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Abstract—Regular access to unpredictable and bias-resistant
randomness is important for applications such as blockchains,
voting, and secure distributed computing. Distributed random
beacon protocols address this need by distributing trust across
multiple nodes, with the majority of them assumed to be
honest. These protocols have found applications in blockchain
technology, leading to the proposal of several distributed
random beacon protocols, with some already implemented.
However, many current random beacon systems rely on thresh-
old cryptographic setups or exhibit high computational costs,
while others assume partial or bounded synchronous networks.
To overcome these limitations, we propose HashRand, a com-
putation and communication-efficient asynchronous random
beacon protocol that uses a secure Hash function to generate
beacons and pairwise secure channels. HashRand has a per-
node communication complexity of O(λn log(n)) bits per bea-
con. The computational efficiency of HashRand is attributed
to the two orders of magnitude lower time of a one-way
Hash computation compared to discrete log exponentiation.
Interestingly, besides reduced overhead, HashRand achieves
Post-Quantum security by leveraging the secure Hash function
against quantum adversaries, setting it apart from other ran-
dom beacon protocols that use discrete log cryptography. In a
geo-distributed testbed of n = 160 nodes, HashRand produces
1 beacon every second, which is at least 4x higher than
Spurt. We also demonstrate the practical utility of HashRand
by implementing a Post-Quantum secure Asynchronous SMR
protocol, which has a response rate of over 122k txns per
second over a WAN at n = 40 nodes.

1. Introduction

Random beacons [53], [65] are a source of secure
randomness that emit random numbers at regular inter-
vals. They are often used in distributed system applica-
tions like committee election in sharded and Proof-of-Stake
blockchains [31], [41], [44], [60]; common coins in asyn-
chronous Byzantine Agreement (BA) [1], [4], [56], [58];
State Machine Replication (SMR) [25], [35], [38], [43],
[44], [52], [57], [71]; asynchronous Multi-Party Compu-
tation (MPC) [24], [63]; and secure message mixing in
anonymous communication [5], [55], [68].

Contemporary random beacon protocols are composed
of a wide variety of trusted setup assumptions. Beacons from
sources like Random.org [46] or NIST’s random beacon
project [53] require complete trust in the source. The source
here becomes a single point of failure with respect to
the system’s liveness and safety as well as unpredictabil-
ity and bias-resistance of beacon values. Approaches like
DRand [65], Dfinity-DVRF [48], and Cachin et al. [19]
mitigate these risks by distributing the trust across n nodes
such that the system remains safe, live, and secure as long
as a subset of t+ 1 or more nodes are honest.

This setup (also called threshold setup) enables n nodes
to generate (n, t)-threshold unique signatures, which offer
unpredictability and bias-resistance against an adversary
corrupting t < n

3 nodes (t < n
2 in a synchronous network).

Although the trusted setup phase for threshold signatures
can be replaced with a Distributed Key Generation (DKG)
protocol [40], [51], [54], DKG protocols are expensive in
computation and communication and must be rerun each
time participant nodes change. This constraint makes thresh-
old signatures costly for applications with participant churn,
such as Proof-of-Stake blockchains [41].

Many random beacon protocols that do not use a thresh-
old setup have been proposed under a Public Key In-
frastructure (PKI) setup or broadcast setup, where digital
signatures can be used [12], [13], [26], [47], [61], [66].
These protocols use Verifiable Secret Sharing (VSS) and
State Machine Replication (SMR) primitives as building
blocks to output beacons. However, they depend on some
form of network synchrony (bounded/partial) to achieve
liveness and agreement amongst participant nodes. Hence,
these protocols are not secure in an asynchronous network
and cannot be used in asynchronous blockchains. Moreover,
as demonstrated in HoneyBadgerBFT [57], synchronous
protocols cannot take full advantage of the network speed
and out-of-order message delivery, thereby offering subpar
performance under active adversarial scheduling.

Many asynchronous randomness generation protocols
that do not use threshold signatures function in a
PKI/broadcast setup [2], [3], [27], [29], [39] or a pairwise-
channels setup [32], [54] where the dealer sets up secure
channels between participant nodes. However, these proto-
cols have a high computational cost from n-parallel Asyn-



Table 1: Comparison of relevant random beacon and asynchronous common coin protocols with HASHRAND.
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Cachin et al. [19] async. ✗ D ✓ O(λn) O(n) DKG pRO & CDH
RandShare [66] async. ✗ LV ✗ O(λn3) O(n3) DKG DLog
Spurt [26] partial sync. ✗ D ✗ O(λn2) O(n2)¶ CRS & PKI pRO & DBDH

Kogias et al. [54] async. ✗ LV ✗ O(λn3) O(n3) Secure channels pRO & DDH
Das et al. [29] async. ✗ LV ✗ O(λn2) O(n3) PKI pRO & DDH
Gao et al. [39] async. ✗ LV ✗ O(λn2) O(n3) PKI pRO & SXDH
Abraham et al. [3] async. ✗ LV ✗ O(λn2) O(n3) PKI pRO & SXDH
Bingo [2] async. ✗ LV ✓ O(λn2) O(n3) SRS & PKI q−SDH
Freitas et al. [32] async. ✓ MC ✗ O(λn2 log(n)) O(n3) Secure channels DLog
Patra et al. [59] async. ✓ MC ✓ O(n4 log(n)) 0 Secure channels None
Huang et al. [50] async. ✓ LV ✓ Ω(n6) 0 Auth channels None

HASHRAND async. ✓ MC ✗ O(λn log(n))† 0* Secure channels CR & IH Hash§

HASHRAND async. ✓ MC ✓ O(λn log(n))† 0* Secure channels pRO

Termination Flavor: Monte-Carlo(MC) style protocols terminate in a deterministic number of rounds. But, even after termination,
honest nodes can disagree on the beacon with a practically negligible probability p = 1− δ. A lower p implies a higher round
complexity. Las-Vegas(LV) style protocols terminate only upon agreement amongst honest nodes on the beacon value. These protocols
can have infinitely many executions and we report the expected runtime complexities of these protocols. Deterministic(D) protocols
offer agreement and a deterministic runtime. *DLog Expo complexity: Concurrent beacon and coin protocols overwhelmingly depend
on discrete log cryptography, which is the main reason for their high computational cost.HASHRAND instead uses O(cn2 log(n)) Hash
computations(100x cheaper than DLog expo) per beacon. †Committee election: HASHRAND elects an AnyTrust committee and
reconstructs only those secrets. AnyTrust committees are much smaller in size than honest supermajority committees used in beacons
like RandHerd [66] and Algorand [41].§Hash: HASHRAND uses a Collision Resistant(CR), and an Input Hiding(IH) Hash function to
prove security against a classical adversary. The Input Hiding property [15, page 345], requires the Hash function to not reveal any
information about the input. We also use a Quantum Random Oracle (RO) assumption against a Quantum adversary [16]. Other
protocols use a Programmable RO (pRO) to link the properties of their beacon to the underlying hardness assumption. ¶The leader
performs O(n2) operations every round, while other nodes perform O(n) operations each.

chronous VSS (AVSS). The current best AVSS protocol
with O(λn2) communication complexity [28] uses compute-
intensive discrete log cryptography. Each AVSS instance
requires O(n2) discrete log exponentiations per node, where
each exponentiation takes approximately 100× more time
and energy to run than a one-way hash computation. This
computation bottleneck induced by discrete log operations
is visible in Spurt [26], a leader-based partially synchronous
beacon protocol. Spurt produces only 15 beacons per minute
at n = 128 nodes because of the O(n2) discrete log
operations per beacon performed by the leader.

Other asynchronous beacon protocols in the realm of
statistical and information-theoretic security use only scalar
arithmetic operations and therefore are computationally ef-
ficient. However, these protocols have very high commu-
nication complexities and are not efficient enough to be
deployed at scale in practice. For example, the best protocol
in this space is Patra et al.’s [59] statistical AVSS combined
with Freitas et al.’s [32] common coin technique, with a
total communication complexity of O(n4 log(n)) bits per
beacon per node. There also exist works like Backes et
al. [9] that use collision-resistant Hash functions to build
AVSS. This approach is computationally efficient because
Hash computations are at least 100x cheaper than discrete
log operations. However, this AVSS scheme also has a high

communication complexity of O(n2) bits per node, which
translates to impractical O(n3) bits per node for a beacon
built with this AVSS scheme.

Through this work, we propose a solution to the fol-
lowing question: Is there an asynchronous random beacon
protocol that does not use any private trusted setup, is
computationally efficient to output a high throughput of
beacons at high values of n, and has a practically scalable
communication complexity?
Our results. We propose HASHRAND, a hash-based asyn-
chronous random beacon protocol that uses a collision-
resistant Hash function to output random beacons.
HASHRAND has an amortized communication complexity
of O(λn log(n)) bits per beacon per node, where λ is the
range of the hash function in bits, and requiresO(λn log(n))
Hash computations per beacon per node. HASHRAND re-
quires only a pairwise secure channel setup, where nodes
can send private, authenticated messages to each other.
HASHRAND is computationally efficient because it only
uses lightweight cryptographic primitives like hash func-
tions and message authentication codes (MACs). On top
of computational efficiency and practical communication
complexity, HASHRAND is also post-quantum secure, which
is an added benefit over protocols that use discrete-log
cryptography. This is because contemporary one-way hash
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functions like SHA256 offer collision-resistance and pre-
image resistance against a polynomial time quantum adver-
sary. We offer a detailed comparison of HASHRAND with
related works in Table 1.
Evaluation. We implement HASHRAND in Rust by us-
ing SHA256 hash function as the one-way function. We
evaluate HASHRAND in a geo-distributed setting on AWS
and measure the throughput in terms of the number of
beacons output per minute. We also compare HASHRAND
with Dfinity-DVRF [48] based on BLS threshold signatures.
With n = 40 nodes, HASHRAND outputs 2819 beacons per
minute, against 1505 beacons pm for Dfinity-DVRF. Even
at higher values of n = 160, HASHRAND still outputs 60
beacons per minute or 1 every second, which is 4x higher
than partially synchronous Spurt [26], which outputs 15
beacons per minute at n = 128 nodes.
An illustrative application. On top of implementing and
evaluating HASHRAND as an asynchronous beacon, we
demonstrate its practical utility by implementing a post-
quantum secure asynchronous SMR protocol. We inte-
grate HASHRAND with TUSK [25], the State-of-the-art
asynchronous SMR protocol to form PQ-TUSK, in which
HASHRAND provides the randomness needed for wave
leader election. We replace TUSK ’s digital signatures with
DiLithium [37], a post-quantum secure public key signature
scheme. PQ-TUSK has an optimal communication complex-
ity of O(λn) bits per transaction per node, which is much
more practical than other post-quantum SMR protocols like
WaterBear [71] with worst case O(exp(n)) communication
complexity. We also demonstrate the practicality of PQ-
SMR by evaluating our SMR protocol PQ-TUSK in a geo-
distributed setting. PQ-TUSK achieves a throughput of 135k
transactions per second for n = 16 nodes and 122k trans-
actions per second for n = 40 nodes, with a latency of 2.3
seconds and 17.5 seconds, respectively.

2. Problem Setting and Solution Overview

2.1. System Model

We assume a set of n nodes connected by pairwise
authenticated and secure channels and an asynchronous net-
work with no time bound on message delivery. We consider
a polynomial-time quantum adversary A defined according
to Boneh et al. [16], who has access to a quantum computer
and controls t < n

3 nodes. A also controls the network
between honest nodes and can arbitrarily delay and reorder
messages. The channels connecting honest nodes are private
and A cannot distinguish the contents of each message from
a uniformly random bitstring within polynomial time. An
efficient post-quantum symmetric encryption scheme like
AES can satisfy this assumption.

2.2. Asynchronous Random Beacons

We define a random beacon protocol and its properties
based on Spurt’s [26] definition and adapt it to asynchrony.

Honest nodes participating in a beacon protocol B output tu-
ples of the form ⟨i, bi⟩, where i ∈ N is a unique incremental
beacon index and bi ∈ D is an element from a predefined
domain of numbers D.

Definition 2.1. A protocol B amongst n nodes N consists of
two subprotocols B.PREP(.,.) and B.OPEN(.), with outputs
of the form ⟨x, bx⟩ : x ∈ N, bx ∈ D. An honest node ni

∈ N invokes B.PREP(x,y) : {x, y} ∈ N, x ≤ y to prepare
beacons from index x to y. Upon terminating the preparation
phase B.PREP(.,.) for an index y, and outputting ⟨x, bx⟩
∀x ∈ [1, y), an honest node ni invokes B.OPEN(y) to initiate
generating ⟨y, by⟩. Such a protocol B is a random beacon
protocol iff it satisfies the following properties.

1) Agreement: For a given index x, if honest nodes nj

and nk output ⟨x, bxj⟩ and ⟨x, bxk⟩ respectively, then
bxj = bxk, except with a probability negligible in λ.

Pr


⟨x, bxj⟩ ← nj

∧ ⟨x, bxk⟩ ← nk

∧ bxj ̸= bxk

 ≤ negl(λ)

2) Liveness: Every honest node j must eventually output
a beacon ⟨x, bx⟩ for all x ≥ 1.

3) Bias-resistance and Unpredictability: Given that no
honest node invoked B.OPEN(x) for an index x ≥ 1, a
polynomial time quantum adversary A should not have
any advantage in predicting the beacon output bx.

Pr[A(x) = bx] =
1

|D|
(1)

Prior random beacon protocols [12], [13], [26] also guar-
anteed agreement with probability 1 and unpredictability
withA’s advantage negligible in λ. However, both properties
cannot be achieved with probability 1.

2.3. HASHRAND Key Insights

The conventional design of prior random beacon proto-
cols using VSS and SMR [13], [26], [61], [66] cannot be
applied to an asynchronous beacon because asynchronous
SMR itself requires random beacons to terminate, which
creates a circularity [26]. Moreover, Freitas et al.’s [32]
impossibility result states that a deterministic asynchronous
protocol without a private trusted setup cannot satisfy all
three properties in Definition 2.1. Hence, any asynchronous
random beacon protocol must choose between Monte-Carlo
and Las-Vegas flavors of termination.1

HASHRAND is a Monte-Carlo style beacon protocol
that builds on top of the asynchronous approximate com-
mon coin [32], which uses approximate agreement or ϵ-
agreement primitive. HASHRAND guarantees Monte-Carlo
agreement with a probability of δ, which is a statistical secu-
rity parameter. HASHRAND uses n-parallel AVSS, Gather,

1. Monte-Carlo algorithms always terminate in a deterministic amount
of time and return a correct result with some probability p and an incorrect
result with a probability 1 − p. In contrast, Las-Vegas algorithms always
return a correct result but have an indeterminate runtime.
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and ϵ-agreement as building blocks and builds on top of two
key observations that make it computationally efficient with
a practical communication complexity.

1) Conventional AVSS schemes’ commitment property,
which requires honest nodes to always reconstruct a field
element and is the major reason for their high computational
complexity, is overkill for a random beacon protocol. As we
will show, a weaker commitment property, where nodes can
reconstruct a value ⊥ designating an invalid sharing con-
ducted by a malicious dealer, is enough to guarantee all the
desired properties of a beacon. Using this weakened commit-
ment property, we build a Batched Asynchronous weak VSS
(BAWVSS) protocol on top of Dolev et al.’s [34] AWVSS
protocol. For a batch size of O(n), this BAWVSS scheme
has an amortized sharing complexity of O(λn log(n)) bits
and a reconstruction complexity of O(λn2 log(n)) bits per
secret.

2) Reconstructing O(n) ≥ t+1 secrets is not necessary
to guarantee the unpredictability of a beacon. As long as we
can ensure that at least one honest node’s secret will always
be reconstructed and be part of the beacon, we can ensure
the beacon’s unpredictability. Utilizing this observation, we
propose a committee election procedure, which elects an
AnyTrust committee of constant size guaranteed to have at
least one honest node whose BAWVSS instance will be
terminated and reconstructed by all honest nodes. All nodes
later reconstruct the secrets of only those nodes part of the
committee. We bootstrap the randomness required for com-
mittee election by generating more randomness in the startup
rounds. This technique brings down the communication
complexity of the reconstruction phase to O(λn2 log(n))
bits or O(λn log(n)) bits per secret per node.
The first observation allows us to reduce computational com-
plexity without increasing the communication complexity
of the beacon. Additionally, each instance of Gather and ϵ-
agreement can be shared across all n secrets in a BAWVSS
instance, effectively amplifying the throughput by the batch
size. However, even with this observation, the communi-
cation complexity per beacon is still O(λn3 log(n)) bits
because every beacon output still requires reconstructing
O(n) secrets.

The second observation enables HASHRAND to bring
this communication complexity down by O(n) factor. Al-
though conventional committee-based protocols only show
performance effects at very large values of n, HASHRAND’s
AnyTrust committee achieves a low statistical failure prob-
ability for much smaller committee sizes. For example, in
an n = 160 node system, a committee of size c = 60 is
enough to guarantee AnyTrust assumption with a probability
p = 1 − 2−40. Both these additions make HASHRAND
highly computationally efficient with a λn log(n) per node
communication complexity.
Security. As HASHRAND provides Monte-Carlo agreement,
the honest nodes can output different values and violate
properties in Definition 2.1 with probability p ≤ 1 −
δ + negl(λ), which corresponds to λ bits of cryptographic
security and log( 1

1−δ ) bits of statistical security against a
quantum adversary. Statistical security is independent of A’s

computational power, as opposed to cryptographic security
where the negl function changes with the adversary’s com-
putational power.

We prove HASHRAND ’s agreement, liveness, and
unpredictability properties under collision-resistance,pre-
image resistance, and input hiding assumptions of a hash
function against a classical adversary [15]. However, to
prove security of HASHRAND against a quantum adversary,
we assume the Hash function is a Quantum Random Ora-
cle [16].

3. Building Blocks

In this section, we describe the key building blocks
employed in HASHRAND.

3.1. Asynchronous weak Verifiable Secret Sharing
(AwVSS)

We describe the Asynchronous weak VSS primitive as
defined in Dolev et al. [28]. This primitive facilitates sharing
a secret from a set D, which can be a ring or a finite field.
However, the polynomial must be evaluated at points from
a set E ⊆ D, where polynomial interpolation is possible. If
D is a finite field, E = D whereas if D is a ring, E is the
exceptional set of that ring [63].

Definition 3.1. An (n, t)-AWVSS scheme among a set of
n nodes with a dealer nd consists of two sub protocols: the
sharing protocol AWVSS.SH and the reconstruction phase
AWVSS.REC protocol.
• AWVSSd.SH: A dealer nd shares a secret sd ∈ D among

nodes inN . At the end of AWVSS.SH, at least t+1 honest
nodes ni ∈ N hold a secret share sd,i.

• AWVSSi.REC: Every honest node ni ∈ N reconstructs
the secret sd in a distributed fashion by broadcasting its
secret share sd,i (if available). If the dealer nd was honest,
every honest ni outputs sd and ⊥ otherwise.

A protocol AWVSS implements (n, t)-Asynchronous weak
VSS if it satisfies the following properties.
• Termination:

1) If the dealer nd is honest, then each honest node will
eventually terminate AWVSSd.SH.

2) If an honest node terminates AWVSSd.SH proto-
col, then every honest node will eventually terminate
AWVSSd.SH.

3) If all honest nodes start AWVSS.REC, then each
honest node will eventually terminate AWVSS.REC.

• Correctness: If nd is honest, then each honest node upon
terminating AWVSS.REC, outputs the shared secret sd ∈
D with probability p ≥ 1− negl(λ).

• Secrecy: If nd is honest and no honest node has started
AWVSS.REC, then an adversary that corrupts up to t
nodes has no information about sd.

• Weak Commitment: Even if nd is malicious, with prob-
ability at least p ≥ 1 − negl(λ), there exists a value
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s∗ ∈ D ∪ {⊥} at the end of AWVSSd.SH, such that all
honest nodes output s∗ at the end of AWVSS.REC phase.

This primitive is strictly weaker than the widely used
Asynchronous Verifiable Secret Sharing (AVSS) primitive
because AVSS requires the honest nodes to hold shares of a
secret s ∈ D. In AwVSS, nodes can hold shares of a secret
s ∈ {D,⊥}. A malicious dealer who conducts an invalid
sharing is detected in the sharing phase in AVSS and the
reconstruction phase in AwVSS.

We build on top of Dolev et al.’s [34] hash-based
AWVSS scheme and give a brief description of it. In this
protocol, a dealer nd uses Shamir secret sharing to create
secret shares and then creates a Merkle tree on top of it. nd

then sends individual shares along with Merkle proofs to
nodes and reliably broadcasts the Merkle root r. An honest
node participates in the RBC of root only upon verifying its
Merkle proof. During the reconstruction phase, nodes that
terminated with a share broadcast their shares and Merkle
proofs. Upon receiving t+1 shares, every node reconstructs
the entire share vector and the Merkle tree and verifies if
the root broadcasted in the sharing phase r matches the
reconstructed root r′. It outputs the shared secret if r = r′

and outputs ⊥ otherwise.
Batched AwVSS. Towards reducing communication com-
plexity in an amortized fashion, we also define a
batched version of AWVSS scheme, where a proto-
col BAWVSS implementing Batched AwVSS has sub
protocols BAWVSSd.SH(S) and BAWVSSj .REC(.). The
dealer nd shares a batch of multiple secrets Sd with
BAWVSSd.SH(Sd) and honest nodes reconstruct each se-
cret with BAWVSS..REC(i): ∀i ∈ {1, . . . , |Sd|}. In addi-
tion to the properties of AwVSS, BAwVSS also has the
all-or-none property, where a node must either terminate
BAWVSSd.SH(Sd) for all secrets in the batch Sd or should
not terminate at all. This property is useful in HASHRAND
to increase throughput.

3.2. Gather

We also employ the Gather primitive [3].

Definition 3.2. Let Ti be any protocol amongst nodes N
invoked by a node ni ∈ N . Let Ti implement the Totality
property, which states that if an honest node nj termi-
nates Ti, then every other honest node nm terminates Ti.
A protocol GATHER implementing the Gather primitive in
conjunction with protocol T amongst N is defined by two
sub primitives - GATHER.START and GATHER.TERM(.).
Every honest node ni starts by invoking GATHER.START
and terminates by invoking GATHER.TERM(Gi). Gi is a
set of node indices j such that ni terminated Tj invoked
by nj . Given that T. satisfies Totality, a protocol GATHER
implementing Gather has the following properties.

• Binding Common Core: Once the first honest node ni

outputs set Gi, out of all possible sets G′
j ⊆ Gi with

size |G′| = n− t, there exists a unique core set G such
that every other honest node nj’s output Gj ∩ Gi ⊇
G. Moreover, the core set G is binding, meaning the

adversary A cannot force any other honest node nj to
output a set Gj ̸⊇ G.

• Termination: If every honest node invokes
GATHER.START, then every honest node ni will
eventually invoke GATHER.TERM(Gi) and output a
set Gi: G ⊆ Gi.

We use Abraham et al.’s [3] Gather protocol in
HASHRAND. This protocol has a O(n3) communication
complexity and requires two round trips to terminate.

3.3. Approximate agreement

Finally, we use ϵ-agreement primitive [33].

Definition 3.3. A protocol E implementing the ϵ-agreement
primitive amongst nodes N is composed of E .START(.) and
E .TERM(.), where every honest node ni starts by invoking
E .START(mi) with a value mi ∈ R and terminates by in-
voking E .TERM(oi) with output oi. A protocol implementing
ϵ-agreement satisfies the following properties.
• Termination: If every honest node invokes E .START(.),

then every honest node ni must eventually invoke
E .TERM(oi).

• ϵ-agreement: For a given ϵ > 0, the outputs of any pair
of honest nodes ni and nj are within ϵ of each other. In
other words, |oi − oj | < ϵ ∀{ni, nj} ∈ N .

• Validity: Let M be the set of honest nodes’ initial values
mi. The decision value of every honest node must be
within the range of initial inputs of honest nodes M. In
other words, minM≤ oi ≤ maxM.

We use the Binary Approximate Agreement proto-
col [10] as the ϵ-agreement protocol E in HASHRAND. This
primitive proposes a more efficient ϵ-agreement protocol
under a binary input assumption, where honest nodes’ inputs
to E are publicly known binary values. This protocol works
using the crusader agreement primitive [1] and proceeds in
rounds, where after each round, the range of values of honest
nodes reduces by a factor of 1

2 . To reflect this behavior,
we also define round-wise start and terminate primitives
E.STARTROUND(mr,i) and E.ENDROUND(or,i),specific to
this protocol. It achieves ϵ-agreement with communication
complexity O(n2 log2(∆ϵ )) bits and takes log(∆ϵ ) rounds to
terminate, where ∆ = max(M) − min(M) is the initial
range of inputs. The binary input assumption required by
this protocol is satisfied in HASHRAND, where honest nodes
input either 0 or 1 to each ϵ-agreement instance.

4. HASHRAND Design

4.1. Approximate Common Coin

Approximate common coin [32] is a deterministically
terminating asynchronous protocol, which enables honest
nodes to approximately agree on a random number. In
this scheme, every node ni shares a uniformly drawn se-
cret si using an Asynchronous Verifiable Secret Sharing
(AVSS) protocol. After instantiating AVSS, honest nodes
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run GATHER and wait for its termination. A honest node nj

that terminates GATHER outputs a set of node indices Gj of
size ≥ n− t. This set Gj corresponds to all the AVSS i in-
stances terminated by nj . After terminating GATHER, nodes
create an ϵ-agreement instance Ei for every node i : ni ∈ N .
This step is necessary to enable nodes to approximately
agree on a representative weight for each participant node.
Node nj inputs 1 to Ei if i ∈ Gj and inputs 0 otherwise.
After terminating all n Ei : ∀i ∈ {1, . . . , n} instances
with outputs wi,j∀i ∈ {1, . . . , n}, node nj initiates the
reconstruction phase of AVSS. It waits until reconstructing
AVSS i instances for which wi,j > 0. nj then aggregates
the opened secrets si using a weighted average to generate
oj .

The described protocol enables nodes to approximately
agree on a random number. ϵ-agreement guarantees approx-
imate agreement on o. values, and liveness is guaranteed by
the deterministic termination property of AVSS,Gather, and
ϵ-agreement. The binding common core property of Gather
guarantees unpredictability. After the first honest node ter-
minates Gather, the binding core set G in Definition 3.2
ensures that every honest node terminates AVSS i∀i ∈ G.
Therefore, all honest nodes input 1 to the ϵ-agreement
instance Ei∀i ∈ G. Further, ϵ-agreement’s Validity property
in Definition 3.3 ensures that wi,j = 1∀i ∈ G,∀j ∈
{1, . . . , n}. Therefore, G has at least t + 1 honest nodes,
whose secrets will always be reconstructed and added to
the beacon.

This approximate common coin can be converted to a
Monte-Carlo common coin [32] through rounding, where
nodes round off their oj values to the closest "checkpoint".
The ratio of the distance between checkpoints and the
degree of approximation in the approximate common coin
influences the success probability of the Monte-Carlo coin.
Building a beacon. A strawman approach to building
a beacon from this Monte-Carlo coin is to start a new
coin instance after terminating the previous coin. However,
this approach is impractical with a high latency, compu-
tation, and communication cost. Achieving a Monte-Carlo
agreement probability of δ requires log( n

1−δ ) rounds of ϵ-
agreement. For example, generating a single beacon with
δ = 1 − 2−40, equivalent to one expected failure in a
trillion beacons, requires 200 round trips of communica-
tion. This round complexity results in a high latency in a
Wide-Area Network. Moreover, n-parallel AVSS phase in
this coin costs O(n2) bits of communication and O(n2)
discrete log exponentiations per node, which also creates a
scalability bottleneck. We address these inefficiencies with
two optimizations: a) Batching and pipelining to increase
the throughput and reducing latency respectively, and b)
Committee election for scalability.

4.2. Batching and Pipelining

We first observe that the approximate common coin’s
properties are unaffected if we replace the AVSS scheme in
the coin with an AwVSS scheme with weak commitment.
AwVSS’s weak commitment property enables every honest

node to agree on the maliciousness of the dealer during the
reconstruction phase and discard the contributions of these
nodes. This observation enables us to use the efficient Hash-
based AWVSS protocol proposed by Dolev et al. [34] and
defined in Section 3.1.

We further improve on this AwVSS protocol by propos-
ing two crucial changes to develop BAWVSS, a Batched
AWVSS protocol.

1) We replace the conditionally hiding commitments in
Dolev et al. with unconditionally hiding commitments based
on Backes et al. [9]. Along with the share polynomial f(x)
of degree t, the dealer also computes a nonce polynomial
R(x) of degree t with a secret R of size twice the range
of hash function H (implies a 512-bit nonce for SHA256).
The dealer then computes H(R(i), f(i)) as a commitment
for the ith secret share, and builds a Merkle tree on this com-
mitment vector. This change allows us to prove the security
of HASHRAND without a Random Oracle assumption.

2) We batch β secrets in each BAWVSS instance and
reliably broadcast a vector of β Merkle roots. This amortizes
the cost of RBC over β secrets. This change allows us to
amplify the throughput of HASHRAND by sharing Gather
and the expensive ϵ-agreement phase over all the secrets in
the batch to produce β beacons at the end.
Replacing AVSS in the coin with BAWVSS drastically
reduces the computation cost of each beacon by replacing
DLog exponentiations with Hashes. It also amplifies the
throughput by a O(β) factor. Further, for a batch size
β = O(n) secrets,n-parallel BAWVSS has an amortized
sharing comm. complexity of O(λn log(n)) bits per node,
which is an O( log(n)n ) improvement over AVSS. We defer
the full protocol and its security proofs to Appendix A.
Pipelining. We address the high latency of ϵ-agreement
in HASHRAND using pipelining and piggybacking. Even
though ϵ-agreement has a high round complexity, it still
terminates deterministically in a fixed number of rounds.
We leverage this deterministic termination property and
create a pipeline of beacons with a pipelining period ϕ. For
example, ϕ = 10 implies one n-parallel BAWVSS instanti-
ation for every 10 rounds of ϵ-agreement. Using pipelining,
HASHRAND maintains a steady throughput of beacons with
a constant latency by instantiating n-parallel BAWVSS ev-
ery ϕ rounds and pipelining the corresponding ϵ-agreement
phases. HASHRAND moves to round r + 1 from round r
only after terminating the n-parallel BAWVSS r,i and its
corresponding GATHER instance(if r is a multiple of ϕ), and
round r−r′ of ϵ-agreement instances Er′,j corresponding to
BAWVSS r′,j∀r′ ∈ {r, r−ϕ, . . . , r−rt}, j ∈ {1, . . . , n}. rt
is the number of rounds of ϵ-agreement required to achieve
a success probability of δ.

This pipelining technique ensures that the entire pipeline
is moving at the same pace, hence maintaining a consistent
throughput of beacons. The length of the pipeline is deter-
mined by the probability of agreement δ and n. For constant
n, a higher δ implies a longer pipeline to fill, which increases
the startup latency. However, once full, HASHRAND keeps
up a continuous and constant throughput of β

ϕ Monte-Carlo
beacons per round.

6



Piggybacking. In rounds r : r mod ϕ = 0 with BAWVSS,
we piggyback the messages of ϵ-agreement instances on
top of BAWVSS messages to maintain the same message
complexity. This procedure does not affect the properties of
BAWVSS or ϵ-agreement because both internally use all-
to-all broadcasts. This piggybacking improves the practical
efficiency of HASHRAND by having the same message
complexity as the non-pipelined version in the optimistic
case.

4.3. Committee election

The asymptotic comm. complexity per beacon for
HASHRAND is dominated by the beacon opening phase,
where secrets shared by nodes are reconstructed. Recon-
structing a secret costs O(λn log(n)) bits per secret per
node. We know that at least t + 1 honest nodes’ secrets
will always contribute to the beacon because of Gather’s
binding common core property. Therefore, the cost of the
beacon is O(λn2 log(n)) bits per node and O(n3 log(n))
overall, to reconstruct O(n) secrets.

Ensuring the unpredictability of the beacon requires the
contribution of only one honest node. However, the Gather ’s
common core property and the corresponding ϵ-agreement
phase guarantees the contribution of at least t + 1 honest
nodes, which is overkill and results in higher communication
complexity. We address this issue by using a committee
election procedure. After n-parallel BAWVSS and Gather,
honest nodes agree on a constant-sized committee of nodes
N and run an ϵ-agreement instance Ei ∀i : ni ∈ N only
for the elected node indices, as opposed to running an
Ei ∀i : ni ∈ N .

Committee N requires the presence of only one hon-
est node that was part of the core set G to guarantee
unpredictability. Such a committee is called an AnyTrust
committee and is much smaller in size than conventional
supermajority or honest majority committees traditionally
used in down sampled BFT systems [41] and sharding
systems [31], respectively. Moreover, the use of commit-
tees in HASHRAND is fundamentally different than other
committee-based protocols, where nodes in the commit-
tee run the protocol amongst themselves. In HASHRAND,
all honest nodes participate in the approximate agreement
phase, but elect a committee to choose which nodes’ secrets
to weigh and include in the beacon. Hence, HASHRAND
runs only constant ϵ-agreement instances Ei for indices
i : nj ∈ N instead of running O(n) ϵ-agreement instances
for all indices i : ni ∈ N .

However, this committee election procedure requires
distributed randomness with agreement, where we run into
the randomness-agreement circularity again. Moreover, the
committee must be randomly elected with a secure bea-
con every round. Otherwise, the adversary can bias future
beacons by preventing the committee members from being
part of the Gather ’s core set. To address this problem, we
generate O(n) additional beacons for committee election
once every ϕn rounds and use these beacons for electing

Table 2: Symbols and notations used in HASHRAND

Symbol Description
δ Statistical security parameter
λ Computational security parameter
β Batch size in BAWVSS
ϕ Period of BAWVSS
D Range of beacons
r Current round of HASHRAND

BAWVSS r,i BAWVSS instantiated by node ni in round r of
HASHRAND

Sr,i The set of β secrets shared by ni through round
r’s BAWVSS instance

Nr The committee elected for BAWVSS r,.

Gr,i The output from GATHER.TERM(r,I) for a
BAWVSS r,.

Er,i ϵ-agreement instance corresponding to
BAWVSS r,i instantiated in HASHRAND round

r
B The list of all prepared beacons yet to be opened
Bc The list of all prepared beacons for committee

election

committees for the next n beacon preparation phases. We
present more details in Section 4.4.
Calculating committee size. We calculate the size of the
committee to be sampled using a hypergeometric probability
distribution, which models sampling from a group of nodes
without repetition. The committee N must contain at least
one honest node whose secret will have a weight wi,. = 1
in the aggregation. We know that the core set of Gather
contains at least t + 1 honest nodes, out of which at least
one honest node must be in the committee. Therefore, the
probability of at least one such honest node being on a
committee of size c is given as follows.

pc = 1−H.cdf(0, n, c, t+ 1) (2)

H is a hypergeometric distribution with total population n
and n − 2t ≥ t + 1 honest nodes part of the Gather core
set G as the population with the desired feature. We plot
the committee size c = |N| for a given probability pc with
varying n in Fig. 2.

4.4. Protocol description

We present the full protocol in Algorithm 1 and give a
pictorial description in Fig. 1.
Beacon preparation phase. HASHRAND takes batch size
β and instantiation period of BAWVSS ϕ, where ϕ ≤
log( n

1−δ ), as configurable inputs. Once every ϕ rounds,
nodes initiate BAWVSS by selecting β random secrets and
secret sharing them using Algorithm 2 as BAWVSSr,i.SH(.)
(Line 8). Once every ϕn rounds, nodes increase the batch
size β′ = β + n to output enough beacons for committee
election for the next n BAWVSS instances(Line 8), where
each BAWVSS and Gather instance requires an unpre-
dictable random beacon to elect c nodes from N . After
instantiating BAWVSS, nodes also call GATHER.START
and instantiate round r for each ϵ-agreement instance Er′,∗
started in the last r′ ∈ [r − rt, r] rounds(Line 8).
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Figure 1: HASHRAND pipeline: We describe the pipeline of HASHRAND with batch size β period ϕ = rt
2 . HASHRAND

initiates a new BAWVSS instance once every ϕ rounds and pipelines the corresponding ϵ-agreement instances Er,i.
HASHRAND also initiates preparation of n more beacons once every ϕn rounds. These beacons are prepared without
committee election, and therefore run Er,j for all n nodes. HASHRAND moves to the next round only after terminating
BAWVSS,GATHER, and round r of E. instances in the pipeline. After completing rt = 2ϕ rounds, β beacons initiated
before rt rounds are added to B to be eventually reconstructed. Further, the extra n beacons prepared in round r are added
into a separate queue Bc, used for electing committees for future beacons in rounds r : r mod ϕ = 0, r mod n ̸= 0.
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Figure 2: The plot describes the size of the committee
c = |N| with probability of at least one honest node in the
core set G being part of the committee N, whose secrets
eventually contribute to the beacon. For pc = 1 − 10−12,
the committee size caps at c = 60 for higher values of n.

After terminating Gather, node i calls GATHER.TERM(I)
and outputs set Gi. Next, nodes elect a committee us-
ing COMELECT procedure, where they open the beacons
prepared for committee election(Line 19). We note that
nodes do not elect a committee in rounds where random-
ness for future committee election is being proposed. Once
COMELECT terminates, the nodes instantiate ϵ-agreement
Er,i∀i ∈ Nr only for indices i in the committee Nr, by call-
ing E .START(r,i) (1) if ni ∈ Gi and calling E .START(r,i)
(0) if ni /∈ Gi∀i ∈ Nr(Line 19). Nodes terminate round
r only after all ϵ-agreement instances Er′,∗ : r′ ≥ r − rt
terminate round r (Line 21). Once protocol reaches round
r, the beacons initiated through BAWVSS in round r − rt
are terminated and added to the beacon queue B (Line 23).
These beacons are ready to be opened.
Open phase. Once an honest node ni gets a request to
open a beacon for index k, it identifies the n-parallel

BAWVSS instance BAWVSSr′,. and the index of the secret
in the batch b corresponding to the given index k(Line 36).
ni broadcasts its shares by calling BAWVSSr′,j .REC(b)
∀j ∈ Nr′ . It then waits until it reconstructs all secrets
for which the ϵ-agreement instance Er′,j terminated with
weight wr′,j > 0(Line 43). Then, ni outputs a weighted
average of reconstructed secrets and rounds it off to the
nearest checkpoint, which is a multiple of the domain size
|D| (Line 46).

HASHRAND’s preparation phase adds β beacons to the
beacon queue B. These β beacons are completely indepen-
dent and uniformly randomly chosen from the domain D,
composing log(|D|) bits of entropy. They can be revealed
according to the target application.
Verification. Any external client consuming beacons from
HASHRAND must receive t + 1 equivalent authenticated
beacon messages ⟨i, bi⟩ from t + 1 nodes. However,
HASHRAND’s beacon output can be made publicly veri-
fiable, i.e. any client can verify the output of HASHRAND
with a single message as opposed to t + 1 messages, with
a PKI and digital signatures. Such a scheme is also Post-
Quantum secure with a PQ-secure digital signature scheme.

5. HASHRAND Analysis

5.1. Security Analysis

We defer the security analysis of BAWVSS scheme
to Appendix A. We prove the liveness, correctness, and
weak commitment properties using a collision-resistance
and preimage resistance properties. We prove the secrecy
of BAWVSS using the input hiding assumption of the
Hash function H , first mentioned in [15, page 345]. As
opposed to Dolev et al.’s [34] AWVSS scheme which has
perfect correctness and computational secrecy guarantee in

8



Algorithm 1 HASHRAND protocol

1: INPUT: D,δ,β,ϕ ▷ β: Number of secrets in each BAWVSS
instance, ϕ: Period of BAWVSS instances

2: B.PREP(1,.) beacon prepare phase:
3: D′: Domain of size at least ⌊ 4

1−δ
⌋|D|

4: r ← 0; ϵ← 1
nD′ ; rt ← log( 4nD

1−δ
)

5: c : pc ≥ 2+δ
3

▷ Calculate committee size from Eq. (2) and Fig. 2
6: B ← {}; Bc ← {} ▷ List of prepared beacons; List of prepared

beacons for committee election

7: upon receiving (ID.i, START,r)
▷ Start new BAWVSS instance every ϕ rounds

8: if r mod ϕ = 0 then
▷ More beacons for COMELECT every ϕn rounds

9: if r mod n = 0, then β′ ← β + n
10: else β′ ← β

▷ Form a batch of β′ random numbers
11: Sr,i[j]← Random(D′) ∀j ∈ {1, . . . , β′}

▷ Share secrets using BAWVSS
12: Invoke BAWVSSr,i.SH(Sr,i)
13: Invoke GATHER.START ()
14: end if

▷ Start next round of ϵ-agreement
15: for all Er′,j∀r′ ∈ [r − rt, r] ∧ r mod ϕ = 0, ∀j ∈ Nr′ do
16: Er′,j .STARTROUND(r)
17: end for
18: upon invoking GATHER.TERM(Gi) for round r:

▷ Upon terminating Gather instantiated in round r, elect a
committee and begin ϵ-agreement

19: N←COMELECT(r)

20: ∀j ∈ N :

{
Er,j .START(1), if j ∈ Gi

Er,j .START(0), otherwise
▷ Begin ϵ-agreement for BAWVSS in round r

▷ Wait until terminating round r for all ϵ-agreement instances in
the past rt rounds

21: upon invoking Er′,j .ENDROUND(r) ∀r′ ∈ [r − rt, r] ∧ r
mod ϕ = 0, ∀j ∈ Nr′ :
▷ Terminate for ϵ-agreement instances that completed rt rounds

22: if ∃Er′,. : r′ = r − rt then
▷ Add beacons generated to prepared beacons list

23: If r mod n ̸= 0 then B ← B ∪ ⟨r′, ⟨0, β⟩⟩
24: Else B← ⟨r′, ⟨n, β + n⟩⟩ ;Bc ← Bc ∪ ⟨r′, ⟨0, n⟩⟩ ▷

Beacons in Bc are for committee election
25: end if
26: r ← r + 1 and goto Line 7 ▷ Increment round

27: procedure COMELECT(r)
▷ Find closest committee election beacon

28: if r < rt then
29: return {1, . . . , n− t}
30: end if
31: m← (r−rt) mod ϕn

ϕ
; q ← r − rt − ϕm

32: N← c indices sampled from N using randomness generated
from B.OPEN(q, ⟨m⟩) ▷ Using a Pseudorandom function on
the beacon’s output

33: return N
34: end procedure

35: B.OPEN(k) beacon open phase:
36: upon receiving (ID.i, RECON,k) ▷ Beacon Open phase

r′ ← ⌊ k
β
⌋ϕ; b← k mod β

37: if r′ mod n = 0 then
38: b← b+ n ▷ First n are for committee election
39: end if
40: for j ∈ Nr′ do
41: wj,i ← Er′,j .TERM() ▷ Output of Er′,j
42: end for
43: ∀j ∈ Nr′ : invoke BAWVSSr′,j .REC(b)

▷ Wait until reconstructing only those secrets for which
wj,i > 0

44: ∀j ∈ Nr′ : xj ←

{
BAWVSSr′,j .REC(b).TERM(), if w′

j ̸= 0

0, otherwise
▷ Replace ⊥ reconstructions with 0

45: ∀j ∈ Nr′ : yj ←

{
0, if xj =⊥
xj , otherwise

46: o←
(∑

j∈N yj .wj,i

)
47: invoke B.OPEN(k+1)

48: output
〈
k,

⌊
o

⌊ 4
1−δ ⌋

⌋〉
and return

the RO model, our BAWVSS scheme offers computational
correctness with p = 1− negl(λ) and perfect secrecy under
the Input Hiding assumption of Hash functions.
HASHRAND security. We start by proving the agreement,
liveness, and unpredictability properties for rounds without
committee election, initiated every ϕn rounds. Using the
properties of beacons generated during these rounds, we
prove the properties of beacons initiated in all other rounds.

Theorem 5.1. Assuming correctness and termination prop-
erties of BAWVSS, and secure Gather, and ϵ-agreement
protocols, HASHRAND satisfies liveness for beacon indices
i ∈ {0, . . . , β + n}.

Proof. From the termination property of BAWVSS in Def-
inition 3.1, we know that BAWVSS scheme satisfies to-

tality, which ensures that every honest node ni terminates
Gather. Every honest node therefore starts ϵ-agreement in-
stance E0,i∀ni ∈ N . From the properties of ϵ-agreement
in Definition 3.3, if all nodes invoke E .START(i), then every
honest node terminates E .START(i). Hence, every honest
node terminates B.PREP(0,β + n). In the opening phase
B.OPEN(l) ∀l ∈ {0, β + n}, every honest node nj only
waits to reconstruct secrets initiated by nodes ni for which
the output of E0,i, wj,i > 0. An output wj,i > 0 implies that
at least one honest node nk input 1 to E0,i, meaning which
nk terminated ni’s BAWVSS instance. By the termination
property of BAWVSS, every honest node must eventually
terminate and thereby reconstruct the secret shared by ni.
Therefore, nj and all honest nodes terminate B.OPEN(l)
∀l ∈ {0, . . . , β + n}.
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Theorem 5.2. Assuming secure BAWVSS, Gather and ϵ-
agreement protocols, HASHRAND satisfies unpredictability
property in Definition 2.1 for beacon indices i ∈ {0, . . . , β+
n}.

Proof. Every honest node nj calculates a weighted average
of secrets. Gather’s binding core primitive guarantees that at
least t+ 1 honest nodes’ secrets will always have wi,. = 1.
This set of nodes is fixed before the first honest node termi-
nating Gather begins ϵ-agreement. On top, no honest node
starts B.OPEN(.) until all E0,i∀i ∈ {1, . . . , n} terminate,
which forces A to commit to the secrets that contribute to
the beacon before any honest node starts B.OPEN(.). The
correctness property of BAWVSS ensures at least t + 1
honest secrets are always reconstructed and become part
of the beacon. From secrecy of BAWVSS, we guarantee
unpredictability and bias-resistance for all β + n beacons.
We note that the unconditional hiding property of BAWVSS
ensures perfect unpredictability of the beacon.

Theorem 5.3. Assuming secure BAWVSS, GATHER, and ϵ-
agreement, HASHRAND described in Algorithm 1 satisfies
the agreement property in Definition 2.1 with probability
p ≥ 2+δ

3 − negl(λ) for beacon indices i ∈ {0, . . . , β + n}.

Proof. From the weak commitment property of BAWVSS,
at the end of B.OPEN(i) for an index i, honest nodes each
have a weighted sum of secrets which correspond to a
random range of ϵ = 2 numbers in the domain ⌊ 4D

1−δ ⌋ with
probability p ≥ 1 − negl(λ). When divided by 4D

1−δ and
rounded off to the closest number, the probability that all
honest nodes agree is p = 2+δ

3 − negl(λ).

Using the properties of the first β+n beacons, we derive
the security properties of all future beacons.

Theorem 5.4. Assuming beacons at indices i ∈ {0, . . . , β+
n} satisfy Liveness, and Unpredictability unconditionally
and satisfy Agreement with probability p ≥ 2+δ

3 − negl(λ),
HASHRAND described in Algorithm 1 will output beacons
⟨i, bi⟩∀i > 0 that satisfy the properties in Definition 2.1 with
probability p ≥ δ − negl(λ).

Proof. Every batch of beacons instantiated in rounds r >
rt; r mod n ̸= 0 requires a committee to be elected from
previously agreed upon beacon. From the security proper-
ties of first β + n beacons in Theorems 5.1 to 5.3, this
committee election beacon terminates at all honest nodes,
has an agreement probability of pc = 2+δ

3 − negl(λ),
and is unpredictable. Therefore, every honest node starts
ϵ-agreement instance Er,i∀i ∈ N with probability pc, and
eventually terminates Er,i∀i ∈ N, guaranteeing liveness with
probability pc.

The elected committee N has at least one honest node nj

that is part of the core set G with probability ph = 2+δ
3 . Ad-

ditionally, no honest node opens the beacon for committee
election until it terminates Gather, which implies nj’s secret
will have weight wj,. = 1. Therefore, the output beacon will
always the contribution of at least one honest node with

probability pcph = ( 2+δ
3 )2 − negl(λ) > δ − negl(λ). This

guarantees unpredictability.
After electing a committee with probability pc and hav-

ing at least one honest node nj ∈ G part of the agreed-
upon committee N, ϵ-agreement and weighted average of
random secrets enables honest nodes to agree on the beacon
value with probability p = pcphpa = ( 2+δ

3 )3 − negl(λ) >
δ − negl(λ), where pa is the probability that the weighted
average results in the same beacon at all nodes.

Post Quantum security. We translate the proofs listed so far
to be secure against a polynomial time quantum adversary.
For this reduction, we require the Quantum Random Oracle
Model(QROM) [16] assumption to deduce that Grover’s
algorithm [42], the current best quantum algorithm to find
collisions, needs at least 2λ/3 operations to find a collision
with probability at least 1

2 . Using this hypothesis, we assume
collision and preimage resistance are hard for a polyno-
mial time quantum adversary. These properties of H are
enough to prove correctness, and weak commitment of our
BAWVSS scheme. Additionally, the unconditional hiding
property of the commitment scheme used in BAWVSS
directly results from the definition of a Random Oracle,
which outputs a randomly chosen string of size O(λ) bits
for every new input. As the size of the input is much larger
than H’s output size, the QROM assumption directly gives
unconditional polynomial hiding.
Adaptive security proof sketch. We provide a brief ex-
planation of how HASHRAND is adaptively secure. We
first consider the version of HASHRAND without committee
election, where every node participates in the ϵ-agreement
instance of every other node in the system. Agreement and
liveness properties of HashRand under an adaptive adversary
directly follow from Theorems 5.1 and 5.3. However, prov-
ing unpredictability requires us to establish the existence of
a zero-knowledge simulator S that can simulate the system’s
functionality without any knowledge of honest nodes’ states.
The adversary A interacting with S must not be able to
recognize the difference between the simulated view and
the real view with probability p > 0.

With an adaptive adversary, the main challenge of simu-
lating such a view has been the explainability problem (also
called the commitment problem) [8], [20], where the simu-
lator S must explain the state of an honest node corrupted
by the adversary during the protocol. Suppose the adversary
corrupts an honest node i after i broadcasted its commitment
vector in BAWVSS. S must explain the state of i that
resulted in the commitment vector with zero knowledge
about i’s state. In prior protocols where unconditionally
binding commitment schemes have been used, this task is
hard because the simulator must invert the commitment to
produce a consistent state [8].

We avoid this problem in HASHRAND by using an
unconditionally hiding commitment scheme, where multiple
possible inputs can generate each commitment string. We
assume the Hash function H is a programmable Random
Oracle (RO) whose outputs for any given input can be
programmed by the simulator. When the adversary corrupts
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node i, the simulator generates a new set of shares and
programs H to return the same commitments generated
by i’s old shares. Then, the simulator rewinds the tapes
of the adversary and other honest nodes to replace i’s old
shares with the newer shares. A similar technique based on
unconditionally hiding commitments was used in Bingo [2]
to prove the adaptive security of their AVSS scheme. Addi-
tionally, our RO assumption does not involve recording the
adversary’s queries. Hence, we also avoid the problem of
recording a quantum adversary’s queries and achieve post-
quantum security in the Quantum RO model [16].
Committee election. We show that HASHRAND with com-
mittee election is adaptively secure under the secure erasure
model [23], [30], where nodes can securely erase specified
portions of their random execution tapes. In the BAWVSS
phase, every honest node erases the sampled secrets and
corresponding secret shares of nodes from its tape simul-
taneously while sending out the SHARE messages. We
know that the beacons used for electing a committee satisfy
unpredictability, agreement, and liveness under an adaptive
adversary A. The agreement and liveness properties of these
beacons ensure that all honest nodes see the same com-
mittee and participate in the corresponding ϵ-agreement in-
stances. Hence, the beacons created with committee election
satisfy agreement and liveness properties with probability
p = δ − negl(λ).

We utilize secure erasures to prove unpredictability. An
honest node i invokes B.OPEN() to elect a committee only
after terminating GATHER for the corresponding BAWVSS
phase. From the unpredictability property of the beacons
used for committee election, we know that A cannot dis-
tinguish the committee members from uniformly random
until an honest node i terminates GATHER. Further, from the
properties of GATHER, the elected committee must contain
at least one honest node j part of the core set with proba-
bility ph = 2+δ

3 . Moreover, as node i already terminated j’s
BAWVSS instance, j would have already erased all data
about its shared secret. Therefore, if A corrupts j after
knowing its membership in the committee, it would only
get j’s share of the secret. A can corrupt at most t nodes
and access t shares, which provides no information about
j’s secret and thereby ensures unpredictability.

In the no-erasures model of adaptive security [23], where
the adversary gets access to the entire tape of a corrupted
node, the above argument for adaptive security will not
hold. The adversary can adaptively corrupt all committee
members, gain access to the secrets shared by them, and
know the beacons beforehand, which breaks unpredictabil-
ity. HASHRAND needs to be run without committee election
in this model, and has a per-node communication complexity
of O(λn2 log(n)) bits per beacon.

5.2. Complexity Analysis

We analyze the communication and computation com-
plexity of HASHRAND. The n-parallel BAWVSS phase in
round r : r mod ϕ = 0 with β secrets costs O(βn log(n)+
λn2) bits of communication per node, with each node

sending β merkle proofs and RBCing a vector of β com-
mitments. With Cachin-Tessaro’s RBC [17], this complexity
becomes O(βλn log(n) + λn2 log(n)) per node for each
n-parallel BAWVSS. The Gather primitive requires O(n2)
comm. bits per node. The ϵ-agreement phase for a round that
does not use committee election (r mod n = 0) requires n
BINAA instances, with each round of one instance costing
O(n log( D

1−δ )) bits per node. Overall, for O(n) instances
running for log( nD

1−δ ) rounds costs O(n2 log(n) log2( D
1−δ ))

bits per node. For every beacon, the opening phase re-
quires every node to broadcast secret shares of O(n) se-
crets with evaluation proofs to all other nodes, which gives
this phase a communication complexity of O(λn2 log(n))
bits per node per beacon. Therefore, for β beacons, the
overall comm. complexity per node without committee elec-
tion is O(βλn log(n)+λn2 log(n)+n2 log(n) log2( D

1−δ )+
βλn2 log(n)) = O(βλn2 log(n)) per node for β = O(n).
Hence, the asymptotic complexity per beacon is dominated
by the opening phase.

With committee election, each batch of β beacons
requires honest nodes to open a previous beacon with
O(λn2 log(n)) per node. The nodes run only c ϵ-agreement
instances,and require opening only c secrets. This results in a
communication complexity of O(βλn log(n)+λn2 log(n)+
cn log(n) log2( D

1−δ ) + βλcn log(n)) per a β beacons. For
β = O(n), the communication complexity per node comes
to O(λn log(n)) bits. As beacon generation for committee
election happens once every ϕn rounds, the average comm.
complexity per beacon totals λn2 log(n)

n +(1− 1
n )λn log(n) =

O(λn log(n)) bits per beacon per node.
The computation complexity can also be calculated in a

similar fashion. For rounds r : r mod n = 0, each node
performs O(n2 log(n)) hash computations to verify O(n)
secret shares each for O(n) secrets part of the beacon. With
committee election, each node only computes O(cn log(n))
hashes for at most c secrets part of the beacon. Since bea-
cons for committee election are only generated once every
ϕn rounds, the average is O(cn log(n)) hash computations
per beacon.

6. Applications

We present two asynchronous SMR protocol instantia-
tions with HASHRAND providing common coins for liveness
in asynchrony. We present a) PQ-TUSK, a high-throughput
PQ-secure SMR protocol that uses digital signatures and a
PKI setup, and b) DAG-RIDER with HASHRAND, a PKI-
free SMR protocol for asynchronous cross-chain consensus.

6.1. Post Quantum SMR

We demonstrate the utility of HASHRAND by imple-
menting a Post-Quantum asynchronous SMR protocol us-
ing HASHRAND for Post-Quantum Liveness. There ex-
ist asynchronous SMR protocols like DAG-RIDER [52]
and FIN [36] that achieve post-quantum safety by using
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only symmetric key primitives like Message Authentica-
tion Codes(MACs), which are PQ-secure. However, these
protocols depend on quantum-insecure random beacons
like BLS threshold signatures [14] for liveness. Prior to
HASHRAND, the PQ-secure random beacon protocol with
the best communication complexity is Freitas et al. [32] with
Dolev et al.’s [34] AWVSS. With this beacon, the com-
munication complexity of PQ-secure asynchronous SMR is
O(n2 log(n)) bits per block per node.

We present PQ-TUSK, an efficient post-quantum secure
asynchronous SMR protocol built on top of TUSK [25].
Our choice of TUSK is motivated by its exceptional per-
formance in a Wide Area Network. We create PQ-TUSK by
using HASHRAND to provide the distributed randomness
necessary for electing wave leaders. We tune HASHRAND’s
configuration parameters β and ϕ to ensure that HASHRAND
prepares exactly one beacon per wave. Since revealing a
prepared beacon in HASHRAND takes only one round trip
in HASHRAND, PQ-TUSK can commit blocks at network
speed. However, TUSK uses quantum-insecure EdDSA sig-
natures for certificate generation. We replace this scheme
with an appropriate PQ-secure signature scheme that offers
maximum performance benefits in this context. Overall, PQ-
TUSK has a communication complexity of O(λn log(n))
bits per block per node, which is an O(n) factor better than
the current best PQ-secure asynchronous SMR protocol, and
only an O(log(n)) factor higher than TUSK.

6.2. Cross-chain Consensus

We also use HASHRAND to create the first asynchronous
cross-chain consensus protocol, which does not require
a PKI setup. A cross-chain consensus protocol is a key
building block in creating a combined ledger with boosted
trust from individual blockchains. Such a combined ledger
is secure even when the adversary controls 1/3rd fraction
of blockchains. Recent work TrustBoost [67] implements
cross-chain consensus using a smart contract that runs on
each participating blockchain. These contracts communicate
using an inter-blockchain communication (IBC) protocol. A
major challenge noted by TrustBoost is the computational
expense of signature verification in prominent consensus
protocols like HotStuff and Tendermint. Further, TrustBoost
also notes a limitation in the underlying IBC protocol,
which prevents the use of public-key signatures in cross-
chain consensus. These issues motivated TrustBoost to use
Information-theoretic HotStuff (IT-HS) [7], which does not
use any signatures. Moreover, these issues are also the main
roadblock in running asynchronous cross-chain consensus.

Using HASHRAND, we propose a signature and PKI-
free asynchronous cross-chain consensus protocol. We use
DAG-RIDER [52], a DAG-based atomic broadcast protocol
in combination with HASHRAND, to create a PKI-free asyn-
chronous SMR protocol. DAG-RIDER uses only Bracha’s
RBC and a common coin as building blocks, which, with
HASHRAND, enables the protocol to commit transactions
without using any signatures. This SMR protocol has a

communication complexity of O(λn2 log(n)) bits per trans-
action, which is O(log(n)/n) factor more efficient than IT-
HotStuff in the worst case, and only O(log(n)) factor higher
than IT-HS under a stable leader.

7. Evaluation

We describe the evaluation of HASHRAND in this sec-
tion. We evaluate HASHRAND in a geo-distributed setting
and compare it with Dfinity-DVRF [48] based on BLS
threshold signatures [14]. We also evaluate PQ-TUSK with
HASHRAND providing common coins.
Implementation. We implement HASHRAND in Rust with
the tokio library as our asynchronous runtime2. We
use SHA256 as our hash function H . We use Cachin-
Tessaro’s [17] computationally efficient Reliable Broadcast
protocol in HASHRAND and use the Erasure Codes library3.
We then integrate HASHRAND with TUSK ’s [25] codebase
and use HASHRAND ’s beacons to elect wave leaders in
TUSK4. Further, we implement PQ-TUSK by replacing the
quantum-insecure EdDSA signatures in TUSK with PQ-
secure DiLithium Signatures from the pqcrypto5 library.
Evaluation setup. We evaluate HASHRAND and its corre-
sponding integrated asynchronous SMR protocols in a Geo-
distributed testbed on Amazon Web Services (AWS).

We evaluate HASHRAND on Amazon Web Services
(AWS) with varying nodes n = 16, 40, 64, 112, and 160. We
run our protocol on c5.large nodes, each with 2 cores
and 4GB RAM. As opposed to t3a.medium machines
(also with 2 cores and 4GB RAM) used in many prior
works, c5.large machines do not have burstable CPU
credits, which ensures predictable and reproducible perfor-
mance. We also evaluate PQ-TUSK on the same testbed with
n = 16, 40, 64 nodes.
Network. We create a geo-distributed testbed of n nodes to
simulate execution over the internet. We distribute the nodes
equally across 8 regions: N. Virginia, Ohio, N. California,
Oregon, Canada, Ireland, Singapore, and Tokyo.
Baselines. We compare HASHRAND with an asynchronous
beacon protocol based on Dfinity-DVRF [48], which
uses BLS threshold signatures [14]. Prior works such as
Spurt [26] and OptRand [12] directly used DRand [65] as
a benchmark for a beacon with threshold setup. However,
we note that DRand’s codebase does not produce beacons
at full throttle and thereby misrepresents the true pace
of beacon generation with a threshold setup. To ensure a
fair comparison, we implement the Dfinity-DVRF protocol
using the Rust-based BLS signature library blstrs6 on
the bls12-381 curve, which internally uses the blst7

pairing library. An honest node constructs ⟨i, bi⟩ immedi-
ately after it possesses ⟨i − 1, bi−1⟩, thus generating bea-
cons at network speed. We also compare the numbers of

2. https://github.com/akhilsb/hashrand-rs
3. https://github.com/rust-rse/reed-solomon-erasure
4. https://github.com/akhilsb/pqsmr-rs
5. https://github.com/rustpq/pqcrypto
6. https://github.com/filecoin-project/blstrs
7. https://github.com/supranational/blst
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HASHRAND to Spurt’s [26] numbers. We ensure a fair
comparison by matching Spurt’s geo distribution of nodes
and benchmarking HASHRAND in machines with the same
number of CPUs and memory as Spurt. We also benchmark
the performance of PQ-TUSK with PQ-security against a
non PQ-secure TUSK [25].

7.1. HASHRAND evaluation

We configure HASHRAND to emit beacons for commit-
tee election in asynchronous SMR or blockchain sharding.
For this application, the domain of beacons D is the total
number of nodes in the system. We set a statistical success
probability of δ = 1 − 2−38, which amounts to one failure
in 1012 beacons. Even with an optimistic 106 beacons being
invoked everyday, the average expected time for a failure is
2739 years. Assuming a domain D of size 2048, we choose
the domain D′ for BAWVSS to be a finite field of size
|D′| > 250. Nodes invoke B.OPEN(i+1) immediately after
they terminate B.OPEN(i) to generate beacons at full throttle.
Tuning β and ϕ. HASHRAND’s runtime configuration pa-
rameters comprise the BAWVSS batch size β, and the pe-
riod of BAWVSS instantiation ϕ. These parameters control
the pace of beacon generation. In Fig. 3, we present the
impact of these parameters on the HASHRAND’s throughput
using a heat map. For a given β, there is an optimal ϕ
of BAWVSS instantiation that maximizes the use of the
compute and network’s resources. For example, in the row
with β = 100, the throughput increases with reducing
period until ϕ = 10, after which it decreases again. The
low throughput at a high period is resultant of idle time
at the CPU, where nodes exhaust their available pool of
prepared beacons faster than they can prepare new beacons.
Similarly, at a lower period, the nodes saturate their network
bandwidth by consecutively engaging in BAWVSS in quick
succession, which keeps increasing the pool of prepared
beacons waiting to be reconstructed. Moreover, the period of
maximum throughput ϕ is smaller for smaller β. Therefore,
for any given n, there exists an optimal (β, ϕ) configuration
that gives the maximum throughput of beacons. The same
reasoning also applies for column-based analysis, where
for a given ϕ, there is an optimal β that gives maximum
throughput of beacons. For n = 40 nodes, HASHRAND
produces a maximum throughput of 2818 beacons pm at
(β, ϕ) = (200, 10).
Scalability. We evaluate HASHRAND with increasing n
in Fig. 4. At low n, the computational efficiency of Hash
computations outperforms threshold signing where for n =
40, HASHRAND outputs 81% more beacons than Dfinity.
However, HASHRAND scales as O(n2 log(n)) Hash com-
putations per node at small n, whereas threshold signatures
scale linearly at all n. This rate of change is visible in Fig. 4
where Dfinity’s slope is lower than HASHRAND. We also
observe the constant committee size in HASHRAND and
O(cn log(n)) complexity taking effect for higher n, where
the slope of HASHRAND decreases with increasing n. Due
to this improvement, HASHRAND outputs 63 beacons pm or

1 5 10 15

Period of BAWVSS 

40
0

20
0

10
0

50
B

at
ch

 si
ze

 

1395 1965 2202 2097

1380 2432 2818 2684

1587 2509 2555 1941

1439 2147 1428 1000

1000

1250

1500

1750

2000

2250

2500

2750

Figure 3: β and ϕ vs Beacons/min The figure shows the
number of beacons emitted by HASHRAND per minute for
n = 40 nodes with configuration parameters batch size β
in each BAWVSS instance and the number of BAWVSS
instances. For every value of n, there exists a sweet spot of
β and ϕ that gives maximum throughput
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Figure 4: Scalability results: The figure shows the number
of beacons produced per minute by HASHRAND, Dfinity-
DVRF [48], and the numbers reported by Spurt [26] in the
same geo-distributed setting. HASHRAND’s O(n2 log(n))
Hash comp. cost results in a steeper slope than Dfinity’s
O(n) comp. cost. Dfinity’s cost doesn’t include the cost for
ADKG. HASHRAND’s computational efficiency allows it to
produce to produce 1 beacon per second at n = 160 without
a threshold setup, which is 4x higher than Spurt at n = 128.

1 beacon every second at n = 160 nodes without a threshold
setup.

HASHRAND vastly outperforms Spurt at all values of n.
Particularly, at n = 128, Spurt outputs only 15 beacons
pm, which is 4x lower than HASHRAND at n = 160
nodes. Even though Spurt and HASHRAND have the same
asymptotic communication complexity, HASHRAND’s com-
putational efficiency allows it to produce beacons at a
much higher rate. This difference between Hashes and
DLog exponentiations is more visible at small n where
HASHRAND uses O(n2 log(n)) computations per beacon
as compared to Spurt’s O(n2) discrete log exponentia-
tions. Overall, HASHRAND scales gracefully with n and is
currently the best way to generate distributed randomness
without a threshold setup and with Post-Quantum security.
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7.2. SMR Evaluation

We also evaluate PQ-TUSK and compare it to classical
TUSK without PQ-security. We test both protocols by offer-
ing increasing transaction loads and measuring the response
rate and latency for that request rate. We then plot the
response rate vs latency in Fig. 5 and check the value of
response rate for which the latency has a disproportionate
jump. Each transaction is of size 256 bytes.
PQ-secure signatures. We consider three PQ-secure signa-
ture schemes for use in PQ-TUSK: a) DiLithium based
on Lattice cryptography [37], b) SPHINCS-256 [11] based
on the Hash-based Winternitz One-Time Signatures(WOTS),
and c) PICNIC [22] based on the MPC-in-the-head ap-
proach with symmetric key primitives. We notice that the
signing and verification times coupled with the signature
size of a signature scheme have the highest impact on
TUSK’s latency and throughput. This is because TUSK has
a O(n) signing and O(n2) verification complexity per wave
per node. Nodes in TUSK also broadcast O(n2) signa-
tures per wave. PICNIC and SPHINCS-256 both have
high signing and verification times in milliseconds. Both
schemes also have high signature sizes(40 KB and 140 KB).
DiLithium requires 220 and 70 microseconds to sign and
verify a message respectively, and has a modest signature
size of 4 KB for 128-bits of quantum security. DiLithium
has larger public and secret keys compared to PICNIC and
SPHINCS-256, which is not a problem in a permissioned
SMR system. Hence, we choose the DiLithium scheme
to implement certificates in PQ-TUSK.

In the WAN setting, PQ-TUSK has a response rate of
135k transactions per second at n = 16 nodes, with an
optimal latency of 2.3 seconds per transaction confirmation.
This response rate is only 10% lower than classical TUSK.
PQ-TUSK is also very efficient compared to other prominent
and implemented PQ-secure protocols like WaterBear [71]
that uses local coins to generate distributed randomness.
At n = 16 in a geo-distributed setting, WaterBear of-
fers a peak response rate of only 23k txns per second in
t3a.medium machines(with same specs as our machines,
but with burstable CPU) as compared to 135k for PQ-TUSK.

At higher n = 40 and n = 64, PQ-TUSK offers a
peak response rate of 122k txns per second at a latency
of 17.5 seconds per transaction, and 40k txns per sec-
ond at a latency of 50 seconds. We do an ablation study
of PQ-TUSK to identify the bottleneck at higher n. We
implement and observe the response rate for TUSK with
DiLithium signatures instead of EdDSA. This variant of
TUSK underperforms compared to our PQ-TUSK at n = 16
with 20% lesser response rate at 108k txns per second. At
n = 40, it performs very similar to PQ-TUSK, with a peak
response rate of 122k txns per second and a latency of 13
seconds. Based on this information, we identify the higher
signing and verification times of DiLithium signatures
over EdDSA signatures as the bottleneck for PQ-TUSK.
Therefore, with HASHRAND, we remove the Post-Quantum
liveness bottleneck that has plagued prior PQ-SMR proto-
cols like WaterBear, and establish that randomness from
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Figure 5: Post-Quantum SMR: The figure describes the
latency-response rate curve for PQ-TUSK, and TUSK. PQ-
TUSK has a response rate of 135k txns per second at a
latency of 2.3 seconds for n = 16, and 122k txns per second
at a latency of 17.5 seconds for n = 40 nodes.

Hash functions is the most practical way to achieve Post-
Quantum security.

8. Related work

We segregate various randomness protocols based on
their network and setup assumptions. We use Abraham and
Yanai’s [6] description of different levels of trusted setups to
describe setup assumptions of related beacon protocols. We
also describe the cryptographic hardness assumptions used
in these protocols.
Synchronous and partially synchronous protocols. Bea-
con protocols in the synchronous world consists of proto-
cols [12], [13], [21], [26], [61], [66] that use VSS driven
by CRS or SRS setup(Level 4 in [6]). All these protocols
require some variant of Byzantine Agreement to achieve the
properties of a random beacon. We discuss RandPiper [13],
OptRand [12], and Spurt [26] in this category, as they are
the most relevant.

BRandPiper [13] is an adaptively secure, leader-based
synchronous beacon protocol that has a communication
complexity of O(κn3), which uses a VSS scheme with
unconditionally hiding homomorphic commitments. Op-
tRand [12] is an optimistically responsive random beacon
that uses OptSync’s [64] commit rule to generate beacons
at network speed. The protocol however depends on a
synchronous timeout to implicate faulty leaders in the pes-
simistic case. Spurt is a partially synchronous protocol that
uses n-parallel PVSS (requiring a Level 4 CRS setup) with
leader-based secret aggregation to ensure unpredictability
within O(n2) communication. The secrecy of the PVSS
scheme depends on the DBDH assumption, which along
with an RO used for NIZK proofs in the protocol, provides
unpredictability of the beacon’s output. Spurt internally
uses the HotStuff [69] protocol to enable honest nodes to
terminate and output the beacon value.
Asynchronous protocols. Asynchronous random beacon
protocols are bound by Freitas et al. ’s [32] impossibility
result, which states that any protocol that converts local
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randomness from honest nodes into global randomness with
agreement amongst honest nodes must have infinitely many
executions. Protocols with a DKG setup(Level 5 in [6])
such as Cachin et al. [19] are not bound by this impos-
sibility result because the output from threshold signatures
is equivalent to distributed pseudorandomness and is a deter-
ministic function of honest nodes’ states. Another protocol
requiring a DKG setup is RandShare [66], which uses AVSS
and Asynchronous Byzantine Agreement (ABA) to achieve
agreement and unpredictability. The ABA instances con-
sume pseudorandomness from the DKG setup to overcome
the bound.

Randomness Protocols with Las-Vegas style agreement
have been traditionally employed in Asynchronous Dis-
tributed Key Generation (ADKG) [2], [3], [27], [29], [39],
[54]. Kogias et al. [54] propose an Eventually Perfect Com-
mon Coin (EPCC) using a high-threshold AVSS scheme
conducted over a secure channel setup(Level 2). Their pro-
tocol uses the DDH assumption with a RO to prove the
unpredictability of their coin. This protocol also has a O(n3)
comp. complexity per node, which makes it very expensive
in practice.

Other asynchronous protocols use a partially public
setup like PKI with CRS or SRS(Level 4 setup). Gao
et al. [39] use a combination of PAVSS, and the bind-
ing core abstraction in GATHER to produce beacons. This
work proves unpredictability using the DDH and the RO
assumption. Abraham et al. [3] also use PKI-based VRFs
and Gather to agree on a random node’s index. This pro-
tocol uses the SXDH assumption with a RO to achieve
unpredictability. A recent work called Bingo [2] produces
adaptively secure randomness using a Packed AVSS scheme,
which requires a PKI and an SRS setup. Gao et al., Abraham
et al., and Bingo have O(n3) DLog expo. complexity, which
makes them computationally inefficient. Such protocols can
be used for a one-shot ADKG and later use Cachin et
al. ’s [19] approach for generating pseudorandom beacons.
This approach does not work with mobile participants and
also suffers from key leakage attacks, which prompted a
wave of research on mobile proactive [18], [49], [62], [70]
and refreshable secret sharing [45], respectively. Moreover,
Kogias et al. ’s approach is the only current way to achieve
ADKG at a Level 2 setup(without PKI or CRS) in [6], whose
expensiveness hinders its practical application.

Freitas et al. ’s [32] protocol achieves deterministic ter-
mination with a statistical probability of disagreement with
a Level 2 setup (pairwise secure channels). This protocol
uses AVSS, GATHER, and ϵ-agreement to output a random ϵ
interval of numbers. The AVSS used in this protocol depends
on Pedersen commitments and the DLog assumption for
unconditional hiding and hence, does not require a RO
for unpredictability. However, this protocol has a higher
computation complexity ofO(n3) per node and a high round
complexity of log( n

1−δ ) rounds.
Information-theoretic protocols. Protocols in the realm
of IT and statistical security use different techniques to
generate distributed randomness. Huang et al. [50] use sta-
tistical fraud detection by Byzantine nodes to improve the

complexity of Ben-Or’s local coin-based coin flipping to
Ω(n6) from O(exp(n)), at the expense of tolerating a lesser
fraction of faults. This form of work uses only authenticated
channels. Another style of work by Patra et al. [59] pro-
pose a statistically secure AVSS scheme with O(n4 log(n))
comm. complexity. This work combined with packed AVSS
and Freitas et al.’s Monte-Carlo coin technique results in
an overall communication complexity of O(n4 log(n)) per
beacon.

9. Conclusion

We presented HASHRAND, a computationally efficient
practical asynchronous random beacon protocol that requires
a pairwise-channel setup. HASHRAND guarantees Monte-
Carlo agreement, liveness, and unpredictability by only us-
ing the properties of a one-way Hash function. HASHRAND
outputs each beacon with amortized O(λn log(n)) bits of
communication per node and is computationally efficient
with amortized O(n log(n)) hash computations per bea-
con. We proved HASHRAND ’s security using standard
properties of one-way Hash functions against a classical
adversary and using the Quantum ROM against a quantum
adversary. HASHRAND provides post-quantum liveness for
asynchronous SMR protocols with only O(log(n)) more
communication than threshold signatures. We also demon-
strated HASHRAND ’s scalability and utility in making post-
quantum SMR practical.
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Appendix

We present the full BAWVSS protocol along with its
security proofs in this section.
BAWVSS security. The Termination, Correctness, and
Weak Commitment properties of our BAWVSS scheme
follow Dolev et al.’s [34] scheme.

Lemma A.1. Under collision resistance and preimage re-
sistance of the hash function H , the BAWVSS protocol in
Algorithm 2 satisfies Termination, Correctness, and Weak
Commitment.

Proof. If the dealer nd is honest, every honest node will
send out ECHOs by verifying their share tuples and their in-
clusion in the root vector. By the liveness and totality proper-
ties of reliable broadcast, every honest node will eventually
terminate the sharing phase of the protocol, and at least t+1
honest nodes will have shares for all k secrets. If all nodes
terminated BAWVSS..SH(nd) and start BAWVSS..REC(.),
then at least t+1 honest nodes must broadcast their shares
to everyone. Since the degree of the sharing and nonce
polynomial is t, these t+1 points are enough to reconstruct
both share and nonce polynomials and verify the validity of
the root. With the help of these t + 1 honest nodes, every
honest node terminates BAWVSS..REC(.).

We prove correctness by contradiction. If the dealer D
is honest, the honest nodes reach an agreement on the root
vector, and at least t + 1 honest nodes have shares for all
k secrets. Assuming an honest node i reconstructs si ̸= si
shared by the dealer, the node i must have reconstructed
the polynomials g′i(x) ̸= gi(x) and r′i(x) ̸= ri(x). For
this to happen, i must have used a share sm not shared
by the dealer D in Lagrange interpolation. However, since
i validated the share sm, the adversary must have generated

a valid commitment H(sm, rm) for a share not generated
by the dealer. This implies that the adversary found a hash
collision, which violates the collision resistance property of
the function H . Hence, Algorithm 2 satisfies Correctness.

We prove weak commitment by contradiction under two
cases: a) Honest nodes i, j reconstructed different secrets in
the field D and b) Honest node i reconstructed a valid secret
in D whereas j reconstructed ⊥.

1) Let i, j reconstruct si, sj ∈ field respectively. From
the Termination property of BAWVSS..SH(nd), both
i, j must terminate with the same root vector. Since
si ̸= sj , two different degree t polynomials g′i(x) and
g′j(x) construct two Merkle trees with the same root,
which implies that there must be at least one hash
collision while aiding the disagreement. This collision
violates the collision-resistance property of the Hash
function H .

2) Let i, j reconstruct si ∈ D,⊥ respectively. From the
termination property of BAWVSS..SH(nd), i, j termi-
nated with the same root vector. This disagreement
implies that i and j used a different set of t + 1
shares to construct their polynomials g′i(x) and g′j(x).
i constructed a degree t polynomial and validated all n
shares, which included the set of t+ 1 shares used by
j to construct g′j(x). Since j reconstructed a different
degree t polynomial with the shares validated by i, a
malicious node must have sent a wrong share sm to
j, which had the same commitment as the correspond-
ing share validated by i. This violates the collision-
resistance property of the hash function H .

Next, we prove the unconditional hiding property of our
BAWVSS scheme using the Input Hiding assumption of
a Hash function. The same assumption was also used in
Backes et al. ’s [9] computational AVSS scheme.

Lemma A.2. Under the input hiding assumption of the hash
function H as stated in Boneh and Shoup [15, page 345],
the BAWVSS protocol BAWVSS in Algorithm 2 satisfies
unconditional hiding.

Proof. We use Boneh and Shoup’s [15, page 345] Input
Hiding assumption of collision-resistant Hash functions to
prove this lemma. This assumption states that a commitment
computed as H(R, x), where R is a random variable at
least twice the size of H’s output, statistically hides x. This
implies a distribution H(R, x1) is statistically indistinguish-
able from H(R, x2) for all x1, x2 ∈ D, thereby providing
unconditional hiding.
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Algorithm 2 BAWVSS: Batch Asynchronous Weak Verifiable Secret Sharing (BAWVSS)

1: INPUT: N ,RBC,Sd ▷ RBC: RBC protocol,Sd: secrets to
share

2: Protocol BAWVSSd.SH(Sd):
3: upon receiving (ID.d,in,SHARE,Sd): ▷ As a dealer

▷ Sample |Sd| nonces from a domain D′ at least twice the H’s
output range Rd[i]← Random(D′)∀i ∈ {1, . . . , |Sd|}
▷ Use Shamir’s SS scheme to create shares for secrets in Sd,
Rd[i]

4: Sd[i]←SHAMIR.SPLIT(Sd [i],n,t) ∀i ∈ {1, . . . , |Sd|}
5: Rd[i]←SHAMIR.SPLIT(Rd[i],n,t) ∀i ∈ {1, . . . , |Sd|}

▷ Compute Commitments
6: Cd[i]← ⟨H(Rd[i][0],Sd[i][0]), . . . , H(Rd[n][0],Sd[i][n])⟩ ∀i ∈
{1, . . . , |Sd|}

▷ Compute Merkle Trees
7: Md[i] = MERKLE(Cd[i]) ∀i ∈ {1, . . . , |Sd|}
8: Rd ← {Md[0].ROOT, . . . ,Md[k].ROOT}
9: Sd[j][i] ← ⟨Sd[i][j],Rd[i][j],Md[i].PROOF(j)⟩ ∀i ∈
{1, . . . , |Sd|}, ∀j ∈ {1, . . . , n}

▷ Send shares to all nodes
10: for j ∈ {1, . . . , n} do
11: Send "ID.d, SHARE, Sd[j]" to node nj

12: end for
▷ Reliably Broadcast root vector

13: Invoke RBC.BROADCAST(Rd)
▷ As a participant

14: upon receiving "ID.d,SHARE,Sd[j]" and RBC.INIT(Rd) from
dealer nd:
▷ Verify commitments and participate in RBC if all pass

15: if MERKLE.VERIFY(Rd[i],Sd[j][i].SHARE,Sd[j][i].PROOF)
= 1∀i ∈ {1, . . . , |Sd|} then

16: Send ECHO messages in nd’s RBC protocol RBC
17: end if
18: upon invoking RBC.DELIVER(Rd) with share:
19: output (ID.d,out,SHARE,Rd)
20: upon invoking RBC.DELIVER(Rd) with no share:
21: output (ID.d,out,NO-SHARE,Rd)

1: Protocol BAWVSSd.REC(i):
2: SSd[i]← ∅
3: upon receiving (ID.d,in,RECON,i):
4: if terminated with SHARE then
5: for j ∈ {1, . . . , n} do
6: Send "ID.d, RECON,Sj [i]" to node nj

7: end for
8: end if
9: upon receiving (ID.d,RECON,Sd[m][i]) from node nm:

10: if MERKLE.VERIFY(Rd[i],Sd[m][i].SHARE,Sd[m][i].PROOF)
= 1 then

11: SSd[i]← SSd[i] ∪ ⟨m, Sd[m][i]⟩
12: end if

upon|SSj [i]| ≥ t+ 1

▷ Combine shares and reverify root vector commitment
13: Sd[i],Rd[i]← SHAMIR.COMBINE(SSd[i],n,t)
14: Cd[i]← ⟨H(Rd[i][0],Sd[i][0]), . . . , H(Rd[i][n],Sd[i][n])⟩ ∀i ∈
{1, . . . , |Sd|}

15: if MERKLE(Cd[i]).ROOT = Ri then
16: output (ID.d,out,RECONSTRUCTED,Sd[i][0],i)
17: else
18: output (ID.d,out,RECONSTRUCTED,⊥,i)
19: end if
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