
An Algorithmic Approach to (2, 2)-isogenies in the
Theta Model and Applications to Isogeny-based

Cryptography

Pierrick Dartois1,2, Luciano Maino3, Giacomo Pope3,4, and Damien Robert1,2

1 Univ. Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251, F-33400, Talence, France
2 INRIA, IMB, UMR 5251, F-33400, Talence, France

3 University of Bristol, Bristol, United Kingdom
4 NCC Group, Cheltenham, United Kingdom

Abstract. In this paper, we describe an algorithm to compute chains of (2, 2)-
isogenies between products of elliptic curves in the theta model. The description
of the algorithm is split into various subroutines to allow for a precise field
operation counting.
We present a constant time implementation of our algorithm in Rust and an
alternative implementation in SageMath. Our work in SageMath runs ten times
faster than a comparable implementation of an isogeny chain using the Richelot
correspondence. The Rust implementation runs up to forty times faster than
the equivalent isogeny in SageMath and has been designed to be portable for
future research in higher-dimensional isogeny-based cryptography.

1 Introduction

The devastating attacks on SIDH [3,18,34] have highlighted the relevance of study-
ing higher-dimension abelian varieties in isogeny-based cryptography. Following the
attacks, it soon became evident that these new tools would have had applications be-
yond cryptanalysis. For instance, Robert leveraged these techniques both to give a
representation of isogenies in polylogarithmic time [32] and to compute the endomor-
phism ring of ordinary elliptic curves in quantum polynomial time [33].

On a more cryptographic side, the attacks have been used to design new pro-
tocols. Basso, Maino and Pope utilise these cryptanalytic techniques to construct a
trapdoor mechanism, and using standard transformations, this trapdoor is used to
derive a public-key encryption protocol named FESTA [2]. Subsequently, two addi-
tional protocols employing similar ideas to FESTA have appeared [21,26]. One of the
main building blocks underlying these protocols is the computation of chains of (2, 2)-
isogenies between products of two elliptic curves. However, the cryptographic applica-
tion of these isogeny chains extends beyond FESTA-based applications. For instance,
they are at the core of computing the group action in SCALLOP-HD [4], as well as
in novel constructions of isogeny-based weak verifiable delay functions [8] and veri-
fiable random functions [15]. Therefore, improving algorithms to compute chains of
(2, 2)-isogenies between elliptic products is of paramount importance to the progress
of higher-dimensional isogeny-based protocols.

2 P. Dartois, L. Maino, G. Pope, and D. Robert

Prior to this work, the only method to compute (2, 2)-isogenies between elliptic
products relied on ad-hoc procedures for gluing and splitting, and the use of the Rich-
elot correspondence to compute isogenies between Jacobians of genus two hyperelliptic
curves [36,27]. This method can be considered satisfactory for cryptanalytic purposes,
but it is definitely not efficient enough for constructive applications. Indeed, for the
proof-of-concept implementations of [2,26], the two-dimensional isogenies are the bot-
tleneck of the protocol. Richelot isogenies describe (2, 2)-isogenies between Jacobians
of genus two hyperelliptic curves in the Mumford model. Here, kernel elements are
divisors, represented by a pair of univariate polynomials. The arithmetic of the group
elements, as well as isogeny codomain computation and evaluation, require working
in a univariate polynomial ring above the base field. This model makes doubling and
evaluation of points expensive and the implementation of the isogeny chain itself is
significantly more complicated than the more familiar isogeny chains between two el-
liptic curves, which use Vélu’s formulae. A natural question is then to ask whether it
could be possible to use different models that are more amenable to simple and efficient
algorithmic descriptions.

In the literature, another model used to compute isogenies is already known: the
theta model. Despite being suitable for isogenies between elliptic curves, the theta
model has mainly been employed to compute isogenies in higher dimension due to
the lack of alternatives. For instance, Cosset and Robert describe an algorithm for
(ℓ, ℓ)-isogenies in the theta model for odd primes ℓ [5], later improved in [17]. The case
ℓ = 2 has been briefly treated in [30, Proposition 6.3.5] and [31, Remarks 2.10.3, 2.10.7,
2.10.14] but never formalised. The isogeny formulae in the theta model can be seen as a
natural generalisation of Vélu’s formulae in higher dimension. In contrast, the Richelot
correspondence is a very special relationship on hyperelliptic curves which does not
seem to naturally generalise to arbitrary dimension. Nevertheless, the theta model has
not received much attention as many have deemed the algorithms as impractical for
efficient computation.

This paper is dedicated to disprove this claim of impracticality. We aim to demystify
the hard algebraic geometry underpinning the theta model and make it accessible
to cryptographers who want to employ isogenies between higher-dimensional abelian
varieties within their protocols. The end result of our work is a set of concrete algorithms
which describe the necessary pieces for computing isogenies between elliptic products;
written to be particularly amenable to efficient and optimised implementations which
are not all that different in appearance to the one-dimensional isogenies many are more
familiar with.

1.1 Contributions

This paper has been written with the aim of being modular, using an algorithmic ap-
proach. All the formulae in the paper are mainly derived from the duplication formula.
As a result, a reader uniquely interested in the computational results can assume the
validity of the work in Section 2 and follow along the subsequent sections, which contain
the explicit algorithms. From the duplication formula, we first re-obtain the addition
formulae that have already been described in [11] and also give a precise operation
counting in the base field.

An Algorithmic Approach to (2, 2)-isogenies in the Theta Model 3

The algorithm to compute chains of (2, 2)-isogenies between elliptic products is split
into various subroutines. Each subroutine is carefully described in algorithmic boxes;
this allows for a precise field operation counting. The main advantage of this approach
is that both reducible and irreducible abelian surfaces can be described in the same
way. However, some extra care will be devoted to the splitting and gluing case.

The gluing case is the most delicate one, where zero-coordinates must be carefully
handled during both arithmetic and isogeny computations. To recover the theta-model
representation of an elliptic product, we build upon the formulae described in [1] which
constructs theta structures on elliptic curves in the Montgomery model. We efficiently
compute the theta-model representation of an elliptic product using only the dimen-
sion one representation of the theta structures and a few additional multiplications to
recover the product structure. A summary of the costs of the algorithms described in
this paper is shown in Table 1.

Table 1. Table of base field costs of doubling, codomain computation and evaluation for
both generic and gluing isogenies in the theta model. We denote by M,S, I the costs of
multiplication, squaring and inversion of an element in the base field and ignore the cost of
additions. The generic codomain optimisation comes from reusing certain field elements also
required for doubling. These are naturally available when computing long isogeny chains for
a given kernel, and so the optimised cost is the expected cost for an isogeny between elliptic
products.

Isogeny Type Doubling Codomain Evaluation

Generic Optimised

Generic 8S + 6M 8S + 29M + 1I 8S + 9M + 1I 4S + 3M

Gluing 12S + 12M 8S + 13M + 1I 8S + 5M + 1I

Note that unlike the case of the Richelot chain, which requires both a (2, 2)-gluing
and (2, 2)-splitting isogeny, computing the elliptic product at the end of a chain of
isogenies in the theta model is a case of simply converting from one model to another,
which can be done efficiently.

Finally, we offer both a constant time implementation of an isogeny between elliptic
products in the programming language Rust, as well as an alternative implementation
for the computer algebra system SageMath [37]. Both are available at the following
GitHub repository:

https://github.com/ThetaIsogenies/two-isogenies.

The Rust implementation has been written with cryptographic applications in mind
and so has been built to run in constant time, with the appropriate finite field arith-
metic and no secret-dependent conditional branching. It should also be easily portable
to other projects in the future. The SageMath implementation has been designed to
be a drop-in replacement for the work of [27]. As a result, all the protocols whose
implementation relies on this work or the proof-of-concept of [2] can be upgraded to

https://github.com/ThetaIsogenies/two-isogenies

4 P. Dartois, L. Maino, G. Pope, and D. Robert

(2, 2)-isogenies in the theta model with minimal effort. As a use case, we show the
benefit of these algorithms in FESTA in Section 5.3.

We give explicit timings of our implementations in Table 2. In SageMath, our imple-
mentation achieves a ten times speed up for the codomain computation and more than
twenty times speed up for evaluation time compared to [27]. For smaller characteristic,
the Rust code runs approximately forty times faster than the same algorithms written
in SageMath, and more than two times as fast for very large characteristic. Concretely,
on an Intel Core i7-9750H CPU with a clock-speed of 2.6 GHz with turbo-boost dis-
abled, we compute an isogeny chain of length n = 208 between elliptic products over
Fp2 with a 254 bit characteristic in only 2.85 ms.

Roadmap In Section 2, we give a concise summary of the algebraic theory of theta
functions. The most important parts of this section are the duplication formula and
change-of-basis algorithm; the reader willing to accept these two main building blocks
can skip this section entirely. In Section 3, we derive addition formulae from the du-
plication formula. The isogeny formulae are described in Section 4. We discuss our
implementation results in Section 5 and draw some conclusions in Section 6.

Notation Throughout the paper, M,S, I will represent the cost of multiplication,
squaring and inversion of an element in the base field, respectively. In Section 2, we
will introduce the Hadamard transform H; in dimension two,

H(x, y, z, w) =

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ·

x
y
z
w

We also define (θ̃00(P) : θ̃10(P) : θ̃01(P) : θ̃11(P)) = H (θ00(P), θ10(P), θ01(P), θ11(P))
to be the dual coordinates of P , and the ⋆ operator:

(x, y, z, w) ⋆ (x′, y′, z′, w′) = (xx′, yy′, zz′, ww′).

Another useful operator we will introduce in Section 3 is the squaring operator S:

S(x, y, z, w) = (x2, y2, z2, w2).

When computing the cost of inverting k elements, we will use batched inversions.
Batched inversions allow us to invert k elements at a cost of 3(k − 1) multiplications
and only one inversion [20, §10.3.1]. We refer to our implementation for an explicit
description of the algorithm.

Acknowledgments. Huge thanks are given to Thomas Pornin for his advice and
previous collaborations, both of which were instrumental in the design and implemen-
tation of the constant time Rust implementation. We also thank Sabrina Kunzweiler
for fruitful discussion.

An Algorithmic Approach to (2, 2)-isogenies in the Theta Model 5

2 Preliminaries

We assume the reader has some familiarity with (N,N)-isogenies between principally
polarised abelian surfaces; we refer to [18, §2] for a gentle introduction to the sub-
ject. Before giving an explicit description of the algorithm used to compute chains of
(2, 2)-isogenies between products of two elliptic curves, we provide a concise and self-
contained summary of the algebraic theory of theta functions. Using theta functions, it
is possible to perform arithmetic on principally polarised abelian varieties. The reader
willing to assume the validity of the duplication formula and our method to perform a
change of basis can skip this section entirely and use Algorithm 2 as a black box.

For all the other readers, in what follows, we utilise the language of Mumford’s
theory to provide a summary of the algebraic theory of theta functions [22,23,24]. We
will first briefly recapitulate Mumford’s results, then recall the Duplication formula,
which will allow us to describe isogeny formulae between principally polarised abelian
surfaces, and finally provide a formula for the change of basis in the case of a product
of two elliptic curves, which is the case analysed in the paper.

2.1 Mumford’s Theory

We refer to [19] for background material on abelian varieties and line bundles. Let A
be an abelian variety defined over a field k whose characteristic is different from 2,
and let L be a line bundle on A; we further assume that L is a totally symmetric line
bundle [22, §2]. We define K(L) to be the set of points x such that the pullback of L
under the translation-by-x map Tx is isomorphic to L, i.e.

K(L) := {x ∈ A |T ∗
xL ≃ L} .

Given a point x ∈ K(L), the isomorphism between L and T ∗
xL is in general not

unique. Also, given x, y ∈ K(L), together with two isomorphisms ϕx : L ∼−→ T ∗
xL and

ϕy : L ∼−→ T ∗
yL, it is possible to define an isomorphism between L and T ∗

x+yL as follows:

L ϕx−−→ T ∗
xL

T∗
xϕy−−−→ T ∗

x (T
∗
yL) = T ∗

x+yL.

This observation led Mumford to define the group

G(L) := {(x, ϕx) |x ∈ K(L), ϕx : L ∼−→ T ∗
xL} ,

where (x, ϕx) · (y, ϕy) = (x+ y, T ∗
xϕy ◦ϕx). We will refer to G(L) as the Mumford theta

group. The Mumford theta group fits in the exact sequence

0 → k̄∗ → G(L) → K(L) → 0.

Let f : A → B be an isogeny between abelian varieties, let L be a line bundle on
A and M a line bundle on B. Suppose there exists an isomorphism α : f∗M ∼−→ L.
Then, one can prove that Ker(f) ⊂ K(L). On the other hand, given K ⊂ K(L), it is
not generally true that the isogeny f ′ : A → B of kernel K generates an isomorphism
between L and (f ′)∗M′ for some line bundle M′ on B. This is exactly true when K

6 P. Dartois, L. Maino, G. Pope, and D. Robert

admits a level subgroup K̃ of G(L); a subgroup K̃ of G(L) such that its image under
the forgetful map (x, ϕx) → x coincides with K.

To understand when a subgroup K ⊂ K(L) admits a level subgroup, Mumford
introduces a pairing on K(L): define eL : K(L) × K(L) → k̄∗ to be the pairing such
that eL(x, y) = x̃ · ỹ · x̃−1 · ỹ−1, where x̃ is any lift of x to G(L).5 Then, there exists
a level subgroup K̃ over K if and only if eL ≡ 1 on K × K. Also, (K(L), eL) is a
symplectic space, which implies that there exists a decomposition into two maximal
isotropic groups K(L) = K(L)1 ⊕ K(L)2. Let δ := (d1, . . . , dg) be the elementary
divisors of K(L)1 ≃ K(L)2. We say that L is of type δ. Define

K(δ) :=

g⊕
i=1

Z⧸diZ, H(δ) := K(δ)⊕ K̂(δ), G(δ) := k̄∗ ×H(δ),

where K̂(δ) := Hom
(
K(δ), k̄∗

)
. As K(L), H(δ) can be equipped with a pairing deriving

from the duality: for all (x, χ), (x′, χ′) ∈ H(δ)

eδ((x, χ), (x, χ
′)) = χ′(x)χ(x′)−1.

The set G(δ) is endowed with a group structure and is called Heisenberg group. This
group structure is given explicitly by: for all (α, x, χ), (α′, x′, χ′) ∈ G(δ)

(α, x, χ) · (α′, x′, χ′) := (αα′χ′(x), x+ x′, χ · χ′).

The Heisenberg group G(δ) has a unique irreducible representation which acts trivially
with k̄∗; such a representation is V (δ) :=

{
g : K(δ) → k̄

}
. On the other hand, G(L) acts

on the space of the global sections Γ (A,L), and Γ (A,L) is an irreducible representation
for G(L). We denote the action of G(L) on Γ (A,L) simply by “·”.

A theta structure ΘL of type δ is an isomorphism of central extensions from G(δ)
to G(L) fitting in the diagram:

0 k̄∗ G(δ) H(δ) 0

0 k̄∗ G(L) K(L) 0

ΘL Θ
L

Considering the horizontal arrows as the natural maps, the isomorphism ΘL induces
another isomorphism Θ

L
between H(δ) and K(L), which is symplectic for the pairings

eδ and eL. As a result, this isomorphism defines a symplectic decomposition on K(L) =
K(L)1 ⊕ K(L)2, where K(L)1 := Θ

L
(K(δ)) and K(L)2 := Θ

L
(K̂(δ)). Using such a

decomposition, we will see below that it is possible to identify a basis (θx)x∈K(L)1
for

the space of global sections Γ (A,L). Since ΘL restricts to the identity with k̄∗, Γ (A,L)
is an irreducible representation of G(δ), which acts trivially with k̄∗. Also, since V (δ) is
5 Technically, eL maps onto G(L). However, the first component of eL(x, y) is the identity

on the abelian variety, whereas the second one is an automorphism of L, and the group of
such automorphisms can be identified with k̄∗.

An Algorithmic Approach to (2, 2)-isogenies in the Theta Model 7

the unique irreducible representation of H(δ), there exists (up to constants) a unique
isomorphism β : Γ (A,L) ∼−→ V (δ).

The space V (δ) admits a canonical basis given by the Kronecker delta functions
(δi)i∈K(δ) on K(δ). Via β, it is possible to transfer that basis to a basis (θi)i∈K(L)1

on
Γ (A,L); the functions θi are called theta coordinates, and, if d1 = . . . = dg = n, these
theta coordinates are called theta coordinates of level n. Using theta coordinates, it is
possible to represent abelian varieties via an embedding into the projective space [25,
Ch. II, Theorem 1.3]. In particular, the abelian variety A can be completely described
in the projective space via the evaluation of theta coordinates at the identity using the
Riemann relations; we call the projective point

(
θi(0

A)
)
i∈K(L)1

theta-null point. Given
a point P ∈ A and T ∈ K(L), we can efficiently represent P + T in theta coordinates:
if T corresponds to (s, χ) ∈ H(δ),

(θi(P + T))i = (χ(i)θi+s(P))i . (1)

This remark will allow us to compute (2, 2)-isogenies using projective coordinates.

Example 1. Let (a : b : c : d) be a theta-null point of level 2 obtained from the theta
structure ΘL. Implicitly, we have a symplectic basis (S1, S2, T1, T2) of the 2-torsion. Let
i1 = ([1], [0]) ∈ K(2, 2), i2 = ([1], [0]) ∈ K(2, 2), χ1 ∈ K̂(2, 2) such that χ1(i1) = −1

and χ1(i2) = 1, and χ2 ∈ K̂(2, 2) such that χ2(i1) = 1 and χ2(i2) = −1. Then, let us
define S1 = Θ

L
(i1), S2 = Θ

L
(i2), T1 = Θ

L
(χ1) and T2 = Θ

L
(χ2).

If P = (x : y : z : t), we have S1 = (b : a : d : c) and P + S1 = (y : x : t : z),
S2 = (c : d : a : b) and P + S2 = (z : t : x : y), T1 = (a : −b : c : −d) and
P + T1 = (x : −y : z : −t), T2 = (a : b : −c : −d) and P + T2 = (x : y : −z : −t).

Another fundamental ingredient is the change of theta structure given by Heisenberg
group automorphisms. A Heisenberg group automorphism is an automorphism of G(δ)
acting as the identity on k̄∗. In particular, such an automorphism induces a symplectic
automorphism on H(δ) with respect to its natural pairing eδ. The most fundamental
example is the Hadamard Transform, which is the automorphism that swaps K(δ) and
K̂(δ).

Hadamard Transform Let (θi)i be some theta coordinates on A. The action of
the Hadamard transform on (θi)i is described in [31, Eq. 2.4]. The resulting theta
coordinates after this transform are called the dual theta coordinates; we will denote
such coordinates by (θ̃i)i. In what follows, we will use the Hadamard transform on
level-2 theta coordinates. For the sake of clarity, we explicitly state the action of this
symplectic automorphism in dimension one and two.

First, let us fix an ordering for theta coordinates. In dimension one, there are only
two theta coordinates. Whenever we write (x : y) to represent a point P in theta
coordinates, we actually mean (θ0(P) : θ1(P)). Hence, specialising [31, Eq. 2.4], we
obtain (θ̃0(P) : θ̃1(P)) = (x+ y : x− y). In dimension two, we represent a point P in
theta coordinates by a tuple (x : y : z : w), where we fix the ordering (θ00(P) : θ10(P) :

8 P. Dartois, L. Maino, G. Pope, and D. Robert

θ01(P) : θ11(P)). 6 Specialising [31, Eq. 2.4], we have

θ̃00(P) = x+ y + z + w,

θ̃10(P) = x− y + z − w,

θ̃01(P) = x+ y − z − w,

θ̃11(P) = x− y − z + w.

Henceforth, we will use the operator H to refer to the action of the Hadamard transform
on theta coordinates. Finally, we remark that H

(
H

(
(θAi)i

))
= (θAi)i.

2.2 Duplication Formula

Let (θAi)i be theta coordinates of level 2 on A. Implicitly, we have a symplectic de-
composition of A[2] = K(L) = K(L)1 ⊕ K(L)2 — from now on, we will drop the
dependence on the line bundle L and simply write A[2] = K1 ⊕K2. Let ⟨S1, . . . , Sg⟩
be the canonical basis induced by Θ

L
(K(2, . . . , 2)) and ⟨T1, . . . , Tg⟩ the canonical basis

induced by Θ
L
(K̂(2, . . . , 2)), which means K1 = ⟨S1, . . . , Sg⟩ and K2 = ⟨T1, . . . , Tg⟩.

Now, let us consider the isogeny f : A → B, where ker(f) = K2. The abelian variety
B is principally polarised and in turn can be endowed with a type-(2, . . . , 2) theta
structure, whose theta coordinates are denoted by (θBi)i. Also, let us define ⋆ to be the
operator such that (xi)i ⋆ (yi)i = (xiyi)i. Then, a consequence of the isogeny theorem
[22, Theorem 4, p. 302] (see also [30, Theorem 3.6.4]) and duplication formula [22,
Equation A, p. 332] shows that:(

θAi (P +Q)
)
i
⋆
(
θAi (P −Q)

)
i
= H

((
θ̃Bi (f(P))

)
i
⋆
(
θ̃Bi (f(Q))

)
i

)
, (2)

H
((
θAi (f̃(R))

)
i
⋆
(
θAi (f̃(S))

)
i

)
=

(
θ̃Bi (R+ S)

)
i
⋆
(
θ̃Bi (R− S)

)
i
, (3)

where f̃ denotes the dual isogeny of f and (θ̃Bi)i are the dual theta coordinates of (θBi)i.

2.3 Change of Basis

We now focus on products of two elliptic curves and explain how to endow these
products with a theta structure of type (2, 2). First, let us recall that every theta
structure of type (2, . . . , 2) comes from a symplectic basis of the 4-torsion [22, Remark 4,
p. 319]. Let E1 and E2 be two elliptic curves. The natural candidate for a theta structure
on E1×E2 is the product theta structure, which is obtained via the combination of the
theta structures on elliptic curves [7, Lemma F.3.1].

Proposition 2. Let (ai : bi) be a theta-null points on Ei induced by a symplectic 4-
torsion basis ⟨ei, fi⟩, for i = 1, 2. Then, (a1a2 : b1a2 : a1b2 : b1b2) is a theta-null point
for E1×E2 induced by the symplectic 4-torsion basis ⟨(e1, 0), (0, e2)⟩⊕⟨(f1, 0), (0, f2)⟩.
6 The subscript ij refers to the pair ([i], [j]) ∈ K(2, 2).

An Algorithmic Approach to (2, 2)-isogenies in the Theta Model 9

However, in the next sections, we might need to work with theta structures as-
sociated to a different symplectic 4-torsion basis. The change-of-basis algorithm we
describe here is a generalisation of the case described in [1], which uses a different
approach based on the ramification of the Kummer line. We briefly describe the idea
below and adapt it to the case of products of two elliptic curves.

Let E be an elliptic curve, and ⟨T ′
1, T

′
2⟩ a basis of the 4-torsion. We explain how to

compute the theta-null point associated to this basis. Given a point T ∈ E[2], there
are two symmetric elements ±g above T in the theta group G (L(2(0E))). We can fix
a symmetric element via a point T ′ of 4-torsion above T . Let T1 = 2T ′

1, T2 = 2T ′
2, and

let g1, g2 be these elements associated to T ′
1 and T ′

2, respectively. By definition of the
compatible theta basis, the theta coordinate θ0 must be invariant under the action of
g2, and θ1 = g1 ·θ0. The coordinate θ0 can be computed as the trace of a global section
s ∈ Γ (E,L(2(0E))), provided it is not equal to zero, i.e. θ0 = id · s+ g2 · s ̸= 0.

Working on a Montgomery curve in Weierstrass coordinates, we have a canonical
point of 4-torsion T ′ = (1 : 1) above T = (0 : 1) that induces the canonical element
g of the theta group acting by g · (X,Z) = (Z,X). Indeed, translation by T is given
by (X : Z) 7→ (Z : X), and the two symmetric elements above this translation act by
(X,Z) 7→ (±Z,±X) since they have order 2. The element gT ′ in G (L(2(0E))) fixed
by T ′ corresponds to ±g. But since g leaves invariant any affine lift of T ′, we have
gT ′ = g.

For a general elliptic curve, if T ′ = (x, y, z) is a point of 4-torsion and 2T ′ = T =
(u, v, w), we can map T ′ to the Montgomery point (1 : 1) via the linear transformation
(in the Kummer line): M : (X : Z) 7→ (X ′ : Z ′) = (zwX−zuZ : (xw−zu)Z). It follows
that the action of gT ′ is given by

MTUMT−1
=

(
uz/(wx− uz) zw/(wx− uz)

(−wx2 + 2uzx)/(−zwx+ uz2) −uz/(wx− uz)

)
,

with M =

(
wz −zu
0 xw − uz

)
, U =

(
0 1
1 0

)
. This computation is the output of Algorithm 1.

Example 3. Using previous notation, on a Montgomery curve we have T ′
2 = (−1 : 1),

which acts by g2 · (X,Z) = (−Z,−X). Taking the trace of X under this action we get
θ0 = id ·X + g2 ·X = X − Z.

Let T ′
1 = (a + b : a − b) be another point of 4-torsion; its double is then (a2 + b2 :

a2 − b2). Let x = a+ b, z = a− b, u = a2 + b2, w = a2 − b2. We compute θ1 = g1 · θ0 =
g1 · (X−Z) = (uz−wxx/z+2ux)/(wx−uz)X+z(w+u)/(wx−uz)Z = b/aX+b/aZ.
We recover the same conversion formula between Montgomery and theta coordinates
as obtained in [1].

We can use the same strategy to compute the theta-null point associated to a
symplectic basis of the 4-torsion on a product of elliptic curves. If T ′ = (T ′

1, T
′
2) ∈

E1 ×E2 is a point of 4-torsion, the associated element gT ′ is given by gT ′ = gT ′
1
⊗ gT ′

2
.

We can take θ0 as the trace of X1⊗X2, i.e. θ0 =
∑

i gi ·X1⊗X2 =
∑

i gi,1 ·X1⊗gi,2 ·X2,
where the gi = gi,1⊗gi,2’s are the elements above K2 fixed by the 4-torsion. The other
theta coordinates are computed via the action of the elements above K1 on θ0.

10 P. Dartois, L. Maino, G. Pope, and D. Robert

Algorithm 1 Action by Translation
Input: A point P ′ in the 4-torsion of the Kummer line of an elliptic curve
Output: The 2× 2 submatrix M with coefficients mij describing the action of gP ′ lifting the

action by translation of P = 2P ′.
1: P ← [2]P ′ (▷)Cost: 3M + 2S
2: Let P ′ = (X : Z) and (U : W) = P
3: WX,WZ,UX,UZ ←W ·X,W · Z,U ·X,U · Z
4: δ ←WX − UZ
5: Compute δ−1, Z−1 via batched inversions
6: m00 ← −UZ · δ−1

7: m01 ← −WZ · δ−1

8: m10 ← UX · δ−1 −X · Z−1

9: m11 ← −m00

10: return M (▷)Total cost: 14M + 2S + 1I

In practice, in the algorithm to compute the (2n, 2n)-isogeny f : E1×E2 → E′
1×E′

2,
we only have access to ker(f)[4] = ⟨T ′

1, T
′
2⟩ and not to a complete symplectic torsion

basis of E1 × E2[4]; let T ′
1 = (P1, P2) and T ′

2 = (Q1, Q2). To bypass this problem, we
define S′

1 = (0, Q2) and S′
2 = (P1, 0). Then, K1 = ⟨S1, S2⟩ and K2 = ⟨T1, T2⟩ , where

Si = [2]S′
i and Ti = [2]T ′

i . We use the symplectic 4-torsion basis ⟨S′
1, S

′
2, T

′
1, T

′
2⟩ when

endowing E1×E2 with a theta structure. We summarise this procedure in Algorithm 2.
The output of this algorithm is a matrix N that allows for a change of coordinates
as follows. If R = (R1, R2) ∈ E1 × E2 is a point in Weierstrass coordinates for the
Montgomery elliptic curves, where Ri = (Xi : Zi), the image of R in theta coordinates
is given by

N ·

X1 ·X2

X1 · Z2

Z1 ·X2

Z1 · Z2

 .

Remark 4. In Algorithm 2, it is possible to optimise the computation of the four inver-
sions required in the four calls to Algorithm 1 in lines 1, 2, 3 and 4 by using a unique
batched inversion. We decided not to show this optimisation in Algorithm 2 for the
sake of a cleaner exposition.

3 Addition Formulae

In this section, we derive addition formulae using the equations in Subsection 2.2. These
formulae have already been described in dimension one [1] and dimension two [11].
However, we prefer to restate them in dimension two to highlight the connection with
(2, 2)-isogenies and provide explicit operation counting. In what follows, we use the
same notation as in Subsection 2.2.

Let P,Q ∈ A and suppose we have (θAi (P −Q))i. To compute (θ(P +Q)i)i, we can
use Equation 2, but first we need to recover

(
θ̃Bi (f(P))

)
i
and

(
θ̃Bi (f(Q))

)
i
, which can

An Algorithmic Approach to (2, 2)-isogenies in the Theta Model 11

Algorithm 2 Change of Basis
Input: The points (P ′

1, P
′
2) and (Q′

1, Q
′
2) in the four-torsion of E1 × E2 below the kernel.

Output: The 4× 4 change of basis matrix N .
1: G1 ← action_by_translation(P ′

1) (▷)Algorithm 1: Cost: 56M + 8S + 4I
2: G2 ← action_by_translation(P ′

2)
3: H1 ← action_by_translation(Q′

1)
4: H2 ← action_by_translation(Q′

2)
5: t00|1 ← g00|1 · h00|1 + g01|1 · h10|1 (▷)Compute the first column of G1 ×H1

6: t10|1 ← g10|1 · h00|1 + g11|1 · h10|1
7: t00|2 ← g00|2 · h00|2 + g01|2 · h10|2 (▷)Compute the first column of G2 ×H2

8: t10|2 ← g10|2 · h00|2 + g11|2 · h10|2
9: n00 ← g00|1 · g00|2 + h00|1 · h00|2 + t00|1 · t00|2 + 1 (▷)Compute the trace for the first row

10: n01 ← g00|1 · g10|2 + h00|1 · h10|2 + t00|1 · t10|2
11: n02 ← g10|1 · g00|2 + h10|1 · h00|2 + t10|1 · t00|2
12: n03 ← g10|1 · g10|2 + h10|1 · h10|2 + t10|1 · t10|2
13: n10 ← h00|2 · n00 + h01|2 · n01 (▷)Compute the action of (0, Q′

2) for the second row
14: n11 ← h10|2 · n00 + h11|2 · n01

15: n12 ← h00|2 · n02 + h01|2 · n03

16: n13 ← h10|2 · n02 + h11|2 · n03

17: n20 ← g00|1 · n00 + g01|1 · n02 (▷)Compute the action of (P ′
1, 0) for the third row

18: n21 ← g00|1 · n01 + g01|1 · n03

19: n22 ← g10|1 · n00 + g11|1 · n02

20: n23 ← g10|1 · n01 + g11|1 · n03

21: n30 ← g00|1 · n10 + g01|1 · n12 (▷)Compute the action of (P ′
1, Q

′
2) for the final row

22: n31 ← g00|1 · n11 + g01|1 · n13

23: n32 ← g10|1 · n10 + g11|1 · n12

24: n33 ← g10|1 · n11 + g11|1 · n13

25: return N (▷)Total cost: 100M + 8S + 4I

be computed as (
θ̃Bi (f(P))

)
i
⋆
(
θ̃Bi (0)

)
i
= H

((
θAi (P)

)
i
⋆
(
θAi (P)

)
i

)
,

and similarly for
(
θ̃Bi (f(Q))

)
i
. The quantity

(
θ̃Bi (0)

)
i

is actually not needed, as we

only need
(
θ̃Bi (0)

)
i
⋆
(
θ̃Bi (0)

)
i

if we use(
θ̃Bi (f(P))

)
i
⋆
(
θ̃Bi (0)

)
i
⋆
(
θ̃Bi (f(Q))

)
i
⋆
(
θ̃Bi (0)

)
i
,

to compute
(
θ̃Bi (f(P))

)
i
⋆
(
θ̃Bi (f(Q))

)
i
. For the sake of compactness, we introduce the

operator S that, on input
(
θAi (P)

)
i
, returns

(
θAi (P)

)
i
⋆
(
θAi (P)

)
i
. We formalise this

procedure in Algorithm 3.
Let (a : b : c : d) be a theta-null point for A and define (α : β : γ : δ) to be the dual

coordinates (θ̃Bi (0))i of the theta-null point (θB(0)i)i. For simplicity, let us assume that
α ·β ·γ ·δ ̸= 0; the (rare) case when one of the dual coordinates is zero is briefly treated
in Remark 5. Equation 2 proves that (α2 : β2 : γ2 : δ2) = H(a2 : b2 : c2 : d2). However,

12 P. Dartois, L. Maino, G. Pope, and D. Robert

since we are working projectively, we need to use the quantities (α2/β2, α2/γ2, α2/δ2)
and (a/b, a/c, a/d), which can we computed via batched inversions.

Algorithm 3 Differential addition
Input: The theta coordinates (xP : yP : zP : wP) of P , the theta coordinates (xQ : yQ :

zQ : wQ) of Q, the theta coordinates (xP−Q : yP−Q : zP−Q : wP−Q) of P − Q and
(λ̃1, λ̃2, λ̃3) = (α2/β2, α2/γ2, α2/δ2).

Output: The theta coordinates (xP+Q : yP+Q : zP+Q : wP+Q) of P +Q.
1: XP , YP , ZP ,WP ← H ◦ S(xP , yP , zP , wP)
2: XQ, YQ, ZQ,WQ ← H ◦ S(xQ, yQ, zQ, wQ)
3: Xf(P)f(Q) ← XP ·XQ

4: Yf(P)f(Q) ← λ̃1 · YP · YQ

5: Zf(P)f(Q) ← λ̃2 · ZP · ZQ

6: Wf(P)f(Q) ← λ̃3 ·WP ·WQ

7: XPQ, YPQ, ZPQ,WPQ ← H(Xf(P)f(Q), Yf(P)f(Q), Zf(P)f(Q),Wf(P)f(Q))
8: xyP−Q, ztP−Q ← xP−Q · yP−Q, zP−Q · tP−Q

9: xP+Q ← XPQ · ztP−Q · yP−Q

10: yP+Q ← YPQ · ztP−Q · xP−Q

11: zP+Q ← ZPQ · xyP−Q · wP−Q

12: wP+Q ←WPQ · xyP−Q · zP−Q

13: return xP+Q, yP+Q, zP+Q, wP+Q (▷)Total cost: 8S + 17M

To obtain an algorithm to double a point P ∈ A, we proceed as before with the
only difference that we only need (a/b, a/c, a/d). We provide a detailed description of
the doubling in Algorithm 4.

Algorithm 4 Doubling
Input: The theta coordinates (xP : yP : zP : wP) of P , (λ̃1, λ̃2, λ̃3) = (α2/β2, α2/γ2, α2/δ2)

and (λ1, λ2, λ3) = (a/b, a/c, a/d).
Output: The theta coordinates (x2P : y2P : z2P : w2P) of 2P .
1: XP , YP , ZP ,WP ← H ◦ S(xP , yP , zP , wP)
2: X2

f(P) ← XP ·XP

3: Y 2
f(P) ← λ̃1 · YP · YP

4: Z2
f(P) ← λ̃2 · ZP · ZP

5: W 2
f(P) ← λ̃3 ·WP ·WP

6: X ′
P , Y

′
P , Z

′
P ,W

′
P ← H(X2

f(P), Y
2
f(P), Z

2
f(P),W

2
f(P))

7: return X ′
P , λ1 · Y ′

P , λ2 · Z′
P , λ3 ·W ′

P (▷)Total cost: 8S + 6M

Remark 5. In practice, we will always be in the case that α ·β ·γ · δ ̸= 0. We may incur
in such an exception when we are working on a product of elliptic curves but with a non
product theta structure (see [35, § 16.4]): this is due to the fact we may perform a change
of basis as in Subsection 2.3 to put the kernel in the “right position” – see Section 4.1.

An Algorithmic Approach to (2, 2)-isogenies in the Theta Model 13

In this case we do not have to worry since we could perform arithmetic on the elliptic
curves and then convert to the theta model afterwards. However, if one wants to deal
with this case in the theta model, one may first act with a symplectic automorphism ψ
sending the dual theta-null point to a all-non-zero one, use the addition formulae and
eventually switch back to the former theta structure acting by ψ−1.

To compute (2n, 2n)-isogenies, we will only use doublings. Algorithm 4 works only
if a · b · c ·d ̸= 0. The case a · b · c ·d = 0 can happen only if the codomain B is a product
of elliptic curves with non product theta structure by [35, § 16.4]. In this case, we can
use the same solution as above, by using ψ = H as our symplectic transformation.

4 The Isogeny Formula

In this section, we explain how to derive an isogeny formula for (2, 2)-isogenies from
Subsection 2.2. Ultimately, we focus on isogenies between products of two elliptic
curves. However, we first show how to compute isogenies when we have an abelian
surface already endowed with a theta structure compatible with the kernel of the (2, 2)-
isogeny we want to compute.

Let A be an abelian surface endowed with a theta structure of type (2, 2), and
let ⟨S1, S2, T1, T2⟩ be the canonical symplectic basis associated with the symplectic
decomposition A[2] = K1 ⊕K2; to be more specific, K1 = ⟨S1, S2⟩ and K2 = ⟨T1, T2⟩.
Let us recall that a theta-null point is fixed by a symplectic basis of the 4-torsion [22,
Remark 4, p. 319], and let ⟨S′

1, S
′
2, T

′
1, T

′
2⟩ be such a basis; in particular 2S′

i = Si and
2T ′

i = Ti. Our goal is to compute a (2, 2)-isogeny f : A→ B. If the kernel ker f does not
coincide with K2, we can always apply a change of basis as described in Subsection 2.3.
Hence, we can assume that ker f = K2.

Before outlining the explicit procedure, let us assume that we have T ′′
1 , T

′′
2 such that

⟨T ′′
1 , T

′′
2 ⟩[4] = ⟨T ′

1, T
′
2⟩, 2T ′′

i = T ′
i and their Weil pairing e8(T ′′

1 , T
′′
2) = 1.7 These condi-

tions are not restrictive since they are naturally verified for chains of (2, 2)-isogenies,
which are our end goal. In particular, ⟨f(T ′′

1), f(T
′′
2)⟩ are two of the 4-torsion points

inducing the theta-null point on B laying above the two 2-torsion points in K2. Hence,
the points ⟨f(T ′′

1), f(T
′′
2)⟩ lay above the canonical points in K1 for the dual coordinates.

Let us remark that f(T ′′
i) + 2f(T ′′

i) = −f(T ′′
i). So, as highlighted in Equation 1

and since we are on the Kummer, we have(
θ̃B00(f(T

′′
1)) : θ̃

B
10(f(T

′′
1)) : θ̃

B
01(f(T

′′
1)) : θ̃

B
11(f(T

′′
1))

)
=(

θ̃B10(f(T
′′
1)) : θ̃

B
00(f(T

′′
1)) : θ̃

B
11(f(T

′′
1)) : θ̃

B
01(f(T

′′
1))

)
,

and (
θ̃B00(f(T

′′
2)) : θ̃

B
10(f(T

′′
2)) : θ̃

B
01(f(T

′′
2)) : θ̃

B
11(f(T

′′
2))

)
=(

θ̃B01(f(T
′′
2)) : θ̃

B
11(f(T

′′
2)) : θ̃

B
00(f(T

′′
2)) : θ̃

B
10(f(T

′′
2))

)
.

7 Such a subgroup ⟨T ′′
1 , T

′′
2 ⟩ is said to be isotropic.

14 P. Dartois, L. Maino, G. Pope, and D. Robert

Define (α : β : γ : δ) to be the dual theta-null point of B, i.e.(
θ̃B00(0) : θ̃

B
10(0) : θ̃

B
01(0) : θ̃

B
11(0)

)
= (α : β : γ : δ).

Then, combining Equation 2 with the above observations, we have

H ◦ S(θA00(T ′′
1), θ

A
10(T

′′
1), θ

A
01(T

′′
1), θ

A
11(T

′′
1)) = (xα, xβ, yγ, yδ),

H ◦ S(θA00(T ′′
2), θ

A
10(T

′′
2), θ

A
01(T

′′
2), θ

A
11(T

′′
2)) = (zα,wβ, zγ, wδ),

for some unknown x, y, z, t. Hence, we can recover the dual theta-null point (α : β : γ :
δ) for B, and in turn its theta-null point H(α : β : γ : δ).

Remark 6 (Technical Remark). It is possible to prove that all x, y, z, t must be different
from zero. If it had not been the case, we would have ended up with a theta-null point
with at least two zero coordinates. This is a contradiction since it implies we have more
than a zero even theta-null coordinate of level (2, 2) – see Subsection “Gluing Isogeny”
for the definition of level-(2, 2) theta coordinates.

In general, the dual theta-null point (α : β : γ : δ) has all coordinates different
from zero. The only exceptions can be found for certain cases of the gluing isogeny
– we will discuss how to handle this case in Subsection 4.1. Once we have computed
(α : β : γ : δ), we can evaluate the isogeny f at any point P using (again) Equa-
tion 2. First, we compute (x′, y′, z′, w′) = H ◦ S

(
(θAi (P))i

)
. Then (θBi (f(P)))i =

H(α−1x′, β−1y′, γ−1z′, δ−1w′). We give a detailed description in Algorithms 5 and 6.

Algorithm 5 Codomain
Input: Theta coordinates (xT ′′

1
: yT ′′

1
: zT ′′

1
: wT ′′

1
) of T ′′

1 , theta coordinates (xT ′′
2
: yT ′′

2
: zT ′′

2
:

wT ′′
2
) of T ′′

2 , where T ′′
i is a 8-torsion point laying above the K2 part of the symplectic

4-torsion basis inducing the theta-null point.
Output: Dual theta-null point (1 : β : γ : δ), the inverse of the dual theta-null point (1 :

β−1 : γ−1 : δ−1) and the theta-null point (a′ : b′ : c′ : d′) on B. (▷)Case β · γ · δ ̸= 0
1: (xα, xβ, yγ, yδ)← H ◦ S(xT ′′

1
, yT ′′

1
, zT ′′

1
, wT ′′

1
)

2: (zα,wβ, zγ, wδ)← H ◦ S(xT ′′
2
, yT ′′

2
, zT ′′

2
, wT ′′

2
)

3: Compute (xα)−1, (xβ)−1, (yγ)−1, (yδ)−1, (zα)−1, (wβ)−1, (zγ)−1, (wδ)−1 via batched in-
versions.

4: β ← xβ · (xα)−1

5: γ ← zγ · (zα)−1

6: δ ← wδ · (wβ)−1 · β
7: β−1 ← xα · (xβ)−1

8: γ−1 ← zα · (zγ)−1

9: δ−1 ← wβ · (wδ)−1 · β−1

10: (a′, b′, c′, d′)← H(1, β, γ, δ)
11: return (1, β, γ, δ), (1, β−1, γ−1, δ−1), (a′, b′, c′, d′) (▷)Total cost: 8S + 29M + 1I

An Algorithmic Approach to (2, 2)-isogenies in the Theta Model 15

Algorithm 6 Evaluation
Input: Theta coordinates (xP : yP : zP : wP) of P and the dual theta-null point (1 : β−1 :

γ−1 : δ−1) on B.
Output: Theta coordinates (xf(P) : yf(P) : zf(P) : wf(P)) of f(P). (▷)Case β · γ · δ ̸= 0
1: (XP , YP , ZP ,WP)← H ◦ S(xP , yP , zP , wP)
2: (X ′

f(P), Y
′
f(P), Z

′
f(P),W

′
f(P))← (XP , β

−1 · YP , γ
−1 · ZP , δ

−1 ·WP)
3: (xf(P), yf(P), zf(P), wf(P))← H(X ′

f(P), Y
′
f(P), Z

′
f(P),W

′
f(P))

4: return (xf(P), yf(P), zf(P), wf(P)) (▷)Total cost: 4S+ 3M

Remark 7. As we explained in Section 3, the inverse squared dual theta-null point
(α2/β2, α2/γ2, α2/δ2) are also needed for the addition and doubling formulae. If such
a quantity has already been computed, we can use it to lower down the cost in Algo-
rithm 5. In line 3, we need only to invert three elements, namely xα, zα,wβ. Then, to
obtain (β−1, γ−1, δ−1), we can simply multiply component-wise (α2/β2, α2/γ2, α2/δ2)
by (β, γ, δ). The total cost in this optimised case is 8S + 9M + 1I.

4.1 Computing (2n, 2n)-isogenies between Elliptic Products

Now, we specialise to the case of a (2n, 2n)-isogeny f : E1 × E2 → E′
1 × E′

2 between
elliptic products, which will be computed as a chain of (2, 2)-isogenies. Let K be the
kernel of this isogeny and suppose that we have two points of order 2n+2 on E1 × E2

above K forming an isotropic group. To apply the formulae we described above, we
need to be sure that K[4] is in “the right position”. Given K[4], we apply Algorithm 2 to
obtain a theta-null point induced by the symplectic 4-torsion decomposition ⟨S′

1, S
′
2⟩⊕

⟨T ′
1, T

′
2⟩, where K[4] = ⟨T ′

1, T
′
2⟩

If n > 2, we have that K[8] = ⟨T ′′
1 , T

′′
2 ⟩ is the isotropic 8-torsion above K[4]. This

means we could apply Algorithms 5 and 6 to compute the first step of the isogeny f ,
i.e. the isogeny f1 : E1 × E2 → A1 with kernel K[2]. However, we should be careful
as on the product structure, one of the coordinates of the dual theta-null point on A1

may be equal to zero. We explain why this happens and how to bypass this obstacle in
the Subsection “Gluing Isogeny” below.

After the first step, we also end up with a complete description of the theta structure
on A1; let A1[2] = K1 ⊕ K2. The points f1(T ′′

1) and f1(T
′′
2) are two of the 4-torsion

elements describing the theta-null point on A1. If n > 3, we can use f1(K)[8] to describe
the 8-torsion above ⟨f1(T ′′

1), f1(T
′′
2)⟩ and iterate the process.

Once we reach the second last step fn−1 : An−2 → An−1, we cannot inherit the
8-torsion above the K2 part of the An−2 anymore. However, thanks to the assumption
that we have to two points of order 2n+2 on E1 × E2 above K forming an isotropic
group, we can use the same exact strategy using the images of such points. We explain
how to relax this condition in Subsection 4.2.

In the last step fn : An−1 → E′
1×E′

2, we map onto an elliptic product. Even though
we can reuse the same computational strategies when we stay in the theta model, for
most of the cryptographic applications we have to explicitly recover the equations of
the curves E′

1 and E′
2, and we also have to have map points onto these curves. We

describe how to do so in the Subsection “Splitting Isogeny”.

16 P. Dartois, L. Maino, G. Pope, and D. Robert

Gluing Isogeny In this subsection, we focus on the first step of the isogeny chain,
an isogeny originating from an elliptic product; let f : E1 × E2 → A be such an
isogeny. Theta structures on elliptic products E1×E2 verify some additional properties
with respect to level-(2, 2) theta coordinates. We refer to Dupont’s PhD thesis [9] for
background material. For the case at hand, we briefly recall some fundamental facts.

Theta coordinates of level (2, 2) are indexed by a pair of elements in K(2, 2). A
level-(2, 2) theta coordinate Ui,j is said to be even if i · jT = 0 (mod 2); otherwise it
is said to be odd. Moreover, at most one of the even indices (i, j) verifies Ui,j(0) = 0,
and there is exactly one zero even index if and only if the theta structure is associated
with a product of two elliptic curves.

Given level-2 theta coordinates (θi(P))i, we can compute the square of its level-(2, 2)
theta coordinates as

U2
i,j(P) =

∑
t

(−1)i·t
T

θt(P)θt+j(P).

In [9, Proposition 6.5], Dupont shows that a theta-null point (θi(0))i comes from the
product theta structure of two elliptic curves if and only if U11,11(0) = 0. This means
that if we are working on a product structure, all the coordinates of the dual theta-null
point (α : β : γ : δ) are non-zero since (U00,00(0) : U10,00(0) : U01,00(0) : U11,00(0)) =
(α : β : γ : δ). However, when we perform a change of basis, we might move the zero
even index of the level-(2, 2) theta-null point around, and potentially we might have
one of the dual theta-null coordinates equal to zero.

In fact, unless A is a product of elliptic curves (which would be the case if the
kernel is a product kernel), then we know that one of α, β, γ, δ is zero. If it were not
the case, we could compute f(P) from P . But since we work with theta coordinates of
level 2, on the product E1×E2 we are really working with the product of Kummer lines
E1/±1×E2/±1. The automorphism group by which we quotient is thus Z/2Z×Z/2Z
compared to Z/2Z when working on the Kummer surface A/± 1 of an abelian surface
with a non product principal polarisation. Thus, when going from P to f(P), there
is an ambiguity coming from an action of Z/2Z, which can only be resolved by either
taking a square root, or as we will explain next, by using extra information coming
from the arithmetic of E1 × E2 (rather than E1/± 1× E2/± 1).

Let us handle the case where one of the coordinates of the dual theta-null point
(α : β : γ : δ) is zero; let us first analyse the case α = 0. In Algorithm 5, we normalised
everything with respect to δ. This actually simplifies the codomain computation. We
explain how to do so in Algorithm 7.

As explained above, mapping points under this isogeny requires extra care. If we
simply use Algorithm 6, we cannot retrieve the first coordinate of a point. To be precise,
if we want to evaluate f at the point (θE1×E2

i (P))i, we have

H ◦ S((θE1×E2
i (P))i) = (0, βθ̃A10(f(P)), γθ̃

A
01(f(P)), δθ̃

A
11(f(P))). (4)

Multiplying by β−1, γ−1 and δ−1 the components βθ̃A10(f(P)), γθ̃A01(f(P)), δθ̃A11(f(P)),
we retrieve all the dual components but θ̃A00(f(P)).

The component θ̃A00(f(P)) can be computed using the additional information com-
ing from the theta structure. Let T ′

1 be the point above T1 ∈ K2 as in the previous

An Algorithmic Approach to (2, 2)-isogenies in the Theta Model 17

Algorithm 7 Special Codomain, α = 0

Input: In the same notation as before, theta coordinates (xT ′′
1
: yT ′′

1
: zT ′′

1
: wT ′′

1
) of T ′′

1 , theta
coordinates (xT ′′

2
: yT ′′

2
: zT ′′

2
: wT ′′

2
) of T ′′

2 , where T ′′
i is a 8-torsion point laying above the

K2 part of the symplectic 4-torsion basis inducing the theta-null point.
Output: Dual theta-null point (0 : β : γ : 1), the “inverse” of the dual theta-null point

(0 : β−1 : γ−1 : 1) and the theta-null point (a′ : b′ : c′ : d′) on A. (▷)Case α = 0
1: (0, xβ, yγ, yδ)← H ◦ S(xT ′′

1
, yT ′′

1
, zT ′′

1
, wT ′′

1
)

2: (0, wβ, zγ, wδ)← H ◦ S(xT ′′
2
, yT ′′

2
, zT ′′

2
, wT ′′

2
)

3: Compute (yγ)−1, (wβ)−1, (yδ)−1, (wδ)−1 via batched inversions.
4: β ← wβ · (wδ)−1

5: γ ← yγ · (yδ)−1

6: β−1 ← wδ · (wβ)−1

7: γ−1 ← yδ · (yγ)−1

8: (a′, b′, c′, d′)← H(0, β, γ, 1)
9: return (0, β, γ, 1), (0, β−1, γ−1, 1), (a′, b′, c′, d′) (▷)Total cost: 8S + 13M + 1I

subsection. Then,

H ◦ S((θE1×E2
i (P + T ′

1))i) = (0, βθ̃A00(f(P)), γθ̃
A
11(f(P)), δθ̃

A
01(f(P))). (5)

However, multiplying the component βθ̃A00(f(P)) by β−1 is not enough since we are
working up to projective factors.

Once we recover θ̃A10(f(P)), θ̃A01(f(P)), θ̃A11(f(P)) from Equation 4, we can compute
λθ̃A01(f(P)) from Equation 5 for some projective factor λ: we simply multiply the last
component of H ◦ S((θE1×E2

i (P + T ′
1))i) by δ−1. If θ̃A01(f(P)) ̸= 0, we can actually

compute the inverse of the projective factor by θ̃A01(f(P))/(λθ̃A01(f(P))). Otherwise, we
repeat the same process with the second last component of H ◦ S((θE1×E2

i (P + T ′
1))i).

Once we have λ, we extract θ̃A00(f(P)) from the second component of H◦S((θE1×E2
i (P+

T ′
1))i): we multiply the second component of H ◦ S((θE1×E2

i (P + T ′
1))i) by λ−1 · β−1.

Finally, we obtain the image of the point P under f via

H(θ̃A00(f(P)), θ̃
A
10(f(P)), θ̃

A
01(f(P)), θ̃

A
11(f(P))).

We summarise everything in Algorithm 8. Note that for both Algorithm 7 and 8, the
case for β, γ or δ = 0 follows almost identically, see the implementation for a concrete
example of how all cases can be considered concisely. We note that Algorithm 8 requires
the knowledge not only of the theta coordinates of P , but also of P + T ′

1. From the
knowledge of the (θi(P)) and (θi(T

′
1)), we may only recover (θi(P ±T ′

1)), hence extract
(θi(P + T ′

1)) via a square root, consistent with the fact that in a gluing isogeny we
have an ambiguity for images coming from an action by Z/2Z. Luckily we can compute
this addition on each elliptic curve separately, using Weierstrass coordinates, before
switching to the level-2 theta coordinates on the surface E1 × E2.

Splitting Isogeny In this last step of the isogeny chain, we need to compute an
isogeny f : A→ E′

1×E′
2 mapping onto an elliptic product. We can compute the theta-

null point of E′
1×E′

2 and mapping points under f using Algorithms 5 and 6. However,

18 P. Dartois, L. Maino, G. Pope, and D. Robert

Algorithm 8 Special Evaluation, α = 0

Input: Theta coordinates (xP : yP : zP : wP) of P , theta coordinates (xP+T ′
1
: yP+T ′

1
:

zP+T ′
1
: wP+T ′

1
) of P + T ′

1 and the inverse of the dual theta-null point (0 : β−1 : γ−1 : 1)
on A.

Output: Theta coordinates (xf(P) : yf(P) : zf(P) : wf(P)) of f(P). (▷)Case α = 0
1: (0, YP , ZP ,WP)← H ◦ S(xP , yP , zP , wP)
2: (0, YP+T1 , ZP+T1 ,WP+T1)← H ◦ S(xP+T1 : yP+T1 : zP+T1 : wP+T1)
3: (Y ′

f(P), Z
′
f(P),W

′
f(P))← (β−1 · YP , γ

−1 · ZP ,WP)
4: if Z′

f(P) ̸= 0 then
5: λ−1 ← Z′

f(P)/WP+T1

6: else
7: Z′

f(P+T1)
← γ−1 · ZP+T1

8: λ−1 ←W ′
f(P)/Z

′
P+T1

9: X ′
f(P) ← λ−1 · β−1 · YP+T1

10: (xf(P), yf(P), zf(P), wf(P))← H(X ′
f(P), Y

′
f(P), Z

′
f(P),W

′
f(P))

11: return (xf(P), yf(P), zf(P), wf(P)) (▷)Total cost: 8S+ 5M + 1I

we still need to retrieve the explicit equations for the curves E′
1 and E′

2. This can be
done using level-(2, 2) theta coordinates Ui,j .

Since the theta structure on the image surface underlies an elliptic product, we
know that one of the even indices – say (i, j) – of the level-(2, 2) theta-null point is
equal to zero. Also, we know that if we compute a symplectic automorphism ψ mapping
(i, j) onto (11, 11), the action of ψ on the theta-null point obtained via Algorithm 5
gives back a theta-null point associated with the product theta structure.

From the above, it can be seen that there are ten distinct even indices. For each of
these indices, we computed a symplectic automorphism sending this index to (11, 11).
For efficiency reasons, we hardcoded the action of each of the symplectic automorphisms
onto theta coordinates of level 2 in the reference implementation. These symplectic
automorphisms and their actions have been derived from [31, p. 28] using the following
sequential steps.

Let (i, j) be the even index such that Ui,j(0) = 0, and, for ease of notation, let
(a00 : a10 : a01 : a11) be the underlying theta-null point.

1. If i = j = 00, we act by the symplectic automorphism with matrix form
1 0 2 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

We then obtain the theta-null point (a00 :
√
−1 ·a10 : a01 :

√
−1 ·a11), which means

that U10,00(0) = 0.
2. If j = 00 and i ̸= 00, we act by H, which swaps the roles of i and j. We can now

assume that j ̸= 00.

An Algorithmic Approach to (2, 2)-isogenies in the Theta Model 19

3. Let A be any invertible matrix such that A · jT = 11T . Then, the action of the
symplectic automorphism with matrix(

A 0

0 AT−1

)
maps the theta-null point (a00 : a10 : a01 : a11) to (a00 : a10·AT : a01·AT : a11·AT).
This means that Ui′,j′(0) = 0, where i′ = i · A and j′ = 11. We can now assume
that j = 11.

4. Now, either i = 00 or i = 11. If i = 11, we are done. Otherwise, we act by the
symplectic automorphism with matrix form

1 0 2 0
0 1 0 2
0 0 1 0
0 0 0 1

 .

We then obtain the theta-null point (a00 :
√
−1 ·a10 :

√
−1 ·a01 : a11), which means

that U11,11(0) = 0.

Thus, we can assume we are now working on the product theta structure.
If (a : b : c : d) is theta-null point on E1 × E2, from Proposition 2, it follows that

(a : b) is a theta-null point for E1 and (b : d) is a theta-null point for E2. Also, if
f(P) = (P1, P2) ∈ E1 × E2 is represented in theta coordinates as (x : y : z : w), we
have that (x : y) is the representation of P1 in theta coordinates for E1 and (y : w)
is the representation of P2 in theta coordinates for E2. Finally, to convert from theta
coordinates to the Montgomery model we can use the formulae in [1].

4.2 Computing Isogenies without Extra Isotropic Information

In this subsection, we relax the condition on the two points of order 2n+2 on E1 × E2

aboveK forming an isotropic group. This does not represent a problem when computing
a (2n, 2n)-isogeny, except for the two last steps. We discuss two cases: when we can
work with 2n+2-torsion, and when we cannot.8

Let us discuss the former case. Let K = ⟨P1, P2⟩ ⊂ E1 ×E2. To apply the previous
algorithm, we would like to have an isotropic ⟨P ′′

1 , P
′′
2 ⟩ above K such that Pi = [4]P ′′

i .
However, it suffices to pick up any Q′′

1 , Q
′′
2 , not necessarily isotropic, as long as Pi =

[4]Q′′
i . Indeed, one can check that applying the algorithm of section 4.1 on theseQ′′

i gives
a theta-null point that differs from the one given by isotropic P ′′

i by an automorphism
of the theta group (see Subsection 2.1) induced by a symplectic automorphism,. Hence,
it still corresponds to the correct codomain, but with a different theta structure.

In the latter case, we cannot use the 2n+2-torsion at all. A way to circumvent this
problem is to use square roots to compute the codomains for the last two steps. Once
we have the codomain, the image evaluation is unaffected. There is no way to avoid the
8 For instance, it is preferable not to work with the 2n+2-torsion when it is defined over a

field extension of the base field.

20 P. Dartois, L. Maino, G. Pope, and D. Robert

square root computations: the theta-null point requires a theta structure of level 2, so
in particular a full basis of the 2-torsion and some extra information on the 4-torsion.
If we don’t have the 2n+2-torsion at the beginning, we miss the necessary information
on the 4-torsion at the penultimate step and on the 2-torsion on the last step. To
reconstruct this information requires making choices, hence taking square roots.

At the penultimate step f : A → B, we have T ′
1 and T ′

2 of 4-torsion but not the 8-
torsion points T ′′

1 and T ′′
2 anymore. This means that on the codomain, we only have the

2-torsion determined. We have several choices of possible compatible theta structure,
but we still want to use the information at hand.

Let (α : β : γ : δ) be the dual theta-null point on B. Applying Equation 2 to the
theta-null point (a : b : c : d), we have

H ◦ S(a : b : c : d) = (α2 : β2 : γ2 : δ2). (6)

Also, since f(T ′
1) is in K1 for the dual theta structure, we have(

θ̃Bi (f(T ′
1))

)
i
= (β : α : δ : γ).

Therefore, from Equation 2,

H ◦ S(
(
θAi (T

′
1)
)
i
) = (αβ, αβ, γδ, γδ). (7)

Fix α = 1. From Equation 6, we can compute any square root of β2 for β and any
square root of γ2 for γ. From Equation 7 and β we can recover the correct lifting of
γδ, and in turn, we can recover δ. The four choices we can make on the square roots of
γ2 and δ2 describe different theta structures underlying the same abelian surface since
they differ by the action of a symplectic automorphism [35, Example B.3].

At the last step, we only have T1 and T2. As a result, we can only recover the
squares (α2 : β2 : γ2 : δ2) of the dual theta-null point (α : β : γ : δ). We can fix
α = 1 and compute β, γ, δ via three square roots. Once again, we can check that these
8 choices all come from a valid theta structure [35, Example B.3].

To sum up, if the 2n+2-torsion is available, we need no square root. If the 2n+1-
torsion is available, we need two square roots. If only the 2n-torsion is available, we
need 2 + 3 = 5 square roots.

5 Implementation

We have implemented the computation of an isogeny between elliptic products in the
theta model using both the programming language Rust and the computer algebra
system SageMath. The SageMath implementation has been designed to follow the API
of isogenies between elliptic curves and is intended to be a tool in both experimentation
and in constructing proof-of-concept implementations of isogeny-based cryptographic
primitives. For those who have previously relied on the SageMath implementation
of [27], the function EllipticProductIsogeny(kernel, n) has been designed to be
a drop-in replacement for the (2n, 2n)-isogeny computed using via the Richelot corre-
spondence and the algorithms presented in [36].

An Algorithmic Approach to (2, 2)-isogenies in the Theta Model 21

The Rust implementation has been designed with constructive cryptographic im-
plementations in mind, and in particular, it has been written to be constant time.9 The
finite field arithmetic and certain elliptic curve functions have been adapted from the
crrl library [28] maintained by Thomas Pornin as well as other ongoing collaborations.
An effort has been made to ensure the code is (reasonably) flexible so that without
too much tweaking, this work can be ported to other Rust projects. As an example of
this flexibility, we show timings of isogenies of various lengths between elliptic products
over three distinct base fields.

Both the SageMath and Rust implementations are made available via the following
GitHub repository:

https://github.com/ThetaIsogenies/two-isogenies

5.1 Performance

In this subsection, we include the performance of our algorithm for three distinct
isogeny chains between elliptic products over a range of base fields. We include the
timings for both the constant-time Rust implementation as well as the proof-of-concept
SageMath implementation, together with a comparison to previous work on isogenies
between elliptic products in the Mumford model [27] using the optimisations introduced
in the implementation of [2].

Table 2. Running times of computing the codomain and evaluating a (2n, 2n)-isogeny between
elliptic products over the base field Fp2 . Times were recorded on a Intel Core i7-9750H CPU
with a clock-speed of 2.6 GHz with turbo-boost disabled.

Codomain Evaluation

Theta Theta Richelot Theta Theta Richelot
log p n Rust SageMath SageMath [27] Rust SageMath SageMath [27]

254 126 2.85 ms 108 ms 1028 ms 161 µs 5.43 ms 114 ms
381 208 11.2 ms 201 ms 1998 ms 411 µs 8.68 ms 208 ms
1293 632 495 ms 1225 ms 12840 ms 17.8 ms 40.8 ms 1203 ms

This triplet of comparisons has a twofold advantage. Firstly, the Rust implemen-
tation we present is the first (to our knowledge) constant time implementation of di-
mension two isogenies between elliptic products. By including the timings of both our
Rust implementation and the SageMath implementation, we hope that researchers
can estimate a performance gain if they were to write efficient and cryptographically
minded implementations following the proof-of-concept scripts which currently exist in
the higher-dimensional isogeny-based cryptography literature.
9 The implementation assumes the kernel generators are good with respect to them generating

an isogeny between elliptic products. Designing the algorithm to run in constant time with
malformed input extends beyond the goals of this paper but may be necessary for protection
against side-channel attacks against schemes which rely on this algorithm.

https://github.com/ThetaIsogenies/two-isogenies

22 P. Dartois, L. Maino, G. Pope, and D. Robert

Secondly, our SageMath implementation allows an honest comparison of the isoge-
nies in the theta model to the Richelot isogenies in the Mumford model. We compare
against the implementation of [27] together with the additional optimisations intro-
duced for the proof-of-concept of [2] which offered more than a two times speed up by
optimising both the arithmetic on Jacobians as well as the isogenies themselves.

The run-times displayed in Table 2 were captured on a Intel Core i7-9750H CPU
with a clock-speed of 2.6 GHz with turbo-boost disabled for stable measurements.
The Rust code was compiled with the Rust compiler version 1.75.0-nightly with
the flag -C target-cpu=native to allow the compiler to use CPU specific opcodes
(specifically, mulx for the finite field arithmetic). The arithmetic is written using Rust,
rather than optimised assembly for each base field; the inclusion of which would allow
dramatically faster results, especially for base fields with large characteristic. This form
of optimisation is better suited to particular protocols, and we would expect to see this
in optimised implementations of isogeny-based cryptographic primitives.

Comparing our SageMath implementation to the isogeny chain in the Mumford
model, we find that the codomain computation is consistently faster by a factor of
ten, while the image computation is more than twenty times faster. For smaller char-
acteristic, the Rust implementation is approximately forty times faster than the same
algorithm written in SageMath, but this gap closes significantly for larger primes. For
example, the FESTA sized parameters run only 2.5 times faster than the SageMath
code. Note that the Rust implementation has been written to run in constant time and
so the underlying arithmetic between these two implementations is incomparable.10

We note here that an alternative and faster implementation of (2, 2)-isogenies in
the Mumford model is available in [13]. In this work, Kunzweiler uses Jacobians of hy-
perelliptic curves in specific models which allows (2, 2)-isogeny chains to be computed
particularly efficiently. In the initial treatment of this work, isogenies between elliptic
products were not considered, leading to FESTA [2] and other projects to rely on [27].
However, Kunzweiler’s work can be adapted to the case of isogenies between elliptic
products. Additionally, Kunzweiler also has an unpublished SageMath implementation
of (2, 2)-isogenies using Kummer surfaces in the Mumford model rather than in the
Jacobian model that she kindly provided us.11 Comparing our results to the computa-
tions of Kummer surfaces in the Mumford model is a fairer comparison as we work with
level-2 theta coordinates, which are also on Kummer surfaces. Comparing against this
implementation, the codomain computation in the theta model is around four times
faster than in the Mumford model, and evaluations are around four times faster. We
give detailed comparison timings in Table 3.

Although theta coordinates are faster, working in the Mumford model is interesting
if the level-2 theta coordinates are not rational, so using theta coordinates would require

10 It is not surprising to see this gap close though, as we expect for very large characteristic
that the SageMath overhead becomes negligible compared to the cost of the arithmetic. As
such, the comparisons of the two run-times boil down to comparing the Rust finite field
arithmetic against the SageMath calls to the optimised arithmetic of the C libraries it is
built upon.

11 Kunzweiler’s isogenies between elliptic products using both Jacobians and Kummer surfaces
are now available via GitHub [14]

An Algorithmic Approach to (2, 2)-isogenies in the Theta Model 23

Table 3. Comparison of the SageMath running times for a (2n, 2n)-isogeny between elliptic
products in the theta model against Kunzweiler’s implementation in the Mumford model using
both Jacobians and Kummer surfaces [14]. Times were recorded on a Intel Core i7-9750H CPU
with a clock-speed of 2.6 GHz with turbo-boost disabled.

Codomain Evaluation

log p n Theta Jacobian Kummer Theta Jacobian Kummer

254 126 108 ms 760 ms 467 ms 5.43 ms 66.7 ms 18.4 ms
381 208 201 ms 1478 ms 858 ms 8.68 ms 119 ms 31.4 ms
1293 632 1225 ms 9196 ms 5150 ms 40.8 ms 593 ms 170 ms

to work on a field extension. Since our domain is a product of elliptic curves, the
theta coordinates are rational when each elliptic curve is described by rational theta
coordinates. By [1], this is the case for an elliptic curve E whenever E[4] = K ′

1 ⊕K ′
2

and the K ′
i are rational subgroups (equivalently they are generated by a 4-torsion point

T ′
i which is rational on the Kummer line E/±1). In particular, a supersingular elliptic

curve E/Fp2 always has rational level-2 theta coordinates (assuming p odd). However,
if E is a supersingular elliptic curve defined over Fp, the theta coordinates are rational
only if E lies at the top of the 2-isogeny volcano.

Comparison with Dimension One In Table 4, we provide a timing comparison
using SageMath between a 2n-isogeny in dimension one using the efficient formulae of
[29] to our formulae in dimension two over the same base field. The dimension two
isogeny has degree 22n so is expected to be slower. Our timings show a consistent
factor-two slow down both for the codomain and image computations in dimension
two compared to dimension one. This is essentially the best we could hope given the
degrees, and actually better than expected.

The dominating costs of a 2n-isogeny are the intermediate doublings and images.
In the following we consider the more costly doublings and images in dimension two
which arise from avoiding inversion when computing the codomain. First of all, we
have around twice as many doublings and images in dimension two than in dimension
one beause the kernel is of rank 2. The cost of doubling in dimension one is 4M + 2S
compared to 8M+8S in dimension two, and an image is 4M compared to 4M+4S in
dimension two. Thus, while images are twice slower, doublings are around 2.5× slower,
and the intermediate codomain computations are also slower. Furthermore, a lot of
doublings are done on the first step of the chain to get the first kernel, so on the elliptic
product.

While it might seem at first glance that these doublings would only occur a twofold
slowdown, in practice, for the gluing images, we need to compute these points in affine
(x, y) coordinates rather than x-only coordinates to allow access to addition laws12

So, all in all, we should expect a slowdown around 4× for perfect implementations.
Our benchmarks show a slowdown slightly less than 2×, making two-dimensional iso-
12 We could also use differential additions to compute [m]P, [m]P +T ′

1, but this would be more
expensive than just doubling in the affine model.

24 P. Dartois, L. Maino, G. Pope, and D. Robert

genies perform better than expected (by contrast, the 2× slowdown for images is con-
sistent with the theory). This is probably due to SageMath overhead and the fact that
the dimension one implementation has been designed to allow arbitrary degree rather
than only chains of two isogenies and is missing some optimisations. A final caveat is
that in dimension one, it is faster to split the 2n-isogeny using the fast 4-isogenies from
[6] rather than using 2-isogenies – we did not do that in our comparison because we do
not have efficient 4-isogeny formulae in dimension two yet. Still, taking into account
the degrees of the respective isogenies, this shows that our dimension two formulae are
quite competitive with the best dimension one formulae.

Table 4. Comparison of the running times for a 2n-isogeny in dimension one and dimension
two over the same base field. Times were recorded on a Intel Core i7-9750H CPU with a
clock-speed of 2.6 GHz with turbo-boost disabled.

Codomain Evaluation

log p n Montgomery Theta Montgomery Theta

254 126 63 ms 108 ms 2.24 ms 5.43 ms
381 208 136 ms 201 ms 4.4 ms 8.68 ms
1293 632 727 ms 1225 ms 20 ms 40.8 ms

5.2 Implementation details

In this subsection, we explain two optimisations we applied in the implementation.
The first one is a direct consequence of Remark 7, where we describe how to lower
the complexity of the codomain computation by reusing some constants. The second
optimisation consists in the application of optimal strategies [10] to our case.

Reduce, Reuse, Recycle A simple and obvious optimisation is to reuse as many
computations as possible throughout the isogeny chain. As mentioned in Remark 7,
for each step on the isogeny chain, we can precompute six field elements at a cost of
4S + 21M + 1I. Knowledge of these values allows the doubling of any theta point on
the corresponding theta structure to have a cost of 8S + 6M, but it also allows the
following codomain computation cost to be lowered to 8S+ 9M + 1I.

In a similar way, by computing the codomain together with all the images we require
at each step, we can precompute two additional field elements which can be reused for
each evaluation, bringing the cost of an image to half that of doubling: 4S+ 3M.

For the gluing isogeny, the basis change is determined from the kernel and so cannot
be precomputed. However, the last step at the end of the isogeny chain requires to find
a symplectic transformation that maps the zero even index to the position (11, 11). As
there are only ten even indices, we can precompute ten symplectic transforms which
map any given zero even index to (11, 11). Computing the basis change is then only a
matter of finding the the current zero index and from this, selecting the precomputed
matrix and applying the transformation.

An Algorithmic Approach to (2, 2)-isogenies in the Theta Model 25

On Inversions At each step of the isogeny chain, we compute one inversion for the
intermediate codomain. This inversion allows us to reduce the cost of doublings on this
codomain from 8M+8S to 6M+8S and the cost of images from 4M+4S to 3M+4S.
However, at the end of the isogeny chain, there remain fewer doublings and images to
compute, so it would be more efficient to skip this inversion and occur the higher cost.
The precise cutoff point would depend on the relative cost of the inversion compared
to a multiplication and the length of the chain. This optimisation has not yet been
implemented in our code.

On Square Roots As explained in Section 4.2, when we do not have the 2n+2-torsion
available, we need to compute some square roots at the end of the chain (five square
roots in total). This only changes the computation cost of the last two codomains, and
do not affect the images computations. The longer the isogeny chain, the less impactful
these square roots will be. Benchmarking our SageMath implementation, we observed
that the impact of these five square roots is completely negligible for the chains we
consider.

Optimal Strategies As is now standard with computing long isogeny chains, we
can reduce the complexity of isogeny chains from a quadratic number of edges in the
graph of doublings and evaluations to quasi-linear following the “optimal strategies”
introduced in [10]. Essentially, the saving comes from reducing the total number of
doublings when computing the kernel for each step in the chain by pushing through
intermediate points encountered in the repeated doubling. For isogenies in the theta
model, the cost of images is half that of doubling, and so shifting the cost in this way
is particularly useful in optimisations.

Although this strategy was first discussed in dimension one for the case of isogenies
between elliptic curves, using it in dimension two is a natural generalisation. For the
dimension one case, the strategy is computed from balancing the costs of doubling
and evaluating the kernel generator through the chain. In dimension two, the (2, 2)-
isogeny is generated by a pair of elements which means twice the number of evaluations,
but as the pair of elements must also be doubled to obtain the kernel for each step,
essentially nothing changes. The cost weighting for the optimal strategies is a ratio
between doublings and evaluations, which means we can naively use an identical method
as described in [10] to compute a strategy for our isogeny chain.

Implementing the strategy with the weighting of doublings and images at a cost of
(2 : 1), we find an approximate ten times speed up in comparison to an implementation
with no strategy. Concretely, for the Rust implementation of the isogeny chain of length
n = 208, we see a speed up from 107 ms to 11.4 ms.

However, unlike the isogeny chains between elliptic curves, the isogeny chain be-
tween elliptic products in our implementation does not have the same costs for every
step. For steps in the chain between generic theta structures, the cost weighting is in-
deed (2 : 1). However, for the first gluing isogeny, doubling an element on the product
structure has a cost of 12S+12M while the cost for the image is much more expensive.

To compute the image of a point P ∈ E1×E2 one must first compute the shift P+T ′
1

for a cost of 10S+32M to projectively add a pair of points. Then, for each of these two

26 P. Dartois, L. Maino, G. Pope, and D. Robert

points on the product, there is a cost of 4M to compute the corresponding theta point
from elliptic curve coordinates, and an additional 16M required perform the matrix
multiplication for the basis change to ensure a compatible representation. Altogether,
this precomputation costs 10S+72M. Given the theta point corresponding to the pair
of points on the product structure, there is still then the final cost of 8S + 5M + 1I
for the special image itself. Furthermore, for this to be implemented in constant time,
both branches depending on whether a coordinate is zero or not must be evaluated,
raising the practical cost to 8S+ 10M + 1I.

All things considered, a gluing image costs 18S+82M+1I, making it approximately
seven times the cost of the doubling for this first step and fourteen times the cost of a
regular image. Visualising the graph of doublings and images as in [10, Figure 2], this
means we must weigh the cost of moving down the left most branch with the product
doubling and the first step right from the leftmost branch with this high-cost gluing
image.

Taking this into account, an optimised strategy for the isogeny between elliptic
products for our formula must be tweaked from the original case to find the right
balance of doublings and expensive images from this left branch. Applying this modi-
fication, we are able to find the “proper” optimised strategy, which further reduces the
run-time of the isogeny chain computation by approximately 2%.13 For the same chain
as above, we see a computation time improve from 11.4ms to 11.2ms. For an explicit
description for computing the optimised strategy with a different costs on the left-most
branch, see the implementation.

5.3 An Application: FESTA

As an explicit, cryptographic example of the new isogeny formula, we can take our
implementation and use it to compute the isogeny between elliptic products which is
required within the decryption algorithm of the isogeny-based public key encryption
protocol FESTA-128 [2]. Concretely, this requires computing an isogeny of length n =
632, where the base field has a characteristic with log p = 1293 bits, and the evaluation
of a pair of points on the elliptic product L1 = (R1, R2) and L2 = (S1, S2), Li ∈ E1×E2.

A direct swap from the isogeny chain derived from the Richelot correspondence
used in the FESTA proof-of-concept would require using Section 4.2 to compute the
final two steps without the eight-torsion above the kernel. An implementation of this
is available in SageMath, but for the purpose of FESTA, we instead propose to tweak
the 128-bit parameter set to instead allow for the additional torsion information to
be known, allowing the isogeny chain to be computed as fast as possible while only
including an additional 2-bits in the masked torsion data.

We find that the our SageMath implementation of the codomain computation has
a ten times speed up compared to the proof-of-concept code accompanying [2], and
evaluating the pair of points is now thirty times faster. As a hint to what approximate

13 As an aside, in the original discussion of the optimised costings, it is shown that a 2-3%
improvement is gained by moving from a balanced to optimised strategy. Seeing a similar
saving from the naive (2 : 1) weighted optimisation to one carefully handling the cost of
the gluing step is then within our expectations.

An Algorithmic Approach to (2, 2)-isogenies in the Theta Model 27

running times may be for FESTA, computing the codomain and both images using
our Rust implementation takes only 563ms, a 2.5 times speed up over the SageMath
implementation. Note that these computation are precisely that of the final row of
Table 2. We again note that further optimisations of the finite field arithmetic could
offer substantial speed ups, as seen in the optimised assembly implementations for large
characteristic implementations of SIDH [12, Table 2.1] and the efficient algorithms
of [16].

Concretely, we propose the following parameters for FESTA-128 using the same
notations as in the original paper

b := 632,

d1 := (33 · 19 · 29 · 37 · 83 · 139 · 167 · 251 · 419 · 421 · 701 · 839 · 1009 ·
1259 · 3061 · 3779)2,

d2 := 7 · (52 · 7 · 11 · 13 · 17 · 41 · 43 · 71 · 89 · 127 · 211 · 281 · 503 · 631·
2309 · 2521 · 2647 · 2729)2,

dA,1 := (59 · 6299 · 6719 · 9181)2,
dA,2 := (3023 · 3359 · 4409 · 5039 · 19531 · 22679 · 41161)2,
m1 := 1492184945093476592520242083925044182103921,

m2 := 25617331336429939300166693069,

f := 4 · 71.

In practice, we only tweak the cofactor f in the prime p = 2bd1(dA,1dA,2)sfd2f − 1 to
be f = 0 (mod 4).14

Within the context of the proof-of-concept decryption times (in SageMath), the
novel algorithms we present here offer a four times speed up in decryption, with run-
times for FESTA-128 being reduced from 20.7s to only 5.4s.15 We see that through
computing the dimension two isogeny in the theta model, the time spent computing
a (2n, 2n)-isogeny shrinks from 70% of the run-time to only 25%, with the remaining
computation time spent in dimension one, computing various discrete logs and Weil
pairings to complete the decryption routine.

6 Conclusions

In this paper, we have described and implemented formulae to compute (2n, 2n)-
isogenies between elliptic products in the theta model. The main goal was to provide
a comprehensive and self-contained treatment of the theta model, specialising to the

14 The notation tsf refers to the square-free part of the integer t.
15 The speed up here is more than just a faster isogeny chain, but also some other speed-

ups which come for free, as the previous implementation required further isomorphisms to
ensure the codomain product curves were in the Montgomery model, but for the theta-model
isogeny, we get this for free.

28 P. Dartois, L. Maino, G. Pope, and D. Robert

two-dimensional case. The extension of this work to dimension four is therefore a nat-
ural consequence, which will greatly benefit isogeny-based cryptography (see [7] for
instance), as well optimising the dimension two case for other degrees.

Our algorithm significantly outperforms the previous method in [27,2]: in SageMath,
the codomain computation is ten times faster, while the isogeny evaluation is more than
twenty times faster. The implementation in Rust has been written to run in constant
time, with cryptographic implementations in mind. It runs up to forty times faster
than the same algorithm written in SageMath.

We tested our algorithm on the proof-of-concept implementation in [2] and showed
a fourfold speed up in decryption, highlighting that the slowest part is now given by
the computations in dimension one. Furthermore, our SageMath implementation has
been designed to allow protocols whose implementation relies on the previous proof-
of-concept in [2] to be easily upgradeable, allowing the theta-model code to be used in
many more projects without too much work. Ultimately, the aim is to provide a new
tool to facilitate research in higher-dimensional isogeny-based cryptography, allowing us
to better understand the practical role of higher-dimensional isogenies in constructive
applications.

References

1. Barbulescu, R., Robert, D., Sarkis, N.: Models of Kummer lines and Galois representation
(2023), Private communication

2. Basso, A., Maino, L., Pope, G.: FESTA: Fast Encryption from Supersingular Torsion
Attacks. Cryptology ePrint Archive, Paper 2023/660 (2023), https://eprint.iacr.org/
2023/660. To appear at ASIACRYPT 2023.

3. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH. pp. 423–447 (2023).
https://doi.org/10.1007/978-3-031-30589-4_15

4. Chen, M., Leroux, A.: SCALLOP-HD: group action from 2-dimensional isogenies. Cryp-
tology ePrint Archive, Paper 2023/1488 (2023), https://eprint.iacr.org/2023/1488

5. Cosset, R., Robert, D.: Computing (ℓ, ℓ)-isogenies in polynomial time on Jacobians of
genus 2 curves. Mathematics of Computation 84, 1953–1975 (2015). https://doi.org/
10.1090/S0025-5718-2014-02899-8

6. Costello, C., Hisil, H.: A simple and compact algorithm for SIDH with arbitrary degree
isogenies. pp. 303–329 (2017). https://doi.org/10.1007/978-3-319-70697-9_11

7. Dartois, P., Leroux, A., Robert, D., Wesolowski, B.: SQISignHD: New Dimensions in Cryp-
tography. Cryptology ePrint Archive, Paper 2023/436 (2023), https://eprint.iacr.org/
2023/436

8. Decru, T., Maino, L., Sanso, A.: Towards a Quantum-Resistant Weak Verifiable Delay
Function. In: Aly, A., Tibouchi, M. (eds.) Progress in Cryptology - LATINCRYPT 2023.
Lecture Notes in Computer Science, vol. 14168, pp. 149–168. Springer (2023). https:
//doi.org/10.1007/978-3-031-44469-2_8

9. Dupont, R.: Moyenne arithmético-géométrique, suites de Borchardt et applications. Ph.D.
thesis, PhD thesis, École polytechnique (2006)

10. Feo, L.D., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from supersingu-
lar elliptic curve isogenies. Cryptology ePrint Archive, Paper 2011/506 (2011), https:
//eprint.iacr.org/2011/506, https://eprint.iacr.org/2011/506

11. Gaudry, P.: Fast genus 2 arithmetic based on theta functions. J. Math. Cryptol. 1(3),
243–265 (2007). https://doi.org/10.1515/JMC.2007.012

https://eprint.iacr.org/2023/660
https://eprint.iacr.org/2023/660
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-031-30589-4_15
https://eprint.iacr.org/2023/1488
https://doi.org/10.1090/S0025-5718-2014-02899-8
https://doi.org/10.1090/S0025-5718-2014-02899-8
https://doi.org/10.1090/S0025-5718-2014-02899-8
https://doi.org/10.1090/S0025-5718-2014-02899-8
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-319-70697-9_11
https://eprint.iacr.org/2023/436
https://eprint.iacr.org/2023/436
https://doi.org/10.1007/978-3-031-44469-2_8
https://doi.org/10.1007/978-3-031-44469-2_8
https://doi.org/10.1007/978-3-031-44469-2_8
https://doi.org/10.1007/978-3-031-44469-2_8
https://eprint.iacr.org/2011/506
https://eprint.iacr.org/2011/506
https://eprint.iacr.org/2011/506
https://doi.org/10.1515/JMC.2007.012
https://doi.org/10.1515/JMC.2007.012

An Algorithmic Approach to (2, 2)-isogenies in the Theta Model 29

12. Jao, D., Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess,
B., Jalali, A., Koziel, B., LaMacchia, B., Longa, P., Naehrig, M., Renes, J.,
Soukharev, V., Urbanik, D.: Supersingular isogeny key encapsulation. Submission
to https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-
cryptography-standardization (2017), https://sike.org

13. Kunzweiler, S.: Efficient computation of (2n, 2n)-isogenies. Cryptology ePrint Archive,
Paper 2022/990 (2022), https://eprint.iacr.org/2022/990

14. Kunzweiler, S.: Efficient Computation of (2n, 2n)-isogenies (2023), https://github.com/
sabrinakunzweiler/richelot-isogenies

15. Leroux, A.: Verifiable random function from the Deuring correspondence and higher
dimensional isogenies. Cryptology ePrint Archive, Paper 2023/1251 (2023), https://
eprint.iacr.org/2023/1251

16. Longa, P.: Efficient Algorithms for Large Prime Characteristic Fields and Their Applica-
tion to Bilinear Pairings. IACR Transactions on Cryptographic Hardware and Embedded
Systems (3), 445–472 (Jun 2023). https://doi.org/10.46586/tches.v2023.i3.445-472

17. Lubicz, D., Robert, D.: Fast change of level and applications to isogenies. Research in
Number Theory (ANTS XV Conference) 9(1) (12 2022). https://doi.org/10.1007/
s40993-022-00407-9

18. Maino, L., Martindale, C., Panny, L., Pope, G., Wesolowski, B.: A direct key recovery
attack on SIDH. pp. 448–471 (2023). https://doi.org/10.1007/978-3-031-30589-4_16

19. Milne, J.S.: Abelian Varieties (v2.00) (2008), Available at www.jmilne.org/math/
20. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization. Math-

ematics of Computation 48(177), 243–264 (1987). https://doi.org/10.1090/s0025-
5718-1987-0866113-7

21. Moriya, T.: IS-CUBE: An isogeny-based compact KEM using a boxed SIDH diagram.
Cryptology ePrint Archive, Paper 2023/1506 (2023), https://eprint.iacr.org/2023/
1506

22. Mumford, D.: On the Equations Defining Abelian Varieties. I. Inventiones Mathematicae
1 (12 1966). https://doi.org/10.1007/BF01389737

23. Mumford, D.: On the Equations Defining Abelian Varieties. II. Inventiones Mathematicae
3 (01 1967). https://doi.org/10.1007/BF01389741

24. Mumford, D.: On the Equations Defining Abelian Varieties. III. Inventiones Mathematicae
3 (01 1967). https://doi.org/10.1007/BF01425401

25. Mumford, D.: Tata Lectures on Theta I. Birkhäuser, Boston (2007)
26. Nakagawa, K., Onuki, H.: QFESTA: Efficient Algorithms and Parameters for FESTA

using Quaternion Algebras. Cryptology ePrint Archive, Paper 2023/1468 (2023), https:
//eprint.iacr.org/2023/1468

27. Oudompheng, R., Pope, G.: A Note on Reimplementing the Castryck-Decru Attack and
Lessons Learned for SageMath. Cryptology ePrint Archive, Paper 2022/1283 (2022),
https://eprint.iacr.org/2022/1283

28. Pornin, T.: crrl: Rust library for cryptographic research, version 0.7.0 (2023), https:
//github.com/pornin/crrl

29. Renes, J.: Computing isogenies between montgomery curves using the action of (0,0).
Cryptology ePrint Archive, Paper 2017/1198 (2017), https://eprint.iacr.org/2017/
1198

30. Robert, D.: Fonctions thêta et applications à la cryptographie. Ph.D. thesis, Université
Henry Poincaré - Nancy 1 (2010), PhD Thesis

31. Robert, D.: Efficient algorithms for abelian varieties and their moduli spaces (2021), Ha-
bilitation à Diriger des Recherches

32. Robert, D.: Evaluating isogenies in polylogarithmic time. Cryptology ePrint Archive, Re-
port 2022/1068 (2022), https://eprint.iacr.org/2022/1068

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://sike.org
https://eprint.iacr.org/2022/990
https://github.com/sabrinakunzweiler/richelot-isogenies
https://github.com/sabrinakunzweiler/richelot-isogenies
https://eprint.iacr.org/2023/1251
https://eprint.iacr.org/2023/1251
https://doi.org/10.46586/tches.v2023.i3.445-472
https://doi.org/10.46586/tches.v2023.i3.445-472
https://doi.org/10.1007/s40993-022-00407-9
https://doi.org/10.1007/s40993-022-00407-9
https://doi.org/10.1007/s40993-022-00407-9
https://doi.org/10.1007/s40993-022-00407-9
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-3-031-30589-4_16
www.jmilne.org/math/
https://doi.org/10.1090/s0025-5718-1987-0866113-7
https://doi.org/10.1090/s0025-5718-1987-0866113-7
https://doi.org/10.1090/s0025-5718-1987-0866113-7
https://doi.org/10.1090/s0025-5718-1987-0866113-7
https://eprint.iacr.org/2023/1506
https://eprint.iacr.org/2023/1506
https://doi.org/10.1007/BF01389737
https://doi.org/10.1007/BF01389737
https://doi.org/10.1007/BF01389741
https://doi.org/10.1007/BF01389741
https://doi.org/10.1007/BF01425401
https://doi.org/10.1007/BF01425401
https://eprint.iacr.org/2023/1468
https://eprint.iacr.org/2023/1468
https://eprint.iacr.org/2022/1283
https://github.com/pornin/crrl
https://github.com/pornin/crrl
https://eprint.iacr.org/2017/1198
https://eprint.iacr.org/2017/1198
https://eprint.iacr.org/2022/1068

30 P. Dartois, L. Maino, G. Pope, and D. Robert

33. Robert, D.: Some applications of higher dimensional isogenies to elliptic curves (overview
of results). Cryptology ePrint Archive, Report 2022/1704 (2022), https://eprint.iacr.
org/2022/1704

34. Robert, D.: Breaking SIDH in polynomial time. pp. 472–503 (2023). https://doi.org/
10.1007/978-3-031-30589-4_17

35. Robert, D.: A note on optimising 2n-isogenies in higher dimension (6 2023), Private com-
munication.

36. Smith, B.A.: Explicit endomorphisms and correspondences. Ph.D. thesis (2005-12-23),
http://hdl.handle.net/2123/1066

37. The Sage Developers: SageMath, the Sage Mathematics Software System (Version 10.0)
(2023), https://www.sagemath.org

https://eprint.iacr.org/2022/1704
https://eprint.iacr.org/2022/1704
https://doi.org/10.1007/978-3-031-30589-4_17
https://doi.org/10.1007/978-3-031-30589-4_17
https://doi.org/10.1007/978-3-031-30589-4_17
https://doi.org/10.1007/978-3-031-30589-4_17
http://hdl.handle.net/2123/1066
https://www.sagemath.org

	An Algorithmic Approach to (2,2)-isogenies in the Theta Model and Applications to Isogeny-based Cryptography

