Roadmap.
https://www.rfc-editor.org/rfc/rfc6071,
February 2011.

[19] Britta Hale and Chelsea Komlo. On end-to-end encryp-
tion. Cryptology ePrint Archive, Paper 2022/449, 2022.
https://eprint.iacr.org/2022/449.

[20] J. Iyengar and M. Thomson. QUIC: A UDP-Based
Multiplexed and Secure Transport, RFC 9000. https:
//datatracker.ietf.org/doc/rfc9000/, February
2022.

[21] Daniel Jost, Ueli Maurer, and Marta Mularczyk. Effi-
cient ratcheting: Almost-optimal guarantees for secure

14

https://eprint.iacr.org/2023/485
https://eprint.iacr.org/2023/485
https://eprint.iacr.org/2018/1037
https://eprint.iacr.org/2018/1037
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/
https://eprint.iacr.org/2023/071
https://eprint.iacr.org/2023/071
https://eprint.iacr.org/2023/228
https://www.rfc-editor.org/rfc/rfc6071
https://eprint.iacr.org/2022/449
https://datatracker.ietf.org/doc/rfc9000/
https://datatracker.ietf.org/doc/rfc9000/

messaging. In Advances in Cryptology - EUROCRYPT
2019, volume 11476 of Lecture Notes in Computer Sci-
ence, pages 159–188. Springer, 2019.

[22] Daniel Jost, Ueli Maurer, and Marta Mularczyk. A uni-
fied and composable take on ratcheting. IACR Cryptol.
ePrint Arch., 2019:694, 2019.

[23] Konrad Kohbrok. Subject: [mls] improve fs granularity
at a cost. MLS Mailing List, Jan 2019.

[24] Hugo Krawczyk. Cryptographic extraction and key
derivation: The hkdf scheme. In Tal Rabin, editor, Ad-
vances in Cryptology – CRYPTO 2010, pages 631–648.
Springer Berlin Heidelberg, 2010.

[25] Ian Levy and Crispin Robinson. Principles for a more
informed exceptional access debate. Lawfare, November
2019.

[26] Moxie Marlinspike. Advanced cryptographic
ratcheting. https://signal.org/blog/
advanced-ratcheting/, November 2013.

[27] Moxie Marlinspike. Facebook Messenger deploys Sig-
nal Protocol for end-to-end encryption. 2016.

[28] Moxie Marlinspike and Trevor Perrin. The Signal Pro-
tocol. Technical report, Signal.org, November 2016.

[29] Sam Meredith. Apple, Google and WhatsApp con-
demn UK proposal to eavesdrop on encrypted messages.
CNBC, May 2019.

[30] Bertram Poettering and P. Rösler. Asynchronous Ratch-
eted Key Exchange. In CRYPTO, ’18, 2018.

[31] E. Rescorla. The Transport Layer Security (TLS) Pro-
tocol Version 1.3. https://tools.ietf.org/html/
rfc8446, August 2018.

[32] P. Rösler, C. Mainka, and J. Schwenk. More is less: On
the end-to-end security of group chats in signal, what-
sapp, and threema. In 2018 IEEE European Symposium
on Security and Privacy, (Euro S&P), pages 415–429,
2018.

A GCGKA Analysis

Recall the following theorems.

Theorem 1. [FS and PCS Security] Consider Πi, i ∈
{1,2,3b,4b,5,6}. Then Πi is [FS,PCS]-GCGKA-secure
secure under the CGKA security of the CGKA and the
CKA security of the CKA. That is, for any PPT algo-
rithm A against the [FS,PCS]-GCGKA security experiment,
Adv

[FS,PCS]−GCGKA
Π−A (λ) is negligible.

Theorem 2. [GPCS Security] The protocols Π3b and Π4b are
[FS,PCS,GPCS]-GCGKA-secure under the CGKA security
of the CGKA and the CKA security of the CKA. That is, for
any PPT algorithm A against the [FS,PCS,GPCS]-GCGKA

security experiment, Adv[FS,PCS,GPCS]−GCGKA
Π−A (λ) is negligible.

We provide sketch proofs for each of the different protocols.

A.1 Security Analysis of Π1

Proof Theorem 1. Since Π1 builds directly on CGKA proto-
col CGKA it follows directly from Definition 6 and Figure 6
that Π1 is a GCGKA protocol.

To show that Π1 is [FS,PCS]−GCGKA secure we need to
show that any adversary against Π1 has negligible advantage.

Let A be a PPT algorithm against Π1, Figure 6, with advan-
tage Adv

[FS,PCS]−GCGKA
Π1−A (λ). We use A to create an adversary

B1, Figure 8, against CGKA protocol CGKA with advantage
AdvCGKA

CGKA−B1
(λ) ≥ Adv

[FS,PCS]−GCGKA
Π1−A (λ). We use MLS as

CGKA, and since MLS has been shown to be CGKA se-
cure [7] meaning that the advantage of A must be negligible,
and by extension that Π1 is [FS,PCS]−GCGKA secure.

B1 against ExpCGKA
CGKA.

1 : Run an internal version of A .
2 : When A outputs b output b.

3 : if A sends a GCGKA-EnterGship(IDE , IDG) query:

4 : if IDE , IDG are group members.

5 : Record pair (IDE , IDG,true).

6 : if A sends a GCGKA-ExitGship(idE , idG) query:

7 : if (idE , idG, ·) is recorded.

8 : Send a CGKA remove(idE , idG) to ExpCGKA
CGKA.

9 : if A sends a GCGKA-ToggleLimitedMode(idE) query:

10 : if (idE , ID,x) is recorded for some id ID and boolean value x.

11 : Record (idE , ID,¬x).

12 : if A sends a GCGKA-Remove(ID, ID′) query:

13 : Send remove(ID, ID′) to ExpCGKA
CGKA.

14 : if (ID′, ID′′) or (ID′′, ID′) is recorded for some id ID′′.

15 : Send remove(ID, ID′′) to ExpCGKA
CGKA.

16 : Delete recording.

17 : if A sends a GCGKA-EdgeUpdate(idE) query:

18 : if (idE , ID,true) is recorded for some id ID.

19 : Send update(idE) to ExpCGKA
CGKA.

20 : if A sends a GCGKA-GuardianUpdate(idG) query:

21 : if (ID, idG, false) is recorded for some id ID.

22 : Send update(idG) to ExpCGKA
CGKA.

23 : for any other query A sends.

24 : Forward the query to ExpCGKA
CGKA .

25 : Forward any received/updated information returned from ExpCGKA
CGKA to A .

Figure 8: Reduction of a [FS,PCS]−GCGKA secure adversary
against Π1

When A issues a challenge, B1 will query the same chal-
lenge to ExpGCGKA

Π1
, then pass the session key back to A . Since

15

https://signal.org/blog/advanced-ratcheting/
https://signal.org/blog/advanced-ratcheting/
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446

B1 only does book-keeping before passing all the queries
made by A onto ExpCGKA

CGKA A will not be able to distinguish
the difference. A successful guess made by A will, therefore,
result in a successful guess in ExpCGKA

CGKA.
Finally, to ensure that any valid win for A is a valid win for

B1 we need to make sure that if the CGKA safety predicate
returns 1 then GCGKA safety predicate returns 1. Since we
have that X = |FS,PCS| this follows directly from definition;
[7], Figure 4b. As a result we get;

Adv
[FS,PCS]−GCGKA
Π1−A (λ)≤ AdvCGKA

CGKA−B1
(λ)< negl(λ).

A.2 Security Analysis of Π2

Proof Theorem 1. Since Π2 builds directly on CGKA proto-
col CGKA it follows directly from Definition 6 and Figure 6
that Π2 is a GCGKA protocol, the fact that an additional CKA
communication channel exist does not interfere here.

To show that Π2 is [FS,PCS]−GCGKA secure we need to
show that any adversary against Π2 has negligible advantage.
We perform one game hop, Figure 9, using an adversary B1
and then reduce the problem to an CGKA adversary B2.

G0 - G1: The game hop between G0 and G1 exchanges
the correct generation of CKA-session keys with randomly
selected values. Let B1 be and adversary that can distinguish
between G0 and G1. That means B1 is an adversary that can
determine if k is a real or random CKA session key, i.e. B1 is
an adversary against ExpCKA-PCS,t∗,∆CKA

CKA−B1
. Depending on whom

B1 challenges, edge or guardian, the key might be real or
random, meaning the two games are identical, thus we get a
factor 1

2 :

1
2
|Pr[G0]−Pr[G1]| ≤ AdvCKA-PCS

CKA−B1
(λ).

G1 - G2: Not relevant; the two games are identical.
For the final step we create an CGKA adversary B2 against

CGKA, modeled as MLS, using A against Π2 by running
an internal version of G1 and forwarding CGKA queries to
ExpCGKA

CGKA. Similar arguments for the validity of B2 against
G2 as used in the previous section gives us.

Pr[G2]≤ AdvCGKA
CGKA−B2

(λ).

As a result we get:

Adv
GCGKA−|FS,PCS|
Π2−A (λ)≤ 2AdvCKA-PCS

CKA−B1
(λ)+AdvCGKA

CGKA−B2
(λ)

A.3 Security Analysis of Π3

We will only give the proof for Π3b the proof for Π4b follows
exactly with only a different construction of the edge and
guardian id.

Proof of Theorem 2. Since Π3b builds directly on CGKA
protocol MLS it follows directly from Definition 6 and Fig-
ure 6 that Π3b is a GCGKA protocol, the fact that an additional
randomness exist and is utilized during run time does not in-
terfere here.

To show that Π3 is [FS,PCS,GPCS]−GCGKA secure we
need to show that any adversary against Π3b has negligible
advantage. We perform one game hop, Figure 9, using an
adversary B1 against KDF and then reduce the problem to a
CGKA adversary B2.

G0 - G1: Not relevant; the two games are identical.
G1 - G2: The game hop between G1 and G2 exchanges

the KDF derivation of key k with true randomness. Let B1
be and adversary that can distinguish between G1 and G2,
i.e. an adversary against real or random (ROR), and as in the
previous section only the case of update is changed leaving
us with a factor 1

2 .

1
2
|Pr[G1]−Pr[G2]| ≤ AdvROR

KDF−B1
(λ).

For the final step we create an CGKA adversary B2 against
CGKA using A against Π3b by running an internal version
of G2 and forwarding CGKA queries to ExpCGKA

CGKA.
To determine the validity of the win we are not able to rely

on the argument made in the previous sections. If forward
secrecy holds in A then it must naturally hold for B2 as old
randomness and keys are deleted after session. The problem
occurs with PCS and GPCS; if A reveals the state of an edge
or a guardian and the new state and by extension group key
is created deterministically from the previous state PCS will
not be achievable. This is the case for Π3a (Π4a). However if
the randomness used for deriving the next state/key is kept
separate and secure, then after one update preformed by the
revealed entity will result in fresh randomness, in other words
PCS is achieved. The latter scenario is that presented in Π3b
(Π4b).

Similarly if an edge is corrupted and then the guardian
updates, new randomness will be introduced as long as the
randomness is kept separate. Meaning Π3b (Π4b) achieves
GPCS. This gives us the following advantage against G2:

Pr[G2]≤ AdvCGKA
CGKA−B2

(λ).

As a result we get:

Adv
GCGKA−|FS,PCS|
Π2−A (λ)≤ 2AdvROR

KDF−B1
(λ)+AdvCGKA

CGKA−B2
(λ).

A.4 Security Analysis of Π5 and Π6

Similarily as in Appendix A.3 we will only give the proof
for Π5 the proof for Π6 follows exactly with only a different
construction of the edge and guardian id.

16

Proof Theorem 1. Note that the one of the main differences
between Π5 and Π2 is that in the latter the edge has access to
the CGKA signing key. When the edge device is in limited
mode it will not be able to follow group actions directly but
will be reliant on the guardian forwarding messages. Only
when the edge is online is there a notable difference. In that
case the edge will update the group itself instead of relying on
the guardian to preform the action. The proof for Theorem 1
for Π5 is, therefore, as a result almost identical to the given
in Appendix A.2.

Since Π5 builds directly on the CGKA protocol MLS it
follows directly from Definition 6 and Figure 6 that Π5 is a
GCGKA protocol, the fact that an additional randomness exist
and is utilized during run time does not interfere here.

To show that Π5 is [FS,PCS]−GCGKA secure we need to
show that any adversary against Π5 has negligible advantage.
We perform one game hop, Figure 9, using an adversary B1
against CKA and then reduce the problem to an MLS adver-
sary B2.

G0 - G1: As stated earlier, the game hop between G0 and
G1 exchanges the correct generation of CKA-session keys
with randomly selected values. Let B1 be and adversary that
can distinguish between G0 and G1. That means B1 is an
adversary that can determine if k is a real or random CKA
session key

1
2
|Pr[G1]−Pr[G2]| ≤ AdvCKA-PCS

CKA−B1
(λ).

G1 - G2: Not relevant; the games are identical.
For the final step we create an CGKA adversary B2 against

MLS using A against Π5 by running an internal version of
G2 and forwarding CGKA queries to ExpCGKA

MLS .
The validity argument presented in Appendix A.1 holds

here as well.
This gives us the following advantage against G2:

Pr[G2]≤ AdvCGKA
CGKA−B1

(λ).

As a result we get:

Adv
GCGKA−|FS,PCS|
Π2−A (λ)≤ 2AdvCKA-PCS

CKA−B1
(λ)+AdvCGKA

CGKA-B2
(λ).

17

enterGship(γ[ID],γ[ID])
1 : k←$ K
2 : if Π = Π2 ∨Π5 ∨Π6

3 : γ
A← CKA-Init-A(k)

4 : γ
B← CKA-Init-B(k)

5 : else

6 : γ
A,γB← ε

7 : (idE ,anchor,mode,getGuardian)← (A, ID, isOnline, idG)

8 : (idG,anchor,mode,getEdge)← (B, ID, isOffline, idE)

9 : if Π = Π2

10 : S[idE]← ((γA,k),ε)

11 : else

12 : S[idE]← ((γA,k),γ[ID])

13 : S[idG]← ((γB,k),γ[ID])

14 : return idE ,(γ
A,k), idG,(γ

B,k)

exitGship(idE ,S[idE], idG)

1 : (γ[idE],γ[IDE])← S[idE]

2 : req getGuardian[idE] = idG

3 : req getEdge[idG] = idE

4 : req anchor[idG] = anchor[idE]

5 : if Π = Π2

6 : γ[IDE],T ← (⊥,⊥)
7 : else
8 : γ[IDE],T ← rem(γ[IDE], IDE)

9 : S[idE]← (γ[idE],γ[IDE])

10 : return γ[IDE],T

enterLimitedMode(idE , idG)

1 : req (getGuardian[idE] = idG)∧ (getEdge[idG] = getEdge)

2 : mode[idE]← isOffline

3 : mode[idG]← isOnline

exitLimitedMode (idE , idG)

1 : req (getGuardian[idE] = idG)∧ (getEdge[idG] = getEdge)

2 : mode[idE]← isOnline

3 : mode[idG]← isOffline

removePair(γ[IDl], ID, ID)
1 : γ[IDl],T1← rem(γ[IDl], ID)

2 : return γ[ID],T1,ε

updateE(idE ,S[idE])

1 : req mode[idE] = isOnline

2 : ((γ,k)),γ[ID])← S[idE]

3 : if Π ̸= Π2

4 : (γ[ID],T2)← upd(γ[ID];k)

5 : if Π = Π3 ∨Π4

6 : T1← KDF(k,cntrl)

7 : k← KDF(k)

8 : k←$ K G2

9 : else if Π = Π2 ∨Π5 ∨Π6

10 : (γ,T1,k)←$ CKA-S(γ)

11 : k←$ K G1−G2

12 : if Π = Π2

13 : S[idE]← ((γ,k),ε), T2← ε

14 : else
15 : S[idE]← ((γ,k),γ[ID])

16 : return S[idE],(T1,T2)

updateG(idG,S[idG])

1 : req mode[idG] = isOnline

2 : ((γ,k),γ[ID])← S[idG]

3 : (γ[ID],T2)← upd(γ[ID];k)

4 : if Π = Π3 ∨Π4

5 : T1← KDF(k,cntrl)

6 : k← KDF(k)

7 : k←$ K G2

8 : else if Π = Π2 ∨Π5 ∨Π6

9 : (γ,T1,k)←$ CKA-S(γ)

10 : k←$ K G1−G2

11 : S[idG]← ((γ,k),γ[ID])

12 : return (S[idG],(T1,T2)

processUpdGE(S[id],T)
1 : ((γ,k),γ[ID])← S[id]

2 : (T1,T2)← T

3 : if Π = Π3 ∨Π4

4 : req T1 = KDF(k,cntrl)

5 : if Π = Π3 ∨Π4 ∨Π5 ∨Π6

6 : γ[ID], I← proc(γ[ID],T2;k)

7 : if Π = Π3 ∨Π4

8 : k← KDF(k)

9 : S[id]← ((γ,k),γ[ID])

10 : else if Π = (Π5 ∨Π6)∨ (Π = Π2 ∧ (id = idG))

11 : (γ,k)← CKA-R(γ,T1)

12 : S[id]← ((γ,k),γ[ID])

13 : else if Π = Π2 ∧ (id = idE)

14 : (γ,k)← CKA-R(γ,T1)

15 : S[id]← ((γ,k),ε), I← ε

16 : return (S[id], I)

Figure 9: Game hops G0 and G1 used for proofs of Theorem 1 and Theorem 2 for protocols Π2- Π6.

18

	Introduction
	Motivation and Related Work
	Continuous Key Agreement and Security
	Guardianship vs Ghosts
	Contributions

	Prerequisites
	Terminology and GCGKA Definition
	Terminology
	Notation and State Variables
	GCGKA Protocol Definition

	GCGKA Security
	Security Experiment

	Protocol Constructions
	Analysis
	Architectural comparison
	Conclusion
	GCGKA Analysis
	Security Analysis of 1
	Security Analysis of 2
	Security Analysis of 3
	Security Analysis of 5 and 6

