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Abstract. Studies of linear codes in terms of finite projective geometries
form traditional direction in Coding Theory. Some applications of pro-
jective geometries are known. Noncommutative groups and semigroups
defined in terms of projective geometries can serve as platforms of pro-
tocols of Post Quantum Cryptography. We introduce an idea of public
keys of Multivariate Cryptography given by quadratic public rules gen-
erated via walks on incidence substructures of projective geometry with
vertexes from two largest Schubert cells. It differs from the known algo-
rithms of Code Based Cryptography and can be considered as the first
attempt to combine ideas of this area with the approach of Multivariate
Cryptography.
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1 Introduction

Finite projective geometries were traditionally used for the construction of al-
gorithms of Coding Theory [1]. Their applications to other areas of Information
Security have been published (see [2], [3] devoted to Network Coding). In par-
ticular, it was used in Cryptography ( see [4], where projective geometry were
used for authentication protocols). Nowadays finite geometries are widely used
as tools for secret sharing.

Additionally they can be used for the design of some stream ciphers of mul-
tivariate nature and protocols of Noncommutative Cryptography (see [5] and
further references). We introduce the first graph based multivariate public keys
with bijective encryption maps generated via special walks on incidence graph
of projective geometry.

The tender of US National Institute of Standartisation Technology (NIST,
2017) has started the standardisation process of possible Post-Quantum Public
keys aimed for the purposes to be (i) encryption tools, (ii) tools for digital
signatures (see [6], [7]).
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In July 2020 the Third Round of the competition started. In the category of
Multivariate Cryptography (MC) remaining candidates are easy to observe.

For the task (i) multivariate algorithm was not selected, single multivariate
candidate is ”The Rainbow Like Unbalanced Oil and Vinegar” (RUOV) digital
signature method. As you see RUOV algorithm is investigated as appropriate
instrument for the task (ii). During the Third Round some cryptanalytic in-
struments to deal with ROUV were found (see [8], [9]). That is why different
algorithms were chosen at the final stage. In July 2022 first four winners of NIST
standardisation competition were chosen. They all are lattice based algorithms.

Noteworthy that all multivariate NIST candidates were presented by multi-
variate rules of degree bounded by constant (2) of kind

x1 → f1(x1, x2, . . . , xn),

x2 → f2(x1, x2, . . . , xn),

. . . ,

xn → fn(x1, x2, . . . , xn).

We think that NIST outcomes motivate investigations of alternative options
in Multivariate Cryptography oriented on encryption tools for

(a) the work with the space of plaintexts Fq
n and its transformation G of

linear degree cn, c > 0 on the level of stream ciphers or public keys

(b) the usage of protocols of Noncommutative Cryptography with platforms
of multivariate transformations for the secure elaboration of multivariate map G
from End(Fq[x1, x2, . . . , xn]) of linear or superlinear degree and density bounded
below by function of kind cnr, where c > 0 and r > 1.

Some ideas in directions of (a) and (b) are presented in [10].

Alternatively we hope that classical multivariate public key approach (see
[11]), i. e. the usage of multivariate rules of degree 2 is still able to bring reliable
encryption algorithms.

In this paper we suggest new quadratic multivariate public rules defined in
terms of Projective Geometry. Recall that multivariate public rule G has to be
given in its standard form xi → gi(x1, x2, . . . , xn), where polynomials gi are
given via the lists of monomial terms in the lexicographical order.

2 Linear codes and Schubert cellular graphs

The missing definitions of graph-theoretical concepts which appear in this paper
can be found in [12]. All graphs we consider are simple graphs, i.e. undirected
without loops and multiple edges. Let V (G) and E(G) denote the set of vertixes
and the set of edges of G respectively. When it is convenient, we shall identify
G with the corresponding anti-reflexive binary relation on V (G), i.e. E(G) is a
subset of V (G) × V (G) and write vGu for the adjacent vertexes u and v (or
neighbours). We refer to |{x ∈ V (G)|xGv}| as degree of the vertex v.

The incidence structure is the set V with partition sets P (points) and L
(lines) and symmetric binary relation I such that the incidence of two elements
implies that one of them is a point and another one is a line. We shall identify I
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with the simple graph of this incidence relation or bipartite graph. The pair x,
y , x ∈ P , y ∈ L such that xIy is called a flag of incidence structure I.

Projective geometry n−1PG(Fq) of dimension n − 1 over the finite field Fq,
where q is a prime power, is a totality of proper subspaces of the vector space
V = Fq

n of nonzero dimension. This is the incidence system with type function
t(W ) = dim(W ), W ∈ n−1PG(Fq) and incidence relation I defined by the
condition W1IW2 if and only if one of these subspaces is embedded in another
one.

We can select standard base e1, e2, . . . , en of V and identify nPG(Fq) with the
totality of linear codes in Fq

n. The geometry nΓ (q) =n−1 PG(Fq) is a partition
of subsets nΓi(q) consisting of elements of selected type i, i = 1, 2, . . . , n− 1.

We assume that each element of V is presented in the chosen base as column
vector (x1, x2, . . . , xn). Let U stands for the unipotent subgroup of automor-
phism group PGLn(Fq) consisting of lower unitriangular matrices. Let us con-
sider orbits of the natural action of U on the projective geometry nPG(Fq). They
are known as large Schubert cells. Each of orbits on the set Γm(Fq) contains ex-
actly one symplectic element spanned by elements ei1 , ei2 , . . . , eim . So the num-
ber of orbits of (U, Γm(Fq)) equals to binomial coefficient C(n,m). Noteworthy
that the cardinality of nΓm(Fq) is expressed by Gaussian binomial coefficient.
Unipotent subgroup U is generated by elementary transvections xi,j(t), i < j,
t ∈ Fq. If we select i and j then elements of kind xi,j(t) form root subgroup Ui,j
corresponding to the positive root ei − ej of root system An.

Let J be a proper subset of {1, 2, . . . , n} = N , JS be Schubert cell containing
symplectic subspace WJ spanned by ej ∈ J , ∆(J) = {(i, j)|i ∈ J, j ∈ N − J, i <
j}. Then a subgroup U(J) generated by root subgroups Ui,j , (i, j) ∈ ∆(J) of
order qk, k = |∆(J)| acts regularly on JS. It means that we can identify JS and
U(J). Noteworthy that each Γm(Fq) has a unique largest Schubert cell of size
qm(n−m), it is JS for J = {n, n− 1, n− 2, . . . , n−m+ 1}. We denote this cell
as mLS(q).

We consider the bipartite graph m,kIn(Fq) of the restriction of I onto disjoint
union mLS(Fq) and kLS(Fq). It is bipartite graph with bidegrees qr and qs where
r =—∆({n, n− 1, n− 2, . . . , n−m+ 1})−∆({n, n− 1, n− 2, . . . , n−m+ 1})∩
∆({n, n− 1, n− 2, . . . , n− k+ 1})| and s = |∆({n, n− 1, n− 2, . . . , n− k+ 1})−
∆({n, n−1, n−2, . . . , n−m+ 1})∩∆({n, n−1, n−2, . . . , n−k+ 1})|. We refer
to m,kIn(q) as Cellular Schubert graph and denote it as CSm,kn (Fq) graph. In
particular case n = 2m+ 1, k = m these graphs are known as Double Schubert
graphs [13].

3 Schubert cellular graphs over commutative ring

Let K be a commutative ring. We consider group U = Un(K) of lower unitri-
angular n× n matrices with entries from K. Let ∆ be the totality of all entries
of (i, j), 1 ≤ i < j ≤ n, i. e. totality of positive roots from An. We identify
element M from Un(K) with the function f : ∆ → K such that f(i, j) = mi,j .
The restriction M |D of M on subset D of ∆ is simply f |D.
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For each proper nonempty subset J of {1, 2, . . . , n} we define U(J) as totality
of matricesM = (mi,j) from U such that (i, j) ∈ ∆−∆(J) implies thatmi,j = 0.

We define incidence system n−1PG(K) as totality of pairs (J,M), M ∈
U(J) with type function t(J,M) = |J and incidence relation given by conditions
(1J,1M)I(2J ,2M)

if and only if one of subsets 1J and 2J is embedded in another one and
(1M −2 M)|∆(1J)∩∆(2J) =1 M ×2 M −2 M ×1 M .
We refer to this incidence system as projective geometry scheme over com-

mutative ring K. If K = F is the field then n−1PG(F ) coincides with n − 1-
dimensional projective geometry over F , i. e. totality of proper nonzero subspaces
of the vector space Fn (see [14]).

The reader can find similar interpretations of Lie geometries and their Schu-
bert cells in [15], [16], their generalisations via pairs of type (irreducible root
system, commutative ring K) are presented in [17] and [5]. The concept of large
and small Schubert cell in the classical case of field is presented in [18], [19].

We introduce Γm(K), mLS(K) and graphs CSm,kn (Fq) for m = 1, 2, . . . , n−1
via simple substitution of K instead Fq. We refer to disjoint union of mLS(K),
m = 1, 2, . . . , n− 1 with the restriction of incidence relation I and type function
t on this set as Schubert geometry scheme of type An over commutative ring K.
We refer to elements of this incidence system as linear codes of Schubert type.
We can define Schubert schemes over other Dynkin-Coxeter diagrams.

4 Linguistic graphs of type (r, s, p) and symbolic
computations

Let K be a commutative ring. We refer to an incidence structure with a point set
P = Ps,m = Ks+m and a line set L = Lr,m = Kr+m as linguistic incidence struc-
ture Im(K) of type (r, s,m) if point x = (x1, x2, . . . , xs, xs+1, xs+2, . . . , xs+m) is
incident to line y = [y1, y2, . . . , yr, yr+1, yr+2, . . . , yr+m] if and only if the follow-
ing relations hold

a1xs+1 + b1yr+1 = f1(x1, x2, . . . , xs, y1, y2, . . . , yr)
a1xs+2 + b2yr+2 = f2(x1, x2, . . . , xs, xs+1, y1, y2, . . . , yn, yr+1)
. . .
amxs+m+bmyr+m = fm(x1, x2, . . . , xs, xs+1, . . . , xs+m, y1, y2, . . . , yr, yr+1, . . . , yr+m)
where aj and bj , j = 1, 2, . . . ,m are not zero divisors, and fj are multivari-

ate polynomials with coefficients from K. Brackets and parenthesis allow us to
distinguish points from lines (see [20], [5]).

The colour ρ(x) = ρ((x)) (ρ(y) = ρ([y])) of point (x) (line [y]) is defined as
projection of an element (x) (respectively [y]) from a free module on its initial s
(relatively r) coordinates. As it follows from the definition of linguistic incidence
structure for each vertex of incidence graph there exists the unique neighbour of
a chosen colour.

We refer to ρ((x)) = (x1, x2, . . . , xs) for (x) = (x1, x2, . . . , xs+m) and ρ([y])
= (y1, y2, . . . , yr) for [y] = [y1, y2, . . . , yr+m] as the colour of the point and
the colour of the line respectively.
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For each b ∈ Kr and p = (p1, p2, . . . , ps+m) there is the unique neighbour
of the point [l] = Nb(p) with the colour b. Similarly, for each c ∈ Ks and line l
= [l1, l2, . . . , lr+m] there is the unique neighbour of the line (p) = Nc([l]) with
the colour c. We refer to operator of taking the neighbour of vertex accordingly
chosen colour as neighbourhood operator.

On the sets P and L of points and lines of linguistic graph we define jump
operators 1J =1 Jb(p) = (b1, b2, . . . , bs, p1, p2, . . . , ps+m), where (b1, b2, . . . , bs) ∈
Ks and 2J =2 Jb([l]) = [b1, b2, . . . , br, l1, l2, . . . , lr+m], where (b1, b2, . . . , br) ∈
Kr. We refer to tuple (s, r,m) as type of the linguistic graph I.

We say that linguistic graph has degree d, d ≥ 2 if maximal degree of nonlin-
ear multivariate polynomials fi, i = 1, 2, . . . ,m is d. Noteworthy, that the path
v0, v1, . . . , vk in the linguistic graph Im is determined by starting vertex v0 and
colours of vertexes v1, v2, . . . , vk such that ρ(vi) 6= ρ(vi+2) for i = 0, 1, . . . , k−2.

We can consider graph Im(K) together with Ĩm = Im(K[y1, y2, . . . , yl]) de-
fined by the same polynomials fi, i = 1, 2, . . . ,m with coefficients from K.

Assume that l = m+ s. We can consider the path of length 2k with starting
point (y1, y2, . . . , ys, ys+1, ys+2, . . . , ym) and colours G1 = (1g1(y1, y2, . . . , ys),
1g2(y1, y2, . . . , ys), . . . ,

1gr(y1, y2, . . . , ys)),H1= (1h1(y1, y2, . . . , ys),
1h2(y1, y2,...,ys),

. . . , 1hs(y1, y2, . . . , ys)),G2 = (2g1(y1, y2, . . . , ys),
1g2(y1, y2, . . . , ys), . . . ,

2gr(y1, y2, . . . , ys)),
. . . , Gk = (kg1(y1, y2, . . . , ys),

kg2(y1, y2, . . . , ys), . . . ,
kgr(y1, y2, . . . , ys)), Hk =

(kh1(y1, y2, . . . , ys),
kh2(y1, y2, . . . , ys), . . . ,

khs(y1, y2, . . . , ys)).

The last vertex of this path will be a point (p) = (kh1(y1, y2, . . . , ys),
kh2(y1, y2, . . . , ys),

. . . , khs(y1, y2, . . . , ys), fm+1(y1, y2, . . . , ys, ys+1, ys+2, . . . , ys+m),

fm+2(y1, y2, . . . , ys, ys+1, ys+2, . . . , ys+m), . . . , fm+s(y1, y2, . . . , ys, ys+1, ys+2, . . . , ys+m)).

We define the passage transformation Pas(G1, G2, . . . , Gk, H1, H2, . . . ,Hk)
of Kr+s (space of points) with symbolic colours G1, H1 , . . . , Gk, Hk via mul-
tivariate rule

y1 →k h1(y1, y2, . . . , ys),

y2 →k h2(y1, y2, . . . , ys),

. . .

ys →k hs(y1, y2, . . . , ys),

ym+1 → fs+1(y1, y2, . . . , ym+s), (1)

. . .

ym+2 → fs+2(y1, y2, . . . , ym+s),

. . .

ym+s → fs+m(y1, y2, . . . , ym+s).

It is easy to see that this transformation is bijective if the map yi → hi(y1, y2, . . . , ys),
i = 1, 2, . . . , s is bijective on Ks. Defined above transformations form a semi-
group of multivariate transformation. Some basic properties of this semigroup
are discussed in [5].

Of course we can use lines instead of points and define another semigroup
formed by transformation of kind Pas(H1, H2, . . . ,Hk, G1, G2, . . . , Gk) acting
on the variety Km+r, where Hi are elements of K[y1, y2, . . . , yr]

s
and Gi ∈

K[y1, y2, . . . , yr]
r .
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We define degree of tuple (g1, g2, . . . , gd) ∈ K[x1, x2, , . . . , xl]
d as maximal

degree of polynomials gi, i = 1, 2, . . . , d. The following two statements are proven
in [5].

Theorem 1. Let K be a commutative ring. Cellular Schubert graph CSm,kn (K)
is a linguistic graph of degree 2 of type (r, s, p) where r = |∆({n, n − 1, n −
2, . . . , n − m + 1}) − ∆({n, n − 1, n − 2, . . . , n − m + 1}) ∩ ∆({n, n − 1, n −
2, . . . , n − k + 1})|, s = |∆({n, n − 1, n − 2, . . . , n − k + 1}) −∆({n, n − 1, n −
2, . . . , n−m+ 1})∩∆({n, n−1, n−2, . . . , n−k+ 1})| and p = |∆({n, n−1, n−
2, . . . , n−m+ 1}) ∩∆({n, n− 1, n− 2, . . . , n− k + 1})|.

Theorem 2. Let CSm,kn (K) be a Cellular Schubert as in the previous statement.
Then transformations Pas(G1, G2, . . . , Gj , H1.H2, . . . ,Hj), j ≥ 1 of the affine
space Ks+p such that deg(Hi) = 1, deg(Gi) = 1, i = 1, 2, . . . , j are quadratic
multivariate maps of this space into itself.

5 Public key based on Cellular Schubert graph

5.1 Construction of the map

As usually we have to describe procedures for the owner of the key (Alice) and
public user Bob. We start from the generating procedure for the multivariate
map.

Alice selects parameter n, constants α and β from open interval (0, 1) together
with constants a and b from Z.

She sets parameters m = [αn+a] and k = [βn+b], where parenthesis denote
the flow function. Alice takes finite field F = F2t , t ≥ 32.

Alice computes parameter s, r and p of the linguistic graph CSm,kn (K). She se-
lects the length of path j. Alice will use vector space F s+p as space of plaintexts.
Thus she selects square matrices A1, A2, . . . , Aj of dimensions s×s and matrices
B1, B2, . . . ,Bj of dimensions r×s. Alice takes rows of Ai(y1, y2, . . . , ys)

T as linear
forms ihl(y1, y2, . . . , yn) for i = 1, 2, . . . , j, l = 1, 2, . . . , s and Bi(y1, y2, . . . , ys)

T

to get linear forms igl(y1, y2, . . . , ys), i = 1.2, . . . , j, l = 1, 2, . . . , r. Thus she con-
structedHi andGi for the computation of the path in the graph CSm,kn (F [y1, y2, . . . , ys, ys+1, . . . , ys+p])
and transformation Pas(G1, G2, . . . , Gj , H1, H2, . . . ,Hj) of kind (1).

After creation of the point (p) = (jh1,
j h2, . . . ,

j hs, fs+1, fs+2, . . . , fs+m) of
the graph CSm,kn (F [y1, y2, . . . , ys, ys+1, . . . , ys+p]). Alice uses jump operator to
get 1Jb(p) with b formed in the following way.

She divide variables into two groups y1, y2, . . . , ys(1) and ys(1)+1, ys(1)+2,
. . . , ys where positive integer s(1) is a linear expression of kind [γ× s] + σ] with
0 ≤ γ < 1 and positive integer constant σ.

Alice takes map D of kind y1 → y1
2, y2 → y2

2, . . . , ys(1) → y2s(1) She takes

element T from AGLs(1)(Fq) and forms a conjugation Q = T−1DT of degree 2.
Let Qi = Q(yi) for i = 1, 2, . . . , s(1). She forms the map E given by the following
rule

y1 → Q1(y1, y2, . . . , ys(1)),
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y2 → Q2(y1, y2, . . . , ys(1)),
. . . ,
ys(1) → Qs(1)(y1, y2, . . . , ys(1)),
ys(1)+1 → as(1)+1,1y1+as(1)+1,2y2+· · ·+as(1)+1,s(1)ys(1)+b1,1ys(1)+1, b1,2ys(1)+2+

· · ·+ b1,s−s(1)ys,
ys(1)+2 → as(1)+2,1y1+as(1)+2,2y2+· · ·+as(1)+2,s(1)ys(1)+b2,1ys(1)+1, b2,2ys(1)+2+

· · ·+ b2,s−s(1)ys,
. . .
ys → as,1y1 + as,2y2 + · · · + as,s(1)ys(1) + bs−s(1),1ys(1)+1, bs−s(1),2ys(1)+2 +

· · ·+ bs−s(1),s−s(1)ys,
ys+1 → fs+1(y1, y2, . . . , ys+p,
ys+2 → fs+2(y1, y2, . . . , ys+p),
. . . ,
ys+p → fs+p(y1, y2, . . . , ys+p).
where ai,j are chosen as some linear forms in variables y1, y2, . . . , ys(1) and

matrix B = (bi,j) from GLs−s(1)(Fq) is selected as Singer cycle, i.e. element of

GLs−s(1)(Fq) of order qs−s(1) − 1.
Noteworthy that the restriction Q of E on variables y1, y2, . . . , ys(1) has order

m in the case of q = 2m and the degree of Q−1 is 2m−1. We assume that
parameter m is even.

The order of cyclic group generated by E′ which is the restriction of E on
variables y1, y2, . . . ys is multiple of m× 2s−s(1). Alice can use transformation of
kind C−1E′C, C ∈ GLs(Fq) instead of E′.

Alice selects two elements 1T and 2T of affine group AGLs+p(F ). and com-

putes the superposition Ẽ = 1TE2T in its standard form
y1 → f̃1(y1, y2, . . . , ys+p),

y2 → f̃1(y1, y2, . . . , ys+p),
. . .
ys+p → f̃1(y1, y2, . . . , ys+p).

She presents multivariate rule Ẽ to public users.
The inverse of Ẽ has polynomial degree ≥ 2m−1 Noteworthy that the choice

2T =1 T−1 insures that cyclic group generated by Ẽ has order multiple to
m× (2m − 1).

Thus public user (Bob) works with the space of plaintexts Fq
d, d = p+ s. He

is able to encrypt his plaintext in time O(d3).

5.2 Description of decryption procedure

Let us consider the private key procedure for the decryption. Assume that Alice
gets the ciphertext c = (c1, c2, . . . , cs+p).

Step 1. She treats it as column vector and computes T2
−1(c) = (q1, q2, . . . , qs, qs+1, . . . , qs+p).

Step 2. Alice uses affine transformation T and matrix B to solve the following
equations.

E′(z1, z2, . . . , zs) = c1,
E′(z1, z2, . . . , zs) = c2,
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. . . ,
E′(z1, z2, . . . , zs) = cs,
Assume that zi = di, i = 1, 2, . . . , s is the solution.
Step 3. She computes numerical colours Gt(d1, d2, . . . , ds) = (ta1,

t a2,
t ar) =t

a and Ht(d1, d2, . . . , ds) =t b for t = 1, 2, . . . , j.
Step 4.
Alice forms the point 1p of the graph CSm,kn (F ) in the form
(jb1,

j b2, . . . ,
j bs, qs+1, qs+2, . . . , qs+p).

Step 5. She computed the path in this graph with the starting point 1p and
consecutive colours ja, j−1b, j−1a, j−2b, j−2a, . . . , 1b, 1a, 0b = (d1, d2, . . . , ds).
Let 2p be the final vertex of the computed path with the colour 0b.

Step 6. Alice treats 2p as column vector and computes the plaintexts as
T1
−1(2p).

6 Illustrative example, complexity estimates and
implemented cases

We can define mentioned above Double Schubert Graph DS(k,K) over com-
mutative ring K simply as incidence structure defined as disjoint union of par-
tition sets PS = Kk(k+1) consisting of points which are tuples of kind x =
(x1, x2, . . . , xk, x1,1, x1,2, . . . , xk,k) and LS = Kk(k+1) consisting of lines which
are tuples of kind z = [z1, z2, . . . , zk, z11, z12, . . . , zk,k], where x is incident to z, if
and only if xi,j−zi,j = xizj for i = 1, 2, . . . , k and j = 1, 2, . . . , k. It is convenient
to assume that the indexes of kind i, j are placed for tuples of Kk(k+1) in the
lexicographical order.

REMARK.
The term Double Schubert Graph is chosen, because points and lines of DS(k, Fq)

can be treated as subspaces of Fq
2k+1 of dimensions k+1 and k, which form two

largest Schubert cells. Recall that the largest Schubert cell is the largest orbit of
group of unitriangular matrices acting on the variety of subsets of given dimen-
sion.

We define the colour of point x = (x1, x2, . . . , xk, x1,1, x1,2, . . . , xkk) from PS
as tuple (x1, x2, . . . , xk) and the colour of a line y = [z1, z2, . . . , zk, z11, z12, . . . , zk,k]
as the tuple (z1, z2, . . . , zk). For each vertex v of DS(k,K), there is the unique
neighbour y = Na(v) of a given colour a = (a1, a2, . . . , ak).

Let us consider the list of variables corresponding to coordinates of the
point. So we get y1, y2, . . . , yk , y1,1, y1,2, . . . , yk,k. We will use the ring
R = K[y1, y2, . . . , yk, y1,1, y1,2, . . . , yk,k].

Let D̃S(k,K) = DS(k,R). To define Pas = Pas(G1, G2, . . . , Gj , H1, H2, . . . ,Hj)
and construct the path with starting point (y1, y2, . . . , yk, y11, y12, . . . , yk,k) and
the symbolic coloursGi(y1, y2, . . . , yk) = ib1y1+ib2y2+· · ·+ibkyk,Hi(y1, y2, . . . , yk)
= ia1y1 +i a2y2 + · · ·+i akyk, ai ∈ K, bi ∈ K are used.

The complexity of computation of T1PasT2 is determined by the time of com-
putation of the path u, 1u, 2u, . . . , 2ju in the graph DS(k,R) with the starting
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point u= (T1(y1), T1(y2), . . . , T1(yk), T1(y11), T1(y1,2), . . . , T1(yk,k)) and colours
G1(u1, u2, . . . uk, u1,1, u1,2, . . . , uk,k), H1(u1, u2, . . . , uk, u1,1, u1,2, . . . , uk,k),

G2(u1, u2, . . . , uk, u1,1, u1,2, . . . , uk,k),H2(u1, u2, . . . , uk, u1,1, u1,2, . . . , uk,k), . . . ,
Gj(u1, u2, . . . , uk, u1,1, u1,2, . . . , uk,k), Hj(u1, u2, . . . , uk, u1,1, u1,2, . . . , uk,k).

The key parameter here is j. Let us assume that j = O(k). The computation
of selected coordinate of final point of the walk requires computation of GiHi

depending k + k2 for each parameter i and adding obtained quadratic polyno-
mials. Thus it takes 2k4j operations of addition and multiplication in K and
the complexity is O(k5). We have to execute this procedure k2 + k times. So the
complexity of public rule development is O(k7) or O(d3+1/2), where d = k2 + k
is the dimension of the space of plaintexts.

Public user encrypts in time O(d3).

Let us estimate the complexity of private encryption procedure of Alice.

She applies the inverse of T2 to the obtained ciphertext c and gets 1c =
T2
−1(c). It requires O(d2) elementary operations in the field K. Alice has to solve

the system of k equations to find the reimage of 1c of the map E′ with the usage of
known matrices T and B of size ≤ k×k. Getting the solution z = (d1, d2, . . . , dk)
of the system of equations requires less than O(d2) operations. It allows her to
compute colours gi = Gi(d1, d2, . . . , dk), hi = Hi(d1, d2, . . . , dk), i = 1, 2, . . . , j.

Alice changes the first coordinate of T2
−1(c) for hj and gets the point 2ju.

She computes the chain with the starting point 2ju and further consecutive
members with colours gj , hj−1, gj−1, hj2 ,. . . , g1, h1, z. Alice gets the final point
u of the chain with the colur z in time less than O(d2). Finally she need O(d2)
operation to compute the ciphertext as T1

−1. So the complexity of entire private
encryption procedure is O(d2)

As we mentioned above graph CSk,k2k+1(K) is isomorphic to Double Schubert
graph DS(k,K). It is easy to check that theoretical complexity of described

above public key algorithm based on graph CSk+α,k+β2k+α+β+1, where α and β are
nonnegative constants, is the same with the case of the DS(k,K). The dimension
of the space of plaintext is d = (k + α + β) × (α + 1). Cost of generation of
public rule is O(d3+1/2), complexity of private key decryption is O(d2), public
encryption costs O(d3).

We select this class of algorithms and K = F232 for the implementation.

7 Conclusions

Modern public key cryptography is based on the complexity of hard unsolved
problems. Especially important is the fundamental assumption of cryptography
that there are no polynomial-time algorithms for solving any NP -hard problem.
A consequence of this assumption is that there are cryptographically interest-
ing problems that are hard to solve in the quantum setting. Each of five core
directions of Post Quantum Cryptography is based on the complexity of some
NP -hard problem. The paper is connected with the following two directions.

Code-based cryptography.
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Cryptographic primitives based on the hardness of decoding random lin-
ear codes are historically the first post-quantum systems. Since the late 1970s
schemes like McEliece encryption have withstood a long series of cryptanalytic
attacks. In order to embed a trapdoor that enables decryption one converts a
structured code with good decryption capabilities like a Goppa code by linear
transformations into a ”random-looking” code C. An attacker now faces the
problem to either distinguish C from a purely random code using the properties
of the underlying structured code or to directly decode C. The last approach
leads to the best known generic attacks. Recent significant progress on decoding
binary linear codes C of dimension n leads to a new trend in code-based cryp-
tography based on the usage of linear codes that are different than Goppa code
initially proposed by McEliece (MDPC codes, Rank codes, quasi-cyclic codes,
and others). New approach promises to decrease the size of the public key.

Multivariate cryptography.

Multivariate cryptography is usually defined as the set of cryptographic
schemes using the computational hardness of the Polynomial System Solving
problem over a finite field. Solving systems of multivariate polynomial equations
is proven to be NP -hard or NP -complete. That is why these schemes are often
considered to be good candidates for post-quantum cryptography. The first mul-
tivariate scheme based on multivariate equations was introduced by Matsumoto
and Imai in 1988. Later J. Patarin found nice and efficient cryptanalytic solution
to break this scheme (see [11]). Two following schemes suggest the most robust
solutions. They are HFE (Hidden Field Equations) and UOV (Unbalanced Oil
and Vinegar), both developed by J. Patarin in the late 1990s. Special variants
of theses schemes have been submitted to the post-quantum standardization
process organized by NIST. During this process new cryptanalytic methods to
break these cryptosystems were found (see [7]). It motivates development of new
public keys of Multivariate Cryptography.

We suggest the usage of the bridge between Coding Theory and Multivariate
Cryptography based on the pairs of kind

(PGn(Fq), PGn(Fq[x1, x2, . . . , xm]) where PGn(Fq) is classical finite

n-dimensional projective geometry and PGn(Fq[x1, x2, . . . , xm]) is its natural
analog defined over multivariate ring Fq[x1, x2, . . . , xm]. For the construction
of public key a hidden problem to find a path between two vertexes of the
incidence graph of PGn(Fq[x1, x2, . . . , xm]) is used. We take these vertexes in
general position, i.e. they are of different type and belong to distinct largest
Schubert cells. In the case of finite field F2t the multivariate rule is given by the
system of quadratic equations. The choice of large t (like 32, 64) insures that
the inverse map has a very large polynomial degree.

The bijective public rule can be used as instrument of encryption as well as
for making digital signatures.

In case of digital signatures the usage of nonbijective modifications of Ẽ as
above is also possible.
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