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Abstract. As NIST is putting the final touches on the standardization
of PQC (Post Quantum Cryptography) public key algorithms, it is a
racing certainty that peskier cryptographic attacks undeterred by those
new PQC algorithms will surface. Such a trend in turn will prompt more
follow-up studies of attacks and countermeasures. As things stand, from
the attackers’ perspective, one viable form of attack that can be im-
plemented thereupon is the so-called “side-channel attack”. Two best-
known countermeasures heralded to be durable against side-channel at-
tacks are: “masking” and “hiding”. In that dichotomous picture, of par-
ticular note are successful single-trace attacks on some of the NIST’s
PQC then-candidates, which worked to the detriment of the former:
“masking”. In this paper, we cast an eye over the latter: “hiding”. Hid-
ing proves to be durable against both side-channel attacks and another
equally robust type of attacks called “fault injection attacks”, and hence
is deemed an auspicious countermeasure to be implemented. Mathemat-
ically, the hiding method is fundamentally based on random permuta-
tions. There has been a cornucopia of studies on generating random per-
mutations. However, those are not tied to implementation of the hiding
method. In this paper, we propose a reliable and e�cient verification of
permutation implementation, through employing Fisher–Yates’ shu✏ing
method. We introduce the concept of an n-th order permutation and
explain how it can be used to verify that our implementation is more
e�cient than its previous-gen counterparts for hiding countermeasures.

1 Introduction

1.1 Background

The advent of quantum computing is sweepingly changing the game of cryptog-
raphy. It is taken as gospel truth that quantum computing will soon evolve to



the level it undermines one’s confidence in the pre-existing—once thought-to-be
inveterate—encryption algorithms such as RSA and Elliptic curve cryptography
(ECC), which have been around since the dawn of the digital communication
age. Shor’s research outright favors such a prognosis: Shor brought to light the
vulnerability of RSA and ECC against quantum computing [1]. To cope with
such development, in 2016, the National Institute of Standards and Technology
(NIST) initiated the standardization of Post-Quantum Cryptography (PQC).
After multiple sequential rounds of competition protracted over 6+ years, four
groups of algorithm builders that built a key encapsulation mechanism (KEM)
and digital signature schemes ultimately secured a win, which was as recently
as August 2023 [19].

As the crypto niche’s own market force (practically NIST) laid down the law
to allow only a handful of algorithms to ride through the waves and outlive the
contenders, attacks against those “last algorithms standing” are naturally im-
minent. Among them, side-channel attacks are well-deserving of scrutiny: Side-
channel attacks do not target the algorithms directly, but rather go after sec-
ondary, collateral, information laid bare through reconnoitering. The best-known
countermeasures against side-channel attacks are “masking” and “hiding”. (We
give a brief précis of masking and hiding in section 2.) Most notably, the hiding
technique employs random permutations of independent unit operations, mak-
ing it challenging for an attacker to pinpoint the location and the timing of the
specific operation being performed.

One noticeable caveat of the NIST-vouchsafed PQC algorithms is the im-
mensity of their polynomial operation processing. Indeed, those algorithms fun-
damentally rely on the supposed impenetrable nature of some well-chosen lattice
problems, where polynomial operations serve as the main executing method. In
that setup, the number of unit data blocks grows in proportion to the order of the
polynomials processed during the cryptographic operations [2]. As an example
of comparative assessment, while AES operates on 16 blocks, PQC algorithms
process more than 32 blocks. Meanwhile, some other PQC algorithms that are
not based on lattice problems, such as the code-based cipher HQC [20], use vec-
tor and matrix operations with independently operated variables. The hiding
method is known to mesh well with all these algorithms.

Given that the NIST-vouchsafed PQC algorithms operate on a large num-
ber of unit blocks as compared to their predecessors, it is imperative to verify
the process how source code developers for software and hardware designers ar-
range these blocks when designing the hiding technique. That is crucial as these
methods have bearings on both the security and the e�ciency of the systems.

In light of the foregoing, in this paper we report the findings on the hiding
technique. What fundamentally underpins the hiding method is a mathematical
principle called random permutation: whenever a function is executed over a
portion of its domain, the order of the independent parts is randomized to the
greatest extent possible.



1.2 Motivation

Our research was provoked by the successful side-channel attacks against one
of the NIST’s then-PQC algorithm candidates using only a single trace [10, 11].
The well-executed cryptanalytic feat has revealed that the masking technique is
ine↵ective against side-channel attacks. That and the following evidence would
give a lift to the prevailing nature of the hiding technique: Fault injection–a well-
known kissing cousin of side-channel attacks–can be thwarted using the hiding
technique [17].

On a more mathematical side, we observed that the complexity of shu✏ing is
an overriding element that determines the security strength of countermeasures
against a certain type of attacks including single trace attacks. Therefore, veri-
fying the complexity of permutations that are generated on-the-spot is necessary
to ensure the security of the implementation.

Of particular interest is the fact that timing attacks (which make up a sub-
genre of side-channel attacks) targeting code-based algorithms including NIST’s
Round4 HQC have been identified [37]. That study instigated the development
of reference codes for key-generation algorithms that incorporate permutations
as a countermeasure. This demonstrably suggests that secure implementation of
permutations significantly a↵ects the security level of the algorithm’s implemen-
tation [20, 39].

We now got all the bases covered. The above narrative paves the way for the
following:

Fisher–Yates (F-Y) shu✏ing is a well-known algorithm for uniform random
permutation. It is widely used in the hiding countermeasures [27]. If meticu-
lously and dexterously implemented, the same algorithm can be a generator of
perfect permutations. Moreover, provided the main operations to be hidden are
in store, one is not compelled to reduce the level of complexity, especially in
a software environment, since a software code must be operated sequentially.
From it one can reasonably infer that F-Y shu✏ing must be a strongly favored
algorithm to implement for a hiding operation. There are at least three major
factors that influence the randomness of the implemented permutation–this ob-
servation is indeed the raison d’être of this paper: (i) Incorrect implementation.
(ii) Poor random source. (iii) Misapplication of random numbers (the chosen ran-
dom number being too small). Suppose that a certain implementation method
produces biased results. In that instance, it is pivotal to have a cut-and-dried
formula at our disposal that discerns whether the implementation was outright
flawed.

1.3 Related Works and Challenges

Pre-existing studies with regards to the validation of the uniformity of random
permutations are based on the methods as described in [28, 29]. Those studies
gear more towards the theoretical uniformity of the algorithm as opposed to bona
fide implementation. They do not address the randomness of permutations.



If the number of objects being shu✏ed is too large (in our example, N � 32,
say), then verifying its uniform distribution becomes extremely challenging due
to the fact that there are an exorbitant number of cases to examine (N ! to be
exact).

V. Charvillon et.al. [16] conducted an extensive study on the hiding counter-
measure. They proposed high-speed permutation generators and concluded that
the hiding countermeasure is not plagued by a small bias precipitated from their
permutation generation algorithm in the event of side-channel attacks. In short,
small biases do not boost the capability of side-channel attacks, thus they are
deemed negligible. They described how they assessed the bias of the permutation
generation, namely: they computed the mutual Euclidean distances between the
uniform random distributions for the values of N with 3  N  9. Due to the
brute force nature of this approach, verification when N � 10 could not be ex-
trapolated, at least within a manageable sample space size (and a manageable
amount of time).

R. Mitchell et. al. [15] suggested a generator of random permutations using
a GPU. They validated the randomness of its permutation generation with a
�
2 test, albeit with a caveat: they only tested it for N with N  5. When

N is somewhere around 32 (in which case we say N is in “normal size”), an
astronomical number of tests is required, which is virtually impossible to carry
out in a reasonable amount of time.

All the while, there is a consummate body of mathematical research on uni-
form and non-uniform permutations [32–36, 31]. (Note: some are as old as the
1960s and some are as recent as 2016–.) However, those are too theoretical to
be applied as a “distinguisher” (i.e., a criterion that demarcates the boundary
between the uniformity and the non-uniformity). Practical tools to easily verify
the uniformity of a small sample space are called for.

1.4 Our Contribution and the novelty of research

The gist of our study boils down to figuring out how best to conduct the experi-
ment. As a starter, we furnish one well-defined permutation, whose order is n�1,
say. With it, we conduct experiments on various F-Y shu✏ing implementation
methods, and discern which one of the methods works best. Then we use the
results to determine which implementation method is the most secure.

We prove that, an n-th order permutation is an (n�1)-th order permutation.
Furthermore, we prove that, if the chosen permutation has order N � 1, where
N coincides with the number of nodes in the permutation, then perfect random
security is achieved. Note that the two notions, the notion of an N -th order per-
mutation, and the widely accepted notion of an N -th order side-channel attack,
are in mutually redeeming relations.

The contributions of this paper are as follows:

– We furnish four di↵erent kinds of implementations of F-Y shu✏ing, and
pit them against each other: two standard implementations and two poorly
structured implementations.



– We propose a new, viable verification method for random permutations,
namely, the (N � 1)-th order permutation estimator. We also provide the
theoretical background and elucidate the reason why we chose this method.
We contend that this is a viable estimation tool for side-channel attack eval-
uators.

– We compare our verification method against the brute-force factorial com-
plexity estimation, and we substantiate our method’s e�cacy. We devise a
way to expeditiously reduce the number of cases in examining a large pool
of permutations through experimentation.

– We present experimental results that corroborate with the conclusion we
drew, namely, the following three factors influence (work for or against) the
uniformity of the F-Y shu✏ing operation: (i) Incorrect implementation. (ii)
Poor random source. (iii) Misapplication of random numbers. This result
should be deemed instrumental for developers of side-channel attack coun-
termeasures. To the best of our knowledge, what this paper expounds is the
first study ever to evaluate the real-world adverse impact of incorrect imple-
mentations of F-Y shu✏ing caused/aggravated by the aforementioned three
factors (i–iii).

2 Prerequisites

2.1 Side channel attack and hiding countermeasure

Paul Kocher was the first to propose the concept of side-channel analysis [4]: it
has since kept garnering a wealth of ideas and theories, and today it is in a greatly
ameliorated shape. The common-denominator philosophy of cryptographic at-
tacks banks on the premise that sensitive data are calculated (data-crunched)
or otherwise unwittingly exposed in a specific time-period. Attacks epitomizing
that philosophy resort to statistical analysis of multiple power and electromag-
netic (EM) traces [5, 6, 3]. They attempt to ferret out the key by analyzing a
single trace [7]. In recent years, single/multiple trace attacks have evolved into
many di↵erent forms.

Archetypal examples include side-channel collision attacks [8], soft analytical
side-channel attacks (SASCA) [12], and single trace attacks on PQC [10, 11].
A once-favored countermeasure against a multi trace analysis was the masking
technique [13]. The method generates a masking value in advance, and recali-
brates sensitive operations so as to prevent an unwitting exposure of the original
data. As masking distorts the original value, a restoration operation is required
to recover the masked value. Therefore, implementing the entire countermeasure
securely through the masking method is a rather challenging undertaking, since
it is a non-linear operation, and performance failure can occur at the configura-
tion level. Moreover, the masking technique is not an e↵ective countermeasure
for a single trace analysis, indeed, it has been brought to light that the masking
value itself can be discovered in attacks linked to a single trace analysis of the
masking [14].



And here comes the alternative with a revamped feature—the hiding counter-
measure. The hiding countermeasure involves shu✏ing of the order of operations
that are mutually independent so as to prevent a specific operation from being
caught sight of at a certain time [13, 16]. For instance, in the case of an AES
S-box, which consists of parallel and completely independent operations, 16 S-
boxes can be shu✏ed and calculated for each round. If shu✏ing is applied to
16 S-boxes independently, then the probability for a specific operation to be
executed at a given location is 1/16.

Depending on the noise characteristics of the device, the probability of 1/16 is
deemed su�cient as a countermeasure against a general power (or EM) analysis.
However, when defending against a more potent attack, such as a “second order
attack”, we need the location information for two S-boxes to be shu✏ed with
higher complexity in order to toughen the attack complexity. If the locations of
the two S-boxes are mutually independent, then the position of the operation
being executed is correctly pinned down with the probability of 1/(15⇥ 16).

Assuming that all of the 16 keys are found with a single trace attack, the
attack complexity being 15⇥ 16 is too small. That is why we must resort to the
notion of a so-called “perfect permutation”. If a perfect permutation is imple-
mented, then an attacker would need to perform brute-force attacks on 16! cases
(where 16! amounts to about 45 bits). Although 45 bits would not be character-
ized as a practically impossible level of attack complexity, once one incorporates
another element of fortification, namely, the practical di�culty of a single trace
analysis, one may safely conclude that the attack is already devilishly challeng-
ing.

2.2 Fault injection attack and hiding countermeasure

A fault injection attack, a kissing cousin of a side channel attack, is a form
of an active attack perpetrated by an attacker who deliberately introduces an
error so as to ferret out the key value they are searching [22]. By nature, one
anticipates countless di↵erent attack scenarios, and that makes counteracting
decidedly more challenging. For example, in a real-world safe-error attack [17,
18], an attacker cunningly identifies dummy operations, artfully alters the key
values in memory to 0 through fault injections, and that way successfully taps
into the non-zero values associated with the keys. There are also numerous newer
known attack variations that are proved to outwit the existing countermeasures.
All in all, fault injection is–at least in theory–extraordinarily potent.

Hiding operation proves to be thus-far the sole known, proved-to-be-e↵ective,
countermeasure against fault injection attacks. Indeed, the error variables un-
leashed by an attacker are tracked down and embargoed on the spot where the
fault was inserted.

2.3 Post Quantum Cryptography and hiding countermeasure

Historically, hiding countermeasures were not a popular choice for protection
of the public key encryption algorithms such as RSA and ECC, due to opera-



tional characteristics such as integer operation carryovers. Hiding countermea-
sures were found to be serviceable in symmetric key cryptography algorithms
such as AES. In addition, the hiding method was also employed as an auxiliary
measure for asymmetric key algorithms: indeed, the hiding method proved to
have the redeemable quality of bolstering masking countermeasures and making
up for the shortcomings of masking-only strategies [40].

Back to the NIST’s standardization process for Post-Quantum Cryptography
(PQC) (mentioned in I. Introduction): after the third-round selection, the first
cohort of competition winners was announced [19]. Mathematically speaking,
those NIST-vouchsafed algorithms are embodiments of lattice-, code-, and hash-
based problems. Those cryptographically pivotal mathematical problems involve
operations on polynomials, vectors, and matrices. Solving them requires the
so-called “parallel programming processing”. They involve a su�ciently large
number of “nodes”. Now, even with that sophisticated level of deterrence, they
can still be vulnerable if equipped only with masking countermeasures [21].

It is for this reason that hiding countermeasures are in demand as e↵ective
countermeasures for PQC algorithms. When the number of independent opera-
tions exceeds a certain threshold, convincing results as to the e↵ectiveness of the
hiding counternmeasures are naturally expected. That fact a↵ords us to do away
with the masking technique. While the e↵ectiveness also depends on the noise
level and the extent of power leakage, it is to all appearances viable to imple-
ment hiding countermeasures without incorporating masking countermeasures.
In a nutshell, in the era of PQC, one’s ability to select a perfect permutation—the
pivotal mathematical notion that underpins the hiding techniques—is likely a
game-changer for the security durability of an algorithm. The fact that the hid-
ing countermeasures are no longer relegated to a second place behind masking
techniques strongly supports that narrative.

2.4 Basic mathematical requisite for hiding countermeasure :

Permutation

In mathematics, the term “permutation” refers to a one-to-one map from a set
onto itself, or the same to say, a bijective self-map. When the term “permutation”
is used, often (though not always) it is understood that the referenced set is
assumed to be finite. For each positive integer N , ZN denotes the set of integers
j such that 0  j  N � 1: ZN = {0, 1, · · ·, N � 1}. Any (non-empty) finite set
is in one-to-one correspondence with ZN for some N .

Definition 1. (permutations) A permutation is a bijective self-map ZN �!

ZN .

Technically, this definition itself does neither involve integer arithmetic nor
orders (“”, etc.). Thus we may instead furnish any (abstract) finite set X, and
call a bijective self-map X �! X a permutation. However, we prefer ZN over
an abstract set X due to the nature of the ensuing discussion. Let S be the set
of all permutations ZN �! ZN : S = {f1, · · ·, fM}, where M is the cardinality of
the set S: M = |S|. It is well-known that M equals the factorial of N : M = N !.



Definition 2. (select functions) Let S = {f1, · · ·, fM} (M = N !) be as above.
Let T be a positive integer. A select function is a map � : ZT �! S.

Note that, in Definition 2, we do neither assume that � is injective nor sur-
jective. Also note that T is an arbitrary positive integer. In particular, we do
not preclude the case T < M(= N !) from consideration.

It is convenient to view an element of S as a shu✏ing of a deck of N total
number of cards (labeled 1, 2, ···, N). That in turn prompts us to view � : ZT �!

S as a finite sequence of shu✏ing. Namely, � takes each t 2 ZT = {0, 1, · · ·, T�1}
into some shu✏ing of a deck: t = 0 designates one shu✏ing of that deck; t = 1
designates another shu✏ing of the same deck (it can be the same shu✏ing as
the t = 0 case); t = 2 designates yet another shu✏ing of the same deck (it can
be the same shu✏ing as the t = 0 or the t = 1 case), and so forth. Viewing it
from another angle: when one shu✏es that deck T consecutive number of times,
that yields � : ZT �! S. With that mathematical scope in mind, let us agree
that AES is simply a select function whose argument is a key.

Towards our goal of making a cryptographic algorithm an unadulterated
secure commodity using only the hiding technique, it is crucial to engineer a
permutation generator that generates permutations that bear the satisfactory
level of complexity (“safe permutation”). To that end, we theoretically o↵er a
criterion for a safe permutation, and experimentally test that theory. We must
have a way of knowing whether each permutation designated by a select func-
tion � : ZT �! S forms a uniform distribution (= perfect random security in
Definition 3). The hurdle to overcome resides in the fact that, when the number
N grows super-exponentially (e.g., at the growth rate of the factorial sequence
{0!, 1!, 2!, · · ·, n!, · · ·}), determining whether a given permutation fj : ZN �! ZN

is a uniform distribution through testing a large case sample space is practi-
cally impossible. In this paper, we introduce the notion of a so-called “security
estimator”, and furthermore propose a viable way to verify the safeness (“com-
pleteness”) of the given permutations. Note that, when the security estimator
has order N � 1, it appears to be complex enough to defy any meaningful test-
ing, however, in reality, that level of complexity is negligible as compared to the
factorial complexity.

In this paper, we re-calibrate the Fisher-Yates shu✏ing [26, 27] as a select
function. We consummately perform all necessary calculations. We establish the
fact that, theoretically, Fisher-Yates shu✏ing can produce an arbitrary uniform
permutation on a given finite set.

3 New evaluation framework for permutations

In this section we introduce a new evaluation criterion for permutations. The
result is summarized in Theorem 1: if a select function � : ZT �! S, where |S| =
N !, has order N�1, then � possesses perfect random security. We substantiate
our claim that our verification method (su�cient condition) when (under what
circumstance) a given select function has order N �1 is applicable to decide



whether a given select function is a “completely uniform” permutation (= perfect
random security). To that end, we introduce several concepts.

3.1 Perfect random security and k-th order permutation

First, we introduce the concept “perfect random security” (Definition 3 below).
This definition encapsulates the idea that, some particularly “well-trimmed”
select function � selects all permutations with equal probability. In theory we can
refer to Definition 3 in deciding whether the select function achieves the perfect
random security. If it indeed does, then it means that the implementation is of
the most ideal form.

Definition 3. (perfect random security) A select function � : ZT ! S (where
S is the entire set of permutations of N indices, in particular, |S| = N !) is said
to have the perfect random security , if for an arbitrary f 2 S, the probability
P (�(m) = f) = 1/N !, where m 2 ZT is randomly chosen. Or, equivalently: A
select function � is said to have the perfect random security , if � is surjective
and moreover, #��1(f) (the number of elements in the fiber ��1(f)) does not
depend on the choice of f 2 S.

The caveat of Definition 3 is that it is not easy to decide whether a given
select function � has the perfect random security, since the task boils down to an
exact counting of the number of elements of a set. Exact counting is known to
be very hard when the set is large. In our case, a large sample space is involved.
Accordingly, below we propose an alternative concept with a redeeming feature,
called a k-th order select function:

Definition 4. (k-th order select function and k-th order permutations)
Let k and N be integers, 1  k  N�1. A select function � : ZT �! S

(where S is the entire set of permutations of N indices, in particular, |S| = N !)
is said to be of order k if, for an arbitrary pair of ordered k-tuples (a1, ···, ak),
(b1, ···, bk), where {a1, ···, ak} and {b1, ···, bk} are subsets of {1, · · · , N} such that
#{a1, · · · , ak} = k = #{b1, · · · , bk},//

P

⇣
(fm(ak) = bk)

���
k�1\

i=1

(fm(ai) = bi)
⌘
=

1

N�k+1

holds, where fm = �(m), and m 2 ZT is randomly chosen. Moreover, Im� =
{fm |m 2 ZT }, where � is of order k, is referred to as a k-th order set of
permutations, or simply, k-th order permutations.

Definition 4 encapsulates a mathematical idea that best illustrates the so-
called “hiding countermeasure against higher-order attacks”, a “tiered” version
of the well-known side channel attacks.

Below we make some purely mathematical observation pertinent to Definition
4, which also serves to demystify the convolutedness of the definition stemming
from the fact that it uses conditional probability. To those readers who have the
proclivity towards pure math, the following is just what the doctor ordered.



First, 1st order permutations are characterized by the equation

P
�
(fm(a1) = b1)

�
=

1

N
.

We may paraphrase it without resorting to the notion of probability is as follows:
A select function � : ZT �! SN (where SN denotes the entire set of permuta-
tions of N indices) is of order 1 precisely when each of the sets {fm(1)|m 2 ZT },
{fm(2)|m 2 ZT }, · · ·, {fm(N)|m 2 ZT } equals the entire {1, · · · , N}, and more-
over, #��1(f) (the number of elements in the fiber ��1(f)) does not depend on
the choice of f 2 Im�.

Next, 2nd order permutations are characterized by the equation

P
�
(fm(a2) = b2)|(fm(a1) = b1)

�
=

1

N�1
.

Paraphrasing of it without resorting to the notion of probability is as follows:
We first define an auxiliary object ⇢2 (a map). For a permutation f of N indices
{1, · · · , N} and for an ordered pair of indices (a, b) where a, b 2 {1, · · ·, N},
a 6= b, we have a new pair (f(a), f(b)), where f(a) and f(b) satisfy f(a), f(b) 2
{1, · · · , N}, and f(a) 6= f(b). This way we obtain a permutation (a bijection)
f
(2) over the set {1, · · ·, N} ⇥ {1, · · ·, N}\�, where � = {(a, a)|1  a  N}.

Lexicographical ordering of elements of {1, · · ·, N} ⇥ {1, · · ·, N}\� allows one
to view f

(2) as a permutation of N(N�1) indices. This way we arrive at a map
⇢2 : SN �! SN(N�1); ⇢2(f) = f

(2).

Fact 1 Let � : ZT �! SN be a select function, where SN is the entire set of
permutations with N indices. Let ⇢ : SN �! SN(N�1) be as above. Then � has
order 2 if and only if the composite ⇢2 � � : ZT �! SN(N�1) has order 1.

Likewise, the definition of k-th order permutations can be paraphrased with-
out resorting to the notion of probability, through f

(k); f (k)(a1, · · · , ak) = (f(a1), · · · , f(ak))
(where a1, · · ·, ak are distinct elements of {1, · · · , N}), and ⇢k : SN �! SN(N�1)· ··· ·(N�k+1);

⇢k(f) = f
(k).

Fact 2 Let � : ZT �! SN be a select function, where SN is the entire set of
permutations with N indices. Let ⇢ : SN �! SN(N�1) be as above. Then � has
order k if and only if the composite ⇢k � � : ZT �! SN(N�1)· ··· ·(N�k+1) has order
1.

Now back to order 2. In a 32-index permutation (i.e., N = 32), say, P (f(4) =
25|f(13) = 7) = 1/31. Likewise, if we replace 4, 25, 13 and 7 with a, b, c and
d, where a 6= c and b 6= d, then we still have P (f(a) = b|f(c) = d) = 1/31. If
a selection function � maintains perfect random security, then � trivially yields
second-order permutations. To construct countermeasures against k-th order side
channel attacks, we can simply use k-th order permutations (see Proposition 3).

A set of second-order permutations is a set of first-order permutations. More
generally, a set of k-th order permutations is a set of (k � 1)-th permutations.
We will prove this Theorem in the next section.



To better understand Definition 4, consider a relatively simple example us-
ing permutations of four indices. Let S4 denote the set of all permutations of
{1, 2, 3, 4}. Assume that the select function � maps onto the following subset of
S4:

{[1, 2, 3, 4], [2, 3, 4, 1], [3, 4, 1, 2], [4, 1, 2, 3]}.

Furthermore, assume that � maps onto that set “uniformly”, meaning that the
number of elements in the fiber ��1([i1, i2, i3, i4]) does not depend on the choice
of [i1, i2, i3, i4] in the set

{[1, 2, 3, 4], [2, 3, 4, 1], [3, 4, 1, 2], [4, 1, 2, 3]}.

Then � is first order. However, according to the definition, � is not second order.
Similarly, even when a given select function � yields second order permutations,
it may not yield third order permutations. This will be demonstrated in Ap-
pendix C using an eye-catching example, a 40-tuple of permutations with five
indices possessing some curious symmetry.

Fact 3 As a countermeasure against the k-th order power analysis attack with
k di↵erent points of interest which is shu✏ed, k-th order permutation is enough
to hide the operations.

Fact 3 demonstrates a bare minimum requirement for permutations to work as
a hiding countermeasure for Shu✏ing, as dependent on the order of the side
channel attacks. This fact is plausible (intuitively acceptable), and the reason is
as follows. If an attacker targets two distinct shu✏ed positions out of N indices,
the minimum probability that one attack point matches the two desired targets
is given by

1

N
⇥

1

N � 1
.

This corresponds to the 2nd order permutation in Definition 4. In the same
manner, the n-th order permutation can also be similarly extended.

3.2 Properties of a (k � 1)th order select function

In this section, we examine the relationship between the notion of (k � 1)th
order and the notion of k-th order. We also establish the fact that the notion of
(N � 1)-th order and the notion of perfect random security are equivalent.

Theorem 1. If a select function � : ZT �! S, where |S| = N !, has order
(N�1), then � has the perfect random security.

Proof. The proof boils down to the well-known mathematical fact that any per-
mutation of the set ZT = {0, · · · , N � 1} is a product of transpositions.

Theorem 1 is very useful. Indeed, in light of Definition 4, in order to verify
that a select function � : ZT �! S, where |S| = 32!, has a perfect random
security, it su�ces to check that the probability of fm(a) = b is 1/2, when



(x1, y1), · · ·, (x30, y30) is an arbitrarily chosen, fixed, sequence of 30 (out of 32)
mutually distinct inputs xj and 30 outputs yj = fm(xj) (j = 1, · · · , 30), and
when each of a and b is chosen randomly from the remainder: a 2 Z32\{xj |j =
1, · · · , 30}; b 2 Z32\{yj |j = 1, · · · , 30}.

Now let us move on to the next phase: we validate the experimental results
statistically, with the expectation of a 1/2 outcome.

Remark 1. If a select function � is of the k-th order for all k  N , then � is of
the (k � 1)th order.

Proof. The proof is in Appendix B.1.

From Remark 1, it follows that, if � supports a k-th order permutation, then it
also supports a (k�r)-th order permutation, for each r � 1. Therefore, verifying
that � suppports a 2nd order permutation is su�cient to protect against both
1st and 2nd order attacks.

3.3 The determination of security

By the definition of (N � 1)th order permutation, the validation of the property
is to check probability P (f(x) = y|�) = 1/2 with a condition �. Because there
are only two cases f(x) = y0 and f(x) = y1 with the condition �, we count
all cases satisfying f(x) = y0 and f(x) = y1. If the permutation is uniform, we
expect P (f(x) = y0|�) = 1/2. Considering this situation, it is Bernoulli trials
where X1, X2, ..., Xn are independent. Their sum is distributed according to a
binomial distribution(B) with n and 1

2

 =
nX

k=1

Xk ⇠ B(n,
1

2
)

If n is su�ciently large, B(n, 1
2 ) is given a normal distribution(N (µ,�2)) as

 ⇠ N (n/2, n/4)

For example, if n equals 3000 which is su�ciently large, the binomial dis-
tribution follows the normal distribution N (1500, 750), and we can determine
the distribution is biased or not, using a probability density function, where the
lower cumulative distribution P

�
x, 1500,

p
750
�
is computed as

Z x

�1

1
p
2⇡�

e
� 1

2 (
x�1500

� )2
d�.

If the number of cases satisfying f(x) = y0 is 1600 in 3000 trials, P
�
1600, 1500,

p
750
�
=

0.999869. Here, the case is under probability 1� 0.999869 = 0.000131.



Ratio comparison The probability 0.000131 is very low. However, we cannot
determine how it is biased, because there are so many cases to be estimated
in (N � 1)th order permutation criteria. Thus, we must check the number of
cases which is compared with the expected probability computed by lower cu-
mulative distribution, and the rate of full cases. For instance, if the number
of cases is n = 105, then the expected number(EN) of appearance cases is
0.000131 ⇥ n = 13.1. This means that we can anticipate roughly 13 cases to
exceed 1600 in 3000 trials under normal circumstances. Thus, we can compare
the ratio between observed number and expected normal number. We call it a
ratio comparison.

Chi Square(�2
) Test The probability variables following the normal distribu-

tion can be changed to Standard normal distribution z = (⇠ � µ)/�. From the
fact that each result is in distribution  ⇠ N (n/2, n/4), we can make the ran-
dom variables follow N (0, 1). If  1, 2, 3, ..., q are independent and standard
distribution variables, then the sum of their squares

Q =
qX

k=1

 k ⇠ �
2

Thus, p-value is able to be used for determine the probability of (N � 1)th
order permutation estimator. We use both p-values of Chi square distribution
and Ratio comparison.

3.4 Application for any length of permutations

We determine whether the sequence is biased or not by comparing the expected
numbers with the observed numbers. This method allows for the expansion of the
technique to accommodate permutations of any size through randomly selected
experiments. The initial definition of the experiment was based on brute-force
testing. However, by randomly selecting sample cases for experiments, we can
represent the entire space with errors and measure the distance between the
sample space and the original space.

4 Fisher-Yates Shu✏ing and variants in an embedded

system

The Fisher-Yates shu✏ing algorithm [27], is widely used as a hiding counter-
measure. This is because it is straightforward for developers to implement, and
it generates unbiased shu✏ing. The original method is described in Table 1.

However, the algorithm carries potential risks that could result in a biased
permutation, as explained below.



Input : An ordered Set {X0, X1, ..., Xt�1} where Xi 2 Zt,
Output : An ordered Set {Y0, Y1, ..., Yt�1} where Xi 2 Zt

1. For j from t to 2
1.1 k is a random number between 1 and j
1.2 Exchange Xk�1 and Xj�1

1.3 Yj�1  Xj�1

Table 1: (Algorithm) Simple description of Fisher-Yates(FY) Shu✏ing

– Incorrect Implementation : Even with a correct algorithm in place, de-
velopers may still make mistakes in their code. Errors can easily occur when
defining variables that determine the order or boundaries.

– Poor Random Source : To generate a random permutation, random num-
bers derived from a ’good’ random source are necessary.

– Application of Short Random Numbers : When selecting a random
integer within a given interval, there can be a bias in the selection. Short
random numbers often cause this issue.

We will present two normal structures associated with random numbers, as
well as two flawed structures, which serve as examples of incorrect implementa-
tion.

4.1 Normal structures

We mainly introduce two implementation for F-Y shu✏ing; Shu✏ing by reduc-
tion, and Shu✏ing by multiplication and division.

Shu✏ing by reduction The main point of di↵erence for implementation of
F-Y shu✏ing is choice of random number between [1, j) the step 1.1 in Table 1.
Because the value of variable j is changed in each step, reduction operation
is most widely used, see Algorithm in Table 2. Reduction is normally high-
redundancy operation.

Input : An ordered Set {X0, X1, ..., Xt�1} where Xi 2 Zt, and a source
integer limitation srt
Output : An ordered Set {Y0, Y1, ..., Yt�1} where Yi 2 Zt

1. For j from t to 2
1.1 Generate a random integer r 2 Zsrt

1.2 k = r mod j (We expect k is a random integer, between 0 and j � 1)
1.3 Exchange Xk and Xj�1

1.4 Yj�1  Xj�1

Table 2: (Algorithm) Shu✏ing by reduction



Shu✏ing by Multiplication and Division Here is another method for choos-
ing a number in certain boundary as the Algorithm in Table 3. We select a true
number in r  [0, 1), and multiply the number and a integer j. Then, the integer
part of j ⇥ r is in 0 to j � 1. If one can have trusted random number generator
for floating point with 0 to 1, this algorithm generate a perfect permutation.
Practically, we need to make a floating point in 0 to 1 with divide, such as gen-
erate a random number in 0 to u, and divide u. As big as size of u, the number
is generated uniformly. However, the redundancy of division operation is still
problem.

Input : An ordered Set {X0, X1, ..., Xt�1} where Xi 2 Zt,
Output : An ordered Set {Y0, Y1, ..., Yt�1} where Yi 2 Zt

1. For j from t to 2
1.1 Generate random number r, uniformly distributed between 0 to 1 (1

cannot be selected).
1.2 k  bj ⇥ rc+ 1 (We expect k is a random integer, between 1 and j)
1.3 Exchange Xk�1 and Xj�1

1.4 Yj�1  Xj�1

Table 3: (Algorithm) Shu✏ing by random floating point

The Algorithm in Table 4 gives faster algorithm that is only switching multi-
plication and division. We can choose rfn as 2l then, division operation can be
replaced by shift. It can be much faster than division and Shu✏ing by reduction.

Input : An ordered Set {X0, X1, ..., Xt�1} where Xi 2 Zt, and a refiner
integer rfn
Output : An ordered Set {Y0, Y1, ..., Yt�1} where Yi 2 Zt

1. For j from t to 2
1.1 Generate a random integer r 2 Zrfn

1.1 temp r ⇥ j
1.2 k  btemp/rfnc (We expect k is a random integer, between 0 and

j � 1, the operation / can be replaced by shift where rfn is power of 2)
1.3 Exchange Xk and Xj�1

1.4 Yj�1  Xj�1

Table 4: (Algorithm) Shu✏ing by Multiplication and Division

4.2 Bad structures

In this section, we will introduce two well-known biased select functions for
permutation: the Naive method and Sattolo’s algorithm.



NAIVE method The Naive method is implemented due to its superior speed
compared to Fisher-Yates shu✏ing. The algorithm is delineated in Table 5. The
primary di↵erence between that and Fisher-Yates lies in the selection of num-
bers within a fixed boundary. If t is 2l, this can be coded using bit-wise ‘And’
operation. Proving this algorithm as biased or unbiased is challenging, so it’s
often used based on trust or the impression of randomness.

Input : An ordered Set {X0, X1, ..., Xt�1} where Xi 2 Zt,
Output : An ordered Set {Y0, Y1, ..., Yt�1} where Yi 2 Zt

1. For j from t to 2
1.1 k is a random number between 1 and t
1.2 Exchange Xk�1 and Xj�1

1.3 Yj�1  Xj�1

Table 5: (Algorithm) NAIVE method

Sattolo’s Algorithm Sattolo’s algorithm is a simple variant of the Fisher-Yates
shu✏ing method that produces cyclic permutations of (N�1)! instead ofN !. This
can be achieved by introducing a single index mistake during implementation,
see Table 6. The uniformity of this algorithm has also been proven for (N �
1)! cases [29]. The advantage of this algorithm is that the result is a cyclic
permutation. Although it is not necessary to use this algorithm for side-channel
attack countermeasures, we introduce it as a case of failed implementation and
present the experimental result in Section 6.

Input : An ordered Set {X0, X1, ..., Xt�1} where Xi 2 Zt,
Output : An ordered Set {Y0, Y1, ..., Yt�1} where Yi 2 Zt

1. For j from t to 2
1.1 k is a random number between 1 and j � 1
1.2 Exchange Xk�1 and Xj�1

1.3 Yj�1  Xj�1

Table 6: (Algorithm) Sattolo’s algorithm

5 Security Analysis for real world environments

5.1 The experiment with Arbitrary sequences

While we are able to verify perfect permutation using the (N � 1)th order per-
mutation criteria, we cannot manipulate each result to collect sequences under
certain conditions. To verify arbitrarily generated permutations, we modify the



(N � 1)th order permutation to a ”Rough” definition. Proposition 1 aids in
creating this new definition to experiment with random sequences.

Proposition 1. A probability P (A|B1) = P (A|B2) = ... = P (A|Bn) = k and
(Bi \Bj) = � where i 6= j then P (A|

Sn
i=1 Bi) = k.

Proof. The proof is in Appendix A.

By the Proposition 1, we can define Approximate (N�1)th order permutation
below,

Definition 5. A select function � is said to possess the Approximate (N �1)th
order permutation property if, for a randomly selected t such that �(t) = fm,
for all m 2 ZN ! and distinct x, y, aij , bij 2 ZN where x 6= aij and y 6= bij , the
following condition holds:

P

0

@fm(x) = y

���
(N�2)![

j=1

N�2\

i=1

{fm(aij) = bij}

1

A =
1

2

Additionally, it must satisfy the condition that for all x, y 2 ZN :

P (fm(x) = y) 6= 0

where, for k 6= l, we have akj 6= alj and bkj 6= blj

For instance, in the (N � 1)th order permutation definition for a 4-indices
permutation, we have P (f(2) = 1|f(0) = 2, f(1) = 3) = 1/2. If we extend
the Approximate (N � 1)th order permutation, it becomes P (f(2) = 1|f(a1) =
b1, f(a2) = b2) = 1/2, where a 2 A, b 2 B,A = 0, 1, B = 2, 3. According to
Proposition 1, if a select function � provides the (N �1)th order permutation, it
also provides the Approximate (N � 1)th order permutation. However, if � has
the Approximate (N � 1)th order permutation, it doesn’t necessarily guarantee
the (N � 1)th order permutation.

Therefore, we can infer that if the select function does not have the Approx-
imate (N � 1)th order permutation, it lacks perfect random security.

5.2 Error and limitation

The error probability between the Approximate (N�1)th order permutation and
perfect random permutation can be computed by evaluating the probability that
makes the reverse statement of Proposition 1 true. Specifically, if the probability
P (A|

SM
i=1 Bi) = k and (Bi \Bj) = � where i 6= j, then P (A|B1) = P (A|B2) =

... = P (A|BM ) = k.
Setting P (A|B1) = p1, P (A|B1) = p2, ..., P (A|BM ) = pM ,

we have P (A|
SM

i=1 Bi) = (p1P (B1) + p2P (B2) + ... + pMP (BM ))/(P (B1) +

P (B2) + ... + P (BM )) = k. We can express this equation as
PM

i=1 piP (Bi) =



k ⇥
PM

i=1 P (Bi). If � has (N � 1)th order permutation case p1 = p2 = ... = pM

equals to k. Hence, the error probability e is P (
PM

i=1 piP (Bi) = k⇥
PM

i=1 P (Bi))
and there must exist at least one pi 6= k.

Intuitively, the value of the error probability is extremely small due to the
large number of variables involved. For (N �1)th order permutation, M = (N �

2)!, and the computation involving the combination of each variable
PM

i=1 piP (Bi)

must equal k ⇥
PM

i=1 P (Bi).
If the number of variables in the equation decreases, the error probability

would increase. Therefore, to minimize error values, we must verify whether the
algorithm (or select function �) generates all possible permutations, regardless
of potential bias.

If one intentionally generates certain sequences, the complexity distance
between sequences verified by the Approximate (N � 1)th order permutation
and perfect random security is substantial. However, unintentionally biased se-
quences, generated for randomness, are well-verified by the Approximate esti-
mator. As a toy example of a permutation which is an Approximate (N � 1)th
order permutation but not (N � 1)th order, refer to Figure 1. Assuming that 4!
cases are uniformly distributed initially, each case has an equal probability of oc-
currence 1/24. We set the first case (1,2,3,4) to be biased with ↵1 6= 1/24, while
the others remain uniformly distributed. Then, given that the permutation is an
Approximate (N �1)th order, ↵1+↵2 = ↵7+↵8, and ↵1+↵2+↵7+↵8 = 4/24.
Thus, ↵1 + ↵2 is 2/24 and ↵2 is also determined. ↵1 influences 6 values with a
single transposition from (1,2,3,4), for example (1,2,4,3) that is transposed by
(3,4). In this manner, the 6 values determined by ↵1 can a↵ect the other 6 values
via related equations such as ↵1 + ↵3 = ↵22 + ↵24 in Figure 1. As a result, the
probabilities of each case depend on other cases. Despite the many variables,
the biased shape appears quite systematic. The final solution of this example for
each probability is classified into only two values ↵1 and ↵2. In this case, the set
of even permutation (A4) is an exceptional case of Approximate (N �1)th order
permutation but not perfect random permutation. However, it is extremely hard
that a set of permutations which is generated by an arbitrary algorithm becomes
An.

There are two primary non-uniform permutation models: the biased model
and the constrained model [31]. The biased model refers to an algorithm that
aims for uniformity but manifests a biased form. The constrained bias model,
on the other hand, shows a biased pattern in a specific shape. Therefore, the
case of an Approximate (N � 1)th order permutation, which is not (N � 1)th
order, typically represents the constrained model. Conversely, the Fisher-Yates
shu✏ing algorithm generates a perfect random permutation, so we can anticipate
verification with the approximate estimator.

5.3 Time and Space for analysis

The time and space complexity for the analysis method are outlined in Table 9. T
is the number of samples for each test. We compare this with brute force sampling
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Fig. 1: A progress to become for an Constrained model of Approximate (N�1)th
order permutation; from (N � 1)th order permutation where N = 4.

Input : RN(Random string, given length and properties), select function �
// Collecting Phase, Collect M = (N !⇥ T ) permutations by �
1. i from 0 to M � 1

1.1 si = �(RNi) // RNi is i� th segment in RN .
// 2. Analysis Phase
2. i from 0 to M � 1

2.1 Get numbers for each case from the permutation si
// There are N ! cases, update the count.
// Analysis Phase - Get Statistics and final result
3. i from 0 to N !

3.1 Get ⇢i // normalized values of each case
3.2 SUM = SUM + ⇢i // Analysis Phase 2 - Getting final result

4. return p-values of Chi-Square(�2) from SUM

Table 7: Pseudo code of brute-force analysis
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Input : RN(Random string, given length and properties), select function �
// Collecting Phase, Collect M = T ⇥NN � 2⇥NN � 2 permutations by �
1. i from 0 to M � 1

1.1 si = �(RNi) // RNi is i� th segment in RN .
// 2. Classify Phase
2. i from 0 to M � 1

2.1 Getting numbers for each location from the permutation si
// There are NN � 2 locations, update the count.
// Analysis Phase 1 - Getting Statistics
3. i from 0 to NN � 2⇥NN � 2

3.1 Get Function values(pi) by Probability density of each binomial distribution.
// Analysis Phase 2 - Getting final result
4. return ratio values(for ratio comparison) and p-values by Chi-Square(�2) distri-
bution.

Table 8: Pseudo code of Approximate (N � 1)th order analysis

Table 9: Time and Space for the permutation analysis
Brute force analysis Approximate (N � 1)th order

Time for Collecting Samples O(T ⇥N !) O(T ⇥N(N � 1)/2)
Space for Collecting Samples O(T ⇥N !) O(T ⇥N(N � 1)/2)
Space for Analysis O(T ⇥N !) O(T ⇥N2(N � 1)2/4)
Time for Analysis O(T ⇥N !) O(T ⇥N2(N � 1)2/4)

and the �2 test for uniform distribution with collected permutations, as seen in
Algorithm Table 7. In brute-force sampling, T ⇥N ! samples are required for one
significant test. Practically, we use the Approximate (N �1)th order estimate in
Table 8, which requiresO(T⇥(N(N�1))/2) time for analysis and sampling. This
might seem like it’s calculated based on the number of two selections N(N�1)/2
of inputs and outputs. However, each permutation is reusable for each input. If
N is 32, then the time and space complexity is 496 ⇥ T . In our experimental
result, we generate 107 samples, so T equals 107/496 = 21, 161, which represents
the number of samples for each test. However, the complexity of analysis is
O(T⇥N2(N�1)2/4), because we want to obtain all results about possible inputs
and outputs. The collection phase and the classification phase can be merged
into a single phase, so no extra space for collected permutations is required.

Figure 2 illustrates the increase in space and time for the analysis on a log2
scale. The y-axis represents the bit-wise complexity of the permutation, which
shows how the speed of time and space for the brute-force approach increases
in relation to N . It is impossible to perform brute force analysis when N is
exceedingly large. Also, the approximate estimator is practically unfeasible when
N > 50, although this depends on the environment.

Table 10 displays the actual time and space required for the analysis of each
method, based on an Intel(R) Core(TM) i5-8500 CPU @ 3.00GHz. The results
can vary with di↵erent implementation or improvements in the permutation



Table 10: Actual Time and Space for the permutation analysis
N Brute force anal-

ysis
Approximate
(N � 1)th order

Actual Time N = 8 241 Sec. 0.1 Sec.
for collecting Samples N = 32 527 Years 3 Sec.

N = 128 7.3205 Years 48 Sec.
Actual Space N = 8 24GB 2187KB
for collecting Samples N = 32 2.430TB 151MB
(Can be omitted) N = 128 5.7211TB 9.6GB
Actual Space for N = 8 252KB 3.1KB
Analysis N = 32 9.525TB 961KB

N = 128 1.4207TB 252MB
Actual Time for N = 8 40 Sec. 15 Sec.
Analysis N = 32 8.324 Years 1.3 Hours

N = 128 1.2205 Years 15.2 Days

algorithms. As a result, brute force analysis is practically unfeasible in the real
world. While our method also requires a substantial amount of time and sizable
space when N is 128, it can still analyze a reduced number of cases.

5.4 Reduced cases for Large scale permutations

Another advantage of our estimator is that even if only some of the generated
permutations are tested, the results similar to those of a complete test can be
obtained. This characteristic can be utilized e↵ectively to verify large permuta-
tions. For instance, if we verify the permutation of N = 128, the analysis time
is (128 ⇥ 127)2/4 = 66, 064, 384. However, as all test cases independently fol-
low the standard normal distribution, similar trend results can be obtained by
experimenting with only a subset of them. Therefore, even if N = 128, it is fea-
sible to select and test an appropriately-sized set of input and output from the
66, 064, 384 test cases. A comparison of the overall test results with the reduced
test case will be presented in the experimental results.

6 Experimental Result

6.1 Experimental Result - F-Y shu✏ing variants

We choose N = 32 as the input message size for a single trace attack on CRYS-
TALS Kyber. We conduct experiments based on the Approximate (N � 1)th
order permutation with the following steps:

– Collect a large number of arbitrary random sequences from the target algo-
rithm and random inputs. In our experiments, we generate 107 permutations.

– Classify the sequences based on NN � 2 input conditions and NN � 2 out-
put conditions, equivalent to N2 ⇥ N2 cases. In our experiments where
N = 32, the total number of cases for verification is 246016.



– Determine the quality of outputs using the security determination method
explained in section 3.3.

• Classify each case by the probability ↵, as outlined in Table 11. The
number of cases where P (x � X) > ↵, Here, X ⇠ N (µ,�2) and ↵ is the
probability criteria as shown in Table 11.

• Compare the expected number(EN) of cases with the observed numbers
(ON). The comparison result is expressed as the log scale of the ratio
between observed numbers(ON) and expected numbers(EN), denoted
as log2(ON/EN).

Index(x-axis for Fig-
ure 3b,4b,5, and 6)

↵ Expected
Number(EN) of
cases, N = 32,
↵⇥ 246016

1 0.55 221415
2 0.60 196813
3 0.70 147610
4 0.80 98406
5 0.90 49203
6 0.95 24601
7 0.99 (=1� 10�2) 4920.34
8 1� 10�3 492.034
9 1� 10�4 49.20
10 1� 10�5 4.92034
11 1� 10�6 0.49203
12 1� 10�7 0.04920
13 1� 10�8 0.004920
14 1� 10�9 0.000492
15 1� 10�10 0.000049
16 1� 10�11 0.000005

Table 11: The value of confidence level(The x-axis of each Figures)

As discussed in Section 4, there are three types of error cases in permuta-
tion generation. To test these possibilities, we conducted experiments using the
following classifications:

Firstly, to evaluate the e↵ect of the random source on the implementation,
we utilized two di↵erent random functions. As an example of a non-random
source, we used the built-in rand() function from Microsoft Visual C’s standard
library [30]. This function uses a technique known as a linear congruential gener-
ator with a period of 216, which is an example of a random source unsuitable for
cryptographic purposes. For a well-implemented random source, we simulated
a random number generator using AES. We conducted a loop with a fixed key,
using the output value from the initial input value as the next input value.



Secondly, we investigated the length of the random number used in the al-
gorithms. We could experiment with bit selection from 5 bits for shu✏ing 32
positions. However, a bias would obviously appear for 5 bits, and since imple-
menters gain little performance benefit from using less than 1 byte, we applied
a minimum of 8 bits and a maximum of 15 bits.

Thirdly, we examined the impact of incorrect implementation. For this, we
implemented and tested the NAIVE and Sattolo methods, as described in Sec-
tion 4.2. To isolate the results due to faulty implementation, we used 16 bits and
AES (which is 1 bit larger than the maximum bit).

Analysis of the each graph(Ratio Comparison) The x-axis represents the
value of the probability density level, as shown in Table 11. In the result of
246016 cases, since each case follows a normal distribution, we can compute the
expected number of cases for ↵ as ↵ ⇥ 246016. The y-axis is a log scale of the
ratio between observed numbers (ON) and expected numbers (EN), denoted as
Log2(ON/EN).

If � exhibits an Approximate (N � 1)th order permutation, the expected
number (EN) will be very close to the observed number (ON), implying that
(ON)/(EN) ⇡ 1. Therefore, if � has perfect random security, the values on the
y-axis for each line should be close to 0. Conversely, if the values on the y-axis
for each line are high, this indicates bias. The value on the y-axis reveals the
degree to which the permutation deviates from perfect randomness.

Figure 3a presents the (N � 2)th order permutation evaluation from 8 bits
to 15 bits, with di↵erent colors and symbols representing the standard library
rand() source and Fisher-Yates shu✏ing by reduction, as described in the algo-
rithm in Table 2. Despite the y-axis being expressed on a log scale, the results
show slight improvement from 8 bits to 15 bits. A value of 10(= 35� 25) repre-
sents a 210 di↵erence.

Figure 4a displays the results with an AES-based RNG and shu✏ing by
reduction. The results suggest that 11 bits of random number are su�cient to
obtain random permutations if the random source is reliable.

Figure 4a and Figure 4b display results using the standard library rand() and
an AES-based RNG, respectively, with the shu✏ing implementation employing
the Multiplication and Division method, as outlined in Algorithm Table 4. The
results are quite similar to those obtained through shu✏ing by reduction. In-
terestingly, the Multiplication and Division method yields better results than
shu✏ing by reduction when using a subpar random source.

This can be directly compared in Figure 5, which depicts two examples of
poor structures, Ssatolo and NAIVE, with a 16-bit RNG source. Despite utilizing
an AES-based RNG and 16-bit randomness, these results are worse than the 15-
bit outcomes of standard F-Y shu✏ing, regardless of the implementation. The
comparison between the MD shu✏ing and reduction methods in Figure 5, at
x-axis 16 (the case of ↵ = 1� (1/1011)), shows results of approximately 17 and
24. We can therefore conclude that MD shu✏ing is about 27 times better with
the Approximate (N � 1)th order permutation criterion.
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Fig. 3: (a) F-Y shu✏ing with Standard library RNG and Reduction and (b) F-Y
shu✏ing with AES RNG and Reduction
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Fig. 4: (a) F-Y shu✏ing with Standard library RNG and multiplication-division
and (b) F-Y shu✏ing with AES RNG and multiplication-division
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Fig. 5: NAIVE 16 bits, Ssatolo 16 bits and Fisher-Yates variants 15bits; y-axis
is ratio of (ON/EN) and x-axis is the confidence level given by Table 11. Having
a high value implies having a high bias (a bad outcome).



In terms of the implementation of F-Y shu✏ing, the MD algorithm is not only
significantly faster (when N = 2r) than reduction, but also generates greater
randomness. Thus, we strongly recommend using the MD algorithm for F-Y
shu✏ing, particularly when dealing with an unreliable random source.

Analysis by p-value of Chi Square(�2
) Table 12 presents the results of

the Chi-Square (�2) test from 8 bits to 15 bits with F-Y reduction and the
Multiplication-Division method. Each number can be interpreted as the error
probability when asserting that the distribution is biased. In other words, a
value closer to 1 indicates a more uniform distribution, while a value closer to 0
points to a biased distribution.

Curiously, in some cases, the �2 test identifies distributions as uniform even
when the graph analysis suggests bias. Both analyses occur within the Approxi-
mate (N �1)th order estimator, so users can verify using both methods. The �2

test’s blind spot is that it may not detect a single, extremely anomalous case,
the significance of which depends on how statistical test results are interpreted.
Conversely, the strength of graph analysis lies in its ability to capture the occur-
rence of a single normal case and analyze the probability. Therefore, these two
methods can be used in a complementary manner.

Reduction M-D
RNG
Bits

rand() AES rand() AES

8 < 10�5 < 10�5 < 10�5 < 10�5

9 < 10�5 < 10�5 < 10�5 < 10�5

10 < 10�5 < 10�5 < 10�5 < 10�5

11 < 10�5 < 10�5 < 10�5 < 10�5

12 < 10�5 < 10�5 < 10�5 < 10�5

13 < 10�5 < 10�5 1.00000 0.00062
14 < 10�5 0.03863 1.00000 0.27722
15 < 10�5 0.99856 1.00000 0.58224

Table 12: 1�(p-value) of Chi-square(�2) test by di↵erent random sources, two
F-Y implementations, and input random bits of Approximate (N � 1)th order
estimation. (underline number shows that 1�(p-value) is under 0.05)

6.2 Comparison between brute-force and Approximate (N � 1)th

order analysis

To verify the reliability of the Routh (N � 1)th order permutation estimator,
we compared its results with a brute-force test of all permutations with a small
number of inputs and outputs; specifically, 6, 7, and 8. We used 108 permutations
with the Multiplication and Division method with an AES-based RNG, varying



Brute-force test Approximate (N � 1)th estimation
RNG Bits 6 7 8 6 7 8
24 0.97071 0.78157 0.99129 0.58029 0.99470 0.59607
23 0.60195 0.85327 0.22004 0.76510 0.96337 0.93582
22 0.89910 0.24739 0.86581 0.97857 0.58073 0.54206
21 0.18829 0.40800 0.52338 0.05288 0.00082 0.03122
20 0.35210 0.52689 0.39091 0.62381 0.78894 0.16322
19 0.96127 0.17897 0.65415 0.97312 0.75729 0.01795
18 0.24515 0.86401 0.86514 0.00010 0.99973 0.34465
17 0.03038 0.36051 0.89479 0.37356 0.11754 0.68689
16 0.45803 0.37862 0.82553 0.83978 0.24456 0.44144
15 0.14034 0.53689 0.63005 0.02683 0.19706 0.40542
14 0.04169 0.86262 0.05209 0.35372 0.99926 0.00194
13 0.01777 0.00799 0.45568 < 10�5 0.00001 0.00414
12 0.01102 0.21629 0.31543 < 10�5 < 10�5 < 10�5

11 < 10�5 < 10�5 0.00018 < 10�5 < 10�5 < 10�5

10 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5

9 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5

8 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5

7 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5

6 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5

5 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5

4 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5

Table 13: 1�(p-value) of Chi-square(�2) test by the number of inputs are 6, 7,
and 8 by Brute-force test and Approximate (N � 1)th order estimation.
(underline number shows that 1�(p-value) is under 0.05)



the input bits from 24 to 4. Given that we used 108 permutations, there are 6!,
7!, and 8! permutations for each respective case.

Table 13 displays both the total survey results and the results when using the
Approximate (N � 1)th order estimator. To accurately interpret these results,
recall Proposition 1: the Approximate test is highly e↵ective for detecting bias.
However, it may produce errors when concluding that a distribution is uniform.
Therefore, it’s important to watch for potential errors in the Brute-force test,
where it may conclude that a bias is present, and the Approximate test, where
it may identify the distribution as uniform. These discrepancies are rare and
only occur when the bias is analyzed at 95%(1 � p = 0.95). We observed one
such case at 13 bits(N = 6) and 17 bits(N = 6), respectively, though these
occurrences may vary depending on the p-value. On the other hand, additional
bias was confirmed in the Approximate test, which actually demonstrated better
results in the Approximate test. Ultimately, we concluded that the approximate
(N � 1)th order estimator is as reliable as brute-force analysis for interpreting
permutations.

6.3 Correctness of the test with reduced cases

When N is large, analysis can become challenging in the Approximate test due to
time and space constraints. However, the Approximate test has the advantage of
being able to reduce the test case size. To examine the e↵ect of these reductions,
we compared the full test results with those from tests reduced by factors of 2, 4,
8,...,256 where N = 32. We analyzed the results from 8 bits to 16 bits using F-Y
shu✏ing by Multiplication and Division with an AES-based RNG to observe
the di↵erences in analysis results when the test case was reduced, as shown in
Figure 6, from (a) to (h). The full test comprises 246016(= 322 ⇥ 312/4) cases.

The results show nearly identical trends from the test reduced by a factor
of 2 to the test reduced by a factor of 256. The full-size test has already been
presented in Figure 4b, and considering these results along with the overall aspect
of reduced case tests, we can see that the observation of bias decreases at 10,
11, and 12 bits. However, we can still make a su�cient judgment about the base
bit since the y-axis is on a log-2 scale. For instance, the 12 bits result in the test
reduced by a factor of 256 is 8 times greater than the expected number of cases.

The Chi-square(�2) test results for each reduced case test are provided in
Table 14. These results do not appear to di↵er substantially from the overall
size test results of the reduced size test. As discussed in the previous section,
the Chi-square(�2) test results do not account for a few outlier results, so we
present the overall significant statistical processing. While there may be minor
discrepancies between the full test results and those of the test reduced by a
factor of 256, it’s crucial to consider that the latter results were obtained by
reducing the time complexity by a factor of 256. This means that a task that
would have taken 256 days can now be completed in a day. Therefore, by col-
lecting permutations uniformly and running multiple tests on the reduced cases
to integrate the results, we can achieve meaningful outcomes.
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Fig. 6: Results by reduced cases of test, (a)�/2, (b)�/4, (c)�/8, (d)�/16, (e)�/32,
(f)�/64, (g)�/128, and (h)�/256 where � is the number of cases; N2(N � 1)2/4
; y-axis is ratio of (ON/EN) and x-axis is the confidence level given by Table 11.
Having a high value implies having a high bias (a bad outcome).



RNG
Bits

Full(�) �/2 �/4 �/8 �/16 �/32 �/64 �/128 �/256

8 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5

9 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5

10 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5

11 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5 < 10�5 0.00003
12 < 10�5 < 10�5 < 10�5 0.00005 0.00089 0.02429 0.00434 0.01253 0.07336
13 0.00062 0.00885 0.05110 0.43300 0.42282 0.22490 0.44989 0.31136 0.03796
14 0.27722 0.09129 0.39604 0.39302 0.43122 0.45117 0.60578 0.19814 0.52007
15 0.58224 0.29339 0.68964 0.63545 0.70696 0.61596 0.70832 0.63846 0.40753

Table 14: 1�(p-value) of Chi-square(�2) test by ‘reduced cases’ by Brute-force
test and Approximate (N � 1)th order estimation.
(underline number shows that 1�(p-value) is under 0.05)

6.4 Discussion of the Experimental result

According to Experimental result, we knows following main findings:

– The Approximate (N � 1)th order permutation estimator works e↵ectively.

Our findings from the Approximate Test are as follows:

– (Poor Random Source) A poor random source significantly impacts the
generation of random permutations with F-Y shu✏ing implementation.

– (Application of Short Random Numbers) We estimate that an ad-
ditional 6 bits are needed to achieve a uniform distribution. For example,
N = 32, which requires 5 bits domain space, we should use at least an 11-bit
random number for F-Y shu✏ing, whether we’re using division or reduction.

– (Incorrect Implementation) The NAIVE and Sattolo methods are not
good choices, even with su�cient length and true random numbers. Partic-
ularly, the NAIVE method, which is widely used due to its fast speed and
simple implementation, is not recommended due to its provable attack com-
plexity. Other normal F-Y implementations generate uniform permutations.

In conclusion, the incorrect implementations exemplified by the NAIVE and
Sattolo methods should not be chosen, even when using true random numbers.
Although the NAIVE method is popular for its speed and simplicity, it isn’t
advisable for use due to its vulnerability to attack.

7 Conclusion

In this research, we developed criteria for verifying perfect random permutation:
namely, (N � 1)th order estimation with normal distribution estimation. To es-
tablish this theory, we defined the n-th order permutation and a select function.



We also proved that (N � 1)th order permutation equals perfect random secu-
rity. Additionally, based on the facts derived during the criteria-setting process,
we found that higher order verification can replace lower order verification. For
example, by verifying the 2nd order permutation, the 1st order permutation is
naturally verified, saving verification time. The (N � 1)th order permutation
estimator is easy to implement, but it is not suitable for small sample sizes.
Therefore, we provided an approximate definition and showed experimental re-
sults for commonly used permutation algorithms. We illustrated how three fac-
tors—incorrect implementation, poor random sources, and short random number
applications—can lead to biased permutations. We demonstrated how each of
these factors significantly influences the final graph of Approximate (N�1)th or-
der permutations. Additionally, we provided simple guidelines for implementing
F-Y shu✏ing.

In the era of Post-Quantum Cryptography (PQC), we anticipate that hid-
ing countermeasures will be more widely utilized for PQC algorithms. Further
research into hiding countermeasures and permutations is needed.
For future work, we plan to conduct the following studies:

– Investigate the practical e↵ects of biased permutations on single and multi-
trace attacks.

– Develop a zero-redundancy, hardware-combined secure implementation for
PQC without masking.

– Create more e�cient and perfect estimators for random permutations.
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A The proof of Proposition

Here is the proof of the Proposition 1.

Proposition 1. Let the probability P (A|B1) = P (A|B2) = . . . = P (A|Bn) = k

and Bi \Bj = � for all i 6= j. Then, P (A|
Sn

i=1 Bi) = k.

Proof. By the definition of conditional probability, we have

P (A|

n[

i=1

Bi) =
P (A \

Sn
i=1 Bi)

P (
Sn

i=1 Bi)

Using the assumption that Bi \Bj = � for all i 6= j, this becomes

P (A|

n[

i=1

Bi) =

Sn
i=1 P (A \Bi)Pn

i=1 P (Bi)

Given that P (A \Bi) = k ⇥ P (Bi), this simplifies to

P (A|

n[

i=1

Bi) = k ⇥

Pn
i=1 P (Bi)Pn
i=1 P (Bi)

= k

B The proof of the Remark

B.1 The proof of Remark

Here is the proof of the Remark 1. We need a lemma to prove it.

Lemma 1. If (Bi \ Bj) = � for all i 6= j and P (
S

i Bi|A) = 1, then
P

i P (A \
Bi) = P (A).

Proof. Firstly, observe that (A \ Bi) \ (A \ Bj) = � for all i 6= j due to the
disjoint nature of Bi sets. Hence,

X

i

P (A \Bi) = P

 
[

i

(A \Bi)

!



Using the properties of conditional probability, we get

P (A \
[

i

Bi) = P (
[

i

Bi|A)⇥ P (A)

Given that P (
S

i Bi|A) = 1, it follows that

X

i

P (A \Bi) = P (A)

Remark 1. A select function � has the k-th order permutation for all k  N ,
then � provides (k � 1)th order permutation.

Proof. Assume that � provides a k-th order permutation. According to defini-
tion 4, given a randomly selected t such that �(t) = fm, the probability is

P (fm(x) = y|

k�1\

j=1

fm(aj) = bj) =
1

N � k + 1

for a specified m 2 ZN ! and for all x, y, ai, bi 2 ZN with x 6= ai and y 6= bi.
Our goal is to show that

P (fm(x) = y|

k�2\

i=1

fm(ai) = bi) =
1

N � k + 2

under analogous constraints for m,x, y, ai, bi.
For simplicity, denote

P (fm(x) = y|

k�1\

i=1

fm(ai) = bi) = P (A|C1C2 . . . Ck�1)

where A is any event satisfying the definition. Since � ensures a k-th order
permutation, the conditional probabilities equate as:

P (A|C1C2 . . . Ck�1) = P (C1|AC2 . . . Ck�1)

Expressing this in terms of intersections:

P (A \ C1 \ . . . \ Ck�1)

P (C1 \ . . . \ Ck�1)
=

P (A \ C1 \ . . . \ Ck�1)

P (A \ C2 \ . . . \ Ck�1)

From which, we deduce that

P (C1 \ . . . \ Ck�1) = P (A \ C2 \ . . . \ Ck�1)

implying that each term in the intersection P (
Tk�1

i=1 fm(ai) = bi) has equivalent
probability.



Considering k�2 fixed conditions and varying one, define � =
Tk�2

i=1 fm(ai) =
bi. In this case, fm(x0) can take on N �k+2 distinct values. Enumerating these
values by f(x0) = yel and noting their mutual exclusivity (by Lemma 1), we
have:

N�k+2X

l=1

P (fm(x0) = yel \ �) = P (�)

Given the equivalence of terms P (fm(x0) = ye \ �), we deduce:

P (fm(x0) = ye1 \ �) =
P (�)

N � k + 2

and hence,
P (fm(x0) = ye1 \ �)

P (�)
=

1

N � k + 2

Thus, we arrive at:

P (fm(x0) = yk�1 \
Tk�2

i=1 fm(ai) = bi)

P (
Tk�2

i=1 fm(ai) = bi)
=

1

N � k + 2

Consequently, by definition 4, � o↵ers a (k � 1)-th order permutation.

C An example for the second order permutation but not

the third order permutation with five-indices

{1,2,3,4,5}, {1,2,3,5,4}, {1,3,2,4,5}, {1,3,2,5,4},
{1,4,5,2,3}, {1,4,5,3,2}, {1,5,4,2,3}, {1,5,4,3,2},
{2,1,4,3,5}, {2,1,4,5,3}, {2,3,5,1,4}, {2,3,5,4,1},
{2,4,1,3,5}, {2,4,1,5,3}, {2,5,3,1,4}, {2,5,3,4,1},
{3,1,5,2,4}, {3,1,5,4,2}, {3,2,4,1,5}, {3,2,4,5,1},
{3,4,2,1,5}, {3,4,2,5,1}, {3,5,1,2,4}, {3,5,1,4,2},
{4,1,3,2,5}, {4,1,3,5,2}, {4,2,5,1,3}, {4,2,5,3,1},
{4,3,1,2,5}, {4,3,1,5,2}, {4,5,2,1,3}, {4,5,2,3,1},
{5,1,2,3,4}, {5,1,2,4,3}, {5,2,1,3,4}, {5,2,1,4,3},
{5,3,4,1,2}, {5,3,4,2,1}, {5,4,3,1,2}, {5,4,3,2,1}.


