
Dora: Processor Expressiveness is (Nearly) Free in

Zero-Knowledge for RAM Programs

Aarushi Goel
∗

Mathias Hall-Andersen
†

Gabriel Kaptchuk
‡

Abstract

Existing protocols for proving the correct execution of a RAM program in zero-knowledge are plagued by a

processor expressiveness tradeo� : supporting fewer instructions results in smaller processor circuits (which improves

performance), but may result in more program execution steps because non-supported instruction must be emulated

over multiple processor steps (which diminishes performance).

We present Dora, a concretely e�cient zero-knowledge protocol for RAM programs that sidesteps this tension

by making it (nearly) free to add additional instructions to the processor. �e computational and communication

complexity of proving each step of a computation in Dora, is constant in the number of supported instructions. Dora
is also highly generic and only assumes the existence of linearly homomorphic commitments. We implement Dora
and demonstrate that on commodity hardware it can prove the correct execution of a processor with thousands of

instruction, each of which has thousands of gates, in just a few milliseconds per step.

∗
NTT Research aarushi.goel@n�-research.com

†
Galois and Aarhus University ma@cs.au.dk

‡
Boston University and University of Maryland kaptchuk@bu.edu

1

mailto:aarushi.goel@ntt-research.com
mailto:ma@cs.au.dk
mailto:kaptchuk@bu.edu

Contents
1 Introduction 3

1.1 Our Contributions . 3

1.2 Related Work . 4

2 Technical Overview 5
2.1 Background: Template for RAM Zero-knowledge . 5

2.2 Zero-Knowledge Bag . 6

2.3 Constructing Dora using ZKBag . 7

3 Preliminaries 10
3.1 Linearly Homomorphic Commitments . 10

3.2 Commit-and-Prove Zero-Knowledge . 11

3.3 Relaxed R1CS . 12

3.4 Commit-and-Prove ZK for R1CS . 12

3.5 Multi-Set Equality Proofs . 13

4 Zero-Knowledge Bag 14
4.1 De�ning ZKBag . 14

4.2 Realizing ZKBag . 16

5 Memory Consistency using ZKBag 18

6 Verifying Processor Execution using ZKBag 20

7 Dora: Zero-Knowledge for RAM Programs 24

8 Implementation and Evaluation 26
8.1 Processor Instruction Checks . 26

8.2 Memory Checking . 27

A Comparison with Concurrent Work 36

2

1 Introduction
Zero-knowledge proofs and arguments [GMR85, GMW86] empower a prover to convince the veri�er that some public

statement x is a member of an NP language L without revealing anything beyond membership itself. A long line of

work has demonstrated feasibility of practically e�cient zero-knowledge systems [GS08, JKO13, GGPR13, BCC
+

16,

Gro16, KKW18, BBB
+

18, BCR
+

19, GWC19, Set20, HK20b, BMRS21, WYKW21, YSWW21, WYX
+

21, WYY
+

22,

BBMHS22, YHKD22]. As a result, zero-knowledge proofs are now being regularly integrated as a key compo-

nent of deployed systems [BCG
+

14, Zav20, se19]. However, most concretely e�cient and deployed zero-knowledge

proof systems are circuit zero-knowledge, i.e., they work with a circuit representation of the NP relation.

Zero-knowledge for RAMPrograms. For many applications of zero-knowledge, RAM zero-knowledge—i.e., proving

the correct execution of a public RAM program on some secret inputs—might be desirable. For instance, RAM program

representation of relations may be more e�cient than circuit representations (e.g., sorting) or the RAM program itself

might be of special interest (e.g., the prover might want to demonstrate knowledge of a so�ware exploit against the

RAM program [HK20b, GHAH
+

23]). One straight-forward approach to RAM zero-knowledge, eg. [HK20b], is to use

a circuit compiler to transform a source code representation of a RAM program directly into a circuit capturing the

same functionality, and then feed the resulting circuit to the prover of an existing circuit zero-knowledge system.

�is approach, however, introduces several ine�ciencies: the resulting circuit must be input-independent, all loops

must be unrolled for a �xed number of iterations, and all input-dependent conditional branches are part of the circuit

description
1
.

Instead, the state-of-the-art approach to RAM zero-knowledge [BCG
+

13, BCG
+

13, BCTV14b, BCTV14a, HK20a,

HYDK21, HK21, FKL
+

21, dOTV22] relies on modeling a processor and memory access as circuits. To demonstrate

that a step of the computation was executed correctly, the prover uses circuit zero-knowledge to prove that the

new program state is an outcome of a valid state transition from the previous program state, where the transitions

functions are determined by the processor’s instructions.

�e Expressiveness Tradeo�. Designing an optimized processor circuit to use within RAM zero-knowledge

requires grappling with an expressiveness tradeo�. It is natural to want a very small processor circuit with very

few instructions, as the prover must “pay” for all the instructions in the processor in each step of the proof—even

unused instructions. Indeed, minimizing processor size in this way has become standard practice; Ben-Sasson et

al. [BCG
+

13, BCTV14b] introduced a processor called TinyRAM with only 29 instructions for this purpose, and

recent works have created other processors with even fewer instructions [HK20a, HYDK21, FKL
+

21]. �is approach,

however, results in more steps of program execution—potentially negating the value of a smaller circuit—because

instructions not included in the processor must be emulated over multiple processor steps. Finding the right balance

between processor expressiveness (i.e., how many instructions it supports) and program length is a highly nuanced

engineering problem and will depend on the speci�c RAM program being considered.

In this work, we propose a new approach to RAM zero-knowledge that avoids the expressiveness tradeo�

altogether. Our work leverages the observation that the processor circuit has a very speci�c structure; namely,

that it is a disjunction of the supported instructions. A sequence of recent works on disjunctive zero-knowledge

[HK20b, BMRS21, GGHAK22b, KST22, KS22, GHAKS22, KS23] have shown that it is possible to design zero-knowledge

protocols with prover complexity proportional only to the size of the largest clause in the disjunction. Within the

context of RAM zero-knowledge, this would allow adding additional instructions to the processor circuit for free,

thereby increasing expressiveness. Although some of these works have studied applying these techniques to RAM

computations within the context of incrementally veri�able computation [KS22], adapting this intuition to achieve

concretely e�cient RAM zero-knowledge remains an open question.

1.1 Our Contributions
In our work, we present Dora, a concretely e�cient zero-knowledge proof system for RAM programs. Dora provides

a new way out of the expressiveness tradeo�, by supporting increased processor expressiveness for free (both in terms

of computation and communication). Concretely, Dora has the following desirable a�ributes:

1
As discussed below, some recent work has shown how to avoid the communication costs associated with branching.

3

• Communication Complexity: �e communication complexity of Dora is O(t+ `), where t is the number of steps of

the computation and ` is the number of instructions supported by the processor. Notably, the prover and veri�er

exchange a constant number elements to prove the correct execution of a step of the computation, no ma�er the

number of instructions supported by the processor. Dora is the �rst protocol to have this asymptotic behavior.

• Computation Complexity: �e computation complexity of Dora is also O(t+ `). Concretely, the veri�er sends just a

single �eld element in each step of the computation and the prover’s per-step computation depends only on the

size of the instruction being executed in that step. Dora is the �rst protocol to have this asymptotic behavior.

• Generic Approach and Fiat-Shamir Friendly: Our approach carefully combines new techniques with insights from

recent work on disjunctive zero-knowledge [HK20b, GGHAK22b, GHAKS22] and incrementally veri�able computa-

tion [KST22, KS22]. Dora only assumes the existence of a linearly homomorphic commitment scheme, the optimal

choice for which can be selected based on the deployment considerations. For example, if Dora was deployed in

an interactive se�ing, VOLE-based techniques [BCGI18, YWL
+

20, BMRS21, YSWW21, WYKW21, BBMH
+

21] can

be used, whereas Pedersen commitments [Ped92] can be substituted when non-interactivity is desirable. If the

commitment scheme is post-quantum secure, then Dora will also be post-quantum secure. Finally, the veri�er in

Dora is public coin, making it Fiat-Shamir friendly [FS87].

• Concretely E�cient: �e techniques introduced in Dora are concretely e�cient. We implement Dora and integrate

it into the swanky [Gal19] framework. �e marginal cost of proving an additional step of computation with Dora
is on the order of milliseconds. For example, if each instruction has 29 gates, then Dora, when run on commodity

hardware, can prove correct execution of a program at >400 steps per second—no ma�er how expressive the

processor instruction set.

To construct Dora, we introduce a new building block for construction zero-knowledge primitives called the

zero-knowledge bag (or ZKBag), which is the heart of our approach to both proving execution of the processor circuit

and ensuring that the prover accesses memory honestly. ZKBag is a construct that allows values to be inserted and

removed, and ensures that (1) a prover can only remove values inserted in the ZKBag and that have not previously

been removed, and (2) a veri�er cannot learn a correspondence between an item inserted into the ZKBag and the

removed value. �is ZKBag primitive may be valuable—both conceptually and concretely—in constructing other

protocols.

1.2 Related Work
Zero-knowledge for RAM programs emerged as a practical problem of interest following the work of Ben-Sasson et

al. [BCGT13, BCG
+

13, BCTV14b, BCTV14a], which demonstrated that it was feasible to prove the correct execution

of real RAM programs. As discussed more in Section 2.1, these works laid out the primary template from which we

work. Recent works have demonstrated how to get be�er concrete performance, including the work of Heath et

al. [HK20a, HYDK21, HK21], Franzese et al. [FKL
+

21] and Delpech de Saint Guilhem et al. [dOTV22]. �ese works

have demonstrated concrete e�ciency, but still must pay the cost of the full processor circuit in each step. Another

common approach to proving correct execution of RAM programs is to “unroll” the program into an explicit circuit

which can be prover with generic zero-knowledge techniques, eg. [CK18, YSWW21, WYKW21]. �e demonstration

that these approaches are e�cient and scalable has led to studying new applications of zero-knowledge for RAM

programs, eg. proofs that a program can be exploited [HK20b, GHAH
+

23, CHP
+

23].

In reducing the computation and communication complexity of executing one step of the processor to be

independent of the number of instructions, we leverage the disjunctive structure of processors. Zero-knowledge that

is optimized for disjunctions has been the focus of foundational work on zero-knowledge [CDS94, AOS02, GMY03]

and a signi�cant number of recent work [GK15, CPS
+

16, Kol18, HK20b, GGHAK22b, ACF21, BMRS21, GHAKS22].

Generally, these works exploit the observation that the prover knows which clause of the disjunction is satis�ed, and

therefore the work on the remaining clauses is “wasted.” �is means that protocols can be designed, eg. [HK20b,

GGHAK22b, ACF21, BMRS21], that have communication complexity the depends mostly on the size of the largest

clause in the disjunctions (possibly with logarithmic overhead). Our work can be seen as developing specialized

disjunctive zero-knowledge techniques that compose well with RAM access and have e�cient computation time.

4

Incrementally Veri�able Computation. Our works builds on two recent results on building incrementally

veri�able computation (IVC) from folding schemes, Nova [KST22] and SuperNova [KS22], which are a part of an

emerging literature on concretely e�cient IVC [BGH19, BCMS20, BDFG21, BCL
+

21]. In Nova [KST22] , Kothapalli

et al. show how to build a folding scheme for NP using a generalization of R1CS called Relaxed R1CS and show how it

can be used to build IVC. Kothapalli and Se�y then proposed SuperNova [KS22], an extension of Nova that supports

non-uniform IVC for “free,” and discuss how to apply their techniques to verifying processor computations.

Zero-knowledge proofs for RAM program execution can be seen as a version of non-uniform IVC where the

prover must also hide which instructions are applied to the state at each step of the computation, but also need

not be fully succinct in the number of steps. Zero-knowledge is not a goal of SuperNova, and thus we require new

techniques to leverage their approach into our se�ing. Additionally, SuperNova’s IVC reasons over the entire contents

of memory, which is not concretely e�cient; instead, we couple our zero-knowledge IVC with a separate protocol for

managing memory consistency. Kothapalli and Se�y have also recently introduced HyperNova [KS23], which aims

to develop new folding schemes for NP that can be used to build more e�cient IVC.

Other SNARKs. �ere are other prior works [WSR
+

15, ZGK
+

18, KPPS20, BBHR18, lib18, gen20, hod21, GPR21,

MAGABMMT23, DXNT23, CGG
+

23] that focus on building concretely e�cient zkSNARKs (zero-knowledge succinct

non-interactive arguments of knowledge), where the prover cost grows only with the size of the program execution.

For instance, Bu�et [WSR
+

15], vRAM [ZGK
+

18], Mirage [KPPS20], MUX-Marlin [DXNT23] and Sublonk [CGG
+

23]

that consider an “a la carte” cost pro�le for the provers where the prover cost for proving a step of computation grow

only with the size of the circuit representing the instruction invoked on that step, i.e. independent of the number

of branches. However, these schemes require a trusted common reference string setup and make use of expensive

public-key operations. Works building on zkSTARKs [BBHR18, lib18, gen20, hod21, GPR21, MAGABMMT23] use

a transparent (i.e. untrusted) setup and require the prover to only do work proportional to the execution trace.

However, they require making a non-black box use of cryptographic hash functions. Similarly, commit and prove

style SNARKs that [CFQ19, Lip16, CFH
+

15] that have similar prover computation times also make non-black box

use of cryptographic commitments. �erefore, while all of these schemes have sublinear proof sizes, their prover

computation times are signi�cantly worse than those resulting from known techniques for zero-knowledge with

non-sublinear sized proofs.

Concurrent Work. Two works, developed concurrently with our own, take aim at more e�cient zero-knowledge

random access memory [YH23] and proving statements with processor-like structures [YHH
+

23]. Our works provide

di�erent methods that arrive at similar concrete results. We include a best-e�ort comparison to these concurrent

works in Appendix A.

2 Technical Overview
We now give an overview of the key techniques we use to construct Dora. We �rst recall the basic template to

achieving zero-knowledge for RAM programs before proceeding to Dora itself.

2.1 Background: Template for RAM Zero-knowledge
As discussed earlier, while zero-knowledge has primarily been studied in the circuit model (i.e., where the relation

for the NP language is represented as a circuit over a �nite �eld), a signi�cant line of work has studied how to

achieve zero-knowledge for RAM programs [BCGT13, BCG
+

13, BCTV14b, HK20a, HYDK21, GHAH
+

23]. �e key

idea in these works is to bootstrap from circuit zero-knowledge to RAM zero-knowledge by representing the RAM

machine on which the program should be evaluated as an explicit circuit. �e prover can then use this circuit as a

state transition function, and show (in zero-knowledge) that repeatedly applying this circuit t times to some initial

inputs, results in a desired �nal processor state.

More concretely, the prover and veri�er represent the RAM machine using two components: (1) a processor circuit
Cproc, and (2) a memory checker circuit Cmem. Cproc takes as input, values fetched from memory and implements a

set of valid instructions I = {I1, . . . , I`}, one of which is evaluated over the inputs. For example, the Ii might add

5

values, test values for equality, or modify the processor state to a�ect control �ow etc. �e result of this evaluation

can then be stored back in memory.
2

�e memory checker circuit Cmem enforces that memory is treated consistently –

that is, when a value is read from a particular memory address, Cmem checks to make sure that the value corresponds

exactly to the last value wri�en to that memory address.

Because most approaches to instantiating zero-knowledge for RAM program relies on this bootstrapping approach,

the key determinant of e�ciency is the size of the circuits required to implement the functionality Cproc and Cmem.

• Current Approaches to Cproc. Prior work has emphasized the need for a small Cproc, at the expense of expres-

siveness. For example, Ben-Sasson et al. [BCG
+

13] describe a minimal Cproc called TinyRAM, which contains 27

instruction that can be represented in ≤ 972 gates.
3

�is is because the �nal circuit contains t copies of Cproc, and t
can be very large. �us, if a particular instruction Ii is very rarely used (in an average program), the prover and

veri�er still pay for that instruction in each step of the program execution. It may be more e�cient to instead

emulate Ii using a sequential series of other instructions, increasing the value of t. In practice, this emulation

approach is concretely e�cient – executing a RAM program on a TinyRAM only increases t by a multiplicative

factor of 2-6x compared to x86, which contains hundreds of instructions.

• Current Approaches to Cmem. �ere are two primary approaches to checking the consistency of memory accesses

discussed in prior works: (1) leverage an e�cient oblivious RAM (ORAM) construction, or (2) use a permutation
proof. In the former approach, the prover stores tuples of the form (address, value) within an ORAM (eg. [MRS17]),

which is either maintained by the veri�er (if the proof will be executed interactively) or represented in a non-black

box manner within Cmem. Since ORAM constructions hide access pa�erns and can guarantee consistency, the

veri�er can be con�dent that memory has been treated honestly without learning anything about the program

execution. �e other approach has the prover generate a memory trace of all reads and writes during program

execution. �e prover then permutes this trace to be sorted by address (tie-broken by timestamp), and Cmem needs

to only check that neighboring elements of the sorted trace are internally consistent. �is later approach has been

found to be more e�cient in practice, and is thus the primary approach used in prior work focused on concrete

e�ciency [FKL
+

21, dOTV22, GHAH
+

23].

2.2 Zero-Knowledge Bag
�e natural physical analogy of the zero-knowledge bag (ZKBag) is an opaque bag �lled with identical envelopes:

imagine the prover has an physical bag made of opaque material. Into this bag they can insert le�ers contained inside

identical envelopes. Later, the prover can reach into the bag and remove one of the envelopes. Because the bag’s

material is opaque and all of the objects are wrapped in identical-looking envelopes, an observer cannot tell when

the wrapped le�er was put into the bag, and which one has been retrieved. However, no le�er can be retrieved if

it was not previously inserted. To make these properties more explicit, a ZKBag provides the following (informal)

guarantees:

1. Unique Removal: Once an element has been retrieved from the ZKBag, it cannot be retrieved again (unless, of

course, it is re-inserted).

2. Ordered Binding: Every element that is retrieved from the bag is exactly one of the elements that was previously

inserted into the ZKBag.

3. Order Hiding: �e act of retrieving an element from the ZKBag reveals nothing about when that element was

inserted.

Clearly, in order to realize the order hiding property, elements cannot be inserted into the ZKBag in the clear, or else

a veri�er could trivially link insertions and retrievals based on the value itself. Instead, we have the prover wrap

the elements using commitments when inserting into ZKBag; when the veri�er wants to remove a value, it creates a

2
Hardware architectures also have local memory, i.e., registers and program counter, within the processor circuit. For the purposes of this

overview, we elide these low level details, but note that they can either be handled as state within the processor circuit or simply as a specially

named memory region.

3
For simplicity, we do not yet make a distinction between the number of gates needed to compute the instructions and the number of gates

needed to verify that a claimed evaluation is correct. In practice, we always mean the la�er.

6

new, fresh commitment to the value and convinces the veri�er that the value therein corresponds to a value currently

within the bag. �is process should also remove the commitment from the bag, so that it cannot be retrieved again.

Looking ahead, ZKBag provides the right combination between binding and pa�ern hiding required to construct

zero-knowledge for RAM programs. �e relationship between ZKBag and memory consistency should be clear:

writing to memory corresponds exactly to inserting a (address, value) tuple into a ZKBag, and reading from memory

corresponds exactly to retrieving a (address, value) tuple from a ZKBag. We will also use a ZKBag to hold the

instruction set I for the processor, and have the prover pick out one instruction to be evaluated in each processor

step (before reinserting it).

Constructing a ZKBag. It is clear to see that ZKBag is closely reminiscent of many existing cryptographic primitives.

If unique removal were not required, ZKBag could be realized directly with set membership proofs, a concretely e�cient

primitive that has been the subject of immense recent study (eg. [RST01, CCs08, BCF
+

21, GGHAK22a, CGT23]). To

achieve unique removal, it is clear that some kind of oblivious revocation is required, a technique that has been used

in multiple other contexts, eg. ZCash [MGGR13]. However, a set membership based approach will require that the

statement for each retrieval grows as the protocol continues.
4

Ideally, we want each insertion and retrieval to require

a constant amount of communication and computation, as these interfaces will be called many (ie. O(t)) times.

To achieve constant overhead, we batch the checks required for ordered binding and unique removal across all

insertions and retrievals, deferring the veri�cation until the end of the protocol. In more detail, the prover and veri�er

maintain two lists of commitments: a list of insertions I and a list of retrievals R. Each time the prover wants to

insert a value vi into the ZKBag, the veri�er provides a uniformly random tag tagi to the prover. �e prover forms

a hiding commitment comvi to vi: comvi = Com(vi) and the parties jointly form a public/non-hiding commitment
comtagi to tagi: comtagi = Com(tagi) with shared randomness. Both parties add (comtagi , comvi) to their respective

insertion list I . When retrieving a value vj from the ZKBag, the prover recalls the tag tagj generated during insertion,

creates the hiding commitment tuple (comtagj = Com(tagj), comvj = Com(vj)) using fresh randomness and both

parties add (comtagj , comvj) to the their retrieval listR.

When the protocol ends, the prover retrieves any remaining values from the bag (i.e., it empties the bag) and

gives a permutation proof demonstrating that there exists a permutation φ such that I = φ(R). It is easy to see

that Read-only access to the ZKBag can be accomplished by removing a tuple (comtag, comv) from the bag and

immediately re-inserting the same (non-rerandomized) value commitment with a freshly generated tag (ie. the tuple

(com′tag, comv)).

Intuitively, the use of hiding commitments provides the necessary order hiding property, and the tags provides both

the ordered binding and unique removal properties. Speci�cally, a prover who wanted to remove an item that has not

yet been inserted would need to predict the tag that the veri�er would generate for that value in the future. Similarly,

if an adversary removes the same value from the ZKBag twice, it must produce a second valid tag corresponding to

the value. If the prover re-uses the same tag twice, there will be a mismatch in the tags in I andR, and if it uses a

new tag, it must predict a tag the veri�er will generate in the future.

�is construction is highly e�cient. Each insertion and removal requires preparing and sending only two

commitments. �e batched check can be done with constant communication and linear computation using a Ne�-

style commit-and-prove style permutation proof [Nef01] (which we describe in Section 3.5).

2.3 Constructing Dora using ZKBag
In our work, we approach the problem of constructing e�cient zero-knowledge for RAM programs at the protocol
level, rather than trying to optimize the choice of circuits Cproc and Cmem.

Expressiveness Comes Free in Zero-Knowledge. �e result is Dora, a protocol for RAM zero-knowledge that

transcends the seemingly inherent tradeo� between processor expressiveness (i.e. |I|) and execution trace length (i.e.

4
We note that there is a recent line of work showing the set membership—and disjunctive zero-knowledge more generally—can be achieved

with very low overhead as the statement size grows. While it may be possible to construct ZKBag from these primitives, we instead pursue another

approach discussed below.

7

t) altogether, and instead shows that processor expressiveness can come (nearly) free5
—both in terms of computation

and communication.

As with prior a�empts, Dora can be decomposed into a memory component and a processor instruction handling

component, each of which we realize with ZKBag. Before describing the techniques that we use in Dora, we brie�y

recall our e�ciency goals for each component:

– E�ciency Goals for Memory Component: During each step of execution, the prover will fetch (1) the value stored at

the address indicated by the program counter, and (2) fetch a single value from memory and write a single value

to memory, as either (or both) might be necessary for the next instruction. We require that the computation and

communication complexity of each fetch and write must be constant.

– E�ciency Goals for Processor Instruction Component: During each step of execution, the prover will evaluate a

single instruction on the processor state, where the instruction is determined by the value fetched in (1) above.

We require that the communication and computation complexity of each step of execution is independent of the

number of instructions in the instruction set I .

We now discuss how to achieve both of our goals using ZKBag.

HandlingMemory inDora using ZKBag. As noted above, handling memory access with ZKBag is straightforward,

as ZKBag’s properties are virtually identical to those required for memory consistency. �e prover and the veri�er

begin by initializing the memory space by inserting public tuples (address, value) into ZKBag for every address in

the memory space, including the program code and the rest of the initial memory state (e.g. the initial stack and heap)

of the execution.

When proving a step of the computation, the prover interacts with the memory store three times
6
:

(1) �e prover begins by reading the next instruction from memory and loading it into the processor state. �is is

a read-only operation, which the prover achieves by removing and re-inserting the same value (i.e. the same

commitment).

(2) �e prover also reads a value from memory into the processor state in case the instruction that will be run in the

next instruction needs to read memory (e.g. for a LOAD instruction). Just as above, this read is read-only. Note that

the prover must always perform this read in every step of the computation in order to hide any witness-dependent

read pa�erns.

(3) Finally, the prover performs an update to one address in memory in case the instruction run in that step is a

STORE instruction. �is write instruction requires removing an element from the ZKBag and then rewriting to

the same address with a new value from the processor state.
7

If the instruction does not require performing a

write instruction, the prover can simply rewrite the initial value leaving memory functionally unchanged.

Soundness follows directly from the unique removal and ordered binding properties of the ZKBag (discussed above),

as these properties guarantee that the veri�er knows that each values read from memory must be “current.” Zero-

knowledge relies on the order hiding property to hide the memory addresses being manipulated.

Using this protocol, the total complexity of managing memory in Dora is only three tuple insertions and three

tuple removals per step of the computation, but this can be reduced because the prover does not need to resend the

same commitments multiple times.

Handling Processor Instructions in Dora using ZKBag. During each step of processor execution, the prover

needs to convince the veri�er that a processor state sti+1 is the result of applying one of the instructions in the

instruction set to the previous processor state sti, without revealing which instruction was applied. We begin by

giving a baseline approach for achieving our goal before proceeding to optimize the approach to improve concrete

performance.

5
In particular, we do not need to pay the cost of processor expressiveness at each step of the processor execution.

6
We assume that the processor here has a simple load store architecture and all instructions in the instruction set read and write at most a

single value. In more complex architectures (eg. architectures that support indirect loads) additional interactions with memory may be necessary.

Extending the protocol to support such instructions is trivial.

7
Ensuring that the read and write are to the same memory location can be easily ensured by reusing the address commitment retrieved during

the removal.

8

Baseline Approach. A straightforward approach would be to use a set membership proof; the prover could generate a

commitment to the executed instruction and then provide a proof that the contents of the commitment are a valid

instruction. �is commitment can then be added to the statement for another zero-knowledge proof that demonstrates

the transition from sti to sti+1. �is approach, while intuitive, has two primary downfalls:

(1) While there has been a tremendous amount of work on set membership proofs, state-of-the-art protocols have

a logarithmic size in the number of elements in the set and a linear computation complexity in the size of the

set [GGHAK22a, GGHAK22b]. While in practice it might be acceptable to tolerate the communication overhead,

linear computation complexity may be unreasonable for large instruction sets. Moreover, our aim in this work is

to achieve constant overhead—both in terms of communication and computation. While SNARKs might be a way

to achieve our goals for the veri�er, given SNARK’s succinctness and constant-time veri�cation, there is not an

obvious way to use this set membership approach to get constant overhead for the prover.

(2) Given a commitment to the step’s instruction I , the prover must then prove that sti+1 is the result of applying I to

sti. Doing this e�ciently is non-trivial, given that the statement of interest is in commi�ed form. A very natural

approach to would be to combine non-black box use of the commitment scheme and universal circuits (ie. prove

that I is in the commitment and that U(I, sti) = sti+1, where U is a universal circuit of the appropriate size), and

then prove the resulting statement using generic, circuit zero-knowledge. Unfortunately, both non-black box use

of cryptography and universal circuits tend to be highly ine�cient, making this approach una�ractive. It might be

possible to design very speci�c zero-knowledge proofs that naturally interoperate the chosen commitment scheme

to avoid the non-black box use of cryptography, but this approach would reduce the �exibility and modularity of

our construction.

As such, the seemingly natural approach to handling processor instruction in Dora appears to be unfruitful.

Instead, we investigate how ZKBag could be used to design a more e�cient approach. As already demonstrated with

memory management, ZKBag provides a highly e�cient (ie. constant overhead) way to obliviously select elements

from a set. As such, it seems natural to substitute the set-membership proof in the above template with ZKBag,

resolving problem (1). However, using ZKBag in this way does nothing to resolve problem (2). As such, we require a

slightly more nuanced approach to using ZKBag in order to achieve our result.

Combining ZKBag and Relaxed R1CS to Achieve Constant Overhead. Rather than store instructions in a ZKBag, we

build on an approach from prior works on IVCs [KST22, KS22] and store a set of accumulators in the ZKBag—one

accumulator for each instruction in the instruction set. Executing a step of the processor involves obliviously retrieving

the appropriate accumulator from the ZKBag and updating it. �e intuition behind this approach is to use these

accumulators to iteratively update NP statements at each step, such that the prover can simultaneously verify the �nal

accumulated set of |I| statements at the end of the protocol. �ese accumulators are carefully designed such that the

prover’s knowledge of a valid witness at the end of the protocol for each accumulated statement demonstrates that

each step was correctly executed. �e bene�t of this approach is that the computationally expensive zero-knowledge

proofs can be deferred until the end of the protocol, requiring only a single zero-knowledge proof for each instruction

rather than for each step. �is further improves the concrete complexity of Dora.

To instantiate these accumulators, we leverage Relaxed R1CS folding, an approach described by [KST22]. Relaxed

R1CS is a natural extension to standard R1CS such that there can be additional error terms. A typical R1CS relation is

constructed by matrices A,B,C and an instance
−→x is satis�ed if there exists a witness

−→w such that A · −→z ◦B · −→z =
C · −→z , where

−→z = −→w ‖−→x . A relaxed R1CS relation injects two additional error parameters, u ∈ F and
−→e ∈ Fm, and

is satis�ed if there exists a
−→z = −→x ‖−→w ‖u such that (A · −→z) ◦ (B · −→z) = u · (C · −→z) + −→e . �e power of relaxed

R1CS is that it permits folding: given a �xed relation A,B,C, and two instances (−→x 1, u1,
−→e 1) and (−→x 2, u2,

−→e 2), it

is possible to combine the two into a new instance (−→x , u,−→e) for the same relation A,B,C. Importantly, a prover

can only satisfy the new instance (−→x , u,−→e) if they had valid witnesses
−→w 1,
−→w 2 to the initial instances (except with

negligible probability). We defer the details of this folding procedure to Section 3.3.

Dora leverages this R1CS folding technique as follows: the prover and veri�er initialize a ZKBag and (publicly)

insert a relaxed R1CS instance (as de�ned by
−→e and

−→z) for each instruction into the ZKBag that will be used as an

accumulator. During each step of the computation, the prover retrieves the instance corresponding to the instruction

that will be executed and prepares a new instance for the current instruction using the commi�ed processor state

and the values retrieved from memory. �e prover then folds the state of the accumulator with the newly prepared

9

instance, locally updating the witness required to satisfy the combined instance. �e prover then inserts the combined

instance back into the ZKBag and is ready to continue to the next step. Once all the steps have been run, the prover

removes the instance for each instruction from the ZKBag and opens them to the veri�er. �e prover and veri�er then

engage in a generic zero-knowledge proof for the �nal relaxed R1CS instances, allowing the prover to demonstrate

that they have a witness that satis�es each. We note that there are several low-level details we have omi�ed in this

description for clarity (e.g., the �nal instances must be randomized to satisfy zero-knowledge).

Putting It All Together. Dora is realized by combining the techniques described above for memory management

and proving the correctness of instruction executions. In each step, the prover retrieves the appropriate values from

memory and adds them to the (commi�ed) processor state. �e prover then uses the processor state to construct a

relaxed R1CS instance that would prove correct execution of the instruction and folds it into the accumulator for the

instruction executed in that step. Finally, the prover updates a memory location to emulate a store instruction. Once

all of the steps have been completed, the prover opens all the accumulators and proves that it has a witness to each

one.

Dora is highly e�cient. Each step of the computation requires performing a small number of ZKBag operations,

each of which has constant overhead. Looking ahead, we benchmark Dora in Section 8 and show that even on massive

circuits (thousands of branches with thousands of gates each), proving each step of the RAM program takes only

milliseconds.

3 Preliminaries
In this section, we recall some prelimary de�nitions. In Section 3.1, we present a de�nition of linearly homomorphic

commitments. In Section 3.2, we recall the de�nition of a commit-and-prove zero-knowledge protocol. In Section 3.3,

we provide a formal overview of relaxed R1CS [KST22]. In Section 3.4, we recall a construction of commit-and-prove

ZK for R1CS (implicit in [KST22]). Finally, in Section 3.5 we recall the construction of Ne�-style [Nef01] multi-set

equality proofs.

Notation. Let t be the number of steps in the program trace, ` be the number of instructions in the processor circuit,

m be the number of addresses in memory.

3.1 Linearly Homomorphic Commitments
Our construction makes use of a standard linearly homomorphic commitment primitive, which we de�ne below. We

intentionally give a general enough de�nition of this primitive that can capture both interactive instantiations (eg.

VOLE-based [BMRS21]) and non-interactive instantiations (eg. Pedersen [Ped92]).

De�nition 1 (Linearly Homomorphic Commitments). Linearly homomorphic commitments comprise of a tuple of
four interactive protocols πLCom = (πLCom

Setup , π
LCom
Commit, π

LCom
Open , π

LCom
Comb) between a Sender Sen and receiver Rec and a PPT

algorithm EquivLCom de�ned as follows:

• ((pp, skey), (pp, rkey))← πLCom
Setup : �e setup protocol generates any needed public parameters pp, a sender key skey as

output for the sender and a receiver key rkey as output for the receiver.

• ((com, op), (com))← πLCom
Commit: �e commit protocol takes the value val to be commi�ed as input from the sender and

outputs a commitment com to both the sender and the receiver. It additionally outputs op to the sender.

• ((b), (val′))← πLCom
Open : Both the sender and receiver invoke the opening protocol using a commitment com as input.

�e sender additionally inputs a value val commi�ed inside this commitment and the associated opening information
op. �is protocol outputs a value val′ ∈ {val,⊥} to the receiver and a bit b ∈ {0, 1} to the sender indicating whether
or not val′ =?= val.

• ((com, op), (com)) ← πLCom
Comb : �e linear combination protocol takes (pp, skey, flin, com1, op1, com2, op2) as input

from the sender and (pp, rkey, flin, com1, , com2) as input from the receiver. It computes the function flin on com1 and
com2 and outputs the resulting new commitment com and its corresponding opening information op.

10

• op ← EquivLCom(pp, rkey, com, val): �e equivocation algorithm and outputs the new opening information op
corresponding to com and val.

We require that the commitment scheme satis�es hiding, in the standard way. For binding, we assume that the
commitment scheme has an extractor that can extract the val within a commitment. In addition to these standard properties,
we assume that the πLCom

Comb algorithm allows the sender and receiver to perform linear operations over commitments and
we assume that the receiver can always equivocate. Formally, these properties are de�ned as follows:

1. Hiding: Let ((pp, skey), (pp, rkey))← πLCom
Setup 〈(Sen(1λ),Rec(1λ)〉 be an honest execution of the setup protocol.

For any val1, val2 ∈ V , the view of Rec remains computationally indistinguishable in the following two executions:

πLCom
Commit〈Sen(pp, skey, val1),Rec(pp, rkey)〉

πLCom
Commit〈Sen(pp, skey, val2),Rec(pp, rkey)〉

2. Equivocation: Let ((pp, skey), (pp, rkey)) ← πLCom
Setup 〈(Sen(1λ),Rec(1λ)〉 be an honest execution of the setup

protocol. �e following holds ∀ val ∈ V and every honest execution of the commit protocol ((com, op), (com))←
πLCom
Commit〈Sen(pp, skey, val),Rec(pp, rkey)〉: if (val′, op′)← EquivLCom(pp, rkey, com), then for an honest sender

and receiver,

Pr[((1), (val′))← πLCom
Open 〈Sen(pp, skey, com, op′, val′),Rec(pp, rkey, com)〉] ≥ 1− neg(λ)

3. Linear Homorphism: Let ((pp, skey), (pp, rkey))← πLCom
Setup 〈(Sen(1λ),Rec(1λ)〉 be an honest execution of the

setup protocol. �e following holds for all val1, val2 ∈ V , every linear function flin : V × V → V and all honest ex-
ecutions of the commit protocol (∀ i ∈ [2]) ((comi, opi), (comi))← πLCom

Commit〈Sen(pp, skey, vali),Rec(pp, rkey)〉:
if

((com, op), (com))← πLCom
Comb 〈Sen(pp, skey, flin, com1, op1, com2, op2),Rec(pp, rkey, flin, com1, , com2)〉 ,

then for an honest sender and receiver,

Pr[((1), (flin(val1, val2)))← πLCom
Open 〈Sen(pp, skey, com, op, flin(val1, val2),Rec(pp, rkey, com)〉] ≥ 1− neg(λ)

4. Binding/Extraction: Let ((pp, skey), (pp, rkey)) ← πLCom
Setup 〈(Sen(1λ),Rec(1λ)〉 be an honest execution of the

setup protocol. �ere exists an extractor E , such that for any PPT adversary A and for any com such that
((·), (com))← πLCom

Commit〈A(pp, skey, ·),Rec(pp, rkey)〉, then (val)← EO(A)(pp) such that for any honest receiver
and val 6= val′ 6= ⊥, it holds that

Pr[((·), (val′))← πLCom
Open 〈A(pp, skey, com, ·),Rec(pp, rkey, com)〉] ≤ neg(λ)

Short-Hand Notation. For simplicity, we use the notation JvK denotes a commitment to some value
−→v . We o�en

abuse notation and use J−→x K to denote a linearly homomorphic commitment to a vector of elements in
−→x ∈ F∗. We

use linear arithmetic operations as a short-hand for πLCom
Comb , e.g., JvalK = c1 · Jval1K + Jval2K, where c1 is some public

value. Finally, we remark that the by default, the above de�nition of πLCom
Commit is presented for private commitments, i.e.,

it only takes the value to be commi�ed as input from the sender. However, it can easily be adapted to allow for public
commitments, where both the sender and receiver have access to the value being commi�ed. It that case, we assume

that in addition to taking val as input from both parties, πLCom
Commit is run on shared randomness between the sender

and receiver.

3.2 Commit-and-Prove Zero-Knowledge
Both our �nal construction Dora and our subprotocol for handling processor instructions are custom-designed commit-

and-prove style zero-knowledge for speci�c languages. In this section, we recall the de�nition of this primitive. We

assume that the commitments in this de�nition were computed using inearly homomorphic commitments de�ned in

Section 3.1.

11

De�nition 2 (LinCom-Based Commit-and-Prove ZK). LinCom-based commit-and-prove zero-knowledge proof system
for an NP-relationR, comprises of a tuple of 3 interactive protocols (πSetup, πProof , πVerify) between the sender and receiver
de�ned as follows:

• ((pp, skey), (pp, rkey))← πZK
Setup:�e setup protocol generates any needed public parameters pp, a sender key skey as

output for the sender/prover and a receiver key rkey as output for the receiver/veri�er.

• ((ProofZK, st), (ProofZK)) ← πZK
Prove: �e prove protocol takes as input (pp, skey,−→x , com,−→op,−→w) from the

sender/prover and (pp, rkey,−→x , J−→w K) from the receiver/veri�er. It outputs a proofProofZK that allows the prover/sender
to convince the receiver/veri�er that it knows−→w ,−→op such that they are a valid opening for J−→w K and−→w is a valid witness
for statement −→x . �is protocol may additionally output some secret state st for the sender/prover.

• ((b), (b)) ← πZK
Verify: �e verify protocol takes as input (pp, skey,ProofZK, st,−→x) from the sender/prover and

(pp, rkey,ProofZK,−→x) from the receiver/veri�er and outputs a bit b ∈ {0, 1}, based on whether or not the proof
ProofZK veri�es.

We require the above protocols to satisfy the standard notions of correctness, zero-knowledge and knowledge

soundness.

3.3 Relaxed R1CS
In this work, we use Relaxed R1CS, a generalization of R1CS introduced by Kothapalli, Se�y and Tzialla [KST22]:

De�nition 3 (Relaxed R1CS, [KST22]). A relaxed R1CS (Rank-1 Constraint System) [KST22] is de�ned by three matrixes
A,B,C ∈ Fm×m. A witness w satis�es an instance (−→e ,−→x , u) i�. the “extended witness”−→z = −→w ‖−→x ‖u ∈ Fm satis�es:
(A · −→z) ◦ (B · −→z) = u · (C · −→z) +−→e . For ease of notation, refer to Relaxed R1CS instances by their extended witness −→z
and error term −→e , which in turn de�nes −→w ,−→x , and u.

One valuable feature of Relaxed R1CS instances, as noted by [KST22], is that they can be “folded.” �at is, given

two Relaxed R1CS instances (−→z1 ,−→e1) and (−→z2 ,−→e2) and a randomly sampled r ∈ F, we can de�ne a new instance

(−→z ,−→e) as:

−→e = −→e1 + r ·
−→
T + r2 · −→e2 , u = u1 + r · u2 −→z = −→z1 + r · −→z2

where −→
T = A · −→z1 ◦B · −→z2 + A · −→z2 ◦B · −→z1 − u1 ·C · −→z2 − u2 ·C · −→z1

Importantly, this folding process is sound, in that if either (−→z1 ,−→e1) or (−→z2 ,−→e2) are not satis�ed, then (−→z ,−→e) is also

unsatis�ed with high probability (over the choice of r).

An additional fact about the folding scheme above (not directly used in Nova [KST22]) is that the folding only
depends on the dimensions ofA, B and C. �is means that we can have the veri�er “fold” two commi�ed instances

pairs without revealing the relation these instances belong. �is will be crucial as we will be executing the folder

“obliviously,” in that only the prover will know which instance is being considered.

Remark (R1CS is a Special Case of Relaxed R1CS). Note that regular R1CS is captured as the special case of De�nition 3

where
−→e =

−→
0 ∈ Fm and u = 1. �roughout the section, to simplify notation, we will refer to relaxed R1CS instances

by their error term
−→e ∈ Fm and extended witness

−→z ∈ Fm; which de�ne
−→w ,−→x , u.

3.4 Commit-and-Prove ZK for R1CS
Next, we recall a simple Σ-protocol for R1CS-satis�ability. �is protocol is derived directly from the Nova [KST22]

IVC scheme. �is protocol satis�es all the properties that we need from a commit and prove zero-knowledge protocol

de�ned in Section 3.2. Let (A,B,C) be an R1CS instance. Given a commitment

q−→z
y

, computed using a linearly

homomorphic commitment (see Section 3.1), the prover wants to convince the veri�er that the value
−→z = −→w ‖−→x ‖u

commi�ed inside this commitment is a valid extended witness for (A,B,C). �e setup algorithm πZK
Setup of this proof

system is the same as the setup of the above linearly homomorphic commitment scheme. We now describe the πZK
Prove

and πZK
Verify protocols.

12

• Prover samples a random satisi�ed relaxed R1CS instance as follows:

– Sample
−→z0 ←$Fm and parse

−→z0 = −→w0‖−→x0‖u0.

– Set

−→
L ← (A · −→z0) ◦ (B · −→z0),

−→
R ← u0 · (C · −→z0) and

−→e0 ←
−→
L −

−→
R

• Prover then computes the cross terms:

−→
t1 ← A · −→z ◦Bi · −→z0 + A · −→z0 ◦Bi · −→z

−→
t2 ← u ·C · −→z0 + u0 ·C · −→z

−→
T ← −→t1 −

−→
t2

• Prover and veri�er use πLCom
Commit to compute commitment-opening pairs ((JT K , opT), (JT K)), (Jz0K , opz0) and

(Jz0K , ope0).

• �e veri�er then samples and sends r←$F.

• Prover uses πLCom
Comb , π

LCom
Open to open the following linear combinations of the two instances:

– Let

−→
e′ be the opened value associated with the commitment (r ·

r−→
T

z
+ r2 ·

q−→e0
y
)

– Let

−→
z′ be the opened value associated with the commitment (−→z + r · −→z0)

• Finally, if the above openings are valid, the veri�er checks:

(
A ·
−→
z′
)
◦
(
B ·
−→
z′
)

=?= u′ ·C ·
−→
z′ +

−→
e′ , where

u′ = u + r · u0.

3.5 Multi-Set Equality Proofs
In our construction of ZKBag, we leverage an e�cient set equality proof (also referred to as a permutation

proof). In our concrete instantiation of Dora, we use the simple Bayer-Groth style proof. To the best of our

knowledge, this construction was �rst documented in [Nef01] and has subsequently been independently dis-

covered in many works [BG12, FKL
+

21]. Given 2 sets of commitments, S1 = (J−→a 1K , . . . , J−→a kK) and S2 =

(
r−→
b 1

z
, . . . ,

r−→
b k

z
), the multi-set equality proof can be viewed as a commit-and-prove zero-knowledge proto-

col (say (πZKMultiSet
Setup , πZKMultiSet

Prove , πZKMultiSet
Verify)) for the following relation: there exists a permutation p, such that

p(−→a 1, . . . ,
−→a k) =

−→
b 1, . . . ,

−→
b k .

We now recall this well-known Bayer-Groth style [BG12] shu�e proof. We assume that all commitments were

computed using linearly homomorphic commitments from Section 3.1. �is is the only component in our construction

that (black-box) relies on a general proof system – let (πZK
Setup, π

ZK
Prove, π

ZK
Verify) be the commit and prove zero-knowledge

protocol for general R1CS satis�ability from Section 3.4. �e setup algorithm πZKMultiSet
Setup of this proof system is the

same as the setup of the above linearly homomorphic commitment scheme. We now describe the πZKMultiSet
Prove and

πZKMultiSet
Verify protocols.

• Veri�er samples random �eld elements u, v←$F, and sends them to the prover.

• For each i ∈ [k], both the prover and veri�er use πLCom
Comb to compute

JαiK =
〈
(1, u2, . . . , uk−1), J−→aiK

〉
JβiK =

〈
(1, u2, . . . , uk−1),

r−→
bi

z〉
• Finally, the prover uses (πZK

Setup, π
ZK
Prove, π

ZK
Verify) to convince the veri�er that

∏
i∈[k] (v − JαiK) =∏

i∈[k] (v − JβiK).

13

4 Zero-Knowledge Bag
As discussed in Section 2.2, the heart of Dora is a zero-knowledge bag (ZKBag) protocol. �is cryptographic object is

analogous to a physical bag into which the prover and veri�er place wrapped objects. �e critical properties of the

protocol are equivalent to the physical properties that such a bag would possess: only objects previously put into the

bag can be removed, and the bag itself hides the correspondence between the order in which objects are inserted and

removed. In some sense, the zero-knowledge bag can be seen as a “slow moving” shu�e proof augmented with a

sense of time.

4.1 De�ning ZKBag
De�nition 4 (LinCom-Based Zero-Knowledge Bag). A ZKBag is parameterized by a linearly homomorphic commitment
scheme, and as such we call the resulting cryptographic primitive a LinCom-Based ZKBag. A LinCom-Based ZKBag
comprises of a tuple of 5 interactive protocols (πZKBag

Setup , π
ZKBag
Init , πZKBag

Insert , π
ZKBag
Remove, π

ZKBag
VerEmpty) between the sender and

receiver. We omit formally writing out the inputs to each protocol for space, but they are included in the headers of
Figure 1:

• ((pp, skey), (pp, rkey))← πZKBag
Setup : �e setup protocol generates any needed public parameters pp, generates a sender

key skey as output for the sender and a receiver key rkey as output for the receiver.

• ((bag, state), (bag))← πZKBag
Init : �e parties take the output of πZKBag

Setup as input and initialize the ZKBag. �e sender
and receiver each maintain some joint information bag and the sender maintains some secret information state.

• ((bag′, state′), (bag′)) ← πZKBag
Insert : �e parties take in the current state of the bag ((bag, state), (bag)) and a

commitment
r−→
val

z
. Additionally, the sender provides a valid opening to the commitment (

−→
val, op). �is updates the

state of the bag held by both the sender and the receiver.

• ((bag′, state′), (bag′)) ← πZKBag
Remove : �e parties take in the current state of the bag ((bag, state), (bag)) and a

commitment
r−→
val

z
. Additionally, the sender provides a valid opening to the commitment (

−→
val, op). �is updates the

state of the bag held by both the sender and the receiver.

• ((b), (b)) ← πZKBag
VerEmpty : �e parties take in the current state of the bag ((bag, state), (bag)) and check if the bag is

empty. �is outputs a bit b to the sender and the receiver.

We de�ne 3 properties of these algorithms: correctness, knowledge soundness, and zero-knowledge.

1. Correctness: Correctness considers an interaction between the sender and receiver in which they run setup and initialize.
A�er this �rst phase, the sender and receiver run an arbitrary sequence if inserts and removes. If there is a one-to-one
correspondence between inserts and removes such that the remove always comes a�er the corresponding insert and the
values in each corresponding pair are for the same values, then a call to πZKBag

VerEmpty will return 1.

Formally speaking, let ((pp, skey), (pp, rkey)) ← πZKBag
Setup 〈(Sen(1λ),Rec(1λ)〉, ((bag, state), (bag)) ←

πZKBag
Init 〈Sen(pp, skey),Rec(pp, rkey)〉 be honest executions of the setup and initialization protocols. For any
n ∈ poly(λ), val1, . . . , valn ∈ V and any sequence of 2n executions of the insert and remove protocols such
that for each i ∈ [n], a protocol of the form πZKBag

Remove〈Sen(· · · , comi, opivali),Rec(· · · , comi)〉 only appears af-
ter πZKBag

Insert 〈Sen(· · · , com′i, op′ivali),Rec(· · · , com′i)〉 in the sequence and each of these appear exactly once, it holds
that:

Pr
[
((1), (1))← πZKBag

VerEmpty〈Sen(pp, skey, bag, state),Rec(pp, rkey, bag)〉
]
≥ 1− neg(λ)

Here for each i ∈ [n], comi and com′i are commitments of the form
((comi, opi), (comi)) ← πLCom

Commit〈Sen(pp, skey, vali),Rec(pp, rkey)〉 and ((com′i, op
′
i), (com

′
i)) ←

πLCom
Commit〈Sen(pp, skey, val′i),Rec(pp, rkey)〉.

2. Knowledge Soundness: Knowledge soundness intuitively says that a malicious sender cannot convince the receiver
that the bag is empty a�er an interaction unless all the restrictions on the interaction from correctness hold and the

14

bag truly is empty. We formalize this by saying that there exists an extractor that can extract the values used in the
insertions and removals, such that (as above) there is a one-to-one correspondence between inserts and removes such
that the remove always comes a�er the corresponding insert and the values in each corresponding pair are for the
same values.

Formally speaking, let ((pp, skey), (pp, rkey)) ← πZKBag
Setup 〈(Sen(1λ),Rec(1λ)〉 be an honest execution of the setup

protocol. �ere exists an extractor E such that, for any PPT adversary A, any n ∈ poly(λ), any execution of the
initialization protocol of the form ((· · ·), (bag0))← πZKBag

Init 〈A(pp, skey),Rec(pp, rkey)〉, and any sequence of 2n
protocol executions

(
((· · ·), (bagi))← πUpdatei〈A(pp, skey, comi · · ·),Rec(pp, rkey, bagi−1, comi)〉

)
i∈[2n] where

each comi is the result of invoking

((comi, opi), (comi))← πLCom
Commit 〈A(pp, skey),Rec(pp, rkey)〉 ,

and where for each i ∈ [2n], Updatei ∈ {Insert,Remove}, if it holds that,

((·), (1))← πZKBag
VerEmpty〈A(pp, skey, bag2n),Rec(pp, rkey, bag2n)〉

then (val1, . . . , val2n)← EO(A)(pp), such that if IndexInsert and IndexRemove denote the values of i corresponding to
insertions and removals, then

Pr
[
∃ a bijection f : IndexInsert → IndexRemove, s.t., ∀i ∈ IndexInsert, (f(i) > i) ∧

(
vali = valf(i)

)]
≥ 1− neg(λ)

and for all i ∈ [2n], any honest receiver Rec, and computationally bounded adversary A, and any vali 6= val′i 6= ⊥, it
holds that

Pr[((·), (val′i))← πLCom
Open 〈A(pp, skey, com, ·),Rec(pp, rkey, com)〉] ≤ neg(λ)

3. Zero-Knowledge: Zero-knowledge says that the receiver learns nothing about the values inserted and removed, beyond
the fact that the limitations from correctness are satis�ed. We formalize this by saying that the view of the receiver in
an honest interaction with the sender is computationally indistinguishable from an interaction with a simulator that
does not know the values inserted or removed from the bag.

Formally speaking, the exists a simulator Sim = (SimSetup,SimInit,SimInsert,SimRemove,SimVerEmpty), such that for
any n ∈ poly(λ), the the view of Rec in the following sequence of protocol executions

((pp, skey), (pp, rkey))← πZKBag
Setup

〈
Sen(1λ),Rec(1λ)

〉
((bag0, state0), (bag0))← πZKBag

Init 〈Sen(pp, skey),Rec(pp, rkey)〉
For each i ∈ [2n] and arbitrary vali:

((comi, opi), (comi))← πLCom
Commit 〈Sen(pp, skey, vali),Rec(pp, rkey)〉 ,

((bagi, statei), (bagi))← πZKBag
Updatei

〈
Sen(pp, skey, bagi−1, statei−1, comi, opi, vali),Rec(pp, rkey, bagi−1, comi)

〉
,

where Updatei ∈ {Insert,Remove}. And �nally,

((1), (1))← πZKBag
VerEmpty 〈Sen(pp, skey, bag2n, state2n),Rec(pp, rkey, bag2n)〉

is computationally indistinguishable from its view in the following sequence of protocol executions. For readability, we
omit the state passing between the interactions, but assume that each part of the simulator and the receiver can pass
arbitrary state:

〈(SimSetup(1
λ)↔ Rec(1λ)〉

〈(SimInit(1
λ)↔ Rec(1λ)〉

For each i ∈ [2n]:

((comi, opi), (comi))← πLCom
Commit 〈Sim(pp, skey, 0),Rec(pp, rkey)〉 ,

〈(SimUpdatei(1
λ, comi, opi)↔ Rec(1λ, comi)〉

Updatei ∈ {Insert,Remove}. And �nally,

〈(SimVerEmpty(1
λ)↔ Rec(1λ)〉

15

4.2 Realizing ZKBag

((pp, skey), (pp, rkey))← πZKBag
Setup 〈(Sen(1

λ),Rec(1λ)〉

• Sen and Rec invoke ((ppLCom, skeyLCom), (ppLCom, rkeyLCom))← πLCom
Setup 〈(Sen(1λ),Rec(1λ)〉

• Output (pp = ppLCom, skey = skeyLCom) to Sen and (pp = ppLCom, rkey = rkeyLCom) to Rec.

((bag, state), (bag))← πZKBag
Init 〈Sen(pp, skey),Rec(pp, rkey)〉

• Sen and Rec each initialize an empty list of inserted elements I ← ∅, an empty list of removed elementsR← ∅ and

a counter cnt← 0. Additionally, Sen initializes a map B← ∅.
• Output ((I,R),B) to Sen and (I,R) to Rec.

((bag′, state′), (bag′))← πZKBag
Insert 〈Sen(pp, skey, bag, state,

r−→
val

z
, op, val),Rec(pp, rkey, bag,

r−→
val

z
)〉

• Rec samples tag←$F and sends it to Sen.

• Sen and Rec invoke ((JtagK , ·), (JtagK))← πLCom
Commit〈Sen(pp, skey, tag),Rec(pp, rkey, tag)〉 on shared randomness.

• �ey add the following tuple to the list of inserted elements: I ← I ∪ (JtagK ‖
r−→
val

z
)

• Finally, Sen adds a new counter and tag for the value to the map B[val].Push(tag)
• Output ((I,R),B) to Sen and (I,R) to Rec.

((bag′, state′), (bag′))← πZKBag
Remove〈Sen(pp, skey, bag, state,

r−→
val

z
, op, val),Rec(pp, rkey, bag,

r−→
val

z
)〉

• Sen retrieves a tag for the value from the map as tag ← B[−→v].Pop(), and computes commitments to this tag

((JtagK , ·), (JtagK))← πLCom
Commit〈Sen(pp, skey, tag),Rec(pp, rkey)〉

• Sen and Rec add to the set of removed elementsR← R∪ (JtagK ‖
r−→
val

z
)

((b), (b))← πZKBag
VerEmpty〈Sen(pp, skey, bag, state),Rec(pp, rkey, bag)〉

• Sen and Rec assert equality between the list of inserted and removed elements by invoking πZKMultiSet
on (I,R)

Figure 1: Public-coin “Interactive Zero-Knowledge Bag” sub-protocol implementing an interactive multi-set of secret

values.

We give a concrete implementation of ZKBag in Figure 1. At a high level the protocol is as follows: during setup,

the parties run the setup algorithm of the underlying linearly homomorphic commitment scheme (if there is one)

πLCom
(see Section 3.1). During initialization, the parties just initialize three empty sets: (1) a set of commi�ed values

that were inserted into the bag I , (2) a set of commi�ed values that were removed from the bagR, and (3) some private

state B for the sender that will hold plaintext information about the commi�ed values. Each time a (commi�ed) item

J−→v K is inserted into the bag, the receiver samples a random tag←$F and both parties add (JtagK , J−→v K) to the set of

”input elements” I . Additionally, the sender records the tag and values by adding (tag,−→v) to B. Whenever the sender

wants to remove an element
−→v , they recall the appropriate tag using B, creates a fresh commitment to (tag,−→v), and

then both sides add the fresh commitment to the set of ”removed elements”R. �e �nal check is simply checking (set)

equality of the inserted and removed elements using the πZKMultiSet := (πZKMultiSet
Setup , πZKMultiSet

Prove , πZKMultiSet
Verify) protocol

16

(see Section 3.5).

�e intuition for why this simple protocol ensures that the sender cannot cheat by removing an element that

was not previously inserted, is that the sender would need to guess the appropriate tag that will be sampled in the

future, which they are only able to do with negligible probability 1/|F|. �erefore, they are restricted to ”recalling” a

previously inserted element, for which the tag is known. �ey are prevented from removing the element multiple

times because the tags for each insertion should be unique (with high probability). πZKMultiSet
ensures that insertion

and removals are one-to-one. Formally, we prove the following theorem:

�eorem 4.1. Assuming that πLCom in a secure linearly homomorphic commitment scheme (see Section 3.1), and
πZKMultiSet is a commit-and-prove style multi-set equality proof system (see Section 3.5), then πZKBag, shown in Figure 1,
is a LinCom-Based Zero-Knowledge Bag, as de�ned in De�nition 4.

Correctness. By the correctness of ΠMultiSetEquality, it is simple to see that ΠZKBag is correct. Namely, if the pa�ern

of insertions and removals is honest, ie. the insertions and removals are a permutation and each removal comes a�er
its associated insertion, then ΠZKBag will output 1 with high probability.

Knowledge Soundness. �e extractor E runs by simply running the extractor of the linearly-homomorphic com-

mitment scheme on each of {comi}i∈[2n]. Denote the outputs of these extractors as val1, . . . , val2n. Moreover, if

Updatei is Remove, E runs the extractor of the linearly-homomorphic commitment scheme on the commitment to

the tag created in that interaction. Denote the outputs of the extractors as tagRemove
i . If any of these extractions fails,

the extractors fails with error ErrorComExtract. Otherwise, E outputs val1, . . . , val2n.

We now show that E will output a compliant set of values val1, . . . , val2n with high probability. Let NumInsert
denote the number of insertions and NumRemove denote the number of insertions and removals in the interaction,

respectively.

1. Note that the extractor only outputs ErrorComExtract with 3n times the error rate of the extractor of the linearly-

homomorphic commitment scheme, which, by the binding/extraction property of the linearly-homomorphic

commitment scheme only happens with negligible probability.

2. Next, note that the probability of any two instances of Insert in the interaction sharing a value tag is < n2

F , as

each tags was sampled uniformly at random from F.

3. To �x notation, we create the following tuples for i ∈ [2n] :

• If Updatei is Insert, then create the tuple (i, tagInserti , vali), where tagInserti is the tag generated during the

execution of Updatei. Denote the set of all such tuples as {(timestampInsertj , tagInsertj , valInsertj)}j∈[NumInsert]

• If Updatei is Remove, then create the tuple (i, tagRemove
i , vali), where tagRemove

i is the tag extracted above.

Denote the set of all such tuples as {(timestampRemove
j , tagRemove

j , valRemove
j)}j∈[NumRemove]

4. Next, note that by the soundness of the permutation check, NumInsert = NumRemove = n, and

{(tagInsertj , valInsertj)}j∈[NumInsert] and {(tagRemove
j , valRemove

j)}j∈[NumRemove] are permutations of one another, except

with negligible probability. Denote this permutation as f

5. Next, we observe that for each (timestampRemove
j , tagRemove

j , valRemove
j), there exists a

(timestampInsertj′ , tagInsertj′ , valInsertj′) with timestampInsertj′ < timestampRemove
j , except with probability

1
|F| . If

this were not the case, then it would imply that the tag for the insertion must have been sampled a�er the removal

and the prover must have correctly guessed a tag before it was sampled. Clearly this only happens with probability

1
|F| .

6. Finally, for each (timestampInsertj , tagInsertj , valInsertj), with high probability there is a

(timestampRemove
j′ , tagRemove

j′ , valRemove
j′) such that timestampInsertj′ > timestampRemove

j . �is is true because

the insertions and removals are permutations of one another, so for each insertions there must be a removal with

the same tag. As before, if the timestamp of this insertion is not before the removal, then the prover must have

guesses a tag before it was sampled, which only happens with probability
1
|F| .

17

We let the bijective map f be de�ned by a valid permutation between inserts and removals, which must exist with

high probability, as described in (4). Note that this f is monotonically increasing by (5) and (6). Moreover, because we

invoked the linearly homomorphic commitment scheme’s extractor, for all computationally bounded adversaries A
there is only a negligible probability that they could produce a valid equivocation to the commitments. �us, with

statistically small probability in the size of F, the output of E is compliant with the de�nition.

Zero-knowledge. �e simulator Sim simply follows the protocol executions described in De�nition 4, and honestly

follows the protocol at all steps. Note that the most signi�cant di�erence is that the simulator commits to zero instead

of other values, but otherwise the interactions are identical.

We now show that view of the receiver when interacting with the simulator is the computationally close to the

view of the receiver interacting with the honest sender. We proceed with a hybrid argument. Let Hybrid0 denote the

interaction between the receiver and the honest sender.

• Hybrid1 : LetHybrid1 be the same asHybrid0, but Sim simulates πZKMultiSet
during πZKBag

VerEmpty. By the zero-knowledge

property of πZKMultiSet
, the view of receiver in Hybrid1 and Hybrid0 are computationally close.

• Hybrid2,Hybrid3, . . . ,Hybrid2n+1 : In each of these hybrids, instead of commiting to a real value, Sim commits to

0 instead. By the hiding property of the commitment scheme, the view of receiver in Hybridi+1 and Hybridi are

computationally close for i ∈ [1, 2n+ 1].

• Hybrid2n+2 :Hybrid2n+2 is the same as Hybrid2n+1, but Sim executes ΠMultiSetEquality honestly instead of simulating.

Again, by the zero-knowledge property of ΠMultiSetEquality, the view of receiver in Hybrid2n+1 and Hybrid2n+2 are

computationally close.

Note that the view of the receiver in Hybrid2n+2 is distributed the same as the view of the receiver when interacting

with the simulator above. �us, we have concluded our proof.

5 Memory Consistency using ZKBag
When proving the correct execution of a RAM program, we need to ensure that memory is treated consistently. �at

is, each time an address is read from memory, only the value last wri�en to that address is returned. Importantly,

because we require zero-knowledge, this must be done without revealing executed programs memory access pa�erns.

We observe that this matches perfectly with the property provided by ZKBag. Recall that memory can be seen as a

sequence of tuples (addr, val), where addr is a unique address within the memory space and val is the current value

being stored at that address. We can use ZKBag as a key-value store by dedicating the �rst part of the inserted value

to be the key and the second part to be the value. �at is, we store tuples of the form (addr, val) within the bag. �e

state of the bag corresponds to the “current” state of memory. Updating the contents of memory can be handled by

updating the contents of the ZKBag.

Rather than give a formal de�nition for our protocol for handling memory πMemory
, we simply observe that the

de�nitions are functionally equivalent to those for ZKBag, but the elements being inserted and removed from the bag

now contain memory addresses. In order to make the semantics of our �nal construction easier to read, we provide a

wrapper around the ZKBag with the names of common memory operations: Init,Read,Update,Verify:

• ((stateP), (stateV))← πMemory
Init : �e prover and veri�er take in a set of public values that will make up the initial

contents of memory. �e result is some state held by both the sender and the receiver.

• ((stateP), (stateV))← πMemory
Update : �e prover and veri�er each take in a commitment to the address and value that

will be removed from memory (JaddrK , JvalK) along with a commitment to the new value

q
val′

y
. Additionally, the

prover takes in the actual value and opening to the commitments. �e result is an updated state for both parties.

• ((stateP), (stateV))← πMemory
Read : �e prover and veri�er each take in a commitment to the address and value that

will be read from memory (JaddrK , JvalK)—or, more accurately, value that the prover claims will be the result of

reading from the address. Additionally, the prover takes in the actual value and opening to the commitments. �e

result is an updated state for both parties.

18

((stateP, stateV), (bag))← πMemory
Init 〈P({valaddr}addr ∈ 1...,m),V({valaddr}addr ∈ 1...,m)〉

– P and V initialize and setup a ZKBag by invoking both πZKBag
Setup and πZKBag

Init

– For each addr ∈ 1 . . . ,m:

– P and V generate JaddrK and JvaladdrK by invoking πLCom
Commit on shared randomness (to generate a public commitment).

– P and V insert the tuple (JaddrK , JvaladdrK) into the ZKBag by invoking πZKBag
Insert

((bag, state), (bag))← πMemory
Read 〈P(stateP, (JaddrK , JvalK), (opaddr, opval), (addr, val)),V(stateV, (JaddrK , JvalK))〉

– P and V remove (JaddrK , JvalK) from the ZKBag by invoking πZKBag
Remove

– P and V insert (JaddrK , JvalK) into the ZKBag by invoking πZKBag
Insert

((bag, state), (bag))← πMemory
Update 〈P(stateP, (JaddrK , JvalK ,

q
val′

y
), (opaddr, opval, opval′), (addr, val, val

′)),V(stateV, (JaddrK , JvalK ,
q
val′

y
))〉

– P and V remove (JaddrK , JvalK) from the ZKBag by invoking πZKBag
Remove

– P and V insert (JaddrK , Jval′K) into the ZKBag by invoking πZKBag
Insert

((b), (b))← πMemory
Verify 〈P(stateP, {valaddr}addr ∈ 1...,m),V(stateV, {valaddr}addr ∈ 1...,m)〉

– For each addr ∈ 1 . . . ,m:

– P and V generate JaddrK and JvaladdrK by invoking πLCom
Commit on shared randomness.

– P and V remove the tuple (JaddrK , JvaladdrK) from the ZKBag by invoking πZKBag
Remove.

– Finally, P and V check that ZKBag is empty by invoking πZKBag
VerEmpty

Figure 2: A memory-check protocol based on ZKbag.

• ((b), (b))← πMemory
Verify : �e prover and veri�er each take in their current state and a set of values (representing the

current state of memory) and then output 1 if this is really the current state of memory and 0 otherwise. Optionally,

the veri�er can take any amount of these values in commi�ed form (if they should remain private).

We provide a writeup of the memory checking protocol πMemory
in Figure 2. In brief, during πMemory

Init , the parties

initialize and setup the ZKBag, and then insert tuples with the address and values to the ZKBag. When invoking

πMemory
Update , the parties remove the old address-value tuple (JaddrK , JvalK) from the ZKBag and insert the new tuple

(JaddrK ,
q
val′

y
) into the ZKBag. Importantly, the commitment to the address JaddrK is consistent across the two

protocol invocations. When invoking πMemory
Read the parties remove the address-value tuple (JaddrK , JvalK) and the

reinsert the same tuple back into the ZKBag. Finally, when invoking πMemory
Verify , the parties remove the remaining

contents of the ZKBag and then call πZKBag
VerEmpty.

19

6 Verifying Processor Execution using ZKBag
When proving correct execution of a RAM program, the prover wants to convince the veri�er that a “valid” instruction

was executed at every step of the program. In particular, the veri�er needs to be convinced that at each step, (1) the

prover picked one of the instructions supported by the processor, (2) the picked instruction was executed honestly

and (3) that the picked instruction is the “correct choice” based on the input dependent execution thus far. In this

section, we present a new commit-and-prove style zero-knowledge protocol using ZKBag (see Section 4), that helps

enforce the �rst two guarantees. Looking ahead, in the next section, we demonstrate how to combine this protocol

with the protocol for memory consistency (see Section 5) to obtain a zero-knowledge proof system for RAM programs

that enforces all of the above guarantees.

Disjunctive RelationRZKDisj. Our zero-knowledge protocol for checking correct execution of processor instruc-

tions, is a custom LinCom based commit-and-prove style zero-knowledge protocol (see Section 3.2) for the following

relation: Let (Ai,Bi,Ci)i∈[`] be a set of ` R1CS instances. Given t commitments (
q−→zj

y
)j∈[t] computed using πLCom

Commit

(see Section 3.1), the prover/sender wants to convince the receiver/veri�er that for each j ∈ [t], it knows −→zj ,−→opj such that
they form a valid opening for JzjK and an index αj ∈ [`], such that −→zj is a valid extended witness for (Aαj ,Bαj ,Cαj).

Recall from Section 3.3, that for an R1CS relation, each extended witness is of the form
−→zj = −→wj‖−→xj‖1, where

−→xj
is a part of the instance (which may or may not be known to the veri�er), while

−→wj is exclusively known only to the

prover. �erefore,

q−→zj
y

can be parsed as

q−→wj
y
‖

q−→xj
y
‖ J1K. Here, we assume that

q−→wj
y

were computed using the

“private-mode” (i.e., the default version) of a linearly homomorphic commitment scheme (Section 3.1), commitment

J1K was computed in the “public-mode” (i.e., using shared randomness) and commitments

q−→xj
y

were computed in

either the public-mode or the private-mode depending on whether or not
−→x is public to the veri�er.

Commit-and-Prove ZK Proof System forRZKDisj. As discussed in Section 2.3, we design a commit-and-prove

zero-knowledge proof system forRZKDisj
using a ZKBag protocol πZKBag

(see Section 4) and the folding scheme for

relaxed R1CS from [KST22]. Given these tools, our protocol is straightforward. �e parties start by creating public

commitments to trivially satis�ed relaxed R1CS extended witnesses (i.e., just a vector of 0s) for each of the ` branches.

�ey then initialize a ZKBag and store each of these commitments in the ZKbag (see Figure 1). We refer to these

commitments as accumulators for the ` branches.�en for each step j ∈ [t] of the processor, the parties proceed as

follows: i) Parties retrieve the accumulator for the satis�ed branch αj from the ZKbag. ii) �e prover computes cross

terms

−→
T for the αth

j branch using the retrieved accumulator and the new satis�ed R1CS extended witness
−→zj and

computes a commitment to these cross terms. iii) �e veri�er samples a random �eld element. iv) �e parties fold

the retrieved accumulator onto the new satis�ed R1CS extended witness
−→zj using this random value. �is forms the

updated accumulator for the αth

j branch. v) Store the updated accumulator in the bag. At the end, every accumulator

is extracted from the bag, randomized and checked naively.

We note that a naı̈ve strategy to design a commit-and-prove protocol for this relation without zero-knowledge

would be to simply commit to the extended witness
−→zj at each step, reveal the associated branch index αj use any

generic commit-and-prove proof system (e.g. �ickSilver [YSWW21]) to prove correct execution of this step. Our

protocol achieves the zero-knowledge property while only incurring a multiplicative overhead of 4 of this naı̈ve

protocol. �is is because our protocol requires commi�ing to 4 vectors proportional to the length of
−→zj and the

ZKBag operations are independent of the dimension of the extended witness or R1CS relation. We include a formal

description of this protocol in Figures 3 and 4.

20

((pp, skey), (pp, rkey))← πZKDisj
Setup 〈(Sen(1

λ),Rec(1λ)〉

• Sen and Rec invoke ((ppLCom, skeyLCom), (ppLCom, rkeyLCom))← πLCom
Setup 〈(Sen(1

λ),Rec(1λ)〉

• Output (pp = ppLCom, skey = skeyLCom) to Sen and (pp = ppLCom, rkey = rkeyLCom) to Rec.

((ProofZK, st), (ProofZK)) ← π
ZKDisj
Prove

〈(Sen(pp, skey, (Ai,Bi,Ci)i∈[`], (
r−→zj

z
)j∈[t], (

−−→opzj
)j∈[t], (

−→zj)j∈[t]), Rec(pp, rkey, (Ai,Bi,Ci)i∈[`], (
r−→zj

z
)j∈[t])〉

1. Initialization Phase:

• Sen and Rec initialize a ZKBag ((bag0, state0), (bag0))← πZKBag
Init 〈Sen(pp, skey),Rec(pp, rkey)〉.

• For each i ∈ [`], Sen and Rec invoke ((

s−→
z0i

{
, op

z0
i
), (

s−→
z0i

{
))← πLCom

Commit〈Sen(pp, skey,
−→
0),Rec(pp, rkey)〉 and ((

s−→
e0i

{
, op

e0
i
), (

s−→
e0i

{
))←

πLCom
Commit〈Sen(pp, skey,

−→
0),Rec(pp, rkey,

−→
0)〉 on shared randomness, to compute public commitments to a trivially satis�ed relaxed-R1CS instance

and stores them in the ZKBag

((bag2i−1, state2i−1), (bag2i−1))← π
ZKBag
Insert 〈Sen(pp, skey, bag2i−2, state2i−2,

s−→
z0i

{
, op

z0
i
,
−→
z0i),Rec(pp, rkey, bag2i−2,

s−→
z0i

{
)〉

((bag2i, state2i), (bag2i))← π
ZKBag
Insert 〈Sen(pp, skey, bag2i−1, state2i−1,

s−→
e0i

{
, op

e0
i
,
−→
e0i),Rec(pp, rkey, bag2i−1,

s−→
e0i

{
)〉

• Sen initializes a local map M maintaining the state of each of the ` accumulators: ∀i ∈ [`], M[i]← (−→zi ,−→ei).

2. Execution Phase: For each j ∈ [t],

• Given as input an index αj ∈ [`], Sen retrieves the state of the αj ’th accumulator (−→z ′,−→e ′)← M[αj], computes the cross terms

−→
T = A · −→z ′ ◦B · −→zj + A · −→zj ◦B · −→z ′ − u1 ·C · −→zj − u2 ·C · −→z ′

• Sen and Rec invoke the following to compute commitments to the retrieved accumulator and these cross terms

((

s−→
z′

{
, opz′), (

s−→
z′

{
))← π

LCom
Commit〈Sen(pp, skey,

−→
z′),Rec(pp, rkey)〉, ((

s−→
e′

{
, ope′), (

s−→
e′

{
))← π

LCom
Commit〈Sen(pp, skey,

−→
e′),Rec(pp, rkey)〉

((
r−→
T

z
, opT), (

r−→
T

z
))← π

LCom
Commit〈Sen(pp, skey,

−→
T),Rec(pp, rkey)〉

• Sen and Rec remove the old accumulator corresponding to the αj ’th index from the ZKBag. To simplify the notation, let ρ = 2`+ 4j − 2.

((bagρ−1, stateρ−1), (bagρ−1))← π
ZKBag
Remove〈Sen(pp, skey, bagρ−2, stateρ−2,

s−→
z′

{
, opz′ ,

−→
z′),Rec(pp, rkey, bagρ−2,

s−→
z′

{
)〉

((bagρ, stateρ), (bagρ))← π
ZKBag
Remove〈Sen(pp, skey, bagρ−1, stateρ−1,

s−→
e′

{
, ope′ ,

−→
e′),Rec(pp, rkey, bagρ−1,

s−→
e′

{
)〉

• Rec samples a random r ←$ F and sends it to Sen.

• Sen and Rec update the αj ’th accumulator

q−→e
y
←

q−→e ′
y
+ r ·

r−→
T

z q−→z
y
←

q−→z ′
y
+ r ·

q−→z j
y

and insert the updated accumulator in ZKBag. As before, let ρ = 2`+ 4j − 2.

((bagρ+1, stateρ+1), (bagρ+1))← π
ZKBag
Insert 〈Sen(pp, skey, bagρ, stateρ,

q−→z
y
, opz,

−→z),Rec(pp, rkey, bagρ−1,
q−→z

y
)〉

((bagρ+2, stateρ+2), (bagρ+2))← π
ZKBag
Insert 〈Sen(pp, skey, bagρ+1, stateρ+1,

q−→e
y
, ope,

−→e),Rec(pp, rkey, bagρ+1,
q−→e

y
)〉

Figure 3: Part 1 of zero-knowledge protocol for checking processor instructions.

21

((b), (b))← πZKDisj
Verify 〈Sen(pp, skey,Proof

ZK, st, (Ai,Bi,Ci)i∈[`]),Rec(pp, rkey,Proof
ZK, (Ai,Bi,Ci)i∈[`])〉

• Sen proceeds as follows for each i ∈ [`]

1. Generate random relaxed R1CS instance z(i,2) ←$ Fm , where
−−−→z(i,2) = −−−→w(i,2)‖−−−→x(i,2)‖−−−→u(i,2) .

2. Compute the corresponding error term

−→
L ← (Ai · −−−→z(i,2)) ◦ (Bi · −−−→z(i,2))

−→
R ← u(i,2) · (Ci · −−−→z(i,2))

−−−→e(i,2) ←
−→
L −

−→
R

3. Retrieve the i’th accumulator state (−−−→z(i,1),
−−−→e(i,1))← M[i] and compute cross terms as

−→
δ1 ← Ai · −−−→z(i,1) ◦Bi · −−−→z(i,2)

−→
δ2 ← Ai · −−−→z(i,2) ◦Bi · −−−→z(i,1)

−→
δ3 ← u(i,1) ·Ci · −−−→z(i,2)

−→
δ4 ← u(i,2) ·Ci · −−−→z(i,1)

−→
Ti ←

−→
δ1 +

−→
δ2 −

−→
δ3 −

−→
δ4

4. Computes commitments to the two accumulators and the cross terms

((
r−→
Ti

z
, opTi

), (
r−→
Ti

z
)) ← π

LCom
Commit〈Sen(pp, skey,

−→
Ti), Rec(pp, rkey)〉

((
r−−−→z(i,1)

z
, opz(i,1)

), (
r−−−→z(i,1)

z
)) ← π

LCom
Commit〈Sen(pp, skey,

−−−→z(i,1)), Rec(pp, rkey)〉, ((
r−−−→z(i,2)

z
, opz(i,2)

), (
r−−−→z(i,2)

z
)) ← π

LCom
Commit〈Sen(pp, skey,

−−−→z(i,2)), Rec(pp, rkey)〉

((
r−−−→e(i,1)

z
, ope(i,1)

), (
r−−−→e(i,1)

z
)) ← π

LCom
Commit〈Sen(pp, skey,

−−−→e(i,1)), Rec(pp, rkey)〉, ((
r−−−→e(i,2)

z
, ope(i,2)

), (
r−−−→e(i,2)

z
)) ← π

LCom
Commit〈Sen(pp, skey,

−−−→e(i,2)), Rec(pp, rkey)〉

• Rec samples a random r ←$ F and sends it to Sen.

• For each i ∈ [`], Sen and Rec proceed as follows:

1. Remove the i’th accumulator from ZKBag. To simplify notation, let τ = 2`+ 4t+ 2i.

((bagτ−1, stateτ−1), (bagτ−1))← π
ZKBag
Remove〈Sen(pp, skey, bagτ−2, stateτ−2,

q−−−→z(i,1)
y
, opzi ,

−→zi),Rec(pp, rkey, bagτ−2,
q−−−→z(i,1)

y
)〉

((bagτ , stateτ), (bagτ))← π
ZKBag
Remove〈Sen(pp, skey, bagτ−1, stateτ−1,

q−−−→e(i,1)
y
, opei ,

−→ei),Rec(pp, rkey, bagτ−1,
q−−−→e(i,1)

y
)〉

2. Accumulate with the blinding instance

q−→ei
y
←

q−−−→e(i,1)
y
+ r ·

r−→
Ti

z
+ r

2 ·
q−−−→e(i,2)

y q−→zi
y
←

q−−−→z(i,1)
y
+ r ·

q−−−→z(i,2)
y

ui = u(i,1) + r · u(i,2)

• �ey check whether the ZKBag is empty ((1), (1))← πZKBag
VerEmpty〈Sen(pp, skey, bag4`+4j , state4`+4j),Rec(pp, rkey, bag4`+4j)〉.

• For each i ∈ [`], Sen opens the following commitments to Rec

((1), (−→ei))← π
LCom
Open 〈Sen(pp, skey,

q−→ei
y
, op−→ei ,

−→ei),Rec(pp, rkey,
q−→ei

y
)〉

((1), (−→zi))← π
LCom
Open 〈Sen(pp, skey,

q−→zi
y
, op−→zi ,

−→zi),Rec(pp, rkey,
q−→zi

y
)〉

• Finally, for each i ∈ [`], Rec veri�es the extended witness

Ai · −→zi ◦Bi · −→zi =
?
= ui · (C · −→zi) + ei

Figure 4: Part 2 of zero-knowledge protocol for checking processor instructions.

22

�eorem 6.1. Assuming that πLCom in a secure linearly homomorphic commitment scheme (see Section 3.1), and πZKBag

is a zero-knowledge bag (see Section 4), then πZKDisj, shown in Figures 3 and 4, is a LinCom-based commit-and-prove
zero-knowledge as de�ned in Section 3.2 forRZKBag.

Proof. Correctness. Correctness follows from correctness of Linearly Homomorphic commitment, ZKBag and the

folding property of relaxed R1CS (see Section 3.3).

Zero-Knowledge. Let SimZKBag = (SimZKBag
Setup ,Sim

ZKBag
Init ,SimZKBag

Insert ,Sim
ZKBag
Remove,Sim

ZKBag
VerEmpty) be the simulator for

ZKBag. We now describe the simulator Sim for our πZKDisj
protocol.

1. Setup: Sim uses SimZKBag
Setup to simulate the setup protocol.

2. Initialization Phase: Sim uses SimZKBag
Init to simulate initializing a ZKBag. For each i ∈ [`], it then honestly invokes

πLCom
Commit to compute public commitments to trivially satis�ed relaxed-R1CS instances and uses SimZKBag

Insert to simulate

inserting thses commitments in the simulated ZKBag. Sim also initializes the map M as described in the protocol.

3. Execution Phase: For each j ∈ [t], Sim proceeds as follows: Set
−→wj =

−→
0 . Additioanlly, if

−→xj is unknown to the

receiver, set
−→xj =

−→
0 . Invoke πLCom

Commit to compute a commitment to
−→zj = −→xj‖−→wj‖1. Set

−→
z′ =

−→
e′ =

−→
T =

−→
0 . It

honestly invokes πLCom
Commit to compute commitments to these values. Use SimZKBag

Remove to simulate removing

r−→
z′

z

and

r−→
e′

z
from the simulated bag. Finally, it samples r←$F, computes

q−→z
y

and

q−→e
y

using r and the above

commitments as described in the protocol using πLCom
Comb . Finally, it uses SimZKBag

Insert to simulate inserting

q−→z
y

andq−→e
y

in the simulated ZKBag.

4. Veri�cation Protocol: For each i ∈ [`], the simulator sets

−→
Ti = −−→z(i,1) = −−→z(i,2) = −−→e(i,1) = −−→e(i,2) =

−→
0 and invokes

πLCom
Commit to compute commitments to these values. For each i ∈ [`], it then samples r←$F and uses SimZKBag

Remove

to simulate removing

q−→zi
y

and

q−→ei
y

from the simulated ZKBag. Uses the above commitments along with r to

compute

q−→zi
y

and

q−→ei
y

as described in the protocol using πLCom
Comb . �en use SimZKBag

VerEmpty to simulate demonstrating

that the ZKBag is empty. Finally, for each i ∈ [`], it samples
−→zi ,−→ei such that Ai ·−→zi ◦Bi ·−→zi =?= ui · (C ·−→zi) + ei.

It uses these values and runs EquivLCom to compute an equivocal opening for
−→zi ,−→ei and invokes πLCom

Open using these

openings.

We now show that view of the receiver when interacting with the simulator Sim is the computationally close to

the view of the receiver interacting with the honest sender. We proceed with a hybrid argument. Let Hybrid0 denote

the interaction between the receiver and the honest sender.

• Hybrid1 : Let Hybrid1 be the same as Hybrid0, but Sim simulates πZKBag
. By the zero-knowledge property of πZKBag

,

the view of the receiver in Hybrid1 and Hybrid0 are computationally close.

• Hybrid2 : �is hybrid is similar to Hybrid1, except that in the veri�cation protocol in this hybrid, for each i ∈ [`],
Sim samples

−→zi ,−→ei such that Ai · −→zi ◦ Bi · −→zi =?= ui · (C · −→zi) + ei. It uses these values and runs EquivLCom

to compute an equivocal opening for
−→zi ,−→ei and invokes πLCom

Open using these openings. By equivocation property

πLCom
, the view of the receiver in Hybrid1 and Hybrid2 are computationally close.

• Hybrid3 �is hybrid is the same as Hybrid2, except that instead of computing commitments to honestly computed

values, Sim computes commitments to

−→
0 . By the hiding property of πLCom

, view of receiver in Hybrid2 and Hybrid3
are computationally close.

Note that the view of the receiver in Hybrid3 is distributed the same as the view of the receiver when interacting

with the simulator above. �us, we have concluded our proof.

Knowledge Soundness. Let ELCom be the extractor of the linearly homomorphic commitment scheme. Given

a verifying proof transcript for πZKDisj
, the extractor E for our πZKDisj

protocol runs ELCom to simply extract the

extended witness
−→zj from

q−→zj
y

, for each j ∈ [t]. �e probability that the ∃j∗ ∈ [t], such that for each i ∈ [`], the

extracted
−→zj is not a satisfying extended witness for (Ai,Bi,Ci) depends on the following:

23

• ELCom failed to extract the correct value, which only happens with negligible probability due to the binding property

of πLCom
.

• �e adversary succeeds in violating knowledge soundness of πZKBag
, which also happens with negligible probability.

• �e adversary manages to cheat by successfully guessing at least one of the t+ ` random challenges sampled by

the veri�er. Since the veri�er samples these challenges uniformly at random from F, this probability is
t+`
/ |F|,

which is exponentially small for a large �eld.

�erefore, the overall probability that this extractor fails to extract a satisfying set of extended witnesses from a

verifying transcript is negligbly small.

7 Dora: Zero-Knowledge for RAM Programs
In this section, we show how to compose the memory consistency protocol from Section 5 and our protocol for

checking processor instructions from Section 6 to realize a zero-knowledge proof system for RAM programs.

RAM Program (Von Neumann Architecture). At each step, the processor maintains a local state
−→
st =

(pc,Reg1, . . . ,Regk), where pc denotes the program counter and we use Reg1, . . . ,Regk to refer to values stored in

its local registers. Let I = {I1, . . . , I`} be the set instructions supported by the processor.

NP RelationRzkRAM. In order to prove correct execution of a RAM program, we design a custom LinCom based

commit-and-prove style zero-knowledge proof system (see 3.2) for the following relation: Let
−→
M0 denote the public

initial state of the memory and −→st0 denote the initial state of the processor (which is not public). For each processor
step j ∈ [t], given commitments

r−→
stj

z
, JinstjK,

r−−−−−−→
ReadValj

z
,
r−−−−−−−−−→
OldWriteValj

z
, where

r−→
stj

z
is a concatenation of

commitments to the program counter
q−→pcj

y
and values stored in the registers including (but not limited to)

r−−−−−−−→
ReadAddrj

z
,

r−−−−−−−→
WriteAddrj

z
,
r−−−−−−→
WriteValj

z
, the prover wants to convince the veri�er that it knows the corresponding values and opening

information such that the following is satis�ed:

• instj is the value stored in the memory at location −−−→pcj−1.

•

−−−−−−−→
ReadAddrj is stored in the appropriate registers in −−−→stj−1 and

−−−−−−→
ReadValj is the value stored in the memory at location

−−−−−−−→
ReadAddrj .

•
−→
stj (containing

−−−−−−−→
WriteAddrj ,

−−−−−−→
WriteValj in the appropriate registers) is the outcome of evaluating Iinstj on input −−−→stj−1,−−−−−−→

ReadValj .

• Old value
−−−−−−−−−→
OldWriteValj at location

−−−−−−−→
WriteAddrj in the memory is replaced with

−−−−−−→
WriteValj .

For each i ∈ [`], we use (Ai,Bi,Ci) to denote the R1CS relation for the predicate that checks if the outcome

of applying Ii on some input (
−→
st ,
−−−−−→
ReadVal) is

−→
st′ (which contains values

−−−−−−−→
WriteAddr,

−−−−−→
WriteVal in the appropriate

registers).

Commit-and-Prove ZK Proof System forRzkRAM. Let πLCom
be a linearly homomorphic commitment scheme,

πzkDisj
be the protocol from Section 6 for the set of R1CS relations (Ai,Bi,Ci)i∈[`] and πMemory

be the protocol for

checking memory consistency from Section 5. Dora works as follows:

• Setup πzkRAM
Setup : Sen and Rec invoke πLCom

Setup to obtain pp, skey and rkey.

• Prove πzkRAM
Prove : We divide the prover protocol into an initialization phase and an execution phase:

1. Initialization Phase: Sen and Rec proceed as follows:

24

– Invoke πLCom
Commit on

−→
st0,

−→
M0 to get

r−→
st0

z
and

r−→
M0

z
.

– Invoke πMemory
Init on

r−→
M0

z
to initialize the memory.

– Run the Initialization Phase of πZKDisj
Prove .

2. Execution Phase: For each j ∈ [t], Sen and Rec proceed as follows:

– Invoke πLCom
Commit to compute commitments

r−→
stj

z
, JinstjK,

r−−−−−−→
ReadValj

z
,

r−−−−−−−−−→
OldWriteValj

z
. We assume that

r−→
stj

z

is a concatenation of commitments to the program counter

q−→pcj
y

and values stored in the registers includingr−−−−−−−→
ReadAddrj

z
,

r−−−−−−−→
WriteAddrj

z
,

r−−−−−−→
WriteValj

z
. Use

r−−−−−−→
ReadValj

z
,

r−−−→
stj−1

z
,

r−→
stj

z
and invoke πLCom

Commit as needed

to compute a commitment to the extended witness

q−−→zinstj
y

for the relation (Ainstj ,Binstj ,Cinstj)

– Invoke πMemory
Read to read JinstjK from address

q−−−→pcj−1
y

and to read

r−−−−−−→
ReadValj

z
from address

r−−−−−−−→
ReadAddrj

z
.

– Invoke πMemory
Update to replace

r−−−−−−−−−→
OldWriteValj

z
with

r−−−−−−→
WriteValj

z
at the location

r−−−−−−−→
WriteAddrj

z
.

– Finally, run the jth
step in the execution phase in πZKDisj

Prove using

q−−→zinstj
y

and branch index instj .

• Verify πzkRAM
Verify : Sen and Rec invoke πMemory

Verify , πZKDisj
Verify and πLCom

Open on JsttK and JMtK. Output 1, if all these checks

verify.

�eorem 7.1. Assuming that πLCom in a secure linearly homomorphic commitment scheme (see Section 3.1), πMemory is a
protocol for checking memory consistency (see Section 5) and πZKDisj be a commit-and-prove zero-knowledge forRZKDisj as
de�ned in Section 6. �en the above protocol πzkRAM = (πzkRAM

Setup , πzkRAM
Prove , πzkRAM

Verify) is a LinCom-based commit-and-prove
zero-knowledge as de�ned in Section 3.2 forRzkRAM.

Proof. Correctness. Correctness follows from correctness of Linearly Homomorphic commitment πLCom
, memory

consistency protocol πMemory
and protocol for verifying processor execution πZKDisj

.

Zero-Knowledge. Let SimMemory = (SimMemory
Setup ,SimMemory

Init ,SimMemory
Insert ,SimMemory

Remove ,Sim
Memory
VerEmpty) be the simulator for

πMemory
and let SimZKDisj

be the simulator for πZKDisj
. �e simulator Sim for our πzkRAM

protocol proceeds like the

Sen in an honest execution of πzkRAM
, except that: (1) Instead of running πMemory

honestly, it uses SimMemory
to

simulate operations in πMemory
, (2) instead of running πZKDisj

honestly, it uses SimZKDisj
to simulate operations in

πZKDisj
and (3) whenever the parties invoke πLCom

Commit (except when commi�ing to M0), Sen computes a commitment

to

−→
0 . Commitment to M0 is computed honestly as described in the protocol.

We now show that view of the receiver when interacting with the simulator Sim is the computationally close to

the view of the receiver interacting with the honest sender. We proceed with a hybrid argument. Let Hybrid0 denote

the interaction between the receiver and the honest sender.

• Hybrid1 : Let Hybrid1 be the same as Hybrid0, but Sim simulates πMemory
. By the zero-knowledge property of

πMemory
, the view of the receiver in Hybrid1 and Hybrid0 are computationally close.

• Hybrid2 : �is hybrid is similar to Hybrid1, except that Sim simulates πZKDisj
. By the zero-knowledge property of

πZKDisj
, the view of the receiver in Hybrid1 and Hybrid2 are computationally close.

• Hybrid3 �is hybrid is the same as Hybrid2, except that instead of computing commitments to honestly computed

(private) values, Sim computes commitments to

−→
0 . By the hiding property of πLCom

, view of receiver in Hybrid2
and Hybrid3 are computationally close.

Note that the view of the receiver in Hybrid3 is distributed the same as the view of the receiver when interacting

with the simulator above. �us, we have concluded our proof.

Knowledge Soundness. Let ELCom be the extractor of the linearly homomorphic commitment scheme. Given a

verifying proof transcript for πzkRAM
, the extractor E for our πzkRAM

protocol runs ELCom to simply extract the values

from all commitments computed during the protocol. �e probability that extracted values do not satisfy the relation

RzkRAM
as described in Section 7, depends on the following:

25

• ELCom failed to extract the correct value, which only happens with negligible probability due to the binding property

of πLCom
.

• �e adversary succeeds in violating knowledge soundness of πMemory
, which also happens with negligible probability.

• �e adversary succeeds in violating knowledge soundness of πZKDisj
, which also happens with negligible probability.

�erefore, the overall probability that this extractor fails to extract a satisfying set of extended witnesses from a

verifying transcript is negligbly small.

8 Implementation and Evaluation
In order to evaluate the concrete performance of Dora, we implement it and perform benchmarks. Speci�cally,

we provide separate speed benchmarks for the memory consistency checks (Section 5) and processor instruction

checks (Section 6). We �nd that this does a good job highlighting Dora’s performance. Additionally, we �nd that

our processor instruction check are the bo�lenecks for performance (with each step taking several milliseconds),

whereas memory consistency checks are virtually free in comparison (with each memory operation taking several

microseconds). As such, the benchmarks for processor instructions are a su�cient estimate of Dora’s end-to-end

performance.

Implementation and Benchmark Con�guration. We implement Dora in Rust on top of Galois’

swanky[Gal19] framework, a suite of secure computation and zero-knowledge tools. Our code is intentionally

designed to be interoperable with the emerging SIEVE intermediary representation (IR) [sie] standard such that it can

interface with other emerging zero-knowledge techniques. Our code will be made public upon publication. To instan-

tiate our linearly homomorphic commitments, we use vector oblivious linear evaluation (VOLE) base commitments,

like other state-of-the-art interactive zero-knowledge protocols (e.g. �ickSilver [YSWW21]). swanky generates

the prerequisite VOLE correlations using KOS OT-extension protocol[KOS15]. �ese correlations are computed

“just-in-time,” rather than in a pre-processing phase; the resulting interaction introduces a non-trivial overhead in

our implementation which is included in all benchmarks. We also include all setup costs in our benchmarks. Our

evaluation is done over a 61-bit prime �eld.

We run benchmarks on a typical, commodity laptop (Intel i7-11800H @ 2.3 GHz and 64 GB of RAM).

Additionally, we run benchmarks on an AWS server (Intel Xeon Platinum 8259C@ 2.50GHz and 128 GB of

RAM); we include the benchmarks from this later con�guration in Appendix A. We run the prover and veri�er on the

same hardware and simulate network conditions using tc(8) and netem(8). �e bandwidth in our benchmarks is

limited to 1Gbps and we simulate multiple network latencies. Speci�cally, we simulate localhost/colocated computation

(latency = 0ms), intracountry/intrastate se�ings (latency = 10ms) and Europe-to-West-Coast conditions (latency =

100ms).

8.1 Processor Instruction Checks
We begin by benchmarking our disjunctive zero-knowledge protocol that ensures each application of the processor

circuit is done correctly (Section 6). We realize this protocol as a custom plugin for the SIEVE IR [sie] which takes in

a set of functions (ie. the instructions) over which to do the disjunction. �e result is a plugin that can be called with

the same number of inputs and outputs as the provided functions.

In order to benchmark this construction, we generate uniformly random instruction circuits with a prescribed

number of multiplication gates. We do this by repeatedly sampling a random addition/multiplication gate with

probability 1/2 until the desired number of multiplication gates is reached. To connect these gates, we sample random

input wires for each new gate from the set of previous output wires. �e result is circuits with random topology, a

good approximation for the worst case for e�ciency.

26

Network Latency: 0 ms

Mul. Per Clause 23 26 29 212 215

26 1138.10 1090.46 1166.00 1123.02 663.91
29 423.42 418.81 417.60 376.82 240.04
212 144.03 140.27 147.69 133.81 86.00
215 58.60 59.23 56.77 54.47

Network Latency: 10 ms

Mul. Per Clause 23 26 29 212 215

26 1144.25 1156.57 1120.21 1126.51 650.81
29 417.90 435.79 412.70 374.88 240.71
212 150.02 148.25 145.24 131.49 82.76
215 60.03 58.46 58.07 53.08

Network Latency: 100 ms

Mul. Per Clause 23 26 29 212 215

26 662.77 654.39 650.05 631.92 397.06
29 250.59 246.90 250.13 222.61 148.70
212 87.38 86.70 86.94 80.16 52.12
215 35.47 35.71 34.93 32.71

Figure 5: ZK for disjunctions: number of disjunction applications per second. Running on Intel i7-11800H.

Benchmarks. We present the results of our benchmarks in two tables:

(1) In Figure 5, we show how many processor steps Dora proves per second for processors of varying complexity. To

compute these values, we prove 50,000 copies of the processor circuit, where a random instruction is chosen in

each step. We vary the number of multiplication gates in each instruction in the set {26, 29, 212, 215} and vary the

number of instructions supported by the processor in the set {26, 29, 212, 215}. Note that the overhead of setup

and verifying the �nal R1CS instances grows as the number of instructions grows and the size of the instructions

grows. When the number of instructions reaches 215, this overhead becomes non-trivial (compared to the �xed

50,000 steps) and begins to become visible in the benchmarks. We note that our machine ran out of memory for

215 instructions of size 215 simply because the overhead for holding the descriptions of the instructions was too

high.

(2) In Figure 6, we aim to illustrate that the marginal cost of proving each additional step of the processor is constant

in the number of instructions. To do this, we run the same experiment as in (1), but for 25,000 processor steps,

interpolate between the two points and compute the time taken to prove each of the additional 25,000 steps. In

this table, the asymptotic characteristic of Dora becomes very clear: the marginal cost per-step is constant as the

number of instructions in the processor increases.

Recall that the total cost of proving a step of a processor in Dora is a single invocation of this protocol, plus

several memory access operations. As we show in the next subsection, the costs of these memory operations are

marginal compared to checking the processor instructions. As such, we use the benchmarks provided in Figure 5 and

Figure 6 as a good approximation of the overall performance of Dora.

8.2 Memory Checking
We now turn our a�ention to benchmarking the memory consistency checking protocol presented in Section 5. When

implementing this protocol, we integrate several minor changes. Namely, because of the high number of rounds

in the ZKbag protocol we apply Fiat-Shamir to compute tag challenges, but we do not use Fiat-Shamir in the �nal

consistency check. �e resulting protocol remains designated veri�er, as we still use VOLE for all commitments.

Additionally, because the security of ZKBag is statistical in the size of the �eld (a 61-bit prime �eld), we need to

27

Network Latency: 0 ms

Mul. Per Clause 23 26 29 212 215

26 0.60 ms 0.69 ms 0.59 ms 0.63 ms 0.59 ms

29 2.36 ms 2.46 ms 2.37 ms 2.29 ms 2.56 ms

212 6.85 ms 7.36 ms 6.44 ms 6.58 ms 6.96 ms

215 16.97 ms 16.52 ms 18.07 ms 16.68 ms

Network Latency: 10 ms

Mul. Per Clause 23 26 29 212 215

26 0.61 ms 0.56 ms 0.63 ms 0.62 ms 0.69 ms

29 2.42 ms 2.31 ms 2.52 ms 2.31 ms 2.61 ms

212 6.42 ms 6.52 ms 6.58 ms 6.70 ms 7.42 ms

215 17.02 ms 17.38 ms 17.01 ms 17.74 ms

Network Latency: 100 ms

Mul. Per Clause 23 26 29 212 215

26 1.19 ms 1.24 ms 1.25 ms 1.17 ms 1.17 ms

29 3.94 ms 4.01 ms 3.92 ms 4.04 ms 3.98 ms

212 11.16 ms 11.35 ms 11.12 ms 11.21 ms 10.77 ms

215 28.36 ms 27.89 ms 27.73 ms 27.73 ms

Figure 6: ZK for disjunctions: marginal cost for additional disjunction applications. Running on Intel
i7-11800H.

t = 223 212 214 216 218 220

0 ms 545387 545352 545210 547773 543268

10 ms 501591 513535 508092 517432 514070

100 ms 202618 204475 206942 200344 192602

Figure 7: Number of RAM operations (READ/WRITE) per second. Running on Intel i7-11800H.

sample two �eld elements for each tag. With this approach we get ≈ 122 bits of computation security. �e rest of the

protocol is unmodi�ed.

Benchmarks. As before, present the results of our benchmarks in two tables:

(1) In Figure 7 we show the average number of memory operations (READ/WRITE) per second averaged over 223

operations. To illustrate that the size of the memory does not meaningfully impact performance, we initialize a

memory space of size {212, 214, 216, 218, 220}.
(2) In Figure 8 we show the marginal cost of each additional memory operation to highlight the asymptotic behavior

of our construction. We do this by computing the di�erence in runtime for performing 222 operations and 223

operations.

We note that performance starts to degrade when the network latency hits 100ms. �is is an artifact of the

on-demand nature of the VOLE computation in swanky. Because correlations are not computed upfront, the

computation must pause in order to generate more VOLE correlations. Because this correlation generation protocol

is a multi-round protocol, when the latency increases VOLE correlation generation dominates the overall cost. We

emphasize that this is not a fundamental limitation of the protocol but rather a limitation of swanky. By using

Fiat-Shamir, the online phase of our protocol becomes constant round and the required number of correlations could

be computed in an o�ine phase.

28

t ∈ {222, 223} 212 214 216 218 220

0 ms 1.63µs 1.62µs 1.62µs 1.62µs 1.60µs
10 ms 1.91µs 1.77µs 1.86µs 1.77µs 1.68µs
100 ms 4.53µs 4.49µs 4.38µs 4.48µs 4.31µs

Figure 8: Observe that the marginal cost for a RAM access is independent of the size of the memory space. Running

on Intel i7-11800H.

Acknowledgements
�e authors would like to thank Yibin Yang for providing benchmarks by correspondence to help clarify the comparison

with concurrent work provided in Appendix A. �e second author is funded by Concordium Blockchain Research

Center, Aarhus University, Denmark, implementation work was undertaken while at Galois partially funded by the

FROMAGER (SIEVE) grant. �e third author is supported by the National Science Foundation under Grant #2030859

to the Computing Research Association for the CIFellows Project and is supported by DARPA under Agreement No.

HR00112020021. Any opinions, �ndings and conclusions or recommendations expressed in this material are those of

the author(s) and do not necessarily re�ect the views of the United States Government or DARPA.

References
[ACF21] �omas A�ema, Ronald Cramer, and Serge Fehr. Compressing proofs of k-out-of-n partial

knowledge. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of LNCS,

pages 65–91, Virtual Event, August 2021. Springer, Heidelberg. 4

[AOS02] Masayuki Abe, Miyako Ohkubo, and Koutarou Suzuki. 1-out-of-n signatures from a variety of

keys. In Yuliang Zheng, editor, ASIACRYPT 2002, volume 2501 of LNCS, pages 415–432. Springer,

Heidelberg, December 2002. 4

[BBB
+

18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell.

Bulletproofs: Short proofs for con�dential transactions and more. In 2018 IEEE Symposium on
Security and Privacy, pages 315–334. IEEE Computer Society Press, May 2018. 3

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and

post-quantum secure computational integrity. Cryptology ePrint Archive, Report 2018/046, 2018.

https://eprint.iacr.org/2018/046. 5

[BBMH
+

21] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, Benoı̂t Razet, and Peter Scholl. Appen-

zeller to brie: E�cient zero-knowledge proofs for mixed-mode arithmetic and Z2k. In Giovanni

Vigna and Elaine Shi, editors, ACM CCS 2021, pages 192–211. ACM Press, November 2021. 4

[BBMHS22] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, and Peter Scholl. MozZ2karella: E�cient

vector-ole and zero-knowledge proofs over Z2k . In Yevgeniy Dodis and �omas Shrimpton, editors,

Advances in Cryptology – CRYPTO 2022, pages 329–358, Cham, 2022. Springer Nature Switzerland.

3

[BCC
+

16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. E�cient

zero-knowledge arguments for arithmetic circuits in the discrete log se�ing. In Marc Fischlin and

Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 327–357.

Springer, Heidelberg, May 2016. 3

[BCF
+

21] Daniel Benarroch, Ma�eo Campanelli, Dario Fiore, Kobi Gurkan, and Dimitris Kolonelos. Zero-

knowledge proofs for set membership: E�cient, succinct, modular. In Nikita Borisov and Claudia

29

https://eprint.iacr.org/2018/046

Dı́az, editors, FC 2021, Part I, volume 12674 of LNCS, pages 393–414. Springer, Heidelberg, March

2021. 7

[BCG
+

13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs for

C: Verifying program executions succinctly and in zero knowledge. In Ran Cane�i and Juan A.

Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 90–108. Springer, Heidelberg,

August 2013. 3, 4, 5, 6

[BCG
+

14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Ma�hew Green, Ian Miers, Eran Tromer,

and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE
Symposium on Security and Privacy, pages 459–474. IEEE Computer Society Press, May 2014. 3

[BCGI18] Ele�e Boyle, Geo�roy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector OLE. In David

Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages

896–912. ACM Press, October 2018. 4

[BCGT13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. Fast reductions from RAMs

to delegatable succinct constraint satisfaction problems: extended abstract. In Robert D. Kleinberg,

editor, ITCS 2013, pages 401–414. ACM, January 2013. 4, 5

[BCL
+

21] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas Spooner. Proof-

carrying data without succinct arguments. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part I, volume 12825 of LNCS, pages 681–710, Virtual Event, August 2021. Springer, Heidelberg. 5

[BCMS20] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner. Recursive proof

composition from accumulation schemes. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020,
Part II, volume 12551 of LNCS, pages 1–18. Springer, Heidelberg, November 2020. 5

[BCR
+

19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and

Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In Yuval Ishai and Vin-

cent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128. Springer,

Heidelberg, May 2019. 3

[BCTV14a] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge via

cycles of elliptic curves. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II,
volume 8617 of LNCS, pages 276–294. Springer, Heidelberg, August 2014. 3, 4

[BCTV14b] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive

zero knowledge for a von neumann architecture. In Kevin Fu and Jaeyeon Jung, editors, USENIX
Security 2014, pages 781–796. USENIX Association, August 2014. 3, 4, 5

[BDFG21] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Halo in�nite: Proof-carrying data from

additive polynomial commitments. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I,
volume 12825 of LNCS, pages 649–680, Virtual Event, August 2021. Springer, Heidelberg. 5

[BG12] Stephanie Bayer and Jens Groth. E�cient zero-knowledge argument for correctness of a shu�e.

In David Pointcheval and �omas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS,

pages 263–280. Springer, Heidelberg, April 2012. 13

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive proof composition without a trusted

setup. Cryptology ePrint Archive, Report 2019/1021, 2019. https://eprint.iacr.org/
2019/1021. 5

[BMRS21] Carsten Baum, Alex J. Malozemo�, Marc B. Rosen, and Peter Scholl. Mac’n’cheese: Zero-knowledge

proofs for boolean and arithmetic circuits with nested disjunctions. In Tal Malkin and Chris

Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 92–122, Virtual Event, August

2021. Springer, Heidelberg. 3, 4, 10

30

https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/1021

[CCs08] Jan Camenisch, Ra�k Chaabouni, and abhi shelat. E�cient protocols for set membership and

range proofs. In Josef Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of LNCS, pages 234–252.

Springer, Heidelberg, December 2008. 7

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial knowledge and

simpli�ed design of witness hiding protocols. In Yvo Desmedt, editor, CRYPTO’94, volume 839 of

LNCS, pages 174–187. Springer, Heidelberg, August 1994. 4

[CFH
+

15] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter, Michael

Naehrig, Bryan Parno, and Samee Zahur. Geppe�o: Versatile veri�able computation. In 2015 IEEE
Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 253–270.

IEEE Computer Society, 2015. 5

[CFQ19] Ma�eo Campanelli, Dario Fiore, and Anaı̈s �erol. LegoSNARK: Modular design and composition

of succinct zero-knowledge proofs. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and

Jonathan Katz, editors, ACM CCS 2019, pages 2075–2092. ACM Press, November 2019. 5

[CGG
+

23] Arka Rai Choudhuri, Sanjam Garg, Aarushi Goel, Sruthi Sekar, and Rohit Sinha. Sublonk: Sublinear

prover plonk. Cryptology ePrint Archive, Paper 2023/902, 2023. https://eprint.iacr.
org/2023/902. 5

[CGT23] Alishah Chator, Ma�hew Green, and Pratyush Ranjan Tiwari. Sok: Privacy-preserving signatures.

Cryptology ePrint Archive, Paper 2023/1039, 2023. https://eprint.iacr.org/2023/
1039. 7

[CHP
+

23] Santiago Cuéllar, Bill Harris, James Parker, Stuart Pernsteiner, and Eran Tromer. Cheesecloth:

Zero-knowledge proofs of real-world vulnerabilities, 2023. 4

[CK18] �an Chen and Alexandros Kapravelos. Mystique: Uncovering information leakage from browser

extensions. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors,

ACM CCS 2018, pages 1687–1700. ACM Press, October 2018. 4

[CPS
+

16] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti.

Online/o�ine OR composition of sigma protocols. In Marc Fischlin and Jean-Sébastien Coron,

editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 63–92. Springer, Heidelberg, May

2016. 4

[dOTV22] Cyprien de Saint Guilhem, Emmanuela Orsini, Titouan Tanguy, and Michiel Verbauwhede. E�cient

proof of RAM programs from any public-coin zero-knowledge system. Cryptology ePrint Archive,

Report 2022/313, 2022. https://eprint.iacr.org/2022/313. 3, 4, 6

[DXNT23] Zijing Di, Lucas Xia, Wilson Nguyen, and Nirvan Tyagi. Muxproofs: Succinct arguments for

machine computation from tuple lookups. Cryptology ePrint Archive, Paper 2023/974, 2023.

https://eprint.iacr.org/2023/974. 5

[FKL
+

21] Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Ostrovsky, Xiao Wang, and Chenkai Weng.

Constant-overhead zero-knowledge for RAM programs. In Giovanni Vigna and Elaine Shi, editors,

ACM CCS 2021, pages 178–191. ACM Press, November 2021. 3, 4, 6, 13

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identi�cation and

signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages

186–194. Springer, Heidelberg, August 1987. 4

[Gal19] Galois, Inc. swanky: A suite of rust libraries for secure computation. https://github.
com/GaloisInc/swanky, 2019. 4, 26

[gen20] genSTARK. h�ps://github.com/guildofweavers/genstark, 2020. 5

31

https://eprint.iacr.org/2023/902
https://eprint.iacr.org/2023/902
https://eprint.iacr.org/2023/1039
https://eprint.iacr.org/2023/1039
https://eprint.iacr.org/2022/313
https://eprint.iacr.org/2023/974
https://github.com/GaloisInc/swanky
https://github.com/GaloisInc/swanky

[GGHAK22a] Aarushi Goel, Ma�hew Green, Mathias Hall-Andersen, and Gabriel Kaptchuk. E�cient set

membership proofs using MPC-in-the-head. PoPETs, 2022(2):304–324, April 2022. 7, 9

[GGHAK22b] Aarushi Goel, Ma�hew Green, Mathias Hall-Andersen, and Gabriel Kaptchuk. Stacking sigmas: A

framework to compose Σ-protocols for disjunctions. In Orr Dunkelman and Stefan Dziembowski,

editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 458–487. Springer, Heidelberg,

May / June 2022. 3, 4, 9

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. �adratic span programs

and succinct NIZKs without PCPs. In �omas Johansson and Phong Q. Nguyen, editors, EURO-
CRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013. 3

[GHAH
+

23] Ma�hew Green, Mathias Hall-Andersen, Eric Hennenfent, Gabriel Kaptchuk, Benjamin Perez,

and Gijs Van Laer. E�cient proofs of so�ware exploitability for real-world processors. PoPETs,
2023(1):627–640, January 2023. 3, 4, 5, 6

[GHAKS22] Aarushi Goel, Mathias Hall-Andersen, Gabriel Kaptchuk, and Nicholas Spooner. Speed-stacking:

Fast sublinear zero-knowledge proofs for disjunctions. Cryptology ePrint Archive, Report

2022/1419, 2022. https://eprint.iacr.org/2022/1419. 3, 4

[GK15] Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to leak a secret and spend a

coin. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of

LNCS, pages 253–280. Springer, Heidelberg, April 2015. 4

[GMR85] Sha� Goldwasser, Silvio Micali, and Charles Racko�. �e knowledge complexity of interactive

proof-systems (extended abstract). In 17th ACM STOC, pages 291–304. ACM Press, May 1985. 3

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity and

a methodology of cryptographic protocol design (extended abstract). In 27th FOCS, pages 174–187.

IEEE Computer Society Press, October 1986. 3

[GMY03] Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening zero-knowledge protocols using

signatures. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 177–194. Springer,

Heidelberg, May 2003. 4

[GPR21] Lior Goldberg, Shahar Papini, and Michael Riabzev. Cairo – a turing-complete STARK-friendly

CPU architecture. Cryptology ePrint Archive, Report 2021/1063, 2021. https://eprint.
iacr.org/2021/1063. 5

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-

Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326. Springer,

Heidelberg, May 2016. 3

[GS08] Jens Groth and Amit Sahai. E�cient non-interactive proof systems for bilinear groups. In Nigel P.

Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer, Heidelberg, April

2008. 3

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over lagrange-

bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report

2019/953, 2019. https://eprint.iacr.org/2019/953. 3

[HK20a] David Heath and Vladimir Kolesnikov. A 2.1 KHz zero-knowledge processor with BubbleRAM.

In Jay Liga�i, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages

2055–2074. ACM Press, November 2020. 3, 4, 5

32

https://eprint.iacr.org/2022/1419
https://eprint.iacr.org/2021/1063
https://eprint.iacr.org/2021/1063
https://eprint.iacr.org/2019/953

[HK20b] David Heath and Vladimir Kolesnikov. Stacked garbling for disjunctive zero-knowledge proofs. In

Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages

569–598. Springer, Heidelberg, May 2020. 3, 4

[HK21] David Heath and Vladimir Kolesnikov. PrORAM - fast P (log n) authenticated shares ZK ORAM.

In Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part IV, volume 13093 of LNCS,

pages 495–525. Springer, Heidelberg, December 2021. 3, 4

[hod21] hodor. h�ps://github.com/ma�er-labs/hodor, 2021. 5

[HYDK21] David Heath, Yibin Yang, David Devecsery, and Vladimir Kolesnikov. Zero knowledge for every-

thing and everyone: Fast ZK processor with cached ORAM for ANSI C programs. In 2021 IEEE
Symposium on Security and Privacy, pages 1538–1556. IEEE Computer Society Press, May 2021. 3,

4, 5

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using garbled circuits:

how to prove non-algebraic statements e�ciently. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and

Moti Yung, editors, ACM CCS 2013, pages 955–966. ACM Press, November 2013. 3

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive zero knowledge

with applications to post-quantum signatures. In David Lie, Mohammad Mannan, Michael Backes,

and XiaoFeng Wang, editors, ACM CCS 2018, pages 525–537. ACM Press, October 2018. 3

[Kol18] Vladimir Kolesnikov. Free IF: How to omit inactive branches and implement S-universal garbled

circuit (almost) for free. In �omas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part III,
volume 11274 of LNCS, pages 34–58. Springer, Heidelberg, December 2018. 4

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with optimal

overhead. In Rosario Gennaro and Ma�hew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume

9215 of LNCS, pages 724–741. Springer, Heidelberg, August 2015. 26

[KPPS20] Ahmed E. Kosba, Dimitrios Papadopoulos, Charalampos Papamanthou, and Dawn Song. MIRAGE:

Succinct arguments for randomized algorithms with applications to universal zk-SNARKs. In

Srdjan Capkun and Franziska Roesner, editors, USENIX Security 2020, pages 2129–2146. USENIX

Association, August 2020. 5

[KS22] Abhiram Kothapalli and Srinath Se�y. SuperNova: Proving universal machine executions without

universal circuits. Cryptology ePrint Archive, Report 2022/1758, 2022. https://eprint.
iacr.org/2022/1758. 3, 4, 5, 9

[KS23] Abhiram Kothapalli and Srinath Se�y. Hypernova: Recursive arguments for customizable con-

straint systems. Cryptology ePrint Archive, Paper 2023/573, 2023. https://eprint.iacr.
org/2023/573. 3, 5

[KST22] Abhiram Kothapalli, Srinath Se�y, and Ioanna Tzialla. Nova: Recursive zero-knowledge arguments

from folding schemes. In Yevgeniy Dodis and �omas Shrimpton, editors, CRYPTO 2022, Part IV,

volume 13510 of LNCS, pages 359–388. Springer, Heidelberg, August 2022. 3, 4, 5, 9, 10, 12, 20

[lib18] libSTARK. h�ps://github.com/elibensasson/libstark, 2018. 5

[Lip16] Helger Lipmaa. Prover-e�cient commit-and-prove zero-knowledge SNARKs. In David Pointcheval,

Abderrahmane Nitaj, and Tajjeeddine Rachidi, editors, AFRICACRYPT 16, volume 9646 of LNCS,

pages 185–206. Springer, Heidelberg, April 2016. 5

[MAGABMMT23] Héctor Masip-Ardevol, Marc Guzmán-Albiol, Jordi Baylina-Melé, and Jose Luis Muñoz-Tapia.

estark: Extending starks with arguments. Cryptology ePrint Archive, Paper 2023/474, 2023.

https://eprint.iacr.org/2023/474. 5

33

https://eprint.iacr.org/2022/1758
https://eprint.iacr.org/2022/1758
https://eprint.iacr.org/2023/573
https://eprint.iacr.org/2023/573
https://eprint.iacr.org/2023/474

[MGGR13] Ian Miers, Christina Garman, Ma�hew Green, and Aviel D. Rubin. Zerocoin: Anonymous dis-

tributed E-cash from Bitcoin. In 2013 IEEE Symposium on Security and Privacy, pages 397–411.

IEEE Computer Society Press, May 2013. 7

[MRS17] Payman Mohassel, Mike Rosulek, and Alessandra Scafuro. Sublinear zero-knowledge arguments

for RAM programs. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part I, volume 10210 of LNCS, pages 501–531. Springer, Heidelberg, April / May 2017. 6

[Nef01] C. Andrew Ne�. A veri�able secret shu�e and its application to e-voting. In Michael K. Reiter and

Pierangela Samarati, editors, ACM CCS 2001, pages 116–125. ACM Press, November 2001. 7, 10, 13

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure veri�able secret sharing. In

Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–140. Springer, Heidelberg,

August 1992. 4, 10

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin Boyd, editor,

ASIACRYPT 2001, volume 2248 of LNCS, pages 552–565. Springer, Heidelberg, December 2001. 7

[se19] swisspost evoting. E-voting system 2019. https://gitlab.com/
swisspost-evoting/e-voting-system-2019, 2019. 3

[Set20] Srinath Se�y. Spartan: E�cient and general-purpose zkSNARKs without trusted setup. In Daniele

Micciancio and �omas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages

704–737. Springer, Heidelberg, August 2020. 3

[sie] Sieve intermediate representation. h�ps://github.com/sieve-zk/ir. 26

[WSR
+

15] Riad S. Wahby, Srinath T. V. Se�y, Zuocheng Ren, Andrew J. Blumberg, and Michael Wal�sh.

E�cient RAM and control �ow in veri�able outsourced computation. In NDSS 2015. �e Internet

Society, February 2015. 5

[WYKW21] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolverine: Fast, scalable, and

communication-e�cient zero-knowledge proofs for boolean and arithmetic circuits. In 2021 IEEE
Symposium on Security and Privacy, pages 1074–1091. IEEE Computer Society Press, May 2021. 3,

4

[WYX
+

21] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang. Mystique: E�cient

conversions for zero-knowledge proofs with applications to machine learning. In Michael Bailey

and Rachel Greenstadt, editors, USENIX Security 2021, pages 501–518. USENIX Association, August

2021. 3

[WYY
+

22] Chenkai Weng, Kang Yang, Zhaomin Yang, Xiang Xie, and Xiao Wang. AntMan: Interactive zero-

knowledge proofs with sublinear communication. In Heng Yin, Angelos Stavrou, Cas Cremers,

and Elaine Shi, editors, ACM CCS 2022, pages 2901–2914. ACM Press, November 2022. 3

[YH23] Yibin Yang and David Heath. Two shu�es make a ram: Improved constant overhead zero

knowledge ram. Cryptology ePrint Archive, Paper 2023/1115, 2023. https://eprint.
iacr.org/2023/1115. 5, 36

[YHH
+

23] Yibin Yang, David Heath, Carmit Hazay, Vladimir Kolesnikov, and Muthuramakrishnan Venkitasub-

ramaniam. Batchman and robin: Batched and non-batched branching for interactive zk. Cryptology

ePrint Archive, Paper 2023/1257, 2023. https://eprint.iacr.org/2023/1257. 5, 36

[YHKD22] Yibin Yang, David Heath, Vladimir Kolesnikov, and David Devecsery. Ezee: Epoch parallel zero

knowledge for ansi c. In 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P),
pages 109–123. IEEE, 2022. 3

34

https://gitlab.com/swisspost-evoting/e-voting-system-2019
https://gitlab.com/swisspost-evoting/e-voting-system-2019
https://eprint.iacr.org/2023/1115
https://eprint.iacr.org/2023/1115
https://eprint.iacr.org/2023/1257

[YSWW21] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. �ickSilver: E�cient and a�ordable

zero-knowledge proofs for circuits and polynomials over any �eld. In Giovanni Vigna and Elaine

Shi, editors, ACM CCS 2021, pages 2986–3001. ACM Press, November 2021. 3, 4, 20, 26

[YWL
+

20] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. Ferret: Fast extension for

correlated OT with small communication. In Jay Liga�i, Xinming Ou, Jonathan Katz, and Giovanni

Vigna, editors, ACM CCS 2020, pages 1607–1626. ACM Press, November 2020. 4

[Zav20] Greg Zaverucha. �e picnic signature algorithm. Technical report, 2020. https://github.
com/microsoft/Picnic/raw/master/spec/spec-v3.0.pdf. 3

[ZGK
+

18] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos Papa-

manthou. vRAM: Faster veri�able RAM with program-independent preprocessing. In 2018 IEEE
Symposium on Security and Privacy, pages 908–925. IEEE Computer Society Press, May 2018. 5

35

https://github.com/microsoft/Picnic/raw/master/spec/spec-v3.0.pdf
https://github.com/microsoft/Picnic/raw/master/spec/spec-v3.0.pdf

A Comparison with Concurrent Work
�e concurrent works of Yang et al. [YHH

+
23] [CCS 2023] and Yang and Heath [YH23] [USENIX Security 2024] are

both deeply related to the RAM zero-knowledge approach we develop in this work. More speci�cally, Yang et al.

[YHH
+

23] proposed Batchman and Robin, a pair of techniques that produce interactive zero-knowledge specially

designed for proving a batch of disjunctions (eg. a set of processor circuits). Yang and Heath [YH23] proposed a new

approach for creating zero-knowledge random access memory based on a pair of permutation proofs.

Although not done, it is straight forward to combine these two works to achieve a RAM zero-knowledge protocol

with be�er/similar concrete performance asDora for a small/moderate number of instructions, although the asymptotic

behavior of Dora is be�er. We believe that our work is complementary to these results, as we provide a di�erent set of

techniques that reach the same overarching goal. Additional research is required to identify the best way to combine

these techniques in order to produce performant zero-knowledge proofs of RAM program execution in many se�ings

and it is likely that viewing these three works together will uncover new techniques.

Given the concurrent nature of the works, we give a best-e�ort comparison with Dora below. In general, we �nd

that the microbenchmarks in Dora are slightly slower than the respective performance metrics reported in [YHH
+

23]

and [YH23]. We note, however, that the comparison reduces to concrete constants, and thus even minor engineering

choices could in�uence this comparison.

Batchman and Robin [YHH+23]. Yang et al. [YHH
+

23] begin by proposing Robin, a more communication e�cient

approach to disjunctive, VOLE-based zero-knowledge. �eir key insight is that the prover and veri�er, given a linearly

homomorphic commitment to an extended witness, can compress that satis�ability check of each clause in the

disjunction down to a constant size check (ie. if a commi�ed value is 0). �is protocol requires only a single random

challenge from the veri�er. �ey then propose Batchman, a way to batch many instances of these disjunctive

statements together. �ey accomplish this by having the prover commit to the branch they want to satisfy in each

statement in the batch, and then do a bespoke membership proof to show that the commitment contains a valid

clause.

We note that Batchman does a small linear amount of work in the number of clauses in the disjunction, meaning

Dora’s asymptotic behavior is slightly be�er. However, we believe that using a ZKBag (or the read-only memory

construction from [YH23]), the scheme can be improved to avoid this linear dependence on the number of clauses.

We provide benchmarks for proving disjunctions with Dora on equivalent hardware used to evaluate Batchman

in Figure 10. Additionally, we prove a marginal, per-step timing on this hardware in Figure 11. In order to a�empt to

provide apples-to-apples comparisons of our evaluations, we contacted the authors of [YHH
+

23] to obtain results for

a greater number of clauses (see Figure 9) on a machine similar to the server (Intel Xeon Platinum 8259C)

we used for our benchmarks. Although their setup is slightly di�erent (e.g. consisting of two independent colocated

machines), we observe that for the same bandwidth (1 Gbps) and 215 clauses Dora has very similar performance (see

Figure 10).

Two Shu�les Make a RAM [YH23]. Yang and Heath also recently proposed a new approach for creating

zero-knowledge random access memory. �eir approach, which is very similar to ours, uses two permutation proofs

to ensure that memory is treated consistently. While Dora uses time-stamping to ensure that a prover does not “read

from the future,” Yang and Heath use set membership proofs (which they implement using one of their permutation

proofs). �eir approach yields a circuit for random access memory, while ours results in a protocol. We provide

benchmarks to compare concrete performance of our schemes, but note that the two share are conceptual core such

that we would not anticipate performance to signi�cantly diverge.

We provide benchmarks for memory access with Dora on equivalent hardware used in [YH23] in Figure 12 and

marginal, per-access timing on this hardware in Figure 13. In Figure 10 of [YH23], the authors report ∼ 1.5µs per

memory operation, while Dora’s performance is ∼ 3µs.

36

Gates Per Clause 215 1 Gbps 500 Mbps 100 Mbps 50 Mbps

29 148.62 109.99 36.09 19.42
212 82.88 63.09 21.77 11.84
215 17.88 14.08 5.16 2.89

Figure 9: Batchman performance. Showing the number of disjunction applications per second for 215 clauses with

varying numbers of multiplication gates.

Network Latency: 0 ms

Mul. Per Clause 23 26 29 212 215

26 657.89 657.92 653.18 648.31 479.91
29 246.06 246.49 245.81 242.40 179.95
212 87.37 86.47 85.99 81.70 62.20
215 35.14 34.85 34.38 32.92

Network Latency: 10 ms

Mul. Per Clause 23 26 29 212 215

26 650.10 654.53 650.02 637.90 474.17
29 245.26 245.45 243.59 242.27 179.52
212 86.56 86.26 85.70 81.95 61.89
215 35.17 34.66 34.43 32.91

Network Latency: 100 ms

Mul. Per Clause 23 26 29 212 215

26 474.38 472.92 473.04 464.44 349.20
29 177.09 178.46 177.06 174.42 131.27
212 62.89 62.93 62.64 59.91 45.69
215 25.36 25.36 25.15 24.15

Figure 10: ZK for disjunctions: number of disjunction applications per second. Single-threaded running on Intel
Xeon Platinum 8259C. See Section 8 for details on the experimental setup.

37

Network Latency: 0 ms

Mul. Per Clause 23 26 29 212 215

26 1.50 ms 1.50 ms 1.52 ms 1.52 ms 1.52 ms

29 4.06 ms 4.00 ms 4.00 ms 3.63 ms 4.14 ms

212 11.19 ms 11.38 ms 11.41 ms 11.48 ms 11.71 ms

215 28.22 ms 28.46 ms 28.71 ms 29.21 ms

Network Latency: 10 ms

Mul. Per Clause 23 26 29 212 215

26 1.53 ms 1.51 ms 1.52 ms 1.56 ms 1.55 ms

29 4.05 ms 4.08 ms 4.06 ms 3.55 ms 4.08 ms

212 11.34 ms 11.29 ms 11.34 ms 11.38 ms 11.86 ms

215 28.02 ms 28.59 ms 28.34 ms 28.92 ms

Network Latency: 100 ms

Mul. Per Clause 23 26 29 212 215

26 2.04 ms 2.08 ms 2.08 ms 2.10 ms 2.11 ms

29 5.65 ms 5.55 ms 5.57 ms 5.13 ms 5.65 ms

212 15.57 ms 15.51 ms 15.63 ms 15.60 ms 16.16 ms

215 39.11 ms 39.30 ms 39.22 ms 39.87 ms

Figure 11: ZK for disjunctions: marginal cost (time) for any additional disjunction applications. Single-threaded

running on Intel Xeon Platinum 8259C. See Section 8 for details on the experimental setup.

t = 223 212 214 216 218 220

0 ms 304619 304486 304089 303528 300505

10 ms 294554 294709 294771 293246 290424

100 ms 167889 167567 166947 164563 158010

Figure 12: ZK for memory operations: number of RAM operations (READ/WRITE) per second. Running on Intel
Xeon Platinum 8259C. See Section 8 for details on the experimental setup.

t ∈ {222, 223} 212 214 216 218 220

0 ms 2.89µs 2.90µs 2.89µs 2.89µs 2.88µs
10 ms 2.98µs 2.97µs 2.99µs 2.99µs 2.99µs
100 ms 5.31µs 5.32µs 5.29µs 5.36µs 5.26µs

Figure 13: ZK for memory operations: marginal cost (time) for any additional RAM operations (READ/WRITE).

Running on Intel Xeon Platinum 8259C. See Section 8 for details on the experimental setup.

38

	Introduction
	Our Contributions
	Related Work

	Technical Overview
	Background: Template for RAM Zero-knowledge
	Zero-Knowledge Bag
	Constructing Dora using ZKBag

	Preliminaries
	Linearly Homomorphic Commitments
	Commit-and-Prove Zero-Knowledge
	Relaxed R1CS
	Commit-and-Prove ZK for R1CS
	Multi-Set Equality Proofs

	Zero-Knowledge Bag
	Defining ZKBag
	Realizing ZKBag

	Memory Consistency using ZKBag
	Verifying Processor Execution using ZKBag
	Dora: Zero-Knowledge for RAM Programs
	Implementation and Evaluation
	Processor Instruction Checks
	Memory Checking

	Comparison with Concurrent Work

