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Abstract. In this paper, we consider to generalize NIZK by empower-
ing a prover to share a witness in a fine-grained manner with verifiers.
Roughly, the prover is able to authorize a verifier to obtain extra infor-
mation of witness, i.e., besides verifying the truth of the statement, the
verifier can additionally obtain certain function of the witness from the
accepting proof using a secret functional key provided by the prover.
To fulfill these requirements, we introduce a new primitive called non-
interactive zero-knowledge functional proofs (fNIZKs), and formalize its
security notions. We provide a generic construction of fNIZK for any NP
relation R, which enables the prover to share any function of the witness
with a verifier. For a widely-used relation about set membership proof
(implying range proof), we construct a concrete and efficient fNIZK,
through new building blocks (set membership encryption and dual inner-
product encryption), which might be of independent interest.

Keywords: non-interactive zero knowledge proof, set membership proof,
range proof, inner-product encryption

1 Introduction

The zero-knowledge (ZK) proof system [20] is an interactive protocol in which
a prover convinces a verifier of the truth of a statement without disclosing any
additional information. A non-interactive zero-knowledge (NIZK) proof [1] is a
type of ZK proof without any interactions with a verifier. NIZKs have found
numerous applications in cryptography, including but not limited to secure pub-
lic key encryption resilient against chosen-ciphertext attacks [28], group/ring
signatures [9,7], anonymous credentials [7], multi-party computations [19], and
some applications in blockchain such as privacy preserving coins (e.g., Zcash
[29]), zero knowledge virtual machine (e.g., zkEVM [34]) and blockchain-based
e-voting [22].
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In this paper, our objective is to generalize the concept of NIZK by enabling
the prover to share a witness in a fine-grained manner with verifiers. Specifically,
the prover is granted the ability to authorize a verifier to access additional infor-
mation of the witness. This means that, in addition to verifying the truth of the
statement, the verifier can also gain insights into certain functions of the witness
using a secret key provided by the prover. To address these requirements, we
propose a new type of NIZKs called non-interactive zero-knowledge functional
proofs (fNIZKs).

Our contributions. We initiate the study of fNIZK. The specific contributions
are outlined as follows:

1. We present a formal definition and security notions of non-interactive zero-
knowledge functional proof (fNIZK).

2. We provide a generic construction of fNIZK for any NP relation R, which
enables the prover to share any function of the witness with a verifier.

3. For a widely-used relation about set membership proof (implying range
proof), we construct a concrete and efficient fNIZK, called set membership
functional proof (fSMP).

Primitive of fNIZK. A fNIZK scheme consists of seven algorithms: Setup, Prove,
Verify, UKGen, FKGen, CheckKey and Extract. Roughly, (Setup,Prove,Verify) are
similar to those of NIZK, except that Prove and Verify also input the prover’s
public key, which is generated by UKGen. The prover invokes FKGen to generate a
secret key for some function (secret functional key) and distribute it to a verifier.
With this key, the verifier can call Extract to extract the function of the witness
from an accepting proof. The validity of the secret functional key can be checked
via CheckKey.

If there is no restrictions on the extracting capability of keys, then a verifier
with a secret functional key can learn a function of the witnesses in all accepting
proofs generated by the prover. To address the above issue, we introduce labels
in some of the above algorithms.

Concretely, in fNIZK, the FKGen algorithm, whose input includes a label τf,
the secret key sk of the prover, and a function f , generates a secret functional
key skf,τf . Similarly, the Prove algorithm, whose input includes a label τp, the
public key pk, and a statement-witness pair (x,w), to generate a proof π. The
extraction algorithm Extract can output f(w) from π, only if P(τp, τf) = 1 for
some predicate P.

The security properties of fNIZK contains completeness, functional knowl-
edge, adaptive soundness and zero knowledge. Soundness is similar to that of
NIZK. Other properties are listed below.

1. Completeness of fNIZK has three requirements. Firstly, any proof π gener-
ated by Prove should be verified successfully by Verify. Secondly, any nor-
mally generated secret functional key skf,τf for (f, τf) should pass the ver-
ification of CheckKey. Thirdly, for normally generated proof π (associated
with τp) and normally generated secret functional key skf,τf (for (f, τf)), if
P(τp, τf) = 1, Extract should extract f(w) from π.



Non-Interactive Zero-Knowledge Functional Proofs 3

2. The functional knowledge property requires that, in general, if the verifier
accepts a proof π associated with a label τp (here π does not have to be
normally generated), then he/she can be convinced that a function of some
witness can be extracted from the proof (with the help of the secret functional
key associated with label τf satisfying P(τp, τf) = 1).

3. The zero knowledge requires that except for the fact of the truth of the
statement and the functions (authorized by the prover) of witness, the verifier
cannot obtain any other information about the witness from an accepting
proof.

Generic construction of fNIZK. Based on NIZKs and functional encryption (FE)
[26,2], we provide a generic construction of fNIZK for any NP relation R, which
enables the prover to share any function (from a function family F) of the witness
with a verifier.

When generating a proof for a valid statement-witness pair (x,w), Prove
firstly encrypts the witness using the underlying FE scheme, then utilizes the
NIZK to prove that “(x,w) ∈ R and the well-formedness of the ciphertext”, and
finally outputs a proof including the ciphertext and the NIZK proof. Extract can
be implemented by calling the decryption of FE. We require that the underlying
FE supports function family F̂, where a function f̂ belongs to F̂, if and only if
there exists (f ∈ F, τf) satisfying

f̂(w, τp) =

{
f(w) if P(τp, τf) = 1
⊥ if P(τp, τf) = 0

The secret functional key generated by FKGen also contains a NIZK proof,
which enables the verifier to check the validity of the secret functional key, via
CheckKey.

The security properties of this fNIZK construction are derived from the prop-
erties of the FE scheme and the NIZK schemes.

Concrete and efficient construction of fSMP. Set membership proof (SMP) [5]
enables a prover to convince a verifier that a digitally committed value belongs
to a specified public set. A special case of SMP is range proof [5,4,13], where
the public set is an integer range. SMPs are widely utilized as building blocks in
various cryptographic schemes such as anonymous credentials [7,31], Zcash [29],
and e-cash [6].

Due to the extensive application value of SMPs, we provide a concrete and
efficient fNIZK for relation about set membership proof, called set membership
functional proof (fSMP).

In our fSMP, Prove outputs a proof associated with label τp to demonstrate
that the committed value w ∈ Φ where Φ is a public set, and a verifier with a
secret functional key for (ΦS , τf) can additionally check whether w ∈ ΦS or not
(where ΦS ⊂ Φ) from the proof, when P(τp, τf) = 1.

To construct a fSMP, we propose a new primitive, called set membership
encryption (SME), which is a variant of public-key encryption, including Setup,
KGen, Enc and Query. Roughly, Enc takes a set Φ, a message w ∈ Φ and a label
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τp as input to generate a ciphertext c. The query algorithm Query takes as input
c and a secret functional key for (ΦS ⊂ Φ, τf) generated by KGen, and outputs a
bit. We require that when P(τp, τf) = 1, Query outputs 1 if and only if w ∈ ΦS .
We say that a SME supports Sigma protocols, if there exists a Sigma protocol
to prove the well-formedness of a SME ciphertext. Then we show a generic
framework of constructing fSMP from a SME and a commitment scheme that
both support Sigma protocols4.

With the help of a new building block called dual inner-product encryption
(dual IPE), we present a generic construction of SME. Dual IPE is a special
two-level hierarchical IPE (2-HIPE) [24,21,25] without delegation capability. In
terms of attribute-hiding, our dual IPE requires the first-level vector to be fully
attribute-hiding, without requiring the second-level vector to be hidden.

We provide an efficient instantiation of dual IPE, utilizing the techniques in
IPE [10,33,12], based on the k-LIN assumption.

When plugging the dual IPE instantiation (k = 1) into the generic con-
struction of SME from dual IPE, we can obtain a concrete and efficient SME
supporting Sigma protocols. Further, incorporating Pedersen commitment [27],
we achieve a concrete and efficient fSMP.

Finally, we improve the size of the proof of fSMP. Note that fSMP con-
tains a NIZK proof, which derives from the Sigma protocols about the SME
and Pedersen commitment. We utilize the self-stacking technique [18] to achieve
logarithmic size of the NIZK proof, i.e., O((log l1) · poly(λ)) = O(log l1), where
l1 = |Φ| and λ is the security parameter.

Applications of fNIZK. In the following, we present examples that illustrate
the promising applications of fNIZK.

A scenario where fNIZK can work effectively is in supervision5, such as anti-
money laundering. Typically, individuals generate zero knowledge proofs for their
regular activities, such as transferring privacy-preserving cryptocurrencies. In
certain cases, the authority may authorize a specific department or institution
for supervision purposes. For instance, the authority is able to issue a secret
functional key that is only applicable to proofs generated during specific periods
(facilitated by labels). Consequently, the department or institution can obtain
the specified information from the proofs using the authorized key. This enables
them to determine whether a user has violated the rules within certain periods,
while ensuring that other information about the witnesses in the proofs remains
undisclosed.

In blockchain-based auction systems, before participation in auctions, users
lock a certain amount of coins by transferring them to the auction platform,
accompanied by a NIZK proof that verifies the validity of the coins in a zero-
knowledge manner. However, when users intend to participate in specific auc-

4 A commitment scheme supports Sigma protocols, if there exists a Sigma protocol to
prove the well-formedness of a commitment.

5 In this scenario, the authority generates a public key and a secret key, and all users
utilize the public key to generate or verify proofs. The secret functional keys are
generated by the authority, using the secret key.



Non-Interactive Zero-Knowledge Functional Proofs 5

tions, the auction platform needs to verify if the amount of coins meets the
minimum deposit requirement. Without the use of fNIZK, in order to maintain
the privacy of the exact amount of coins, users would need to generate NIZK
proofs for auctions with different minimum deposit requirements. By employing
fNIZK, users only need to generate the proof once when transferring coins to
the platform. Subsequently, they can generate secret keys associated with range
functions (e.g., greater than the minimum deposit requirement) for the auction
organizer, each time they wish to join particular auctions. The auction organizer
can extract the function about the amount to verify if the user meets the re-
quirements for participation, while keeping other information about the amount
of coins private.

Another application example is anonymous attribute-based credential [7].
Users who obtain credentials for specific attribute sets are required to show
different proofs to different verifiers (e.g., service providers) in order to demon-
strate possession of a valid credential that satisfies the access policies set by
the service providers. We point out that fNIZK offers an alternative approach
for constructing anonymous attribute-based credential systems. Firstly, taking
all the attributes and the credentials as witness, the user can utilize fNIZK to
generate a proof to demonstrate the well-formedness of a valid credential for
a specific attribute set without disclosing any attributes. Then, when the user
needs to show proofs for different service providers, he/she can simply send
different secret keys for different functions associated with the access policies
to different service providers, instead of generating multiple NIZK proofs. This
approach could reduce computational overhead.

Roadmap. The remaining sections of this paper are structured as follows: Sec. 2
provides a review of the preliminaries. In Sec. 3, we present the formal definitions
of syntax and security notions pertaining to fNIZK. A generic construction of
fNIZK is presented in Sec. 4. Furthermore, we delve into the specific case of
the set membership proof and introduce the construction of set membership
functional proof (fSMP) in Sec. 5.

2 Preliminaries

Notations. Throughout this paper, let λ denote the security parameter. For any
k ∈ N, let [k] := {1, 2, · · · , k}. For a finite set S, we denote by |S| the number
of elements in S, and denote by a ← S the process of uniformly sampling a
from S. For a distribution X, we denote by a ← X the process of sampling a
from X. For any probabilistic polynomial-time (PPT) algorithm Alg, let RSAlg
be the randomness space of Alg. We write Alg(x; r) for the process of Alg on
input x with inner randomness r ∈ RSAlg, and use y ← Alg(x) to denote the
process of running Alg on input x with r ← RSAlg, and assigning y the result.
We write negl(λ) to denote a negligible function in λ and write poly(λ) to denote
a polynomial.
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For a polynomial-time relation R ⊂ X ×W, where X is the statement space
and W is the witness space, we say that w is a witness for x if (x,w) ∈ R. We
denote the language associated with R as LR = {x | ∃w : (x,w) ∈ R}.

Bold lower-case letters denote vectors, e.g., a = (a1, . . . , an) is a n-dimension
vector, and usually the number of dimensions can be inferred from the context.
Let ⟨a,b⟩ =

∑
i∈[n] ai ·bi denotes the inner product between two vectors a and b.

Bold upper-case letters denote matrices, e.g., B ∈ Zn1×n2
p is an n1 × n2 matrix.

We use In to denote the n × n identity matrix. For simplicity, we sometimes
write I to denote the identity matrix when n is given in the text.

Due to space limitations, we place the other preliminaries in the appendices.
Specifically, the definitions of NIZK and Sigma protocols (including the stackable
Sigma protocols) are recalled in Appendix A. The definitions of functional en-
cryption and inner-product encryption are recalled in Appendix B and Appendix
C, respectively. The definition of commitment is placed in Appendix D.

3 Non-interactive zero-knowledge functional proof

In this section, we introduce a primitive called non-interactive zero-knowledge
functional proof (fNIZK), and formalize its security notions. Generally speaking,
fNIZK offers the functionalities of NIZK, while also enabling a verifier with a
specific secret key, provided by the prover, to extract specific information about
the witness from the accepting proof.

Definition 1. (fNIZK). Let LR be an NP language associated with an NP
relation R. Let F be a function family, and T be the label space. Let P : T × (T ∪
{∗})→ {0, 1} be a predicate function satisfying P(τ, ∗) = 1 for all τ ∈ T . A non-
interactive zero-knowledge functional proof (fNIZK proof) for LR, F, T and P
consists of a tuple of seven efficient algorithms fNIZK = (Setup,UKGen,FKGen,
CheckKey,Prove,Verify,Extract).

• Setup(1λ) → crs: On input the security parameter λ, the setup algorithm
outputs a common reference string crs.
• UKGen(crs) → (pk, sk): On input a common reference string crs, the user
key generation algorithm outputs a public key pk and a secret key sk.
• FKGen(crs, pk, sk, f, τf)→ skf,τf : On input a common reference string crs, a
user key pair (pk, sk), a function f ∈ F and a label τf ∈ T ∪ {∗}, the secret
functional key generation algorithm outputs a secret functional key skf,τf .
We assume that skf,τf implicitly includes the information of f and τf.
• CheckKey(crs, pk, f, τf, skf,τf)→ b: On input a common reference string crs,
a public key pk, a function f ∈ F and a label τf ∈ T ∪ {∗} and a secret
functional key skf,τf , the checking algorithm outputs a bit b ∈ {0, 1}.
• Prove(crs, pk, τp, x, w)→ π: On input a common reference string crs, a public
key pk, a label τp ∈ T , a statement x and a witness w, the proving algorithm
outputs a proof π. We assume that there exists an efficient algorithm Extτ
such that τp ← Extτ (π).
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• Verify(crs, pk, x, π) → b: On input the common reference string crs, a public
key pk, a statement x and a proof π, the verification algorithm outputs a bit
b ∈ {0, 1}.

• Extract(crs, x, π, skf,τf) → y: On input a common reference string crs, a
statement x, a proof π and a secret functional key skf,τf (for f and τf),
the extraction algorithm outputs y.

Moreover, fNIZK should satisfy the following properties:

1. Completeness. For any (x,w) ∈ R, any f ∈ F, any τp ∈ T and any
τf ∈ T ∪ {∗},

Pr

[
crs← Setup(1λ), (pk, sk)← UKGen(crs)
π ← Prove(crs, pk, τp, x, w)

: Verify(crs, pk, x, π) = 1

]
≥ 1− negl(λ),

Pr

[
crs← Setup(1λ), (pk, sk)← UKGen(crs)
skf,τf ← FKGen(crs, pk, sk, f, τf)

: CheckKey(crs, pk, f, τf, skf,τf) = 1

]
≥ 1− negl(λ),

Pr


crs← Setup(1λ)
(pk, sk)← UKGen(crs)
skf,τf ← FKGen(crs, pk, sk, f, τf)
π ← Prove(crs, pk, τp, x, w)

: Extract(crs, x, π, skf,τf) = f(w)

∣∣∣∣∣P(τp, τf) = 1


≥ 1− negl(λ).

2. Functional knowledge. For any PPT adversary A,

Pr



crs← Setup(1λ), (pk, sk)← UKGen(crs)
(π, x, f, τf, skf,τf)← A(crs, pk, sk)

s.t. (x ∈ LR) ∧ (f ∈ F) ∧ τf ∈ (T ∪ {∗})
∧ (Verify(crs, pk, x, π) = 1)
∧ (CheckKey(crs, pk, f, τf, skf,τf) = 1)
∧ (P(Extτ (π), τf) = 1)

y ← Extract(crs, x, π, skf,τf)

:
∃ w ∈ W, s.t.
((x,w) ∈ R)
∧(y = f(w))


≥ 1− negl(λ).

3. Adaptive soundness. For any computationally unbounded adversary A,

Pr

[
crs← Setup(1λ)
(pk, x, π)← A(crs) :

x ̸∈ LR
∧ Verify(crs, pk, x, π) = 1

]
≤ negl(λ).

4. Zero knowledge. For any PPT adversary A = (A1,A2,A3), there exists a
simulator Sim = (Sim1,Sim2) such that∣∣Pr[ExpRealzkfNIZK,A,n(λ) = 1]− Pr[ExpIdealzkfNIZK,A,Sim,n(λ) = 1]

∣∣ ≤ negl(λ)

where ExpRealzkfNIZK,A,n(λ) and ExpIdealzkfNIZK,A,Sim,n(λ) are defined in Fig. 1,
and n = poly(λ).

Here, we offer some explanations and discussions regarding the above defini-
tion.
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ExpRealzkfNIZK,A,n(λ):

crs← Setup(1λ), W := ∅, Q := ∅
((pki, ski)← UKGen(crs))i∈[n]

(Ucor, st
A
1 )← A1(crs, (pki)i∈[n])

s.t. Ucor ⊂ [n]

(i∗, τp, x, w,w
′, stA2 )← AOFKGen(·)

2 ((ski)i∈Ucor , st
A
1 )

s.t. (i∗ /∈ Ucor) ∧ ((x,w) ∈ R)
∧(∀(i∗, f ′, τ ′

f) ∈ Q satisfying P(τp, τ
′
f) = 1,

f ′(w) = f ′(w′))
W := {i∗, τp, w, w′}
π ← Prove(crs, pki∗ , τp, x, w)

b← AOFKGen(·)
3 (π, stA2 )

Return b

OFKGen(i′, f ′, τ ′
f):

If W ̸= ∅:
Parse W = {i∗, τp, w, w′}
If (i′ = i∗) ∧ (P(τp, τ

′
f) = 1) ∧ (f ′(w) ̸= f ′(w′)):

Return ⊥
Q := Q ∪ {(i′, f ′, τ ′

f)}
Return ski′,f′,τ′

f
← FKGen(crs, pki′ , ski′ , f

′, τ ′
f)

ExpIdealzkfNIZK,A,Sim,n(λ):

(crs, stSim)← Sim1(1
λ), W := ∅, Q := ∅

((pki, ski)← UKGen(crs))i∈[n]

(Ucor, st
A
1 )← A1(crs, (pki)i∈[n])

s.t. Ucor ⊂ [n]

(i∗, τp, x, w,w
′, stA2 )← AOFKGen(·)

2 ((ski)i∈Ucor , st
A
1 )

s.t. (i∗ /∈ Ucor) ∧ ((x,w) ∈ R)
∧(∀(i∗, f ′, τ ′

f) ∈ Q satisfying P(τp, τ
′
f) = 1,

f ′(w) = f ′(w′))
W := {i∗, τp, w, w′}
π ← Sim2(crs, pki∗ , τp, x, w

′, stSim)

b← AOFKGen(·)
3 (π, stA2 )

Return b

OFKGen(i′, f ′, τ ′
f):

If W ̸= ∅:
Parse W = {i∗, τp, w, w′}
If (i′ = i∗) ∧ (P(τp, τ

′
f) = 1) ∧ (f ′(w) ̸= f ′(w′)):

Return ⊥
Q := Q ∪ {(i′, f ′, τ ′

f)}
Return ski′,f′,τ′

f
← FKGen(crs, pki′ , ski′ , f

′, τ ′
f)

Fig. 1: Games for defining zero knowledge property for fNIZK

1. Completeness of fNIZK has three requirements. Firstly, any normally gen-
erated proof π (i.e., π is generated by algorithm Prove) can be verified suc-
cessfully via algorithm Verify with overwhelming probability. Secondly, for
normally generated secret functional key skf,τf for (f, τf), the checking algo-
rithm CheckKey(crs, pk, f, τf, skf,τf) returns 1 with overwhelming probability.
Thirdly, for normally generated proof π (associated with τp) and normally
generated secret functional key skf,τf (for (f, τf)), if P(τp, τf) = 1, Extract
will extract f(w) with overwhelming probability.

2. The functional knowledge property requires that, in general, if the verifier
accepts a proof π, then he/she can be convinced that a function of some wit-
ness can be extracted from the proof (with the help of a secret key for the
function). Note that this property requires that the secret key should pass
the verification of CheckKey, and P(τp, τf) = 1 (τp is the label associated with
the proof and τf is the label associated with the secret functional key). Com-
pared with the third requirement of completeness (which focuses on normally
generated proofs), the functional knowledge property focuses on maliciously
generated proofs which can successfully go through the verification process of
Verify.

3. The security notion of zero knowledge for fNIZK is formalized in the multi-
user setting, and requires that except for the fact (x,w) ∈ R and the
functions about w (i.e., f ′(w) for all (i∗, f ′, τ ′f) ∈ Q when P(τp, τ

′
f) = 1),

the verifier cannot obtain any other information about w from the proof
π. Further explanations regarding the details are provided below. In both
ExpRealzkfNIZK,A,n(λ) and ExpIdealzkfNIZK,A,Sim,n(λ),

(a) A is allowed to make secret key generation queries to the oracle OFKGen

adaptively. In particular, we require that for each query (i′, f ′, τ ′f) ∈ [n]×
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Π.Setup(1λ):

crs← Setup(1λ)
(pk, sk)← UKGen(crs)
Return crszk = (crs, pk)

Π.Prove(crszk, x, w):
τp ← T
π ← Prove(crs, pk, τp, x, w)
Return π

Π.Verify(crszk, x, π):
b← Verify(crs, pk, x, π)
Return b

Fig. 2: NIZK Π deduced by fNIZK

F×(T ∪{∗}) raised byA3 (note that in this case,W = {i∗, τp, w, w′} ≠ ∅),
A3 will receive ski′,f ′,τ ′

f
as a response if and only if (i′ ̸= i∗)∨(P(τp, τ ′f) =

0) ∨ (f ′(w) = f ′(w′)). Because if it receives ski′,f ′,τ ′
f
for (i′ = i∗) ∧

(P(τp, τ
′
f) = 1) ∧ (f ′(w) ̸= f ′(w′)), it can trivially distinguish the two

games.
(b) For the challenge tuple (i∗, τp, x, w,w

′) output by A2, we require that (i)
i∗ /∈ Ucor, (ii) (x,w) ∈ R, and (iii) for all (i∗, f ′, τ ′f) ∈ Q, it holds that if
P(τp, τ

′
f) = 1, then f ′(w) = f ′(w′), where Q denotes all the tuples that

have been queried to the oracle OFKGen by A2. We stress that w′ is not
required to be a witness for statement x. The “witness” w′, specified by
A2, is used to provide the information (that the simulator Sim is allowed
to know) about w to Sim.

We note that the zero knowledge property of fNIZK implies the traditional
zero knowledge property. Actually, we have the conclusion that every fNIZK
scheme trivially offers a NIZK scheme.

Specifically, for a fNIZK scheme fNIZK = (Setup,UKGen,FKGen,CheckKey,
Prove,Verify,Extract), consider a non-interactive proof scheme Π = (Π.Setup,Π.Prove,
Π.Verify) as in Fig. 2.

We have the following theorem. Due to space limitations, its proof is given
in Appendix E.

Theorem 1. If fNIZK is a fNIZK scheme for an NP language LR, a function
family F, a label space T and a predicate function P, then Π is a NIZK scheme
for LR.
Remark 1. In the definition of zero knowledge for fNIZK, we only consider the
single-theorem version. It can be further strengthened to the multi-theorem ver-
sion, which allows the adversary to generate multiple challenge tuples (i∗, τp, x, w,
w′). But these tuples should also satisfy (i∗ /∈ Ucor)∧((x,w) ∈ R)∧(∀(i∗, f ′, τ ′f) ∈
Q satisfying P(τp, τ

′
f) = 1, f ′(w) = f ′(w′)), and meanwhile any secret func-

tional key generation query (i′, f ′, τ ′f) raised by the adversary should satisfy
f ′(w) = f ′(w′) or P(τp, τ

′
f) = 0 for all challenge tuples (i∗, τp, x, w,w

′) (other-
wise, the adversary will receive ⊥ as a response for this query).

4 Generic construction of fNIZK

In this section, we present a method for constructing a fNIZK proof using a func-
tional encryption (FE) scheme and NIZK schemes. The main idea is straight-
forward: given a valid pair of statement and witness (x,w) ∈ R, we encrypt the
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witness using the functional encryption scheme. Verifiers can then obtain some
functions of the witness by decrypting the ciphertext with the corresponding
secret keys. In addition to proving the relation about (x,w) ∈ R, we also need
to demonstrate that the ciphertext is well-formed.

We begin by introducing the generic construction, followed by an analysis of
its security properties.

Generic construction. Let LR be an NP language associated with an NP
relation R ⊂ X ×W. Let F be a function family. Let T be the label space, and
P : T × (T ∪ {∗})→ {0, 1} be a predicate function satisfying P(τ, ∗) = 1 for all
τ ∈ T .

We define a function family F̂ as follows: a function f̂ (with domain W ×T )
belongs to F̂, if and only if there exists (f, τf) ∈ F× (T ∪ {∗}) satisfying

f̂(w, τp) =

{
f(w) if P(τp, τf) = 1
⊥ if P(τp, τf) = 0

For simplicity, for each pair (f, τf) ∈ F× (T ∪{∗}), we denote the corresponding
function in F̂ as f̂f,τf . We require that there is an efficient algorithm, which takes

(f, τf) ∈ F× (T ∪ {∗}) as input and outputs the corresponding f̂f,τf .
Let FE = (FE.Setup,FE.KGen,FE.Enc,FE.Dec) be a functional encryption

scheme for F̂ on message spaceM =W × T .
Consider the following two NP relations

Rct = {((τp, x,mpk, c), (w, renc)) : (x,w) ∈ R ∧ FE.Enc(mpk, (w, τp); renc) = c},
Rk = {((mpk, f̂f,τf , skf̂f,τf ), (msk, rkg)) : FE.KGen(mpk,msk, f̂f,τf ; rkg) = skf̂f,τf

},

where (x,w) is a statement-witness pair, τp (resp., τf) is a label in T (resp.,
T ∪{∗}),mpk andmsk is the master key pair of FE, c is a ciphertext, and renc and
rkg are the corresponding randomness. As stated in [16], we can construct NIZKs
for any NP language. Therefore, we can construct two NIZK schemes, NIZKRct

=
(NIZKRct

.Setup,NIZKRct
.Prove,NIZKRct

.Verify) and NIZKRk
= (NIZKRk

.Setup,
NIZKRk

.Prove,NIZKRk
.Verify), for LRct

and LRk
, respectively.

We present the generic construction of fNIZK proof fNIZK = (Setup,UKGen,
FKGen,CheckKey,Prove,Verify,Extract) for LR, F, T and P from FE, NIZKRct

and NIZKRk
, as shown in Fig. 3.

Note that for π ← Prove(crs, pk, τp, x, w) in Fig. 3, τp is directly packed into
π, so an efficient Extτ can be trivially constructed.

Remark 2. We stress that the above generic scheme fNIZK is built for any NP
language LR, any function family F (as long as there is FE for F̂), and any
predicate function P : T ×(T ∪{∗})→ {0, 1} satisfying P(τ, ∗) = 1 for all τ ∈ T .

Security analysis. Now, we show that the above fNIZK satisfies completeness,
functional knowledge property, adaptive soundness, and zero knowledge.

Completeness. Completeness of fNIZK is trivially guaranteed by correctness of
the underlying FE and completeness of the underlying NIZKRct

and NIZKRk
.
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Setup(1λ):

crsRct ← NIZKRct .Setup(1
λ)

crsRk
← NIZKRk

.Setup(1λ)

Return crs := (crsRct , crsRk
)

Prove(crs, pk, τp, x, w):

renc ← RSFE.Enc, c← FE.Enc(pk, (w, τp); renc)
ΠRct ← NIZKRct .Prove(crsRct , (τp, x, pk, c), (w, renc))
Return π := (τp, ΠRct , c)

Verify(crs, pk, x, π):

Parse π = (τp, ΠRct , c)
Return b← NIZKRct .Verify(crsRct , (τp, x, pk, c), ΠRct )

Extract(crs, x, π, skf,τf ):

Parse π = (τp, ΠRct , c), skf,τf = (sk
f̂f,τf

, ΠRk
)

Return y ← FE.Dec(c, sk
f̂f,τf

)

UKGen(crs):

(mpk,msk)← FE.Setup(1λ)
Return (pk = mpk, sk = msk)

FKGen(crs, pk, sk, f, τf):

rkg ← RSFE.KGen, skf̂f,τf
← FE.KGen(pk, sk, f̂f,τf ; rkg)

ΠRk
← NIZKRk

.Prove(crsRk
, (pk, f̂f,τf , skf̂f,τf

), (sk, rkg))

Return skf,τf := (sk
f̂f,τf

, ΠRk
)

CheckKey(crs, pk, f, τf, skf,τf ):

Parse skf,τf = (sk
f̂f,τf

, ΠRk
)

Return b← NIZKRk
.Verify(crsRk

, (pk, f̂f,τf , skf̂f,τf
), ΠRk

)

Fig. 3: Construction of fNIZK from FE, NIZKRct
and NIZKRk

Functional knowledge. For any PPT adversaryA, for crs← Setup(1λ), (pk, sk)←
UKGen(crs), (π, x, f, τf, skf,τf) ← A(crs, pk, sk) satisfying (x ∈ LR) ∧ (f ∈
F)∧ (τf ∈ T ∪{∗})∧ (Verify(crs, pk, x, π) = 1)∧ (CheckKey(crs, pk, f, τf, skf,τf) =
1) ∧ (P(Extτ (π), τf) = 1), and for y ← Extract(crs, x, π, skf,τf), we analyze the
probability that there is w satisfying ((x,w) ∈ R) ∧ (y = f(w)).

First of all, note that Verify(crs, pk, x, π) = 1 implies that NIZKRct
.Verify(crs,

(τp, x, pk, c), ΠRct) = 1. By the adaptive soundness of NIZKRct , with overwhelm-
ing probability, there are w ∈ W and renc ∈ RSFE.Enc such that (x,w) ∈ R and
c = FE.Enc(mpk, (w, τp); renc), where τp = Extτ (π).

Parse skf,τf = (skf̂f,τf
, ΠRk

). Note that CheckKey(crs, pk, f, τf, skf,τf) = 1

implies that NIZKRk
.Verify(crsRk

, (pk, f̂f,τf , skf̂f,τf
), ΠRk

) = 1. By the adap-

tive soundness of NIZKRk
, with overwhelming probability, skf̂f,τf

can be ex-

plained as generated for f̂f,τf with FE.KGen. Since P(τp = Extτ (π), τf) = 1,

we have f̂f,τf(w, τp) = f(w). Recall that the algorithm Extract returns y ←
FE.Dec(c, skf̂f,τf

), so y = f̂f,τf(w, τp) = f(w).

Hence, the above fNIZK satisfies the functional knowledge property.

Adaptive soundness. For any computationally unbounded adversary A, let µ(λ)
denote the probability that A outputs pk, x ̸∈ LR and π∗ = (τp, Π

∗
Rct

, c) such
that π∗ is an accepting proof, i.e.,

µ(λ) = Pr

 crs← Setup(1λ)
(pk, x, π∗)← A(crs)
where π∗ = (τp, Π

∗
Rct

, c)
: x ̸∈ LR
∧ Verify(crs, pk, x, π∗) = 1

 .
Now, we construct an adversary A′, attacking the adaptive soundness of the

underlying NIZK NIZKRct
, from A as follows.

Upon receiving the common reference string crsRct
,A′ firstly generates crsRk

←
NIZKRk

.Setup(1λ), and then sends crs = (crsRct , crsRk
) to A.
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Receiving (pk, x, π∗ = (τp, Π
∗
Rct

, c)) fromA,A′ returns a pair ((τp, x, pk, c), Π∗Rct
)

as its final output.
That is the construction of A′. Next, we analyze its success probability. We

have the following equations.

Pr

 crsRct
← NIZKRct

.Setup(1λ)
(x∗, Π∗Rct

)← A′(crsRct
)

where x∗ = (τp, x, pk, c)
: x∗ ̸∈ LRct

∧ NIZKRct .Verify(crsRct , x
∗, Π∗Rct

) = 1


= Pr

 crsRct
← NIZKRct

.Setup(1λ)
(pk, x, π∗)← A′(crsRct

)
where π∗ = (τp, Π

∗
Rct

, c)
: (τp, x, pk, c) ̸∈ LRct

∧ NIZKRct
.Verify(crsRct

, (τp, x, pk, c), Π
∗
Rct

) = 1


≥ Pr

 crsRct
← NIZKRct

.Setup(1λ)
(pk, x, π∗)← A′(crsRct

)
where π∗ = (τp, Π

∗
Rct

, c)
: x ̸∈ LR
∧ NIZKRct

.Verify(crsRct
, (τp, x, pk, c), Π

∗
Rct

) = 1



= Pr


crsRct

← NIZKRct
.Setup(1λ)

crsRk
← NIZKRk

.Setup(1λ)
(pk, x, π∗)← A(crsRct

, crsRk
)

where π∗ = (τp, Π
∗
Rct

, c)

: x ̸∈ LR
∧ NIZKRct

.Verify(crsRct
, (τp, x, pk, c), Π

∗
Rct

) = 1


= Pr

 crs← Setup(1λ)
(pk, x, π∗)← A(crs)
where π∗ = (τp, Π

∗
Rct

, c)
: x ̸∈ LR
∧ Verify(crs, pk, x, π∗) = 1


= µ(λ).

The adaptive soundness of NIZKRct
guarantees that A′’s success probability

is negligible, so we derive that µ(λ) ≤ negl(λ), concluding the proof of adaptive
soundness.

Remark 3. In fact, for any NP language, we can always construct a NIZK in the
hidden-bits model [16], which also satisfies adaptive soundness. Therefore, we
can always construct NIZKRct satisfying adaptive soundness.

Zero knowledge. For zero knowledge of fNIZK, we have the following theorem.
Due to space limitations, the proof of this theorem is given in Appendix F.

Theorem 2. If FE is IND secure, NIZKRct is single-theorem zero knowledge,
and NIZKRk

is multi-theorem zero knowledge, then fNIZK is zero knowledge.

5 Set membership functional proof

Set membership proofs (SMPs) [5] are widely utilized as building blocks in vari-
ous cryptographic schemes such as anonymous credentials [7,31], Zcash [29], and
e-cash [6]. Following the definition of [5], the relation about set membership is

Rsm = {((com, Φ), (w, rcom)) : com = Com(pp, w; rcom) ∧ w ∈ Φ},
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where pp is the public parameter of the commitment scheme in the relation, com
is the commitment to the message w, rcom denotes the internal randomness,
and Φ represents a set. Essentially, given a commitment com, the prover must
demonstrate knowledge of the message w corresponding to that commitment, as
well as prove that w is an element of the set Φ.

Due to the extensive application value of SMPs, in this section, we provide
a concrete and efficient fNIZK for relation about set membership proof. We
consider a specific function family as follows: given a public set Φ, each function
f within this family corresponds to a subset ΦSf

of Φ, and f(w) indicates whether
w belongs to ΦSf

or not. We call fNIZK for Rsm and the above function family,
set membership functional proof (fSMP).

In fSMP, Prove outputs a proof associated with label τp to demonstrate that
the committed value w ∈ Φ, and a verifier with a secret functional key for
(ΦSf

, τf) can additionally check whether w ∈ ΦSf
or not from the proof, when

P(τp, τf) = 1.
To construct a fSMP, we introduce a new primitive, called set membership

encryption (SME), and show a generic framework of constructing fSMP from a
SME and a commitment scheme that both support Sigma protocols in Sec. 5.1.
Subsequently, we propose another primitive called dual inner-produce encryp-
tion (dual IPE) and illustrate the construction of SME from dual IPE in Sec.
5.2. In Sec. 5.3, we provide an efficient instantiation of dual IPE, utilizing the
techniques in IPE [10,33,12], based on the k-LIN assumption. We plug the dual
IPE instantiation (k = 1) into the generic construction of SME from dual IPE,
obtaining a concrete and efficient SME supporting Sigma protocols, in Sec. 5.4.
Lastly, we improve the efficiency of fSMP obtained from the concrete SME and
Pedersen commitment [27], by utilizing the self-stacking technique [18], in Sec.
5.5.

5.1 fSMP from SME

Here, we firstly introduce set membership encryption (SME) and its security
notion, and then show a generic construction of set membership functional proof
(fSMP) from SME.

Set membership encryption. Let W be the message space. We use SW,l to
denote the set of all the sets of size l = poly(λ) inW, i.e., SW,l := {Φ ⊂ W | |Φ| =
l}. For a set Φ ∈ SW,l, without loss of generality, we write that Φ = {w1, · · · , wl}.
For a set S ⊂ [l], let ΦS := {wj | j ∈ S}.

For each set S ⊂ [l], we define a set membership function funcΦS
: ΦS → {0, 1}

as follows: funcΦS
(w) = 1 if and only if w ∈ ΦS .

Definition 2. (Set membership encryption). Let T be a label space. Let
P : T × (T ∪ {∗}) → {0, 1} be a predicate function satisfying P(τ, ∗) = 1 for
all τ ∈ T . A set membership encryption (SME) scheme SME (with set of size
l = poly(λ)) for message set W, label space T and predicate P contains five
algorithms SME = (Setup,KGen,CheckKey,Enc,Query).
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• Setup(1λ) → (pk, sk): On input the security parameter 1λ, the setup algo-
rithm outputs a public key pk and a secret key sk.

• KGen(pk, sk, S, τf)→ skS,τf : On input a key pair (pk, sk), a set S ⊂ [l] and
a label τf ∈ T ∪ {∗}, the key generation algorithm outputs a key skS,τf .

• CheckKey(pk, S, τf, skS,τf) → b: On input a public key pk, a set S ⊂ [l] and
a label τf ∈ T ∪ {∗} and a secret key skS,τf , the checking algorithm outputs
a bit b ∈ {0, 1}.
• Enc(pk, Φ, τp, w) → c: On input a public key pk, a set Φ ⊂ W satisfying
|Φ| = l, a label τp ∈ T , and a message w ∈ Φ, the encryption algorithm
outputs a ciphertext c. We assume that there exists an efficient algorithm
Extτ such that τp ← Extτ (c).
• Query(c, skS,τf) → y: On input a ciphertext c and a secret key skS,τf , the
query algorithm outputs a bit y ∈ {0, 1}.

Correctness requires that for any Φ ⊂ W satisfying |Φ| = l, any w ∈ Φ, any
S ⊂ [l], any τp ∈ T and any τf ∈ T ∪ {∗} satisfying P(τp, τf) = 1,

Pr

 (pk,msk)← Setup(1λ)
skS,τf ← KGen(pk, sk, S, τf)
c← Enc(pk, Φ, τp, w), y ← Query(c, skS,τf)

: y = 1

 =

{
1 if w ∈ ΦS
negl(λ) otherwise

Pr

[
(pk, sk)← Setup(1λ)
skS,τf ← KGen(pk, sk, S, τf)

: CheckKey(pk, S, τf, skS,τf) = 1

]
≥ 1− negl(λ).

We say that a SME scheme SME supports Sigma protocols, if there exists an
efficient Sigma protocol for the following relation:

Rc = {((τp, c, pk, Φ), (w, renc)) : c = Enc(pk, Φ, τp, w; renc)}.

We now define IND security for SME.

Definition 3. (IND security for SME). A SME scheme SME = (Setup,KGen,
CheckKey,Enc,Query) (of size l = poly(λ)) for message set W, label space T
and predicate P is IND secure, if for any PPT adversary A, the advantage
Advind

SME,A(λ) := |Pr[Exp
ind
SME,A(λ) = 1] − 1

2 | is negligible, where ExpindSME,A(λ) is
defined in Fig. 4.

fSMP from SME. Now, we construct a fSMP scheme for the following relation:

Rsm := {((com, Φ), (w, rcom)) : com = Com(pp, w; rcom) ∧ w ∈ Φ}. (1)

We require that the commitment scheme in Eq. (1) also supports Sigma pro-
tocols. In other words, there exists an efficient Sigma protocol to prove com =
Com(pp, w; rcom) with statement com and witness (w, rcom). One example that
satisfies our requirements is Pedersen commitment [27], which we can prove by
Okamoto’s Sigma protocol [23].

Let T be the label space. Let P : T × (T ∪ {∗}) → {0, 1} be a predicate
function satisfying P(τ, ∗) = 1 for all τ ∈ T . Let SME = (SME.Setup,SME.KGen,
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ExpindSME,A(λ):

(pk, sk)← Setup(1λ), b← {0, 1}
W := ∅, Q := ∅
(Φ, τp, w0, w1, st)← AOKGen(·)

1 (pk)
s.t. (w0 ∈ Φ) ∧ (w1 ∈ Φ)
∧(∀(S′, τ ′

f) ∈ Q s.t. P(τp, τ
′
f) = 1,

funcΦS′ (w0) = funcΦS′ (w1))
W := {τp, w0, w1}, c← Enc(pk, Φ, τp, wb)

b′ ← AOKGen(·)
2 (c, st)

Return (b = b′)

OKGen(S′, τ ′
f):

If W ̸= ∅:
Parse W = {τp, w0, w1}
If (P(τp, τ

′
f) = 1)∧ (funcΦS′ (w0) ̸= funcΦS′ (w1)):

Return ⊥
Q := Q ∪ {(S′, τ ′

f)}
Return skS′,τ ′

f
← KGen(pk, sk, S′, τ ′

f)

Fig. 4: Game for defining IND security for SME

SME.CheckKey,SME.Enc,SME.Query) be a SME scheme (with set of size l) for
message set W, label space T and predicate P supporting Sigma protocols. Let
Commit = (Commit.Setup,Commit.Com,Commit.Dec) be a commitment scheme
supporting Sigma protocols.

Since both SME and Commit support Sigma protocols, a Sigma protocol for
relation

R̃sm = {((τp, com, c, pk, Φ),(w, rcom, renc)) : com = Commit.Com(pp, w; rcom)

∧ c = SME.Enc(pk, Φ, τp, w; renc)}

can be constructed by the composition of Sigma protocols [3]. So a NIZK scheme
NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) (with adaptive soundness) can
be obtained by applying the Fiat-Shamir transform [17] to the composite Sigma
protocol.

We define the function family F as follows6. Each function f ∈ F indicates
a set Sf ⊂ [l], such that for any x = (com, Φ = {w1, · · · , wl}) and any wx =
(w, rcom),

f(w) =

1 if w ∈ ΦSf

0 if w ∈ Φ \ ΦSf

⊥ otherwise

We require that there is an efficient algorithm, which takes a f ∈ F as input and
outputs the corresponding Sf ⊂ [l]. Note that for all (x,wx = (w, rcom)) ∈ Rsm,
we have f(w) = funcΦSf

(w) ∈ {0, 1}.
We present a fSMP scheme fSMP = (Setup,UKGen,FKGen,CheckKey,Prove,

Verify,Extract) for LRsm
, F, T and P as shown in Fig. 5.

Note that for π ← Prove(crs, pk, τp, x, w) in Fig. 5, τp is directly packed into
π, so an efficient Extτ can be trivially constructed.

6 For each x ∈ LRsm , its witness is in the form of (w, rcom). In fSMP, we are only
interested in functions of w (rather than rcom). So we define F as family of functions
whose domain is W (rather than W ×RSCommit.Com)



16 G. Zeng et al.

Setup(1λ):

crsnizk ← NIZK.Setup(1λ)
pp← Commit.Setup(1λ)
Return crs := (crsnizk, pp)

UKGen(crs):

(pk, sk)← SME.Setup(1λ)
Return (pk, sk)

FKGen(crs, pk, sk, f, τf):
skSf ,τf ← SME.KGen(pk, sk, Sf , τf) �Sf ⊂ [l]
Return skf,τf := skSf ,τf

CheckKey(crs, pk, f, τf, skf,τf):
b← SME.CheckKey(pk, Sf , τf, skf,τf)
Return b

Prove(crs, pk, τp, x, wx):
Parse x = (com, Φ), wx = (w, rcom) �|Φ| = l
renc ←RSSME.Enc

c← SME.Enc(pk, Φ, τp, w; renc)
πR̃sm

← NIZK.Prove(crsnizk, (τp, com, c, pk, Φ),
(w, rcom, renc))

Return π := (τp, πR̃sm
, c)

Verify(crs, pk, x, π):
Parse x = (com, Φ), π = (τp, πR̃sm

, c)
b← NIZK.Verify(crsnizk, (τp, com, c, pk, Φ), πR̃sm

)
Return b

Extract(crs, x, π, skf,τf):
Parse x = (com, Φ), π = (τp, πR̃sm

, c)
Return y ← SME.Query(c, skf,τf)

Fig. 5: Construction of fSMP from SME

Security analysis. Now, we show that the fSMP satisfies completeness, func-
tional knowledge property, adaptive soundness, and zero knowledge.

Completeness. The completeness of fSMP is trivially guaranteed by the com-
pleteness of the underlying NIZK and the correctness of the underlying SME.

Functional knowledge. For any x ∈ LRsm and any f ∈ F, let Wx := {w |
∃ rcom s.t. (x, (w, rcom)) ∈ Rsm} and Rgef(Wx) := {f(w) | w ∈ Wx}.

For any PPT adversary A, for crs← Setup(1λ), (pk, sk)← UKGen(crs), and
(π, x, f, τf, skf,τf) ← A(crs, pk, sk) satisfying (x ∈ LRsm

) ∧ (f ∈ F) ∧ (τf ∈
T ∪ {∗}) ∧ (Verify(crs, pk, x, π) = 1) ∧ (CheckKey(crs, pk, f, τf, skf,τf) = 1) ∧
(P(τp, τf) = 1) where τp ← Extτ (π), we analyze the probability Pr[Extract(crs, x,
π, skf,τf) /∈ Rgef(Wx)] as follows.

First of all, the fact x ∈ LRsm
implies that parsing x = (com, Φ), there must

be some wx = (w, rcom) satisfying com = Commit.Com(pp, w; rcom) and w ∈ Φ.
In other words, Wx ̸= ∅.

Recall that f ∈ F indicates a set Sf ⊂ [l], such that f(w) = 1 if w ∈ ΦSf
,

and f(w) = 0 if w ∈ Φ \ ΦSf
.

Parse crs = (crsnizk, pp) and π = (τp, πR̃sm
, c). Let evt1 denote the event that

c = SME.Enc(pk, Φ, τp, w; renc) for some w ∈ Wx and some renc, and evt2 denote
the event that c ̸= SME.Enc(pk, Φ, τp, w; renc) for all w ∈ Wx and all renc. So

Pr[Extract(crs, x, π, skf,τf) /∈ Rgef(Wx)]

= Pr[(Extract(crs, x, π, skf,τf) /∈ Rgef(Wx)) ∧ evt1]

+ Pr[(Extract(crs, x, π, skf,τf) /∈ Rgef(Wx)) ∧ evt2]

≤ Pr[Extract(crs, x, π, skf,τf) /∈ Rgef(Wx) | evt1] + Pr[evt2].
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We note that Extract(crs, x, π, skf,τf) = SME.Query(c, skf,τf). So if evt1 oc-
curs (i.e., c = SME.Enc(pk, Φ, τp, w; renc) for some w ∈ Wx and some renc), the
correctness of SME guarantees that Extract(crs, x, π, skf,τf) = f(w) with over-
whelming probability. So Pr[Extract(crs, x, π, skf,τf) ̸= f(w) | evt1] is negligible.

If evt2 occurs (i.e., c ̸= SME.Enc(pk, Φ, τp, w; renc) for all w ∈ Wx and
all renc), then (τp, com, c, pk, Φ) /∈ LR̃sm

, where LR̃sm
is denoted as the the

NP language for the relation R̃sm. Note that Verify(crs, x, π) = 1 implies that
NIZK.Verify(crsnizk, (τp, com, c, pk, Φ), πR̃sm

) = 1. The adaptive soundness of NIZK

for R̃sm guarantees that

Pr[((τp, com, c, pk, Φ) /∈ LR̃sm
) ∧ (NIZK.Verify(crsnizk, (τp, com, c, pk, Φ), πR̃sm

) = 1)]

is negligible. So Pr[evt2] is also negligible.
Thus, Pr[Extract(crs, x, π, skf,τf) /∈ Rgef(Wx)] is negligible, concluding the

proof of functional knowledge.

Adaptive soundness. The adaptive soundness of fSMP is guaranteed by the adap-
tive soundness of the underlying NIZK.

More specifically, assume that there is a computationally unbounded adver-
sary A, which takes crs as input and outputs (pk, x, π) satisfying x /∈ LRsm and
Verify(crs, pk, x, π) = 1. Parse x = (com, Φ) and π = (τp, πR̃sm

, c).

Note that Verify(crs, pk, x, π) = 1 guarantees that NIZK.Verify(crsnizk, (τp, com,
c, pk, Φ), πR̃sm

) = 1.

On the other hand, x /∈ LRsm
implies that there is no w ∈ Φ satisfying

com = Com(pp, w; ·). As a result, for all w ∈ Φ, (τp, com,SME.Enc(pk, Φ, τp, w),
pk, Φ) /∈ LR̃sm

. In other words, for the (τp, com, pk, Φ) contained in (x, π), and for

all ciphertext c′, we have (τp, com, c
′, pk, Φ) /∈ LR̃sm

. Hence, for the c contained in

π, we derive that (τp, com, c, pk, Φ) /∈ LR̃sm
. According to the adaptive soundness

of NIZK, this occurs with only negligible probability.
Hence, fSMP is adaptively sound.

Zero knowledge. For zero knowledge of fSMP, we have the following theorem.
Due to space limitations, the proof of this theorem is given in Appendix G.

Theorem 3. If the underlying SME is IND secure and supports Sigma protocols,
then fSMP is zero knowledge.

5.2 SME from dual IPE

In this part, we introduce a primitive called dual inner-product encryption (dual
IPE) and leverage it to build a SME scheme.

Dual IPE. For vectors (x1,x2), (y1,y2) ∈ (Zp)l1 × (Zp)l2 , we define a function
DuIP : (Zp)l1 × (Zp)l2 × (Zp)l1 × (Zp)l2 → {0, 1} as follows:

DuIP((x1,x2), (y1,y2)) =

{
0 if ⟨x1,y1⟩ = ⟨x2,y2⟩ = 0
1 otherwise
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Definition 4. (Dual IPE). A dual inner-product encryption (dual IPE) scheme
DIPE for a message space M and vector space (Zp)l1 × (Zp)l2 consists of five
algorithms DIPE = (Setup,KGen,CheckKey, Enc,Dec).

• Setup(1λ, (l1, l2)) → (pk,msk): On input the security parameter 1λ and the
dimension (l1, l2), the setup algorithm outputs a public key pk and a master
secret key msk.

• KGen(msk,x = (x1,x2))→ skx: On input a master secret key msk and two
vectors (x1,x2) ∈ (Zp)l1 × (Zp)l2 , the key generation algorithm outputs a
secret key skx for these vectors.

• CheckKey(pk,x = (x1,x2), skx) → b: On input a public key pk, two vectors
(x1,x2) and a secret key skx, the checking algorithm outputs a bit b.

• Enc(pk,y = (y1,y2),m) → cy: On input pk, vectors (y1,y2) ∈ (Zp)l1 ×
(Zp)l2 and a message m ∈M, the encryption algorithm outputs a ciphertext
cy for (y1,y2).

• Dec(cy, skx) → m: On input a ciphertext cy and a secret key skx as input,
the decryption algorithm outputs a message m.

Correctness requires that for all m ∈M and all vectors (x1,x2) and (y1,y2)
satisfying DuIP((x1,x2), (y1,y2)) = 0, it holds that:

Pr

[
(pk,msk)← Setup(1λ, (l1, l2))
skx ← KGen(msk, (x1,x2))

: Dec(Enc(pk, (y1,y2),m), skx) = m

]
= 1,

Pr

[
(pk,msk)← Setup(1λ, (l1, l2))
skx ← KGen(msk, (x1,x2))

: CheckKey(pk, (x1,x2), skx) = 1

]
≥ 1− negl(λ).

We now define adaptive security for dual IPE.

Definition 5. (Adaptive security). A dual IPE scheme DIPE = (Setup,KGen,
CheckKey,Enc,Dec) for message space M and vector space (Zp)l1 × (Zp)l2 is
adaptively secure, if for any PPT adversary A, the advantage Advas

DIPE,A(λ) :=

|Pr[ExpasDIPE,A(λ) = 1]− 1
2 | is negligible, where ExpasDIPE,A(λ) is defined in Fig. 6.

The adaptive security implies payload-hiding and partial attribute-hiding.

More exactly, our dual IPE requires the first-level vector (i.e., y
(β)
1 ) to be fully

attribute-hiding, without requiring the second-level vector (i.e., y2) to be hidden.
A concrete adaptively secure dual IPE scheme will be presented in Sec. 5.3.

Encoding algorithms. Before we show how to construct SME from dual IPE,
we firstly present two encoding algorithms, as shown in the following:

1. EncodeW(Φ,w): Taking Φ = {w1, . . . , wl} and w ∈ W as input, it outputs a
vector I in {0, 1}l as follows:

∀j ∈ [l] : Ij =

{
1 if w = wj
0 otherwise

For example, supposing w = wj′ for some j′ ∈ [l], I can be represented as
follows:



Non-Interactive Zero-Knowledge Functional Proofs 19

ExpasDIPE,A(λ):

(pk,msk)← Setup(1λ, (l1, l2)), b← {0, 1}, Cy,m := ∅, Ux := ∅

(y
(0)
1 ,y

(1)
1 ,y2,m0,m1, st)← AOKGen(·)

1 (pk, (l1, l2))

s.t. if m0 ̸= m1, DuIP((x1,x2), (y
(β)
1 ,y2)) ̸= 0 for all β ∈ {0, 1} and all (x1,x2) ∈ Ux;

if m0 = m1, (∀β ∈ {0, 1} : DuIP((x1,x2), (y
(β)
1 ,y2)) ̸= 0)

∨(∀β ∈ {0, 1} : DuIP((x1,x2), (y
(β)
1 ,y2)) = 0) for all (x1,x2) ∈ Ux

Cy,m := {(y(0)
1 ,y

(1)
1 ,y2,m0,m1)}, c← Enc(pk, (y

(b)
1 ,y2),mb), b

′ ← AOKGen(·)
2 (c, st)

Return (b = b′)

OKGen((x1,x2)):

If Cy,m ̸= ∅:
Parse Cy,m = {(y(0)

1 ,y
(1)
1 ,y2,m0,m1)}

If m0 ̸= m1:

If (∃β ∈ {0, 1} : DuIP((x1,x2), (y
(β)
1 ,y2)) = 0): Return ⊥

If m0 = m1:

If (∃β ∈ {0, 1} : (DuIP((x1,x2), (y
(β)
1 ,y2)) = 0) ∧ (DuIP((x1,x2), (y

(1−β)
1 ,y2)) ̸= 0)):

Return ⊥
Ux := Ux ∪ {(x1,x2)}
Return skx ← KGen(msk, (x1,x2))

Fig. 6: Game for defining adaptive security for dual IPE

I =0 · · · 0 1 0 · · · 0
1 j′ l

It is clear that I depends on w. Thus, we also write I(w) for simplicity to
denote the vector output by EncodeW(Φ,w).

2. EncodeS(l, S): Taking a value l and a set S ⊂ [l] as input, it outputs a vector
I∗ in {0, 1}l as follows:

∀j ∈ [l] : I∗j =

{
0 if j ∈ S
1 otherwise

For example, supposing S = {3, 5, l} ⊂ [l], I∗ can be represented as follows:

I∗ = 1 1 0 1 0 1 · · · 1 0
1 3 5 l

It is clear that given l, I∗ depends on S. Thus, we also write I∗(S) for
simplicity to denote the vector output by EncodeS(l, S) when l is given in
the text.

SME from dual IPE. Let I = {0, 1}l1 denote a vector space with alpha-
bet {0, 1} and length l1. Let T = (Zp)l2 denote the label space with alphabet
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{0, . . . , p − 1} and length l2. Let Pip : T × (T ∪ {∗}) → {0, 1} be a predicate
function satisfying that for any τ ∈ T and τ ′ ∈ T ∪ {∗},

Pip(τ, τ
′) =

{
1 if (τ ′ = ∗) ∨ ((τ ′ ̸= ∗) ∧ (⟨τ, τ ′⟩ = 0))
0 otherwise

From the perspective of inner product, the symbol ∗ can be regarded as
vector 0l2 . In this case, Pip can be rephrased as

Pip(τ, τ
′) =

{
1 if ⟨τ, τ ′⟩ = 0
0 otherwise

Let DIPE = (DIPE.Setup,DIPE.KGen,DIPE.CheckKey,DIPE.Enc,DIPE.Dec)
be an adaptively secure dual IPE scheme for vector space I × T and message
space MDIPE, as presented in Sec. 5.3. Let mdum be an arbitrary public default
message inMDIPE.

Our SME scheme SME = (Setup,KGen,CheckKey,Enc,Query) (with set of
size l1) for message set W, label space T and predicate Pip is described in Fig.
7.

Setup(1λ): �set l1 = poly(λ), l2 = poly(λ)

(pk,msk)← DIPE.Setup(1λ, (l1, l2))
Return (pk, sk = msk)

KGen(pk, sk, S, τf): � S ⊂ [l1]
I∗(S)← EncodeS(l1, S)
skI∗(S),τf ← DIPE.KGen(msk, (I∗(S), τf))
Return skS,τf = skI∗(S),τf

CheckKey(pk, S, τf, skS,τf):
Return b← DIPE.CheckKey(pk, (I∗(S), τf), skS,τf)

Enc(pk, Φ, τp, w): � |Φ| = l1
If w /∈ Φ: Return ⊥
I(w) = EncodeW(Φ,w)
c← DIPE.Enc(pk, (I(w), τp),mdum)
Return c

Query(c, skS,τf):

m′
dum ← DIPE.Dec(c, skS,τf)

If mdum = m′
dum: Return y = 1

Else: Return y = 0

Fig. 7: Construction of SME from DIPE (mdum is an arbitrary public default
message inMDIPE)

Security analysis. Here, we show that the above SME constructed from dual
IPE DIPE, is correct and IND secure.

Correctness. For any Φ ⊂ W satisfying |Φ| = l, any w ∈ Φ and any S ⊂ [l],
any τf ∈ T ∪ {∗} and any τp ∈ T satisfying Pip(τp, τf) = 1 (i.e., ⟨τp, τf⟩ = 0),
for (pk, sk)← Setup(1λ), skS,τf ← KGen(pk, sk, S, τf), c← Enc(pk, Φ, τp, w) and
y ← Query(c, skS,τf), it holds that

– If w ∈ ΦS , then ⟨I∗(S), I(w)⟩ = 0. So DIPE.Dec(c, skS,τf) = mdum, which
suggests that y = 1.
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– If w ̸∈ ΦS , then ⟨I∗(S), I(w)⟩ ≠ 0. The adaptive security of DIPE guarantee
that DIPE.Dec(c, skS,τf) ̸= mdum with overwhelming probability. Hence, the
probability that y = 1 is negligible.

For (pk, sk) ← Setup(1λ) and skS,τf ← KGen(pk, sk, S, τf), we have that
CheckKey(pk, S, τf, skS,τf) = DIPE.CheckKey(pk, (I∗(S), τf), skS,τf), since CheckKey
invokes DIPE.CheckKey to check the keys. By the correctness of DIPE, we know
that DIPE.CheckKey(pk, (I∗(S), τf), skS,τf) = 1, when skS,τf ← DIPE.KGen(pk,
(I∗(S), τf)). Note that the key generation KGen calls DIPE.KGen(pk, (I∗(S), τf))
to generate skS,τf . Thus, CheckKey(pk, S, τf, skS,τf) = DIPE.CheckKey(pk, (I∗(S),
τf), skS,τf) = 1.

In all, the SME above is correct.

IND security. The IND security of SME is guaranteed by the adaptive security
of the underlying dual IPE DIPE. Formally, we have the following theorem. Due
to space limitations, its proof will be given in Appendix H.

Theorem 4. If the underlying DIPE is adaptively secure, then SME is IND se-
cure.

5.3 A concrete construction of dual IPE

Starting from the IPE schemes proposed in [10,12,33], we provide a concrete
construction of adaptively secure dual IPE. In this subsection, we first give some
notations, assumptions and facts. Then, we provide a private-key dual IPE,
and upgrade it to public-key dual IPE employing the “private-key to public-
key” compiler in [33]. Unless otherwise specified, the term “dual IPE” refers to
public-key dual IPE.

Notations. A group generator G takes as input the security parameter λ and
outputs group description G = (p,G1,G2,GT , e), where p is a prime of Θ(λ)
bits, G1, G2 and GT are cyclic groups of order p, and e : G1 × G2 → GT is a
nondegenerate bilinear map. We require that group operations in G1, G2 and GT
as well the bilinear map e are computable in deterministic polynomial time with
respect to λ. Let g1 ∈ G1, g2 ∈ G2 and gT = e(g1, g2) ∈ GT be the respective
generators. We employ the implicit representation of group elements: for a matrix
M over Zp, we define [M]1 = gM1 ,[M]2 = gM2 ,[M]T = gMT , where exponentiations
are carried out component-wise. For [A]1 and [B]2, we let e([A]1, [B]2) = [AB]T .
For any matrix B ∈ Zn×mp , we define an operator ⊙ as follows: α⊙ [B]∗ = [αB]∗,
where the star ∗ belongs to {1, 2, T} and α could be a constant in Zp, a row vector

in Znp or a matrix in Zn′×n
p . GLk(Zp) denotes the general linear group of degree

k over Zp. Let A be a ℓ × k matrix over Zp, where ℓ ≥ k. We use spanc(A) to

denote the column span of A. By spanr(A
⊤), we are indicating the row span

of A⊤. If A is a basis of spanc(A), we use basis(A) to denote another basis of
spanc(A) via A ·R, where R← GLk(Zp). Given an invertible matrix B, we use

B∗ to denote its dual satisfying B⊤B∗ = I.

Assumptions. We review the matrix Diffie-Hellman (MDDH) assumption on
G1 [15]. The MDDHk,ℓ assumption on G2 can be defined analogously.
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Definition 6. (MDDHk,ℓ assumption). Let ℓ > k ≥ 1. We say that the
MDDHk,ℓ assumption holds with respect to G if for all PPT adversaries A, the
following advantage function is negligible in λ.

Adv
MDDHk,ℓ

A (λ) := |Pr[A(G, [M]1, [Ms]1) = 1]− Pr[A(G, [M]1, [u]1) = 1]|

where G← G(1λ), M← Zℓ×kp , s← Zkp and u← Zℓp.

Let ℓ1, ℓ2, ℓ3 > 1 and ℓ := ℓ1+ℓ2+ℓ3. We use basis B1 ← Zℓ×ℓ1p , B2 ← Zℓ×ℓ2p ,

B3 ← Zℓ×ℓ3p , and its dual basis (B∗1,B
∗
2,B

∗
3) such that B⊤i B

∗
i = I (known as

non-degeneracy) and B⊤i B
∗
j = 0 if i ̸= j (known as orthogonality). We review the

SDG2

B1 7→B1,B2
assumption as follows. By symmetry, one may permute the indices

for subspaces.

Definition 7. (SDG2

B1 7→B1,B2
assumption). We say that the SDG2

B1 7→B1,B2
as-

sumption holds if for all PPT adversaries A, the following advantage function
is negligible in λ.

Adv
SD

G2
B1 7→B1,B2

A (λ) := |Pr[A(G, D, [t0]1) = 1]− Pr[A(G, D, [t1]1) = 1]|

where D := ([B1]2, [B2]2, [B3]2, basis(B
∗
1,B

∗
2), basis(B

∗
3)), t0 ← spanc(B1), t1 ←

spanc(B1,B2).

It is known that k-LIN⇒ MDDHk,ℓ [15] and MDDHℓ,ℓ1+ℓ2 ⇒ SDG2

B1 7→B1,B2
[11].

Facts. With basis (B1,B2,B3), we can uniquely decompose w ∈ Z1×ℓ
p as w =

Σβ∈[3]w
(β) wherew(β) ∈ spanr(B

∗
β
⊤
). Definew(β1β2) = w(β1)+w(β2) for β1, β2 ∈

[3]. We have the following two facts:

1. For β ∈ [3], it holds that wBβ = w(β)Bβ ;
2. For all β∗ ∈ [3], it holds that {w(β∗), {w(β)}β ̸=β∗} ≡ {w∗, {w(β)}β ̸=β∗} when

w← Z1×ℓ
p and w∗ ← spanr(B

∗
β∗
⊤
).

Construction of private-key dual IPE. In a private-key dual IPE, the Setup
algorithm does not output pk; the CheckKey algorithm is not needed; and the Enc
algorithm takesmsk instead of pk as input. The adaptive security can be defined
similar to Def. 5 except that the adversary A only gets the challenge ciphertext
c and has access to KGen. Next, we give a concrete construction of private-key
dual IPE skDIPE = (Setup,KGen,Enc,Dec), and the details are shown in Fig. 8.

Correctness. For all vectors (x1,x2) and (y1,y2) satisfying DuIP((x1,x2), (y1,y2)) =
0, we have

((x1,1 · C1,1 + · · ·+ x1,l1 · C1,l1 + x2,1 · C2,1 + · · ·+ x2,l2 · C2,l2)⊙K1) ·K−10

=[(x1,1 · (y1,1u1 +w1,1) + · · ·+ x1,l1 · (y1,l1u1 +w1,l1)

+ x2,1 · (y2,1u2 +w2,1) + · · ·+ x2,l2 · (y2,l2u2 +w2,l2))B1r]2
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Setup(1λ, l1, l2):

G := (p,G1,G2,GT , e)← G(1λ)
B1 ← Z(2k+1)×k

p

u1,u2,w1,1, . . . ,w1,l1
,w2,1, . . . ,w2,l2

← Z1×(2k+1)
p , α← Zp

msk := (G, α,u1,u2,w1,1, . . . ,w1,l1
,w2,1, . . . ,w2,l2

,B1)
Return msk

KGen(msk, (x1,x2)):

Parse x1 = (x1,1, . . . , x1,l1
) ∈ Zl1

p , x2 = (x2,1, . . . , x2,l2
) ∈ Zl2

p

r← Zk
p

K0 := [α+ (x1,1 ·w1,1 + . . .+ x1,l1
·w1,l1

+ x2,1 ·w2,1 + . . .+ x2,l2
·w2,l2

)B1r]2
K1 := [B1r]2
Return skx := (K0, K1)

Enc(msk, (y1,y2),m ∈ G2):

Parse y1 = (y1,1, . . . , y1,l1 ) ∈ Zl1
p , y2 = (y2,1, . . . , y2,l2 ) ∈ Zl2

p

For i ∈ [l1]: C1,i := y1,i · u1 + w1,i

For i ∈ [l2]: C2,i := y2,i · u2 + w2,i

C := [α]2 ·m
Return cy := ((C1,i)i∈[l1], (C2,i)i∈[l2], C)

Dec(cy, skx):

Parse cy = ((C1,i)i∈[l1], (C2,i)i∈[l2], C), skx = (K0, K1)

Return m′ := C · ((x1,1 ·C1,1 + · · ·+x1,l1
·C1,l1

+x2,1 ·C2,1 + · · ·+x2,l2
·C2,l2

)⊙K1) ·K−1
0

Fig. 8: The algorithms of private-key dual IPE scheme skDIPE

· [α+ (x1,1 ·w1,1 + . . .+ x1,l1 ·w1,l1 + x2,1 ·w2,1 + . . .+ x2,l2 ·w2,l2)B1r]
−1
2

=[⟨x1,y1⟩ · u1B1r+ ⟨x2,y2⟩ · u2B1r]2

· [(x1,1 ·w1,1 + . . .+ x1,l1 ·w1,l1 + x2,1 ·w2,1 + . . .+ x2,l2 ·w2,l2)B1r]2

· [α]−12 · [(x1,1 ·w1,1 + . . .+ x1,l1 ·w1,l1 + x2,1 ·w2,1 + . . .+ x2,l2 ·w2,l2)B1r]
−1
2

=[α]−12

where the last equality follows from the fact that ⟨x1,y1⟩ = 0 and ⟨x2,y2⟩ = 0.
This proves the correctness.

Security. We now state the security theorem of our proposed private-key dual
IPE scheme. Due to space limitations, the proof is given in Appendix I.

Theorem 5. Under the k-LIN assumption, the private-key dual IPE scheme
described in Fig. 8 is adaptively secure.

Construction of public-key dual IPE. We give a concrete construction of
public-key dual IPE pkDIPE = (Setup,KGen,CheckKey,Enc,Dec), and the details
are shown in Fig. 9.

Correctness. For all m ∈ M and all vectors (x1,x2) and (y1,y2) satisfying
DuIP((x1,x2), (y1,y2)) = 0, it holds that:

e( (x1,1 ⊙ C1,1) · · · (x1,l1 ⊙ C1,l1) · (x2,1 ⊙ C2,1) · · · (x2,l2 ⊙ C2,l2),K1 ) · e(C0,K0)
−1

=e( [x1,1 · s⊤A⊤(y1,1 ·U1 +W1,1)]1 · · · [x1,l1 · s⊤A
⊤(y1,l1 ·U1 +W1,l1)]1

· [x2,1 · s⊤A⊤(y2,1 ·U2 +W2,1)]1 · · · [x2,l2 · s⊤A
⊤(y2,l2 ·U2 +W2,l2)]1, [B1r]2 )
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Setup(1λ, l1, l2):

G := (p,G1,G2,GT , e)← G(1λ)
A← Z(k+1)×k

p , B1 ← Z(2k+1)×k
p

U1,U2,W1,1, . . . ,W1,l1
,W2,1, . . . ,W2,l2

← Z(k+1)×(2k+1)
p , k← Zk+1

p

pk := (G, [A⊤]1, [A
⊤U1]1, [A

⊤U2]1, [A
⊤W1,1]1, . . . , [A

⊤W1,l1
]1, [A

⊤W2,1]1, . . . , [A
⊤W2,l2

]1, [A
⊤k]T )

msk := (k,W1,1, . . . ,W1,l1
,W2,1, . . . ,W2,l2

,B1)
Return (pk,msk)

KGen(msk, (x1,x2)):

Parse x1 = (x1,1, . . . , x1,l1
) ∈ Zl1

p , x2 = (x2,1, . . . , x2,l2
) ∈ Zl2

p

r← Zk
p

K0 := [k + (x1,1 ·W1,1 + . . .+ x1,l1
·W1,l1

+ x2,1 ·W2,1 + . . .+ x2,l2
·W2,l2

)B1r]2, K1 := [B1r]2
Return skx := (K0, K1)

CheckKey(pk, (x1,x2), skx):

If [0]T = e((x1,1 ⊙ [A⊤W1,1]1) · · · (x1,l1
⊙ [A⊤W1,l1

]1) · (x2,1 ⊙ [A⊤W2,1]1) · · · (x2,l2
⊙ [A⊤W2,l2

]1), K1)

·e([A⊤]1, K0)
−1 · [A⊤k]T : Return 1

Else Return 0

Enc(pk, (y1,y2),m ∈ GT ):

Parse y1 = (y1,1, . . . , y1,l1 ) ∈ Zl1
p , y2 = (y2,1, . . . , y2,l2 ) ∈ Zl2

p

s← Zk
p

C0 := [s⊤A⊤]1
For i ∈ [l1]: C1,i := [s⊤A⊤(y1,i ·U1 + W1,i)]1
For i ∈ [l2]: C2,i := [s⊤A⊤(y2,i ·U2 + W2,i)]1
C := [s⊤A⊤k]T ·m
Return cy := (C0, (C1,i)i∈[l1], (C2,i)i∈[l2], C)

Dec(cy, skx):

Parse cy := (C0, (C1,i)i∈[l1], (C2,i)i∈[l2], C), skx := (K0, K1)

Return m′ := C · e((x1,1 ⊙ C1,1) · · · (x1,l1
⊙ C1,l1

)(x2,1 ⊙ C2,1) · · · (x2,l2
⊙ C2,l2

), K1) · e(C0, K0)
−1

Fig. 9: The algorithms of public-key dual IPE scheme pkDIPE

· e( [s⊤A⊤]1, [k+ (x1,1 ·W1,1 + · · ·+ x1,l1 ·W1,l1 + x2,1 ·W2,1 + · · ·+ x2,l2 ·W2,l2)B1r]2 )−1

=[⟨x1,y1⟩ · s⊤A
⊤U1B1r+ ⟨x2,y2⟩ · s⊤A

⊤U2B1r]T · [s⊤A⊤k]−1T
· [s⊤A⊤(x1,1 ·W1,1 + · · ·+ x1,l1 ·W1,l1 + x2,1 ·W2,1 + · · ·+ x2,l2 ·W2,l2)B1r]T

· [s⊤A⊤(x1,1 ·W1,1 + · · ·+ x1,l1 ·W1,l1 + x2,1 ·W2,1 + · · ·+ x2,l2 ·W2,l2)B1r]
−1
T

=[s⊤A⊤k]−1T

The above equation holds because of ⟨x1,y1⟩ = 0 and ⟨x2,y2⟩ = 0.
Thus, the decryption algorithm Dec outputs a correct message,m′ = [s⊤A⊤k]T ·

m · [s⊤A⊤k]−1T = m.
In addition, it also holds that

e((x1,1 ⊙ [A⊤W1,1]1) · · · (x1,l1 ⊙ [A⊤W1,l1 ]1)

· (x2,1 ⊙ [A⊤W2,1]1) · · · (x2,l2 ⊙ [A⊤W2,l2 ]1),K1) · e([A⊤]1,K0)
−1 · [A⊤k]T

=e([x1,1 ·A⊤W1,1]1 · · · [x1,l1 ·A
⊤W1,l1 ]1 · [x2,1 ·A

⊤W2,1]1 · · · [x2,l2 ·A
⊤W2,l2 ]1, [B1r]2)

· e([A⊤]1, [k+ (x1,1 ·W1,1 + · · ·+ x1,l1 ·W1,l1 + x2,1 ·W2,1 + · · ·+ x2,l2 ·W2,l2)B1r]2)
−1
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· [A⊤k]T
=e([x1,1 ·A⊤W1,1]1 · · · [x1,l1 ·A

⊤W1,l1 ]1 · [x2,1 ·A
⊤W2,1]1 · · · [x2,l2 ·A

⊤W2,l2 ]1, [B1r]2)

· e([A⊤]1, [(x1,1 ·W1,1 + · · ·+ x1,l1 ·W1,l1 + x2,1 ·W2,1 + · · ·+ x2,l2 ·W2,l2)B1r]2)
−1

· e([A⊤]1, [k]2)−1 · [A⊤k]T
=[(x1,1 ·A⊤W1,1 + · · ·+ x1,l1 ·A

⊤W1,l1 + x2,1 ·A⊤W2,1 + · · ·+ x2,l2 ·A
⊤W2,l2)B1r]T

· [(x1,1 ·A⊤W1,1 + · · ·+ x1,l1 ·A
⊤W1,l1 + x2,1 ·A⊤W2,1 + · · ·+ x2,l2 ·A

⊤W2,l2)B1r]
−1
T

· [A⊤k]−1T · [A
⊤k]T

=[0]T .

Thus, the checking algorithm CheckKey outputs 1.
In all, the dual IPE constructed in Fig. 9 is correct.

Security. We now state the security theorem of our proposed public-key dual
IPE scheme. Due to space limitations, the proof is given in Appendix J.

Theorem 6. Under the k-LIN assumption and the adaptive secuity of the private-
key dual IPE scheme described in Fig. 8, the public-key dual IPE scheme de-
scribed in Fig. 9 is adaptively secure.

5.4 A SME supporting Sigma protocol

In Sec. 5.2, we show how to construct a SME from a dual IPE. Thus, leveraging
the concrete dual IPE in Sec. 5.3, we can obtain a concrete SME. Note that the
dual IPE DIPE constructed in Sec. 5.3 is based on the k-LIN assumption (here
we pick k = 1, i.e., based on the SXDH assumption [12]). In the following, we
show that the concrete SME supports Sigma protocols.

We firstly show the main idea of how to transfer the relation Rc when the
underlying SME scheme is constructed from the dual IPE in Sec. 5.3. After that,
we give the details of the Sigma protocol.

Main idea. Recall that the relation of the property of supporting Sigma proto-
cols is as follows:

Rc = {((τp, c, pk, Φ), (w, renc)) : c = SME.Enc(pk, Φ, τp, w; renc)}.

As shown in Fig. 7, we can know that SME.Enc mainly invokes the encryption
algorithm of dual IPE (i.e., DIPE.Enc). Note that when w ̸∈ Φ, SME.Enc would
output ⊥. Thus, directly proving that c is the output by the encryption of DIPE
is not enough, since it is also required to guarantee w ∈ Φ.

A simple idea is to adopt the “OR” technique, such that we can prove that
there exists a w in Φ and the ciphertext c for a default message mdum is generated
with a predicate corresponding to w.

Then, what remains is to prove that the ciphertext is well-formed when given
a w ∈ Φ. As introduced in the aforementioned section, the witness w is trans-
ferred to I(w). With respect to the algorithm EncodeW, we can know that I(w)
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only contains a one and other positions are labelled by zeros. Therefore, when
adopting DIPE to construct SME, roughly Rc can be transferred as follows:

RDIPE
c ={((τp, c, pk, Φ), renc) : ∨w∈Φ( ( c = DIPE.Enc(pk, (I(w), τp),mdum; renc),

where I(w) has a one and other positions are zeros )}.

Details of the Sigma protocol. Plugging with the concrete algorithms of DIPE,

we can transfer the relation RDIPE
c into the following relation R′.

R′ = {((τp, c, pk,mdum,Φ), s) : � |Φ| = l1

(∨i∈[l1] ( (C0 = [s⊤A⊤]1) ∧ (C = [s⊤A⊤k]T ·mdum)

∧ (C1,1 = [s⊤A⊤W1,1]1) ∧ . . . � I(w)1 = 0 . . .

∧ (C1,i−1 = [s⊤A⊤W1,i−1]1) � I(w)i−1 = 0

∧ (C1,i = [s⊤A⊤(U1 +W1,i)]1) � I(w)i = 1

∧ (C1,i+1 = [s⊤A⊤W1,i+1]1) ∧ . . . � I(w)i+1 = 0 . . .

∧ (C1,l1 = [s⊤A⊤W1,l1 ]1) � I(w)l1 = 0

∧ (∧ι∈[l2](C2,ι = [s⊤A⊤((τp)ιU2 +W2,ι)]1)) ) )} � τp

Then, for each clause, we show that we can construct a Sigma protocol. We
denote the jth clause in the relation R′ as R′j , as shown in the following.

R′j = {((τp, c, pk,mdum, j), s) :

(C0 = [s⊤A⊤]1) ∧ (C = [s⊤A⊤k]T ·mdum)

∧ (C1,1 = [s⊤A⊤W1,1]1) ∧ . . . � I(w)1 = 0 . . .

∧ (C1,j−1 = [s⊤A⊤W1,j−1]1) � I(w)j−1 = 0

∧ (C1,j = [s⊤A⊤(U1 +W1,j)]1) � I(w)j = 1

∧ (C1,j+1 = [s⊤A⊤W1,j+1]1) ∧ . . . � I(w)j+1 = 0 . . .

∧ (C1,l1 = [s⊤A⊤W1,l1 ]1) � I(w)l1 = 0

∧ (∧ι∈[l2](C2,ι = [s⊤A⊤((τp)ιU2 +W2,ι)]1)) } � τp

We present our Sigma protocol ΣR
′

clause = (P,V) in Fig. 10 for the relation
R′j , which essentially is an extension of the Chaum-Pedersen protocol [8].

Due to space limitations, the security analysis of ΣR
′

clause is placed in Appendix
K. Recall that we set k = 1 for the underlying dual IPE (i.e., based on the SXDH
assumption), the communication overhead is listed as follows: 1) the commitment
a output by P1 contains 3(l1+ l2)+2 elements in G1 and 1 element in GT ; 2) the
challenge c selected by V2 contains 1 element in Zp; 3) the response z generated
by P2 contains 1 element in Zp.

Therefore, the scheme SME constructed above supports Sigma protocols.
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(1) P1(x = (τp, c, pk,mdum, j), w = s):

t← Zp, aC0 := [t⊤A⊤]1, aC1,j := [t⊤A⊤(U1 +W1,j)]1

For each i ∈ [l1]\{j}: aC1,i := [t⊤A⊤W1,i)]1

For each ι ∈ [l2]: aC2,ι := [t⊤A⊤((τp)ι ·U2 +W2,ι))]1

aC := [t⊤A⊤k]T , send a := (aC0 , (aC1,i)i∈[l1], (aC2,ι)ι∈[l2], aC) to V
(2) V1(a): c← Zp, send c to P
(3) P2(a, c, x, w): zt := t− c · s, send z := zt to V

V2(x, a, c, z):
Parse x = (τp, c, pk,mdum, j), a = (aC0 , (aC1,i)i∈[l1], (aC2,ι)ι∈[l2], aC)

zt := z, a′C0
:= [z⊤t A

⊤]1(c⊙ C0), a
′
C1,j

:= [z⊤t A
⊤(U1 +W1,j)]1(c⊙ C1,j)

For each i ∈ [l1]\{j}: a′C1,i
:= [z⊤t A

⊤W1,i]1(c⊙ C1,i)

For each ι ∈ [l2]: a′C2,ι
:= [z⊤t A

⊤((τp)ι ·U2 +W2,ι)]1(c⊙ C2,ι)

a′C := [z⊤t A
⊤k]T · (c⊙ (C/mdum))

If (a′C0
= aC0) ∧ (a′C1,i

= aC1,i)i∈[l1] ∧ (a′C2,ι
= aC2,ι)ι∈[l2] ∧ (a′C = aC): Return 1

Else Return 0

Fig. 10: Algorithms of ΣR
′

clause = (P,V)

5.5 A more efficient fSMP

Now we discuss a concrete construction for fSMP. More exactly, we adopt Peder-
sen commitment [27] (for simplicity, the commitment scheme runs over the group
Gcom with prime order p, and g and h are two generators of group Gcom where
logg h is unknown) and the SME scheme introduced in Sec. 5.2 (constructed with
a concrete dual IPE introduced in Sec. 5.3).

Firstly, we show that we can construct a Sigma protocol for the internal
relation R̃sm (see in the following). It implies a NIZK for R̃sm by applying
the Fiat-Shamir transform. The size of NIZK proof would be O(l1 · poly(λ)),
where l1 is the size of the set Φ and λ is the security parameter. After that,
we discuss how to improve the size of proof for relation R̃sm. Applying self-
stacking technique [18], we will show that the size of proof can be logarithmic,
i.e., O((log l1) · poly(λ)) = O(log l1).

A sigma protocol for R̃sm. Recall that the relation R̃sm is as follows:

R̃sm = {((τp, com, c, pk, Φ),(w, rcom, renc)) : com = Commit.Com(pp, w; rcom)

∧ c = SME.Enc(pk, Φ, (w, τp); renc)}.

Following the transformation discussed in Sec. 5.4, the relation R̃sm can be
transferred into the following relation R′′.

R′′ = {((g, h, τp, com, c, pk,mdum, Φ), (rcom, s)) :

(∨i∈[l1] ( (com = gΦihrcom) � Φi is the ith element in Φ
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∧ (C0 = [s⊤A⊤]1) ∧ (C = [s⊤A⊤k]T ·mdum)

∧ (C1,1 = [s⊤A⊤W1,1]1) ∧ . . . � I(w)1 = 0 . . .

∧ (C1,i−1 = [s⊤A⊤W1,i−1]1) � I(w)i−1 = 0

∧ (C1,i = [s⊤A⊤(U1 +W1,i)]1) � I(w)i = 1

∧ (C1,i+1 = [s⊤A⊤W1,i+1]1) ∧ . . . � I(w)i+1 = 0 . . .

∧ (C1,l1 = [s⊤A⊤W1,l1 ]1) � I(w)l1 = 0

∧ (∧ι∈[l2](C2,ι = [s⊤A⊤((τp)ιU2 +W2,ι)]1)) ) )} � τp

It is clear that we can prove R′′ by the composite Sigma protocol. More
exactly, we can construct a Sigma protocol for R′′ through the following method:

1. Firstly, for each clauseR′′j (j ∈ [l1]) inR′′, we can construct a Sigma protocol

ΣR
′′

clause by adopting the “AND” technique to composite Schnorr’s Sigma
protocol for the discrete logarithm of the commitment (i.e., knowing the
discrete logarithm of (com/gΦi) with base h is rcom) and the Sigma protocol
ΣR

′

clause for the SME.
2. Secondly, we can obtain a composite Sigma protocol for relation R′′ by

adopting the “OR” technique to composite the Sigma protocols for all clause.

We present a Sigma protocol ΣR
′′

clause for a clause R′′j (as defined below) in
Fig. 11 .

R′′j = {((g, h, τp, com, c, pk,mdum, Φj , j), (rcom, s)) :

(com = gΦjhrcom) � Φj is the jth element in Φ

∧ (C0 = [s⊤A⊤]1) ∧ (C = [s⊤A⊤k]T ·mdum)

∧ (C1,1 = [s⊤A⊤W1,1]1) ∧ . . . � I(w)1 = 0 . . .

∧ (C1,j−1 = [s⊤A⊤W1,j−1]1) � I(w)j−1 = 0

∧ (C1,j = [s⊤A⊤(U1 +W1,j)]1) � I(w)j = 1

∧ (C1,j+1 = [s⊤A⊤W1,j+1]1) ∧ . . . � I(w)j+1 = 0 . . .

∧ (C1,l1 = [s⊤A⊤W1,l1 ]1) � I(w)l1 = 0

∧ (∧ι∈[l2](C2,ι = [s⊤A⊤((τp)ιU2 +W2,ι)]1)) } � τp

Since the Sigma protocol ΣR
′′

clause for R′′j is obtained by compositing Schnorr’s

Sigma protocol and ΣR
′

clause for relationR′j (as shown in Sec. 5.4) using an “AND”

combination, the security of ΣR
′′

clause is well guaranteed. Here we omit the discus-
sions on its security.

Recall that we set k = 1 for the underlying dual IPE (i.e., based on the SXDH
assumption), so the communication overhead of ΣR

′′

clause would be 1 element in
Gcom, 3(l1+ l2)+2 elements in G1, 1 element in GT and 3 elements in Zp. Thus,
it can be inferred that using the conventional composition method, the total
communication overhead would be O(l1(l1 + l2)) (since there are l1 clauses). By
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(1) P1(x = (g, h, τp, com, c, pk,mdum, Φj , j), w = (rcom, s)):

tcom ← Zp, acom := htcom

t← Zp, aC0 := [t⊤A⊤]1, aC1,j := [t⊤A⊤(U1 +W1,j)]1

For each i ∈ [l1]\{j}: aC1,i := [t⊤A⊤W1,i)]1

For each ι ∈ [l2]: aC2,ι := [t⊤A⊤((τp)ι ·U2 +W2,ι))]1

aC := [t⊤A⊤k]T , send a := (acom, aC0 , (aC1,i)i∈[l1], (aC2,ι)ι∈[l2], aC) to V
(2) V1(a): c← Zp, send c to P
(3) P2(a, c, x, w): zcom := tcom − c · rcom, zt := t− c · s, send z := (zcom, zt) to V

V2(x, a, c, z):
Parse x = (g, h, τp, com, c, pk,mdum, Φj , j)

Parse a = (acom, aC0 , (aC1,i)i∈[l1], (aC2,ι)ι∈[l2], aC), z = (zcom, zt)

a′com := hzcom(com/gΦj )c, a′C0
:= [z⊤t A

⊤]1(c⊙ C0)

a′C1,j
:= [z⊤t A

⊤(U1 +W1,j)]1(c⊙ C1,j)

For each i ∈ [l1]\{j}: a′C1,i
:= [z⊤t A

⊤W1,i]1(c⊙ C1,i)

For each ι ∈ [l2]: a′C2,ι
:= [z⊤t A

⊤((τp)ι ·U2 +W2,ι)]1(c⊙ C2,ι)

a′C := [z⊤t A
⊤k]T · (c⊙ (C/mdum))

If (a′com = acom) ∧ (a′C0
= aC0) ∧ (a′C1,i

= aC1,i)i∈[l1] ∧ (a′C2,ι
= aC2,ι)ι∈[l2]

∧(a′C = aC): Return 1

Else Return 0

Fig. 11: Algorithms of ΣR
′′

clause = (P,V)

applying the Fiat-Shamir transform to the composited Sigma protocol7, we can
obtain a NIZK for R̃sm and the proof size would be 3l1 elements in Zp, where
2l1 elements are the responses (i.e., all z’s for all clauses) and l1 elements are the
challenges for all clauses.

Proofs with shorter size. In [18], Goel et al. present a general framework for
composing stackable Sigma protocols for disjunctions in which communication
depends on the size of the largest clause. Notably, they also demonstrate the
stackability of several classic Sigma protocols, including Schnorr’s Sigma protocol
[30] and the Chaum-Pedersen protocol [8].

We will show that the Sigma protocol ΣR
′′

clause is stackable. Then, according
to Theorem 8 (in Appendix A.3), we can achieve a compiled Sigma protocol by
utilizing the self-stacking technique [18] and we can know that its communication
complexity is linearly proportional to the largest communication cost among
these clauses. Note that in R′′, we can run ΣR

′′

clause for every clause, so every
clause has the same communication cost. Thus, the communication complexity

7 Note that the Sigma protocol ΣR′′
clause supports that the verifier can recover the com-

mitment via the responses and the challenge, so we can save the proof size by only
sending the responds to the verifier as the proof.
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of the compiled Sigma protocol is linearly proportional to the communication
overhead of ΣR

′′

clause.
We have the following theorem. Due to space limitations, the definition of

stackable Sigma protocol is recalled in Appendix A.3, and the proof for Theorem
7 is provided in Appendix L.

Theorem 7. The Sigma protocol ΣR
′′

clause in Fig. 11 is a stackable Sigma protocol.

Communication complexity. Here, we follow the analysis in [18]. Let CC(Σ) be

the communication complexity of ΣR
′′

clause for the relation R′′j and Σl1 denote
the compiled Sigma protocol for R′′. Let |Size(VCommit)| be the size of the 1-
out-of-l binding vector commitment scheme (please refer its definition to [18]),
which is independent of CC(Σ) and only depends on the security parameter λ.
We have CC(Σl1) = CC(Σ) + 2(log l1)(|Size(VCommit)|) = O(CC(Σ) + (log l1) ·
poly(λ)). Thus, when applying the Fiat-Shamir transform, the proof size would
be O((log l1) · poly(λ)) = O(log l1).
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A Preliminary: NIZK and Sigma protocols

A.1 NIZK

We recall the definition of NIZK as follows.

Definition 8. (NIZK). Let L be an NP language associated with an NP relation
R. A non-interactive zero-knowledge proof (NIZK) for L consists of a tuple of
three efficient algorithms NIZK = (Setup,Prove,Verify):

• Setup(1λ) → crs: On input a security parameter, the algorithm outputs a
common reference string crs.

• Prove(crs, x, w) → π: On input a common reference string crs, a statement
x and a witness w, the proving algorithm outputs a proof π.

• Verify(crs, x, π) → b ∈ {0, 1}: On input a common reference string crs, a
statement x and a proof π, the verification algorithm outputs a bit b ∈ {0, 1}.

Moreover, the algorithms are required to satisfy the following properties:

1. Completeness. For any (x,w) ∈ R, we have that

Pr

[
crs← Setup(1λ)
π ← Prove(crs, x, w)

: Verify(crs, x, π) = 1

]
= 1.

2. Soundness. Here we present two variants of soundness:
(a) Non-adaptive soundness: for any x ̸∈ L and any computationally un-

bounded adversary A,

Pr

[
crs← Setup(1λ)
π ← A(crs, x) : Verify(crs, x, π) = 1

]
≤ negl(λ).

(b) Adaptive soundness: for any computationally unbounded adversary A,

Pr

[
crs← Setup(1λ)
(x, π)← A(crs) : x ̸∈ L

∧ Verify(crs, x, π) = 1

]
≤ negl(λ).

3. Zero knowledge. We also consider two variants of zero knowledge: single-
theorem zero knowledge and multi-theorem zero knowledge.
(a) Single-theorem zero knowledge: for any PPT adversary A = (A1,A2),

there exists a PPT simulator Sim = (Sim1,Sim2) such that for any poly-
nomial l,

|Pr[ExpRealsin-zkNIZK,A(λ) = 1]− Pr[ExpIdealsin-zkNIZK,A,Sim(λ) = 1]| ≤ negl(λ),

where ExpRealsin-zkNIZK,A(λ) and ExpIdealsin-zkNIZK,A,Sim(λ) are defined in Fig. 12.

https://scroll.io/blog/zkEVM
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ExpRealsin-zkNIZK,A(λ):

crs← Setup(1λ)
((x,w), stA)← A1(crs)

s.t. (x,w) ∈ R
π ← Prove(crs, x, w)
Return b← A2(π, st

A)

ExpIdealsin-zkNIZK,A,Sim(λ):

(crs, stSim)← Sim1(1
λ)

((x,w), stA)← A1(crs)
s.t. (x,w) ∈ R

π ← Sim2(crs, x, st
Sim)

Return b← A2(π, st
A)

Fig. 12: Games for defining single-theorem zero knowledge for NIZK

ExpRealmul-zk
NIZK,A(λ):

crs← Setup(1λ)

b← AOProve(·,·)(crs)
Return b

OProve(x,w):
If (x,w) /∈ R: Return ⊥
π ← Prove(crs, x, w)
Return π

ExpIdealmul-zk
NIZK,A,Sim(λ):

(crs, stSim)← Sim1(1
λ)

b← AOProve(·,·)(crs)
Return b

OProve(x,w):
If (x,w) /∈ R: Return ⊥
(π, stSim)← Sim2(crs, x, st

Sim)
Return π

Fig. 13: Games for defining multi-theorem zero knowledge for NIZK

(b) Multi-theorem zero knowledge: for any PPT adversary A, there exists a
PPT simulator Sim = (Sim1,Sim2) such that for any polynomial l,

|Pr[ExpRealmul-zk
NIZK,A(λ) = 1]− Pr[ExpIdealmul-zk

NIZK,A,Sim(λ) = 1]| ≤ negl(λ),

where ExpRealmul-zk
NIZK,A(λ) and ExpIdealmul-zk

NIZK,A,Sim(λ) are defined in Fig. 13.

A.2 Sigma protocols

Sigma protocols are widely-used interactive protocols for proof of knowledge.
A Sigma protocol Σ = (P,V) for polynomial-time relation R consists of two
efficient interactive protocol algorithms (P,V), where P = (P1,P2) is the prover
and V = (V1,V2) is the verifier, associated with a challenge space CL. Specifically,
for any (x,w) ∈ R, the input of the prover (resp. verifier) is (x,w) (resp. x).
The prover first computes (a, aux) ← P1(x,w) and sends the commitment a to
the verifier. The verifier (i.e., V1) returns a challenge c ← CL. Then the prover
replies with z ← P2(a, c, x, w, aux). Receiving z, the verifier (i.e., V2) outputs
b ∈ {0, 1}. The tuple (a, c, z) is called a transcript. We require that V does not
make any random choices other than the selection of c. For any fixed (a, c, z), if
the final output of V(x) is 1, (a, c, z) is called an accepting transcript for x. For
simplicity, we denote by ⟨P(w),V⟩(x) the final output of V when running the
protocol (P,V) on common input x with P running on additional input w.

Completeness requires that for all (x,w) ∈ R, when P(x,w) and V(x) interact
with each other, the final output of V(x) is always 1.

The corresponding security notions are as follows.
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Definition 9. (Knowledge soundness). We say that a Sigma protocol (P,V)
for R provides knowledge soundness, if there is an efficient deterministic algo-
rithm Ext such that on input x ∈ X and two accepting transcripts (a, c, z), (a, c′, z′)
where c ̸= c′, Ext always outputs a w ∈ W satisfying (x,w) ∈ R.

Definition 10. (Special HVZK). We say that a Sigma protocol (P,V) for
R with challenge space CL is special honest verifier zero knowledge (special
HVZK), if there is a PPT simulator Sim which takes (x, c) ∈ X × CL as input
and satisfies the following properties:

(i) for all (x, c) ∈ X × CL, Sim always outputs a pair (a, z) such that (a, c, z) is
an accepting transcript for x;

(ii) for all (x,w) ∈ R, the tuple (a, c, z), generated via c ← CL and (a, z) ←
Sim(x, c), has the same distribution as that of a transcript between P(x,w)
and V(x).

The Sigma protocols can be combined using “AND/OR”-proof construction
and the combined protocol is also a Sigma protocol satisfying the above security
properties [3]. In addition, applying the Fiat-Shamir transform [17] to a Sigma
protocol, we can obtain a NIZK (with adaptive soundness).

A.3 Stackable Sigma protocols [18]

Here, we recall some definitions and theorems about stackable Sigma protocols,
which are proposed in [18].

Definition 11. (Well-behaved simulator). We say that Σ = (P,V) for an
NP language L and associated relation R has a well-behaved simulator, if the
simulator Sim defined for special HVZK has the following property:

For any statement x (for both x ∈ L and x /∈ L),

Pr[c← CL; (a, z)← Sim(x, c) : V2(x, a, c, z) = 1] = 1

Definition 12. (EHVZK). Let Σ = (P,V) be a Sigma protocol for the NP
relation R, with a well-behaved simulator. We say that Σ is extended honest
verifier zero knowledge (EHVZK), if there exists a polynomial time computable
deterministic extended simulator SimEHVZK, such that for any (x,w) ∈ R and

c ∈ CL, there exists an efficiently samplable distribution D(z)
x,c and the following

distributions coincide:

{(a, c, z) | r ← RS; a← P1(x,w; r); z← P2(a, c, x, w, r)},
{(a, c, z) | z← D(z)

x,c; a← SimEHVZK(x, c, z)}.

Definition 13. (Recyclable third message). Let Σ = (P,V) be a Sigma
protocol for the NP relation R, with a well-behaved simulator. We say that Σ
has recyclable third messages if for each c ∈ CL, there exists an efficiently

samplable distribution D(z)
c , such that for all pairs (x,w) ∈ R, it holds that:

D(z)
c ≈ {z | r ← RS; a← P1(x,w; r); z← P2(a, c, x, w, r)}.
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Definition 14. (Stackable Sigma protocol). We say that a Sigma protocol
Σ = (P,V) is stackable, if it is EHVZK and has recyclable third messages.

In [18], the self stacking technique is discussed in cases where a relation is
composed of multiple identical sub-relations. If the Sigma protocol for each sub-
relation is stackable, then the compiled Sigma, which is obtained by applying
the self stacking technique to the Sigma protocols for each sub-relation, is also
stackable, as shown in the following theorem.

Theorem 8. (Self stacking [18, Theorem 5]). Let Π = (P,V) be a stack-
able Sigma protocol as defined in Def. 14 for NP relation R ⊂ X ×W and let
VCommit = (Setup,Gen,Com,Equ,Dec) be a 1-out-of-l binding vector commit-
ment scheme as defined in [18]. For any public parameter pp← VCommit.Setup(1λ),
the compiled protocol Π′ = (P ′,V ′) using the self stacking technique is a stackable
Sigma protocol for the relation R′ ⊂ X l× ([l]×W),where ((x1, . . . , xl), (α,w)) ∈
R′ if and only if (xα, w) ∈ R.

According to [18, Lemma 1], Σ protocol for ψ-preimages is stackable. We
recall the theorem as follows.

Theorem 9. (Σ protocol for ψ-preimages is stackable [18, Lemma 1]).
Let G1 and G2 be groups with group operations ∗1 and ∗2 respectively, and let
ψ : G1 → G2 be a one-way group-homomorphism. Recall the simple Σ-protocol
(denoted as Πψ) of Cramer and Damg̊ard [14] for the relation of preimages Rψ
((x,w) ∈ Rψ if and only if it holds that x = ψ(w), where x ∈ G1 and w ∈ G2).
The protocol works as follows:

1. P1(x,w; r): The prover samples r ← G1 and sends the image a = ψ(r) ∈ G2

to the verifier.
2. V1(a): On receiving a from the prover, the verifier samples a challenge c and

sends it to the prover.
3. P2(a, c, x, w; r): The prover interprets c as an integer from a subset CL ⊆ Z

and replies with z = wc ∗1 r.

4. V2(x, a, c, z): The verifier checks ψ(z)
?
= xc ∗2 a.

Completeness follows since ψ is a homomorphism: ψ(z) = ψ(wc ∗1 r) =
ψ(w)c ∗2 ψ(r) = xc ∗2 a. The knowledge soundness error is 1/|CL|. For
any homomorphism ψ, Πψ is stackable.

B Preliminary: functional encryption

We recall the definition of functional encryption here.

Definition 15. (Functional encryption). A functional encryption (FE) scheme
for function family F on message space M (both of which are implicitly depend
on λ) consists of four PPT algorithms (Setup,KGen,Enc,Dec).
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• Setup(1λ) → (mpk,msk): The setup algorithm takes the security parameter
λ as input, and outputs a master public key mpk and a master secret key
msk.

• KGen(mpk,msk, f) → skf : The key generation algorithm takes the master
public key mpk, the master secret key msk and a function f ∈ F as input,
outputs a secret key skf .

• Enc(mpk,m) → c: The encryption algorithm takes the master public key
mpk and a message m ∈M as input, and outputs a ciphertext c.

• Dec(c, skf )→ y: The decryption algorithm takes a ciphertext c and a secret
key skf as input and outputs y.

Correctness requires that for any (mpk,msk) generated by Setup(1λ), any
f ∈ F and m ∈M, Pr[Dec(Enc(mpk,m),KGen(mpk,msk, f)) = f(m)] = 1.

Here, we recall indistinguishability-based security (IND security) for FE.

ExpindFE,A(λ):

(mpk,msk)← Setup(1λ), b← {0, 1}, W := ∅, Q := ∅

(m0,m1, st)← AOKGen(·)
1 (mpk)

s.t. (|m0| = |m1|) ∧ (∀f ′ ∈ Q, f ′(m0) = f ′(m1))

W := {m0,m1}, c← Enc(mpk,mb), b
′ ← AOKGen(·)

2 (c, st)

Return (b = b′)

OKGen(f ′):

If W ̸= ∅:
Parse W = {m0,m1}
If f ′(m0) ̸= f ′(m1): Return ⊥

Q := Q ∪ {f ′}
Return skf ′ ← FE.KGen(mpk,msk, f ′)

Fig. 14: Game for defining IND-security of FE

Definition 16. (IND security for FE). A FE scheme FE = (Setup,KGen,Enc,
Dec) is IND secure, if for any PPT adversary A, the advantage Advind

FE,A(λ) :=

|Pr[ExpindFE,A(λ) = 1]− 1
2 | is negligible, where ExpindFE,A(λ) is defined in Fig. 14.

C Preliminary: inner-product encryption

We recall the definition of inner-product encryption (IPE).

Definition 17. (Inner-product encryption). An inner-product encryption
(IPE) scheme for a message space M consists of four algorithms IPE = (Setup,
KGen,Enc,Dec).
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• Setup(1λ, l) → (pk,msk): On input the security parameter 1λ and the di-
mension l of the vector space, the setup algorithm outputs a public key pk
and a master secret key msk.

• KGen(msk,x) → skx: On input msk and a vector x, the key generation
algorithm outputs a secret key skx for x.

• Enc(pk,y,m) → cy: On input pk, a vector y and a message m ∈ M, the
encryption algorithm outputs a ciphertext cy for y.

• Dec(cy, skx) → m: On input a ciphertext cy for y and a secret key skx for
x as input, the decryption algorithm outputs a m.

Correctness requires that for all m ∈ M and all vectors x,y satisfying
⟨x,y⟩ = 0, it holds that:

Pr

[
(pk,msk)← Setup(1λ, l)
skx ← KGen(msk,x)

: Dec(Enc(pk,y,m), skx) = m

]
= 1.

We recall adaptive security and fully attribute-hiding property for IPE [25].

Definition 18. (Adaptive security and fully attribute-hiding property
for IPE). An IPE scheme IPE = (Setup,KGen,Enc,Dec) for message space
M and dimension l is adaptively secure and fully attribute-hiding, if for any
PPT adversary A, the advantage Adva-ah

IPE,A(λ) := |Pr[Exp
a-ah
IPE,A(λ) = 1] − 1

2 | is
negligible, where Expa-ahIPE,A(λ) is defined in Fig. 15.

D Preliminary: commitment

Definition 19. (Commitment). A commitment scheme with message space
M contains three PPT algorithms Commit = (Setup,Com,Dec):

• Setup(1λ) → pp: The setup algorithm takes the security parameter 1λ as
input and output a public parameter pp.

• Com(pp,m; rcom)→ com: The commitment algorithm takes as input the pub-
lic parameter pp and m ∈ M, with an inner randomized input rcom, and
outputs a commitment com.

• Dec(pp, com, rcom,m) → b: The decommitment algorithm takes as input the
public parameter pp, a commitment com, a decommitment rcom and a mes-
sage m ∈ M, and outputs a bit b ∈ {0, 1} depending on whether m is the
committed message of com.

A commitment scheme enjoys the following properties:

– Correctness. For all m ∈M and all rcom ∈ RSCom, it holds that

Pr[pp← Setup(1λ), com← Com(pp,m; rcom) : Dec(pp, com, rcom,m) = 1] = 1.

– Binding. For any PPT adversary A,

Pr

pp← Setup(1λ)
(com,m, rcom,m

′, r′com)← A(pp)
:

m ̸= m′

∧ Dec(pp, com, rcom,m) = 1
∧ Dec(pp, com, r′com,m

′) = 1

 ≤ negl(λ).



38 G. Zeng et al.

Expa-ahIPE,A(λ):

(pk,msk)← Setup(1λ, l), b← {0, 1}, Cy,m := ∅, Ux := ∅

(y0,y1,m0,m1, st)← AOKGen(·)
1 (pk, l)

s.t. if m0 ̸= m1, (⟨x,y0⟩ ≠ 0) ∧ (⟨x,y1⟩ ̸= 0) for all x ∈ Ux; and

if m0 = m1, ((⟨x,y0⟩ ̸= 0) ∧ (⟨x,y1⟩ ̸= 0)) ∨ (⟨x,y0⟩ = ⟨x,y1⟩ = 0) for all x ∈ Ux

Cy,m := {(y0,y1,m0,m1)}, c← Enc(pk,yb,mb)

b′ ← AOKGen(·)
2 (c, st)

Return (b = b′)

OKGen(x):

If Cy,m ̸= ∅:
Parse Cy,m = {(y0,y1,m0,m1)}
If m0 ̸= m1:

If (⟨x,y0⟩ = 0) ∨ (⟨x,y1⟩ = 0): Return ⊥
If m0 = m1:

If ((⟨x,y0⟩ ̸= 0) ∧ (⟨x,y1⟩ = 0)) ∨ ((⟨x,y0⟩ = 0) ∧ (⟨x,y1⟩ ≠ 0)): Return ⊥
Ux := Ux ∪ {x}
Return skx ← KGen(msk,x)

Fig. 15: Game for defining adaptive security and fully attribute-hiding property
for IPE

– Hiding. For any PPT adversary A = (A1,A2),∣∣∣∣∣∣∣∣Pr

pp← Setup(1λ), b← {0, 1}
(m0,m1, st)← A1(pp)
com← Com(pp,mb)
b′ ← A2(com, st)

: b′ = b

− 1

2

∣∣∣∣∣∣∣∣ ≤ negl(λ).

If A is unbounded and negl(λ) is fixed to be 0, we say that the scheme Commit
is perfect hiding.

We say that Commit supports Sigma protocols, if there exists an efficient
Sigma protocol for the following relation:

Rcom = {(com, (rcom,m)) : com = Com(pp,m; rcom)}.

Note that Perdersen commitment [27] can be proved by Okamoto’s Sigma
protocol [23]. Thus, the Pedersen commitment satisfies the above requirement.

E Proof of Theorem 1

Proof (of Theorem 1). It is easy to see that Π satisfies the completeness and
soundness of NIZK. So we mainly discuss zero knowledge property here. Specifi-
cally, we focus on single-theorem zero knowledge of NIZK, the definition of which
can be found in Appendix A.1.
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B1(crs, pk1):

Ucor := ∅, stB1 := (crs, pk1)
Return (Ucor, st

B
1 )

B3(π, st
B
2 = stA):

b← Azk
2 (π, stA)

Return b

B2(st
B
1 = (crs, pk1)):

crszk := (crs, pk1), w
′ ←W, τp ← T

((x,w), stA)← Azk
1 (crszk)

stB2 := stA

Return (1, τp, x, w,w′, stB2 )

Simnizk
1 (1λ):

(crs, stSim)← Simfnizk
1 (1λ)

(pk,msk)← UKGen(crs)
crszk := (crs, pk)
Return (crszk, stSim)

Simnizk
2 (crszk, x, stSim):

Parse crszk = (crs, pk)
w′ ←W, τp ← T
π ← Simfnizk

2 (crs, pk, τp, x, w
′, stSim)

Return π

Fig. 16: B and Simzk in the proof of Theorem 1

Let W denote the witness space of R.
For any PPT adversary Azk = (Azk

1 ,Azk
2 ) attacking single-theorem zero

knowledge property of Π, consider a PPT adversary B = (B1,B2) attacking
zero knowledge property of fNIZK (for n = 1) as shown in Fig. 16. Note that B
does not make any secret key generation queries. So we derive that

Pr[ExpRealzkfNIZK,B,1(λ) = 1] = Pr[ExpRealsin-zkNIZK,Azk(λ) = 1]. (2)

Zero knowledge property of fNIZK guarantees that there exists a PPT simu-
lator Simfnizk = (Simfnizk

1 ,Simfnizk
2 ), such that

|Pr[ExpRealzkfNIZK,B,1(λ) = 1]− Pr[ExpIdealzkfNIZK,B,Simfnizk,1(λ) = 1]| ≤ negl(λ). (3)

Based on Simfnizk, we construct a simulator Simnizk = (Simnizk
1 ,Simnizk

2 ) for
zero knowledge as shown in Fig. 16. Obviously, we have that

Pr[ExpIdealsin-zkNIZK,Azk,Simnizk(λ) = 1] = Pr[ExpIdealzkfNIZK,B,Simfnizk,1(λ) = 1]. (4)

Combining Eqs. (2)-(4), we derive that

|Pr[ExpRealsin-zkNIZK,Azk(λ) = 1]− Pr[ExpIdealsin-zkNIZK,Azk,Simnizk(λ) = 1]| ≤ negl(λ),

concluding this proof. ⊓⊔

F Proof of Theorem 2

Proof (of Theorem 2). We show the proof of zero knowledge with a sequence of
games.

Game G0: For any PPT adversary A = (A1,A2,A3), let G0 be the real game
ExpRealzkfNIZK,A,n(λ). Specifically, the challenger firstly generates crs = (crsRct

,
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crsRk
) with algorithms NIZKRct

.Setup and NIZKRk
.Setup, generates (pki = mpki,

ski = mski)i∈[n] with algorithm FE.Setup, and initiates two sets W := ∅ and
Q := ∅. Then, the challenger sends (crs, (pk)i∈[n]) to A1. Receiving Ucor ⊂
[n] from A1, the challenger sends (ski)i∈Ucor

to A2, and answers A2’s ora-
cle queries with (ski)i∈[n] (i.e., for each of A2’s query (i′, f ′, τ ′f), set Q :=

Q∪{(i′, f ′, τ ′f)}, computes ski′,f̂f′,τ′
f

← FE.KGen(mpki′ ,mski′ , f̂f ′,τ ′
f
; rkg) (where

rkg ← RSFE.KGen) and ΠRk
← NIZKRk

.Prove(crsRk
, (pki′ , f̂f ′,τ ′

f
, ski′,f̂f′,τ′

f

), (ski′ ,

rkg)), and returns ski′,f ′,τ ′
f
= (ski′,f̂f′,τ′

f

, ΠRk
)).

Receiving the challenge tuple (i∗, τp, x, w,w
′) from A2 (the challenge tuple

satisfies that (i) i∗ /∈ Ucor, (ii) (x,w) ∈ R, and (iii) for all existing query pairs
(i′, f ′, τ ′f) in Q, if i′ = i∗ and P(τp, τ

′
f) = 1, then f ′(w) = f ′(w′)), the challenger

sets W := {i∗, τp, w, w′}. Then, it samples renc ← RSFE.Enc, and computes c =
FE.Enc(mpki∗ , (w, τp); renc) andΠRct

← NIZK.Prove(crs, (τp, x,mpki∗ , c), (w, renc)).
Subsequently, it sends π = (τp, ΠRct

, c) to A3, and then answers A3’s oracle
queries as follows:

– OFKGen(i′, f ′, τ ′f): The challenger parses W = {i∗, τp, w, w′}, and proceeds as
below:
• If (i′ = i∗) ∧ P(τp, τ

′
f) = 1 ∧ f ′(w) ̸= f ′(w′), return ⊥;

• Else, setQ := Q∪{(i′, f ′, τ ′f)}, computes ski′,f̂f′,τ′
f

← FE.KGen(mpki′ ,mski′ ,

f̂f ′,τ ′
f
; rkg) (where rkg ← RSFE.KGen) and ΠRk

← NIZKRk
.Prove(crsRk

,

(pki′ , f̂f ′,τ ′
f
, ski′,f̂f′,τ′

f

), (ski′ , rkg)), and returns ski′,f ′,τ ′
f
= (ski′,f̂f′,τ′

f

, ΠRk
).

Finally, the challenger returns A3’s final output b as its own final output.
Since G0 = ExpRealzkfNIZK,A,n(λ), we derive that

Pr[G0 = 1] = Pr[ExpRealzkfNIZK,A,n(λ) = 1]. (5)

Game G1: This game is the same as G0, except that crsRct
and ΠRct

are both
generated by the corresponding simulator of NIZKRct

. Specifically, in this game,
(i) crsRct

is generated via (crsRct
, stSim) ← NIZKRct

.Sim1(1
λ), and (ii) ΠRct

is
generated viaΠRct ← NIZKRct .Sim2(crsRct , (τp, x,mpki∗ , c), st

Sim), where NIZKRct .Sim =
(NIZKRct .Sim1,NIZKRct .Sim2) is the corresponding simulator of NIZKRct .

It is obvious that

|Pr[G1 = 1]− Pr[G0 = 1]|
= |Pr[ExpIdealsin-zkNIZKRct ,A′,NIZKRct .Sim

(λ) = 1]− Pr[ExpRealsin-zkNIZKRct ,A′(λ) = 1]|
≤ negl(λ), (6)

for some PPT adversary A′ (i.e., A′ is the PPT adversary attacking single-
theorem zero knowledge of NIZKRct based on A).
GameG2: This game is the same asG1, except that crsRk

and all theΠ ′Rk
in the

responses of the secret key generation oracle are generated by the correspond-
ing simulator of NIZKRk

. Specifically, in this game, (i) crsRk
is generated via
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(crsRk
, stSim)← NIZKRk

.Sim1(1
λ), and (ii) for each secret key generation query

(i′, f ′, τ ′f), after generating ski′,f̂f′,τ′
f

← FE.KGen(pki′ , ski′ , f̂f ′,τ ′
f
), the corre-

spondingΠ ′Rk
is generated viaΠ ′Rk

← NIZKRk
.Sim2(crsRk

, (pki′ , f̂f ′,τ ′
f
, ski′,f̂f′,τ′

f

),

stSim), where NIZKRk
.Sim = (NIZKRk

.Sim1,NIZKRk
.Sim2) is the corresponding

simulator of NIZKRk
.

It is obvious that

|Pr[G2 = 1]− Pr[G1 = 1]|
= |Pr[ExpIdealmul-zk

NIZKRk
,A′′,NIZKRk

.Sim(λ) = 1]− Pr[ExpRealmul-zk
NIZKRk

,A′′(λ) = 1]|
≤ negl(λ), (7)

for some PPT adversary A′′ (i.e., A′′ is the PPT adversary attacking multi-
theorem zero knowledge of NIZKRk

based on A).
Game G3: This game is the same as G2, except that c (which is obtained via
encrypting w and τp in G2) is replaced with c← FE.Enc(mpki∗ , (w

′, τp)).
Obviously,

|Pr[G3 = 1]− Pr[G2 = 1]| ≤ 2n ·Advind
FE,A′′′(λ) (8)

for some PPT adversary A′′′ attacking IND security of FE, where the security
loss n is incurred due to the necessity of A′′′ to make a guess on the challenge
index i∗.

A PPT simulator Sim = (Sim1,Sim2) can be constructed as shown in Fig.
17.

Sim1(1
λ):

(crsRct , st
Sim
Rct

)← NIZKRct .Sim1(1
λ)

(crsRk , st
Sim
Rk

)← NIZKRk .Sim1(1
λ)

crs := (crsRct , crsRk)
stSim := (stSimRct

, stSimRk
)

Return (crs, stSim)

Sim2(crs, pki∗ , τp, x, w
′, stSim):

Parse crs = (crsRct , crsRk), st
Sim = (stSimRct

, stSimRk
)

c← FE.Enc(pki∗ , (w
′, τp))

ΠRct ← NIZKRct .Sim2(crsRct , (τp, x, pki∗ , c), st
Sim
Rct

)
Return π := (τp, ΠRct , c)

Fig. 17: Construction of simulator Sim in the proof of zero knowledge for fNIZK

Note that ExpIdealzkfNIZK,A,Sim,n(λ) is totally the same as G3. So we have

Pr[ExpIdealzkfNIZK,A,Sim,n(λ) = 1] = Pr[G3 = 1]. (9)

Hence, combining equations (5)-(9), we obtain

|Pr[ExpRealzkfNIZK,A,n(λ) = 1]− Pr[ExpIdealzkfNIZK,A,Sim,n(λ) = 1]|

= |Pr[G0 = 1]− Pr[G3 = 1]| ≤ negl(λ) + 2n ·Advind
FE,A′′′(λ),

which is also negligible. ⊓⊔
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G Proof of Theorem 3

Proof (of Theorem 3). We show the proof of zero knowledge with a sequence of
games.

Game G0: For any PPT adversary A = (A1,A2,A3), let G0 be the real game
ExpRealzkfSMP,A,n(λ). Specifically, the challenger firstly generates crs = (crsnizk, pp)
with algorithms NIZK.Setup and Commit.Setup, and initiates two sets W :=
∅ and Q := ∅. Then, the challenger computes (pki, ski)i∈[n] with algorithm
SME.Setup. Subsequently, the challenger sends (crs, (pki)i∈[n]) to A1. Receiv-
ing Ucor ⊂ [n] from A1, the challenger sends (ski)i∈Ucor

to A2, and answers
A2’s oracle queries with (ski)i∈[n] (i.e., for each of A2’s query (i′, f ′, τ ′f), where
f ′ indicates a set Sf ′ ⊂ [l], set Q := Q ∪ {(i′, f ′, τ ′f)}, compute ski′,Sf′ ,τ ′

f
←

SME.KGen(pki′ , ski′ , Sf ′ , τ ′f), and return ski′,f ′,τ ′
f
= ski′,Sf′ ,τ ′

f
).

Receiving the challenge tuple (i∗, τp, x, wx, w
′
x) from A2 (the challenge tuple

satisfies that (i) i∗ /∈ Ucor, (ii) (x,wx) ∈ R, and (iii) for all existing query pairs
(i′, f ′, τ ′f) in Q, if P(τp, τ

′
f) = 1, then f ′(w) = f ′(w′)), the challenger sets W :=

{i∗, τp, wx, w′x}, and parses x = (com, Φ), wx = (w, rcom) and w′x = (w′, r′com).
Then, it samples renc ← RSSME.Enc, and computes c = SME.Enc(pk, Φ, τp, w; renc)
and πR̃sm

← NIZK.Prove(crsnizk, (τp, com, c, pk, Φ), (w, rcom, renc)). Subsequently,

it sends π = (τp, πR̃sm
, c) to A3, and then answers A3’s oracle queries as follows:

– OFKGen(i′, f ′, τ ′f): The challenger parses W = {i∗, τp, (w, rcom), (w′, r′com)},
and proceeds as below:
• If (i′ = i∗) ∧ (P(τp, τ

′
f) = 1) ∧ (f ′(w) ̸= f ′(w′)), return ⊥;

• Else, setQ := Q∪{(i′, f ′, τ ′f)} and return ski′,f ′,τ ′
f
← SME.KGen(pki′ , ski′ ,

Sf ′ , τ ′f), where Sf ′ ⊂ [l] is the corresponding set indicated by f ′.

Finally, the challenger returns A3’s final output b as its own final output.
Since G0 = ExpRealzkfSMP,A,n(λ), we derive that

Pr[G0 = 1] = Pr[ExpRealzkfSMP,A,n(λ) = 1]. (10)

Game G1: This game is the same as G0, except that crsnizk and πR̃sm
are both

generated by the corresponding simulator of NIZK. Specifically, in this game, (i)
crsnizk is generated via (crsnizk, st

Sim) ← NIZK.Sim1(1
λ), and (ii) πR̃sm

is gener-

ated via πR̃sm
← NIZK.Sim2(crsnizk, (τp, com, c, pki∗ , Φ), st

Sim), where NIZK.Sim =

(NIZK.Sim1,NIZK.Sim2) is the corresponding simulator of NIZK.
It is obvious to see that

|Pr[G1 = 1]− Pr[G0 = 1]|
= |Pr[ExpIdealsin-zkNIZK,A′,NIZK.Sim(λ) = 1]− Pr[ExpRealsin-zkNIZK,A′(λ) = 1]| ≤ negl(λ) (11)

for some PPT adversary A′ (i.e., A′ is the PPT adversary attacking single-
theorem zero knowledge of NIZK based on A).
Game G2: This game is the same as G1, except for the generation of c. Specif-
ically, in this game, c is generated as follows:
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– If w′ /∈ Φ, sample wr ← Φ, and then compute c← SME.Enc(pk, Φ, τp, wr).
– If w′ ∈ Φ, compute c← SME.Enc(pk, Φ, τp, w

′).

We present the following lemma with a postponed proof.

Lemma 1. There is a PPT adversary A′′ attacking the IND security of SME,
such that

|Pr[G2 = 1]− Pr[G1 = 1]| ≤ 2n ·Advind
SME,A′′(λ). (12)

A PPT simulator Sim = (Sim1,Sim2) can be constructed as shown in Fig.
18.

Sim1(1
λ):

(crsnizk, st
Sim)← NIZK.Sim1(1

λ)
pp← Commit.Setup(1λ)
crs = (crsnizk, pp)
Return (crs, stSim)

Sim2(crs, pk, τp, x, w
′
x, st

Sim):

Parse x = (com, Φ) and w′
x = (w′, r′com)

If w′ /∈ Φ: wr ← Φ, c← SME.Enc(pk, Φ, τp, wr)
If w′ ∈ Φ: c← SME.Enc(pk, Φ, τp, w

′)
πR̃sm

← NIZK.Sim2(crsnizk, (τp, com, c, pk, Φ), stSim)
Return π := (τp, πR̃sm

, c)

Fig. 18: Construction of simulator Sim in the proof of zero knowledge for fSMP

Note that ExpIdealzkfSMP,A,Sim,n(λ) is totally the same as G2. So we have

Pr[ExpIdealzkfSMP,A,Sim,n(λ) = 1] = Pr[G2 = 1]. (13)

Hence, combining equations (10)-(13), we obtain

|Pr[ExpRealzkfSMP,A,n(λ) = 1]− Pr[ExpIdealzkfSMP,A,Sim,n(λ) = 1]|

= |Pr[G0 = 1]− Pr[G2 = 1]| ≤ negl(λ) + 2n ·Advind
SME,A′′(λ),

which is also negligible.
So what remains is to prove Lemma 1.

Proof (of Lemma 1). Consider the adversary A′′ = (A′′1 ,A′′2) attacking the IND
security of SME based on A as follows. A′′ simulates G1 for A, where

– At the beginning, receiving pk from the challenger (in game ExpindSME,A(λ)),
A′′1 uniformly samples i∗gs ← [n] as the “guessed” i∗, sets pki∗gs = pk, and
generates all the other n − 1 key pairs and crs by itself. Then, A′′1 sends
(crs, (pki)i∈[n]) to A1. (If A′′ guess the wrong index, it aborts the simulation
with a random bit is its final output.)

– A′′1 answers A2’s secret functional key generation queries.
– Receiving the challenge tuple (i∗, τp, x = (com, Φ), wx = (w, rcom), w

′
x =

(w′, r′com)) from A2, if i
∗
gs ̸= i∗, A′′ aborts with a random bit as its own final

output; otherwise, A′′1 generates the challenge tuple for game ExpindSME,A′′(λ)
as follows:
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• If w′ /∈ Φ, A′′1 samples wr ← Φ, and returns (Φ, τp, w0 = w,w1 = wr) as
the challenge tuple.

• If w′ ∈ Φ, A′′1 returns (Φ, τp, w0 = w,w1 = w′) as the challenge tuple.

– A′′2 answers A3’s secret functional key generation queries, and then returns
A3’s final output as its own final output.

We analyze A′′’s advantage as follows.
First of all, the probability that i∗gs = i∗ /∈ Ucor is at least 1

n . So the proba-

bility that A′′ does not abort is at least 1
n .

In the analysis below, assume that A′′ does not abort (i.e., i∗gs = i∗ /∈ Ucor).

If the challenger (in game ExpindSME,A′′(λ)) encrypts w0 = w, it is obvious that
A′′ perfectly simulates G1 for A.

On the other hand, if the challenger (in game ExpindSME,A′′(λ)) encrypts w1,
when w′ ∈ Φ, A′′ perfectly simulates G2 for A. For the case of w′ /∈ Φ, we have
the following claim with a postponed proof.

Claim. If the challenger (in game ExpindSME,A′′(λ)) encrypts w1, when w
′ /∈ Φ, A′′

perfectly simulates G2 for A.

Hence, when i∗gs = i∗ /∈ Ucor, A′′ succeeds in distinguishing the SME ci-
phertext of w0 and the SME ciphertext of w1, if and only if A succeeds in
distinguishing G1 and G2.

Thus, we derive that

Advind
SME,A′′(λ) ≥

1

2n
|Pr[G2 = 1]− Pr[G1 = 1]|,

concluding the proof of Lemma 1
So what remains is to prove the above claim.
Specifically, recall that for all f ∈ F, f(ŵ) ∈ {0, 1} if ŵ ∈ Φ, and f(ŵ) = ⊥

otherwise. For the challenge tuple (i∗ = i∗gs, τp, x = (com, Φ), wx = (w, rcom), w
′
x =

(w′, r′com)) output by A2, since (x,wx) ∈ Rsm, we have that for all f ∈ F,
f(w) ∈ {0, 1}. But on the other hand, if w′ /∈ Φ, f(w′) = ⊥ ≠ f(w) for all f ∈ F.
In this case, the restrictions on A in this game require that

(i) for each secret functional key generation query (i′, f ′, τ ′f) made by A2, if
i′ = i∗gs, then P(τp, τ

′
f) = 0;

(ii) for each secret functional key generation query (i′, f ′, τ ′f) made by A3, if
(i′ = i∗gs)∧ (P(τp, τ ′f) = 1), the oracle OFKGen will return ⊥; otherwise, it will
return ski′,f ′,τ ′

f
← SME.KGen(pki′ , ski′ , Sf ′ , τ ′f).

We turn to A′′’s simulation when the challenger (in game ExpindSME,A′′(λ)) en-
crypts w1 and w′ /∈ Φ. Specifically, we aim to demonstrate that (1) the challenge
tuple generated by A′′1 satisfies the requirements of ExpindSME,A′′(λ), and (2) A′′2
perfectly simulates the secret functional key generation oracle for A3.

Note that when w′ /∈ Φ, A′′1 returns (Φ, τp, w0 = w,w1 = wr) as the challenge

tuple (in ExpindSME,A′′(λ)), where wr ← Φ. We also notice that A′′1 makes a secret
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key generation query (Sf ′ , τ ′f) (in ExpindSME,A′′(λ)), only if A2 makes a secret func-
tional key generation query (i∗gs, f

′, τ ′f). According to the above restriction (i) on
A, we derive that each secret key generation query (Sf ′ , τ ′f) made by A′′1 satisfies
P(τp, τ

′
f) = 0. In other words, all of A′′1 ’s secret key generation queries put no

restriction on w1
8, i.e., w1 can be a uniformly sampled wr. So the challenge tuple

generated by A′′1 satisfies the requirements of ExpindSME,A′′(λ).

On the other hand, for each secret functional key generation query (i′, f ′, τ ′f)
made by A3,

– if (i′ = i∗gs)∧ (P(τp, τ ′f) = 1), according to the above restriction (ii) on A, A′′2
can return ⊥ to A3 directly as a response;

– if i′ ̸= i∗gs, A′′2 can answer this query by itself, since the n − 1 secret keys
(ski)i∈[n]\{i∗gs} are all generated by A′′;

– if (i′ = i∗gs) ∧ (P(τp, τ
′
f) = 0), A′′2 sends (Sf ′ , τ ′f) to its own secret key gener-

ation oracle (in game ExpindSME,A′′(λ)), and then return the response to A3.

Note that A′′2 makes a secret key generation query (Sf ′ , τ ′f) (in ExpindSME,A′′(λ)),
only if A3 makes a secret functional key generation query (i∗gs, f

′, τ ′f) satisfying
P(τp, τ

′
f) = 0. In other words, each secret key generation query (Sf ′ , τ ′f) made by

A′′2 satisfies P(τp, τ
′
f) = 0. So the secret key generation oracle in (in ExpindSME,A′′(λ))

will not return ⊥ as a response for these queries. Thus, A′′2 perfectly simulates
the secret functional key generation oracle for A3.

Hence, A′′ perfectly simulates G2 for A, concluding the proof of the claim.
⊓⊔
⊓⊔

H Proof of Theorem 4

Proof (of Theorem 4). For any PPT adversary A = (A1,A2) attacking IND
security of SME, we construct a PPT adversary B = (B1,B2) attacking adaptive
security property of DIPE as follows.

Firstly, the challenger generates (pk,msk) ← DIPE.Setup(1λ, (l1, l2))), sam-
ples b ← {0, 1}, initializes Cy,m := ∅ and Ux := ∅, and sends (pk, (l1, l2)) to
B1.

On input (pk, (l1, l2)), B1 initializes W := ∅ and Q := ∅, sends pk to A1, and
then answers A1’s secret key generation query as below: for each query (S′ ⊂
[l], τ ′f), B1 firstly sets Q := Q ∪ {(S′, τ ′f)}, computes I∗(S′) ← EncodeS(l, S′),
obtains sk(I∗(S′),τ ′

f)
via querying its own secret key generation oracle (for dual

IPE) on (I∗(S′), τ ′f), and then returns skS′,τ ′
f
:= skI∗(S′),τ ′

f
to A1 as a response.

Note that for each (S′, τ ′f) ∈ Q, the corresponding (I∗(S′), τ ′f) is added to Ux

by the challenger.

8 Note that if P(τp, τ
′
f) = 1 for some query (Sf ′ , τ ′

f), then the challenge tuple
(Φ, τp, w0, w1) returned by A′′

1 should satisfy that funcΦS
f′ (w0) = funcΦS

f′ (w1).
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Upon receiving (Φ, τp, w0, w1) from A1, B1 sets W := {τp, w0, w1}, com-
putes I(w0) = EncodeW(Φ,w0) and I(w1) = EncodeW(Φ,w1), and then sends
(I(w0), I(w1), τp,mdum,mdum) to the challenger.

Subsequently, the challenger sets Cy,m := {(I(w0), I(w1), τp,mdum,mdum)},
computes c← DIPE.Enc(pk, (I(wb), τp),mdum), and returns c to B2.
B2 sends c to A2, and then answers A2’s secret key generation queries as

follows: for each query (S′ ⊂ [l], τ ′f), if (Pip(τp, τ
′
f) = 1) ∧ (funcΦS′ (w0) ̸=

funcΦS′ (w1)), B2 returns ⊥ to A2 as a response directly; otherwise, B2 sets
Q := Q ∪ {(S′, τ ′f)}, computes I∗(S′) ← EncodeS(l, S′), obtains skI∗(S′),τ ′

f
via

querying its own secret key generation oracle (for dual IPE) on (I∗(S′), τ ′f), and
then returns skS′,τ ′

f
:= skI∗(S′),τ ′

f
to A2 as a response.

Finally, receiving b′ from A2, B2 returns b′ as its own final output.
That is the construction of B.
Now, we turn to analyze B’s advantage.
We present the following two lemmas with postponed proofs.

Lemma 2. The tuple (I(w0), I(w1), τp,mdum,mdum), which B1 sends to the chal-
lenger, satisfies that

(∀β ∈ {0, 1} : DuIP((I∗(S′), τ ′f), (I(wβ), τp)) ̸= 0)

∨ (∀β ∈ {0, 1} : DuIP((I∗(S′), τ ′f), (I(wβ), τp)) = 0)

for all (I∗(S′), τ ′f) ∈ Ux.

Lemma 3. B perfectly simulates the secret key generation oracle for A.

Combining these two lemmas, B perfectly simulates game ExpindSME,A(λ) for A,
and B wins game ExpasDIPE,B(λ) if and only if A wins game ExpindSME,A(λ). Hence,
we obtain that

Advas
DIPE,B(λ) = Advind

SME,A(λ).

So, what remains is to prove the above two lemmas.

Proof (of Lemma 2). First of all, we stress that for the challenge tuple (I(w0),
I(w1), τp, mdum,mdum) generated by B1, the challenge messages satisfym0 = m1 =
mdum.

Note that (S′, τ ′f) ∈ Q if and only if (I∗(S′), τ ′f) ∈ Ux. In game ExpindSME,A(λ),
the challenge tuple (Φ, τp, w0, w1) output by A1 is required to satisfy that (i)
(w0 ∈ Φ) ∧ (w1 ∈ Φ), and (ii) for all (S′, τ ′f) ∈ Q satisfying Pip(τp, τ

′
f) = 1,

funcΦS′ (w0) = funcΦS′ (w1). Note that funcΦS′ (w0) = funcΦS′ (w1) guarantees
that “w0 ∈ ΦS′ if and only if w1 ∈ ΦS′”.

Hence, for any ((I∗(S′), τ ′f) ∈ Ux, there is (S′, τ ′f) ∈ Q, and

• if Pip(τp, τ
′
f) = 1 (i.e., ⟨τp, τ ′f⟩ = 0):

- When w0 ∈ ΦS′ , we have w1 ∈ ΦS′ . In this case, according to the prop-
erties of EncodeW and EncodeS, we obtain

⟨I∗(S′), I(w0)⟩ = ⟨I∗(S′), I(w1)⟩ = 0.

Thus, we derive that for all β ∈ {0, 1}, DuIP((I∗(S′), τ ′f), (I(wβ), τp)) = 0.
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- When w0 /∈ ΦS′ , we have w1 /∈ ΦS′ either. In this case, according to the
properties of EncodeW and EncodeS, we obtain

⟨I∗(S′), I(w0)⟩ = ⟨I∗(S′), I(w1)⟩ = 1.

Thus, we derive that for all β ∈ {0, 1}, DuIP((I∗(S′), τ ′f), (I(wβ), τp)) ̸= 0.
• if Pip(τp, τ

′
f) = 0 (i.e., ⟨τp, τ ′f⟩ ≠ 0): in this case, obviously for all β ∈ {0, 1},

DuIP((I∗(S′), τ ′f), (I(wβ), τp)) ̸= 0.
⊓⊔

Proof (of Lemma 3). Obviously, B1 perfectly simulates the secret key generation
oracle for A1. So this proof focuses on B2’s simulation.

For each of A2’s secret key generation query (S′, τ ′f), if (Pip(τp, τ
′
f) = 1) ∧

(funcΦS′ (w0) ̸= funcΦS′ (w1)), B2 returns ⊥, perfectly simulating the oracle for
A2; on the other hand,

• If Pip(τp, τ
′
f) = 0, which means ⟨τp, τ ′f⟩ ≠ 0, then for all β ∈ {0, 1},

(DuIP((I∗(S′), τ ′f), (I(wβ), τp)) ̸= 0)∧ (DuIP((I∗(S′), τ ′f), (I(w1−β), τp)) ̸= 0).

• If funcΦS′ (w0) = funcΦS′ (w1), which means that “w0 ∈ ΦS′ if and only if
w1 ∈ ΦS′”, then ⟨I∗(S′), I(w0)⟩ = ⟨I∗(S′), I(w1)⟩. Thus, we derive

DuIP((I∗(S′), τ ′f), (I(w0), τp)) = DuIP((I∗(S′), τ ′f), (I(w1), τp)).

Note that the challenge messages generated by B1 satisfy m0 = m1 = mdum. So if
(Pip(τp, τ

′
f) = 0) ∨ (funcΦS′ (w0) = funcΦS′ (w1)), when B2 queries its own secret

key generation oracle (for dual IPE) on (I∗(S′), τ ′f), it will receive skI∗(S′),τ ′
f
←

KGen(msk, (I∗(S′), τ ′f)) (rather than ⊥) as a response.
Hence, B2 also perfectly simulates the secret key generation oracle for A2. ⊓⊔

⊓⊔

I Proof of Theorem 5

Proof (of Theorem 5). We will prove the theorem using a hybrid argument over
a sequence of games. Following [12,32,10] without loss of generality, we assume
that the messages m0, m1 submitted by the adversary at the challenge phase
are equal, i.e., m0 = m1 = m, since we can reduce the case m0 ̸= m1 to the
case m0 = m1 by arguing that an encryption for m0 is indistinguishable with
an encryption for m1. We also assume that the adversary makes at most q key
queries.

Game0 is the real game in which the challenge ciphertext for y(b) = (y
(b)
1 =

(y
(b)
1,1, . . . , y

(b)
1,l1

),y2 = (y2,1, . . . , y2,l2)) is of the form

(y
(b)
1,1·u1+w1,1, . . . , y

(b)
1,l1
·u1+w1,l1 , y2,1·u2+w2,1, . . . , y2,l2 ·u2+w2,l2 , [α]2·m)

where b← {0, 1}.
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Game1 is identical to Game0 except that the challenge ciphertext is (y
(b)
1,1 ·u

(13)
1 +

y
(1−b)
1,1 · u(2)

1 +w1,1, . . . , y
(b)
1,l1
· u(13)

1 + y
(1−b)
1,l1

· u(2)
1 +w1,l1 , y2,1 · u

(13)
2 + y2,1 ·

u
(2)
2 +w2,1, . . . , y2,l2 · u

(13)
2 + y2,l2 · u

(2)
2 +w2,l2 , [α]2 ·m).

Game2.j for j ∈ [0, q] is identical to Game1 except that the first j secret keys
are of the form

([α+(x1,1 ·w1,1 + · · ·+x1,l1 ·w1,l1 +x2,1 ·w2,1 + · · ·+x2,l2 ·w2,l2)d]2, [d]2)

where d← spanc(B1,B2).
Game2.j.1 for j ∈ [0, q − 1] is identical to Game2.j except that the (j + 1)th

secret key is

([α+(x1,1 ·w1,1 + · · ·+x1,l1 ·w1,l1 +x2,1 ·w2,1 + · · ·+x2,l2 ·w2,l2)d]2, [d]2)

where d← spanc(B1,B3).

Game2.j.2 is identical to Game2.j.1 except that the challenge ciphertext is (y
(b)
1,1 ·

u
(1)
1 +y

(1−b)
1,1 ·u(2)

1 +y
(1−b)
1,1 ·u(3)

1 +w1,1, . . . , y
(b)
1,l1
·u(1)

1 +y
(1−b)
1,l1

·u(2)
1 +y

(1−b)
1,l1

·
u
(3)
1 +w1,l1 , y2,1 ·u

(1)
2 + y2,1 ·u(2)

2 + y2,1 ·u(3)
2 +w2,1, . . . , y2,l2 ·u

(1)
2 + y2,l2 ·

u
(2)
2 + y2,l2 · u

(3)
2 +w2,l2 , [α]2 ·m).

Game2.j.3 for j ∈ [0, q − 1] is identical to Game2.j.2 except that the (j + 1)th

secret key is

([α+(x1,1 ·w1,1 + · · ·+x1,l1 ·w1,l1 +x2,1 ·w2,1 + · · ·+x2,l2 ·w2,l2)d]2, [d]2)

where d← spanc(B1,B2,B3).

Game2.j.4 is identical to Game2.j.3 except that the challenge ciphertext is (y
(b)
1,1 ·

u
(1)
1 + y

(1−b)
1,1 · u(2)

1 + y
(b)
1,1 · u

(3)
1 +w1,1, . . . , y

(b)
1,l1
· u(1)

1 + y
(1−b)
1,l1

· u(2)
1 + y

(b)
1,l1
·

u
(3)
1 +w1,l1 , y2,1 ·u

(1)
2 + y2,1 ·u(2)

2 + y2,1 ·u(3)
2 +w2,1, . . . , y2,l2 ·u

(1)
2 + y2,l2 ·

u
(2)
2 + y2,l2 · u

(3)
2 +w2,l2 , [α]2 ·m).

Game2.j.5 for j ∈ [0, q − 1] is identical to Game2.j.4 except that the (j + 1)th

secret key is

([α+(x1,1 ·w1,1 + · · ·+x1,l1 ·w1,l1 +x2,1 ·w2,1 + · · ·+x2,l2 ·w2,l2)d]2, [d]2)

where d← spanc(B1,B2).

Game3 is identical to Game2.q except that the challenge ciphertext is (y
(0)
1,1 ·

u
(12)
1,0 + y

(1)
1,1 · u

(12)
1,1 + y

(b)
1,1 · u

(3)
1 +w1,1, . . . , y

(0)
1,l1
· u(12)

1,0 + y
(1)
1,l1
· u(12)

1,1 + y
(b)
1,l1
·

u
(3)
1 +w1,l1 , y2,1 ·u

(1)
2 + y2,1 ·u(2)

2 + y2,1 ·u(3)
2 +w2,1, . . . , y2,l2 ·u

(1)
2 + y2,l2 ·

u
(2)
2 + y2,l2 · u

(3)
2 +w2,l2 , [α]2 ·m), where u1,0,u1,1 ← Z1×(2k+1)

p .

Game4 is identical to Game3 except that the challenge ciphertext is (y
(0)
1,1 ·u1,0+

y
(1)
1,1 ·u1,1 +w1,1, . . . , y

(0)
1,l1
·u1,0 + y

(1)
1,l1
·u1,1 +w1,l1 , y2,1 ·u

(1)
2 + y2,1 ·u(2)

2 +

y2,1 · u(3)
2 +w2,1, . . . , y2,l2 · u

(1)
2 + y2,l2 · u

(2)
2 + y2,l2 · u

(3)
2 +w2,l2 , [α]2 ·m).
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We prove these games are indistinguishable in the following lemmas. Note that
Game2.0 = Game1 and Game2.j = Game2.j−1.5. In Game4, it is clear that
the value of b is information-theoretically hidden from the adversary. Hence
the adversary has no advantage in Game4. Therefore, we conclude that the
advantage of the adversary in Game0 is negligible. This completes the proof.

Lemma 4. Game1 is identical to Game0.

Proof. By the facts shown in Section 5.3, it is implied by the statement that, for

all u
(2)
1 ∈ spanr(B

∗
2
⊤
), it holds that

{y(b)1,i · u
(2)
1 +w

(2)
1,i }i∈[l1] ≡ {w

(2)
1,i }i∈[l1] ≡ {y

(1−b)
1,i · u(2)

1 +w
(2)
1,i }i∈[l1],

when {w(2)
1,i }i∈[l1] ← spanr(B

∗
2
⊤
). Therefore, for all u1 ← Z1×(2k+1)

p it holds that

(w1,1B1, . . . ,w1,l1B1,w2,1B1, . . . ,w2,l2B1,

y
(b)
1,1 · u

(13)
1 + y

(b)
1,1 · u

(2)
1 +w1,1, . . . , y

(b)
1,l1
· u(13)

1 + y
(b)
1,l1
· u(2)

1 +w1,l1 ,

y2,1 · u(13)
2 + y2,1 · u(2)

2 +w2,1, . . . , y2,l2 · u
(13)
2 + y2,l2 · u

(2)
2 +w2,l2)

≡ (w1,1B1, . . . ,w1,l1B1,w2,1B1, . . . ,w2,l2B1,

y
(b)
1,1 · u

(13)
1 + y

(1−b)
1,1 · u(2)

1 +w1,1, . . . , y
(b)
1,l1
· u(13)

1 + y
(1−b)
1,l1

· u(2)
1 +w1,l1 ,

y2,1 · u(13)
2 + y2,1 · u(2)

2 +w2,1, . . . , y2,l2 · u
(13)
2 + y2,l2 · u

(2)
2 +w2,l2)

This completes the proof. ⊓⊔

Lemma 5. Under the SDG2

B1 7→B1,B3
assumption, for each j ∈ [q], Game2.j−1

and Game2.j−1.1 are computationally indistinguishable.

Proof. Suppose there exists an algorithm A that distinguishes Game2.j−1 and

Game2.j−1.1. Then we can build an algorithm B breaking SDG2

B1 7→B1,B3
assump-

tion with non-negligible advantage. B is given [B1]2, [B2]2, [B3]2, basis(B
∗
2),

basis(B∗1,B
∗
3), [t]2 and going to tell t ← spanc(B1) or t ← spanc(B1,B3).

B will simulate Game2.j−1 or Game2.j−1.1 for A. First B chooses α ← Zp,
w1,1, . . . ,w1,l1 ,w2,1, . . . ,w2,l2 ← Z1×(2k+1)

p , and picks u
(13)
1 ,u

(13)
2 ← spanr((B

∗
1|B
∗
3)
⊤)

and u
(2)
1 ,u

(2)
2 ← spanr(B

∗
2
⊤
) using basis(B∗1,B

∗
3) and basis(B∗2), respectively.

When A makes the κth key query, B uses [B1]2, [B2]2, [t]2 to output

([α+ (x1,1 ·w1,1 + · · ·+ x1,l1 ·w1,l1 + x2,1 ·w2,1 + · · ·+ x2,l2 ·w2,l2)d]2, [d]2),

where

d←

 spanc(B1,B2) κ < j
t κ = j
spanc(B1) κ > j

.

At some point, when A submits the challenge (y(0) = (y
(0)
1 ,y2),y

(1) = (y
(1)
1 ,y2),

m0,m1) with m0 = m1 = m, B outputs (y
(b)
1,1 · u

(13)
1 + y

(1−b)
1,1 · u(2)

1 + w1,1, . . .,
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y
(b)
1,l1
·u(13)

1 + y
(1−b)
1,l1

·u(2)
1 +w1,l1 , y2,1 ·u

(13)
2 + y2,1 ·u(2)

2 +w2,1, . . ., y2,l2 ·u
(13)
2 +

y2,l2 · u
(2)
2 +w2,l2), [α]2 ·m).

Observe that, when t is uniformly distributed over spanc(B1), B has properly
simulated Game2.j−1; otherwise, when t is uniformly distributed over spanc(B1,B3),
B has properly simulated Game2.j−1.1. This proves the lemma. ⊓⊔

Lemma 6. For each j ∈ [q], Game2.j−1.1 is identical to Game2.j−1.2.

Proof. It is sufficient to prove the following statement: for all y(0) = (y
(0)
1 ,y2),

y(1) = (y
(1)
1 ,y2), and x = (x1,x2) (corresponding to the jth key query) sat-

isfying that: 1) DuIP((x1,x2), (y
(0)
1 ,y2)) = DuIP((x1,x2), (y

(1)
1 ,y2)) = 0; or 2)

DuIP((x1,x2), (y
(0)
1 ,y2)) ̸= 0 ∧ DuIP((x1,x2), (y

(1)
1 ,y2)) ̸= 0, it holds that

(y
(b)
1,1 · u

(3)
1 +w

(3)
1,1, . . . , y

(b)
1,l1
· u(3)

1 +w
(3)
1,l1

,

y2,1 · u(3)
2 +w

(3)
2,1, . . . , y2,l2 · u

(3)
2 +w

(3)
2,l2

,

x1,1 ·w(3)
1,1 + · · ·+ x1,l1 ·w

(3)
1,l1

+ x2,1 ·w(3)
2,1 + · · ·+ x2,l2 ·w

(3)
2,l2

)

≡ (y
(1−b)
1,1 · u(3)

1 +w
(3)
1,1, . . . , y

(1−b)
1,l1

· u(3)
1 +w

(3)
1,l1

,

y2,1 · u(3)
2 +w

(3)
2,1, . . . , y2,l2 · u

(3)
2 +w

(3)
2,l2

,

x1,1 ·w(3)
1,1 + · · ·+ x1,l1 ·w

(3)
1,l1

+ x2,1 ·w(3)
2,1 + · · ·+ x2,l2 ·w

(3)
2,l2

)

when u
(3)
1 , u

(3)
2 , w

(3)
1,1, . . ., w

(3)
1,l1

, w
(3)
2,1, . . ., w

(3)
2,l2
← spanr(B

∗
3
⊤
). By the linearity,

it in turn follows from the following statement

{y(b)1,1 · u1 + w1,1, . . . , y
(b)
1,l1
· u1 + w1,l1 ,

y2,1 · u2 + w2,1, . . . , y2,l2 · u2 + w2,l2 ,

x1,1 · w1,1 + · · ·+ x1,l1 · w1,l1 + x2,1 · w2,1 + · · ·+ x2,l2 · w2,l2}

≡ {y(1−b)1,1 · u1 + w1,1, . . . , y
(1−b)
1,l1

· u1 + w1,l1 ,

y2,1 · u2 + w2,1, . . . , y2,l2 · u2 + w2,l2 ,

x1,1 · w1,1 + · · ·+ x1,l1 · w1,l1 + x2,1 · w2,1 + · · ·+ x2,l2 · w2,l2}

when u1, u2, w1,1, . . . , w1,l1 , w2,1, . . . , w2,l2 ← Zp. This follows from the statistical
argument for all x = (x1,x2), by programming w̃1,i = y1,i ·u1+w1,i for all i ∈ [l1]
and w̃2,i = y2,i · u2 + w2,i for all i ∈ [l2], we have

{y1,1 · u1 + w1,1, . . . , y1,l1 · u1 + w1,l1 ,

y2,1 · u2 + w2,1, . . . , y2,l2 · u2 + w2,l2 ,

x1,1 · w1,1 + · · ·+ x1,l1 · w1,l1 + x2,1 · w2,1 + · · ·+ x2,l2 · w2,l2}
≡ {w̃1,1, . . . , w̃1,l1 ,

w̃2,1, . . . , w̃2,l2 ,

(x1,1 · w̃1,1 + · · ·+ x1,l1 · w̃1,l1 + x2,1 · w̃2,1 + · · ·+ x2,l2 · w̃2,l2)− u1 · ⟨x1,y1⟩ − u2 · ⟨x2,y2⟩}
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which means that the left-hand side distributions for all vector y are identical
if DuIP((x1,x2), (y1,y2)) ̸= 0(since u1, u2 hide the information about the inner-
product), and so do all vector y if DuIP((x1,x2), (y1,y2)) = 0. This immediately
proves the above statement and thus proves the lemma. ⊓⊔

Lemma 7. Under the SDG2

B3 7→B2,B3
assumption, for each j ∈ [q], Game2.j−1.2

and Game2.j−1.3 are computationally indistinguishable.

Proof. Suppose there exists an algorithm A that distinguishes Game2.j−1.2 and

Game2.j−1.3. Then we can build an algorithm B breaking SDG2

B3 7→B2,B3
assump-

tion with non-negligible advantage. B is given [B1]2, [B2]2, [B3]2, basis(B
∗
1),

basis(B∗2,B
∗
3), [t]2 and going to tell t ← span(B3) or t ← span(B2,B3). B

will simulate Game2.j−1.2 or Game2.j−1.3 for A. First B chooses α ← Zp,
w1,1, . . . ,w1,l1 , w2,1, . . . ,w2,l2 ← Z1×(2k+1)

p , and picks u
(1)
1 ,u

(1)
2 ← spanr(B

∗
1
⊤
)

and u
(23)
1 ,u

(23)
2 ← spanr((B

∗
2|B
∗
3)
⊤) using basis(B∗1) and basis(B∗2,B

∗
3), respec-

tively.
When A makes the κth key query, B uses [B1]2, [B2]2, [t]2 to output

([α+ (x1,1 ·w1,1 + · · ·+ x1,l1 ·w1,l1 + x2,1 ·w2,1 + · · ·+ x2,l2 ·w2,l2)d]2, [d]2)

where

d←

 spanc(B1,B2) κ < j
t+ spanc(B1) κ = j
spanc(B1) κ > j

.

At some point, when A submits the challenge (y(0) = (y
(0)
1 ,y2),y

(1) = (y
(1)
1 ,y2),

m0,m1) with m0 = m1 = m, B outputs (y
(b)
1,1 · u

(1)
1 + y

(1−b)
1,1 · u(23)

1 + w1,1, . . .,

y
(b)
1,l1
· u(1)

1 + y
(1−b)
1,l1

· u(23)
1 +w1,l1 , y2,1 · u

(1)
2 + y2,1 · u(23)

2 +w2,1, . . ., y2,l2 · u
(1)
2 +

y2,l2 · u
(23)
2 +w2,l2), [α]2 ·m).

Observe that, when t is uniformly distributed over spanc(B3), B has prop-
erly simulated Game2.j−1.2; otherwise, when t is uniformly distributed over
spanc(B2,B3), B has properly simulated Game2.j−1.3. This proves the lemma.

⊓⊔

Lemma 8. For each j ∈ [q], Game2.j−1.3 is identical to Game2.j−1.4.

Proof. The proof is identical to that for Lemma 6. ⊓⊔

Lemma 9. Under the SDG2

B1 7→B1,B3
assumption, for each j ∈ [q], Game2.j−1.4

and Game2.j−1.1.5 are computationally indistinguishable.

Proof. Suppose there exists an algorithm A that distinguishes Game2.j−1.4 and

Game2.j−1.1.5. Then we can build an algorithm B breaking SDG2

B1 7→B1,B3
assump-

tion with non-negligible advantage. B is given [B1]2, [B2]2, [B3]2, basis(B
∗
2),

basis(B∗1,B
∗
3), [t]2 and going to tell t ← span(B1) or t ← span(B1,B3). B

will simulate Game2.j−1.4 or Game2.j−1.1.5 for A. First B chooses α ← Zp,
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w1,1, . . . ,w1,l1 ,w2,1, . . . ,w2,l2 ← Z1×(2k+1)
p , and picks u

(13)
1 ,u

(13)
2 ← spanr((B

∗
1|B
∗
3)
⊤)

and u
(2)
1 ,u

(2)
2 ← spanr(B

∗
2
⊤
) using basis(B∗1,B

∗
3) and basis(B∗2), respectively.

When A makes the κth key query, B uses [B1]2, [B2]2, [t]2 to output

([α+ (x1,1 ·w1,1 + · · ·+ x1,l1 ·w1,l1 + x2,1 ·w2,1 + · · ·+ x2,l2 ·w2,l2)d]2, [d]2)

where

d←

 spanc(B1,B2) κ < j
t+ spanc(B2) κ = j
spanc(B1) κ > j

.

At some point, when A submits the challenge (y(0) = (y
(0)
1 ,y2),y

(1) = (y
(1)
1 ,y2),

m0,m1) with m0 = m1 = m, B outputs (y
(b)
1,1 · u

(13)
1 + y

(1−b)
1,1 · u(2)

1 + w1,1, . . .,

y
(b)
1,l1
·u(13)

1 + y
(1−b)
1,l1

·u(2)
1 +w1,l1 , y2,1 ·u

(13)
2 + y2,1 ·u(2)

2 +w2,1, . . ., y2,l2 ·u
(13)
2 +

y2,l2 · u
(2)
2 +w2,l2), [α]2 ·m).

Observe that, when t is uniformly distributed over spanc(B1), B has prop-
erly simulated Game2.j−1.5; otherwise, when t is uniformly distributed over
spanc(B1,B3), B has properly simulated Game2.j−1.1.4. This proves the lemma.

⊓⊔

Lemma 10. Game2.q is identical to Game3.

Proof. We choose B̃1,B3 ← Z(2k+1)×k
p , B̃2 ← Z2k+1

p and compute dual basis

B̃
∗
1, B̃

∗
2,B

∗
3 as usual. Pick R← GLk+1(Zp) and define

(B1|B2) = (B̃1|B̃2)R, (B
∗
1|B
∗
2) = (B̃

∗
1|B̃
∗
2)R

∗.

Observe that, the distribution of basis (B1,B2,B3) is properly. We then chooses

α ← Zp, w1,1, . . . ,w1,l1 , w2,1, . . . ,w2,l2 ← Z1×(2k+1)
p , and simulate Game2.q as

follows.
When the adversary makes the key query for x = (x1,x2), we use B̃1, B̃2 to

output

[α+ (x1,1 ·w1,1 + · · ·+ x1,l1 ·w1,l1 + x2,1 ·w2,1 + · · ·+ x2,l2 ·w2,l2)d]2, [d]2,

where d ← spanc(B̃1, B̃2). Although we sample d using B̃1, B̃2, the vector is
uniformly distributed over spanc(B1,B2) as required.

At some point, when the adversary submits the challenge (y(0) = (y
(0)
1 ,y2),y

(1) =

(y
(1)
1 ,y2),m0,m1) with m0 = m1 = m, we outputs y

(b)
1,1 · v0 + y

(1−b)
1,1 · v1 + y

(b)
1,1 ·

u
(3)
1 +w1,1, . . ., y

(b)
1,l1
· v0 + y

(1−b)
1,l1

· v1 + y
(b)
1,l1
· u(3)

1 +w1,l1 , y2,1 · u2 +w2,1, . . .,

y2,l2 · u2 +w2,l2 , [α]2 ·m, where u
(3)
1 ← spanr(B

∗
3
⊤
), u2 ← Z1×(2k+1)

p and

v0 = u
(1)
1 ← spanr(B

∗
1
⊤
), v1 = u

(2)
1 ← spanr(B

∗
2
⊤
).



Non-Interactive Zero-Knowledge Functional Proofs 53

Observe that, we have a 2-by-(k + 1) matrix V of rank 2 such that(
−v0−
−v1−

)
= V(B∗1|B

∗
2)
⊤ = VR−1(B̃

∗
1|B̃
∗
2)
⊤.

Since R is independent of other part of simulation, VR−1 are uniformly dis-

tributed over Z2×(k+1)
p and thus it is equivalent to sample v0,v1 ← spanr((B̃

∗
1|B̃
∗
2)
⊤)

when creating the challenge ciphertext. Therefore, we simulate Game3 (with re-

spect to B̃1, B̃2,B3) simultaneously. This proves the lemma. ⊓⊔

Lemma 11. Game3 is identical to Game4.

Proof. By the facts shown in Section 5.3, it is implied by the statement that, for

all u
(3)
1 ∈ spanr(B

∗
3
⊤
), it holds that

{y(b)1,i · u
(3)
1 +w

(3)
1,i }i∈[l1] ≡ {w

(3)
1,i }i∈[l1] ≡ {y

(1−b)
1,i · u(3)

1 +w
(3)
1,i }i∈[l1],

when {w(3)
1,i }i∈[l1] ← spanr(B

∗
3
⊤
). Therefore, for all u1,0,u1,1 ← Z1×(2k+1)

p it
holds that

(w1,1B1, . . . ,w1,l1B1,w2,1B1, . . . ,w2,l2B1,

y
(0)
1,1 · u

(12)
1,0 + y

(1)
1,1 · u

(12)
1,1 + y

(b)
1,1 · u

(3)
1 +w1,1, . . . , y

(0)
1,l1
· u(12)

1,0 + y
(1)
1,l1
· u(12)

1,1 + y
(b)
1,l1
· u(3)

1 +w1,l1 ,

y2,1 · u(1)
2 + y2,1 · u(2)

2 + y2,1 · u(3)
2 +w2,1, . . . , y2,l2 · u

(1)
2 + y2,l2 · u

(2)
2 + y2,l2 · u

(3)
2 +w2,l2)

≡ (w1,1B1, . . . ,w1,l1B1,w2,1B1, . . . ,w2,l2B1,

y
(0)
1,1 · u1,0 + y

(1)
1,1 · u1,1 +w1,1, . . . , y

(0)
1,l1
· u1,0 + y

(1)
1,l1
· u1,1 +w1,l1 ,

y2,1 · u(1)
2 + y2,1 · u(2)

2 + y2,1 · u(3)
2 +w2,1, . . . , y2,l2 · u

(1)
2 + y2,l2 · u

(2)
2 + y2,l2 · u

(3)
2 +w2,l2)

This completes the proof. ⊓⊔
⊓⊔

J Proof of Theorem 6

Proof (of Theorem 6). We will prove the theorem using a hybrid argument over
a sequence of games. Following [12,32,10], without loss of generality, we assume
that the messages m0, m1 submitted by the adversary at the challenge phase
are equal, i.e., m0 = m1 = m, since we can reduce the case m0 ̸= m1 to the
case m0 = m1 by arguing that an encryption for m0 is indistinguishable with
an encryption for m1. We also assume that the adversary makes at most q key
queries.

Game0 is the real game in which the challenge ciphertext for y(b) = (y
(b)
1 =

(y
(b)
1,1, . . . , y

(b)
1,l1

),y2 = (y2,1, . . . , y2,l2)) is of the form

[c⊤]1,
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[c⊤(y
(b)
1,1 ·U1 +W1,1)]1, . . . , [c

⊤(y
(b)
1,l1
·U1 +W1,l1)]1,

[c⊤(y2,1 ·U2 +W2,1)]1, . . . , [c
⊤(y2,l2 ·U2 +W2,l2)]1,

e([c⊤]1, [k]2) ·m

where b← {0, 1}, c← spanc(A).
Game1 is identical to Game0 except that we pick c ← Zk+1

p when generating
the challenge ciphertext.

We prove this theorem by the following lemmas. Lemma 12 states that Game0
and Game1 are indistinguishable; and Lemma 13 states that the advantage of
the adversary in Game1 is negligible. Therefore, we conclude that the advantage
of the adversary in Game0 is negligible. This completes the proof.

Lemma 12. Under the MDDHk assumption, Game0 and Game1 are computa-
tionally indistinguishable.

Proof. Suppose there exists an algorithmA that distinguishes Game0 and Game1.
Then we can build an algorithm B breaking MDDHk assumption with non-
negligible advantage. B is given [A]1, [c]1 and going to tell whether c← spanc(A)
or c ← Zk+1

p . B will simulate Game0 or Game1 for A. First B chooses k ←
Zk+1
p , U1,U2,W1,1, . . . ,W1,l1 , W2,1, . . . ,W2,l2 ← Z(k+1)×(2k+1)

p , and B1 ←
Z(2k+1)×k
p . Then, B uses [A]1 to output ([A⊤]1, [A

⊤U1]1, [A
⊤U2]1, [A

⊤W1,1]1,

. . ., [A⊤W1,l1 ]1, [A
⊤W2,1]1, . . ., [A

⊤W2,l2 ]1, [A
⊤k]T ).

When A makes the key query for x = (x1,x2), B outputs

[k+ (x1,1 ·W1,1 + · · ·+ x1,l1 ·W1,l1 + x2,1 ·W2,1 + · · ·+ x2,l2 ·W2,l2)d]2, [d]2,

where d← spanc(B1).

At some point, when A submits the challenge (y(0) = (y
(0)
1 ,y2),y

(1) =

(y
(1)
1 ,y2),m0,m1) with m0 = m1 = m, B outputs

[c⊤]1,

[c⊤(y
(b)
1,1 ·U1 +W1,1)]1, . . . , [c

⊤(y
(b)
1,l1
·U1 +W1,l1)]1,

[c⊤(y2,1 ·U2 +W2,1)]1, . . . , [c
⊤(y2,l2 ·U2 +W2,l2)]1,

e([c⊤]1, [k]2) ·m

Observe that, when c is uniformly distributed over spanc(A), B has properly
simulated Game0; otherwise, when c is uniformly distributed over Zk+1

p , B has
properly simulated Game1. This proves the lemma. ⊓⊔

Lemma 13. If the private-key dual IPE scheme described in Fig. 8 is adaptively
secure, the advantage of the adversary in Game1 is negligible.

Proof. Suppose there exists an adversary A that has non-negligible advantage
in Game1. Then we can build an algorithm B that makes use of A to break
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the adaptive security of private-key dual IPE scheme described in Fig. 8 with
non-negligible advantage. B runs A as a subroutine and proceeds as follows.

First B chooses (A, c)← Z(k+1)×k
p ×Zk+1

p , k̃← Zkp, Ũ1, Ũ2,W̃1,1, . . . ,W̃1,l1 ,

W̃2,1, . . . ,W̃2,l2 ← Zk×(2k+1)
p . Then, it sends the public key ([A⊤]1, [Ũ1]1, [Ũ2]1,

[W̃1,1]1, . . ., [W̃1,l1 ]1, [W̃2,1]1, . . ., [W̃2,l2 ]1, [k̃]T ) to the adversary A. Note that,
the public key is simulated properly.

When A makes the key query for x = (x1,x2), B forwards the query to its
environment and receives (K0,K1). Then, B computes

K̃0 = [k̃]2 ·((x1,1 ·W̃1,1+ · · ·+x1,l1 ·W̃1,l1 +x2,1 ·W̃2,1+ · · ·+x2,l2 ·W̃2,l2)⊙K1)

and sends the secret key

(T⊙
(
K̃0

K0

)
, K1), where T =

(
A⊤

c⊤

)−1
to the adversary A. Notice that, with overwhelming probability, (A|c) is full-
rank. If (K0,K1) is a private-key dual IPE secret key, secrets keys we computed
is for our public-key dual IPE.

At some point, when A submits the challenge (y(0),y(1),m0,m1) with m0 =
m1 = m, B submits (y(0),y(1), 1, 1) to its environment and receives (C1,1, . . . , C1,l1 ,
C2,1, . . . , C2,l2 , C). Then, B sends

[c⊤]1, [C1,1]1, . . . , [C1,l1 ]1, [C2,1]1, . . . , [C2,l2 ]1, e([1]1, C) ·m

to the adversary A.
Finally, B outputsA’s guess bit. Observe that, if (C1,1, . . . , C1,l1 , C2,1, . . . , C2,l2 ,

C) is a private-key dual IPE ciphertext for b = 0, the ciphertext we created is a
public-key dual IPE ciphertext for b = 0; this also holds for b = 1. This proves
the lemma. ⊓⊔

⊓⊔

K Security analysis of ΣR′

clause

In this section, we show that the Sigma protocol ΣR
′

clause constructed in Fig. 10
is complete, supports knowledge soundness and is special HVZK. In fact, we can
view ΣR

′

clause as a matrix version of Chaum-Pedersen protocol [8].

Completeness.Given a valid statement-witness pair (x = (τp, c, pk,mdum, j), w =
s) and a normally generated transcript (a, c, z = zt), we have

a′C0
= [z⊤t A

⊤]1(c⊙ C0)

= [(t− c · s)⊤A⊤]1(c⊙ C0)

= [t⊤A⊤]1((−c)⊙ [s⊤A⊤]1)(c⊙ C0)

= [t⊤A⊤]1((−c)⊙ C0)(c⊙ C0)
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= [t⊤A⊤]1

= aC0

Similarly, we can check that a′C1,i
= aC1,i

for all i ∈ [l1], a
′
C2,ι

= aC2,ι
for all

ι ∈ [l2] and a′C = aC . Thus, V2 would output 1, which implies that ΣR
′

clause is
complete.

Knowledge soundness. Given two accepting transcripts (a, c, z) and (a, c′, z′)
for some statement x = (τp, c, pk,mdum, j), we can compute

w = (c′ − c)−1 · (z− z′).

Now we show that w is indeed a valid witness for x. Let zt = z and z′t = z′.
We can check that

[w⊤A⊤]1 = (c′ − c)−1 ⊙ [(zt − z′t)
⊤A⊤]1

= (c′ − c)−1 ⊙ [(z⊤t A
⊤ − (z′t)

⊤A⊤]1

= (c′ − c)−1 ⊙ ([(z⊤t A
⊤]1/[(z

′
t)
⊤A⊤]1)

= (c′ − c)−1 ⊙ ((aC0
/(c⊙ C0))/(aC0

/(c′ ⊙ C0))) � correctness

= (c′ − c)−1 ⊙ ((c′ − c)⊙ C0))

= C0

Thus, w is the witness for C0. Similarly, we can check that w is the wit-
ness for other components in ciphertext c. Thus, w is a valid witness for x =
(τp, c, pk,mdum, j). It implies that ΣR

′

clause supports knowledge soundness.

Special HVZK. We construct a simulator Sim as shown in Fig. 19.

Sim(x, c):

(τp, c, pk,mdum, j)← x, zt ← Zp, z← zt

aC0 ← [z⊤A⊤]1(c⊙ C0), aC1,j ← [z⊤t A
⊤(U1 +W1,j)]1(c⊙ C1,j)

For each i ∈ [l1]\{j}: aC1,i ← [z⊤t A
⊤W1,i]1(c⊙ C1,i)

For each ι ∈ [l2]: aC2,ι ← [z⊤t A
⊤((τp)ι ·U2 +W2,ι)]1(c⊙ C2,ι)

aC ← [z⊤t A
⊤k]T · (c⊙ (C/mdum))

Return (a← (aC0 , (aC1,i)i∈[l1], (aC2,ι)ι∈[l2], aC), z)

Fig. 19: Algorithms of simulator Sim for ΣR
′

clause

Consider the transcript (a, c, z), where the commitment and the response
(a, z) are output by the simulator. It is clear that (a, c, z) is an accepting tran-
script for x. Now, we show that it has the same distribution as that of a transcript
bewteen P(x,w) and V(x).



Non-Interactive Zero-Knowledge Functional Proofs 57

1. First of all, z = zt output by the simulator is uniformly distributed over Zp.
Note that in P2, zt = t− c · s. Since t is sampled randomly over Zp, we can
know that z = zt output by P2 is also uniformly distributed over Zp.

2. The challenges c in both cases are randomly over Zp. Note that c and z are
uniformly and independently distributed over Zp.

3. Then, we consider aC0
output by the simulator and that output by P1.

– With respect to the aC0
output by the algorithm of Sim, it holds that

aC0 = [z⊤t A
⊤]1(c⊙ C0).

– With respect to the aC0 output by the algorithm of P1, the correctness
guarantees that aC0

= a′C0
= [z⊤t A

⊤]1(c⊙ C0).

Therefore, in both algorithms, aC0
= [z⊤t A

⊤]1(c ⊙ C0), determined by the
responses zt and the challenge c. Since zt and c in both cases are uniformly
and independently distributed over Zp, we can conclude that aC0

output by
the simulator has the same distribution as that output by the prover P.

4. Similarly, we can analyze that ((aC1,i)i∈[l1], (aC2,ι)ι∈[l2], aC) output by the
simulator has the same distribution as those output by the prover P.

So (a, c, z) output by the simulator has the same distribution as that of a tran-
script between P and V, which implies that the protocol ΣR

′

clause is special HVZK.

L Proof of Theorem 7

Proof (of Theorem 7). We first prove that ΣR
′′

clause is a Sigma protocol for ψ-

preimages [14]. Then, according to Theorem 9 (in Appendix A.3), ΣR
′′

clause is
stackable.

For ΣR
′′

clause, we set G1 = Z2
p, G2 = Gcom ×G3(l1+l2)+2

1 ×GT and CL = [0, p),
where Gcom, G1 and GT are cyclic groups of prime order p. We construct a
function ψ : G1 → G2 as follows:

ψ(w = (rcom, s)) := ( hrcom , [s⊤A⊤]1, [s
⊤A⊤W1,1]1, . . . , [s

⊤A⊤W1,j−1]1),

[s⊤A⊤(U1 +W1,j)]1, [s
⊤A⊤W1,j+1]1, . . . , [s

⊤A⊤W1,l1 ]1,

[s⊤A⊤((τp)1 ·U2 +W2,1)]1, . . . , [s
⊤A⊤((τp)l2 ·U2 +W2,l2),

[s⊤A⊤k]T ·mdum ).

Therefore, the ΣR
′′

clause is a Sigma protocol for ψ-preimages. According to

Theorem 9, ΣR
′′

clause is stackable. ⊓⊔
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